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ABSTRACT

W& use the method of probability weighted moments to derive estimators of

the parameters and quantiles of the generalized extreme-value distribution.

-We investigate the properties of these estimators in large samples, via

asymptotic theory, and in small and moderate samples, via computer simulation.

Probability weighted moment estimators have low variance and no severe bias,

and compare favourably with estimators obtained by the methods of maximum

likelihood or sextiles. The method of probability weighted moments also

yields a convenient and powerful test of whether an extreme-value distribution

is of Fisher-Tippett type I, II or III.

AMS (MOS) Subject Classifications: 62F10, 62G30

Key Words: generalized extreme-value distribution, hypothesis testing, order

statistics, probability weighted moments.
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SIGNIFICANCE AND EXPLANATION

Many problems in hydrology and civil engineering are related to the

properties of extreme events: maximum levels or flow rates of rivers,

greatest wave heights or sea levels, or maximum wind loads on buildings. The

magnitudes of extreme events are random quantities whose distribution is often

well described by the generalized extreme-value distribution.

The method of probability weighted moments is a general procedure for

estimating parameters and quantiles of probability distributions. It is here

applied to the Qeneralized extreme-value distribution. We derive the large-

sample distribution of estimators obtained by the method of probability

weighted moments, and compare the performance of these estimators in small

samples with the performance of the currently widely-used maximum-likelihood

and sextile estimators. The probability weighted moment estimators generally

have the best performance.

We also consider the problem of testing hypotheses about the shape para-

meter of the generalized extreme-value distribution and show that the method

of probability weighted moments yields a convenient and powerful testing

procedure. Accession For b
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BY THE METHOD OF PROBABILITY WEIGHTED MCMENTS
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, 
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2 
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3

Introduction

The generalized extreme-value distribution of Jenkinson (1955) is widely used for

modelling extremes of natural phenomena, and is of considerable hydrological importance,

since it is recommended by the Flood Studies Report (NERC 1975) for modelling the

distribution of annual maxima of daily streamflows of British rivers. Currently favoured

methods of estimation of the parameters and quantiles of the distribution are Jenkinson's

(1969) method of sextiles, and the method of maximum likelihood (Jenkinson 1969; Prescott

and Walden 1980, 1983). Neither method is completely satisfactory: the justification of

the maximum-likelihood approach is based on large-sample theory, and there hes been little

assessment of the performance of the method when applied to small or moderate samplest

while the sextile method involves an inherent arbitrariness (why sextiles rather than, say,

quartiles or octiles?), requires interpolation in a table of values of a function in order

to estimate the shape parameter of the distribution, and has statistical properties which

are not known even for large samples.

Probability weighted moments, a generalization of the usual moments of a probability

distribution, were introduced by Greenwood et al (1979). There are several Aistributions,

for example the Gumbel, logistic and Weibull, whose parameters can be conveniently esti-

mated from their probability weighted moments. The Gumbel distribution, being a special

case of the generalized extreme-value distribution, is of particular interest. Landwehr st

al (1979) investigated the small-sample properties of probability weighted moment
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estimators (PWN estimators) of parameters and quantiles for the Gumbel distribution and

found them superior in many respects to the conventional moment and maximum-likelihood

estimators. The estimators used by Landwehr et al (1979) are identical to Downton's

(1966b) "Linear estimates with linear coefficients", and thus share the asymptotic

properties of the latter: in particular, the asymptotic efficiencies of the PWM estimators

of the Gumbel scale and location parameters are 0.756 and 0.996 respectively.

In the present work we summarize some theory for probability weighted moments and show

that they can be used to obtain estimates of parameters and quantiles of the generalized

extreme-value distribution. We derive the asymptotic distributions of these estimators,

and compare, via computer simulation, the small-sample properties of the probability

weighted moment, sextile, and maximum-likelihood estimators. The method of probability

weighted moments outperforms the other methods in many cases and will usually be preferred

to them. We also derive from the PWM estimator of the shape parameter of the generalized

extreme-value distribution a test of whether this shape parameter is zero, and assess the

performance of this test by computer simulation.

Probability weighted moments

The probability weighted moments of a random variable X with distrihution function

F(x) - P(X 4 x) are the quantities

Mp,r,s KCXp(F(X))r{l - F(X)11 (1)

where p, r and s are real numbers. Probability weighted moments are likely to be most

useful when the inverse distribution function x(F) can be written in closed form, for

then we may write

Mpr,s - J,{(xp))Ppr(1-PSdF ( 2)

and this is often the most convenient way of evaluating these moments. The quantities

MP,0,0, p - 1,2,..., are the usual noncentral moments of X. The moments M 1,,s may,

however, be preferable for estimating the parameters of the distribution of X, since the

occurrence of only the first power of X in the expression for M1,r,s means that the

relationship between parameters and moments often takes a simpler form in this case than

-2-



when using the conventional moments. When r and a are integers, Fr(1-F)f may be

expressed as a linear combination either of powers of F or powers of (1-F), so it is

natural to summarize a distribution either by the moments N1,r,O , r - 0,1,2,..., or by

M 1,0,8, s - 0,1,2,.... Greenwood et al (1979) generally favour the latter approach but

here we will consider the moments , EEX{F(X)}r], r = 0,1,2,.
r 1,r,O

Given a random sample of size n from the distribution F, estimation of r isr

most conveniently based on the ordered sample x, ( x2 (.-. xn . The statistic
2 n

b = ((3-1)(-2). ..(-r))
r (n-1)(n-2)...(n-r) XjJ=1

is an unbiased estimator of 0 (Landwehr et al 1979). Instead one may estimate S by
r r

n r(rpj- n"1 I  p pxj (4)
p=I

r1 =1 (4)

where pj is a plotting position, i.e. a distribution-free estimate of F(x ). Reasonable
1 1

choices of pj, such as pj = (J-a)/n, 0 < a < 1, or pj = (J-a)/(n+1-2a), - < a <

yield estimators Sr(p 1 which are asymptotically equivalent to br  and therefore are

consistent estimators of .
r

The estimators br are closely related to U-statistics (Hoeffding 1948), which are

averages of statistics calculated from all subsamples of size j < n of a given sample of

size n. In particular b0 - n
1 

x is a trivial example of a U-statistic, and is a

natural estimator of location of a distribution,

2b1 - b0 -= -=_2 (n)-1 I (x.-x.) (5)
i>j i j

is a U-statistic for estimating the scale of a distribution - the statistic U2, sometimes

known as Gini's mean difference, has a history going back at least as far as von Andrae

(1872), and - ,i U2 is a 98% efficient estimator of the scale parameter of a Normal

distribution (Downton 1966a); and
1 1 n -i

6b - 6b + b U -( 1 I (x-2x+x) (6)
2 1 0 33 3 3 i jiki iki> j>k

is a U-statistic for ectimating skewness which has been used as the basis of a test for

Normality by Locke and Spurrier (1976). U-statistics are widely used in nonparametric

statistics (see, for example, Fraser, 1957, Chap. 4; Randles and Wolfe, 1979, Chap. 3) and

-3-
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their desirable properties of robustness to outliers in the sample, high efficiency rd

asymptotic normality may be expected to extend to the probability weighted moment esti-

mators hr and other quantities calculated from them.

PW4 estimators for the generalized extreme-value distribution

The qeneralized extreme-value (GEV) distribution, introduced by Jenkinson (1955),

combines into a single form the three possible types of limiting distribution for extreme

values, as derived by Fisher and Tippett (1928). The distribution function is

r exp[- i - k(x-&)/a) 1/k] k ' 0
F(x) = (7)

exp[- exp{- (x-E)/al] , k - 0

with x bounded by & + a/k from above if k > 0 and from below if k < 0. Here P and

a are location and scale parameters respectively, while the shape parameter k determines

which extreme-value distribution is represented: Fisher-Tippett types I, II and III

correspond to k - 0, k < 0 and k > 0 respectively. When k - 0 the GEV distribution

reduces to the Gumbel distribution. The inverse distribution function is

+ a{1 - (-log F)k}/k, k 0
x(F) - (8)- : log(-log F), k 0

The probability weighted moments of the GEV distribution for k # 0 are given by

S (r+1)- [E + a{1 - (r+1) -kr(1+k)}/ki , k > -1 (9)r

(for proof see Appendix 1). When k 4 -1, A0 (the mean of the listribution) and the rest

of the 6 do not exist. From (9) we haver

0 0 + no{ - r(l+k)}/k , (10)

261 - P0 = ar(l+k)(1 - 2 )/k , (11)

32-0 0 1-3-k
2- -k 1 12)
21-$ 0 1-2-k

The PWM estimators , , k of the parameters are the solutions of (10) - (12) for t, a

and k when the 6r are replaced by their estimators br or 6r (p]. To obtain k we

-4-
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must solve the equation
3b 2-b 0  1-3-k
2bbo (13)2 b 1-2-k

The exact solution requires iterative methods, but because the function (1-3-k)/(1-2
-k)

1 1
is almost linear over the range of values of k, --I < k < 1, which is usually encountered

in practice, low-order polynomial approximations for ; are very accurate. We propose the

approximate estimator

2 2bl1bo . log 2
k - 7.8590c + 2.9554c

2
, c -b0 log 3(14)

the error in k due to using (14) rather than (13) is less than 0.0009 throughout the

range - -< k < -" Given k, the scale and location parameters can be estimated

successively as

(2bI-b0)k
- . , E - bo + m{r(l+k) - 1)/k (15)

r(1+)(1-2 -k )

Equations (13) and (15), or their equivalent forms with hr replaced by 8 rp ,define

the P164 estimators of the parameters of the GEV distribution. Given the estimated para-

meters, the quantiles of the distribution are estimated using the inverse distribution

function (8).

When calculated using br as the estimator of F r the PWM estimates of the GEV dis-

tribution satisfy a feasibility criterion, namely that I > -1 and ; > 0 almost surely

(for proof see Appendix 2). This is clearly a desirable property, since one would like

estimates calculated using a set of sample moments to yield an estimated distribution for

which the corresponding population moments exist. We have not been able to prove that this

feasibility criterion is satisfied when plotting-position estimators r [p.] are used, but

no examples of the criterion not being satisfied have been discovered in practice.

-5-



Asymptotic distribution of PWU estimators

When modelling the properties of extremes of hydrological variables it rarely occurs

that the available data set is large enough to ensure that asymptotic large-sample theory

may be directly applied to the problem. It is nonetheless valuable to investigate the

asymptotic properties of a new statistical technique, for two main reasons. First, one may

seek to establish the integrity of the technique, in the sense that when a large sample is

available, the new method should not be grossly inefficient compared to an established,

asymptotically optimal method such as maximum likelihood. Second, asymptotic theory may

provide an adequate approximation to some aspect of the distribution of a statistic even in

quite small samples. In the present case we shall see that the variance of PUM estimators

of parameters and quantiles of the GEV distribution is well approximated by asymptotic

theory for sample sizes of 50 or larger.

We consider first the asymptotic distribution of the b r  Prom (3), br  is a linear

combination of the order statistics xl,...,xn, and the results of Chernoff at al (1967)

may be used to prove that the vector b = (b0 bi b2 )T has asymptotically a multivariate

Normal distribution with mean (0 B1 A2 ) T  
and covariance matrix n1 V. The elements

of V and details of the proof are given in Appendix 3.

The asymptotic distribution of the PUN estimators of the GET parameters follows from

the preceding result. lot A = (C a k) - (C a k)T, and write (13) and (15) as the

vector equation 6 - f(b). Define the 3 x 3 matrix G - (g1j) by gi= - 3fi/ab.J Then

asymptotically S has a multivariate Normal distribution with mean f() = 6 and

covariance matrix n1 GVG T  
(Rao, 1973, p. 388). The covariance matrix has the form

2 2
aw 11 a w 12  awl3

n'IvGT- n " 1 
a 2w12 a2w22 2v231 (16)

~w 13 O23 w33J

The wij are functions of k and have a complicated algebraic form, but they can be

evaluated numerically and are given in Table 1 for several values of k. As k approaches

-6-



1-
-,the variance of the GEV distribution becomes infinite and the variances or the br

and of the PWM parameter estimators are no longer of order n-I asymptotically.

Table 1. Elements of the asymptotic covariance matrix of the PWY
estimators of the parameters of the GEV distribution.

Ill w12 w 13  w 22  '2 3  w3 3

-0.4 1.6637 1.3355 1.1405 1.8461 1.1628 2.9092

-0.3 1.4153 0.8912 0.5640 1.2574 0.4442 1.4090

-0.2 1.3322 0.6727 0.3926 1.0013 0.2697 0.9139

-0.1 1.2915 0.5104 0.3245 0.8440 0.2240 0.6815

0.0 1.2687 0.3705 0.2995 0.7395 0.2249 0.5635

0.1 1.2551 0.2411 0.2966 0.6708 0.2447 0.5103

0.2 1.2474 0.1177 0.3081 0.6330 0.2728 0.5021

0.3 1.2438 -0.0023 0.3297 0.6223 0.3033 0.5294

0.4 1.2433 -0.1205 0.3592 0.6368 0.3329 0.5880

The asymptotic biases of the estimators are of order n- 1 and can be evaluated by

methods similar to those of Rao (1973, p. 388). The biases, graphed in Figure 1, are

negligible in large samples provided that k > -0.4.

The asymptotic variances of the estimators are graphed in Figure 2, and their

asymptotic efficiencies in Figure 3. Asymptotic efficiency is defined as the ratio

effCei) - lim (var Gi/var 82

for each element of the parameter vector 8, where 8 is the maximum-likelihood
ii

estimator of 8i  Overall efficiency is the ratio of the determinants of the asymptotic

covariance matrices of e and ;. The overall efficiency of the PWM estimators tends to

zero at k - ±0.5 but for values of k not too far from zero the PWM method is reasonably

efficient. Within the range -0.2 < k < 0.2, which is valid for many hydrological data

sets, each 7dM parameter estimator has efficiency of over 0.7.

-7-
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Corresponding results may be obtained for PW estimators of quanti lee of the GEV

distribution. These are not presented in full, but Tables 2 and 3 give results for various

quantiles when X - -0.2, and for various values of Xc at the F - 0.98 quantile. The

tables illustrate the main characteristics of PW1 quantile estimators, which are: high

positive bias in extreme upper tail, arising from positive bias in )ci high variance in

upper tail when kc 0; fair or high efficiency except when kc is close to ±0.5.

Table 2. Asymptotic bias, variance and efficiency of PWI estimators
of GZV quantiles. Parameters C-0, a - 1, kc - -0.2.

n x n x

F X(F) bias variance efficiency

0.001 -1.60 -1.2 3.78 0.60

0.01 -1.32 -0.2 2.06 0.66

0.1 -0.77 0.8 0.86 0.92

0.2 -0.45 1.0 0.88 1.00

0.5 0.38 0.6 1.92 0.93

0.8 1.75 -1.3 6.10 0.98 t
0.9 2.84 -3.1 16.1 0.99

0.98 5.91 -4.4 147 0.89

0.99 7.55 -1.6 336 0.86

0.998 12.33 23.9 1760 0.81

0.999 14.90 49.2 3310 0.80

t
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abia 3. Asymptotic bias, variance and efficiency of the PiM estimator

of the F - 0.98 quantile of the GEV distribution. Parameters
- 0, a = 1.

n x n x

k X(F) bias variance efficiency

-0.4 9.41 -64.0 1170 0.49

-0.3 7.41 -15.3 369 0.75

-0.2 5.91 -4.4 147 0.89

-0.1 4.77 -1.1 65.8 0.96

0.0 3.90 -0.1 29.6 0.95

0.1 3.23 0.3 14.7 0.88

0.2 2.71 0.5 7.53 0.75

0.3 2.30 O.S 4.04 0.56

0.4 1.98 0.6 2.28 0.36

The results of this section were derived for PWU estimators which use br to estimate

r' If the plotting-position estimates 0r(p ] are used instead, the asymptotic variances

and efficiencies remain unchanged, but the asymptotic biases are different and cannot be

easily calculated, being affected by the biases in the 
8
rlpjI themselves.

ftall-sample properties of estimates of the GV distribution

A computer simulation experiment was run to compare three methods of estimation of the

parameters and quantiles of the GM distribution. Simulations were performed for sample

aises n - 15, 25, SO, 100 with the shape parameter of the distribution taking values k -

-0.4, -0.2. 0.0, 0.2, 0.4. All the methods of estimation are invariant under linear trans-

formations of the data, so without loss of generality the location and scale parameters

- 0 and a - 1 were used throughout. For each combination of values n and k, 1000

random samples were generated from the CDV distribution, and for each sample the parameters

, and k, and the quantiles x(F), where F - 0.001, 0.01, 0.1, 0.2, 0.5, 0.8, 0.9,

0.98, 0.99, 0.998, 0.999, were estimated by each of three methods: (1) the method of

probability weighted moments (PNM), described abover (2) the method of maximum likelihood

-12-
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(ML), using Newton-Raphson iter&tion to maximize the likelihood function, as recommended by

Prescott and Walden (1983) and implemented by Hoskinq (1984b); and (3) Jenkinson's (1969)

method of sextiles (JS). The PWM method requires a choice of a suitable estimator of S rr

Several possibilities were investigated, including the unbiased estimator br and a number

of plotting-position estimators B pI. The best overall results were given by the
r

estimator B[P(p] with pj = (j-0.35)/n, and the simulation results presented below for

the PM method refer to this version of the PWM estimators.

For some simulated samples, the maximum-likelihood and sextile estimates could not be

found. The cause of this problem for the maximum-likelihood method was nonconvergence of

the Newton-Raphson iteration, usually due to an extreme outlier in the sample; for the

sextile method, a ratio of sextile means used to estimate the shape parameter of the GEV

distribution sometimes lay outside the range of a table of values in which it was to be

interpolated. Such cases were omitted from the simulations. No such problems were

encountered with the PWM estimators, which could always be calculated.

The simulation results for estimation of the parameters of the GEV distribution are

summarized in Table 4 and 5. Results for the estimator of k are of the greatest

importance, since this parameter determines the overall shape of the GEV distribution and

the rate of increase of the upper quantiles x(F) as P approaches 1. The PWM estimator

has the lowest standard deviation of the three methods, except in the case k - 0.4, and

its advantage is particularly marked in small samples, n - 15 and n = 25. The PWM esti-

mator is more biased than the maximum-likelihood estimator but its bias is small near the

important value k - 0. The sextile estimator of k has a large positive bias in small

samples when k < 0 and its standard deviation is generally larger than that of the PWM

estimator.

I
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Yable 4. Bias of estimators of GEV parameters

sias(c) Bias(a) BisaCk)
k: -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

n Method

PIE .06 .02 -.01 -.04 -.06 .00 -.06 -.09 -. 10 -.10 .11 .04 .02 -.07 -. 11
15 ML .00 .01 .01 .01 .00 -.08 -.07 -.05 -.04 -.03 -.05 -.02 .02 .03 .04

is .29 .25 .22 .17 .10 .23 .12 .06 .00 -.05 .18 .13 .11 .07 -.02

PIN .06 .03 .01 .00 -.02 .01 -.04 -.06 -.07 -.07 .07 .02 -.02 -.05 -.08
25 ML .02 .02 .03 .04 .04 -.04 -.04 -.03 -.03 -.02 -.02 -.01 .01 .03 .05

is .12 .12 .10 .09 .07 .13 .03 -.01 -.04 -.08 .10 .06 .04 .02 -.01

PUN .04 .02 .01 .00 -.01 .01 -.02 -.03 -.03 -.03 .05 .02 .00 -.02 -.04

50 ML .01 .01 .01 .02 .02 -.02 -.02 -.02 -.01 -.01 -.01 .00 .01 .02 .03
i8 .05 .03 .02 .01 .01 .04 .01 -.01 -.02 -.02 .07 .04 .02 .01 .00

PUN .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .01 .00 .00 .00
100 ML .00 .00 .00 .00 .01 .01 .01 .01 .01 .00 .00 .00 .00 .01 .02

i8 .04 .03 .03 .03 .03 .10 .04 .03 .01 .00 .05 .02 .02 .02 .02

Yable S. Standard deviation of estimators of (KV parameters

st.dev.(3 st.dev(;) St.dev(k)
k: -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

n Method

PIM .30 .29 .28 .28 .28 .32 .25 .20 .18 .18 .21 .20 .20 .20 .21
15 ML .33 .32 .31 .30 .29 .27 .25 .23 .22 .22 .38 .36 .34 .31 .29

i8 .37 .33 .30 .28 .25 .43 .31 .26 .21 .18 .25 .25 .24 .21 .17

PUN .25 .24 .23 .23 .23 .25 .20 .17 .15 .15 .17 .16 .14 .14 .15
25 ML .24 .24 .24 .24 .23 .21 .19 .17 .16 .17 .24 .21 .19 .17 .17

38 .28 .25 .24 .23 .22 .32 .21 .18 .15 .14 .17 .18 .17 .16 .14

PIE .17 .17 .16 .16 .16 .17 .14 .12 .11 .11 .14 .12 .11 .10 .11

50 ML .17 .17 .17 .16 .16 .15 .13 .12 .11 .11 .15 .13 .12 .11 .11
38 .18 .17 .16 .16 .16 .16 .14 .12 .11 .11 .15 .13 .11 .11 .11

PUN .12 .12 .12 .11 .11 .12 .10 .09 .08 .08 .11 .09 .07 .07 .07
100 ML .12 .12 .12 .12 .11 .10 .09 .08 .08 .08 .10 .09 .08 .07 .06

i8 .12 .12 .12 .12 .11 .16 .11 .09 .08 .08 .09 .09 .08 .08 .08

-14-



Similar results can be seen for estimators of and a. In general, PUE estimators

have smallest standard deviation, particularly for n = 15 and n - 25, and their bias is

not large. The standard deviations of the IHM estimators for n V 50 are well

approximated by their large-sample values given by (16) and Table 1. Maximum-likelihood

estimators are the least biased but are more variable than P1W estimators in small

samples. Even at sample size 100, the asymptotic inefficiency of the PWE method compared

to maximum likelihood is not apparent in the simulation results. Sextile estimators in

general have larger standard deviations than PiE estimators and have some large biases in

small samples when k < 0.

The statistical properties of estimators of quantiles of the GEV distribution were

evaluated for many combinations of ouantiles and values of the shape parameter k, and

only a few representative simulation results are presented in Table 6. The most important

aspect of quantile estimation in hydrological applications is estimation of the extreme

upper quantiles, particularly for heavy-tailed GEV distributions with k < 0. Table 5

gives the bias and standard deviation of the estimated upper quantiles for two GEV

distributions, one with k < 0 and one with k > 0. Results are presented for the ratios

x(F)/x(F) rather than for the x(F) themselves, since the former quantities are more

easily compared at different F values. For sample size n > 50 the three methods have

comparable performance. In small samples the upper quantiles obtained by Pisi estimation

are rather blased, but are still preferable to the maximum-likelihood estimators since

these have very large biases and standard deviations. The errors in the maximum-likelihood

quantile estimators arise chiefly from a small number of simulated series which yield large

negative estimates of k, and consequently give very large estimates of extreme upper

quantiles.

Estimation of extreme lower quantiles tends to be less important in practice than

estimation of upper quantiles, so simulation results for this case are not given in detail.

All three methods give comparable results when n ) 50, but for mall samples the PIE

estimators have smallest standard deviation and small or moderate bias, and are generally

to be preferred.
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Table 6. Dias and standard deviation of estimators of GEV quantiles.
Tabulated values are bias and standard deviation of the ratio

x(F)/x(V) rather than of the quantile estimator x(r) itself.

----- k--0.2 ------------- k-0.2 -------------
-- :.. r-0.99 7-0.999 r-0.9 F-0.99 7-0.999
x(7)-2.84 x(r)-7.55 x(P)-14.90 x(r)-1.81 x(F)-3.01 x(F)-3.74

ni Method bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias S.A.

HW -.08 .32 -.03 .49 .12 .93 -.04 .21 .09 .31 .28 .57
15 ML .01 .39 .64 2.78 *-.05 .21 .17 1.49 a

is .08 .39 .00 .59 .06 1.00 .04 .22 .00 .31 .05 .53

HIM -.03 .27 .01 .45 .13 .78 -.02 .18 .06 .24 .16 .38
25 ML .01 .30 .17 .72 .59 1.93 -.04 .17 .04 .24 .00 .38

is .01 .29 -.01 .45 .05 .76 -.01 .18 -.01 .24 .02 .37

HIM -.02 .19 -.05 .34 -.03 .66 -02 .12 -.02 .15 -.01 .22
50 ML -.02 .19 -.02 .34 .02 .67 -.01 .12 .00 .16 .01 .23

is -.02 .19 -.04 .34 .00 .69 -.02 .12 -.01 .16 .00 .22

PUN -.01 .14 .00 .23 .03 .30 -.01 .09 .01 .12 .03 .16
100 ML .00 .14 .02 .25 .08 .44 -.01 .09 -.02 .11 -.02 .15

is .03 .15 .01 .23 .01 .36 .01 .09 .00 .12 -.01 .17

indicates values which varied widely between different sets of 1000
simulations and consequently could not be estimated accurately.

All the methods of quantile estimation are very Inaccurate when estimating extreme

quantiles in small samples with kt < 0. It is of course to be expected that a quantile

x(I) cannot be estimated reliably from a sample of aim. n if F ),1-1/n. The implica-

tioni of this fact for hydrological practice is that when estimating the upper quantiles of

a flood frequency distribution for a site with scanty data one should Seek to incorporate

information from other nearby sites. Such a regionalimatioi procedure can be based on the

HIM estimation method for the GZV distributiont see Hosoking at al (1984).

Testing whether the shajpe parameter is mero

The type I extreme-value distribution, or Gumbel distribution, is a particularly

simple special case of the GRV distribution, and it is often useful to test whether a given

set of data is generated by a Gumbel rather than a GUY distribution. This is equivalent to

testing whether the shape parameter kt is zero in the GEV distribution. A test of this



hypothesis may be based on the PWM estimator of k. On the null hypothesis 1 0 : k - 0

the PWI4 estimator k is asymptotically distributed as N(0,0.5635/n) so the test may be

performed by comparing the statistic Z = k(n/0.5635)
1
2 with the critical values of a

standard Normal distribution. Significant positive values of Z imply rejection of H 0

in favour of the alternative k > 0, and significant negative values of Z imply

rejection in favour of k < 0.

The size of the test based on Z for various sample sizes and its power for sample

size 50 are given in Tables 7 and 8. These results are based on computer simulations

of 1000 samples for each value of n and k. The results may be compared with Hosking's

(1984a) survey of tests of this hypothesis: the Z-test has power almost as high as the

likelihood-ratio test and for samples of size 25 or more its distribution on H0  is

accurately approximated by the standard Normal significance levels. Since the statistic

Z is very simple to compute, the Z-test can be strongly recommended as a convenient and

powerful indicator of the sign of the shape parameter of the GEV distribution.

Table 7. Empirical significance levels of the statistic Z for testing the
hypothesis H : k-0 against one-sided and two-sided alternatives.

Alternative: k(0 k>0 k40

Nominal level: 10% 5% 10% 5% 10% 5%
Sample size

15 10.5 4.0 7.3 3.4 7.4 2.5

25 9.8 4.8 9.4 4.9 9.7 4.4

50 11.5 5.4 8.4 4.7 10.1 4.5

100 10.5 4.9 10.3 5.4 10.3 4.5

200 10.0 5.7 9.0 4.7 10.4 5.2

500 10.3 4.9 9.8 5.0 9.9 5.6

-17-
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Table S. lower of the Z-test of the hypothesis k-0 against one-sided and
two-sided alternatives. Sample size 50, nominal siqnficance level
5%

Alternatives k<0 k>O k#0

k

-0.5 .96 - .94 [
-0.4 .91 - .85

-0.3 .78 - .71

-0.2 .55 - .45

-0.1 .27 - .18

0.0 .05 .05 .05

0.1 - .17 .10

0.2 - .49 .36

0.3 - .83 .72

0.4 - .96 .93

0.5 - 1.00 .99

Conclusions

Mstimators of parameters and quantiles of the GUV distribution have been derived using

the method of probability weighted moments. These estimators have several advantages over

existing methods of estimation. They are fast and straightforward to compute and always

yield feasible values for the estimated parameters. The biases of the estimators are

mall, except when estimating quantiles In the extreme tails of the (GV distribution, and

decrease rapidly as the sample size increases. The standard deviations of the PWN

estimators are comparable with those of the maximum-likelihood estimators for moderate

sample sizes (n - SO, 100) and often substantially less than those of the maximum likeli-

hood estimators for small am- e (n - 15, 25). PWN estimators of GEV parameters and

quantiles have asymptotic Normal distributions and the large-sample approximation to the

variance of the estimators is adequate for sample sizes of 50 or more. Although FM

estimators are asymptotically inefficient compared to maximum-likelihood estimators, no

inefficiency is detectable in samples of size 100 or less. The PM estimator of the

shape parameter k of the GKV distribution may be used as the basis of a test of the

hypothesis HO s k - 0, and this test is simple to perform, powerful and accurate.
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Appendix 1. Probability weighted moments for the GEV distribution

For the GFV distribution we have from (2) and (3)

r M 0  I [ + a{t - (-log r) kl/k]Fr dF

- j { + ct(1-uk)/kle (~)du substituting u -- log F

0

(+ k)rl- -(r+1) rl m~ rick p(rovde ha)u>-

=(( + ) ~ (E+au rl - r(r/k) us d

Th P F4 esiao /k satisfi- (13k),rl ad trfoe -provided that >-

(2b 1-b 0 )/(3b 2-b0 ) > . WA)
2

Now

2bl-b 0 o nt (xi-xj) (A3)

and
3b -b0  n~-)2) (2x - (M4)

2 0' nn-M -2)i~j)k i i 1k)

are both positive, so (A2) reduces to b 0 - 4bI + 3b 2 < 0. But we can write

-n(n-1Mn-2) J k(x+x) 1 AS

thus b 0 - 4b1 + 3b 2 < 0 almost surely and therefore Ic)-1 almost surely. Results

WA) - (A5) above are easily proved by induction on the sample size n.

Furthermore, since

(2h 1-b 0)k (6

Fnt+I)(1-2-k)

and 2b1 I- b 0 >0 an noted above, k/(Im2Ic) > 0 for all kc and r(i+;J > 0 because

>c -1, it follows that we must have a)0.
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Appendix 3. AsXyptotic distribution of the br

The statistic hr may be written as a linear combination of the order statistics of a

random sample: we have

b n-1 n. (r) W x)

r . nj jJ= 1

whe re ) 
- (j-l)h..(j-r)/(Cn-1)...(n-r)) end x1 ( ,...( x is the ordereid

w h e r n x 2 x n

cIr)
sample. As n * and j * - with J/n * f. 0 < < 1, na is asymptotically a

nj

function of the plotting position J/(n+l): in fact nj - {J/(n+1)l It in straight-

forward to verify that br satisfies the conditions of Theorem I of Chernoff at al (1967),

and from that theorem it follows that br is asymptotically Normally distributed with mean

B and variance
r

n 1vrr = 2n- J (?(x)}r ((y)})r.F(X){l -F(y))dxdy • (AS)
x<y

A sii/lar argument applies to any linear combination of the br P r - 0,1,2,..., and it

follows that the br are asymptotically jointly Normally distributed with covariance given

by

v lim n cov(b b (A9)
rs n~w re 8) (r +g

where

qrs " 2 ) j (F(X))r{F(y)ls.p(x){1 - P(y)ldxdy (Alo)

To evaluate the qrs for the 03V distribution we consider first the case k ) 0 and

let

ire - 2 . (x))r(r(y))sdx (All)
x<y

so that

grai 
= 

Ir+lts " Ir+l,8+1 1(A121

Bubstitutinq (7) in (All) and making the further substitution 
u - { -k )/u} 

/k

v - 1 - k(y-)/a) /k we have
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2 k-1 -r - 8

I rs ' 2a Io JV u rdu. vc I .dv

- 2
2 r-k J; vk-les-vr(k,rv)dv

- 2k-2 (r+ )'2kr11+2k)2FI 1,2k i l+k; /It+s)] A M

CGradshteyn and Ryzhik, 1980, pp. 317, 663); here r(-,o) is the incomplete gamma function

and 2F1 Is the hypergeometric function. It is convenient to transform the hypergeometric

function in (AM3, using results from Grsdshteyn and Ryshik (1980, p. 1043):

2F11,2k; l+k; 9/It+s)] - 2 2k {r11+k)} 2/r(1+2k) it r - a ,

- (r/(r+s)}-2kG(s/r) if r > , (A1)

- .{s/{r~s)}-2k Gir/s) + 2r -k 8 klr+s) 2k{ ml+w)2 /r(1+2k) if r < a

where G denotes the hypergeometric function G(x) - 2Fl(k,2kl l~ki -x) - note that

GO) - 1. Substituting back into (A12) and A9) we obtain the following expressions for

the Vrs :

v - a2k-2(r+1) 2kr(1+2k)G(r/(r+I)l - {r(l+k)) 
2 ] (A15)rr

V 1 a k 2-2 (r+2)-2krll+2k)
G { r / I r + 2 ) } +

r r1 I [2r(A16)

-k -k -k2
(r+1) ((r41) 2.(r+2) }{r(1+k))

1 2 -2 -2k -kc
Vrrr+s = k a Ic r+s+l) r(1+2k)Gfr/(r+s+l)) - (r+s) r(1+2k)Gf(r+l)/(r+s)l +r~r~s(A M7

2(r+l)'k{(r~s) "k
- Cr4541)- ){(1+k))21, e ) 2 i

When k < 0 the foregoing argument is not valid because the integral in (All) does

not converge. However, the expressions (A151 - (A17) are analytic functions of k for

all k > - - and hence by analytic continuation expressions (AIS) - (A17 are valid
2

solutions of the integral representation (A9) - (AtO) throughout the domain - < k <

At the value k - 0, the vrs are given by the limits of AlS) - (A17 as k * 0; these

limits are well-defined.
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The results stated in this Appendix are valid for arbitrary positive integers r

and a, though only the case@ r,s -0. 1,2 are required for deriving the asymptotic

distributions of PkV estimators.
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