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PREFACE

The purpose of this research has been to further develop grid
generation procedures and zonal methods so as to extend the applications
of nonlinear finite difference methods to camplex aircraft configurations.
For the task of three dimensional grid generation both elliptic and
hyperbolic grid generation methods were developed. A chimera grid scheme,
that is, the use of overset multiple grid systems, was also tested in two
dimensions. In our study of zonal methods several new algorithms and
camputer codes were developed. These included two and three dimensional
zonal codes that match transonic potential equations with thin layer
Navier-Stokes equations, an unsteady three dimensional transonic
potential code, and a two dimensional zonal Euler and vector potential code.

This report summarizes the various numerical algorithms that were studied.
Specific details of each algorithm are contained in a series of appendices
that contain either a brief write-up or a copy of a published technical
report. The brief report itself is broken into two main sections, Section I
Grid Generation, and Section II Zonal Methods. In Section II an attempt |
is made to draw out same of the advantages and disadvantages of using a
zonal method. This research contract also provided partial support to two
graduate students in the Department of Aercnautics and Astronautics and

resulted in the publication of several technical papers. Camputer codes

were also transferred to the Flight Dynamics Laboratory by Mr. Timothy Barth.
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SECTION 1
GRID GENERATION

1. Background

: In generating a grid about aircraft-like configurations several constraints should be
kept in mind. To begin, the grids must be smoothly varying so as to maintain solu-
tion accuracy. The grids should also be body conforming to enhance solution accuracy,
simplify the implementation of boundary conditions, and to minimize programming com-

plexity. Finally, in order to use approximately factored implicit schemes and to maintain

computational compatibility with vectorized machines, the grids should be well-ordered.

For a simple wing-body combination one can envision a single mapping procedure as
illustrated in Figure (1). This warped spherical coordinate system is well-ordered, maps
the body onto a single coordinate surface, and if properly generated, it can be sufficiently

smooth. Moreaver, the axis singularity is not a problem for Euler and thin layer Navier-

N el e N,

Stokes equations that are transformed in general coordinates and strong conservation law

form.

A single mapping such as that illustrated in Figure (1) is, of course, inadequate for
complex aerodynamic configurations which can include engine nacelles, stores, etc. For
these cases, subgrids, which are either embedded-to or overset-on the main wing-body
conforming grid, are envisioned. Some possible grid configurations are illustrated in Figures

(2) and (3) for two dimensional cross sections.

Embedding or oversetting meshes to account for complex configurations requires an

immense effort in interfacing grids and numerical algorithm developments. Consequently,

this university contract was restricted to the more fundamental task of generating only the
main body~conforming grid using elliptic partial differential grid generation equations with

clustering terms. We have, however, begun development of a three dimensional hyperbolic
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Figure 2. Example of Mesh Embedding in Two Dimensions




grid generation procedure, and, in two Jdimensions, we have indeed studied overset grids.
2. Grid Generation

As noted earlier, we wish to build a single main grid that is smoothly continuous,
maps the body onto a constant coordinate surface, and is well-ordered. The resulting
mesh must also use surface as well as field grid points efficiently. Clustering of grid points
near a body to resolve viscous terms should not cause unwanted extraneous points in
the free stream. These considerations lead to the use of warped spherical and cylindrical

coordinate systems.

To construct this main spherical grid we have developed grid generation codes using
both elliptic and hyperbolic partial differential equations. The elliptic grid generation
procedure has been written up in the form of a technical paper and was presented by Mr.
Reese Sorenson at an ASME specialist meeting. This paper, which describes the method

and shows results, is reproduced in Appendix A.

A paper describing our work in three dimensional hyperbolic grid generation procedure
is in preparation. Details of this method are described in an abbreviated write-up as

Appendix B.

In general the elliptic grid generator is more powerful as it can generate a smooth grid
interior to user specified inner and outer boundaries. The hyperbolic method generates
a grid exterior to a user specified inner boundary. The outer boundary location is not
known in advance (although one could iterate on its location, but not its placement of
points). However, the hyperbolic solver can generate an orthogonal grid and it is a much
more efficient code to use than the elliptic solver. For cases in which it is suited, it also

requires less user input. The elliptic solver, however, is more reliable.
3. Overset Grids

A paper describing a chimera or overset grid scheme in two dimensions is attached as




Appendix C. This paper was presented at the same ASME meeting as the three dimensional
elliptic solver. The various results, which are obtained with linear incompressible flow

equations, verify the feasibility of this approach, but considerably more research is needed.




SECTION I1
ZONAL METHODS

1. Background

Just as one wants to limit the number of grid points to only those action regions
in which they are needed, one would also like to limit the complexity of the governing
partial differential equations to appropriate action zones. The Navier~Stokes equations,
for example, are not needed to describe the flow in the inviscid far field. Indeed, even
nonlinear full potential theory is not needed there, as a linear potential approximation is

quite adequate.

In principle, considerable computational work can be saved by using just that s
plified governing equation set that suffices for a given region of the flow field. Compv
storage can also be reduced. However, Buch a zonal method is not without pitfalls. . ,r
one, programming and matching together several numerical methods increases tue overall
complexity of the computer code and its data base. This is especially undersirable on
parallel processors. Moreover, unless one is very careful in matching the different numer-
ical algorithms and governing equations, overall stability and iterative convergence can
be impaired. Numerical stability could conceivably decline so much that the simplified
gonal scheme could be more inefficient than a straight Navier-Stokes algorithm with a well

stretched grid.

Such negative arguments may be offset by additional advantages for zonal schemes.
For one, steady state numerical algorithms for potential flow are far advanced over those for
Euler or Navier-Stokes equations. This is because the simpler scalar potential equation
is much easier to optimize for steady state convergence. A well matched zonal method
may therefore have better convergence than, say, a Navier-Stokes scheme alone, simply

because the outer flow region can be converged at a much faster rate. Another, albeit

intangible aspect of the zonal method is that one is forced to keep the numerical algorithms




compatible, and if the code is properly designed, either algorithm could be readily used in

a stand alone mode.

Arguments for and against zonal methods will be summarized later. Clearly, a zonal
scheme has some reduced computer storage over a Navier-Stokes alone algorithm, and it
may have other significant computational benefits. Consequently, we have coded and tested
a zonal algorithm. In our tests we have essentially combined a transonic full potential code
with an Euler or thin layer Navier-Stokes code. The zonal code was tested in first two and

then three dimensions.
2. The Zonal Codes

The three dimensional zonal code which we have written matches an unsteady con-
servative full potential code with an Euler or thin layer Navier-Stokes code. Details of the
full potential code, partially developed for this application, were presented as an AIAA
paper attached as Appendix D. The zona! code itself has not been published, but Mr.
Jack Striegberger is using the code in his Ph.D. thesis project, so it will ultimately be fully
documented. Mr. Timothy Barth has transferred the code to AFFDL.

A two dimensional zonal code has also been written which combines a flux vector
split Euler code with a potential and vector potential code. Using this dual potential
combination, the outer flow is able to correctly convect entropy. This has lead to a very
versatile zonal code in which we are able to match the equation zones in a much more
elegant (and simpler) way. Details of this method have also been presented at an AIAA

technical meeting, and this paper is presented as Appendix E.
3. Reflections

The zonal codes that we have written work and save both computer time and some
storage. They are, however, more complex than a single Euler or Navier-Stokes code.
Moreover, the zonal codes are not as readily generalized to a new problem because some-

where in the flow field they use simplifying assumptions. In fact, a zonal code makes a




trade between computer time and engineering time. A zonal code that gives the same
result as a Navier-Stokes code will be cheaper to run on the computer, but it will require
more engineering development time. So the zonal code is ideal for optimizing a given con-
figuration because, once the code is set up, it will run more efficiently. If one is continually
changing the layout of the configuration and the type of flow field being solved, then a
nonzonal general code may be more economical because the engineering time for the first

solution will be less.

The area in which more research is needed with zonal codes is in how to interface
the zones more tightly with a minimum of bookkeeping. The two dimensional zonal code

described in Appendix E presents one approach that I believe we can and should generalize.

In the zonal method described in Apr~ndix E we solve (using u = ¢, +¢,,v = ¢, - ¥,)

(pu); + (pv), =0 (1a)
v -y = w (16)
us, + vs, =0 (1)
p=p(u? + 0% s) (1d)

throughout the entire flow. These equations can convect but not produce entropy. In an
entropy producing zone (e.g., around a shock, see Figure (1b) of Appendix E) the inviscid
conservation law equations of mass, momentum, and energy are solved. From this solution
we obtain the value of w that feeds into Equation (1b) by forming w = (u, — v,) directly

from the conservation law solutions. Elsewhere w is evaluated from

—-w = (YM?*)"(vs, — us,)




so that Equation (1b) is the Crocco equation. Likewise in the shock zone s is overloaded

directly from the conservation laws in place of Equation (1c).

The point of this is that Equations (1) are used throughout and so there is less logic to
code by avoiding a gone boundary (especially so since we in fact use ¢ and ¢ as variables).
Moreover, because an implicit solver is used, information is spread throughout without
any lagging of zone boundaries. Now, in fact, it would take fewer operations per iteration
if Equations (1) were turned off in the conservation law zone. But the code would, as just
stated above, be more complex and likely require more iterations between zones to reach

a steady state if this were done.

What we have done in this zonal method is to use a single “simple” equation set
throughout. In “complex” flow zones, a mnre complete set of equations is used, but their
effect is imposed by means of a right hand side forcing function, not by means of a zonal
boundary. This, I believe, makes this new zonal approach much more versatile. For
example, in viscous flow we should be able to evaluate the w of Equation (1b) from a
Navier-Stokes or boundary layer equation zone. Ideally we could use Equation Set (1)
everywhere and use more complicated equations only as a means to overwrite w and s.

Such an approach is currently being formulated.

To conclude, my feeling is that zonal codes are needed and have their place, generally
in a large engineering design environment. Small engineering teams that have to model a
variety of different flow fields and configurations should use more general codes that are
easier to set up for a given problem. In designing new zonal codes it is important that we
try to keep the number of equation sets and zone interface boundaries to a minimum for
simplicity. The type of zonal approach developed in Appendix E is one such attempt, and

it appears to be very promising.




SECTION III
CONCLUSIONS

Grid generation procedures and gonal solution methods were studied. Both elliptic and
hyperbolic three dimensional grid generation procedures were developed. The hyperbolic
grid generator is especially easy to use and it is very efficient. It can fail, however, whenever
the body surface is discontinuous or the used specified surface grid distribution is too
irregular. The elliptic solver is more robust, but it requires much more user input and

much more computer time.

From our experience with zonal codes, we concluded that they have their place, partic-
ularly for design applications where maximum computational efficiency is required. How-
ever, a major effort must be made to reduce the complexity of zonal codes. An approach
which interfaces the zones through forcing functions rather than boundary conditions was

developed, and it appears to offer this possibility.
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ABSTRACT

An algorithm for generating computational grids
about arbitrary three~dimensional bodies is developed.
The elliptic partial differential equation (PDE) approach
developed by Steger and Sorenason and used in the NASA
computer program GRAPE {3 extended from two to three
dimensions. Forcing functions which are found automati-~
cally by the algorithm give the user the ability to con-
trol mesh cell size and skewness at boundary surfaces.
This algorithm, as 1is typical of PDE grid generators,
gives smooth grid lines and spacing in the interior of
the grid. The method is applied to a rectilinear wind-
tunnel case and to two body shapes in spherical
coordinates. .

NOMENCLATURE
a coefficient in forcing function influencing decay

rate of control at boundary

b coefficient in forcing function influencing decay
rate of control at boundary

c coefficient in forcing function influencing decay
rate of control at boundary

J Jacohian of transformation, determinant of M

M matrix of transformation metrics

P forcing function in Poisson equation

P factor in P, giving control of cell size and
skewness at boundary

qQ forcing function in Poisson equation

q factor in Q, giving control of cell size and
skewness at boundary

R forcing function in Poisson equation

.3 factor in R, giving control of cell size and
skewness at boundary

T column vector having elements x,y,z

————

RHS term used in Eq. (7) in solving for P,Q,R

S distance along line of tncreasing : 1in real domain

T superscript indicating transpose of a matrix

x independent variable in real domain, Cartesisn
coordinate

y independent variable in real domain, Cartestan
coordinate

z independent variable in real domain, Cartesian
coordinate

a nonlinear coefficient in Eq. (2a)

Y signed cofactor of the matrix M

T matrix having elements v

A finite difference

|4 independent variable in computational domain

n independent variable in computational domain

] angle down from axis toward equator in spherical
coordinates

£ independent variable in computational domain

3] distance from origin in spherical coordinates

1] angle around axis in spherical coordinates

w relaxation parameter for point-SOR

i row number in matrices M and T

b] column number in matrices M and T

INTRODUCTION

The ability to generate grids about arbitrary three-
dimensional aerodynamic configurations stands today as
one of the critical pacing items in computational fluid
dynamics (1). Of the various methods for zenerating
grids, the elliptic partial differential equation tech-
nique (2-6), with its inherent smoothness, has proven to
be one of the most automatic and general approaches., In
two-dimensional applications this has been especially
true when the elliptic grid-generation equations are
combined with an algorithm that automatically chooses
inhomogeneous terms to give the user control of mesh
cell size and skewness at boundaries. Such an algorithm,
as developed in Refs. 7 and 8, has resulted in the
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widely used NASA computer program GRAPE' (8). The exten-
sion of the GRAPE algorithm to three dimensions has been
long overdue and is the subject of this paper.

In the algorithm developed here, three-dimensional
elliptic partial differential grid-generation equations
are modified to give the user control of the spacing and
skewness of mesh lines that approach the boundary. This
is accomplished by adding to the grid generation equa-
tions a set of forcing terms which are automatically
evaluated by imposing differential equation comnstraints
of arc length control and surface orthogonality at the
boundary. The user has only to input the desired grid
spacing at the boundary surface. A description of these
grid-generation equations and a numerical solution pro-
cedure are developed in the main part of this paper.
Because a spherical topology is one of the most efficient
grid systems in three dimensions, the grid-generation
algorithm is further modified to avoid difficulties in
generating grids near a spherical or cylindrical axis
singularity. These details and grid resulets in both
rectangular and spherical grid topologies are presented
in the remainder of the paper.

GRID-GENERATION EQUATIONS

The elliptic partial differential equation grid-
generation approach has been extensively developed else-
where (9). Elements of this approach are reviewed below
to develop source terms that automatically enforce
interior mesh line orthogonality to a boundary surface
and give the user control of the step size between the
boundary and the next interior surface.

It 18 required that the mapping between physical
space x,y,z and computational space §,n,; satisfy
the Poisson equations

fax * Eyy ¥ 5pp = PED) (1a)
" gy + 1, = &N, (1b)
fex ¥ :yy i, T R(§,n,2) (lc)

Given proper choice of the source terms P,Q,R, these
equations satisfy the maximum principle and thus ensure
a one-to-one mapping. Equation (1) is conveniently
solved numerically in the uniform computational space,
£,n,5. The equations, so transformed (10-13), are

- - -
+ 20y ,T * Tt Ayt )

-»> - - >
“11‘55 czzrnn + G:Jr;;

- - 2 -+ - -
J (Prc + an + ch) (2a)
where
X 3
-
LI DA BN a4 " El YoiYaj (2b,2¢)
t4

Yij is the 1jth signed cofactor of the matrix M

:(E xn x‘
M- Yo Yn V¢ (2d)
ZE zn Zc

and the Jacoblan J 1is the determinant of M.

!An acronym derived from "GRids about Airfoils
using Poisson's Equation.”

In the present application the inhomogeneous terms
P,Q,R control grid spacing and skewness for mesh cells
adjacent to the body boundary surface, { = 0. The
forcing terms are chosen to be

P(E,n,g) = B(E,n)e™d¢ (3a)
Q(E,n,5) = (€. n)e D¢ (3b)
R(E,n,5) = R(E,n)e " (3c)

when the exponential factors cause the control to dissi-
pate or relax with distance from the boundary [ = 0.
Relaxing the control with distance from the { = 0
boundary is necessary so as not to overly constrain the
grid lines with respect to the opposing ({ = Cp,y)
boundary. The positive constants a,b,c influence the
rate of decay of the boundary control.

In most elliptic grid-generation techniques, the
points on boundaries are user-specified. Thus, the £,n
distribution of grid points 1s specified on the ¢ = 0
surface. Figure 1 shows a typical mesh cell touching a

Fig. 1 Typical mesh cell touching ¢ = 0 surface

; = 0 surface, with £ and n varying over that surface.
The condition for orthogonality of the grid lines inter-
secting the ¢ = 0 boundary surface is that the unit
vectors in the £ and { directions and in the n and §
directions be mutually normal. These two conditions can
be expressed by the vector dot products

T, - T, =0 (4a)
T T =0 (4b)

To control the cell size on the { = 0 boundary, the
"height" of the cells must be regulated to some pre-
specified value. Letting S be that height, the dis-
tance along a line of increasing ¢, we wish to specify
AS/8z at the £ = 0 boundary. In differential form
this third boundary-control equation can be expressed as

2
-+ -+ 3S
L T, (BC) (4c)

The solution procedure described below requires that
Eq. (4) be solved for the derivatives with respect to
¢{ at the surface, giving

. 38/3¢
4 172 (52)
(g3 /¥y * ¥al¥yy + 1)
Yi3%g
*r * N, (55

T e e e~ L sin. et

PO

PEIEBRRE D > PRI

s

o




L ' (s¢)
4 Yy

The surface control equations expressed by either
Eqs. (4) or (5) are solved simultaneocusly with the
interior grid-generation equations given by Eq. (2).
Because x,y,2 are specified on the boundary, the sur-
face control equations supply three additional relations
that can be used to determine the unknown values of
P,Q,R. An iterative solution process is used as
described below.

SOLUTION PROCEDURE

An {iterative procedure is used to solve the grid-
generation equations. Each iteration {s in two distinct
parts. In the first part we begin with the x,y,z from
the initial conditions or the previous {teration, and
update values of the P,Q,R terms. The second part of
the iteration atep updates values of x,y,z at each
point in the field using the new values for P,Q,R.

To update the P,Q,R, we first note that solving
Eq. (2) produces a grid for an appropriate choice of
P,Q,R. We wish to impose constraints on grid cells at
the boundary f = 0, and thus determine P,Q,R. Equa-
tion (4) gives the constraints and Eq. (5) gives the
same construints expressed as requirements on derivatives
of t with respect to ; at the boundary. The deriva-

tives in Eq. (5), along with difference approximations
for all other first and second partial derivatives of r
with respect to §£,n,;, are substituted into Eq. (2),
which is solved for P,Q,R.

To obtain the difference approximations for firsc
and second partial derivitives of T with respect to
£,n,; on the ; = 0 boundary surface, we proceed aa
follows. Because x,y,z are specified at ¢ = 0, first
and second partial derivatives of T with respect to
£ and n on that surface can be found by differencing
fixed boundary points. Those derivativea, combined with
user specification of 35/37, are used in Eq. (5) to
deternine derivatives Second partial derivacives
rg¢ and tnc are found b5 differencing r, with respect
to £ and n. Thus, the only derivatives incking in
Eq. (2) are r,,. These are found by differencing the
solution for % at and near the surface using the cur-
rent interior grid solution.

Thus, at each ¢ = 0 point, Eq. (2a) are three
equations which can be solved for the three unknowns
P,Q,R. From Eq. (3) it can be seen that at ¢ = 0,
P(E,n,;) reduces to P({,n), and similarly for Q and R.
From Eq. (2) RAS 1s defined as

RHS = -J S Y T

-
+
1 gg ®22%qn T BTy

+ 2(012 £n * “13'5: + 2, nC)] (6)

The solution then is

B
g |en RS - rT mES/y 7
[

vhere ' 1is the matrix having elements yjj. For the
whole field P,Q,R are then found by multiplying #,Q,R
by the appropriate exponential factors as in Eq. (3).

The second part of each iteration step is to use the
new values for P,Q,R in Eq. (2) to find new x,y,z
everyvhere in the field. In this research effort the
iterative solution procedure, chosen for easc of coding,
was point-SOR. Thus, the P,Q,R terms necessary to
cause the grid to have the desired behavior at the bound-
ary are found automatically along with the x,y,z in the

interfor as this two-part {teration scheme proceeds to
convergence.

SPHERICAL GRIDS

From a computational point of view a spherical
topology is one of the most efficient grid systems for
three-dimensional bodies because a spherical grid saves
points in the far field. For example, in Navier-Stokes
calculations that use highly clustered grids near the
body boundary with a single rectilinear coordinate sys-
tem, the fine grid near the body can extend into the far
field. This does not occur with spherical coordinates.
A spherical ccordinate system does introduce an axis
singularity, but experience shows that an axis singular-
ity can be readily handled in flow codes that use general
&,n,{ coordinates and solve the flow equations in
conservative form (14).

For grid generation using Eq. (2), the axis singu~
larity of the spherical coordinate system has proven to
be difficult. Following a suggestion of J. K. Hodge
(private communication, 1977), M. Vinokur and J. L.
Steger (private communication, 1978) found that one way
to avoid the axis singularity was to "convert"” Eq. (1)
into a pseudospherical equation. Instead of using true
spherical Poisson equations, the independent variables
Xx,y,Zz are simply replaced with :,2,¢ in Eq. (2) for
gpherical coordinates or by 9,9,z for cylindrical
coordinates. See Fig. 2. Thus, Eq. (1) is replaced by

Epp t il Ty ” P(E,n,5) (8a)
oo + gg * oe * Q(g,n,3) (8b)
S0 T tee t Loe t R(§,n,%) (8c)

Fig. 2 Cut away sketch showing computational variables
and spherical coordinates

Equation (8) is not in the form of a true Laplacian
operator in spherical coordinates. It is, however, an
elliptic equation that satisfies the maximum principle
and it generates a smoothly varying grid just as Eq. (1)
loes. At the axis, ¢ varies monotonically with £ (see
Fig. 2) and no singular behavior is encountered. Trans-
formation of Eq. (8) to uniform computacional space
results in Eq. () with r replaced by

°




Solution of the spherical variable form of Eq. (2)
proceeds much as before. Boundary-point values of x,y,z
are specified along with an initial guess of the
interior-point values of x,y,2. At each of the points,
values of x,y,z are then converted in the usual way to
spherical values of 0,6,¢. The grid-generation equa-
tions are then solved by relaxation, and once a solution
is obtained, {t is converted back to x,y,z values at
each grid poiant. Equation (8) does not generate the
sane solution as Eq. (1), but the solution is one that
can be just as satisfactory. It must be cautioned that
if ¢ varies from O to 2r in a periodic grid, then
one must difference in a manner which accounts for a
discontinuity of the function, but not of the derivative
by adding or subtracting 2v where appropriate.

The surface clustering and orthogonality relations
as developed previously are written in terms of x,y,z.
Rather than attempt to rework these relations in spheri-
cal variables, we simply convert p,5,¢ variables back
to x,y,z varlables to enforce Eq. (4). That is, when-
ever P,Q,R must be evaluated, grid-point values of
0,8,¢ are converted back to x,y,z. Values of P,Q,R
are found, and then x,y,z values are converted back to
Ps8,9. Since this tranaformation and its inverse need
be done only for the first few (typically 3) shells of
points near the body surface, the increase in computa-
tion is not significant.

RESULTS

The method has been coded to control surface orthog-
onality and step-size spacing only at the inner ({ = 0)
boundary. The same 3-D computer code can be used to
generate grids either for rectangular grid topologies -
using Eq. (1) in terms of x,y,z coordinates, or warped,
spherical grid topologies using Eq. (8) for o,6,¢
coordinates.

Rectilinear Grids

Rectilinear three-dimensional grids with automatic
surface atep-size control have been generated. A rec-
tangular wind tunnel'with a bump on the floor is used as
a test case. Since this case fits within the rectilinear

topology, Eq. (1) 1s used as the grid generation equa-~
tion. Figure 3(a) fllustrates the floor (4 = 0) boundary
surface. The grid in this case has 40 points in the ¢

or streamwise direction, 20 points in the n or spanwise
direction, and 25 points in the { nr vertical direc-
tion. The mesh lines intersecting the floor are required
to do so normally, and a spacing normal to the floor
equal to 0.0025 times the height of the tunnel is
enforced. That spacing i{s approximately [/20th of what
would result if the points were equally spaced in the
vertical direction.

Figure 3(b) shows the fifth ( = constant coordi-
nate surface above the floor. The control of point spac-
ing normal to the ¢ = 0 boundary surface is shown here
by the uniform proximity of this surface to the floor,
Figure 3(c) shows the fifteenth [ = constant surface,
above the floor. Here, the bump has begun to "flatten"
since the grid has a flat upper-boundary plane. An
example of a different family of coordinate surfaces, a
{ = constant surface {3 shown in Fig. 3(d). It rides
the crest of the bump from side to side in the tunnel.
Figure 3(e) shows an example of the third family of
coordinate surfaces, an n = constant surface. It is
the fifth such surface, counting from the near side of
the tunnel. The viewpoint here is normal to that sur-
face. Figure 3(f) shows a closeup of a region of the
surface shown on the previous Fig. 3(e). It is the
region at the right-hand side of the base of the bump.
Note that the spacing normal to the bottom boundary is

Fig.
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3 Grid for rectangular wind tunnel with bump on
floor
(a) Inner (; = 0) boundary surface (rhe floor),

showing bump

(b) Fifth ¢ = constant coordinate surface above
the floor
(¢) Fifteenth ¢ = constant coordinate surface

above the floor
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Fig. 3 Concluded

£ e constant coordinate surface on top of
bump

Fifth n = constant surface passing over
top of the bump, orthogonal view

Closeup of region near base of bump

)
(a)
(f)

constant and very small. That spacing would tend to be
much larger and nonuniform in this concave region if the
grid had been generated without the forcing terms.

Warped Spherical Grids

Gride for fuselage shapes and wing shapes have been
generated using the spherical coordinate system and
solving Eq. (8). As of this writing some convergence
prolems are encountered with fine gride using spherical
topology. This is currently under investigation. The
results presented here for spherical topology are limited
to moderately coarse grids.

A grid having 20 points in the circumferential (§)
direction, |9 points in the pole-to-pole (n) direction,
and 30 points in the outward () direction has been
generated about a 10 by 2 by | ellipsoid. Figure 4(a)
i{llustrates the specified £ and n distributions about
the top half of this ellipsocidal body. Figure 4(b)
shows the n = constant coordinate surface about the
"equator,” while Fig. 4(c) shows a closeup of the
10 innermost lines in the equatorial plane. Note that
the spacing normal to che body 18 controlled. Fig-
ure 4(d) shows a different n = constant coordinate
surface, this one nearer to the pole than the equator.

It 18 not a plane, but rather more in the shape of a
bowl, open toward the lower right. An example of a dif-
ferent family of coordinate surfaces, a £ = constant
surface, 18 shown in Fig. 4(e), extending from pole to
pole. Figure 4(f) is a closeup of the region of

Fig. 4(e) near the left-hand pole and near the body. The
results i{ndicate that the surface orthogonality control
and the clustering control are working well, and that the
solution about the axis is8 well behaved. Examples of the
third kind of coordinate surface, { = constant, are
visually indistinguishable from the body, Fig. 4(a).

On an axis, ¢ 1is either 0 or m and values of ¢
and © are obtained by parabolic extrapolation to the
axis from the two nearest points in the n direction.
The three conditions used to determine the parabola are
that the mesh line must pass through the two nearest
points in the n direction, and that it must have zero
slope relacive o the axis as it crosses the axis.

Values of ~ for each point on the axis could be found
by extrapojating along any of the lines encountered as

& varies rrom 0 to S{gays and in fact the o used is

an average of all those values.

Some views ot another spherical grid, this one
having 30 by 19 by 30 points, are shown in Fig. 5. This
grid i{s about a wing having the same 5 to | ratio of span
to midchord elliptical planform as the ellipsoid above,
and a 192 thick airfoil section. The only adaptation
necessary here is that the P,3,R terms at the trailing
edge are replaced bty the average of their values imme-
diately above and below the edge, i.e., they are "aver-
aged” acrcse the edge in the £ direction. The airfoil
section and the innermost four grid lines are shown in
Fig. 5(a). The normal spacing and the angularity of the
!ines intersecting the vedy are nicely controlled. The
sharp trailing edge is treated successtully, as shown in
Fig. 5(b). Figure >:c) shows the far-field behind the
trailing eds: . and iliustrates the ability of the PDE
methed tu generate 3 smooth grid over a sharp cornert.

In all of the above cases, values for the relaxation
parameter . in the point-SOR varied from 0.8 to 1.6.
Values ot the a,no,c parameters in Eq. (3) were approxi-
mately 0.5, The numdber of iterations necessary varied
from 25 te 150.

i




Fig. 4 Grid about ellipsoid using spherical coordinates
Top half of ellipsoidal body surface

Tenth n = constant coordinate surface,
i.e., equatorial plane

Closeup of innermost 10 circumferential
lines in equatorial plane

L]

Fig. 4 Concluded

Fifth bowl (n = conatant coordinate sur-

face), counting toward equator from pole

£ = constant coordinate surface extending
from pole to pole

Closeup of £ » constant coordinate sur-

face, near pole and near body

(d)
(e)
(f)
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Fig. 5 Grid about wing having airfoil section and
elliptical planform
(a) Closeup of innermost five circumferential
lines in equatorial plane
(b) Closeup of trailing edge in equatorial plane
(c) Far-field behind trailing edge

CONCLUSION

An elliptic partial differential grid-generation
technique which gives the user ability to control mesh
cell size and skewness at a boundary has been general-
ized from two to three dimensions. The method discussed
in thia paper has been applied successfully to a variety
of topologies and test cases. Future plans include sub-
stituting a faster solution method such as ADI, {nvesti-
gating the application of the method to a wider collec-
tion of topologies, and writing a transportable, user-
oriented three-dimensional code, such as GRAPE {s in
two dimensions.
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APPENDIX B

GENERATION OF THREE DIMENSIONAL BODY FITTED COORDINATES
USING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS




INTRODUCTION

Body conforming curvilinear grids are often used in finite difference flow field simula-
tions. One reason for this is that the application of boundary conditions can be simplified
in finite difference calculations because grid lines coincide with boundary lines. This is
especially important in high Reynolds number viscous flow simulation in which high flow

gradients near the body surface must be resolved.

The task of generating a satisfactory body conforming coordinate system is not easy.
The grids must not be too distorted, they should have smooth variation, and they should
be clustered to flow field action regions — typically near boundary surfaces. Moreover, the

grids should be generated in an automatic manner that requires a minimum of user input.

One approach for generating body conforming grids with minimum user input has
been to solve a set of partial differential eguations. In this technique level lines of £(z, y, 2),
n(z,y, 2), and ¢(z,y, z) that have monotone variation are sought as a solution of a set of
partial differential equations. Generally values of £, n and ¢ are user specified on the
boundary surface and constraints expressed as differential equations are used to develop
the grid away from the boundaries. The most popular such approach requires the solution
of a set of elliptic equations that satisfy the maximum principle, however, hyperbolic
and parabolic governing equations have been used as well, at least in two dimensional

applications.

In this appendix one way of extending the hyperbolic grid generation method of Steger

and Chaussee to three dimensions is developed. In two dimensions the two differential

constraints

fzﬂz + €l"1 =0 (la)

Eatly — §Ns = (av)™ (18)

,_‘,,,__‘_.___m__,‘___ e e e e e el
. s ,;J.;n‘

—— e kit

e




or in £, n computational space
ZeZn + Yeyn =0 (2a)

Teyn — ToYe = AV (28) ]

have been solved by marching in  from an initial data plane n(z,y) = constant. The first
equation is a constraint of orthogonality. The second equation controls the mesh spacing

with the user specifying the mesh control volume AV (actually area in two dimensions).

A linearized version of equations (2) is readily shown to be hyperbolic and suitable for

marching in . Equations (2) are solved in computational space to give the z,y location

of the £ = constant and n = constant grid lines.

The two partial differential equation , . -pressed as either Equations (1) or Equations

(2), have been referred to as a mesh cell volume procedure for grid generation. In the next

section a three dimensional procedure is developed.




THREE DIMENSIONAL GRID GENERATION EQUATIONS

A body fitted exterior grid about an arbitrary closed boundary surface is desired.
Only a simple topology such as that illustrated in Figure (1) will be considered here. The
body surface is chosen to coincide with ¢(z,y, 2z) = 0 and the surface grid line distributions
of £ = constant and n = constant are user specificd. The outer boundary ¢(z,y, 2) = ¢mas
i8 not specified, it is only required to be sufficiently fur removed from the inner boundary.
Using ¢ a8 the marching direction, partial differential equations are sought which produce

planes of constant £,n and ¢ to form a nonsingular mesh system.

An extension of the mesh cell volume procedure to three dimensions is proposed. In
three dimensions, however, there are three orthogonality relations and one cell volume
constraint. At any point four equations o=~ available to predict the three unknowns z,y
and z so one equation must be discarded. Because ¢ is the marching direction it is natural

to use only the two orthogonality relations that invoive ¢, this leads to the governing

equations
ez + Yoy, + ez, = 0 (3a)
ToZ, + Yy + 292, = 0 (3b)
TeynZ + ToYe2n + TyYeZe - LeloZy — I,Ye2 — TYy2¢ = AV (3¢)
or with ¥ defined as (z,y, z}'
Fe ¥ 0 Fyor o0 el e Ay
§ § n oo AEnm -
The first two equaticns represent orthogor ity relnicns between € and ¢ and between p

and ¢, while the last equation is the volume or finite Jaceiian constraint.

Equations (3) comprise a system of unnlivear partial differential equations in which

z,y and 2 are specified as initial data at ¢ — U. As developed below, linearization and

"y




analysis of Equations (3) about a nearby known state reveals that the system is hyperbolic

with ¢ as the marching direction.

Let 2% y°, 2° represent a nearby known state so that

z=2"+(z-2%)=2"+%
y=y"+9 (4)

z2=2"+4+2

where Z,y and 2 are small. Substitution of these expressions into Equations (3) and

elimination of products of tilde terms results in the locally linearized system

Ao(7 — 7o)e + Bo(F — 7o) + Co7 — Ro)g = | (5)

with

z, Ye 2¢
A= 0 0 0 (6a)
(YnZ; — Y2q) (To2 — z02) (Tp¥; — ToYy)

0 0 0

B= Z¢ Ys z (65) 4
(veze — yez:) (Tezc — 2eze)  (Tye — Tey,) :
!‘.
Z¢ Ye¢ Z¢ f
C= z, Yn 2z, (6¢) '
(Yezn — Ynze) (zn2ze — Tezn)  (ZeYn — Zove)
|

(6d)




Let R=+ -~ 7o, then (5) is rewritten as
Aoﬁ( + Boi'i', + Cok( = f (7)
Now C; ! exists unless (AV)~! — o0, which we will not impose, so (7) can be rewritten as

C;'AcRe + C;'ByR, + R, = C;' f (8)

Although the verification is pontrivial, C;'A, and C;'B, are found to be symmetric
matrices (this was carried out by Dennis Jesperson of the NASA Ames Research Center,
who used MACSYMA). The linearized system Equation (8) is therefore hyperbolic and

can be marched with ¢ serving as the “time-like” direction.

It can be pointed out that an analysis was attempted for the three orthogonality
relations alone. These equations, however, are readily shown to be improperly posed for
marching with initial data in ¢. Indeed, as best as we can discern, the three relations

do not lend themselves to unique solutions regardlese of the type of boundary conditions

specified.




et e

b e L L N P VR SR e i St

SOLUTION PROCEDURE

The nonlinear system of grid generation equations given by Equations (3) are solved
with a noniterative implicit finite difference scheme. An unconditionally stable implicit
scheme is chosen so the marching step size in ¢ can be arbitrarily selected based only on
considerations of accurately generating the grid. Iterative solution of the nonlinear grid
generation equations is avoided by expanding the equations about the previous marching

step. As a consequence Equation (7) is solved with the nearby known state 0 taken from

the previous ¢ step.
a) Numerical Method

Let A§ =An=A¢=1suchthat { =35~ 1,7n=k—1and ¢ =1~ 1. Central spatial

differencing of Equations (5) in £ and n wiii first order backward implicit differencing in

¢ leads to
Ade(Tivr — 1) + Biby(Fisr — 71) + C1 Y, g1 = Gina 9)
where
( ! )
§l+1 = 0
AV
and
W T4 — Fio " Try1— T
beF; = :+12 =1 By = E+12 k—1

Vel =T — N

Note that C;4;7; was subtracted from fm to produce §, in theh above. Throughout only

those indices that change are indicated, thus riy; => ;4 141,741 = 7jpa0 ete.

Multiplying through by C;™* gives

Cr! Aibe(Fier — 71) + C7 Biby(Figa — 71) + I(Fipa — 71) = C7 G (10)
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where I is the identifying matrix. To reduce the inversion cost the difference equations are

approximately factored as

(I + C7 A )(I + Cr ' Biby)(Frgr — 71) = € G (11)

go that ¥, is obtained by solving sequences of one—dimensional-like block tridiagonal

systems
(I+ G Aibe) Gy = Giea (12a)
(I + G Biby) V¢ Tias = G (12b)
Pl = 71+ VT (12¢)

Although not shown, numerical dissipation terms are added in £ and # directions.

The coefficient matrices A;, B; and C; contain £ and n derivatives which are formed
using central differences. These matrices also contain derivatives for z;,y, and z; which
are obtained from Equations (3) in terms of £ and n derivatives. That is, Equations (3)

are linear in the unknowns z;,y, and 2,. They are easily solved for as

Z; AV TeZn — YnZe (13)
Yo | = 75 5 | Tn2e — Tez
z: (DetC) zZy,, - a:,,yz

with
Det(C) = (yezq — Ynze)® + (Tnz¢ — Ze20)* + (Zeyn — Zoye)’

Note that AV/,/(zZ + g/}Tz—?j = Det(C) so that Det(C) will be zero if and only if the

user specified AV = 0. Hence, C~' will exist.
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b) Cell Volume Specification

The user has control of the grid by means of the initial surface point distribution
and by specification of the cell volumes, AV;4;. Through the cell volumes the extent and
clustering of the grid can be essentially controlled. Because the cell volume at each point
must be specified, it is clear that the user must devise some kind of method for determining

volumes. There are many possibilities, here one such approach is illustrated.

Suppose we had a sphere to grid. A reasonable grid might have uniform angle spacing
and have a radial grid distribution that is exponential. For this special geometry and
grid we can analytically determine the control volumes by a simple formula. Now take
the problem at hand, perhaps an aircraft fuselage, which we want to mesh as a warped
spherical-like grid. We can find a sphere *F1t has the same surface area as our fuselage
and use the grid cell volumes of the sphere to specify the cell volumes of the fuselage grid.
However, the fuselage will not have the same kind of surface area distribution as a sphere
with equal angle distribution. So here we need an adjustment, something like

Avj.k.l = (A‘,j.k,l)opheu [(l - 6) + (!é‘t’b")}‘,’be—"— 6] (14)

A“;,k)]uulugc

where § — 1 for small [ and § — 0 for large {. That is, the volumes would be adjusted
initially to the local boundary surface increments. But as we march out the uniform
spherical volumes would gradually be specified. Such an approach has been used, and,
as a result, the far field portion of the grid tends to be uniformly spherical. The results

shown in the next section illustrate this behavior.
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RESULTS

A series of plots are shown in Figures (1) — (4) to indicate the generation of grids

[ about ellipsoids and cambered ellipsoid test geometries. Figure (1) sets the grid notation
| while Figures (2) - (4) show some typical results. The grids shown in Figure (2) are for
an ellipsoid which has major to minor axis ratios of 4 to 1 and 2 to 1. The views 2a to 2c
show the user specified surface point distributions from various observer positions. Similar
views are shown in Figures (2d) to (2i) after marching 3 and 19 steps in the ¢ direction. ‘I

The views shown in Figure (3) show a grid generated about a cambered ellipsoid. Finally

the views shown in Figure (4) show a grid about a wing-like ellipsoid ratioed 6 : 1 : 1/6.
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Figure 2a. Surface Distribution on Ellipsoid, ¢ = 0.
View at n = 0.
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Figure 2c. Surface Distribution on Ellipscid, ¢ = 0.
] View from £ =0 “North Pole.” l
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View at n = 0.

tf Figure 2d. Grid at ¢ = 3A¢.
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Figure 2f. Grid at ¢ = 3A¢.
View at £ = 0.
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View at n = 0.
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Figure 3a. Cambered Ellipsoid, ¢ = 0.
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Figure 3b. Grid About Cambered Ellipsoid
At Surface ¢ = 19A¢.
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Side View, Upper Right Quarter.
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ABSTRACT

A mesh system composed of multiple overset body-
conforming grids is described for adapting finite-
difference procedures to complex aircraft configura-
tions. In this so-called "chimera mesh," a major grid
is generated about a main component of the configuration
and overset minor grids are used to resolve all other
features. Methods for connecting overset multiple
grids and modifications of flow-simulation algorithms
are discussed. Computational tests in two dimensions
indicate that the use of multiple overset grids can
simplify the task of grid generation without an adverse
effect on flow-field algorithms and computer code
complexity.

INTRODUCTION

Finite-difference simulations of flow about
realistic afrcraft configurations are likely to use
more than one grid system and more than one governing
equation set. A composite computer code for such simu-
lations is thus chimera-like — a chimera being a mytho-
logical creature with the head of a liom, the body of
a goat, and the tail of a snake.

A fin{te-difference computer code that uses mul-
tiplc equation sets (e.g., zones of Navier-Stokes and
velocity potential) and mulriple grids will be consid-
erably more complicated than a code that uses a single
flow-field equation set and a single grid mapping.
Nevertheless, such a chimera ..de will lead to increased
computational efficiency in flow simulation of complex
aircraft configurations. As a result, the computational
aerodynamicist will likely spend considerably more time
in the future developing ways to interface grids, gov-
erning equations, and data bases.

The purpose of this paper is to explore a chimera-
type mesh scheme in which a major grid is generated
about 8 main body clement such as a wing-fuselage, and
uinor grids are overset on the major grid so as to
resolve gecondary features of the configuration such as
stores, nacelles, and canards. In general, the minor

grids are overset on top of the major grid without

requiring mesh boundaries to join in any special way.
With the use of such an overset mesh system the task
of grid generation is simplified because individual

grids can be generated almost independently and then

superimposed to form the overall mesh system. 1n this
way, one can build up a grid system for treating com-
plex configurations and avoid severe mesh distortions.

Overset mesh systems have becn used previously.
The explicit finite-difference code of Magnus and
Yoshihara (1) for solving the transonic {low about air-
foils 18 an early example of overset grids used to
achieve computational efficiency. More recently,
Berger and Oliger (2) have developed a numerical pro-
cedure which automatically inserts overset grids to
resolve gradient regions of two-dimensional convection
problems. As to applications to complex geometries,
Starius (3) has used such an approach for the shallow-
water equations, and, in work begun at Ames Research
Center, Atta (4) has coded overset grids for the
transonic potential equation. Atta has also extended
the concept to three dimensions (5). We also have
long argued the potential advantages for such a mesh
system (6,7).

In the research described here we have undertaken
an independent development. This is in order to adapt
our grid system to an existing class of implicit
finite-difference algorithms for solving the unsteady
potential, Euler and thin-layer Navier-Stokes, and
parabolized Navier-Stokes equations. These codes all
use similar coordinate transformations, and zonal-flow~
equation versions are under way., Ultimately we intend
to explore the cemplexities of a true chimera code by
combining the various equation sets with the overset
grid scheme.

In this paper we develop some of the philosophy
and details of the overset mesh system, The methodol-
ogy here s rvestricted to two dimensions, and the pres-
ent solutions, which utilize the stream function, are
intended for gprid evaluation. Overset grid calcula-
tions using the Euler and thin-layer Navicr-Stokes
equations will be presented elsewhere in a subsequent
publication bv BRenek, Steger, and Dougherty.




APPROACH AND MOTIVATION !

We wish to build a mesh system in which there is a
major grid generated about a dominant body. Minor grid
systems are generated about remaining portions of the
body boundary or are used to better resolve portiona of
the major grid. At this point we do not allow the
minor grids to communicate with each other except
through the major grid, The sketches shown in Figs. 1
to 4 are presented with the diascussion below to clarify
these ideas.

Figure 1 illustrates an airfoil~flap combinatiom.
A major grid is generated about the main airfoil; a
minor grid is used to resolve the flap. The two grids
are not joined at a common boundary and so are con-
nected as follows: data from the major grid are inter-
polated to supply outer boundarv conditions to the
minor grid. Thus, the flap grid receives input from
the main airfoil. Within some curve of the minor grid
that circumscribes the flap, points of the major grid
will be blanked out. The major grid points forming a
perimeter to the blanked region will also be flagged.
Flow variables at these perimeter points are supplied
by interpolating the minor grid solution. Thus the
effect of the flap is imposed on the main airfoil.

The grids shown 'a Fig. 2 {llustrate another appli-
cation of overset grids. MNere a main rectangular-like
grid fics well to a cascade blade element everywhere
except at the blunt nose region. A minor mesh,
wrapped about the nose, is inserted to resolve the flow
suction peak. The edge boundaries of the minor grid
are interpolated from the mijor grid. Points in the
major grid in the vicinity of the nose are blanked, and
the flow values are found by interpolating data from
the fine minor grid wrapped around the nose. This
choice of overset grids can be preferable to the use of
a C-grid throughout because a very skewed grid results
for blades with high solidity, as indicated in Fig. 3.

Figure 4 illustrates multiple overset grids. In
this case the minor grid resolving the airfoil leading-
edge flap (slat) is shown intersecting the main airfoil.
Such grid points must be turned off and a fringe bound-
ary must be defined about these points with data sup-
plied by interpolating the major grid.

A system of overset grids has many advantages. It
can be used to treat complex geometries, resolve large
flow-field gradients, and eliminate grid distortionm.
Overset grids ate easier to construct than grids gen-
erated by patching meshes together at common boundaries
because each grid i{s somewhat independently generated.
This independence ensures that each grid will maintatin
a well-ordered set of points that are successively
indexed. Well-~orderedness is an important property of
a mesh because when finite-difference approximations
are applied to it, a set of structured algebraic equa-
tions results. The computational efficiencies gained
by using, for example, spectral methods, approximate
factorization or alternating directions techniques, and
vectorized computer programming require structured
matrices. Another advantage of overset grids ie a
natural occurrence of overlapping grid points between
interpolated boundaries. 1f the grids are sufficiently
well overlapped, the atability of an implicit algorithm
should not be adversely affected, even though the
interpolated boundary-values are updaced in an explicit
mode. TFor a similar reason, {terative convergence can
be fmproved by overlapping mesh boundaries (8).

There are also disadvantages to the overset mesh
system. Interpolation points and blanked points must
be located and labeled for special treatment. The solu-
tion algorithm also becomes wore complex relative to
using a single grid mapping. Finally, interpoulation
can cause inaccuracies such as local loss of conserva-
tive form.

ALGORITHM CHANGES

To use overset grids the finite-difference algo-
rithms need only be altered in three essential ways.
First, the data base must be structured for a number of
grids, each of which can have a different dimension.
This is easily accomplished in a variety of ways depend-
ing on the computer. For example, on a single
instruction-stream machine, use of a single array can
be practical. In this case the index j,k of the ath

grid can be located as a single array-point {. The
FORTRAN variable Q(Il) is located by the index

I =J+ (K- 1) * JMAX(M) + ISUM(M)
where JMAX(M) and KMAX(M) are maximum j and k values

of the Mth grid and ISUM(M) 1s the number of grid
points in all grids before the Mth grid. Using such
a single index leads to a dependency which does not
vectorize on some machines, in which case other con-~
structions should be used.

Second, the algorithm must skip blanked points.
In time-like marching algorithms this is easy to imple-
ment by simply multiplying by a 0 or 1 flag array
stored at each point. Such blanking is illustrated
below for the centrally differenced Laplacian in which
an implicit approximately factored delta-form algorithm

is used as part of an iterative solution process. That
is,
n n
sxij X + nywj & 0 1)
where
- _ 2
Sty = gy = 20y + %)/ (8%)
) 2)
syyvk = (¥, =20 + by )/ (8y)

The factored difference equations can be represented as

(T - w8 )1 - mcw)(w"“ aik o SR TCRE SN L ¢ )
or in algorithm form as
(L~ ws 00" = (B + 6 " (4a)
(X - w8 Y™ - ¢m) = ¢ (4v)
One can flag off points by simply resetting uw as .
- 0 flag off
e gt 1 flag on ®

Alternately one can initially proceed as if none
of the points is spectal. Then, just before solving
the first tridiagonal wmatrix corresponding to Eq. (4a),
set to zero the appropriate elements of the matrix and
ites right-hand side. Consider the simple 6 ¥ 6 system
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c U Ty

b ¢ Ay, e,

a b ¢ by, Xy
a b AR - T, (6)

a ivg L

a blL' Te

1f elements in rows J and 4 are to be blanked, they are
simply reset as

c Ay ry
a c Ly, | ]
Ay, 0
. - (7)
a b cllavs | 9%
a bllave re

In this example, nondiagonal elements in rows 3 and 4

are zeroed so that no change is computed for (Y7t} - (%),

A similar treatment must occur in solving the tridiag-
onal matrix corresponding to Eq. (4b). Ultimately, the
values of v at points 3 and 4 are updated by inter-
polation of values from another grid.

Although the above illustration is for a Laplacian,
the Beam-Warming (9) algorithm for the Euler equations
is treated in precisely the same manner. Overset grid
results obtained using the Euler equation algorithm
will be given elsewhere.

Finally, the boundary condition must be recoded.
Interpolation routines to update overset grid boundaries
must be provided, and wmodular coding is needed to
account for the possibility that a minor grid may have
different boundary-condition treatmeant than the major
grid. For example, in Fig. 2 the k =1 1line in the
major grid represents a pericdicity boundary, whereas
the k =1 1line for the minor nose grid represents a
solid body boundary. Thus, separate boundary-condition
routines must usually be supplied for each grid, and
these should be provisioned for in a modular way.

LOCATING SPECIAL GRID POINTS

As part of the overall grid-generation package for
the chimera grid scheme, a program must be included
that locates and flags those points that must be blanked
in the algorithm or that serve as special boundary
points. To date, we have used simple bookkeeping pro-
cedures and allow the minor grids to interact with only
the major grid. The minor grids are not allowed to
interact with another body boundary (as shown in Fig. 3,
for example). In time, these algorithms are expected
to be refined, generalized, and made more efficient
than current versions.

Blanking Points Within a Body Boundary

As indicated by Figs. 1-4, some of the points in
the main grid will fall wichin the body boundary of a
minor grid. These points must be blanked out. Becauae
the minor grid points near the body boundary may be
more finely spaced than the major grid points that are
being turned off, we should blank additional major grid
points until the grid spacings are more compatibie.
Thus, for the situation shown in Fig. 5, we may choose
to turn off all major grid points within some boundary

defined by the minor grid indices k = constant and
J =1 to JMAX. To achieve this we have used the
following method.

A boundary curve corresponding to Lk e constant

is defined within which points are to be blanked. Call
this curve C (see Fig. 5). The origin to this reglon
i3 defined by averaging all the points on C. We thea
search for the point on C which is the farthest from
the origin. The distance from the origin to this point
defines a radius, Rmax. The radius and angle for every
point on curve C with respect to the origin are also
computed and stored.

Points of the major grid are tested to determine
if they fall within curve C. Provision can be made to
exclude points that obviously cannot be within the
closed-curve C by lectting the user input the index
bounds of test points. This increases the possibility
for error, however, so such an option has not been pro-
vided. The first test, then, is to compute the dis-
tance between the major grid point bring checked and
the origin. If this distance exceeds Rmax then the
point must lie outside of C; 1f the point is less than
Rmax, 1ts angle with respect to the origin is computed
(see Fig. 6). The points along C are then searched
to find that point on C which is clusest in angle
measure to the major grid point being tested. Points
on C to either side are then tested so as to find
angle bounds. (Because C {is closed, the angle will
tump from =% to +m somewhere between two points of
C; 1if the test point has an angle within this range,
the bounding C-curve points are already known.) If
the radius from the origin to the test potint is less
than the weighted average of the radii{ of the bounding
angles, the point is within C. A flag is then set and
this information is stured. The above test is fairly
reliable unless the body 1s concave (Fig. 7). In this
case we can partition C into a C' and C" and work
with ewo origins.

The previously described algorithm for locating
points within a given boundary is only one of many that
can be envisioned. An algorithm that can be more
readily extended to three dimensions is sketched,
although it has not been tested in computation. Let
the boundary curve C be represented by k = constant
as before and again assume that C 1is continuous and
closed., If C corresponds to n = constant, and if
the j index increases clockwise (see Fig. 8), then

n represents an outward normal to C. Let Rp be
the vector from the nearest point on C to the major
grid point being tested. If the dot product of n
with Rp 1is positive, the point being tested is out-
side of the curve C; 1f the dot product is negative,
the point is inside of C.

Location and Interpolation of Mesh Overset Boundary
Points

Outer boundary data for any minor grid must be
provided by tnterpolating the solution of the major
grid. If B 1s a point on the outer boundary of a
minor grid, our first task {s to locate the ncarest
major grid point (or points) from which {nterpolation
can take place. The simplest test 18 to conmpute the
distance between point B and points of the majov grid
and to select that major grid point which is closest to
B. Again this search can be speeded up by excluding
major grid points a large distance awvay.

1f the boundary curve is smooth, one can also use
a "stencil-walk" to speed the search. As sketched {n




Fig. 9, after the nearest point to B is found, the
nearest point to the next boundary point B' can be
located by scarching the atencil for the point that is
nearest to B. Of the stencil of aine points, find
that one which 1s nearest to B', For this neavest
point, search its stencil for the point closest to B',
and so0 on, until the point tested is closer to B'

than any of its stencil neighbors.

The major grid will have various "holes” of
blanked points. The perimeter of these points serves
as an inner boundary to the major grid, and solution
data must be supplied to this perimeter. In this case
the nearest minor grid point must be located for inter-
polation of minor grid data onto the perimeter of the
blanked major grid. A search similar to that of the
first approach outlined is used.

For interpolating the grid boundary data from the
field of another grid we have simply used second-otder
Taylor series approximations of the form

- (8x)* . (ay)?
v Yo + Axwx + Aywy + 7 wn + x.xA)fwxy + 7 wyy

(8)
vhere
Uy = Exbe v, (etc.)

and Ax and Ay are the increments betw-en the point
from which the interpolation is being m:de and the
point being interpolated for. A linear combination of
such interpolation formulas can be written from nearby
points to ensure a very smooth interpolation. We have
not needed such a technique to date.

Because the search of nearest points is limited
to the index range that excludes fixed boundaries, the
derivatives of Y, and Yxx, etc., can always be formed
with central differencing. This simplifies the inter-
polation formula insofar that it does not require the
use of special one-sided differencing at boundaries.

A cricicism of using such a simple interpolation
formula is that conservation 13 not maintained. That
is, although we may difference the flow equations in
divergence form, the divergence property is not numeri-
cally preserved if some values are obtained by inter-
polation. This may be a problem if a jump discontinu~
ity such as a shock wave crosses the interpolation
boundary. Perhaps in this case interpolated values can
be later adjusted to satisfy a numerical line-integral
of flux.

RESULTS

As part of a package for genersting overset grids,
a flow-solver code has been developed which solves the
incompressible stream function. Although such a pro-
graa is useful in its own right, the application here
is to uncover logic errors in locating and flagging
special points in various kinds of overset mesh sys-
tema. The ultimate application for this linear code
will be to use it to assess the quslity of a given
generated overset mesh system. For example, the
Laplacian can be economically solved to help determine
wvhether an adequate number of points are provided st,
say, an airfoil nose region or vhether an additional
grid should be f{ntroduced to resolve some other feature.
Specifically, Eq. (1) in generalized coordinates s
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1
solved using the algoritha given by Eq. (4). Blanked
points are treated by using the relaxation factor as
given by Eq. (5).

As a first test of the overset grid system, s
body-fitcted O-grid was superimposed on a stretched
rectangular grid which served as the major grid.
ure 10a shows an overview of an O-grid about an
NACA 0012 airfoil overset on the rectangular grid; a
closeup is shown {n Fig. 10b. The circular symbols
plotted over points of the rectangular grid indicate
nearest major grid points that are used for interpo-
lating the outer boundary points of the O-grid. Here
the O-grid {s considered to be the minor grid. The
plotted x symbols indicate points in the rectangular
grid that are blanked out. Although not specially
flagged, the perimeter of the blanked-out points is
updated by interpolating nearby winor grid values. In
this case all rectangular points within the k = 3
grid line of the O-grid are blanked. A perimeter of
rectangular points adjacent to those blanked out 1is
also flagged. The calculated pressure distribution is
indicated in Fig. 10c for incompressible flow and 1is
shown compared with exact theory; the comparison s
satisfaccory.

Filg-

The grids shown in Figs. 1lla and 1lb show a 12%
ellipse modeling a nonlifting biplane configuration.
The lower boundary of the rectangular mesh serves as a
line of symmetry. Unlike the previous example, this
geometry would be poorly meshed by use of only a single
O-grid. This is because the line of symmetry 1s so
close that the 0-grid would become very distorted. The
computed pressure coefficient is indicated in Fig. llc.

Another application of the overset mesh system 1is
indicated by Figs. 12 and 13 for an inlet with and
without a centerbody. 1In the first case (Fig. 12), a
stretched rectangular mesh is used as the major grid
and a body-fitted C-grid 1s used to resolve the inlet.
The detalled grid view (Fig. 12a) shows blanked-out
points and nearby interpolation points on the rectangu- .
lar grid. Nearby points on the minor body-fitted grid
which are used to interpolate the perimeter of blanked-
out rectangular points are not shown. By choosing
various values of stream function to be constant on the
body boundary we can control the mass flow into the
inlet. Computed streamlines are shown in Figs. 12b
and 12¢ for mass flow rates that cause spillage
(Fig. 12b) and suctio: 'Fig. 12c). An additional set
of grids and computativaal results are shown in
Figs. 13a-13c. In this latter case the inlet has a
centerbody that is fitted by shearing the msjor rec-
tangular grid over this boundary.

A final example shows an airfoil and flap arrange-
ment using O-grids for both the major and minor grids.
This arrangement, in which the flap {s tucked in below
the main airfoil, cannot be nicely fitted by a single
mapping with cuts, Overviews of the grids and computed
results aré.indicated in Figs. 14a-14d. The circula-
tion of each profile is found automatically in these
ceses by requiring a match of trailing-edge pressures
as & Kutta condition. Using the Bernoulli equation,
the condition of setting the pressures at the point
above the trailting edge, u, to the point dbelow, 1,

gives the relation -
2 1y, 2 - 2 29,2
{n, + -\y)wnlu”.r ((n, + “,)'nlxov-r 9)

This relation uses the inviscid tangency-boundary con-
dition that s constsnt on the dbody sc *C = 0; £ end n
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represent the curvilinear body-conforming coordinates
with § circumferential and n directed outward.
Differencing this relation at the trailing edge results
in a solution for the stream function on the body in
terms of neighboring ¢-values at the trailing edge.

CONCLUDING REMARKS

It has been known for a long time that multiple-
grid systems work and that they offer computational
advantages. Although using multiple grid systems is
conceptually straightforward, many experienced prac-
titioners of computational fluid dynamics (CFD) who
have coded such programs would likely agree that all
of the extra bookkeeping, although simple, tends to be
tedious. It i{s clear, however, that some type of mul-
tiple grid will be utilized. A major task in CFD,
then, will be to design computer codes that can use
multiple grids and still remaln usable and readable.

In this paper we have described a study of a
chimera grid code architecture using overset grids.
We are finding that such a grid system need not overly
complicate the computer code, that it can be handled
within a general framework, and that it can simplify
the task of grid generation.
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Fig. 1 Overset grids for airfoil with flap Fig. 2 Overset grids for cascade blades with minor

grid used to resolve nose of blade

Fig. 3 C-grid for cascade, showing extensive skewness
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Fig. 4 Afirfoil with leading- and trailing-edge flaps
resclved with overset grids; note that the grid spac-
ings are not shown to correct scale
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Pig. 5 Curve C which defines region of blanked-out
major grid points

Fig. 6 Test procedure for locating major grid points

that lie within curve C

Fig. 7 Partition of curve C for case of concave
boundary
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b) Streamlines with spillage

c) Streamlines with suction

Fig. 12 1Inlet without centerbody
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1. Abstrant

An implicit, approximat:-factorization, finite-
differeunce algorithm has beer developed for the com-
putation of unsteady, inviscid transonic flows in
two and three dimensions. The computer program
solves the full-potential equation in generalized
coordinates in conservation~law form in order to
properly capture shock-wave position and speed. A
body-fitted coordinate system is employed for the
simple and accurate treatment of boundary conditions
on the body surface. The time-accurate algorithm is
modified to a conventional ADI relaxation scheme f-~
steady-state computations. Results from two- and
three-dimensional steady and two-dimensional unsteady
calculations are compared with existing methods.

I1. Introduction

Modern transport, military and rotor aircraft
routinely operate in the transonic flight regime.
In transonic flight, the aercdynamic forces are
evtremely sensitive to small perturbations in the
motion of the vehicle., \Unsteady flow adjustment is
very slow as upstream propagation of information is
restricted by locally high subsonic or supersonic
flow resulting in large phase lags. In addition,
the existence of embedded shock waves with the poten-
tial for large excursions further complicates the
transonic-flow environment. Thus, it is not sur-
prising that the most critical aercelastic phenomena
occur in this flight regime. And while the super-
critical airfoil sections are more aerodynamically
efficient than ¢ wenticaal airfoils, they are more
susceptible .c fiutter.' Ilinearized, unsteady sub-
sonic aerodynamic theory is incapable of predicting
these complicated flows. In addition, transonic
prediction methods that use the harmonic approach to
compute a small perturbation from nonlinear, mean
steady~state flow have limited applicability. They
are valid only for small-amplitude, high-frequency
flows and cannot ac..unc for shock-wave motions,
Thus, it is of paramouni :mpurtance to develep
methods that can properly compute shock waves and
their motions i{f their role in transonic, aeroelas
tic stability is tc be accounted for.’

Unsteady, :ransonic, aerudyhdamic metiods basd
on various rroulincar 87aell-dint rbance potential
*Research Scievtist. li.mter AlAA.

‘Associate Proiessor. M.mbe: ALAA.
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equations have been developed by several research-
ers. Ballhaus and Steger’ and Ballhaus and
Gooriian” have developed an efficient method for
solving the two-dimensional low~frequency transonic
small-disturbance equaiion. The resultant code,
LTRAN2, has been extensively used in spite of its
various limitations. Recently, methods that moder-
ately extend the frequency and Mach number range of
this equation have been developed.>”’ In addition,
the effect of viscous corrections has been examined
by Rizzetta.® 1In another effort, Borland, Rizzetta,
and Yoshihara® have recently reported on an algo~
rithm for a modified form of the small-disturbance
equation in three dimensions with no frequency limi-
tations. This code is currently being used to com-
pute unstead¥ aerodynamics for transonic flutter
analyses.l°' i

A practical tool for the computation of
unsteady, inviscid transonic flow about complex
configurations must accurately simulate the signifi-
cant physics and be computationally efficient for
routine use in engineering analysis. Unsteady,
full-potential theory can satisfactorily replace
Euler equation solutions {if the shock waves are
sufficiently weak and yet maintain computer time
and storage requirements similar to the simplified
small-disturbance theory. The unsteady, full-
potential equation has been solved using fully
implicit methods by Goorjian,®? Steger and
Caradonnai13 Chipman and Jameson,!* and Sankar
et al.'5+'® The Chipman and Jameson procedure
solves a system of two equations for the two
unknowns, density and velocity potential, using an
approximate-factorization scheme. The method of
Goorjian uses an ADI scheme to solve a scalar equa~
tion for the velocity potential by employing a
time-linearization of the density similar to the
present approach. To date both of these methods
have only been applied to two-dimensional nonlifting
pulsating airfoils using a simple, sheared mesh.

The method of Sankar et al. uses the strongly
implicit procedure and has been applied to compute
steady and unsteady flow over wings using a sheared,
parabolic coourdinate system.

The present grocedure is an extensiou of the
Steger and Caradonna work’? which used a stretched
Cartesian grid with small-disturbance planar bound-
ary conditions. Currently, a peneraliied body-
titted coordindate system is employed that can be
adapted to wings, wing~body combinatiorns, and
bodies uof revolution. This method is unique as it
can use the mesh-point-efficient spherical grids
that are presently being developed in conjunction
with this code. Steger and Caradonna reported that
the unsteady scheme was a very poor relaxation
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algorithm. In this work, the scheme is modified to
an ADI relaxation procedure for computing fast,
steady-state solutions by a simple flag.

The governing equations and boundary condi-
tions are discussed in Sectionm II. In Sectiom III
the conservative differencing and numerical algo-
rithm for the solution of the finite-difference
equations are presentad. In Section IV, results are
presented for various two- and three-dimensional
cases to verify the algoritim. Finally, concluding
remarks are made in Section V.

111. Mathematical Formulation

Full-Potential Equation

The three-dimensional, unsteady, full-potential
equation in strong conservation-law form is given by

3p 2 3 3
36 T 3% (P0) ¥ gy (Pdy) + 37 (p4) = O (1)
where the density o 1s determined from the
unsteady Bernoulli relation, for steady, uniform
incoming flow

- T =1 2 _ a2 _ 4t _ ay /v
o= e X3t ag - 20, - 07 - 02 - 00)] @

The density p and velocity components ¢y, ¢y,
and ¢, are nondimensionalized by the free-stream
Pw ond speed of sound a,. The Certesian coordi-
nates x, y, and z are nondimensionalized by a
reference length £, such as the atrfoil chord ¢,
and the time t 1is referenced to a,/t.

Equations (1) and (2) express mass conservation
for unsteady, inviscid, isentropic, and irrotational
flow. The corresponding shock-jump conditions can
be a suitable approximation to the Rankine-Hugoniot
relations for many transonic flow applicationa if
the shock waves are sufficiently weak. In deriving
Eq. (2) the far-field is assumed to be steady.

Transformation of the Equations

The treatment of arbitrary body boundaries is
usually made more convenient by the use of a coor-
dinate transformation which maps the body surface to
a rectangular coordinate surface in the transformed
plane. Boundary conditions at the body surface can
then de simply and accurately treated. 1In addition,
these mappings can be used to cluster grid points in
regions of the flow with high gradients, thereby
enhancing numerical solution accuracy. A general
indepandent variable transformation is indicated by

€ = E(x,y,z.t)
n = n(x,y,z,t)
T = Cix,y,2,t)
1=t

The strong conservation-law form of Eq. (1) is main-
tained by expressing it as

7@ %@ 5E) 2 )0 o

with the Bernoulli relation, Bq. (2), transforming

as
o= ’1 s X3tz - W,
SRR RSN RTN |
t’¥n /%
wvhere
Ueg ¢+ Mg + A0 + A,
Ven A0 +A0 +A0 (%)
Woegg v A tAe A
and
2 2 2
Ay = En ¥ gy +g2
Ay = nl+ n; +n}
Ay o g2+ g2+ g
: 2 4 2 Zz 2.2 (63)
A =g n + Eyny +En
- F2r2 2,2 2,2
Ay = gl +E50s + 600
- n2p2 2,2 2.2
Ay Nl x + nycy + Nty
J = Ex(nynz - n'cy) + nx(ezny - Ey:z)
+¢ (En -§n) (6b)

xX'yz yy

Here, U, V, and W are contravariant velocities
along the £, n, and ¢ directions, respectively,
A; - Ay are metric quanticties, and J 1is the
Jacoblan of the transformation [3(f,n,z)/3(x,y.z)!.
The metric quantities in Eqs. (6a) and (6b) are
evaluated using the following metric identities

& ™ J(ynzz— y[zq) ™ J(ygzn— ynzi)

Ey - J(xczn- x“zc) gy - J(x“zL-—szn)

£, = J(xnyg- xcyn) t, " J(xzyn- xnyt) -
e = J(yc’g' yczc) Et - -x'5x-y‘{y- zTCz

ﬁy - J(xgzc- xcza) e " "x‘nx-yTny- 2.,

Ng = IRy - %xey) bp ® TEphx T Yiby 2l

Boundsry Conditions

At the body surface, flow tangency 1s required
(l1.e., no flow through the body) This imposed by
sefring che contravariant velocitv in the ¢ direc-
tion to zerc, viz

We te * ARQK + A A,o: =0 (8)

A similar condition (i.¢., V = 'y {s fmposed at the
syometry plane for wing casts.

For lifting cazea, allowdance must Le wmade tor
a jump of potential across a wake-llke cut. In
unsteady flow, vorticity is continuously shed from
the wing. In a potential formulat.on this {s
approximately modeled with a cut aligned with the
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shear layer. Here we further idealize this flow by 2 2~ .
keeping the cut in the mean chord line plane. By 5% =-e Y(at M UaE + van + watl (a2
impoaing the usual shear-layer assumptions, an
equation for the jump in potential, Finally, to better facilitate the application
of approximate factorization techniques, the cross-
P=fo]l=o,-¢ derivative terms are lagged in time by rewriting the

implicit spatial derivatives in the form

along the cut can be derived., Across an inviscid

shear layer, normal velocity and pressure are con- 3 (au)n+1 -3 (5A1)“a (¢°+‘ -+ BOH® + o(h)
tinuous. Since isentropic flow has been assumed, £ ] £ £
the density iv also taken to be coantinuous. The

Bernoulli relation together with the continuity of 3 (5V)n+1 -3 (aaz)“a (¢
density requires that n n n

"4 42 G0 + o

. - - Ayl Py n ot _ 0 P .}
Ly # (0T 4T =0 Y 3, (W) 3, (BA)72 (¢ ¢7) + 3, (3W)" + O(h)

(13)
where (V) and (W) are the averages of the contra-
variant velocities above and below the wake, i.e., Combining Eqs. (10)-(13) yields the conservative
time-discretized form of the full-potential equation
(V) = % (vu + vl) involving only the potential at the new time level

n? a. \0
I +h, + v +W' ) - 2 [3 (5a™
Wy = M+ W) ¢ n oo T e
+2,(5A,)" + 2 A 1L - ¢
This convection equation for T 1is imposed in the n n ¢

wake.
an-1

G A I S R Yeat
&

ez
At distances far from the body the flow is +4 )
required to be free stream, which, with the use of
P, and a, as the references, is N
h .a _ :n-1 g~ -1 -1
+ — - + +
o = Mx = @E% -8 +n = W e, + v

e =1 2
" - 0T+ B ot + o 0"
where M, 1s the free-stream Mach number. For Al £ n
steady lifting cases, the velocity potential at the
outer boundary is updated with the usual compressi- + 3 (5u)“] (14)
ble vortex solution with strength T. L
. where B = o2 Y/J.
I11. Numerilcal Algorithm

Spatial Differencing

Temporal Differencing

An optionally first- or second-order-accurate

A first-order-time-accurate approximation to spatial differencing of Eq. (14) is given by (note:
Eq. (3) is obtained using Euler backward differencing the spatial indices are suppressed here for
convenience)

an+1_ FL hfar(ﬁU)n+l + ?n(ﬁv)n+1 + 35(5W)n+l) -0 o

' (10) [1 + b, + Vs 4 W) - & (3, (5,73,
where h = 4t and p = p/J. To solve a scalar sys-
tem of equations for the potential at each new time  + 3 (pA,)"8 + 3 (5A,)"% ]’(em'l - M
level the density is linearized about old time n n L ¢
levels. The density coefficients in the spatial
derivative terms are lagged to level na. A linear- n n=-1 é“'l
ization resuiting in a conservative differencing of = - )+ “n_
the time derivative ot the density is obtained by 8
noting that ¢ = o(¢) and using a Taylor series

(¢l\ - 2¢n—l + °n-2)

An—1

x i . e - T ae
expansion ] *.%% B < "y 4+ 5—;— (" ‘6€ + V" lén
SN [b" N (% %% (" - 0“ﬂ £ B

2 r ~san
- . n-1 _ . W e et - oYy + BU 3 (ﬁg) + 8 (NH°
o G € BTl R A : @ L)
(11 .
) + 3L<pﬁ)“] (1)

where 3p/3) is a differential operator obtained
from the Bernoulll relatfon
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and
6&(%@) = J_-i-il/zsj+1/2ﬁj+1/z )
RSV RN
5Ty = 32, ,2(31‘22:&)\7
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- -1 +1 (A%
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The contravariant velocities at the mesh half-points
are determined from

Uynrsa = Styaa7z * Argarga (g, 4y)

+% [A.‘Jﬂsnoj“ + A,‘16|:¢j]
3 (BRCEINET LA
Viersz = Mrrga * Aagaygo (enr — 8
+-;- [A,,H_IGEOR.H + A,.kdgok] (18)

1
t3 [A‘k+16c°k+1 + A‘k‘sc’k]

POy Ty A TYSUMC TR P

1
*+3 [Aszﬂéc’ux + Aszég%]

1
M 3 LITPULA TP A‘L%‘t] )

vith similar treatment for Uy_,/;, Vk-,/;, and
Wp-1/2. The metric terms at gh‘u points are
obtn(nul using simple averages (e.g.,
Argpyfz = (A1j + A1g41)/2), Here AL = &n = 8¢ =1
only the varying indices are indicated. The
derivative terms in the contravariant velocities
expressions are replaced with the second-order-
accurate central difference spproximations

1
fe|, * Oty =T Wy - 4D

1
’nlk KR L N COWRER N 19)

. 1 ’
%‘n Oy =T gy - b))

Stability is maintained in supersonic regions
by introducing an artificial viscosity term through
the use of an upwind bilas of the density

« Pivr * 0y
Pivrs2 = a - vj+1/z)( 2 )

(1 + 62 1
+ vj+1/2[ +

8
pj-H—!r]
(20)

2 Pi+r )

wvhere r=0or 1l for U <or > 0. The parameter
6 = 2 for second-order spatial accuracy in super-
sonic regions, and 6 = 0 for first-order accuracy.
The switching parameter v is defined by

max[1l - (o/o*)j.olc Uinrse > 0

Vi+r/2 =

max(l - (p/p*)§,,.01C U <0

j+1/2

with 1 £ C < 10. Note that upwinding is used in
the ¢ direction only at present. For the compu-
tations performed to date this has been satisfac-
tory, but in general it will be necessary to add it
in the other directions as well (see Ref. 17 for
the extension).

The metric quantities on the right-hand side of
Eq. (17) are computed using three-point, second-
order-accurate difference expressions

1
xE "7 (xj+1 - xj-t)

1
*n =7 e T %)) v

]
X, =7 Kgey T X))

with similar treatment for the y and z metric
terms. At the boundaries, 3-point, one-sided dif-
ference expreasions are used.

It is necessary to subtract a numerical trunca-
tion error term because of an incomplete metric
cancellation,??+1®+1% 1f the velocity and density
are set to free-stream conditions thei the terms in
Eq. (17) will not be identically zero, but will be
proportional to the numerical truncation error in
the differencing of the metrics. This is caused by
the choice of differencing used for the metric quan-
tities {n Eq. (21) and the spatial derivative terms
in Eq. (17). The error term can be quite appreciable
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for a highly stretched grid. Let R, represent the
truncation error term obtained by setting ¢ = M x
and p = 1 initially and computing the terms in

Eq. (17), L.e.,

v ®e®) e

This error term is then subtracted from the right-
hand side of Eq. (15) at each time step. This
correction is particularly effective in the highly
stretched, coarse~grid far-field where the solution
18 close to free stream. Near the airfoil the grid
resolution should be sufficiently fine that R, 1is
negligible.

Approximate Factorization

To avoid costly matrix inversions at each time
level Bq. (15) is approximately factored into
Lgs Ly, and L, operators

[1 + s

h? z -, (0%
¢~ g Ce(Ph) ‘z]

n = . n
x [r + Vs - —B-; 8, (54,) En]

h’ - . =
x [[ + hw“csg - Eﬁ § (oA,)nGC]wnﬂ - ™

an=1
R G S e (U Pt
8

~n-1
+ L "y B ™+ Vs
én én E n

2|z (50V e
+UT " - 0T + g;[ée(?') + 3,60

+3 ;(aﬁ)“ - a.,,] (23)
This equation has the form
LELnLC(On“ - 4" =R (24)

and it is implemented as algorithm as

X »
LEAQ R
LY\AO** = A
(25)

L;A°n+1 . Aghk

.°n+l - ol\ + ,Nn

The algorithm Eq. (25) requires only a series
of scalar, tridiagonal inversions and it is there-
fore very efficiently solved. Computer storage for
three levels of ¢ and one level of p are
required.

Steady State Algorithm

A fast, steady state ADI relaxation algorithm
is resdily obtained from Eq. (23) by turning off the
unsteady terms on the right-hand side and the

aspace-time derivative terms on the left-hand side
with a simple flag giving

[ - B3, (3A) 3 X - B3, (3A,)78 1(1 - b8 (5A,)™3 )

~aafl
x (- ¢ . h[ge(%ﬂ) + Kn(év)n + BC(Bﬁ,)“ - R..]
(26)

This is satisfactory for subcritical and slightly
critical cases, but additional temporal damping will
be required for cases involving large regions of
supersonic flow. For these cases, the space-time
derivatives on the left-hand side of Eq. (23) may be
turned back on with proper upwind bias to provide
the necessary temporal damping and yleld steady
state performance that approaches the AF2 scheme.

Boundary Condition Implementation

The body-surface flow tangency condition is
imposed by using Eq. (8) to derive a space-time
extrapolation procedure for updating the solution on
the body. A second-order accurate, finite-
difference approximation to Eq. (8) can be derived
by replacing the £ and n spatial derivative terms
with central difference operators and the ¢ deriv-
ative with a three-point one-sided difference
expression. The resulting equation is written in
delta form and approximately factored to yield

2 D 2N et
(I 3, 65) (‘ 3A3)6n 49,

1 . n+ n+1 2 ; n+i

~g 6 -4 ) +3—A; [, + (A6 + Ag8 )4, )
27
where A¢?+l - 02:: - ¢2t;. At the trailing edge,

two-point one-sided difference operators are used
for 6g. Similarly, at the symmetry plane a one-
sided operator is used for §,. After the interior
flow field has been updated, Eq. (27) is then solved
to update the solution on the body.

The governing equation is solved on the sym-
metry plane for wing cases using the warped, cylin-
drical coordinate system shown in Fig. 1. Along
this boundary flow tangency is imposed by setting
the fluxes on each side of the wall (k = 1) to be
equal and opposite, viz

(%! k=1/2 ) -(%!)k-alz

For this grid topology, the solution for the veloc-
ity on the wing extension (il.e., the flat~plate sec-
tion beyond the wing tip) is determined by averaging
the solution from known updated values one surface
avay (£ = 2). In particular, the potential is set
to be the free-stream value on the flat-plate sec-
tion (i.e., ¢,(x,0,2z)) plus the average of the per-
turbations from free-stream values at the points
immediately above and below. The density is also
extrapolated and averaged on the wing extension.

The new values of the circulation T in the
wake are obtained by solving Eq. (9) after the
velocity potential has been updated in the flow
field and on the body surface. Equation (9) is

T T T e T
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solved using a finite-difference approximation where
3y and 3; are replaced by the central and backward

difference operators, &, and Og, respectivetly. The

equation is written in delta form as

@ + ac)® 4+ At(v)ndn)Al'n

= oW+ DT + aeenary (28)

Equation (28) 1is used to update I to the new time
level. The trailing-edge value of ' 1is obtained
by setting it equal to the new value of the jump in
potential there. The solution to Eq. (28) is then
computed by marching in the ([ direction, thus
solving tridiagonals in the n direction at each

{ = constant line.

For nonlifting flows, the outer boundary
remaing fixed at free-stream conditioms. For steady
11fting flows, the values of the potential are
updated using the compressible vortex solution

¢ mMx+g-8 29

In the preliminary calculations obteined, the outer
boundary values for the potential in the unsteady
case remain unchanged from their steady-state
values. Care is taken to place the boundary suffi-
ciently far away to prevent reflected waves from
contaminating the solution at the body.

Density Update

After the velocity potential has been updated
in the entire flow field using Eq. (25) and on the
boundaries and wake using Eqs. (27), (28), and (29),
the density is updated. The density is computed
from the Bernoulli relation, Eq. (9), where the
spatial derivatives.are replaced with the difference
expressions of Eq. (19) and the time derivative with
a two-point backward difference operator. At the
body surface, an expression for the ¢ derivative
is determined by solving Eq. (9) for ¢., 1i.e.,

: g ¥ Aty

1
¢, = - x: (Ct + Agd
and 18 also used in the computation of the contra-~
variant velocities on the body. At the wall boundary
(y = 0), a two-point, one-sided difference expression
was used for the n derivative. All exponential
functions were eliminated by using binomial
expansions.

Grid Generation

A number of grid-generation programs have been
used in the present investigation because of the
wide range of geometries considered. The O-type
grids used for the airfoil calculationa were
obtained using the grid-generation program GRAPE
(grids about sirfoils using Poisson's equation).?’
This grid-generation scheme numerically generates
solutions to Poisson’s equation to establish regular
and smooth finite-difference meshes around arbitrary
two-dimensional bodies. The inhomogeneous terms are
automatically chosen to control the mesh point spac-
ing adjacent to the boundaries and the angles with
wvhich mesh lines intersect the boundaries. The
equations are transforwed to and solved in the

computatioasl domsin using successive overrelaxation
(SLOR) .

The grid generation program used for wing cases
that use the wvarped cylindrical coordinates was
presented in Ref, 17. The finite-difference mesh
is generated by employing a standard two-dimensional
grid-generation scheme similar to GRAPE. MNumerical
solutions to the elliptic, partial differential
grid-generation equations are obtained in each
spanwise plane used as a defining station for the
wing. The equations are transformed to and solved
in the computational domain using a fast
spproximate~-factorization algorithm. This estab-
lishes values for x and z in each spanwise plane.
The coordinate values in the spanwiee direction
(y values) are computed from a stretching formula
that in {ts simplest form gives equal spacing over
the wing with relatively rapid stretching beyond
the tip. For the wing extension, a flat-plate
section is used.

For the three-dimensional flows using warped
spherical coordinates, a hyperbolic grid-generation
procedure was used (Steger, J. L., Jespersem, D.,
and Strigberger, J., private communication). This
procedure is a three-dimensional extension of the
scheme devised by Steger and Chaussee’! in which a
system of hyperbolic equations is solved using an
wupifcit, marching finite-difference scheme., Two
of the equations are derived from orthogonality
conditions and the third relation i< a specifica-
tion of the mesh cell volume. Since this is a
noniterative algorithm, very fast grid generation
is obtained.

1V. Results

The algorithm Eq. .25) has been coded into a
computer program named TUNA (transonic unsteady
aerodynamics). The three-dimensional computer code
functions as a two-dimensional code by simply
gsetting a flag. Consequently, steady-state calcu-
lations in two dimensions were first performed to
verify the accuracy of the steady and unsteady
algorithms. The solutions obtained with the present
method, for several standard test cases, have been
compared with the 2D steady, transonic computer
code TAIR (transonic airfoil an‘nlysis)“'2 which
solves the steady full-potential equation using the
approximate factorization scheme AF2.

A comparison of solutions for a subcritical
nonlifting test case is shown in Fig. 2. The pres-
sure distribution on the upper surface of an NACA
0012 airfoil at M, = 0.72 and a = 0° shows
excellent agreement between the two codes. Both
codes used 10031 O-mesh type grids with TAIR being
internally generated. The grid used in the present
method was generated using GRAPE (Fig. 3). This
steady-state computation was performed using the
steady and unsteady algorithms. An optimum set of
acceleration parameters was found for the steady
algorithm and an optimum time step for the unsteady
algorithm. The residual histories for these compu-
tations are shown in Fig. 4. The new steady scheme
displays rapid steady-state convergence and ie at
least an order of magnitude faster than the unsteady
echeme. The present method dropped the meximum
residual four orders of magnitude in 43 {terations
compared to 74 for TAIR. Past experience has shown
that the AD] convergence rate ia about twice as
fast as AF2 for subcritical flows.
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The subcritical lifting results (Fig. 5) for a
NACA 0012 airfoil at M, = 0.63 and o = 2° {ndi-
cate that the circulation model is suitable. The
same grids described in the previous case are again
used here. There is a slight discrepancy between
the two codes in the amount of leading-edge suction.
This 1is most likely a result of differences in the
grid, in particular, the amount of grid-point clus~
tering around the leading edge. The lift coeffi-
cients for TUNA and TAIR were 0.338 and 0.334,
respectively.

As a fiial two-dimensional steady-test case,
supercritical lifting-flow solutions are compared
in Fig. 6 for a NACA 0012 at M, = 0.75 and a=2°.
A finer grid with dimensions of 151x31 was used for
the TAIR computation. The two solutions are in
good agreement and the shock profile for the present
method is quite sharp despite the coarser grid. The
1ift coefficlents for TUNA and TAIR for these two
computations were 0.5963 and 0.5881, respectively.
The TAIR solution for each of the airfoil cases does
not compute a stagnation point at the trailing edge,
as in the present method, because the density is
extrapolated to avoid potential problems from the
grid singularity. The present method does not
extrapolate the density for these computations but
it has been found that in some fine-grid cases this
causes oscillations and overshoots near the trailing
edge.

It is worth noting that for supercritical cases,
the AF2 algorithm has been shown to provide faster
convergence rates than ADI.? But as previously
discussed, the judicious addition of certain tem-
poral damping terms may provide convergence rates
for AD[ that approach AF2. These modifications, as
yet, have not been tested. Convergence-rate com-
parisons for supercritical flows with large regions
of supersonic flow and strong shock waves have
indicated that AF2 converges 2 to 3 times faster
than the present ADI scheme.

Unsteady flow results are shown in Fig. 7 for
an NACA 64A010 airfoil sinusoidally oscillating in
plunge +1 about a = 0°. The reduced frequency,

k = we/U,, is8 0.4 and M, = 0.80. The lift coeffi-
cient is plotted vs time during the fourth cycle of
oscillation. Also shown are computed results from
an Euler equation solution.® The magnitudes of

the 1lift are in excellent agreement, with only about
a 1% discrepancy. 1In addition, the computed phases
are in good agreement. The Euler solution displays
a phase lag of approximately 35° in comparison to
38° as predicted by TUNA. Also shown are pressure
coefficient distributions at three times correspond-
ing to zero lift and the maximum (positive and
negative) values of the li{ft.

Three~dimensional, steady-state computations
wvere performed for a rectangular wing of aspect
ratio 6 with an NACA 0012 airfoil section and com-
pared with the 3D transonic computer code TWING
(transonic wing analysis) that solves the steady,
full-potential equation using the AF2 scheme. The
identical warped cylindrical grid system sketched
in Fig. 1 vas used for the computations of the com-
puter codes TUNA and TWING. The dimensions were
100%10x30 with 5 span stations on the wing, which
is a reasonably coarse grid in the span direction.

A comparison of solutions for a subcritical
lifting case with M_ = 0,63 and the wing at
a=2° is shown in Fig. 8. The pressure distribution

70

on the wing for all five span stations shows excel-
lent agreement batween the two codes. The lift
coefficients at the wall station for TUNA and TWING
were 0.250 and 0.253, respectively, which represents
about a 25% reduction from the two-dimensional
results previously obtained. TUNA and TWING con-
verged the maximum residual two orders of magnitude

for this case in 85 and 100 iterations, respectively.

The results for a supercritical lifting solu-
tion with M, = 0.75 and the wing at a = 2° are
compared in Fig. 9. The two solutions are in res-
sonably good agreement. At each span station, there
is a slightly larger expansion computed by TUNA from
the leading-edge region of the airfoil section to
the shock position, which is located about 2.5%
farther upstream than that computed by TWING. This
discrepancy may be due to the different ways in
which each code determines the solution on the wing
extension. As mentioned before, TUNA extrapolates
and averages the solution there while TWING solves
the full-potential equation on this section. The
shock profiles computed by TWING appear to be
sharper and the reexpansion singularity is not
captured by TUNA,

The two-dimensional grids employed here are
O-type grids. Even though these grids require
special attention at the trailing edge, a result of
the mapping singularity, they are preferred over
C- and H-type meshes because they are more grid-
point efficient, especially in the far-field. Simi-
larly, warped spherical grids offer the same advan-
tage in grid-point efficiency in three dimensions
over current wing-type grids that are typically
constructed in a manner similar to warped cylindri-
cal grids used for the previous three-dimensional
calculations. The use of spherical grids requires
special treatment to handle the mapping singularity
on the axes. This capability has been incorporated
in the present method.

To demonstrate the ability to employ spherical
grids, the three-dimensional incompressible flow
over a sphere is presented as a simple check case.
A comparison between the exact incompressible flow
solution and the present method with M, = 0.01 is
shown in Fig, 10, A 40x21x22 radially stretched
spherical grid was used. The solution shown is the
pressure distribution on the upper surface of the
sphere from leading to trailing edge in the plane of
symmetry perpendicular to the axes. The agreement
is correct to plottable accuracy. The maximum
residual converged six orders of magnitude in
30 fterations for this case,.

A more complicated geometry using a spherical
grid topology is an ellipsoid type wing with a chord
of 1, aspect ratio of 4, and thickness of 1/4.

Here, as with the sphere, the axes of the spherical
grid are aligned with the y axis and the flow is
in the x-direction. The surface grid-point distri-
bution and other partial views of the grid are showm
in Fig. 1l. ‘ihe pressure coefficient on the upper
surface in the y = 0 plane is shown in Fig. 12 for
M, = 0.77. A relatively strong shock can be seen at
about 85X chord. The shock profile is not particu-
larly sharp but the grid is fairly coarse with only
60 points around the body in the §{ direction. The
residual converged 3 orders of magnitude in

100 iterations for this case.

The current version of TUNA has been programmed
and run on the CRAY 1S. The program requires
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approximately 0.0001 sec of CPU time per grid point
per iteration. The code is presently in an ineffi-
cient state and no effort has been made to take
advantage of the vector capabilities of the CRAY.

V. Concluding Remsrks

An implicit, approximate-factorization, fin’te-
difference algorithm has been developed for solving
the conservative full-potential equation for com-
puting steady and unsteady transonic flows in two-
and three-dimensions. A general coordinate trans-
formation was employed for the simple and accurate
treatment of arbitrary body surfaces. This algo-
rithm has been programmed into a computer code
named TUNA. Results have been presented for several
two- and three-dimensional steady and two-
dimensional unsteady flows to verify the accure:y
of the algorithm.

Acknowledgments

The effort of Prof. Steger was supported under
Air Force Flight Dynamics Contract F33615~-81-K-~3020.

References

'farmer, M. ¢. and Hanson, P. W., “Comparison
of Supercritical and Conventional Wing Flutter
Characteristics,"” Proceedings of the ALAA/ASME/SAE
17th Structures, Structural Dynamics, and Materials
Conference, King of Prussia, Pa., April 1976, .
pp. 608-611.

Zpshley, H., "On the Role of Shocks in the
'Sub-Transonic' Flutter Phenomena," Journal of
Adrcraft, Vel 17, March 1980, pp. 187-197.

3Ballhaus, W. F., and Steger, J. L., "Implicit
Approximate-Facturization Schemes for the Low-
Frequency Transonfc BEquation,' NASA T™ X-73,082,
Nov. 1975.

“Ballhaus, W. F., and Goorjtam, P. M.,
“Implicit Finite Difference Computations of Unsteady
Transonic Flows about Airfoils,” AILAA Journal,

Vol. 15, Dec. 1977, pp. 1728-1735.

SHouwink, R., and van der Vooren, J., "Improved
Version of LTRAN2 for Unsteady Transonic Flow Com-
putations,' AIAA Journal, Vol. 18, Aug. 1980,
pp. 1008-1010.

*Hessenius, K. A., and Goorjian, P. M., "A
Validation of LTRAN2 with High Frequency Extensions
by Comparison with Experimental Measurements nf
Unsteady Transonic Flowa,' NASA TM-81307, July 1981.

"Chow, L. J., and Goorjtan, P. M., "Implicit
Unsteady Transonic Airfoil Calculations at Super-
sonic Freestreams,” AIAA Paper 82-0934, presented at
the AIAA/ASME Joint Thermophysics, Fluids, Plasma
and Heat Transfer Conference, St. louis, Missouri,
June 7-11, 1982,

*Rizzetta, D., "Procedures for the Computacion
of Unsteady Trans-nic Flows Tacluding Viscous
Effacts," MASA CR-166249, Jan. 1982.

"Borland, C., Rizzetts, D., and Yoshihars, H.,
"Numerical Solution of Three-Dimensional Unsteady
Transonic Flow Over Swept Wings,' AIAA Paper 80-1369,
July 1980.

198orland, C. J., and Rizeetta, D. P., “Non-
1inear Transonic Flutter Analysis,” AIAA
Paper 81-0608-CP, presented at the AIAA Dynamic
Specialist Conference, Atlanta, Ga., April 9-10,
1981.

11Gurusvemy, P., and Goorjian, P. M., "Compari-
sons Between Computations and Experimental Data in
Unsteady Three-Dimensional Transonic Aerodynamics,
Including Aeroelastic Applications,” AIAA
Paper 82-0690-CP, presented at the ATIAA/ASME/ASCE/
AHS 23rd Structures, Structural Dynamics, and
Materials Conference, May 10-12, 1982.

12Goorjian, P. M., "Implicit Computations of
Unateady Transonic Flow Governed by the Full Poten-
tial Equation in Conservation Form," AIAA
Paper 80-0150, Jan. 1980.

i3greger, J. L., and Caradonna, F. X., "A Con-
servative Implicit Finite Difference Algorithm for
the Unsteady Transonic Potential Equationm,' AIAA
Paper 80-1368, July 1980.

1%Chipman, R., and Jameson, A., "Alternating-
Direction Implicit Algorithm for Unsteady Potential
Flow," AIAA Journal, Vol. 20, Jan. 1982, pp. 18-24.

'%Sankar, N. L., and Tassa, Y., "An Algorithm
for Unsteady Transonic Potential Flow Past Air-
foils," paper presented at the Seventh International
Conference on Numerical Methods {n Fluid Dynamics,
June 1980.

15Sankar. N. IL.., Maloue, J. B., and Tassa, Y.,
"An Implicit Conservative Algorithm for Steady and
Unsteady Three-Dimensional Transonic Potential
Flows," AIAA Paper 81-1016, June 1981.

'"Holst, T. L., and Thomas, S. D., "Numerical
Solution of Transonic Wing Flow Filelds,'" AIAA
Paper B82-0105, paper presented at the AiAA 20th
Aerospace Sclences Meeting, Orlando, Florida,

Jan. 11-14, 1982.

'®Sceger, J. L., “"Implicit Finite Difference
Solution of Flow About Arbitrary Two-Dimensional
Geometries,” AIAA Journal, Vol. 16, 1978.

1%pylltam, T. H., and Steger, J. L., "On
Implicit Finite Difference Simulations of Three-
Dimensional Flow," AIAA Paper 78-10, Jan. 1978,

’°Sorenson, R. L., "A Computer Program to
Generate Two-Dimensional Grids About Airfolls and
Other Shapes by Use of the Poisson's Equation,”
NASA ™-81198, May 1981.

ilgceger, J. L., and Chaussee, D. S., "Genera-
tion of Body Fitted Ccordinates Using Hyperbolic
Partial Differential Pquaticns,"” SIAM Journal Sci.
Stat. Comput., Vol. }, No. &, Dec. 1980,
pp. 431-437,

27Ho1st, T. L., "An Implicit Algorithm for the
Conservative, Transonic Full Potential Equation
Using an Arbitrary Mesh,” AIAA Journal, Vol. 17,
Oct. 1979, pp. 1038-1045.

71

T PTG gt NP 00 - S RGN Yl et o B

PR

Y )

(P W A g

o




*'pougherty, ¥. C., Holst, T. L., Gundy, K. L.,

and Thomas, S. D., "TAIR ~ a Transonic Airfoil
Anslysis Computer Code," NASA TM-81296, May 1981.

SYMMETRY
PLANE
BOUNDARY

Fig. 1 Schematic of cylindrical grid system used .
for wing calculations employing a plane of symmetry.
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Fig. 3 O-mesh type finite difference grid for an
NACA 0012 airfoil numerically generated using GRAPE
code (100x31 grid points).
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Fig. 4 Residual history comparison between the time
accurate algoritha and ADI relaxation option:
NACA 0012 airfoil, M, = 0.72, a = 0°.
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Fig. 7 Time variation of the lift coefficient and various pressure coefficient distributions for an
NACA 64A010 airfoil sinusoidally oscillating in plunge, M_ = 0.80, k = 0.40, ap = 1° sin(kMxt).
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A ZONAL APPROACH FOR THE STEADY TRANSONIC
SIMULATION OF INVISCID ROTATIONAL FLOW

Neal M. Chaderjian' and Joseph L. Steger?
Slanford Universily, Stanford, California

Abstract

A fuite difference tonal method is developed to
compute steady inviscid transonic low by coupling a
semi-fBux split form of the Euler equations in a vor-
ticity producing zone with a zone of scalar and vec-
tor (i.e., dual) potential equations. The dual potential
equations permit vorticity convection, but not produc-
tion, and are efficiently solved as an iteratively decou-
pled set of scalar equations. Zonal results presented for
s nonliftiag bicoavex airfoil on a stretched Cartesian
grid show substaatial savings in CPU time compared
to solving the semi-fux split Euler equations alone.
The dual potential equatioas also provide an alternate
way of treating potential fows with circulation. This
has been demonstrated by computing a subcritical flow
over a lifting airfoil using generalized curvilinear coor-
dinates.

L. Introduction

The development of efficient numerical solution
techaiques for simulating rotational compressible flow
has always been subject to two competing philosophies.
In oune approach the Navier-Stokes or Euler equations
are programmed throughout the entire domain. The
overall computer code is quite general in its applicability
and the programming is straight forward in the sense
that only one equation set is coded. In the other ap-
proach the flow fleld is partitioned into zones which use
the simplest and most efficiently solved equations pos-
sible. For example the Navier-Stokes equations may
be used in one zone, the nonlinear potential equations
in another, and perhaps linear theory in the remain-
ing field. This zonal approach has the potential for
saving substantial amounts of the computer resource.
However, 2 z0nal code is significantly more complex
to program because several computer codes must es-
sentially be written (one for each governing equation
set) and each zone must be interfaced. Moreover, con-
siderable care must be taken in interfacing zones be-
cause poor interfacing can result in computational in-
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efMeiency thus offsecting the advaatages of a zonal ap-
proach.

Whether the use of 2 zonal method will ultimatcely
prove better than just using a siagie general equatcion
set Is a question that will likely remain moot, but
several developments have occurred which In our view
make the zonal approach more attractive than pre-
viously. The first development Is that finite difference
Inviscid and viscous boundary layer interaction aigo-
rithms are becoming avalladle for solving separated
viscous flow and these schemes appear to be much
faster than Navier-Stokes algorithms. The second de-
velopment Is the appearance of efliclent methods for in-
cluding rotatlonality eflects into essentlally potential-
like governing equation sets. It Is this second deveiop-
ment which Is of Interest to us In this paper.

A zonal algorithm becomes more advantageous
If potential-like equations can be generalized to simu-
late rotational, nonisentropic flow without loss of com-
putational efficiency. This Is because more of the flow
fleld can be treated with the more efficient generalized
potential code and fewer zones and thus fewer interface
boundaries have to be Introduced.

In this paper we study a two Zone method for
solving Inviseld transonic flow withoyt requiring the
flow to be Irrotational. Shock waves are captured In
the first zone using a semi-flux split implicic Anite
difference method to solve the Euler equations in strong-
coaservation-law form. In this algorithm flux splitting
Is used In the directlon alonug the body, and central
differencing Is used In the direction away from the
body. Becsause of thls diflerencing structure, this al-
gorithm Is readily extended to Incorporate thin layer
viscous terms although we do not exercise thls op-
tion here. A dual potentlal formulation Is solved iIn
3 zone away from the shock and Is able to correctly
convect but not generate vortlcity. This second zone
slightly overlaps the shock zone and extends over the
reralinder of the flow fleid. The dual potential scheme,
which Is similar to a formulation due to Hafez and
Lovell!, decomposes a velocity fleld Into gradients of
scalar potential and vector potential. The vector poten-
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tial function accounts for vorticity, and as a conse-
quence. does not require a circulation cut for g jifting
alrfoll as does a scalar potential formulation. The cru-
clal advantage of the dual potential formulation over
a8 primitive variable formulation for the Euler equa-
tions Is that the resuiting dual potential equations are
weakly coupled. They can thus be treated In scalar
mode and can take advantage of all of the numerical
eMclencies developed for the transonic potentlal equa-
tion.

In the following sections we discuss the govern-
ing equation sets and zonal coupling concepts. A set of
boundary conditions sre developed which permit vor-
ticity convection, and a new way of treating circula-
tlon by taking advantage of the stream function-like
properties of the dual potentlal equations are presented.
Finally, the numerical algorithms are developed fol-
lowed dby a dlscussion of results and conciuding remarks.

1. Zonsl Formulation

Governing Equations

The flow fleld has been zoned between two equa-
tion sets. In regions of expected vorticity generation,
here shock waves, the Euler equations are solved in:
strong-conservation-law form. I[n transformed coor-
dinates these equations are given by

where

F = (&F + £,G)/7
C= (naF + ','G)/J
J = fny - Eyna

and

ou v
2
pud 4+ p puv
Fo puv | G= v+ p

e + p) v(e + p)

In the above equations p Is the density, u and v the
Cartesian velocities in the z and y-directions, p =
{y=1)e~ }pq’] is the pressure and e the total energy
per unit volume. The fluid speed 1s q. The Cartesian
fux vectors F and G correspond to the r and y-
directions. and J Is the determinant of the transfor-
mation Jacobian.

‘The varisbles have been nondimensionalized by
the free stream density and velocity ss

?=p/peo
= y/uy
UE KT N
P = p/(poo¥d,)
= ¢/(Pootin,)

where the ~ has been suppressed for convenience.

la the present test program we use smal) distur-
bance thin airfoll boundary conditions 8o only simple
stretching transforms are needed to cluster grid points.
The stretchings are of the form

§=§z)
n = n(y) (€J]

Consequently,
E, =0 , =0

and Eq. (1) 1s very much like its Carteslan counterpart.

In the remalning part of the flow field s restricted
form of the steady Euler equations are used. In non-
dimensional variables these are given by

continuity
Os(pu) + av(p") = 0 {3)
Crocco (vorticity) equation

v =08,y = ~(IM3Y 1 (vd;38 ~ udye) (4)
constant entropy along a streamiine

UG8+ ¥0ys m 0 (5)

Bernoulll equation
7-1 wH
p=[n+—2—-ug°(x—u’-u’)] e’ (8)

The nondimensionalized variables are consistent with
those used for the conservation-law-form equations
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with nondimensional eatropy 3 == (s — 25,)/R. Once
again the ~ has been suppressed with R the perfect
gas constant, v the ratio of specific beats, and Af the
Mack pumber.

ln regions of entropy production, for example
scross a shock wave or in viscous layers, Eq. (5) is
invalid. The simplified equations as given also assume
vniform stagnation enthalpy, although it is refatively
easy Lo incorporate this effect into the equations and
to solve as well the equation

Ila,h“ + v&,h,. =0 (7)

In order to take advantage of efficient poten-
tial flow solvers, a dual potential representation of
velocity is introduced into the simplified equation set.
Specifically, the velocity components are decomposed
into scalar potential and vector potential functions which
for two dimensions are given by

u=83¢*8u¢'=¢3+¢’v
v 0,0~ 0% = ¢y~ V2 (8)

where ¢ is the third vector potential component. Intro-
ducing the dual potential velocity relations into Eqs.
(3) and (4) we obtain'

continuity

a:(ﬂ(¢a + *y)l + au(ﬂ(¢v - *z)] =0 9)

Crocco or vorticity

Oz + Puy = (IM?)7 (v8; = usy) = —Q (10)
And finally, with transformation into general coor-

dinates

8¢(pa)0¢ + pa2éy ) + Op(pasde + pasdy)

= (p¥e)y ~ (PPn)e (11)
where
4 2 2 2
a) = (.;E. g €,n,j€.n, oy - n; +ny

and

6((01 Ye+ agVJ.) + a.(az¢( + as¥y,)
= (YMPI) vl €ase + nedy) = u(€yse + 1yoy )}

(12)

where

g ode 03y + e+ Np¥y
v £, de + Nydy ~ Esthe — Na¥y

For the current zopal algorithm applications we
will again restrict the transforms to the simple stretch-
ings £ = £(z) and n = n(y). However, the fully trans-
formed dual potential equations alone will be used to
solve a subcritical lifting airfoil flow in order to il-
lustrate their applicability to flows with circulation
without the need to impose special cuts in the field.

. Zone Partitioning

As sketched in Fig. 1a and 1D, the conservation-
law-form equations of mass, momentum, and energy
are to be solved in shock regions where vorticity is
generated. ldeally this conservation-law zone would
be kept as small as possible as shown in Fig. 1a. This.
however, will require shock wave tracking logic and
consequently we are currently defining a much more
generous stationary zone for Eq. (1) as sketched in
Fig. 1b. In the remaining flow field the simplified
governing equations are solved in terms of the dual
potential variables. For uniform incoming flow entropy
correction terms are only needed behind the shock
wave,

Boundary Condltions

The inviscid—conservation-law equations have been
restricted to a zone about the expected shock wave
which overlaps a larger zone governed by the dual
potential equations (see Fig. 1b). Except along the
body surface, all boundary conditions for the conserva-
tion-law zone can be supplied from the overlapping
dual potential zone. Along the body surface we impose
the tangency condition

U] u(z-!-) (13)
z alrfoil

and use linear extrapolation to supply the three remain-
ing variables. A thin airfoil approximation is used by

|

T

ey




imposing these boundary conditions at y == O rather
than on the body surface. This boundary treatment
permits verification of the method without unduely
complicating the computer code. This will also lead to
some solution discrepancies when results are compared
to more exact theories,

The dual potential equations resolve the flow in
the remaining domain. Representing the velocity by
derivatives of scalar functions allows some freedom in
the choice of boundary conditions. We will therefore
describe the dual potential boundary conditioas for
our specific applicatioa which is the transonic ow over
a symmetric airfoil at zero angle attack (see Fig. 2).

In prescribing a set of boundary conditioas for
the potential functions, we adopt the point of view that
¥ is 3 perturbation on ¢ in the sense that ¢ represents
an irrotational flow and ¢ will only be non-zero if there
is vorticity or lift. For uniform incoming flow about
a symmetric thin airfoil an appropriate set of far field
bouadary conditions for ¢ are given by

$pm=z (14)

The tangency condition is imposed at y == 0 by
dy
¢u =ty + (¢: + \"y)(d";) (15)
airfoil

Aun appropriate upstream far field boundary condition
for v is given by

Y=0 (16)

The yY-function behaves much like a stream function
which motivates the boundary condition on the lower
boundary (y == 0)

Y=0 (17)

If this were a lifting airfoil problem then ¢ would be
chosen as some non-zero constant on the airfoil surface
in order to satisfy a Kutta condition (see Section [Il).
A shock induced rotational Bow cao give rise to a
velocity defect in u at the right boundary so that y,
must be free to vary. A suitable downstream far field
boundary condition to ensure that v = 0 for ¢ = z is
given by

V=0 (18)

On the top boundary we set u = 1, and because ¢ =
z, we impose

e ———

Note that the y-function is zero at the upper left
corner, but can be non-zero at the upper right corner
provided there is vorticity in the airfoil wake. This
problem is resolved by s limiting process on the upper
boundary where

"‘:“/a Vydz == constant (20)
-0

and
lim Py
y=—00 *8 - o (- 1 )

As the upper boundary is extended farther away from
the airfoil in both the z and y~directions, the y-function
variation will be small yet permit a change from zero
at the upper left boundary to the appropriate value
on the upper right boundary. This process has been
numerically verified by observing that the top bound-
ary velocities approach the uniform condition.

Equation (5) is a convective entropy equation that
can be marched in the z-direction. Initial entropy
data behind the shock is obtained from the Euler equa-
tions. The eptropy is constant on the airfoil and sym-
metry streamline in the wake region.
Zone Interfacing

The two different sets of governing equations are
interfaced at their zone boundaries. In Fig. 3, for ex-
ample, boundary values can be applied to the conserva-
tion equations (1) along the curve ef gh by differentiating
¢ and ¢. Along the inner boundary curve abcd 2ne can
specify &, u, and v from the solution of Eq. (1) so that

Oz + ¥y ™ Ugpecified
6y — Yy = Vepecified (22

supply derivative boundary conditions for ¢ and v'. By
overlapping the boundaries as illustrated, information
can be efficiently transferred from one domain to the
other. In overlap regions both equation sets are being
solved and are differentially equivalent if tbe shock
wave is avoided.

We bave used another way to interface the two
zones together. From the vantage point of computa-
tional simplicity, it is desirable to interface the equa-
tions using as hittle special logic as possible. Except
across the shock wave, the dual potential equatioas are
everywhere equivalent to Eq. (1) for steady flow with
a uniform incoming stream. Even across the shock
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Eq. (9) is valid in the sense that it perserves the cor-
rect weak solution. Consequently we can solve Eq.
{9) throughout the entire domain without having to
define 3 hole with special boundary condition treat-
ment as discussed above. This simplifies the computer
code logic. especially since we avoid solving Eq. (22)
on the zonal boundary. Also, by avoiding the hole,
we solve the continuity prediction equation for ¢ more
implieitly. That is, we avoid iteratively lagged inner
boundary data which must be updated from the solu-
tion of the conservation-law form equations.

The Crocco equation which is used as a predic-
tion equation for ¥ does not admit a Rankine-Hugoniot
jump solution. Nevertheless, we have also used this
equation throughout the entire domain, including across
the shock so as to avoid integrating Eq. (22) at the
zone boundary and to improve implicitness. However,
we supply the right-hand-side vorticity function of Eq.
{10) in the zone abed directly from the solution of Eq.
(1). That is, we solve (shown in Cartesian form)

Yaz + ¥yy = (Uy = Va)opecisied (23a)
or
Va2 + Vyy = (TM?)" (ve; — U8y )apeciries  (236)

where s or derivatives of u and v are specified from the
conservation-law form equations. While this equation
is not strictly valid across the shock, we have used it
together with Eq. (10) so as to avoid coding an inner
hole boundary coundition (i.e., on abcd in Fig. 3) and
to improve implicitness.

The equation for convection of entropy, Eq. (5),
cannot be used across the shock. Consequently, in the
entropy production zone, here bounded by the curve
abeda of Fig. 3, we update entropy from the solution
of Eq. (1) using the thermodynamic relation

o= (1= 1) enla(r - VM= 200)/67]  (20)

Summarizing these concepts, we have opted for
the following interface scheme. For the vorticity produc-
tion zone enclosed by the curve efghe shown in Fig. 3,
Eq. (1) is solved. Values of p, pu, pv, and e are supplied
on the outer boundary of this zone from the solution
of the dual potential equations. The dual potential
equations, Eqs. (9) and (10), are solved over the entire
flow field domain. However, withia the vorticity zone
circumscribed by abeda, Eq. (23) is used in place of
Eq. (10). This equation substitution or modification

is readily accomplished with simple flags and only one
basic set of computer aigorithms are needed to solve
the dual potential equations over the entire domain.
In this same zone Eq. (24) replaces Eq. (5).

III. Circulation Treatment

1o 3 code based solely on a scalar potential it is
necessary to build cuts into the field in order to treat
flow with circulation. Across these cuts the scalar (i.e.,
velocity) potential is discontinuous and the difference
equations must be specially coded to account for this
jump. Because the dual potential equations allow vos-
ticity to convect through the flow Beld, it is po longer
pecessary to build such circulation cuts into the field.
This simplicity partially compensates for having to
solve Eq. (10).

In order to treat lifting airfoils with the dual
potential equations we adjust ¥ on the airfoil so as to
satisfy the Kutta condition. In essence we handle the
vector potential component ¥ much as if it were the
stream function. When solving a flow with a stream
function formulation, the value of the stream function
on the body is a constant which is determined by the

. Kutta condition. Here we implement the Kutta con-

dition by requiring that the magnitude of the trailing
edge velocities match on the upper and lower surfaces
(see Fig. 4). That is

Qupper = Qlower (25)

or

Ny — N2V - _('lv“"’h” (26)
\ ﬂ§ + ﬂi upper V "3 + "?' lower

For isentropic flows this is equivalent to pypper ™= Prower-

The Cartesian velocity componeats u and v can be
eliminated in terms of ¢ and ¥ as given by Eq. (12).
Making use of the boundary condition that ¢ is con-
stant on the body (¢ == 0), Eq. (26) becomes

lower

[\/ A (de + as%)] - ‘[\/ L (¢e + ﬂs*-)]
as as
(27)

This relation can be differenced to provide the value
of ¥ on the body that satisfies the Kutta condition.
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IV. Numerical Algorithms

Implicit, approximately factored (AF) finite differ-
ence schemes are used to solve the governing equations.
A semi-flux split algorithm Is used for Eq. (1), and al-
ternating direction methods sre used with Eqs. (11)
and (12).
Semi-Flux Split Algorithm

The semi-flux spiit Euler equations in strong con-
servatlion~law-form, Eq. (1), are solved In delta form
using the implicit approximately factored Nnite difference
scheme

(I + hVe(€2AY) + héy(n,B)} X
(I + hae(€,47)|aQ" = —hR* (28)

where

R = (836 I FH) + L& T F7) + 6y(ny I G
+ 7Y (V,4,72Q

AQ = (Q/)* —(Q/I)"
and F% are flux spilt vectors as derived by Steger al;d
Warming® while A% are the Jacoblan matricles 93%—
The vector of primitive variables is

)
pu
Q= v
e

The parameter A Is a constant pseudo-time step
chosen Lo accelerate the convergence rate, All mevric
quantities are computed with second-order accurate
difference formulas using one sided differences at the
flow boundaries and central differencing Interior to the
fiow boundaries. The difference operators in Eq. (28)
are defined by

Ve ()=~

A¢ = (Jj41 =)

! - =30); + 40)j41 — Vjaz
¢ 2

5 - )y~ 0oy + -2

¢ 2
- Oear = Or—1
by AL DAL

where Af = An == 1. For simplicity, frst-order
accurate one sided derivative operators are used In
the implicit part and second-order accurate one sided
differences are used In the residual. The converged
sofution will be second-order accurate and uncondl-
tlonal linear stabllity is still retalned. The flux split-
ting in the £-direction is inherently dissipative; however,
fourth order dissipation Is added in the n-direction
with e~O(h).

The Nrst factor of Eq. (28) Is solved by sweeping
forward In £ and inverting block tridiagonal systems of
equations iIn the p-direction. The second factor forms
a0 upper bldlagonal matrix which Is solved by a simpie
back sweep. In supersonic reglons the second factor
disappears (F~ = 0) so the AF scheme reduces to a
single direct Inversion of the time-linearized equations.
In our application the flow In the vortlcity produc-
tlon zone Is mostly supersonic; consequently, the AF
scheme Is very efficlent in that zone.

Dual Potential Algorithms

The dual potential equations are weakly coupled
in the sense that one can effectively soive Eq. (12) for
¢ as a function of lower derivative terms that are fixed
at a previous {teration level. Once ¢ Is predicted. Eq.
(11) serves as a prediction equatlion for ¢. At this point
entropy ¢an be obtained from Eq. (5) and density is
updated from the Bernoulll equation.

Implicit approximately factored finite difference
algorithms are used to solve the dual pntential equa-
tions. We first describe the numerical algorithm for
Eq. (11) which Is very simllar to what s used for
the transonic full potential equations. Our implemen-
tation follows that of Steger and Caradonna'. The
AF scheme Is second—order accurate in subsonic flow
reglons and Is first or second-order accurate In super-
sonlc flow regions. Upwinding In the supersonic reglon
Is accomplished by using Holist's upwind shifted den-
sity scheme?®,

The AF scheme for Eq. (11) Is given In delta
form as

(= AV (p"n3 07 Jagr/284] X

1+ 8¢~ h9 AT ' Yyp1j28¢/a06" = hush,,

(29)
where

DRes = V¢(32:7-‘ )j+I/QA¢¢ + vq(ﬂﬂz-’-l )§+|/2Aq¢
+ {Se(pdqw) — Eqlpbe )]
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The j, k-indices correspond to the §,n-directions and  Equation (29) is solved in the usual fashion by invert-

are suppressed except to indicate midpoint values. The  ing scalar tridiagonal systems of equations in first the

pseudo-time step A and the relaxation parameter w are 9 and then the {-directions.

chosen so as to accelerate the iterative convergence. A second-order accurate difference for the tan- i

The {-difference operators are defined by gency boundary condition, Eq. (15), is implemented |
using central diflerencing for z-derivatives and three :

point one sided diflerencing for the y-derivatives. A

. 5w (0s+1 = ()y=1 tridiagonal solution provides ¢ at the lower boundary |
¢ with the ¥ terms evaluated explicitly. 1
Ve = ()5 = =1 A similar algorithm for the vorticity equation is ]

Ag¢ = (Jj41 = ()5 used to update y.

2 p—1
where again for convenience A§ == 1. Similar expres- [ = bV y(ny I ™" Jns1/284] X

sions define the n-difference operators. Stability in su- (- hV:(E:Tl J+1/28¢]A%" = hu¥},, (30)
personic regions is maintained by shifting the density

upwind in the {-u.rection according to the formula

prr 49 where

thal ]

Praasa =(1- "J)(—r-)

Vree =Ve(Ee T Vis1/28e¥ + Valni ™ usr/2 809
= (AM2I) v€s 68 — unyby ]

f(1+0)p;+(1- ﬂ)p;_n]
Ujl )

with Here though the equation remains elliptic throughout.

vy - mazio, (M§ -1)C}, 1£C0L2 The Neumaan boundary conditions Eqs. (18) and (19)
. . . provide ¥ on the downstream and top boundaries using
At subsonic points, v; == 0 aad 74,5 is second-order ..p4_order accurate one sided differences.

accurate. The parameter § = 2 provides second-order . )

accuracy at supersonic points aad § == O gives first- c l-'.unlly..d Equsr) is s:lved folr entrop{.l Th.e stretched

order accuracy. In practice a value of ¢ == 1.8 is used ar tesian sncu ort ¢ zona "e,“ problem is closely s
aligned with the flow, so it is a simple matter to ob- ;

for flows with weak shocks and 4 is dropped to zero for tain ap update of & by marching the equation in the
t flows. te Ve(As" id
stronger shock flows. The term fV¢(4¢") provides §-direction. A finite difference scheme for marching i

some additional iterative damping and compensates > T .

somewhat for not properly linearizing the density term 10 & i8 Siven by
for inclusion on the left hand side of Eq. (29). The
metrics are computed by the following reiations in

order Lo capture uniform Bow Bt ( % ) PR (31)
'}
€y = (zj41 33 1)
2 1= where 5% is 8 three point backward difference in ¢ and
Ny, ™ m &y is a central difference in 1. At each £-station a
1 - scalar tridiagonal inversion in 5 is required.
Moeerse ™ 'i("nu +ny,) For lilting airfoils we must also satisfy the Kutta
1 condition by differencing Eq. (27) and solviag for ¥
Z.,., /. (m) on the body. The £-derivatives are central differenced

and the n—derivatives are lorward differenced. Solving

86
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for ¥ on the body

Vsedy = (47|(3a3)sm.1 ¥1m.2 + (da3)2.1 ¥2.2]
= (8 = Dl(sas)jmi¥sma + (s23)2,1 ¥2.s]
+ u®)/((28 = 1)l(aas)sm.1 + (a03)s,1])

(32)
where

6 m \/ i.’ w (ad¢)jm.,1 + (30¢)2
as

{l.

p=1q

The j.k-indices correspond to the O-grid topology in
Fig. 4. The Kutta coadition is evaluated explicitly at
the end of each iteration of Egs. (29) and (30).

— first order
— second order

V. Results and Discusaion

A poalifting biconvex airfoil was chosen as a test
problem to verify the zonal approach as ap alterpative
to the Euler equations for solving transonic rotational
Sow. The subcritical flow abour a NACA 0012 air-
foil at angle of attack was used to demonstrate the
capability of the dual potential equations to treat lift
without the use of circuiation cuts. All computations
were performed on a CDC 7600.

The biconvex airfoil problem was computed on
s stretched Cartesian grid with the small disturbance
boundry condition Eq. (15) imposed at the lower bound-
ary, y=0. Figure 5 shows the grid in the vicinity of the
sirfoil with the far field boundary 3 chord lengths away
to either side of the airfoil and 5 chord lengths away in
the y-direction. Expouential stretching was used away
from the airfoil in both the x and y-directions while
a spline function distributes points along the airfoil
{0<z<1). This allows grid clustering at the leading
edge, trailing edge and the shock.

Results for a nonlifting 10% thick biconvex air-
foil at Af,, == 85 are presented for the flux split,
tonal aad potential schemes. Figure 8 compares the
Bux split Cp solution with a centra!l differanced Euler
solution®. A monotone solution at the shock for the
flux split algorithm is obtained by conservatively switch-
ing to frst-order accuracy at a few points bracketing
the shock. This accounts for the smearing at the foot
of the shock. A comparison of the zonal Cp solution

with the same Euler solution is given in Fig. 7. Except
at the shock, the flux split equations are second-order
accurate and require two levels of zonal boundary data
in the {-direction. The zooal steady state solytion ac-
curacy is not sensitive to the amount of zonal overlap.
Here we have used three points of overlap in both the
£ and n-directions. As shown in Fig. 7, the shock
wave locations are coincident within one grid point.
To ensure proper shock position it was found to be
important to zero out a small value of entropy that
the Bux-split scheme produces before the shock; other-
wise, the density predicted from the Bernoulli equa-
tion is inaccurate at the shock and the shock moves
upstream two or three grid points. Figure 8 shows
a comparison between the zonal and scalar potential
solutions. Vorticity effects are evident by the zonal
shock location upstream of the irrotational potential
shock. In these calculations we have opted for first-
order accuracy in supersonic regions by evaluating the
shifted density with @ = 0. The L, norm of the ¢-
-esidual is given in Fig. 9 for the scalar potential
solution. We remark that the present computer code
has not been optimized and uses constant pseudo-time
steps. The convergence history for the zonal solution
is given in Fig. 10. The convergence rate appears to
be limited by Eq. (29). For a zonal computation in
which the conservation-law zone was allocated 20
of the total number of grid points, the zonal method
takes 609 less CPU time per iteration than the flux
split algorithm. Moreover, the zonal algorithm oaly
required 50% - 75% as many iterations that the Aux
split algorithm does for plottable accuracy.

The flow about a 12% thick biconvex aitfoil at
Mo, == .88 generates a solution with a stronger shock.
The vorticity eflects are greater, and as before, the
potential shock is downstream of the zonal solution,
as shown in Fig. 11. The Mach contours shown in
Figs. 12 and 13 correspond to the potential and zonal
solutions respectively. The potential shock at the air-
foil trailing edge is more oblique than the ronal shock.
The velocity defect at the downstream boundary (z =
4) is given in Fig. 14 aod demonstrates the ability of
the equations to convect vorticity.

As a final example, the dual potential equations
bave been solved in general curvilinear coordinates
{ € = &lz.y).n = n{z.y)) for a subcritical fow over
a NACA 0012 airfoil at two degrees angle of attack.
A 76 x 34 O-grid was used, a portion of which 1s
shown in the vianity of the airfoil (Fig. 15). The far
field is rectangular in shape with rovaded coraers. The
outer boundary is 6 chord lengths from the airfoil in
the x-direction and 8 chord lengths in the y-direction:
nevertheless the umiform flow boundary condition




v == 0 is imposed in the far field. The value of
on the body is obtained from the Kutta condition,
Eq. (32), using the second-order accurate option. A
Cp comparison with the potential solution TAIR?*® is
given in Fig. 16. The solutions compare very well even
though the dual potential solution is computed on a
coarser grid {50% as many points). The convergence
histories of the ¢ and y-residuals are shown in Fig.
17.

V1. CONCLUSIONS

A zonal algorithm which utilizes the conservation-
law-form equations together with the dual potential
equations has been developed to numerically simulate
steady transonic flow of an inviscid fluid with vor-
ticity. The dual potential equations are able to con-
vect vorticity, and a consistant set of boundary con-
ditions have been developed which permit vorticity at
the outflow boundary. The zonal algorithm is able to
capture the correct shock position. The dual potential
equations require significantly less CPU time than the
Euler equations since they are solved as an iteratively
decoupled set of scalar equations. The test problems
we have investigated showed up to 60% savings in total
CPU time for a zonal solution over a semi-flux split "
solution of the Euler equations. Code optimization
should provide additional savings.

The dual potential equations provide an alter-
pate method of computing lifting airfoil Bows, Specilying
¥ oa the body in order to satisfy the Kutta condition
eliminates the need for circulation cuts; however, a
Poisson equation must be solved. The increase in com-
putational work is perhaps offset by coding simplicity.
This will be especially true in a multi-element prob-
lem.
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Fig. 1 Zonal partitioning.
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Fig. 9 Convergence history of scaiar potential solu-

tion.
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Tig. 8 Cp comparison between zonal and scalar poten-

tial scheme.
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Fig. 10 Coovergence bistories of zonal solution.
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Fig. 15 O-grid topology near NACA 0ui?2 airfoil. Fig. 16 Lifting suberitical Cp comparison between

dual potential and scalar potential scheme.
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Fig. 17 Coavergence histories of dual potential solu-
tion.
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