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We use the method of probability weighted moments to derive estimators of
;the parameters and quantiles of the generalized extreme-value distribution.
~;é’investigate the properties of these estimators in large samples, via
asymptotic theory, and in small and moderate samples, via computer simulation.
Probability weighted moment estimators have low variance and no severe bias,
and compare favourably with estimators obtained by the methods of maximum
likelihood or sextiles. The method of probability weighted moments also

yields a convenient and powerful test of whether an extreme-value distribution

is of Fisher-Tippett type I, II or III.
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SIGNIFICANCE AND EXPLANATION

Many problems in hydrology and civil engineering are related to the
properties of extreme events: maximum levels or flow rates of rivers,
greatest wave heights or sea levels, or maximum wind loads on buildings. The
magnitudes of extreme events are random quantities whose distribution is often
well described by the generalized extreme-value distribution.

The method of probability weighted moments is a general procedure for
estimating parameters and quantiles of probability distributions. It is here
applied to the generalized extreme-value distribution. We derive the large-
sample distribution of estimators obtained by the method of probability
weighted moments, and compare the performance of these estimators in small
samples with the performance of the currently widely-used maximum~likelihood
and sextile estimators. The probability weighted moment estimators generally
have the best performance.

We also congider the problem of testing hypotheses about the shape para-
meter of the generalized extreme-value distribution and show that the method

of probability weighted moments yields a convenient and powerful testing
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ESTIMATION OF THE GENERALIZED EXTREME-VALUE DISTRIBUTION
BY THE METHOD OF PROBABILITY WEIGHTED MOMENTS

J. R. M. Hosking', J. R. wallis? and E. P. Wood®

Introduction

S

The generalized extreme-value distrihution of Jenkinson (1955) 18 widely used for ;

modelling extremes of natural phenomena, and is of considerable hydrological importance,

since it is recommended by the Flood Studies Report (NERC 1975) for modelling the
distribution of annual maxima of daily streamflows of British rivers. Currently favoured f
methods of estimation of the parameters and gquantiles of the distribution are Jenkinson's
(1969) method of sextiles, and the method of maximum likelihood (Jenkinson 1969; Prescott
and Walden 1980, 1983). Neither method is completely satisfactory: the justification of
the maximum~-likelihood approach is based on large-sample theory, and there has been little
assessment of the performance of the method when applied to small or moderate samples;
while the sextile method involves an inherent arbitrariness (why sextiles rather than, say,
quartiles or octiles?), requires interpolation in a table of values of a function in order
to estimate the shape parameter of the distribution, and has statistical properties which
are not known even for large samples.
Probability weighted moments, a generalization of the usual moments of a probability
distribution, were introduced by Greenwood et al (1979). There are several distributions,
for example the Gumbel, logistic and Weibull, whose parameters can be conveniently esti-
mated from their probability weighted moments. The Gumbel distribution, being a special
case of the generalized extreme-value distribution, is of particular interest. Landwehr et

al (1979) investigated the small-sample properties of probability weighted moment
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estimators (PWM estimators) of parameters and quantiles for the Gumbel distribution and
found them superior in many respects to the conventional moment and maximum-likelihood
estimators. The estimators used by Landwehr et al (1979) are identical to Downton's

(1966b) "Linear estimates with linear coefficients”, and thus share the asymptotic

properties of the latter: in particular, the asymptotic efficiencies of the PWM estimators ' 1
of the Gumbel scale and location parameters are 0.756 and 0.996 respectively. ;
In the present work we summarize some theory for probability weighted moments and show
that they can be uged to obtain estimates of parameters and quantiles of the generalized
extreme-~value distribution. We derive the asymptotic distributions of these estimators,

and compare, via computer simulation, the small-sample properties of the probability

weighted moment, sextile, and maximum-likelihood estimators. The method of probability

weighted moments outperforms the other methods in many cases and will usually be preferred
to them. We also derive from the PWM egtimator of the shape parameter of the generalized
extreme~-value distribution a test of whether this shape parameter is zero, and assess the

performance of this test by computer simulatjon.

Probability weighted moments

The probability weighted moments of a random variable X with distrihution function

F{x) = P{X € x) are the quantities

r 8
Mp,r,e = EDCIRCOY 1 - rX®T )

where p, r and 8 are real numbers. Probability weighted moments are likely to be most
useful when the inverse distribution function x(F) can be written in closed form, for
then we may write

Mo,r,e = Jg(EVPE (o ar (2)
and this is often the most convenient way of evaluating these moments. The quantities
"p,o,o' p=1,2,..., are the usual noncentral moments of X. The moments "1,:,5 may,

however, be preferable for estimating the parameters of the distribution of X, since the

occurrence of only the first power of X in the expression for "1,:,9 means that the

relationship between parameters and moments often takes a simpler form in this case than
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when using the conventional moments. When r and s are integers, Fr(1-r)8 may be

expressed as a linear combination either of powers of F or powers of (1-F), so it is

natural to summarize a distribution either by the moments "1,:,0' r =0,9,2,..., or by
"1,0,8' s = 0,1,2,... « Greenwood et al (1979) generally favour the latter approach but

here we will consider the moments Br =M = E[X{F(X)}r], r=0,12,000 «

1,x,0

Given a random sample of size n from the distribution F, estimation of Br is

most conveniently based on the ordered sample x, € x, €...< X . The statistic

2
-1 ')‘ (4=1)(§=2). .. (-1}

by=n j=1 (=N (R=2) . () *3 3
is an unbiased estimator of Br (Landwehr et al 1979). Instead one may estimate Rr by
- -1 7 r
] =n X 4
¢ Py j£1 Pi¥y (4)

where Py is a plotting position, i.e. a distribution-free estimate of F(xj). Reasonable
cholices of Pys such as pj = (j-a)/n, 0 < a < 1, or Pj = (j~a)/(n+1-2a), - % <ac< %,
vield estimators ;r[pj] which are asymptotically equivalent to hr and therefore are
consistent estimators of Br.

The estimators b. are closely related to U-statistics (Hoeffding 1948), which are
averages of statistics calculated from all subsamples of size j < n of a given sample of
size n. In particular bo = n-12xj is a trivial example of a U-statistic, and is a
natural estimator of location of a distribution;

2by = by =3 Uy =3 ()7L (x;oxy) (5)
i>j
is a U-statistic for estimating the scale of a distribution - the statistic 02, sometimes
known as Gini's mean difference, has a history going back at least as far as von Andrae
(1872), and % /; U2 is a 98% efficient estimator of the scale parameter of a Normal
distribution (Downton 1966a); and

6b_ - 6b1 +b = A\ U, = (

2 0 3 3

Wl

-1
;) ) (xi-zxj+xk) (6)
i>j>k
is a U-statistic for estimating skewness which has been used as the basis of a test for
Normality by Locke and Spurrier (1976). U-statistics are widely used in nonparametric

statistics (see, for example, Fraser, 1957, Chap. 4; Randles and Wolfe, 1979, Chap. 3) and




their desirable properties of robustness to outliers in the sample, high efficiency and
asymptotic normality may be expected to extend to the probability weighted moment esti-
mators b and other quantities calculated from them.

r

PWM estimators for the generalized extreme-value distribution

The generalized extreme-value (GEV) distribution, introduced by Jenkinson (1955),
combines into a single form the three possible types of limiting distribution for extreme
values, as derived by Fisher and Tippett (1928). The distribution function is

exp[- {1 - k(x=£)/a} V],
F(x) = (7)
exp(- exp{- (x-E)/all , k=0 ,

with x bounded by £ + a/k from above if k > 0 and from below if k < 0. Here Ff and

a are location and scale parameters respectively, while the shape parameter k determines

which extreme-value distribution is represented: Fisher-Tippett types I, Il and III

correspond to k = 0, k < 0 and k > 0 respectively. When k = 0 the GEV distribution

’

'

reduces to the Gumbel distribution. The inverse distribution function is ‘f
£+ al1 - (-log B }/k, kKgo ,

x{(F) = (8) .

£ - a logl{-log F), k=0 . 3

The probability weighted moments of the GEV distribution for k # 0 are given by

ﬂr = (r+1)-1[E + a1 - (r+1)'kr(1+x)}/k] ’ X > -1 (9)
] (for proof see Appendix 1). When k € -1, RO (the mean of the distribution) and the rest
of the Br do not exist. From (9) we have
B = £ +alt - T}k, (10)
-k ]
281 - Ro = al(1+k) (1 - 2 )/k , (11) !
e BEE (12)
28yBp 427k

The PWM estimators £, a, k of the parameters are the solutions of (10) ~ (12) for £, a

and k when the Br are replaced by their estimators br or ﬁr[pj]. To obtain k we
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must solve the equation

Boby  y_,ok
— W —— (13)
7,5 =

1-2

The exact solution requires iterative methods, but because the function (1-3'*)/(1-2'k)

is almost linear over the range of values of k, - % < k < %, which is usually encountered

in practice, low-order polynomial approximations for Xk are very accurate. We propose the

approximate estimator

&y 109 2

- 2
X = 7.8590c + 2.9554c“, c %,%, " Tos3 ' (14)

-

the error in k due to using {14) rather than (13) is less than 0.0009 throughout the
LY 1 -~

range =~ % <k < 2" Given k, the scale and location parameters can be estimated

successively as

—bo)k - -

- (26, R -
0 * a{l(1+k) ~ 1}/k . (15)

a = =~ ,E=Db

T(1+x) (1-27%)

Equations (13) and (15), or their equivalent forms with b, replaced by ar[pjl, define
the PWM estimators of the parameters of the GEV distribution. Given the estimated para-
meters, the quantiles of the distribution are estimated using the inverse distribution
function (8).

when calculated using br ag the estimator of Br’ the PWM estimates of the GEV dis-

tribution satisfy a feasibility criterion, namely that ; > -1 and ; > 0 almost surely
(for proof see Appendix 2). This is clearly a desirable property, since one would like
estimates calculated using a set of sample moments to yield an estimated distribution for
which the corresponding population moments exist. We have not been able to prove that this
feasibility criterion is satisfied when plotting-position estimators Br[pj) are used, but

no examples of the criterion not being satisfied have been discovered in practice.




Asymptotic distribution of PWM estimators

When modelling the properties of extremes of hydrological variahles it rarely occurs

that the available data set is large enough to ensure that asymptotic large-sample theory
may be directly applied to the problem. It is nonetheless valuable to investigate the
asymptotic properties of a new statistical technique, for two main reasons. First, one may
seek to establish the integrity of the technique, in the sense that when a large sample is
available, the new method should not be grossly inefficient compared to an established,
asymptotically optimal method such as maximum likelihood. Second, asymptotic theory may
provide an adequate approximation to some aspect of the distribution of a statistic even in
quite small samples. 1In the present case we shall see that the variance of PWM estimators
of parameters and quantiles of the GEV distribution is well approximated by asymptotic
theory for sample sizes of 50 or larger.

We congider first the asymptotic distribution of the b.. Prom (3), b, is a linear

r

combination of the order statistics XgpsossX and the results of Chernoff et al (1967)

nl
may be used to prove that the vector b = (by b, bz)T has asymptotically a multivariate
Normal distribution with mean B = (Bo 81 l!,‘!)'ll and covariance matrix n~'v. The elements
of V and details of the proof are given in Appendix 3.

The asymptotic distribution of the PWM estimators of the GEV parameters follows from

- T
the preceding result. let 0 = (f a k)T, 9= (£ ak), and write (13) and (15) ag the
vector equation € = f£(b). Define the 3 x 3 matrix G = (91j) by 95 = Bfl/abj. Then
asymptotically 06 has a multivariate Normal distribution with mean f£(8) =6 and

covariance matrix n"GVGT (Rao, 1973, p. 388). The covariance matrix has the form

2
a '11 a H12 GV13

“1_r 112 2

n GVWG =n a v, a v, 6'23 . (16)
Owy3 Wy3 Yy

The vy are functions of k and have a complicated algebraic form, but they can be

evaluated numerically and are given in Table 1 for several values of k. As k approaches




1
=3 the variance of the GEV distribution becomes infinite and the variances of the br

and of the PWM parameter estimators are no longer of order n-1 asymptotically.

Table 1. Elements of the asymptotic covariance matrix of the PWM
estimators of the parameters of the GEV distribution.

k Y14 vy2 Vi3 V22 Y23 W33

-0.4 1.6637 1.3355 1. 1405 1.8461 1.1628 2.9092
-0.3 1.4153 0.8912 0.5640 1.2574 0.4442 1.4090
-0.2 1.3322 0.6727 0.3926 1.0013 0.2697 0.9139
-0.1 1.2915 0.5104 0.3245 0.8440 0.2240 0.681S
0.0 1.2687 0.3705 0.2995 0.7395 0.2249 0.5635
0.1 1.2551 0.2411 0.2966 0.6708 0.2447 0.5103
0.2 1.2474 0.1177 0.3081 0.6330 0.2728 0.5021
0.3 1.2438 -0.0023 0.3297 0.6223 0.3033 0.5294
0.4 1.2433 -0.1205 0.3592 0.6368 0.3329 0.5880

The asymptotic biases of the estimators are of order n-1 and can be evaluated by
methods similar to those of Rao (1973, p. 388). The biases, graphed in Figure 1, are
negligible in large samples provided that k > -0.4.

The agymptotic variances of the estimators are graphed in Figure 2, and their
asymptotic efficiencies in Figure 3. Asymptotic efficiency is defined as the ratio

eff(ei) = 1im (var el/var 81)

nee

for each element 01 of the parameter vector 6, where Ei is the maximum~likelihood

estimator of 81. Overall efficiency is the ratio of the determinants of the asymptotic

covariance matrices of 3 and 0. The overall efficiency of the PWM estimators tends to

-

zero at k = $0.5 but for values of k not too far from zero the PWM method is reasonably

efficient. Within the range =-0.2 < k < 0.2, which is valid for many hydrological data

sets, each PWM parameter estimator has efficiency of over 0.7.




L

1

E¥:0b:LE  +8—-¥dV-Z0 V9'I 3SvIIIY 6LL1L0d

EER—

¥ ‘9)2woiod adoys

I ] i l l | i

l

G0 ¥0 €0 ° L) 00 I0- C0— €0~ ¥'0— S0

-
— |-

w —— .m ———— .w..l SUCTINGFIISTP AFD
ay3 Jo siejauwexed Jo szojemyise WMd FO SeTq oT303dwisy

*1 sanbta

u x soig

~8-




[T T T T 30i93t 11 ¥B-ddv-20 v9') 3SV313¥ 6L L 01 d

y Jeyswoipd adoys
G0 %0 €0 <¢0 VO 00 L0— CT0— £0—- +0- G0-

L | ] | { - l i ] ] 0
Tl
r <
o] 1
3, i
o]
3
O
o
x
3
— C ;
- ¢
"3 —=ms ' ceoo Y (UCTINGTAISTP ATD B JO i

sxojowered Jo SI103RWTIS? WMd Jo ooueraea oT303duhsy gz aanbri




e it A

LZ80%L1 ¥8—ddV-Z0 V9'iI 3sv3Iidy 6L1044d

) Joj}owoupd sdoysg
¢0 $¥0 €0 ¢0 I'0 00 V0— CTO0- £0—- ¥0— S0—-
L. 1 1 1 i 1 | j L L

1343

Aoueiol

*SIOJNMIISS WNd PUW TN
3O S95TIIWW IDURTIRAOD 5TI03dmAS® JO SIURUTWINIGP JO OTIVX *o°F
'KOUSTOTIIP TTPIVAO seves '§ meem ‘D ovme 'Y —— IUOTINQTIISTP

AZD 943 Jo sxojemwered JOo SIOIPWTISS WMA JO AoueIsTije oT303dmhsy ¢ smbig

«)10=-




Corresponding results may be obtained for PWM estimators of gquantiles of the GEV
distribution. These are not presented in full, but Tables 2 and 3 give results for various
quantiles when Xk = -0.2, and for various values of k at the F = 0.98 quantile. The
tables illustrate the main characteristics of PWM quantile estimators, which are: high
positive bias in extreme upper tail, arising from positive bias in ;(1 high variance in

upper tail when k < 0; fair or high efficiency except when k is close to 10.5.

Table 2. Asymptotic bias, variance and efficiency of PWM estimators
of GEV quantiles. Parameters £ =0, a = 1, k = -0.2.

n x n x

F x(F) bias variance efficiency .
0.001  -1.60  -1.2 3.78 0.60 }j
0.09 -1.32 -0.2 2.06 0.66 ;j
0.1 -0.77 0.8 0.86 0.92 é.’!
0.2 -0.45 1.0 0.88 1.00 r
0.5 0.38 0.6 1.92 0.93 i1
0.8 1.75 ~1.3 6.10 0.98 Id
0.9 2.84  ~3.1 16.1 0.99 .
0.98 5.91 -4.4 147 0.89 :f
0.99 7.55  -1.6 336 0.86 !
0.998  12.33  23.9 1760 0.81 i
0.999  14.90  49.2 3310 0.80 ’

NI




Table 3. Asymptotic bias, variance and efficiency of the PWM estimator .
of the F = 0,98 quantile of the GEV distribution. Parameters
Fao0,a=1,

n x n x

k x(F) bias variance efficiency
-0.4 9.41 -64.8 1170 0.49
-0.3 7.41 -18.3 369 0.7%
-0.2 5.91 -4.4 147 0.89
-0.1 4.77 -1.1 65.8 0.96
0.0 3.90 -0, 1 29.6 0.95
0.1 3.23 0.3 14.7 ' 0.88
0.2 2.71 0.5 7.53 0.75%
0.3 2.30 0.5 4.04 0.56
0.4 1.98 0.6 2.28 0.36

The results of this section were derived for PWM estimators which use br to estimate
’r' If the plotting-position estimates Br[pj] are used instead, the asymptotic variances
and efficiencies remain unchanged, but the asymptotic biases are different and cannot dbe

easily calculated, being affected by the biases in the Br[pj] themselves.

Small-sample properties of estimates of the GEV distribution

A computer simulation experiment was run to compare three methods of estimation of the
parameters and quantiles of the GFV distribution. S8imulations were performed for sample
sizes n = 15, 25, 50, 100 with the shape parameter of the distribution taking values k = !
~0.4, -0.2, 0.0, 0.2, 0.4. All the methods of estimation are invariant under linear trans-
formations of the data, so without loss of generality the location and scale parameters
E=0 and a =1 were used throughout., For each combination of values n l;d k, 1000
random samples were generated from the GEV distribution, and for each sample the parameters
£, a and %k, and the quantiles x(F), where F = 0.00%, 0.0t, 0.1, 0.2, 0.5, 0.8, 0.9,
0.98, 0.99, 0.998, 0,999, were estimated by each of three methods: (1) the method of

probability weighted moments (PWM), described above; (2) the method of wmaximum likelihood




(ML), using Newton~Raphson iteration to maximize the likelihood function, as recommended by

Prescott and Walden (1983) and implemented by Hosking (1984b); and (3) Jenkinson's (1969)
method of sextiles (JS). The PWM method requires a choice of a suitable estimator of Br.
Several possibilities were investigated, including the unbiased estimator b, and a number
of plotting-position estimators ar[pj]. The best overall results were given by the
estimator gr[pj] with P4 = (j=0.35)/n, and the simulation results presented below for
the PWM method refer to this version of the PWM estimators.

For some simulated samples, the maximum—-likelihood and sextile estimates could not be
found. The cause of this problem for the maximum~likelihood method was nonconvergence of
the Newton-Raphson iteration, usually due to an extreme outlier in the sample; for the
sextile method, a ratio of sextile means used to estimate the shape parameter of the GEV
distribution sometimes lay outside the range of a table of values in which it was to be
interpolated. Such cases were omitted from the simulations. WNo such problems were
encountered with the PWM estimators, which could always be calculated.

The simulation results for estimation of the parameters of the GEV distribution are
summarized in Table 4 and 5. Results for the estimator of k are of the greatest
importance, since this parameter determines the overall shape of the GEV distribution and
the rate of increase of the upper quantiles x(F) as F approaches 1. The PWM estimator
has the lowest standard deviation of the three methods, except in the case %k = 0.4, and
its advantage is particularly marked in small samples, n = 15 and n = 25. The PWM esti-
mator is more biased than the maximum-likelihood estimator but its bias is small near the
important value kx = 0. The sextile estimator of k has a large positive bias in small

samples when %k < 0 and its standard deviation is generally larger than that of the PWM

estimator.
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Table 4. Bias of estimators of GEV parameters

Bias(E) Bias(a) Bias(k)
k: -0.4 -0.2 0.0 0.2 0.4 «-0.4 -0.2 0.0 0.2 0.4 -0.4 ~0.2 0.0 0.2 0.4
n Method

by ] +06 .02 ~.01 -.04 -.06 +00 =.06 =.09 -.10 ~.10 «11 .04 .02 -.07 -. 11
15 ML .00 .0t .01t .0t .00 ~.08 =.07 =.05 ~.04 -.0) -.05 -.02 .02 .03 .04
Js «29 .25 .22 .17 .10 .23 .12 .06 .00 -.05 .18 .13 .11 .07 -.02

P <06 .03 .01" .00 -.02 +01 -.04 -.06 -.07 -.07 .07 .02 ~.02 -.05 -.08
25 ML 02 .02 .03 .04 .04 -.04 ~.04 ~.0) -.03 ~,02 --02 =01 .01 .03 .05
Js «12 .12 .10 .09 .07 <13 .03 -.0t -.04 -.08 .10 .06 .04 .02 -.01

] «04 .02 ,01 .00 -.01 .01 -,02 =,03 -.03 -.03 .05 .02 .00 -.02 -.04
50 ML .01 .01 .01 .02 .02 =02 -,02 -.02 ~.01 ~.09 -0l .00 .01 ,02 .03
Js «05 .03 .02 .07 .01 +04 .01 =-.01 ~.02 ~.02 .07 .04 .02 .01 .00

, «01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .01 .00 .00 .00
100 ML .00 .00 .00 .00 .01 .00 .07 .07 .01 .00 .00 .00 .00 .01 .02
Js «04 .03 .03 .03 .03 .10 .04 .03 .0V .00 .05 .02 ,02 .02 .02

Table S. Standard deviation of estimators of GEV parameters

St.dev.(£) St.dev(a) 8t.dev(k)
k: -0.4 -0.2 0.0 0.2 0.4 -0.4 =0.2 0.0 0.2 0.4 ~0.4 -0.2 0.0 0.2 0.4

n Method

AT Y

P <30 .29 .28 .28 .28 32 .25 .20 .18 .18 .21 .20 .20 .20 .29
15 ML «33 .32 .31 .30 .29 «27 .25 .23 .22 .22 <38 36 .34 .31 .29
Js 37 .33 .30 .28 .25 .43 .3t .26 .21 .18 25 .25 .24 .21 V7

M .25 .24 .23 .23 .23 «25 .20 .17 .15 .15 «17 16 .14 .14 .15
25 ML «24 .24 .24 .24 .23 «2t .19 .17 .16 .17 24 .21 .19 .17 M7
Js «28 .25 .24 .23 .22 «32 .21 .18 .15 .14 «17 .18 .17 .16 .14

PWM «17 17 .16 .16 .16 <17 .14 .12 L1111 <14 412 .11 .10 .11
50 ML <17 .17 17 .16 .16 <15 .13 .12 .11 .1t «15 .13 .12 .11 .18 ]
Js .18 .17 .16 .16 .16 16 .14 .12 .11 .M <18 413 L1 L1 o

WM .12 .12 .12 .11 oM .12 .10 .09 .08 .08 .11 .09 .07 .07 .07
100 ML <12 .12 .12 .12 M .10 .09 .08 .08 .08 .10 .09 .08 .07 .06 %

PR

Js <12 .12 .12 .12 M .16 .11 .09 .08 .08 .09 .09 .08 .08 .08




Similar results can be seen for estimators of £ and a. In general, PWM estimators
have smallest standard deviation, particularly for n = 15 and n = 25, and their bias is
not large. The standard deviations of the PWM estimators for n » 50 are well
approximated by their large-sample values given by (16) and Table 1. Maximum-likelihood
estimators are the least biased but are more variable than PWM estimators in small
samples. Even at sample size 100, the asymptotic inefficiency of the PWM method compared
to maximum likelihood is not apparent in the simulation results. Sextile estimators in
general have larger standard deviations than PWM estimators and have some large biases in
small samples when k < 0.

The statistical properties of estimators of quantiles of the GEV distribution were
evaluated for many combinations of quantiles and values of the shape parameter k, and
only a few representative simulation results are presented in Table 6. The most important
aspect of quantile estimation in hydrological applications is estimation of the extreme
upper quantiles, particularly for heavy-tailed GEV distributions with k < 0. Table S
gives the bias and standard deviation of the estimated upper quantiles for two GEV
distributions, one with k < 0 and one with k > 0. Regults are presented for the ratios
;(F)/x(r') rather than for the ;(P) themselves, since the former quantities are more
easily compared at different F values. For sample size n » 50 the three methods have
comparable performance. In small samples the upper quantiles cbtained by PWM estimation
are rather biased, but are still preferable to the maximum-likelihood estimators since
these have very large biases and standard deviations. The errors in the maximum-likelihood
quantile estimators arise chiefly from a small number of simulated series which yield large
negative estimates of k, and consequently give very large estimates of extreme upper
quantiles.

Estimation of extreme lower quantiles tends to be less important in practice than
estimation of upper quantiles, so simulation results for this case are not given in detail.
All three methods give comparable results when n » 50, but for small samples the PWM

estimators have smallest standard deviation and small or moderate bias, and are generally

to be preferred.
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Table 6. Bias and standard deviation of estimators of GEV quantiles.
Tabulated values are bias and standard deviation of the ratio

x(F)/x(F) rather than of the quantile estimator x(F) itself.

cenccnnancan kEall,? ececcmccocsse cmrraccceces kB(),2 wemvecememea=

F=0.9 F=0,99 F=0.999 F=0.9 F=0.99 F=0.999

x(P)=2,84 x(F)=7,55 x(F)=14,90 x(P)=1,81 x(F)=3.01 x(F)=3.74

n Method Dbias s.d. bias s.4. bias s.d. bias s.4. bias s.d. hias s.d4.
i -08 .32 =-.03 .49 .12 .93 -.04 .21 .09 31 .28 .57

1S ML .01 .39 +64 2.78 * . -,05 .21 .17 1.49 . .
Js .08 .39 .00 +59 .06 1,00 .04 .22 .00 <31 «05 .53
5 ] - 03 .27 .01 45 .13 .78 -02 .18 .06 .24 .16 .38
25 ML 01 .30 .17 72 «59 1,93 -.08 .17 .04 24 .00 .38
Js <01 .29 -,01 -45 «05 76 -.01 .18 -.01 <24 .02 .37
P 02 .19 =.05 <34 -.03 «66 02 .12 ~,02 15  -.01 .22
50 ML =02 .19 -.02 34 .02 «67 =01 .12 .00 «16 .01 .23
Js =02 .19 =-.04 .34 «00 .69 -02 .12 -.01 «16 .00 .22
P -.01 .14 .00 «23 .03 .38 - 01 .09 .01 - 12 .03 .16
100 ML .00 .14 .02 «25 .08 .44 ~01 .09 ~.02 11 -02 .15
Js «03 .15 .01 «23 «01 «36 .01 .09 «00 <12 =01 .17

® indicates values which varied widely between different sets of 1000
simulations and consequently could not be estimated accurately.

All the methods of quantile estimation are very inaccurate when estimating extreme
quantiles in small samples with k < 0. It is of course to be expected that a gquantile
=(F) cannot be estimated reliably from a sample of size n if P > 1-1/n. The iwplica-~
tion of this fact for hydrological practice is that when estimating the upper quantiles of
a flood frequency distribution for a site with scanty data one should seek to incorporate
information from other neardby sites. B8uch a regionalization procedure can be based on the

PWM estimation method for the GEV distribution: see Hosking et al (1984).

Testing whether the shape parameter is zero
The type I extreme~value distribution, or Gumbel distribution, is a particularly

simple special case of the GEV distribution, and it is often useful to test whether a given
set of data is generated by a Gumhel rather than a GEV distrihution. This i{s equivalent to

testing whether the shape parameter k is zero in the GEV diatribution. A test of this
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hypothesis may be based on the PWM estimator of k. On the null hypothesis Hp : k =0

-

the PWM estimator k 1is asymptotically distributed as N(0,0.5635/n) 8o the test may be

- 1
performed by comparing the statistic 2 = k(n/0.5635)/é

with the critical values of a
standard Normal distribution. Significant positive values of 2 imply rejection of Hy
in favour of the alternative k > 0, and significant negative values of 2 imply
rejection in favour of k < 0.

The size of the test based on 2 for various sample sizes and its power for sample
size 50 are given in Tables 7 and 8. These results are based on computer simulations
of 1000 samples for each value of n and k. The results may be compared with Hosking's
(1984a) survey of tests of this hypothesis: the Z-test has power almost as high as the
likelihood-ratio test and for samples of size 25 or more its distribution on Hy is
accurately approximated by the standard Normal significance levels. Since the statistic

Z 1is very simple to compute, the Z-test can be strongly recommended as a convenient and

powerful indicator of the sign of the shape parameter of the GEV distribution.

Table 7. BEmpirical significance levels of the statistic Z for testing the
hypothesis H : k=0 against one-sided and two-sided alternatives.

Alternative: k<0 kx>0 k$0
Nominal level: 108 5% 108 58 108 5%
Sample size
15 t0.5 4.0 7.3 3.4 7.4 2.5
25 9.8 4.8 9.4 4.9 9.7 4.4
50 11.5 5.4 8.4 4.7 10. 1 4.5
100 10.5 4.9 10.3 5.4 10.3 4.5
200 10.0 5.7 9.0 4.7 10.4 5.2
500 10.3 4.9 9.8 5.0 9.9 5.6
-7
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Table 8. Power of the Z~-test of the hypothesis k=0 against one-sided and
two-sided alternatives. Sample size 50, nominal signficance level

(1Y
Alternative: k<0 x>0  k$o
}

-0.5 «96 - .94
-0.4 «91 - «85
-0.3 .78 - .71
-0.2 +55 - .45
-0.1 .27 - .18

0.0 .05 «05 .05

0.1 - <17 .10

0.2 - 49 .36

0.3 - .83 <72

0.4 - «96 <93

0.5 - 1.00 «99

Conclusions

Eastimators of parameters and quantiles of the GEV distribution have been derived using
the method of probability weighted moments. These estimators have several advantages over
existing methods of estimation. They are fast and straightforward to compute and always
yield feasible values for the estimated parameters. The biases of the estimators are
small, except vhen estimating quantiles in the extremes tails of the GEV distribution, and
decrease rapidly as the sample size increases. The standard deviations of the M
estimators are comparable with those of the maximum-likelihood estimators for moderate
sample sizes (n = 50, 100) and often substantially less than those of the maximum likeli-
hood estimators for small sam es (n = 15, 25). PWM estimators of GEV parameters and
quantiles have asymptotic Normal distributions and the large-sample approximation to the
variance of the estimators is adequate for sample sizes of 50 or more. Although PUM
estimators are asymptotically inefficient compared to maximum-likelihood estimators, no
inefficiency is detectable in samples of size 100 or less. The PWM estimator of the
shape parameter k of the GEV distribution may be used as the basis of a test of the

hypothesis Hy t k = 0, and this test is simple to perform, powerful and accurate.
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Appendix 1. Probability weighted moments for the GEV distribution

For the GPV distribution we have from (2) and (3)

1 )3 r
B, = Mor,0 ™ JO[F, + a{t - (~log F) }/xIP aF

-(x+
(r ”udu

L k
JO{E + a(l-u )/kle substituting u = -log P ,

(E + a/k) j; oty (a/k) ]; we (Tt Yy,

' (a/k)(t-f‘l)-hkrﬂ#k) provided that k > -1 ,

(E + a/k)(r+1)”

1

e+ e+ alt - (renyFrOOOI M (an

Appendix 2., Feasibility of PWM estimates of the GEV parameters

The PWM estimator k satisfies (13), and therefore k > -1 provided that

(2by-by)/(3by-by) > 3 . (A2)
Now
2by-b, ":T:T-T) L xymxy) (A3)
159
and
3by-b, --;(—n:‘i)(r.“- ) (2% ox ox ) (A4)
139>k

are both positive, so (A2) reduces to bo - 4by + Jbz < 0. But we can write

2
hg=dby+3by = m——Smmas ) (xyix ) (AS)

1>9>k 3
thus bo - 4b, + 3b2 < 0 almost surely and therefores k > -1 almost surely. Results
(A3) - (AS) above are easily proved by induction on the sample size n.

Furthermore, since

- (2b,~b )k
as —1 0 (A6)
r(1sx) (1-27%)
and 2b, - by > 0 as noted above, k/(!-z'k) >0 for all k and T(1+4k) > 0 because

k > -1, it follows that we must have a > 0.
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Appendix 3. Asymptotic distribution of the h:

The statistic hr may be written as a linear combination of the order statistics of a
random sample: we have

n
bo=n"') ofFx (A7)
r =1 ny 3

where c:;) = (3=1)e..(3r)/ln=T).eotn-r)} and x, € x, €...€ x_ is the ordered

1 2
sample. As n +**® and j +» with 3/n + 8, 0 <8 <1, CL;) is asymptotically a

function of the plotting position 3j/(n+1): in fact e;;, ~ (j/(n+1))t. It is straight-

forward to verify that bt satisfies the conditions of Theorem 1 of Chernoff et al (1967),
and from that theorem it follows that b, is asymptotically Normally distributed with mean

Br and variance

1

n v - ’4!:'1"1
ry

] ] R () o (1 - ry)laxdy . (A8)
x<y

A similar argument applies to any linear combination of the b,, r = 0,1,2,..., and it

follows that the bt are asymptotically jointly Normally distributed with covariance given

by
1
vr. = lim n cov(br.b.) 3 (qr. + q‘r) (A9)
nee
where
9,,"2) re) Y (riy))* P {1 - P(y)laxay . (A10)
x<y
To evaluate the g, for the GEV distribution we consider first the case %k > 0 and
let
e = 2] | (R} {F(y) ) axay (A1)
x<y
so that
9ys = !r+1'. - Ir+".+1 . (A12)
gSubstituting (7) in (A11) and making the further substitution u = {1 = k(x-E)/a)’/k.

ve (1 - k(y-&)/a)1/k, we have
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2 » & k-1 -ru k=1 _-gv
1,2 Io Jv u e du. v e av

- 2a°r7% J; vk-1e-svrtk.rv)dv

2 -2 ~2k
= a‘k “(r+s) P(1+2k)2r,[1,zk, 1+k; 8/(x+s)) (A13)

PR

(Gradshteyn and Ryzhik, 1980, pp. 317, 663); here TI(-,*) is the incomplete gamma function
and ,F; is the hypergeometric function. It is convenient to transform the hypergeometric

function in (A13), using results from Gradshteyn and Ryzhik (1980, p. 1043):

oFq (1 2ks 140 8/(x+s)] = ZZk(T(1+k)}2/T(1*2k) it r=8 ,

= {x/(z+e)} Xa(a/r) if r>s , (A 143

- ~{s/(rte) Za(z/e) + 2x e K (rem) Z (T (14100} 2T (142) i€ r <8,

where G denotes the hypergeometric function G(x) = 2F 1k, 2k 1+k; =-x) -~ note that

G(0) = 1, sSubstituting back into (A12) and (A9) we obtain the following expressions for

; the v _.:
i : v, = A e rasacte/een) - (roeen?y (A15)
]
Vo ey 73 0K 2L X T()G e/ (re2) )
. ¢ (a16)
e+ XU ¥ - 2.e) M PO Y,
1 2.-2 -2k -x
v == a k [{(r+s+1) r(t+2k)C{zr/lr+a+1)} = (x+s) T(142k)G{(r+1)/(x+s8)} +
r,r+8 2 (A17)

2+ K (xrm) * - (resr VO F, s> 2

When k € 0 the foregoing argument is not valid because the integral in (A11) does
not converge. However, the expressions (At15) - (A17) are analytic functions of k for
all kx> - % and hence by analytic continunation expressions (A15) - (A17) are valid
solutions of the integral representation (A9) - (A10)} throughout the domain = % < k < ™,

. At the value k = 0, the Vyq are given by the limits of (A15) - (A17) as X + 0; these

1imits are well-defined.

»
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The results stated in this Appendix are valid for arbitrary positive integers r

and 8, though only the cases r,s = 0,1,2 are required for deriving the asymptotic

distributions of PWM estimators.
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