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PREFACE

The purpose of this research has been to further develop grid

generation procedures and zonal methods so as to extend the applications

of nonlinear finite difference methods to complex aircraft configurations.

For the task of three dimensional grid generation both elliptic and

hyperbolic grid generation methods were developed. A chimera grid scheme,

that is, the use of overset multiple grid systems, was also tested in two

dimensions. In our study of zonal methods several new algorithms and

computer codes were developed. These included two and three dimensional

zonal codes that match transonic po-ntial equations with thin layer

Navier-Stokes equations, an unsteady three dimensional transonic

potential code, and a two dimensional zonal Euler and vector potential code.

This report summarizes the various numerical algorithms that were studied.

Specific details of each algorithm are contained in a series of appendices

that contain either a brief write-up or a copy of a published technical

report. The brief report itself is broken into two main sections, Section I

Grid Generation, and Section II Zonal Methods. In Section II an attempt

is made to draw out some of the advantages and disadvantages of using a

zonal method. This research contract also provided partial support to t

graduate students in the Department of Aeronautics and Astronautics and

resulted in the publication of several technical papers. Conputer codes

were also transferred to the Flight Dynamics Laboratory by Mr. Timothy Barth.
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SECTION I
GRID GENERATION

1. Background

In generating a grid about aircraft-like configurations several constraints should be

kept in mind. To begin, the grids must be smoothly varying so as to maintain solu-

tion accuracy. The grids should also be body conforming to enhance solution accuracy,

simplify the implementation of boundary conditions, and to minimize programming com-

plexity. Finally, in order to use approximately factored implicit schemes and to maintain

computational compatibility with vectorized machines, the grids should be well-ordered.

For a simple wing-body combination one can envision a single mapping procedure as

illustrated in Figure (1). This warped spherical coordinate system is well-ordered, maps

the body onto a single coordinate surface, and if properly generated, it can be sufficiently

smooth. Moreover, the axis singularity is not a problem for Euler and thin layer Navier-

Stokes equations that are transformed in general coordinates and strong conservation law

form.

A single mapping such as that illustrated in Figure (1) is, of course, inadequate for

complex aerodynamic configurations which can include engine nacelles, stores, etc. For

these cases, subgrids, which are either embedded-to or overset-on the main wing-body

conforming grid, are envisioned. Some possible grid configurations are illustrated in Figures

(2) and (3) for two dimensional cross sections.

Embedding or oversetting meshes to account for complex configurations requires an

immense effort in interfacing grids and numerical algorithm developments. Consequently,

this university contract was restricted to the more fundamental task of generating only the

main body-conforming grid using elliptic partial differential grid generation equations with

clustering terms. We have, however, begun development of a three dimensional hyperbolic
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Figure 2. Example of Mesh Embedding in Two Dimensions

Figure 3. Example of Mesh Overlapping in Two Dimensions
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grid generation procedure, and, in two dimensions, we have indeed studied overset grids.

2. Grid Generation

As noted earlier, we wish to build a single main grid that is smoothly continuous,

maps the body onto a constant coordinate surface, and is well-ordered. The resulting

mesh must also use surface as well as field grid points efficiently. Clustering of grid points

near a body to resolve viscous terms should not cause unwanted extraneous points in

the free stream. These considerations lead to the use of warped spherical and cylindrical

coordinate systems.

To construct this main spherical grid we have developed grid generation codes using

both elliptic and hyperbolic partial differential equations. The elliptic grid generation

procedure has been written up in the form of a technical paper and was presented by Mr.

Reese Sorenson at an ASME specialist meeting. This paper, which describes the method

and shows results, is reproduced in Appendix A.

A paper describing our work in three dimensional hyperbolic grid generation procedure

is in preparation. Details of this method are described in an abbreviated write-up as

Appendix B.

In general the elliptic grid generator is more powerful as it can generate a smooth grid

interior to user specified inner and outer boundaries. The hyperbolic method generates

a grid exterior to a user specified inner boundary. The outer boundary location is not

known in advance (although one could iterate on its location, but not its placement of

points). However, the hyperbolic solver can generate an orthogonal grid and it is a much

more efficient code to use than the elliptic solver. For cases in which it is suited, it also

requires less user input. The elliptic solver, however, is more reliable.

3. Overset Grids

A paper describing a chimera or overset grid scheme in two dimensions is attached as

4t



Appendix C. This paper was presented at the same ASME meeting as the three dimensional

elliptic solver. The various results, which are obtained with linear incompressible flow

equations, verify the feasibility of this approach, but considerably more research is needed.
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SECTION H
ZONAL METHODS

1. Background

Just as one wants to limit the number of grid points to only those action regions

in which they are needed, one would also like to limit the complexity of the governing

partial differential equations to appropriate action zones. The Navier-Stokes equations,

for example, are not needed to describe the flow in the inviscid far field. Indeed, even

nonlinear full potential theory is not needed there, as a linear potential approximation is

quite adequate.

In principle, considerable computational work can be saved by using just that s;

plified governing equation set that suffices for a given region of the flow field. Compt,

storage can also be reduced. However, such a zonal method is not without pitfalls.. -r

one, programming and matching together several numerical methods increases tae overall

complexity of the computer code and its data base. This is especially undersirable on

parallel processors. Moreover, unless one is very careful in matching the different numer-

ical algorithms and governing equations, overall stability and iterative convergence can

be impaired. Numerical stability could conceivably decline so much that the simplified

zonal scheme could be more inefficient than a straight Navier-Stokes algorithm with a well

stretched grid.

Such negative arguments may be offset by additional advantages for zonal schemes.

For one, steady state numerical algorithms for potential flow are far advanced over those for

Euler or Navier-Stokes equations. This is because the simpler scalar potential equation

is much easier to optimize for steady state convergence. A well matched zonal method

may therefore have better convergence than, say, a Navier-Stokes scheme alone, simply

because the outer flow region can be converged at a much faster rate. Another, albeit

intangible aspect of the zonal method is that one is forced to keep the numerical algorithms

6



compatible, and if the code is properly designed, either algorithm could be readily used in

a stand alone mode.

Arguments for and against zonal methods will be summarized later. Clearly, a zonal

scheme has some reduced computer storage over a Navier-Stokes alone algorithm, and it

may have other significant computational benefits. Consequently, we have coded and tested

a zonal algorithm. In our tests we have essentially combined a transonic full potential code

with an Euler or thin layer Navier-Stokes code. The zonal code was tested in first two and

then three dimensions.

2. The Zonal Codes

The three dimensional zonal code which we have written matches an unsteady con-

servative full potential code with an Euler or thin layer Navier-Stokes code. Details of the

full potential code, partially developed for this application, were presented as an AIAA

paper attached as Appendix D. The zonal code itself has not been published, but Mr.

Jack Striegberger is using the code in his Ph.D. thesis project, so it will ultimately be fully

documented. Mr. Timothy Barth has transferred the code to AFFDL.

A two dimensional zonal code has also been written which combines a flux vector

split Euler code with a potential and vector potential code. Using this dual potential

combination, the outer flow is able to correctly convect entropy. This has lead to a very

versatile zonal code in which we are able to match the equation zones in a much more

elegant (and simpler) way. Details of this method have also been presented at an AIAA

technical meeting, and this paper is presented as Appendix E.

3. Reflections

The zonal codes that we have written work and save both computer time and some

storage. They are, however, more complex than a single Euler or Navier-Stokes code.

Moreover, the zonal codes are not as readily generalized to a new problem because some-

where in the flow field they use simplifying assumptions. In fact, a zonal code makes a



trade between computer time and engineering time. A zonal code that gives the same

result as a Navier-Stokes code will be cheaper to run on the computer, but it will require

more engineering development time. So the zonal code is ideal for optimizing a given con-

figuration because, once the code is set up, it will run more efficiently. If one is continually

changing the layout of the configuration and the type of flow field being solved, then a

nonsonal general code may be more economical because the engineering time for the first

solution will be less.

The area in which more research is needed with zonal codes is in how to interface

the zones more tightly with a minimum of bookkeeping. The two dimensional zonal code

described in Appendix E presents one approach that I believe we can and should generalize.

In the zonal method described in Apr-nhix E we solve (using u = 4,+4',v =

(pu)'3 + (P)W = 0 (la)

V3 - up = w (16)

us, + vs1 = 0 (1c)

p = p( 2 + V2, S) (ld)

throughout the entire flow. These equations can convect but not produce entropy. In an

entropy producing zone (e.g., around a shock, see Figure (ib) of Appendix E) the inviscid

conservation law equations of mass, momentum, and energy are solved. From this solution

we obtain the value of w that feeds into Equation (Ib) by forming w = (u. - v.) directly

from the conservation law solutions. Elsewhere w is evaluated from

-W = (7 M 2 )-'(v8' - us,)

- rll ... .. • . . .. .... .. .... .. *,d cfl " ' ai ' t : - .. " ..8



so that Equation (ib) is the Crocco equation. Likewise in the shock zone a is overloaded

directly from the conservation laws in place of Equation (1c).

The point of this is that Equations (1) are used throughout and so there is less logic to

code by avoiding a zone boundary (especially so since we in fact use 4 and 0' as variables).

Moreover, because an implicit solver is used, information is spread throughout without

any lagging of zone boundaries. Now, in fact, it would take fewer operations per iteration

if Equations (1) were turned off in the conservation law zone. But the code would, as just

stated above, be more complex and likely require more iterations between zones to reach

a steady state if this were done.

What we have done in this zonal method is to use a single "simple" equation set

throughout. In "complex" flow zones, a r-re complete set of equations is used, but their

effect is imposed by means of a right hand side forcing function, not by means of a zonal

boundary. This, I believe, makes this new zonal approach much more versatile. For

example, in viscous flow we should be able to evaluate the w of Equation (ib) from a

Navier-Stokes or boundary layer equation zone. Ideally we could use Equation Set (1)

everywhere and use more complicated equations only as a means to overwrite w and s.

Such an approach is currently being formulated.

To conclude, my feeling is that zonal codes are needed and have their place, generally

in a large engineering design environment. Small engineering teams that have to model a

variety of different flow fields and configurations should use more general codes that are

easier to set up for a given problem. In designing new zonal codes it is important that we

try to keep the number of equation sets and zone interface boundaries to a minimum for

simplicity. The type of zonal approach developed in Appendix E is one such attempt, and

it appears to be very promising.

9



SECTION M

CONCLUSIONS

Grid generation procedures and zonal solution methods were studied. Both elliptic and

hyperbolic three dimensional grid generation procedures were developed. The hyperbolic

grid generator is especially easy to use and it is very efficient. It can fail, however, whenever

the body surface is discontinuous or the used specified surface grid distribution is too

irregular. The elliptic solver is more robust, but it requires much more user input and

much more computer time.

From our experience with zonal codes, we concluded that they have their place, partic-

ularly for design applications where maximum computational efficiency is requiied. How-

ever, a major effort must be made to reduce the complexity of zonal codes. An approach

which interfaces the zones through forcing functions rather than boundary conditions was

developed, and it appears to offer this possibility.

10

A |



APPENDIX A

GRID GENERATION IN THREE DIMENSIONS BY POISSON EQUATIONS WITH

CONTROL OF CELL SIZE AND SKEWNESS AT BOUNDARY SURFACES
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by

Reese L. Sorenson
Research Scientist

NASA Ames Research Center
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ABSTRACT T superscript indicating transpose of a matrix

An algorithm for generating computational grids x independent variable in real domain, Cartesian

about arbitrary three-dimensional bodies is developed, coordinate

The elliptic partial differential equation (PDE) approach y independent variable in real domain, Cartesian
developed by Steger and Sorenson and used in the NASA - coordinate
computer program GRAPE is extended from two to three
dimensions. Forcing functions which are found automati- z independent variable in real domain, Cartesian

cally by the algorithm give the user the ability to con- coordinate

trol mesh cell size and skewness at boundary surfaces. a nonlinear coefficient in Eq. (2a)
This algorithm, as is typical of PDE grid generators,
gives smooth grid lines and spacing in the interior of y signed cofactor of the matrix M

the grid. The method is applied to a rectilinear wind- r matrix having elements y
tunnel case and to two body shapes in spherical
coordinates. a finite difference

independent variable in computational domain
NOMNCLATURE n independent variable in computational domain

a coefficient in forcing function influencing decay a angle down from axis toward equator in spherical
rate of control at boundary coordinates

b coefficient in forcing function influencing decay & independent variable in computational domain
rate of control at boundaryrat ofcotro atbonday distance from origin in spherical coordinates

c coefficient in forcing function influencing decay P ane aro axis in spherical coordinates

rate of control at boundary 0 angle around axis in spherical coordinates

J Jacohian of transformation, determinant of M W relaxation parameter for point-SOR

M matrix of transformation metrics i row number in matrices N and r

P forcing function in Poisson equation J column number in matrices M and r

factor in P. giving control of cell size and INTRODUCTION
skewness at boundary

The ability to generate grids about arbitrary three-
dimensional aerodynamic configurations stands today as

factor in Q, giving control of cell size and one of the critical pacing items in computational fluid
skewness at boundary dynamics (1). Of the various methods for generating

R forcing function in Poisson equation grids, the elliptic partial differential equation tech-
nique (2-6), with its inherent smoothness, has proven to

factor in R, giving control of cell size and be one of-the most automatic and general approaches. In
skewness at boundary two-dimensional applications this has been especially
o oetrue vhen the elliptic grid-generation equations are

r colun vector having elements xyz combined with an algorithm that automatically chooses
RWS term used in Eq. (7) in solving for PQ,R inhomogeneous terms to give the user control of mesh

S distance along line of increasing ; in real domain cell size and skewness at boundaries. Such an algorithm,
as developed in Refs. 7 and 8, has resulted in the

12



widely used NASA computer program GRAPE' (8). The exten- In the present application the inhomogeneous terms
sion of the GRAPE algorithm to three dimensions has been P,Q,R control grid spacing and skewness for mesh cells
long overdue and is the subject of this paper. adjacent to the body boundary surface, - 0. The

In the algorithm developed here. three-dimensional forcing terms are chosen to be
elliptic partial differential grid-generation equations
are modified to give the user control of the spacing and P( ,n,C) - P(j.)e5

a
c (3a)

skewness of mesh lines that approach the boundary. This
is accomplished by adding to the grid generation equa- Q(&,n, - (&.n)e-bc (3b)
tions a set of forcing terms which are automatically
evaluated by imposing differential equation constraints R( ,r,¢) = R( ,)

-
c4 (3c)

of arc length control and surface orthogonality at the
boundary. The user has only to input the desired grid when the exponential factors cause the control to dissi-
spacing at the boundary surface. A description of these pate or relax with distance from the boundary c - 0.
grid-generation equations and a numerical solution pro- Relaxing the control with distance from the - 0
cedure are developed in the main part of this paper. boundary is necessary so as not to overly constrain the
Because a spherical topology is one of the most efficient grid lines with respect to the opposing (C - Max)
grid systems in three dimensions, the grid-generation boundary. The positive constants a.b,c influence the
algorithm is further modified to avoid difficulties in rate of decay of the boundary control.
generating grids near a spherical or cylindrical axis In most elliptic grid-generation techniques, the
singularity. These details and grid results in both points on boundaries are user-specified. Thus, the ,nI

rectangular and spherical grid topologies are presented distribution of grid points is specified on the ; - 0
in the remainder of the paper. surface. Figure 1 shows a typical mesh cell touching a

GRID-GENERATION EQUATIONS

The elliptic partial differential equation grid-
generation approach has been extensively developed else-
where (9). Elements of this approach are reviewed below
to develop source terms that automatically enforce
interior mesh line orthogonality to a boundary surface
and give the user control of the step size between the
boundary and the next interior surface.

It is required that the mapping between physical
space xyz and computational space 4,n,4 satisfy
the Poisson equations

xx + &yy + 4zz = 
P(Crn,) (1a)

xx yy + zz ( (b) Fig. 1 Typical mesh cell touching 4 - 0 surface

4x+ 4 + z - R(4,n,4) (Ic) 4 = 0 surface, with & and n varying over that surface.

The condition for orthogonality of the grid lines inter-
Given proper choice of the source terms P,Q,R, these secting the - 0 boundary surface is that the unit
equations satisfy the maximum principle and thus ensure vectors in the 4 and C directions and in the n and
a one-to-one mapping. Equation (I) is conveniently directions be mutually normal. These two conditions can
solved numerically in the uniform computational space, be expressed by the vector dot products
4,r,4. The equations, so transformed (10-13), are

r, r, - 0 (4a)
0,r,+ CL r~ + atr + 2(n'12r~,t + n1I3 r4  + a 3r,)

2nn 3 4rr r, - 0 (4b)
=J_2(p +Q + Rr) (2a)

& n To control the cell size on the € - 0 boundary, the
where "height" of the cells must be regulated to some pre-

specified value. Letting S be that height, the dis-
3 tance along a line of increasing ;, we wish to specify

S , -mj (2b,2c) AS/&4 at the 4 - 0 boundary. In differential formrij - m1 this third boundary-control equation can be expressed as

Yij is the 11th signed cofactor of the matrix M r, r C -a= (4c)

X 9 x n x 4  The solution procedure described below requires that
"y4  xn~ yx1  Eq. (4) be solved for the derivatives with respect toM -7 yn y (2d) at the surface. giving

Lz zn z] 4 S/3 (5a)
+)1/2

and the Jacobian J is the determinant of M.

x -1z (5b)I~~An acronym derived from "GRids about Airfoils x-Y33 Sb

using Poisson's Equation."

13



. (5c) interior as this tvo-part iteration schema proceeds to
Y Y3 convergence.

The surface control equations expressed by either
Eqs. (4) or (5) are solved simultaneously with the SPHEICAL GRIDS
interior grid-generation equations given by Eq. (2).
Because x,y.z are specified on the boundary, the sur- From a computational point of view a spherical

face control equations supply three additional relations topology is one of the mst efficient grid systems for
that can be used to determine the unknown values of three-dimensional bodies because a spherical grid saves
P,Q,R. An iterative solution process is used as points in the far field. For example, in Navier-Stokes

described below, calculations that use highly clustered grids near the
body boundary with a single rectilinear coordinate sys-

SOLUTION PROCEDURE tem, the fine grid near the body can extend into the far
field. This does not occur with spherical coordinates.

An iterative procedure is used to solve the grid- A spherical coordinate system does introduce an axis

generation equations. Each iteration is in two distinct singularity, but experience shows that an axis singular-
parts. In the first part we begin with the xy,z from ity can be readily handled in flow codas that use general
the initial conditions or the previous iteration, and ,n.C coordinates and solve the flow equations in

update values of the P,Q,R terms. The second part of conservative form (14).

the iteration step updates values of x,yz at each For grid generation using Eq. (2), the axis singu-

point in the field using the new values for P,Q,R. larity of the spherical coordinate system has proven to

To update the P,Q,R, we first note that solving be difficult. Following a suggestion of J. K. Hodge

Eq. (2) produces a grid for an appropriate choice of (private communication, 1977), M. Vinokur and J. L.

P.QR. We wish to impose constraints on grid cells at Steger (private communication. 1978) found that one way

the boundary - 0. and thus determine P,Q,R. Equa- to avoid the axis singularity was to "convert" Eq. (1)

tion (4) gives the constraints and Eq. (5) gives the into a pseudospherical equation. Instead of using true

same constraints expressed as requirements on derivatives opherical Poisson equations, the independent variables

of r with respect to 4 at the boundary. The deriva- x,y z are iinply replaced with ,, in Eq. (2) for
tives in Eq. (5), along with difference approximations . spherical coordinates or by p,o,z for cylindrical

for all other first and second partial derivatives of r coordinates. See Fig. 2. Thus, Eq. (1) is replaced by

with respect to , are substituted into Eq. (2), + + &
which is solved for P,Q,R. pP 

+  
8 " ,

To obtain the difference approximations for first r + r + - q ,.)(

and second partial derivitives of r with respect to . +p 800 W 1(
F,n,C on the C - 0 boundary surface, we proceed as
follows. Because x,y,z are specified at 0 - . first P0 + 04
and second partial derivatives of r with respect to
& and n on that surface can be found by differencing
fixed boundary points. Those derivatives, combined with
user specification of S/3C, are used in Eq. (5) to
determine derivatives r_. Second partial derivatives
r4 and r are found b5 differencing r with respect
to and n. Thus, the only derivatives iacking in
Eq. (2) are rn. These are found by differencing the
solution for Iat and near the surface using the cur-
rent interior grid solution.

Thus, at each 4 - 0 point, Eq. (2a) are three
equations which can be solved for the three unknowns
P,QR. From Eq. (3) it can be seen that at C 0.
P(&.n,) reduces to P(&,n), and similarly for Q and R.
From Eq. (2) R is defined as 1Z

Rjg jj-.2[a r + a 2 r + C
22 +i 33

+ 2.r,' ++ at r )] (6)

The solution then is

M- Is -RHg/ Fig. 2 Cut away sketch showing computational variables

[RQ~land spherical coordinates

Equation (8) is not in the form of a true Laplacian
where r is the matrix haveing elements yij. For the operator in spherical coordinates. It is, however, an
whole field P,QR are then found by multiplying MA elliptic equation that satisfies the maximum principle
by the appropriate exponential factors as in Eq. (3). and it generates a smoothly varying grid just as Eq. (1)

The second part of each iteration step is to use the loes. At the axis, 0 varies monotonically with & (see
new values for PQ,R in Eq. (2) to find new x,y.z Fig. 2) and no singular behavior is encountered. Trans-
everywhere in the field. In this research effort the formation of Eq. (8) to uniform computational space
iterative solution procedure, chosen for ease of coding, results in Eq. (2) with r replaced by
was point-SO. Thus, the P.QR terms necessary to
cause the grid to have the desired behavior at the bound-
ary are found automatically along with the x,y,z in the

14



Solution of the spherical variable form of Eq. (2)
proceeds such as before. Boundary-point values of xyz
are specified along with an initial guess of the
interior-point values of x,yz. At each of the points,
values of x,y,z are then converted in the usual way to
spherical values of P,,€. The grid-generation equa-
tions are then solved by relaxation, and once a solution
is obtained, it is converted back to x,yz values at
each grid point. Equation (8) does not generate the
same solution as Eq. (1), but the solution is one that
can be just as satisfactory. It must be cautioned that
if # varies from 0 to 2w in a periodic grid, then
one must difference in a manner which accounts for a
discontinuity of the function, but not of the derivative
by adding or subtracting 2w where appropriate.

The surface clustering and orthogonality relations
as developed previously are written in terms of x,y,z.
Rather than attempt to rework these relations in spheri-
cal variables, we simply convert P,6,0 variables back
to x,y,z variables to enforce Eq. (4). That is, when- to)
ever P,Q,R must be evaluated, grid-point values of
P,,# are converted back to xy,z. Values of P,Q,R
are found, and then x.y.z values are converted back to
PO,8,. Since this transformation and its inverse need
be done only for the first few (typically 3) shells of
points near the body surface, the increase in computa-
tion is not significant.

RESULTS

The method has been codad to control surface orthog-
onality and step-size spacing only at the inner (0 - )
boundary. The same 3-D computer code can be used to
generate grids either for rectangular grid topologies
using Eq. (1) in terms of x.y,z coordinates, or warped,
spherical grid topologies using Eq. (8) for P.8,4
coordinates.

Rectilinear Grids

Rectilinear three-dimensional grids with automatic
surface step-size control have been generated. A rec- (I)

tangular wind tunnelwith a bump on the floor is used as
a test case. Since this case fits within the rectilinear
topology. Eq. (1) is used as the grid generation equa-
tion. Figure 3(a) illustrates the floor (4 - 0) boundary '

surface. The grid in this case has 40 points in the F
or streamwise direction, 20 points in the n or spanvise
direction, and 25 points in the 4 'r vertical direc-
tion. The mesh lines intersecting the floor are required
to do so normally, and a spacing normal to the floor
equal to 0.0025 times the height of the tunnel is
enforced. That spacing is approximately 1/20th of what
would result if the points were equally spaced in the
vertical direction.

Figure 3(b) shows the fifth C - constant coordi-
nate surface above the floor. The control of point spac-
ing normal to the - 0 boundary surface is shown here
by the uniform proximity of this surface to the floor.
Figure 3(c) shows the fifteenth 4 - constant surface,
above the floor. Here, the bump has begun to "flatten"
since the grid has a flat upper-boundary plane. An
example of a different family of coordinate surfaces, a (Wl

- constant surface is shown in Fig. 3(d). It rides
the crest of the bump from side to side in the tunnel.
Figure 3(e) shows an example of the third family of Fig. 3 Grid for rectangular wind tunnel with bump on
coordinate surfaces, an n - constant surface. It is floor
the fifth such surface, counting from the near side of (a) Inner ( 0 - O) boundary surface (the floor),
the tunnel. The viewpoint here is normal to that sur- showing bump
face. Figure 3(f) shows a closeup of a region of the (b) Fifth ; - constant coordinate surface above
surface shown on the previous Fig. 3(e), It is the the floor
region at the right-hand side of the base of the bump. (c) Fifteenth C - constant coordinate surface
Note that the spacing normal to the bottom boundary is above the floor
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constant and very small. That spacing would tend to be

much larger And nonuniform in this concave region if the
grid had bean generated without the forcing term .

Warped Spherical Grids

;9d Grids for fuselage shapes ad wing shapes have been
generated using the spherical coordinate system and
solving Eq. (8). As of this writing some convergence
pr ,slms are encountered with fine grids using spherical
topology. This is currently under investigation. The
results presented here for spherical topology are limited
to moderately coarse grids.

A grid having 20 points in the circumferential ( )
direction. 19 points in the pole-to-pole (n) direction.
and 30 points in the outward (€) direction has been
generated about a 10 by 2 by I ellipsoid. Figure 4(a)
illustrates the specified € and n distributions about
the top half of this ellipsoidal body. Figure 4(b)
shows the n - constant coordinate surface about the
"equator," while Fig. 4(c) shows a closeup of the
10 innermost lines in the equatorial plane. Note that

the spacing normal to the body is controlled. Fig-
ure 4(d) shows a different n - constant coordinate
surface, this one nearer to the pole than the equator.
It is not a plane, but rather more in the shape of a

bowl. open toward the lower right. An example of a dif-
ferent family of coordinate surfaces, a - constant
surface, is shown in Fig. 4(e), extending from pole to
pole. Figure 4(f) is a closeup of the region of
Fig. 4(e) near the left-hand pole and near the body. The
results indicate that the surface orthogonality control
and the clustering control are working well, and that the
solution about the axis is well behaved. Examples of the
third kind of coordinate surface. . - constant, are
visually indistinguishable from the body, Fig. 4(a).

On an axis, e is either 0 or w and values of 0
______and . are obtained by parabolic extrapolation to the

axis fror the two nearest points in the n direction.
The three conditions used to determine the parabola are
that the mesh line must pass through the two nearest

_ __(_ _ _ _ _points in the r direction, and that it must have zero

slope relative to the axis as it crosses the axis.
Values of , for each point on the axis could be found
by extrapolating along Any of the lines encountered as
! varies trom 0 to Iax, and in fact the o used is
an average of all those values.

Some views or another spherical grid, this one
p having 30 by 19 by 30 points, are shown in Fig. 5. This

grid is about a ving having the same 5 to 1 ratio of span
\ \. to midchord elliptical planform as the ellipsoid above.
,\ ' %and a 19% thick airfoil section. The only adaptation

necessary here is that the P,Q,R terms at the trailing
edge are replaced by the average of their values imme-
diately above and below the edge, i.e., they are "aver-

- aged" acrcss the edge in the , direction. The airfoil
_ __ section and the innermost four grid lines are shown in

Fig. 5(a). The normal spacing and the angularity of the
lines intersecting the ..,dv are nicely controlled. The
sharp trailing edge is treated succeastully, as shown in
Fig. 5(b). Kiure !c) shows the far-field behind the
tra11irg eas;- and il-ustrates the ability of the PDE
method tco generate i smooth grid over a sharp corner.

M In all of the above cases, values for the relaxation
parameter . in the point-SOR varied from 0.8 to 1.6.
Values or the a,o c parameters in Eq. (3) were approxi-

Fig. 3 Concluded adc.lv 0.5. The numter of iterations necessary varied
(d) C - constant coordinate surface on top of from 25 to 150.

bump
(e) Fifth n - constant surface passing over

top of the bump, orthogonal view
(f) Closeup of region near base of bump
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i . , qaoia ln (a) E-cosatcodn esuf eex nig

(c) Closeup of innermost 10 circumferential from pale to polei
lines in equatorial plane Mt Closeup of - constant coordinate sur-

face, near pole and near body



CONCLUSION

An elliptic partial differential grid-generation
technique which gives the user ability to control mash
cell size and skewness at a boundary has been general-
ized from two to three dimensions. The method discussed
in this paper has been applied successfully to a variety
of topoloSies and test cases. Future plans include sub-
stituting a faster solution method such as ADI, investi-

sating the application of the method to a wider collec-
tion of topologies, and writing a transportable, user-
oriented three-imensional code, such as GRAPE is in
two dimensions.
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APPENDIX B

GENERATION OF THREE DIMENSIONAL BODY FITTED COORDINATES

USING HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
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INTRODUCTION

Body conforming curvilinear grids are often used in finite difference flow field simula-

tions. One reason for this is that the application of boundary conditions can be simplified

in finite difference calculations because grid lines coincide with boundary lines. This is

especially important in high Reynolds number viscous flow simulation in which high flow

gradients near the body surface must be resolved.

The task of generating a satisfactory body conforming coordinate system is not easy.

The grids must not be too distorted, they should have smooth variation, and they should

be clustered to flow field action regions - typically near boundary surfaces. Moreover, the

grids should be generated in an automatic manner that requires a minimum of user input.

One approach for generating body conforming grids with minimum user input has

been to solve a set of partial differential equations. In this technique level lines of (z, y, z),

1(2, y, z), and ;(x, y, z) that have monotone variation are sought as a solution of a set of

partial differential equations. Generally values of , iq and S are user specified on the

boundary surface and constraints expressed as differential equations are used to develop

the grid away from the boundaries. The most popular such approach requires the solution

of a set of elliptic equations that satisfy the maximum principle, however, hyperbolic

and parabolic governing equations have been used as well, at least in two dimensional

applications.

In this appendix one way of extending the hyperbolic grid generation method of Steger

and Chaussee to three dimensions is developed. In two dimensions the two differential

constraints

+ 407, = 0 (1 a)

- = (AV)-'(1b)
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or in , computational space

Z(Z" + Yfell,,- 0 (2a)

X~q- XY = AV (2b)

have been solved by marching in q from an initial data plane rq(z, y) = constant. The first

equation is a constraint of orthogonality. The second equation controls the mesh spacing

with the user specifying the mesh control volume AV (actually area in two dimensions).

A linearized version of equations (2) is readily shown to be hyperbolic and suitable for

marching in i?. Equations (2) are solved in computational space to give the z, y location

of the = constant and q = constant grid lines.

The two partial differential equation -pressed as either Equations (1) or Equations

(2), have been referred to as a mesh cell volume procedure for grid generation. In the next

section a three dimensional procedure is developed.
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THREE DIMENSIONAL GRID GENERATION EQUATIONS

A body fitted exterior grid about an arbitrary closed boundary surface is desired.

Only a simple topology such as that illustrated in Figure (1) will be considered here. The

body surface is chosen to coincide with c(z, y, z) - 0 and the surface grid line distributions

of = constant and tI = constant are user specified. The outer boundary (z, y, z) =

is not specified, it is only required to be sufficiently far removed from the inner boundary.

Using ; as the marching direction, partial differential equations are sought which produce

planes of constant , r and f to form a nonsingular mesh system.

An extension of the mesh cell volume procedure to three dimensions is proposed. In

three dimensions, however, there are three orthogonality relations and one cell volume

constraint. At any point four equationb , vaijable to predict the three unknowns x, y

and z so one equation must be discarded. Because is the marching direction it is natural

to use only the two orthogonality relations that involve g, this leads to the governing

equations

Zx, 4- y.y + zlz, 0 (3a)

,±-,5 zz - 0 (3b)

2:y,,z + z-yCz o + Z,A yz - , -- X,,yfz.C - ZJ,, Zf AV (3c)

or with F defined as (z, y, z) t

The first two equations represent orthg,.,ity rest~r*:,s letwn and ; and between Y7

and , while the last equation is the voiunic or finite .] cc;,iaa constraint.

Equations (3) comprise a system of ii nLnear partiai differential equations in which

z,y and z are specified as initial data at G -. As -!eveloped below, linearization and
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analysis of Equations (3) about a nearby known state reveals that the system is hyperbolic

with as the marching direction.

Let z° , yo, z0 represent a nearby known state so that

0 z (Z - :c°) = Z° +

= Yo0 + (4)

Z=ZO +j

where i, and i are small. Substitution of these expressions into Equations (3) and

elimination of products of tilde terms results in the locally linearized system

Ao(r F- o)f + Bo(F - Fo)q + Co(r- - Fo)f =(5)

with

A o 0 (6a)

( 0 0 0

B = )f YC zC (6b)

C 9 Y9 yqZ9 (6c)
(Zq., -q-Zc (--Zf -Z(Z) (:Cyq~iY) (G0)

(z) o . of _ ( 0 (6d)

\,V -_tVo-
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Let R =- F, then (5) is rewritten as

AoRc + Bo, + CoR f (7)

Now C 0 ' exists unless (AV)-' --, oo, which we will not impose, so (7) can be rewritten as

Co'Aohf + Co'Bohn + R- = ¢;'l (8)

Although the verification is nontrivial, Co'Ao and Cj'B are found to be symmetric

matrices (this was carried out by Dennis Jesperson of the NASA Ames Research Center,

who used MACSYMA). The linearized system Equation (8) is therefore hyperbolic and

can be marched with " serving as the "!tiiw like" dir(,ction.

It can be pointed out that an ana!ysis was attempted for the three orthogonality

relations alone. These equations, however, are readily shown to be improperly posed for

marching with initial data in . Indeed, as best as -we can discern, the three relations

do not lend themnselves to unique solutions iegardless of the type of boundary conditions

specified.
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SOLUTION PROCEDURE

The nonlinear system of grid generation equations given by Equations (3) are solved

with a noniterative implicit finite difference scheme. An unconditionally stable implicit

scheme is chosen so the marching step size in C can be arbitrarily selected based only on

considerations of accurately generating the grid. Iterative solution of the nonlinear grid

generation equations is avoided by expanding the equations about the previous marching

step. As a consequence Equation (7) is solved with the nearby known state 0 taken from

the previous C step.

a) Numerical Method

Let A = Aq = =1 such that = j- 1,q =k- I and =I- 1. Central spatial

differencing of Equations (5) in e and q wizza first order backward implicit differencing in

" leads to

A,16(&+1 - 9,) + Bji6 (F,+, - 9-) + C V, 91+ + (9)

where

=

and

ri1- rj 1 1 
6- + rk~ l Fr 2 rk=- 2

Note that C1469,l was subtracted from fk, to produce &I in theh above. Throughout only

those indices that change are indicated, thus r1+1 =* ri,k,,++, +=:> rj+1,, etc.

Multiplying through by CF' gives

CT'Ai5((Fj+j - 2) + CF'B,69(F,5j -,) + 1(6+1 - 9-) = (10)
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where I is the identifying matrix. To reduce the inversion cost the difference equations are

approximately factored as

(I+ CFA,6)(I + CF'B,6b)(Fj+i - F,) = C'j,+ (11)

so that F1+ 1 is obtained by solving sequences of one-dimensional-like block tridiagonal

systems

(I1+ C71 A16a)#7+j 1 + (12a)

(I + CF'B,%j) v; Fj+j 9+ (12b)

F =+ 6 + VfPFI+ (12c)

Although not shown, numerical dissipation terms are added in and rj directions.

The coefficient matrices At, B, and C1 contain and rj derivatives which are formed

using central differences. These matrices also contain derivatives for zx, y, and z, which

are obtained from Equations (3) in terms of and q derivatives. That is, Equations (3)

are linear in the unknowns zx, y, and z,. They are easily solved for as

tf V (fZ,~ - YQ \
ZC---- qZ iZ'Zq (13)

with

Det(C) = (y(zQ - y'?zf) 2 + (XzIz - zezI) 2 + (Xfy - X-IM)

Note that AV/I +(z + jf +zi) = Det(C) so that Det(C) will be zero if and only if the

user specified AV = 0. Hence, C - s will exist.
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b) Cell Volume Specification

The user has control of the grid by means of the initial surface point distribution

and by specification of the cell volumes, Aj,,4. Through the cell volumes the extent and

clustering of the grid can be essentially controlled. Because the cell volume at each point

must be specified, it is clear that the user must devise some kind of method for determining

volumes. There are many possibilities, here one such approach is illustrated.

Suppose we had a sphere to grid. A reasonable grid might have uniform angle spacing

and have a radial grid distribution that is exponential. For this special geometry and

grid we can analytically determine the control volumes by a simple formula. Now take

the problem at hand, perhaps an aircraft fuselage, which we want to mesh as a warped

spherical-like grid. We can find a sphere 14-it has the same surface area as our fuselage

and use the grid cell volumes of the sphere to specify the cell volumes of the fuselage grid.

However, the fuselage will not have the same kind of surface area distribution as a sphere

with equal angle distribution. So here we need an adjustment, something like

= (-(AV.kf)eph. 6' + f.-I.g, (4

where 6 -1. for small I and 6 -- 0 for large 1. That is, the volumes would be adjusted

initially to the local boundary surface increments. But as we march out the uniform

spherical volumes would gradually be specified. Such an approach has been used, and,

as a result, the far field portion of the grid tends to be uniformly spherical. The results

shown in the next section illustrate this behavior.
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RESULTS

A series of plots are shown in Figures (1) - (4) to indicate the generation of grids

about ellipsoids and cambered ellipsoid test geometries. Figure (1) sets the grid notation

while Figures (2) - (4) show some typical results. The grids shown in Figure (2) are for

an ellipsoid which has major to minor axis ratios of 4 to I and 2 to 1. The views 2a to 2c

show the user specified surface point distributions from various observer positions. Similar

views are shown in Figures (2d) to (2i) after marching 3 and 19 steps in the f direction.

The views shown in Figure (3) show a grid generated about a cambered ellipsoid. Finally

the views shown in Figure (4) show a grid about a wing-like ellipsoid ratioed 6: 1: 1/6.
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AXIS 0:

Figure 1. Surface Distribution at =0
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HYPERBOLIC 3-0 GRID

Figure 2a. Surface Distribution on Ellipsoid, ~=0
View at q~ = 0.
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HYPERBOLIC 3-0 GRID

Figure 2b. Surface Distribution on Ellipsoid, =0.

View at qi o 900.

31



HYPERBOLIC 3-0 GRID

Figure 2c. Surface Distribution on Ellipsoid, ~0
Vicw from 0 'North Pole."



HYPERBOLIC 3-0 GRID

pi
Figure 2d. Grid at M =3A.

View at 17 0.



HYPERBOLIC 3-D GRID

,.4,1

Figure 2e. Grid at 3A .
View at 07 o 900.
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HYPERBOLIC 3-D GRID

Figure 2f. Grid at ~--3A .
View at ~ 0.



HYPERBOLIC 3-0 GRID

Figure 2g. Grid at =19A .
View at v7 0.
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HYPERBOLIC 3-0 GRID

I-it

Figure 2h. Grid at 1 9A .
View at 17 (x 900.
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Figure 3a. Cambered Ellipsoid, 0.



Figure 3b. Grid About Cambered Ellipsoid
At Surface =19A .
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Figure 3c. Grid About Cambered Ellipsoid.

Side View, Upper Right Quarter.
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Figure 4a. Surface Distribution of 6: 1 :1/6 Ellipsoid
Span = 6, Chord = 1, Thickness = 1/6



HTP8OIC 3-0 6310

Figure 4b. Surface Distribution of 6: 1: 1/6 Ellipsoid
Span =6, Chord =1, Thickness =1/6



HYPEMMOIC 3-0 PO

Figure 4c. North Pole View of 6: 1: 1/6
Surface Distribution



sqr~m%9LZC 3-0 Optio

Figure 4d. Surface Distribution, Partial Planform
View of 6: 1:1/6
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.g, bO Ic 3-0 olO

Figure 4e. Grid About 6: 1: 1/6 - 25th Grid Plane Out

t 4)



Figure 4f. 25th Grid Plane Out From 6: 1: 1/6



HIYPERBiOLIC 3-0 GRID

Figure 4g. North Pole View - 25th Grid Plane
Out From 6: 1:1/64



HYPERBOLIC 3-0 GRID

Figure 4h. 25th Grid Plane Out 6: 1: 1/6
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ABSTRACT requiring mesh boundaries to join in any special way.
With the use of such an overset mesh system the task

A mesh system composed of multiple overset body- of grid generation is simplified because individual
conforming grids is described for adapting finite- grids can be generated almost independently and then
difference procedures to complex aircraft configura- superimposed to form the overall mesh system. In this
tions. In this so-called "chimera mesh," a major grid way, one can build up a grid system for treating com-
is generated about a main component of the configdration plex configurations and avoid severe mesh distortions.
and overset minor grids are used to resolve all other
features. Methods for connecting overset multiple Overset mesh systems have been used previously.
grids and modifications of flow-simulation algorithms The explicit finite-difference code of Magnus and
are discussed. Computational tests in two dimensions Yoshihara (1) for solving the transonic flow about air-
indicate that the use of multiple overset grids can foils is an early example of overset grids used to
simplify the task of grid generation without an adverse achieve computational efficiency. More recently,
effect on flow-field algorithms and computer code Berger and Oliger (2) have developed a numerical pro-
complexity. cedure which automatically inserts overset grids to

resolve gradient regions of two-dimensional convection
INTRODUCTION problems. As to applications to complex geometries,

Starius (3) has used such an approach for the shallow-
Finite-difference simulations of flow about water equations, and, in work begun at Ames Research

realistic aircraft configurations are likely to use Center, Atta (4) has coded overset grids for the
more than one grid system and more than one governing transonic potential equation. Atta has also extended
equation set. A composite computer code for such simu- the concept to three dimensions (5). We also have
lations is thus chimera-like - a chimera being a mytho- long argued the potential advantages for such a mesh
logical creature with the head of a lion, the body of system (6,7).
a goat, and the tail of a snake.

In the research described here we have undertaken
A finite-difference computer code that uses mul- an independent development. This is in order to adapt

tiple equation sets (e.g., zones of Navier-Stokes and our grid system to an existing class of implicit
velocity potential) and multiple grids will be consid- finite-difference algorithms for solving the unsteady
erably more complicated than a code that uses a single potential. Euler and thin-layer Navier-Stokes, and

flow-field equation set and a single grid mapping. parabolized Navier-Stokes equations. These codes all
Nevertheless, such a chimera .jde will lead to increased use similar coordinate transformations, and zonal-flow-
computational efficiency in flow simulation of complex equation versions are under way. Ultimately we intend
aircraft configurations. As a result, the computational to explore the omplexities of a true chimera code by
aerodynamicist will likely spend considerably more time combining the various equation sets with the overset

In the future developing ways to interface grids, gov- grid schemne.
erning equations, and data bases.

In this paper we develop some of the philosophy
The purpose of this paper is to explore a chimera- and details of th> ovrset mesh system. The methodol-

type mesh scheme in which a major grid is generated ogy here is l.stricted to two dimensions, and the pres-
about a main body element such as a wing-fuselage, and ent solutions, which utilize the stream function, are
minor grids are overset on the major grid so as to intended for grid evaluation. Overset grid calcula-

resolve secondary features of the configuration such as tios using the Eiler and thin-layer Navier-Stokes
stores. nacelles, and canards. In general, the minor equations will be presented elsewhere in a subsequent
grids are overset on top of the major grid without publication bv Benek, Steger. and Dougherty.
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APPROACH AND MOTIVATION There are also disadvantages to the overset mesh
system. Interpolation points and blanked points must

We wish to build a mesh system in which there is a be located and labeled for special treatment. The soiw-
major grid generated about a dominant body. Minor grid tion algorithm also becomes more complex relative to
systems are generated about remaining portions of the using a single grid mapping. Finally. interpolation
body boundary or are used to better resolve portions of can cause inaccuracies such as local loss of conserve-
the major grid. At this point we do not allow the tive form.
minor grids to communicate with each other except
through the major grid. The sketches shown in Figs. I ALGORITIM CHANGES
to 4 are presented with the discussion below to clarify
these ideas. To use overset grids the finite-difference algo-

rithms need only be altered in three essential ways.
Figure 1 illustrates an airfoil-flap combination. First. the data base mist be structured for a number of

A major grid is generated about the main airfoil; a grids, each of which can have a different dimension.
minor grid is used to resolve the flap. The two grids This is easily accomplished in a variety of ways depend-
are not joined at a common boundary and so are con- ing on the computer. For example, on a single
nected as follows: data from the major grid are inter- instructLion-stream machine, use of a single array can
palated to supply outer boundary conditions to the be practical. In this case the index J,k of the ath
minor grid. Thus, the flap grid receives input from grid can be located as a single array-point i. The
the main airfoil. Within some curve of the minor grid FORTRAN variable Q(I) is located by the index
that circumscribes the flap, points of the major grid
will be blanked out. The major grid points forming a I - J + (K - 1) * JMAX(H) + ISUN(H)
perimeter to the blanked region will also be flagged.
Flow variables at these perimeter points are supplied where JMAX(M) and IOIAX(M) are maximum j and k values
by interpolating the minor grid solution. Thus the of the Mth grid and ISUM(M) is the number of grid
effect of the flap Is imposed on the main airfoil, points in all grids before the Mth grid. Using such

a single index leads to a dependency which does not

The grids shown 'a Fig. 2 illustrate another appli- vectorize on some machines, in which case other con-
cation of overset grids. Ilere a main rectangular-like structions should be used.
grid fits well to a cascade blade element everywhere
except at the blunt nose region. A minor mash, Second, the algorithm must skip blanked points.
wrapped about the nose, is inserted to resolve the flow In time-like marching algorithms this is easy to imple-
suction peak. The edge boundaries of the minor grid ment by simply multiplying by a 0 or 1 flag array
are interpolated from the miijor grid. Points in the stored at each point. Such blanking is illustrated
major grid in the vicinity of the nose are blanked, and * below for the centrally differenced Laplacian in which
the flow values are found by interpolating data from an implicit approximately factored delta-form algorithm
the fine minor grid wrapped around the nose. This is used as part of an iterative solution process. That
choice of overse grids can be preferable to the use of is,
a C-grid throughout because a very skewed grid results
for blades with high solidity, as indicated in Fig. 3. , + 6y .k . 0 (1)

J.k + yyj k

Figure 4 illustrates multiple overset grids. In where
this case the minor grid resolving the airfoil leading-
edge flap (slat) is shown Intersecting the main airfoil. a xxtk . (*J+i - 2* +J

Such grid points must be turned off and a fringe bound-
ary must be defined about these points with data sup- 2 k i

) /(Ay )
2 (2)

plied by interpolating the major grid. (yyk k+x I k

A system of overset grids has many advantages. It The factored difference equations can be represented as
can be used to treat complex geometries, resolve large
flow-field gradients, and eliminate grid distortion. (I - W6 X)( - .6 )(*n+ -n) - .(6 + 6 )vn (3)
Overset grids ate easier to construct than grids gen- ,,"

erated by patching meshes together at common boundaries
because each grid is somewhat independently generated. or in algorithm form as

This independence ensures that each grid will maintain (I - xx)A** (6 + 6 )W (4a)
a veil-ordered set of points that are successively xx y
indexed. Well-orderedness is an important property of
a mesh because when finite-difference approximations (1 - w )(*n+l - o) . At* (4b)
are applied to It, a set of structured algebraic equa-
tions results. The computational efficiencies gained one can flag off points by simply resetting ws
by using, for example, spectral methods, approximate
factorization or alternating directions techniques, and
vectorized computer programming require structured 0 flag off

matrices. Another advantage of overset grids is a C -
5
"Jk "J.k - (5)

natural occurrence of overlapping grid points between flog on

interpolated boundaries. If the grids are sufficiently
well overlapped, the stability of an implicit algorithm Alternately one can initially proceed as if none

should not be adversely affected, even though the of the points is special. Then, just before solving

interpolated boundary-values are updated In an explicit the first tridiagonal matrix corresponding to Eq. (4a),

mode. For a similar reason, iterative convergence can set to zero the appropriate elements of the matrix and

be improved by overlapping mesh boundaries () its right-hand side. Consider the simple 6 w 6 system
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b c *l r defined by the minor grid Indices k - constant and

'a b c i j - I to JMAX. To achieve this we have used theI 21 following method.
a b c , r3

a b c rI(6) A boundary curve corresponding to k - constanta b r.is defined within which points are to be blanked. Call

a b c this curve C (see Fig. 5). The origin to this region
a I b is defined by averaging all the points on C. We then

a bJ SJ search for the point on C which is the farthest from

the origin. The distance from the origin to this point
If elements in rows 3 and 4 are to be blanked, they are defines a radius, Kmax. The radius and angle for every
simply reset as point on curve C with respect to the origin are also

computed and stored.
b c A ~ r

b c r2 Points of the major grid are tested to determine
if they fall within curve C. Provision can be made to

1 i ol exclude points that obviously cannot be within the
SI [o~(7) closed-curve C by letting the user input the index

a b c|As r s  for error, however, so such an option has not been pro-

vided. The first test, then, is to compute the dis-
tance between the major grid point b, ing checked and

the origin. If this distance exceeds Raax then the
In this example, nondiagonal elements in rows 3 and 4 point must lie outside of C; if the point is less than
are zeroed so that no change is computed for (1n+1 -n). Rmax, its angle with respect to the origin is compuLed
A similar treatment must occur in solving the tridiag- (see Fig. 6). The points along C are then searched
onal matrix corresponding to Eq. (4b). Ultimately, the to find that point on C which is Closest in angle
values of , at points 3 and 4 are updated by inter- measure to the major grid point being tested. Points
polation of values from another grid. on C to either side are then tested so as to find

angle bounds. (Because C is closed, the angle will
Although the above illustration is for a Laplacian, jump from -n to +4w somewhere between two points of

the Beam-Warming (9) algorithm for the Euler equations C; if the test point has an angle within this range.
is treated in precisely the same manner. Overset grid the bounding C-curve points are already known.) If
results obtained using the Euler equation algorithm the radius from the origin to the test point is less
will be given elsewhere, than the weighted average of the radii of the bounding

angles, the point is within C. A flag is then set and
Finally, the boundary condition must be recoded, this information is stored. The above test is fairly

Interpolation routines to update overset grid boundaries reliable unless the body is concave (Fig. 7). In this
must be provided, and modular coding is needed to case we can partition C into a C' and C" and work
account for the possibility that a minor grid may have with two origins.
different boundary-condition treatment than the major
grid. For example, in Fig. 2 the k = I line in the The previously described algorithm for locating
major grid represents a periodicity boundary, whereas points within a given boundary is only one of many that
the k = 1 line for the minor nose grid represents a can be envisioned. An algorithm that can be more
solid body boundary. Thus, separate boundary-condition readily extended to three dimensions is sketched,
routines must usually be supplied for each grid, and although it has not been tested in computation. Let
these should be provisioned for in a modular way. the boundary curve C be represented by k - constant

as before and again assume that C is continuous and
LOCATING SPECIAL GRID POINTS closed. If C corresponds to n - constant, and if

the j index increases clockwise (see Fig. 8), then
As part of the overall grid-generation package for q represents an outward normal to C. Let Rp be

the chimera grid scheme, a program must be included the vector from the nearest point on C to the major
that locates and flags those points that must be blanked grid point being tested. If the dot product of In
in the algorithm or that serve as special boundary with Rp is positive, the point being tested is out-
points. To date, we have used simple bookkeeping pro- side of the curve C; if the dot product is negative,
cedures and allow the minor grids to interact with only the point is inside of C.
the major grid. The minor grids are not allowed to
interact with another body boundary (as shown in Fig. 3. Location and Interpolation of Mesh Overset Boundary
for example). In time, these algorithms are expected Points
to be refined, generalized, and made more efficient
than current versions. Outer boundary data for any minor grid must be

provided by interpolating the solution of the major
blanking Points Within a Body Boundary grid. If B is a point on the outer boundary of a

minor grid, our first task is to locate the nearest
As indicated by Figs. 1-4, some of the points in major grid point (or points) from which interpolation

the main grid will fall within the body boundary of a can take place. The simplest test is to compute the
minor grid. These points must be blanked out. Because distance between point B and points of the major grid
the minor grid points near the body boundary may be and to select that major grid point which is closest to
more finely spaced than the major grid points that are B. Again this search can be speeded up by excluding
being turned off. we should blank additional major grid major grid points a large distance away.
points until the grid spacings are more compatible.
Thus, for the situation shown in Fig. 5, we may choose If the boundary curve is smooth, one can also use
to turn off all major grid points within some boundary a "stencil-walk" to speed the search. As sketched in
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Fig. 9. after the nearest point to 5 is found, the solved using the algorithm given by Eq. (4). Blanked
nearest point to the next boundary point B' can be points are treated by using the relaxation factor as
located by searching the stencil for the point that is given by Eq. (5).
nearest to B. Of the stencil of nine points, find
that one which is nearest to B'. For this nearest As a first test of the overet grid system, a
point, search its stencil for the point closest to B9, body-fitted 0-grid ws superimposed on a stretched
and so on. until the point tested is closer to B' rectangular grid which served as the major grid. Fig-
than any of its stencil neighbors. ure loa shows an overview of an O-grid about an

NACA 0012 airfoil overset on the rectangular grid; a
The major grid will have various "holes" of closeup is shown in Fig. 10b. The circular symbols

blanked points. The perimeter of these points serves plotted over points of the rectangular grid indicate
as an inner boundary to the major grid, and solution nearest major grid points that are used for interpo-
data must be supplied to this perimeter. In this case lating the outer boundary points of the O-grid. [tere
the nearest minor grid point must be located for inter- the O-grid is considered to be the minor grid. The
polation of minor grid data onto the perimeter of the plotted x symbols indicate points in the rectangular
blanked major grid. A search similar to that of the grid that are blanked out. Although not specially
first approach outlined is used. flagged, the perimeter of the blanked-out points is

updated by interpolating nearby minor grid values. In
For interpolating the grid boundary date from the this case all rectangular points within the k - 3

field of another grid we have simply used second-order grid line of the 0-grid are blanked. A perimeter of
Taylor series approximations of the form rectangular points adjacent to those blanked out is

also flagged. The calculated pressure distribution is

(A)2 Indicated in Fig. lOc for incompressible flow and is
y 2 xx 

+  
Y - yy shown compared with exact theory; the comparison is

satisfactory.
(8)

The grids shown in Figs. la and 1lb show a 12Z
where ellipse modeling a nonlifting biplane configuration.

The lower boundary of the rectangular mesh serves as a
Ox " Cx + nxiP (etc.) line of symmetry. Unlike the previous example, this

geometry would be poorly meshed by use of only a single

and Ax and Ay are the increments beO.,en the point O-grid. This is because the line of symmetry is so
from which the interpolation is being =,le and the close that the 0-grid would become very distorted. The

point being interpolated for. A linear combination of computed pressure coefficient is indicated in Fig. llc.

such interpolation formulas can be written from nearby Another application of the overset mesh system is
points to ensure a very smooth interpolation. We have indicated by Figs. 12 and 13 for an inlet with and
not needed such a technique to date. without a centerbody. In the first case (Fig. 12). a

Because the search of nearest points is limited stretched rectangular mesh is used as the major grid

to the index range that excludes fixed boundaries, the end a body-fitted C-grid is used to resolve the inlet.

derivatives of and . etc., can always be formed The detailed grid view (Fig. 12a) shows blanked-out
points and nearby interpolation points on the rectangu-

with central differencing. This simplifies the inter- lar grid. Nearby points on the minor body-fitted grid
polation formula insofar that it does not require the which are used to interpolate the perimeter of blanked-
use of special one-sided differencing at boundaries. out re ular pointeot shown. b lanoed-out rectangular points are not shown. By choosing

A criticism of using such a simple interpolation various values of stream function to be constant on the
formula is that conservation is not maintained. ha body boundary we can control the mass flow into the
formulahoughhat conservationcis notfmaintained.nThat inlet. Computed streamlines are shown in Figs. 12b
is. although we may difference the flow equations in and 12c for mass flow rates that cause spillage
divergence form, the divergence property is not numeri- (Fig. 12b) and sucti 'ig. 12c). An additional set
cally preserved if some values are obtained by inter- ofids and sutiaal 12s). ar shon 
polation. This may be a problem if a jump discontin.- Figs and Inuthsattr ae ho in
ity such as a shock wave crosses the interpolation Figs. 13a-13c. In this latter case the inlet has a
boundary. Perhaps in this case interpolated values can centerbody that is fitted by shearing the sr rec-
be later adjusted to satisfy a numerical line-integral tangular grid over this boundary.
of flux. A final example shows an airfoil and flip arrange-

RESULTS ment using O-grids for both the major and minor grids.
This arrangement. in which the flap is tucked in below

As part of a package for generating overset grids, the main airfoil, cannot be nicely fitted by a single

a flow-solver code has been developed which solves the mapping with cuts. Overviews of the grids and computed
incompressible stream function. Although such a pro- results or o.indicated in figs. 14a-14d. The circula-

grai is useful in its own right, the application here tion of each profile is found autoatically in the*e
Is to uncover logic errors in locating and flagging cases by requiring a match of trailing-edge pressuresis t unove logc eror in o~singend lagingas a Ktutta condition. Using ihe Bernoulli equation.

special points in various kinds of overset mesh eye- th condition of setting the pressures t the point

team. The ultimate application for this linear code ave tin edge u, to the point

vill be to use it to assess the quality of a given above the trailing edge, u, to the point below. 1.

generated overset mesh system. For example, the gives the relation
Laplacian can be economically solved to help determine + 12)pp (0 + ny)vllo (9)
whether sn adequate number of points ore provided at. 0 y '].upr y r
say. an airfoil nose region or whether an additional
grid should be introduced to resolve some other feature. This relation uses the inviscid tqngency-boundary con-
Specifically. Eq. (1) in generalized coordinates is dition that is constant oa the body so 0 0; 4 and n
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1. Absrr- t equations have been developed by several research-

ers. Ballhaus and Steger
3 
and Ballhaus and

An r;,plicit, approximat,-factorzation, finite- Goor.ian" have developed an efficient method for
difference algorithm has beer. developed for the com- solving the two-dimensional low-frequency transonic
putation ot unsteady, inviscia transonic flows in small-disturbance equaLion. The resultant code,
two and three dimensions. The computer program LTRAN2, has been extensively used in spite of its
solves the full-potential equation in generalized various limitations. Recently, methods that moder-
coordinates in conservation-law form in order to ately extend the frequency and Hach number range of
properly capture shock-wave position and speed. A this equation have been developed.

5-7 
In addition,

body-fitted coordinate system is employed for the the effect of viscous corrections has been examined
simple and accurate treatment of boundary conditions by Rizzetta.8 In another effort, Borland, Rizzetta,
on the body surface. The time-accurate algorithm is and Yoshihara

9 
have recently reported on an algo-

modified to a conventional ADI relaxation scheme f-- rithm for a modified form of the small-disturbance
steady-state comoutations. Results from two- and equation in three dimensions with no frequency limi-
three-dimensional steady and two-dimensional unsteady tations. This code is currently being used to com-
calculations are compared with existing methods. pue unstea y

analyses.'
I ,

aeoyaisfrtrnoi 
lte

II. Introduction A practical tool for the computation of
unsteady, inviscid transonic flow about complex

Modern transport, military and rotor aircraft configurations must accurately simulate the signifi-
routinely operate in the transonic flight regime. cant physics and be computationally efficient for
In transonic flight, the aerodynamic forces are routine use in engineering analysis. Unsteady,
ertremely sensitive to small perturbations in the full-potential theory can satisfactorily replace

motion of the vqhicle. Unsteady flow adjustment is Euler equation solutions if the shock waves are
very slow as upstream propagation of information is sufficiently weak and yet maintain computer time
restricted by locally high subsonic or -upersonic and storage requirements similar to the simplified
flow resulting in large phase lags. In addition, small-disturbance theory. The unsteady, full-
the existence of embedded shock waves with the poren- potential equation has been solved using fully
tial for large excursions further complicates the implicit methods by Goorjian,12 Steger and
transonic-flow environment. Thus, it is not sur- Caradonna 13 Chipman and Jameson," and Sankar
prising that the most critical aeroelastic phenomena et al.15,

16 
The Chipman and Jameson procedure

occur In this flight regime. And while the super- solves a system of two equations for the two
critical airfoil sections are more aerodynamically unknowns, density and velocity potential, using an
efficient than c iventional airfoils, they are more approximate-factotization scheme. The method of
susceptible c f!iutter.' I.inearized, unsteady sub- Goorjian uses an ADI scheme to solve a scalar equa-
sonic aerody,:amic theory is incapable of predicting tion for the velocity potential by employing a
these complicated flows. In addition, transonic time-linearization of the density similar to the
prediction methods that use the harmonic approach to present approach. To date both of these methods

compute a small perturbation from nonlinear, mean have only been applied to two-dimensional nonlifting
steady-state flow have limited applicability. They pulsating airfoils using a simple, sheared mesh.
are valid only Cot small-amplitude, high-frequency The method of Sankar et al. uses the strongly
flows and cannot. ac,.-i, for shock-wave motions, implicit procedure and has been applied to compute
Thus, it is of paramoun :mp.;rtance to develop steady and unsteady flow over wings using a sheared,
methods that can properly compute shock waves and parabolic coordinate system.
their motions if their iole in transonic, aeroelas
tic stability is to be accounted for.

2  
The present procedure is an extension of the

Steger and Caradonna work" which used a stretched

Unsteady, -ranbdic, aett;dy,awi i.td. ba>:':I ('rte,;ian grid with small-disturbance planar bound-
on variuwi ,,uoca:" s-'.!-di;HaAr',, pot-rtial ary conditions. Currently. a generalized body-

fitted coordinate system is employed that can be

adapted to wings, wing-body combinatiors, anA
*Reearch ScieltList. :.m-.er AI-A. bodies of tevolutin. This method is unique as it
Associate Protessor. ,mbei AIAA. can use the mesh-point-efficient spherical grids

that are presontly being developed in conjunction
This paper is declarrd a work of the U.S Government and with this code. Steger and Caradonna reported that

thc-fore s i the public donain the unsteady scheme was a very poor relaxation
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algoritbm. In this work, the scheme I modified to with the Bermoulli relation, Eq. (2). transforming
an ADI relaxation procedure for computing fat, as

teady-state olutions by a i ple flag. I ' -2 -

The governing equations and boundary condi-
tions are discussed in Section I. In Section III/y-1
the conservative differencing and numerical alg- - (V + n don - (i + Y4
ritbe for the solution of the finits-difference
equations are presented. In Section IV, results are
presented for various two- and three-dimensional where

cases to verify the algoritm. Finally, concluding u - C + A,# + As
remarks are made In Section V. It & n

V - nt + A 4# + A29r + A 6 (5)

III. Mathematical Formulation W - t + Aso, + A i i As o

Full-Potential Equation and

The three-dimensional, unsteady, full-potential 2 2 +
equation in strong conservation-law form is given by A, . C x + &y +z

2+ 2+ 2

+ - (p4) + (PO ) + -0 (1) A y +
at ax y y at A, a + C+

where the density p is determined from the +(6a)

unsteady Bernoulli relation, for steady, uniform x x y y z z
incoming flow As . &2 2 + +r 2 2 ulx/y-

-. r + - 2 - * - #y - (2) As - ri 
2 2 

+ nZ2+ n
2+ ( ,t  xy -2yy + a

T h e d en s ity P nd v e loc i ty c oon e ts X , y . ( - n C ) + x( ; - &
and #, are nondimensionalized by the free-stream J y z s y x ( y y z
p. and speed of sound a.. The Cartesian coordi-
nates x. y. and z are nondimensionalized by a + 4x(Cy1 -n yn) (6r)
reference length t. such as the airfoil chord c,
and the time t is referenced to a/t. Here, U, V, and W are contravariant velocities

Equations (1) and (2) express mass conservation along the C. n. and directions, respectively,
for unsteady. inviscid, isentropic, and irrotational A, - AG are metric quantities, and J is the

Jacobian of the transformation I3(3,n.)/a(xy.z)F.
flow. The corresponding shock-jump conditions can The metric quantities in Eqs. (6a) and (6b) are
be a suitable approx1pation to the Rankine-Hugoniot evaluated using the following metric identities
relations for many transonic flow applications if
the shock waves are sufficiently weak. In deriving E - z
Eq. (2) the far-field is assumed to be steady. x C n 

y  
) Z - (Y -yz)

Transformation of the Equations &y " J(x zn-xnz) %y " J(xnzt Yxzn)

The treatment of arbitrary body boundaries is z y- x ) ' J(xy - xY) (
usually made more convenient by the use of a coor- -
dinate transformation which maps the body surface to ( - - yt2 ) - -1 - y y- T C
a rectangular coordinate surface In the transformed 1 - )J(x - - - YT - z I!
plans. Boundary conditions at the body surface can y - X2t - y ra

then be simply and accurately treated. In addition, X

these mappings can be used to cluster grid points in C J(xCYC - xCyC) t " - Yy- zxrz

regions of the flow with high gradients, thereby
enhancing numerical solution accuracy. A general Boundary Conditions
independent variable transformation is indicated by

At the body surface, flow tangency is required
& - 4(x.y.zt) t.e.. no flow through the body) This imposed by

seing the contravnrtant velocit. in the direc-
ri - n(x.y,zt) tion to zero. v,,z

C-c(x,yaL) W + A, + A4 4 A,, ,. - 0 (8)

I " t A similar condition (i.P.. V - Ie lnrposed at the
The strrang conservation-law form of Eq. (1) Is main- symmetry plane tor wing cabc-

taind by expressing it as For lifting ca:Aeq, , lcwincc u4|. . ma~e :oi

'v + + aV w a jump of potential across a wake-Mlke cut. In
(W) +. + - 0 (3) unsteady flow, vorrlcity is continitously shed fromthe wing. In a potential formulat.,n this Ib

approximately modeled with a cut ahigned with the
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shear layer. Here we further Idealize this flow by 3P
keeping the cut in the mean chord line plane. By a. B _p2-3a + U3 + V8n + Wia (12)
imposing the usual shear-layer assumptions, an
equation for the jump in potential. Finally, to better facilitate the application

of approximate factorization techniques, the cross-
r # u1, - - derivative term are lagged in time by rewriting the

implicit spatial derivatives in the form

along the cut can be derived. Across an Inviscid
shear layer, normal velocity and pressure are con- au) a _ 'n) + a(6u)n + O(h
tinuous. Since isentropic flow has been assumed, (0A1)na(,n+ n
the density it also taken to be continuous. The ni "* nh (n+1 n (V 0h
Bernoulli relation together with the continuity of a oV)n p a ( a (n) + a ((V)A + O(h)
density requite* that i n

(v)r + (w)r4  0 (9) a ( -)ni a( A3 )na(,n+1 - n) + a ( )n + h)
(13)

where (V) and (W) are the averages of the contra-
variant velocities above and below the wake, i.e., Combining Eqs. (10)-(13) yields the conservative

time-discretized form of the full-potential equation

M (V + V involving only the potential at the new time level2v - ( u  Z

)I *~~* + w a(U - !L. [a ( A1 )nl(w) (Wu + w) T in

This convection equation for r is imposed in the + an (6A,)an + a (6A3 )n, (pn - 40)

wake.

At distances far from the body the flow is - (,n - *n-i) + - (4n _ 24n- +

required to be free stream, which, with the use of
p. and a_ as the references, is

_ h + n-x) + h u a + Vn-a
- MAX +n (n n

p-Ih2
P+ Whlia )(on _ n-) La2 ( U)n + a oV),

where M. is the free-stream Mach number. For 
n  n

steady lifting cases, the velocity potential at the
outer boundary is updated with the usual compressi- + 8 ow)'] (14)
ble vortex solution with strength r.

where -= YJ

Ili. Numerical Algorithm

Spatial Differencing
Temporal Ditferencing

An optionally first- or second-order-accurate
A first-order-time-accurate approximation to spatial differencing of Eq. (14) is given by (note:

Eq. (3) is obtained using Euler backward differencing the spatial indices are suppressed here for
convenience)

- n + h,_(,,)ni + ? V) n+1 + a (SW)n+,] _ 0

(10) I + h(Un6 + Vn6 + wn6 - h2

where h - t and 0 - p/J. To solve a scalar sys- +
tem of equations for the potential at each new time + A + (PA )0 ]J(n _
level the density is linearized about old time n n
levels. The density coefficients in the spatial
derivative terms are lagged to level n. A linear- n n-) n-1n- -
ization resulting in a conservative differencing of (n + e L (On - 20 + n-
the time derivative ot the density is obtained by S-

noting that P P(#) and using a Taylor series
expansion h_ - + h Un-I 

n
n-

6 - -n .[,n 0 ( ,n~i - 0n)] 0 *YI- [

(_ n, + OQ/ + h ( o +

+ Z(pg)j (1 )

where )P/3 is a differential operator obtained
from the Bernoulli relation
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where witb similar treatment for Dj4-./. Vk-i/z. SOd
Rt-1/1.The metric tern at leme poiato are
obtained using simple averages (e.g.,

C (AAL)l C [A lj+ 4iija12-'-- (J+1 " *) A 1.2/ 2 - (A.j + Atj+)/2). Here A& - An - AC - 1
aS only the varying indices are indicated. The
derivative terms in the contravariant velocities

Aj_J -1 01 (#j #J_1 expressions are replaced with the second-order-
Ai. J.i\/ 2 2 ( ij accurate central difference approximations

-I [Azk . j-l /(k+ + )(k+ i . y + - #J-d
n( [ A 2 k /2lJ 2 k )

A__1_k_____ k- nk nk ' I~ - #k-d (9
2k/ k-1/2 2 k

[AL+1,2ji i, 2(Pt.1+ ( l t 2 ~ ) ~ Stability is maintained in supersonic regions

by introducing an artificial viscosity term through

A A3  p + C-,.2 P 1)1  the use of an upwind bias of the density

(16) p, , - (1 - + 
PA

and (16) J

6 + V++R+ + [ ) PlUj + (J-+r

(20)

/ where r - 0 or I for U < or > 0. The parameter

+ k - 2 for second-order spatial accuracy in super-

6 6v) - (k+ + 
2 k sonic regions, and e - 0 for first-order accuracy.

n "k+-//2 The switching parameter v is defined by

P+k-) -max[l (P/p*)2,0]C U > 0
J-1 j~k+ P-'V (17) mxl J+/

J+1' J1 /2 < 0

-Pi+ + P12¢ +1/2k 2 1+1/21 with I I C < 10. Note that upwinding is used in

the direction only at present. For the compu-
IPL + -_ tations performed to date this has been satisfac-

J-j / 2 2 W -/ 2  tory, but in general it will be necessary to add it
in the other directions as well (see Rsf. 17 for

The contravariant velocities at the mesh half-points the extension).
are determined from The metric quntities on the right-hand side of

Eq. (17) are computed using three-point, second-
j+1/2 =tj+1 /2  A+/(J+ * 4j) order-accurate difference expressions

+ A~j+16n* + (x -x X )

+ [sj+164 j+l + Asj6C$j x -- (x -x) (21)

n 2 k+i - k-i 21

V k+i/ ntk+i/2 + A Yk+i/7l0k+i - Ok
)  

x I

+ [ Ak+ IOk+ + A4k
6

,k] (18) with similar treatment for the y and z metric
terms. At the boundaries, 3-point, one-sided dif-r+ 6 ference expressions are used.

+ Ask+0k+l AlkAkJ It is necessary to subtract a numerical trunca-

+Lion error term because of an incomplete metric
W +1/2 qtt+/, + A, + -1 4) cancellstion. 3.1

0
19  

If the velocity and density
are set to free-stream conditions the;a the terms in

+ 6 + + As1i4t ]  Eq. (17) will not be identically zero, but will be
proportional to the numerical truncation error in
the differencing of the metrics. This is caused by

+ . + A the choice of differencing used for the metric quan-
+ [.+ 'no++ A61n'f t tities in Eq. (21) and the spatial derivative terms

In Eq. (17). The error term can be quite appreciable
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for a highly stretched grid. Let It represent the space-time derivative terms on the left-hand side
truncation error term obtained by setting * - Mz with a simple flag giving
and p - 1 initially and computing the terms in
Eq. (17). i.e., (I - hl(A)Ug(I - 0 n(AA)n n h - (6.,)nj ]

M. +,+, ,a, + 9-~ ~ ST +. a(m .. (!RR) (22) ,'. n ( n+~~~

This error term is then subtracted from the right- '

hand side of Eq. (15) at each time step. This (26)
correction is iarticularly effective in the highly
stretched, coarse-grid far-field where the solution This is satisfactory for subcritical and slightly
is close to free stream. Near the airfoil the grid critical cases, but additional temporal damping will
resolution should be sufficiently fine that P,. is be required for cases involving large regions of
negligible, supersonic flow. For these cases, the space-time

derivatives on the left-hand side of Eq. (23) may be
Approximate Factorization turned back on with proper upwind bias to provide

the necessary temporal damping and yield steady
To avoid costly matrix inversions at each time state performance that approaches the AF2 scheme.

level Eq. (15) is approximately factored into
L , L., and L. operators Boundary Condition Implementation

+h hUn2 - A The body-surface flow tangency condition is

L.. ( A1 nJ imposed by using Eq. (8) to derive a space-time

extrapolation procedure for updating the solution on
[I hVn6 n the body. A second-order accurate, finite-

n An n(A2h2difference approximation to Eq. (8) can be derived

by replacing the and n spatial derivative terms
xiI hWn h ( A 3 )n3J n+1 n) with central difference operators and the c derv-

n 3 _( -ative with a three-point one-sided difference
expression. The resulting equation is written in

-n-1 delta form and approximately factored to yield

(pn - *n-1) + n (,n _ 2 0n-l + *n-
2
)

n (I 3A A n+1

+ _ (,n (Un- 16 - (In+ n+i) 2 " A 6  n1'
++ (n_ - ) h + V 3 (A - + t + (A6+ A n)02

Wn-, )¢ _+ n n+1 .n+ia where Ann) nt= - i-2. At the trailing edge,

two-point one-sided difference operators are used

+ ( n - R | (23) for 6 . Similarly, at the symmetry plane a one-
sided operator is used for 6n. After the interior
flow field has been updated, Eq. (27) is then solved

This equation has the form to update the solution on the body.

L & L n( n+i - n) - R (24) The governing equation is solved on the sym-
metry plane for wing cases using the warped, cylin-

drical coordinate system shown in Fig. 1. Along

and it is implemented as algortm as this boundary flow tangency is imposed by setting

the fluxes on each side of the wall (k - 1) to be
L I Requal and opposite, viz

(25) V 1k.i/2 0 k-3/2

L A** For this grid topology, the solution for the veloc-

n+x *n + , ity on the wing extension (i.e., the flat-plate sec-

n ntion beyond the wing tip) is determined by averaging

the solution from known updated values one surface
The algorithm Eq. (25) requires only a series away (k - 2). In particular, the potential is set

of scalar, tridiagonal inversions and it is there- to be the free-stream value on the flat-plate sac-

fore very efficiently solved. Computer storage for tion (i.e., 0,(xO,z)) plus the average of the per-

three levels of # and one level of o are turbations from free-stream values at the points

required, immediately above and below. The density is also
extrapolated and averaged on the wing extension.

Steady State Algorithm
The new values of the circulation f in the

A fast, steady state ADI relaxation algorithm wake are obtained by solving Eq. (9) after the
is readily obtained from Eq. (23) by turning off the velocity potential has been updated In the flow
unsteady terms on the right-hand side and the field and on the body surface. Equation (9) is
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solved using a finite-difforece approximation where computatiomal domain using successive overrelaxation
9n and aC are replaced by the central and backward (SWO).
difference operators 6 and tC. respectively. The
equation 1 written in delta form a The grid generation program used for wing case@

that use the warped cylindrical coordinatas was

(a + at(w) + At(v)n a)arn presented In Ref. 17. The finite-difference wesh
is generated by employing a standard two-dimensional
grid-generation acheme similar to GRAPE. Numerical

- -At((V)n6 + (g)n )rn + At(m) mAr_ (28) solutions to the elliptic, partial differential
T1 C grid-generation equations are obtained in each

spanvise plane used as a defining station for the
Equation (28) is used to update r to the new time wing. The equations are transformed to and solved
level. The trailing-edge value of r is obtained in the computational domain using a fast
by setting it equal to the new value of the jump in approxisate-factorization algorithm. This estab-
potential there. The solution to Eq. (28) is then lishes values for x and z in each spanwise plane.
computed by marching in the C direction, thus The coordinate values in the spanwise direction
solving tridiagonals in the n direction at each (y values) are computed from a stretching formula
C - constant line. that in its simplest form gives equal spacing over

the wing with relatively rapid stretching beyond
For nonlifting flows, the outer boundary the tip. For the wing extension, a flat-plate

remains fixed at free-stream conditions. For steady section is used.
lifting flows, the values of the potential are
updated using the compressible vortex solution For the three-dimensional flows using warped

spherical coordinates, a hyperbolic grid-generation
- _ + (29) procedure was used (Steger, J. L., Jespersen, D.,

Mx 2, (2 and Strigberger, J., private communication). This

procedure is a three-dimensional extension of the
In the preliminary calculations obtained, the outer scheme devised by Steger and Chaussee 21 in which a
boundary values for the potential in the unsteady system of hyperbolic equations is solved using an
case remain unchanged from their steady-state iwpicit, marching finite-difference scheme. Two
values. Care is taken to place the boundary suffi- of the equations are derived from orthogonality
ciently far sway to prevent reflected waves from conditions and the third relation i- a specifica-
contaminating the solution at the body. tion of the mesh cell volume. Since this is a

noniterative algorithm, very fast grid generation
Density Update is obtained.

After the velocity potential has been updated
in the entire flow field using Eq. (25) and on the IV. Results
boundaries and wake using Eqs. (27), (28), and (29),
the density is updated. The density Is computed The algorithm Eq. .25) has been coded into a
from the Bernoulli relation, Eq. (9), where the computer program named TUNA (transonic unsteady
spatial derivatives.are replaced with the difference aerodynamics). The three-dimensional computer code
expressions of Eq. (19) and the time derivative with functions as a two-dimensional code by simply
s two-point backward difference operator. At the setting a flag. Consequently, steady-state calcu-
body surface, an expression for the t derivative lations in two dimensions were first performed to
is determined by solving Eq. (9) for Oc, i.e., verify the accuracy of the steady and unsteady

algorithms. The solutions obtained with the present
+ - + A, method, for several standard test cases, have been

" A3  t + A5  
+  n)  compared with the 2D steady, transonic comuter

code TAI (transonic airfoil analysis)22 ' which
and is also used in the computation of the contra- solves the steady full-potential equation using the
variant velocities on the body. At the wall boundary approximate factorization scheme AF2.
(y - 0), a two-point, one-sided difference expression
was used for the n derivative. All exponential A comparison of solutions for a subcritical
functions were eliminated by using binomial nonlifting test case is shown in Fig. 2. The pres-
expansions. sure distribution on the upper surface of an NACA

0012 airfoil at M. - 0.72 and n - 0* shows
Grid Generation excellent agreement between the two codes. Both

codes used 1031 O-mesh type grids with TAIR being
A number of grid-generation programs have been internally generated. The grid used in the present

used in the present investigation because of the method was generated using GRAPE (Fig. 3). This
wide range of geometries considered. The 0-type steady-state computation was performed using the
grids used for the airfoil calculations were steady and unsteady algorithms. An optimum set of
obtained using the grid-generation program GRAPE acceleration parameters was found for the steady
(grids about airfoils using Poisson's equation).20  algorithm and an optimum time step for the unsteady
This grid-generation scheme numerically generates algorithm. The residual histories for these compu-
solutions to Poisson's equation to establish regular tations are show it Fig. 4. The new steady scheme
and smooth finite-difference meshes around arbitrary displays rapid steady-state convergence and is at
two-dimensional bodies. The inhomogeneous terms are least an order of magnitude faster than the unsteady
automatically chosen to control the mesh point spac- echeme. The present method dropped the mcximum
ing adjacent to the boundaries and the angles with residual four orders of magnitude in 43 iterations
which mash lines intersect the boundaries. The compared to 74 for TAIR. Past experience has shown
equations are transformed to and solved in the that the ADI convergence rate is about twice as

fast as AF2 for subcritical flows.
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The subcritical lifting results (Fig. 5) for a on the wing for all five span stations shows excel-
MACA 0012 airfoil at M. - 0.63 and a - 2' indi- lent agreement between the two codes. The lift
cats that the circulation model is suitable. The coefficients at the wall station for TUNA and TWING
same grids described in the previous case are again were 0.250 and 0.253, respectively, which represents
used here. There is a slight discrepancy between about a 25Z reduction from the two-dimensional
the two codas in the amount of leading-edge suction. results previously obtained. TUNA and 'EWING con-
This in most likely a result of differences in the verged the maximtm residual two orders of magnitude
grid, in particular, the amount of grid-point clus- for this case in 85 and 100 iterations, respectively.
taring around the leading edge. The lift coeffi-
cients for TUNA and TAIR were 0.338 and 0.334, The results for a supercritical lifting solu-

respectively, tion with K., - 0.75 and the wing at n - 2* are
compared in Fig. 9. The two solutions are in reae-

As a fital two-dimensional steady-test case, sonably good agreement. At each span station, there
supercritical lifting-flow solutions are compared is a slightly larger expansion computed by TUNA from
in Fig. 6 for a NACA 0012 at H - 0.75 and n-2*. the leading-edge region of the airfoil section to
A finer grid with dimensions of 151x31 was used for the shock position, which is located about 2.5%

the TAIR computation. The two solutions are in farther upstream than that computed by TWING. This
good agreement and the shock profile for the present discrepancy may be due to the different ways in

method is quite sharp despite the coarser grid. The which each code determines the solution on the wing

lift coefficients for TUNA and TAIR for these two extension. As mentioned before, TUNA extrapolates

computations were 0.5963 and 0.5881, respectively, and averages the solution there while TWING solves

The TAIR solution for each of the airfoil cases does the full-potential equation on this section. The

not compute a stagnation point at the trailing edge, shock profiles computed by TWING appear to be

as in the present method, because the density is sharper and the reexpansion singularity is not

extrapolated to avoid potential problems from the captured by TUNA.
grid singularity. The present method does not

extrapolate the density for these computations but The two-dimensional grids employed here are
it has been found that in some fine-grid cases this O-type grids. Even though these grids require

causes oscillations and overshoots near the trailing special attention at the trailing edge, a result of

edge. the mapping singularity, they are preferred over
C- and H-type meshes because they are more grid-

It is worth noting that for supercritical cases, point efficient, especially in the far-field. Simi-

the AF2 algorithm has been shown to provide faster larly, warped spherical grids offer the same advan-
convergence rates than ADI. But as previously tage in grid-point efficiency in three dimensions
discussed, the judicious addition of certain tam- over current wing-type grids that are typically

poral damping terms may provide convergence rates constructed in a manner similar to warped cylindri-

for AD[ that approach AF2. These modifications, as cal grids used for the previous three-dimensional
yet, have not been tested. Convergence-rate com- calculations. The use of spherical grids requires
parisons for supercritical flows with large regions special treatment to handle the mapping singularity

of supersonic flow and strong shock waves have on the axes. This capability has been incorporated
indicated that AF2 converges 2 to 3 times faster in the present method.
than the present ADI scheme.

To demonstrate the ability to employ spherical

Unsteady flow results are shown in Fig. 7 for grids, the three-dimensional incompressible flow

an NACA 64A010 airfoil sinusoidally oscillating in over a sphere is presented as a simple check case.
plunge +1 about n - 0'. The reduced frequency, A comparison between the exact incompressible flow

k - wc/U., is 0.4 and M. - 0.80. The lift coeffi- solution and the present method with H - 0.01 is
cient is plotted vs time during the fourth cycle of shown in Fig. 10. A 40x21x22 radially stretched

oscillation. Also shown are computed results from spherical grid was used. The solution shown is the

an Euler equation solution.
18 

The magnitudes of pressure distribution on the upper surface of the

the lift are in excellent agreement, with only about sphere from leading to trailing edge in the plane of
a 1% discrepancy. In addition, the computed phases symmetry perpendicular to the axes. The agreement

are in good agreement. The Euler solution displays is correct to plottable accuracy. The maximum

a phase lag of approximately 350 in comparison to residual converged six orders of magnitude in
38' as predicted by TUNA. Also shown are pressure 30 iterations for this case.
coefficient distributions at three times correspond-

ing to zero lift and the maximum (positive and A more complicated geometry using a spherical

negative) values of the lift. grid topology is an ellipsoid type wing with a chord
of 1, aspect ratio of 4, and thickness of 1/4.

Three-dimensional, steady-state computations Here, as with the sphere, the axes of the spherical

were performed for a rectangular wing of aspect grid are aligned with the y axis and the flow is
ratio 6 with an NACA 0012 airfoil section and com- in the x-direction. The surface grid-point distri-

pared with the 3D transonic computer code TWING bution and otiher partial views of the grid are shown

(transonic wing analysis) that solves the steady, in Fig. 11. 'he pressure coefficient on the upper

full-potential equation using the AF2 scheme. The surface in the y - 0 plane is shown in Fig. 12 for
identical warped cylindrical grid system sketched H, - 0.77. A relatively strong shock can be seen at
in Fig. I was used for the computations of the com- about 85% chord. The shock profile is not particu-

puter codes TUNA and TWING. The dimensions were larly sharp but the grid is fairly coarse with only
1001xOx30 with 5 span stations on the wing, which 60 points around the body in the E direction. The

Is a reasonably coarse grid in the span direction. residual converged 3 orders of magnitude in
A comparison of solutions for a subcritical 100 iterations for this case.

lifting case with K., - 0.63 and the wing at The current version of TUNA has been programmed

a- 2* is shown in Fig. 8. The pressure distribution and run on the CRAY IS. The program requires
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A ZONAL APPROACH FOR THE STEADY TRANSONIC
SIMULATION OF INVISCID ROTATIONAL FLOW

Neal M. Chaderjian t and Joseph L. Steger$
Stanford University, Stanford, California

Abstract efficiency thus offsetting the advantages of a zonal ap-
A finite difference tonal method is developed to proach.

compute steady inviscid transonic Bow by coupling a Whether the use of a zonaL method will ultimately
semi-flux split form of the Euler equations in a vor- prove better than Just using I single general equation
ticity producing zone with a zone of scalar and vec. set Is a question that will likely remain moot. but
tor (i.e., dual) potential equations. The dual potential several developments have occurred which In our view
equations permit vorticity convection, but not produc- make the zonal approach more attractive than pre-
tion, and are efficiently solved as an iteratively decou. viously. The first development Is that finite difference
pled set of scalar equations. Zonal results presented for Inviscid and viscous boundary layer Interaction &lgo-
a nonlitting biconvex airfoil on a stretched Cartesian rithms are becoming available for solving separated
grid show substantial savings in CPU time compared viscous flow and these schemes appear to be much
to solving the semi-flux split Euler equations alone, faster than Navier-Stokes algorithms. The second de-
The dual potential equations also provide an alternate velopment Is the appearance of efficient methods for In-
way of treating potential flows with circulation. This cluding rotationallty effects Into essentially potential-
has been demonstrated by computing a subcritical flow like governing equation sets. It Is this second develop-
over a lifting airfoil using generalized curvilinear coor- ment which Is of Interest to us In this paper. .
dinates. A zonaJ algorithm becomes more advantageous

L Introduction If potential-like equations can be generalized to simu-
late rotational. nonlsentropic flow without loss of com-The development of efficient numerical solution putatlonal eficiency. Ths 13 because more of the flow

techniques for simulating rotational compressible Blow field can be treated with the more efficient generalizedhas always been subject to two competing philosophies, potential code and fewer zones and thus fewer interface
In one approach the Navier-Stokes or Euler equations boundaries have to be Introduced.
are programmed throughout the entire domain. The two zone method for
overall computer code is quite general in its applicability In this paper we study a to eqmeth e
and the programming is straight forward in the sense solving Inviscd transonic flow without requiring the
that only one equation set is coded. In the other ap- flow to be irrotatlonai. Shock waves are captured Ini
proach the flow field is partitioned into zones which use the first zone using a semi-flux split implicit finite
the simplest and most efficiently solved equations pos- difference method to solve the Euler equations in strong-
sible. For example the Navier-Stokes equations may conservation-law form. In this algorithm flux splitting
be used in one zone, the nonlinear potential equations is used In the direction along the body, and central
in another, and perhaps linear theory in the remain- differencing is used In the direction away from the
ing field. This zonal approach has the potential for body. Because of this differencing structure, this at-
saving substantial amounts of the computer resource. gorithm Is readily extended to Incorporate thin layer
However, a zonal code is significantly more complex viscous terms although we do not exercise this op-
to program because several computer codes must es- lion here. A dual potential formulation Is solved In
sentially be written (one for each governing equation a zone away from the shock and is able to correctly
set) and each zone must be interfaced. Moreover, con- convoct but not generate vortlcity. This second zone
siderable care must be taken in interfacing zones be- slightly overlaps the shock zone and extends over the
cause poor interfacing can result in computational in- rninilnder of the flow field. The dual potential scheme.

whls:h is similar to a formulation due to tlafez and
Lovell'. decomposes a velocity field Into gradients or

t Research Assistant, member AIA.A. scalar potential and vector potential. The vector poten-
2 Associate Professor, member ALAA.
This paper Is declared a work of the U.S. Government
arni therefore Is In the public domain.
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ind function accounts for vorticity. and a a conse- The variables have been nondimenslonalized by
quence. does not require a circulation cut for a lifting the free stream density and velocity as
airfoil as does a scalar potential formulation. The cru-
cial advantage of the dual potential formulation over
a primitive variable formulatiJon for the Euler equa- P/Poe
tions Is that the resulting dual potential equations are I -
weakly coupled. They can thus be treated In scalar 8 - "
mode and can take advantage of all of the numerical
efficiencies developed for the transonic potential equa- 
tion. c(GU'

in the following sections we discuss the govern-
ing equation sets and zonal coupling concepts. A set of
boundary conditions are developed which permit vor- where the has been suppressed for convenience.
tIcity convection, and a new way or treating clrcula- In the present test program we use small distur-
tion by taking advantage of the stream function-like bance thin airfoil boundary conditions so only simple
properties of the dual potential equations are presented.Finaly.the umeicalalgritms ae dveloed ol- stretching transforms are needed to cluster grid points.
Finally, the numerical algorithms are developed fol-

lowed by a discussion of results and concluding remarks. The stretchings are of the form

IL Zonal Formulation
Governing Equations (-)

The flow field has been zoned between two equa- '1 (

tion sets. In regions of expected vorticity generation.
here shock waves, the Euler equations are solved In-
strong-conservatlon-law form. In transformed coor- Consequently.
dintes these equations are given by

(Vm0 . 1/,-=0
(1) +g and Eq. (1) Is very much like its Cartesian counterpart.

where In the remaining part of the flow field a restricted
form or the steady Euler equations are used. In non-
dimensional variables these are given by

P - (,F + (,G)/J continuity
( -,n 8 -aF ,G, e,(pu)+,(pv)-o (3

Crocco (vorticity) equation

and 8', - alu = -- rM,'-(v0 8 e - uaysi (4)

constant entropy along a streamline
Pu s + p PUV

F I G- I G- + pa+ VS - o (5)
\ u(e + p)J ku(e + p)J Bernoulli equation

In the above equations p Is the density. us and v the P.[ 4 IUCartesian velocities in the x and y-directions. p V2 ,=I2 ~~(~i'v)e-e (6)
I7- I } - kpq'j Is the pressure and e the total energy 2
per unit volume. The fluid speed Is q. The Cartesian
flux vectors F and G correspond to the z and y-
directions, and J Is the determinant of the transfor- The nondlmensionalized variables are consistent with
mtion Jacoblan. those used for the conservation-law-form equations

W M1

- ,8,

______ __ 'a



with nondimensional entropy i a (a - .ao)/R. Once and
again the - has been suppressed with R the perfect
gas constant, -f the ratio of specific beats, and Ad the 0((a* *4 + a2 0) + 9(a 2 o + as 0-)
Mach number.

In regions of entropy production, for example (y" 2 J)-1l(Ca + '7. J) -U(ivse + 0i8ae)J

across a shock wave or in viscous layers, Eq. (5) i,
invalid. The simplified equations as given also assume
uniform stagnation enthalpy. although it is relatively where
easy to incorporate this effect into the equations and
to solve as well the equation

I - Cge + 7409 + cyte + a7e,
uOh.g + v8ht - 0 (7) V - C14' + qVi' - fate - nao',

In order to take advantage of efficient poten-
tial flow solvers, a dual potential representation of For the current zonal algorithm applications we
velocity is introduced into the simplied equation set. will again restrict the transforms to the simple stretch-
Specically, the velocity components are decomposed ings ( - ((z) and qi - 7(y). However, the fully trans-
into scal-r potential and vector potential functions which formed dual potential equations alone will be used tofor two dimensions are given by solve a subcritical lifting airfoil flow in order to il-

lustrate their applicability to flows with circulation

== +0 ~without the need to impose special cuts in the field.
S= h - =0 - (8) Zone PartitloningV 020 OF- ' - 0, (8) As sketched in Fig. Ia and 1b, the conservation-

law-form equations of mass, momentum, and energy

are to be solved in shock regions where vorticity is

generated. Ideally this conservation-law zone would
where d is the third vector potential componen int.ntro- be kept as small as possible as shown in Fig. In. This.
ducing the dual potential velocity relations into however, will require shock wave tracking logic and3) and (4) we obtain' consequently we are currently defining a much more

continuity generous stationary zone for Eq. (1) as sketched in
Fig. lb. In the remaining flow field the simplified

8-Wo(.: + *[ + aOUP(l - q] == 0 (9) governing equations are solved in terms of the dual
potential variables. For uniform incoming flow entropy

Crocco or vorticity correction terms are only needed behind the shock
v wave.

**, + ( - (.w2)- (us. - us.) - -fn (10) Bounda ' Conditlons
The inviscid-conservation-law equations have been

And finally, with transformation into general coor- restricted to a zone about the expected shock wave
dinates which overlaps a larger zone governed by the dual

potential equations (see Fig. ib). Except along the
body surface, all boundary conditions for the Conserva-

49((POIQO + P02 *J' + 8q(pQ2( + pa+ ) tion-law zone can be supplied from the overlapping
dual potential zone. Along the body surface we impose

- the tangency condition

where u (13)

2

+ falls + C,'i, ' " + 1v and use linear extrapolation to supply the three remain-

01 - ~ - - jing variables. A thin airfoil approximation is used by
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imposing these boundary conditions at V - 0 rather Note that the *-function is zero at the upper left
than on the body surface. This boundary treatment corner, but can be non-zero at the upper right corner
permits verification of the method without unduely provided there is vorticity in the airfoil wake. This
complicating the computer code. This will also lead to problem is resolved by a limiting process on the upper
some solution discrepancies when results are compared boundary where
to more exact theories.

The dual potential equations resolve the flow in
the remaining domain. Representing the velocity by um
derivatives of scalar functions allows some freedom in C--f(
the choice of boundary conditions. We will therefore
describe the dual potential boundary conditions for
our specific application which is the transonic flow over and

a symmetric airfoil at zero angle attack (see Fig. 2). sin,

In prescribing a set of boundary conditions for si 0 0 V, (21)

the potential functions, we adopt the point of view that As the upper boundary is extended farther away from

% is a perturbation on 0 in the sense that 0 represents the airfoil in both the z and p-directions, the *-function

an irrotational flow and 0 will only be non-zero if there variation will be small yet permit a change from zero

is vorticity or lift. For uniform incoming flow about at the upper left boundary to the appropriate value

a symmetric thin airfoil an appropriate set of far field on the upper right boundary. This process has been
boundary conditions for 4 are given by numerically verified by observing that the top bound-

ary velocities approach the uniform condition.

.. z (14) Equation (5)is a convective entropy equation that
can be marched in the z-direction. Initial entropy

The tangency condition is imposed at p m 0 by data behind the shock is obtained from the Euler equa-tions. The entropy is constant on the airfoil and sym-
metry streamline in the wake region.

(15) Zone Interfacing
+-- , (4 o + The two different sets of governing equations areinterfaced at their zone boundaries. In Fig. 3, for ex-

ample, boundary values can be applied to the conserva-

An appropriate upstream far field boundary condition tion equations (1) along the curve ef gh by differentiating

for €, is given by 0 and 0,. Along the inner boundary curve abcd ine can
specify ., u, and v from the solution of Eq. (1) so that

The €-function behaves much like a stream function
which motivates the boundary condition on the lower , + *1 - ueed
boundary (y = 0) O- - h, ,ep itd

If this were a lifting airfoil problem then 0 would be
chosen as some non-zero constant on the airfoil surface supply derivative boundary conditions for and aBy
in order to satisfy a Kutta condition (see Section !11). overlapping the boundaries as illustrated, information
in soinduc ortisfnlftta cndtin (see seto al) can be efficiently trans'erred from one domain to the
A shock induced rotational low can give rise to a other. In overlap regions both equation sets are being
velocity defect in u at the right boundary so that differentially equivalent if the shck
must be free to vary. A suitable downstream far field wave is avoided.
boundary condition to ensure that v - 0 for 4 z isSienby We have used another way to interface the two
given y zones together. From the vantage point of computa-

=m 0 (18) tional simplicity, it is desirable to interface the equa-

On the top boundary WO Set U , and because 4, tions using as little special logic as possible. Except

z. we impose across the shock wave, the dual potential equations are
everywhere equivalent to Eq. (1) for steady flow with

0 (19) a uniform incoming stream. Even across the shock



Eq. (9) is valid in the sense that it perserves the cor- is readily accomplished with simple lags and only one
rect weak solution. Consequently we can solve Eq. basic set of computer algorithms are needed to solve
(9) throughout the entire domain without having to the dual potential equations over the entire domain.
define a hole with special boundary condition treat- In this same zone Eq. (24) replaces Eq. (5).
ment as discussed above. This simplifies the computer 1IL Circulation Treatment
code logic, especially since we avoid solving Eq. (22)
on the zonal boundary. Also, by avoiding the hole, In a code based solely on a scalar potential it is
we solve the continuity prediction equation for 0 more necessary to build cuts into the field in order to treat
implicitly. That is, we avoid iteratively lagged inner flow with circulation. Across these cuts the scalar (i.e.,
boundary data which must be updated from the solu- velocity) potential is discontinuous and the difference
tion of the conservation-law form equations. equations must be specially coded to account for this

The Crocco equation which is used as a predic- jump. Because the dual potential equations allow vor-

tion equation for * does not admit a Rankine-Hugoniot ticity to convect through the low field, it is no longer
jump solution. Nevertheless, we have also uused this necessary to build such circulation cuts into the field.j thelntire ae iludi s This simplicity partially compensates for having toequation throughout the entire domain, including across
the shock so as to avoid integrating Eq. (22) at the solve Erq. (10).
zone boundary and to improve implicitness. However, in order to treat lifting airfoils with the dual
we supply the right-hand-side vorticity function of Eq. potential equations we adjust 0 on the airfoil so as to
110) in the zone abcd directly from the solution of Eq. satisfy the Kutta condition. In essence we handle the
(1). That is, we solve (shown in Cartesian form) vector potential component 0 much as if it were the

tream function. When solving a flow with a stream

028 + * 1 - (U, - va)Opecilled  (23a) function formulation, the value of the stream function
on the body is a constant which is determined by the

or Kutta condition. Here we implement the Kutta con-
dition by requiring that the magnitude of the trailing

*a- + r " (-7M2 )- (vs. - ue,).,,Ij.d (23b) edge velocities match on the upper and lower surfaces
(see Fig. 4). That is

where a or derivatives of u and u are specified from the
conservation-law form equations. While this equation qup- qaer (25)
is not strictly valid across the shock, we have used it
together with Eq. (10) so as to avoid coding an inner or
hole boundary condition (i.e., on abcd in Fig. 3) and
to improve implicitness.

The equation for convection of entropy, Eq. (5), 171,U - flat. 1 7y5 - (26)

cannot be used across the shock. Consequently, in the \r11_2 , (I 6)1

entropy production zone, here bounded by the curve ) VPFe
abcda of Fig. 3, we update entropy from the solution
of Eq. (1) using the thermodynamic relation For isentropie flows this is equivalent to Pp.. M Plower.

The Cartesian velocity components u and v can be
1eliminated in terms of # and 0 as given by Eq. (12).

S- (' - )-t Cn('(7 - l)o(e- pq )/ (24) Making use of the boundary condition that 0 is con-

stant on the body (Oc - 0), Eq. (26) becomes

Summarizing these concepts, we have opted for
the following interface scheme. For the vorticity produc- rI 1 r1tion zone enclosed by the curve ef ghe shown in Fig. 3, 3I + O3s)] - - (h + asq)]
Eq. (1) is solved. Values of p, PU, pu, and e are supplied 03 ,, [T L
on the outer boundary of this zone from the solution
of the dual potential equations. The dual potential (27)
equations, Eqs. (9) and (10), are solved over the entire This relation can be differenced to provide the value
low field domain. However, within the vorticity zone of € on the body that satisfies the Kutta condition.
circumscribed by abcda, Eq. (23) is used in place of
Eq. (10). This equation substitution or modification
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IV. Numerical Algorithms where A( - A9 - I. For simplicity, first-order

Implicit. approximately factored (AF) finite differ- accurate one sided derivative operators are used In

ence schemes are used to solve the governing equations, the Implicit part and second-order accurate one sided

A semi-flux spilt algorithm IS used for Eq. (1). and al- differences are used In the residual. The converged

ternating direction methods are used with Eqs. (11) solution will be second-order accurate and uncondi-

and (12). tional linear stability is still retained. The flux split-
Semi-Fitax Split Algorithm ting in the (-direction Is inherently dissipative: however.fourth order dissipation Is added in the -direction

The semi-flux split Euler equations In strong con-

servation-law-torm. Eq. (1). are solved In delta form with t-OQ&).

using the Implicit approximately factored finite difference The first factor or Eq. (28) is solved by sweeping
scheme forward in f and inverting block tridiagonal systems of

equations in the 17-directLion. The second factor forms

an upper bldlagonal matrix which Is solved by a simple
[I +. hvq((,A+) + h,(w 3B)I X back sweep. In supersonic regions the second factor

(1 + hAe( ,A-)AO m - -hR (28) disappears (F- - 0) so the AF scheme reduces to a
single direct Inversion or the time-linearized equations.
In our application the flow in the vorticity produc-

where Lion zone Is mostly supersonic; consequently, the AF
scheme Is very efficient in that zone.

R - f (C 1J'-IF + ) + 6 (Ca J"IF-)+ 6q( -IG) Dual Potential Algorithms
The dual potential equations are weakly coupled

+ l I(VY& )2Q in the sense that one can effectively solve Eq. (12) for

o as a function or lower derivative terms that are fixed
at a previous iteration level. Once tP Is predicted. Eq.
(11) serves as a prediction equation for #. At this point

(Q/j)*+l - (Q/j)3  entropy can be obtained from Eq. (&) and density Is

and F* are flux split vectors as derived by Steger and updated from the Bernoulli equation.

Warmings while A* are the Jacoblan matricles W . Implicit approximately factored finite difference
The vector of primitive variables Is algorithms are used to solve the dual potential equa-

tions. We first describe the numerical algorithm for
Eq. (11) which Is very similar to what Is used for
the transonic full potential equations. Our Implemen-

PV tation follows that of Steger and Caradonna'. The
e AF scheme Is second-order accurate In subsonic flow

regions and Is first or second-order accurate in super-

The parameter h is a constant pseudo-time step sonic flow regions. Upwlnding In the supersonic region
Is accomplished by using Hoist's upwind shifted den-

chosen to accelerate the convergence rate. All metric iyacomlse
quantities are computed with second-order accurate sity scheme ,

difference formulas using one sided differences at the The AF scheme for Eq. (i1) Is given in delta

flow boundaries and central differencing Interior to the form as

flow boundaries. The difference operators In Eq. (28)
are defined by I - hV(pn2J - ' ),+l/IAI X

[I + pV. - hVc(p , T )j+,jl2elA " -h*e,

ve - Oj- OJ1At - 01+ - 0)s-

6- - 3 ()j + 4()j+l - )+where

66 3 ()j - 4O ,j~ , + ()y- : 7-I 17 ( ,2j l k 1 2 q
- 2 R. UZ(.~ )Y+1/24(0 + V7J)& 1 2 q

06- + - Ok1+ 16C(P6~, ) -
2 -- s)/- tb- + (-= *_ S



The j, k-indices correspond to the C, q-directions and Equation (029) is solved in the usual fashion by invert-
are suppressed except to indicate midpoint values. The ing scalar tridiagonal systems of equations in first the
pseudo-time step h and the relaxation parameter w are V and then the C-directions.
chosen so as to accelerate the iterative convergence. A second-order accurate difference for the tan-
The C-difference operators are defined by gency boundary condition, Eq. (15), is implemented

using central differencing for z-derivatives and three
point one sided differencing for the I-derivatives. A

st =- I - 01-1 tridiagonal solution provides # at the lower boundary
2 with the *r terms evaluated explicitly.

V( -. - 01-1 A similar algorithm for the vorticity equation is

at - (}O+I - 0) used to update €.

where again for convenience AC - 1. Similar expres- 11- 1V(Iw
- )F+(30 X

sions define the q-difference operators. Stability in su- (I - V(Z7 - )J+1/2'&d** - h" (30)
personic regions is maintained by shifting the density
upwind in the (-urection according to the formula

•'j~i ..I )(Py.+PJ) where
PJ'+1/, 0 --,)( 2

*.R. -V((C 8T ),+11 A + V '4 1 )a+(1 1 ,V+VjLr(I + OW, + 0 - O)Pj.--(,I )' .~es na.

L 2

with Here though the equation remains elliptic throughout.
P- mai0, (MA - 1)CI, 1<C<2 The Neumann boundary conditions Eqs. (18) and (19)

provide 0 on the downstream and top boundaries using,
At subsonic points, vj - 0 and Pj+1/2 is second-order second-order accurate one sided differences.
accurate. The parameter 0 - 2 provides second-order Fially, Eq. (6) is solved for entropy. The stretched
accuracy at supersonic points and 9 - 0 gives first- Cartesian grid used for the zonal test problem is closely
order accuracy. In practice a value of -m 1.8 is used aligned with the Bow, so it is a simple matter to ob-
for lows with weak shocks and 0 is dropped to zero for ain i te f s by ma teto ohe
stronger shock lows. The term PVC(AO*) provides tan an update of a by marching the equation in the

oo itertive dmping and compensates (-direction. A finite difference scheme for marching
some additional iin is given by
somewhat for not properly linearizing the density term
for inclusion on the left hand side of Eq. (29). The
metrics are computed by the following relations in
order to capture uniform flow 668+(2_9 (31)

2
•- Zj.1) where 4 is a three point backward difference in C and

211 U('+I - 6Y,, 6j is a central difference in q. At each (-station a
1 scalar tridiagonal inversion in q is required.

41 *1/4., M -('I,&.. + 17,) For lifting airfoils we must also satisfy the Kutta
Scondition by differencing Eq. (27) and solving for 0

4" +- on the body. The (-derivatives are central differenced
and the q-derivatives are forward differenced. Solving
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for 0 on the body with the same Euler solution is given in Fig. 7. Except
at the shock, the flux split equations are second-order
accurate and require two levels of zonal boundary data

- (u((aos)jm.a OJm.2 + (40a)h.1 w0.21 in the (-direction. The zonal steady state solution ac-
- (Ia - l)[(GaslJm¢j.s + (gas.z , .sI curacy is not sensitive to the amount of zonal overlap.
+ p*)/(( 2 p - l)[(aes)jm.s + (Gas),,D I Here we have used three points of overlap in both the+ and q-directions. As shown in Fig. 7, the shock

wave locations are coincident within one grid point.

(32) To ensure proper shock position it was found to be

where important to zero out a small value of entropy that
the flux-split scheme produces before the shock; other-
wise, the density predicted from the Bernoulli equa-

/tios is inaccurate at the shock and the shock moves
a == ,4 00 -= .,)jm~ + ( 4.1 upstream two or three grid points. Figure 8 shows

a comparison between the zonal and scalar potential
solutions. Vorticity effects are evident by the zonal
shock location upstream of the irrotational potential

.J - first order shock. In these calculations we have opted for first-
12, - second order order accuracy in supersonic regions by evaluating the

shifted density with 0 - 0. The L2 norm of the 0-
-psidual is given in Fig. 9 for the scalar potential

The j,k-indices correspond to the -grid topologyIn solution. We remark that the present computer code
Fig. 4. The Kutta condition is evaluated explicitly at has not been optimized and uses constant pseudo-time
the end of each iteration of Eqs. (29) and (30). steps. The convergence history for the zonal solution

V. Results and Discussion is given in Fig. 10. The convergence rate appears to

A nonlifting biconvex airfoil was chosen as a test be limited by Eq. (29). For a zonal computation in

problem to verily the zonal approach as an alternative which the conservation-law zone was allocated 20c

to the Euler equations for solving transonic rotational of the total number of grid points, the zonal method

flow. The subcritical flow about a NACA 0012 air- takes 60% less CPU time per iteration than the flux

foil at angle of attack was used to demonstrate the split algorithm. Moreover, the zonal algorithm only

capability of the dual potential equations to treat lift required 50% - 75% as many iterations that the flux

without the use of circulation cuts. All computations split algorithm does for plottable accuracy.

were performed on a CDC 76W. The flow about a 12% thick biconvex airfoil at

The biconvex airfoil problem was computed on M = .88 generates a solution with a stronger shock.
a stretched Cartesian grid with the small disturbance The vorticity effects are greater, and as before, the

boundry condition Eq. (15) imposed at the lower bound- potential shock is downstream of the tonal solution,
aty, y-0. Figure 5 shows the grid in the vicinity of the as shown in Fig. 11. The Mach contours shown in

airfoil with the far field boundary 3 chord lengths away Figs. 12 and 13 correspond to the potential and zonal

to either side of the airfoil and 5 chord lengths away in solutions respectively. The potential shock at the air-
foil trailing edge is more oblique than the zonal shock.the y-direction. Exponential stretching was used away

from the airfoil in both the x and y-directions while The velocity defect at the downstream boundary (r -
a spline function distributes points along the airfoil 4) is given in Fig. 14 and demonstrates the ability of
(O<z<l). This allows grid clustering at the leading the equations to convect vorticity.

edge, trailing edge and the shock. As a final example, the dual potential equations
Results for a nonlifting 10% thick biconvex air- have been soked in general curvilinear coordinates

foil at Afro - .85 are presented for the flux split, ( - I(. y). '? - (z, y) ) for a subcritica flow o~er
zonal and potential schemes. Figure 6 comparet the a NACA 0012 airfoil at two degrees angle of attack.
flux split Cp solution with a central differenced Euler A 76 x 34 O-grid was used, a portion of which is
solution s . A monotone solution at the shn-k for the shown in the vicinity of the airfoil (Fig. 15). The far
flux split algorithm is obtained by conservatively switch- field is rectangular in shape with rounded corners. The
ing to first-order accuracy at a few points bracketing outer boundar) is 6 chord lengths from the airfoil in
the shock. This accounts for the smearing at the foot the x-direction and 9 chord lengths in the y-direction;
of the shock. A comparison of the zonal Cp solution nevertheless the uniform flow boundary condition

j 7
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* -0 is imposed in the far field. The value of 'Steger, J. L. and Caradonna, F. X., *A Conservative
on the body is obtained from the Kutta condition, Implicit Finite Difference Algorithm for the Unsteady
Eq. (321, using the second-order accurate option. A Transonic Full Potential Equation," AIAA 13th Fluid
Cp comparison with the potential solution TAIR7," is and Plasma Dynamics Conference, July 1980.
given in Fig. 16. The solutions compare very well even 'Holst, T. L., *A Fast. Conservative Algorithm for
though the dual potential solution is computed on a Solving the Transonic Full-Potential Equation," ALAA
coarser grid (50% as many points). The convergence Fourth Computational Fluid Dynamics Conference Pro.
histories of the # and *-residuals are shown in Fig. ceedings, July 1979, pp. 109-121.
17. 'Pulliam, T. H., Jespersen, D. C., and Childs, R. E.,

VI. CONCLUSIONS 'An Enhanced Version of an Implicit Code for the

A zonal algorithm which utilizes the conservation- Euler Equations," AIAA Paper 83-0344, AIAA 21st

law-form equations together with the dual potential Aerospace Sciences Meeting, Reno, Nevada, January
equations has been developed to numerically simulate 1983.
steady transonic flow of an inviscid fluid with vor- 7Holst, T. L., OAn Implicit Algorithm for the Conserva-
ticity. The dual potential equations are able to con- tive, Transonic Full Potential Equation Using an Arbi-
vect vorticity, and a consistant set of boundary con- trary Mesh," AIAA Journal, Vol. 17, October 1979,
ditions have been developed which permit vorticity at pp. 1038-1045.
the outflow boundary. The zonal algorithm is able to "Dougherty, F. C., Hoist, T. L., Gundy, K. L., and
capture the correct shock position. The dual potential Thomas, S. D., "TAIR-a Transonic Airfoil Analysis
equations require significantly less CPU time than the Computer Code," NASA TM-81296, May 1981.
Euler equations since they are solved as an iteratively
decoupled set of scalar equations. The test problems
we have investigated showed up to 60% savings in total
CPU time for a zonal solution over a semi-flux split'
solution of the Euler equations. Code optimization DUAL POTENTIAL ZONE
should provide additional savings.

The dual potential equations provide an alter-
nate method of computing lifting airfoil flows. Specifying

on the body in order to satisfy the Kutta condition
eliminates the need for circulation cuts; however, a
Poisson equation must be solved. The increase in com-
putational work is perhaps offset by coding simplicity. CONSERVATION LAW ZONE

This will be especially true in a multi-element prob-
lem.
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