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ABSTRACT

A procedure is presented for the estimation of extreme
values of stationary Gaussian random processes with
arbitrary bandwidths. This approach is based on the
analytic envelope def ined by the Hilbert Transform; this
envelope is Rayleigh distributed regardless of bandwidth.
For experimentally derived data that has been converted
into digital form, the Hilbert Transform is approximated
using algorithms implemented on a digital computer to
produ' e samples of the envelope's time history. Next, the
degree of correlation between these envelope samples is
taken into account using a method developed from simulation
studies of a series of synthetic Gaussian time histories
with varying bandwidths. Once this correlation effect has
been estimated, the standard methods of order statistics
are applied to these samples using the Rayleigh probability
density function. Examples of applying this procedure to
experimentally derived data are presented.

ADMINISTRATIVE INFORMATION

This work was sponsored by the Mathematical Statistics program under Task

SR01410501 and Element 61153N (Job order 1-1561-108) and administered by NAVSEA

Code 05R24.

INTRODUCT ION

At the David Taylor Naval Ship Research and Development Center (DTNSRDC),

random ship motion or wave height data from full scale trials or model basin

experiments is routinely subjected to various forms of analysis. Spectral

analysis is performed to obtain autospectra, cross spectra and response

amplitude operators; and time domain analysis is performed to obtain means,

standard deviations, data point maxima and minima, data point histograms, peak

histograms and peak-to-trough histograms. These different types of analysis

reduce the time histories into statistical parameters that characterize the

test conditions and the performance of the test vehicle. In particular, the

time history statistics that describe the peaks or extremes of these random



data are used to predict the largest value (extreme value) that is expec:ted to

occur in a given period of time. The length of time available for an experiment

is limited, so these results must be extrapolated to longer time intervals. The

predicted extremes in motion or wave induced force are then applied to the

design of ships and other marine structures.

Despite the number of studies undertaken in this area, two major problems

remain. A consistent, easy to apply method is required for specifying peak

occurrences for random processes with arbitrary bandwidths. And, second, a

general method for accounting for statistical dependence between these events

is necessary when making extreme value estimates. This report presents an

approach for solving these problems under the assumption that the random

process i2 Gaussian.

The proposed solution to these problems is based on applying a procedure

that produces the time history of the envelope of the actual test data; this

new time history is then analysed to produce the information necessary for

extreme valie predictions. The envelope time history is generated by

apprcximating the Hilbert Transform with a digital filter. For a Gaussian

random process, the statistics of this envelope time history are known; the

envelope random process is Rayleigh distributed for wideband as well as

narrowtanded time histories. The envelope time history is then analysed to

obtain all standard statistics including a data point histogram (For

nirrowbanded time histories, this histogram is equivalent to the peak-to-trough

Iiistogram.) A method developed for estimating or measuring the time between

statistically independent samples of the envelope can then be applied. Once the

number of statistically independent samples is known for a given time, extreme

value predictions are then made.

For narrowbanded random processes, each maximum and minimum does touch the

envelope; however, for random processes with wide bandwidths, these maxima and

minima will generally be lower than the envelope. In this sense, the envelope

approach can overpredict the extreme value. In the most widebanded simulation,

the average overprediction was 6.6%. This drawback is balanced by the method's

ability to determine if the measured data is non-Gaussian by performing a

Chi-Square goodness-of-fit test on the histogram of the envelope time history.

The envelopes of Gaussian random processes with arbitrary bandwidths are still

2

IL*



Rayleigh distributed. Since the results of this test are not confused by the

bandwidth of the process, the characteristics of non-Gaussian processes are

more easily studied.

The method is implemented using digital computer algorithms; simulated,

Gaussian distributed time histories with varying bandwidths are used to develop

the procedures. This approach is verified by using Chi-Square goodness-of-fit

tests to demonstrate that the envelope time history is Rayleigh distributed and

that the extreme values follow the distribution predicted by order statistics.

This method is then applied to experimentally outained time histories.

BACKGROUND

The methods described in the literature for making extreme value

predictions are based on one or more of the following assumptions about the

random time history: The random process is stationary, zero mean and Gaussian

distributed; its autospectrum is narrowbanded; and the peaks or maxima of the

time history are statistically independent. The narrowbanded assumption implies

that only one maximum and minimum (peak-to-trough) occur between two successive
I*

zero crossings of the random process. The method described by Longuet-Higgins

2
and by Cartwright and Longuet-Higgins is the classical approach. With this

approach, the peak-to-trough amplitudes are distributed according to a Rayleigh

distribution for narrowbanded, Gaussian random processes; order statistics

methods predict the extreme value provided these amplitudes are statistically

independent of each other. This method requires only one parameter for the

Rayleigh distribution, either the estimated mean square of the peak-to-trough

amplitudes or the estimated variance of the time history. The number of

peak-to-trough occurrences divided by the record length determines the

encounter rate; this rate is then used with order statistics methods to

estimate (extrapolate) the exposure time necessary for an extreme value to

exceed a specified threshold with a given probability of occurrence.

To avoid the narrowbanded assumption, other approaches are described by

A complete listing of references is given on page 63.
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Cartwright and Longuet-Higgins2 and by Och 3 These methods are based on the

study presented by Rice 4 . Since a non-narrowbanded random process can have many

maxima or minima between successive zero crossings, these maxima or minima are

shown to be distributed according to the distribution (Rice distribution) given

by Rice . When applying order statistics, statistical independence of these

events is still assumed. This method requires the estimation of the first three

non-zero spectral moments; these moments are equivalent to the variance of the

random process and the variance of the first two derivatives of the random

process. These moments are estimated from the time history and they are used to

form a bandwidth parameter; the Rice distribution is described by this

bandwidth parameter and the variance estimate. The occurrence rate of these

events establishes the time base for extreme value estimates.

In practice, the peak-to-trough approach proposed by Longuet-Higgins I is

still generally applied to experimental data. It is uncomplicated; this method

only requires one parameter, the variance, to specify the distribution. The

average of the highest one-third peak-to-trough amplitudes is given by four

times the standard deviation. Measurement noise in the test data will add to

the variance estimate, and computation of the peak-to-trough histogram may

require a deadband zone such that only the "significant" zero crossing cycles

are used as events; however, this approach is fairly tolerant of noise. In

comparison, the method using the Rice distribution also requires the variance

as well as the bandwidth parameter. This method is more sensitive to

measurement noise in the test data; noise will change the shape of the

histogram as well as inflate the estimated values of the second and fourth

spectral moments that are then used to compute the bandwidth parameter.

Estimation of these spectral moments involves single and double differentiation

of the time history (These calculations are usually performed in the frequency

domain.); the level of the noise is increased by the differentiation process.

The peak-to-trough approach is also applied to cases where the

experimental data is non-Gaussian or non-narrowbanded. For Gaussian random

processes with moderate bandwidths, Tayfun 5  proposed a peak-to-trough

probability density function that is based on sampling the Rayleigh distributed

envelope. In some cases, empirical distributions such as those given by Ochi 6

or Forristall 7 are fitted to the measured peak-to-trough histograms. In other

* 4



cases, however, wideband data is simply assumed to be narrowbanded. Between two

"significant" zero crossings, the difference between the largest and the

smallest data values is used to form a "peak-to-trough" amplitude. Attempts are

made to treat the wideband nature of the data aL, if it were noise. Deadband

regions are set to determine if a zero crossing is " 'gnificant". Defining what

constitutes a "significant" zero crossing (or alternately a "significant" peak

to trough occurrence) is a major drawback with this approach; the required

criteria cannot be specified in a consistent manner.

These previous methods do not offer any procedures for taking into account

the correlation between successive events when making extreme value

predictions. Epstein 8 , however, has proposed such a procedure using a Markov

chain condition. The Markov chain condition requires a certain kind of

dependence between successive events. Recently Ochi9 and Naess I0 suggest that

this approach may account for the effects of this correlation for random

processes with moderate bandwidths; however, they do not demonstrate if the

Markov chain condition is appropriate for arbitrary bandwidth Gaussian random

processes. Naess I0 disagrees with Ochi's 9 results. Also, Epstein 8 states that a

clean-cut analytic solution is expected for only certain kinds of stochastic

dependence. This approach appears to be subject to continuing development.

A procedure for estimating extreme values using the envelope associated

with the time history is proposed by Naess 11; a method for taking the effects

of correlation into account is also presented. The average rate at which the

envelope crosses the standard deviation level from below is used as part of the

criteria for determining the effect of dependent samples. This procedure is

shown to be limited to narrowbanded Gaussian processes.

THE ANALYTIC ENVELOPE AND ITS DISTRIBUTION

Regardless of the bandwidth of a Gaussian distributed random process, the

envelope of this process is Rayleigh distributed. (See Middleton12 , pg 351 and

pg 396; also, see Arens13 and Dugundji 1.) This envelope is defined by using

the Hilbert transform. In a recent paper by Rice15  this envelope is called

the analytic envelope.

5
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The envelope, r(t), is defined by

r(t) [ s(t) 2  + s(t) 2  ]1/2 (1)

and, the phase angle, 8, is defined by

6(t) = arctan( s(t)/s(t) ) (2)

such that

s(t) r(t) cos 8(t) (3)

where s(t) is the input time history (either random or deterministic), and

s(t) = r(t) sin 8(t) (4)

where s(t) is the Hilbert Transform of s(t). An example of the envelope of a

random time history with moderately wide bandwidth is given in Figure I. For a

real-valued function, s(t), on -- < t < , the Hilbert transform, s(t), is

defined by

1 OD s(T)
s(t) --- f dt (5)

where the principal value of the integral is used. The Hilbert transform

shifts all the frequency components in the input time history by 90 degrees. In

the frequency domain, the Hilbert transform is equivalent to a filter with the

following transfer function, H(w): V

H(w) - i sgn(w) (6)

where i is the square root of minus one and sgn(w) is the signum function

[sgn(w) = 1 for w > 0, 0 for w = 0, and -1 for w < 0 ].

For a zero mean Gaussian distributed random process, several relationships

exist. s(t0 ) and s(t o ) are statistically independent at any arbitrarily

selected time, to. Since the envelope is the square root of the sum of two

statistically independent random variables at each instant of time, the

6



Envelope, r (t)

044

Time History, s(t)

TIME

Figure 1 -Example of an Envelope Time History
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envelope is Rayleigh distributed with the following probability density

function

-u2/2
p(u) = u e (7)

and cumulative distribution,

P(u) = 1 - e- u21 (8)

where u = r/o. a is the standard deviation of s(t). Also, s(t) and s(t) have

the same autospectrum and autocorrelation functions. The envelope and phase

are statistically independent, and the phase angle is uniformly distributed

between +n and -7. The mean of the envelope is

E[ u ] = ( 7/2 )1/2 (9)

where E[ . ] is the expected value operator. The mean square of the envelope

(variance plus square of the mean) is

E[ u 2 ] = 2 (10)

Since the envelope is Rayleigh distributed, the average of the highest

one-third envelope samples is two times the standard deviation of s(t). These

relationships hold regardless of the bandwidth of the random process.

Except for a narrowband random process, the peaks of the process do not

necessarily touch its associated envelope. See Figure 1 for an example of a

moderately wide bandwidth process. From Equation (1), the absolute value of the

random process, Is(t)I, is equal to the envelope whenever s(t) is zero. Since

s(t) and s(t) have the same autospectrum and hence the same zero crossing

statistics, this equality will, on the average, occur between each zero

crossing. From Equation (3), this equality will occur whenever the phase is

either 0 or i; and since phase is statistically independent of the envelope, a

joint occurrence at an envelope maximima is therefore not expected. This

characteristic of the envelope leads to overestimation of the extreme value of

8



the random process; the significance of the overprediction is discussed in the

section titled Effective Number of Independent Samples for the Envelopes from

the Simulated Gaussian Time Histories.

The HilDert transform is equivalent to a filter. Methods for approximating

this filter are described by Tayfun and Rabiner and Schafer 16 . Given a time

history that has been digitized for analysis by a computer, an approximate

Hilbert transform of this time history can be produced. Thus a time history of

the envelope can be created and standard data analysis techniques (power

spectra, correlation, and histograms) can be applied to this time history.

The method used to approximate the Hilbert transform is given by Rabiner
and Sha 16 With this method a non-recursive digital filter (finite impulse

response, FIR) is formed, so the Hilbert transform of time histories with

arbitrary lengths can be calculated using a computer. From this reference, the

filter weights (impulse response) given in Table I for a 95 element filter were

used; these filter weights, h(k), are reproduced in Table 1. This filter has a

peak approximation error of 2.2% over the frequency interval from 0.01 to 0.49

times the sample rate. Odd-indexed filter weights are zero and the last half of

the filter wights are given by:

h(k) = - h(K-1-k) (11)

for k = 0, 1, ... K-I where K is 95. The non-recursive digital filter has the

following form:

K-I K+1
s(JT) = h(k) s[( 2 + j - k)T] (12)

k=O

where s(jT) is the filter's input and s(JT) the output.

EXTREME VALUES OF THE ENVELOPE PROCESS AND ITS EFFECTIVE SAMPLE RATE

The extreme value of the envelope is derived by applying order statistics

9



TABLE 1 -HILBERT TRANSFORM WEIGHTS FOI 6 NON-RECURSIVE DIGITAL FILTER
(FROM RABINER AND SCHAFER ,TABLE I. K=95)

k h(k)

0 -. 0130099
2 -. 0045718
4 -. 0053689
6 -. 0062800
8 - .0072616

10 -. 0083873
12 - .0096455
14 -. 0110350
18 - .0143770
20 - .0163895
22 -. 0186922
24 -. 0213465
26 - .0244424
28 -. 0281175
30 -. 0325665
32 -. 0380864
34 -. 0451608
36 - .0546233
38 - .0680547
40 -. 0888468
42 -. 1258168
44 -. 2112989
46 -. 6363167

10



to the sampled envelope. Given that the envelope is sampled N times such that

these samples are statistically independent, the extreme value is defined as

the largest value of the envelope that will occur in these N samples. Once

these samples are arranged in ascending order, the largest normalized envelope

value in the ordered sample, Un, has the following probability density

function:

g(un ) = N p(un) [ P(un ) ]N-1 (13)

Since the envelope is Rayleigh distributed, p(un) is given by Equation (7) and

P(un ) is given by Equation (8). The cumulative distribution is given by:

u
G(Un fn g(v) dv = P(u n) }N (14)

0

The expected or mean extreme value is given by

un  E[u ] = f un g(un ) dun  (15)

0

To this point, the application of order statistics to the sampled envelope is

equivalent to the treatment of order statistics to wave amplitudes by

Longuet-Higgins

When the envelope of the time history is approximated using algorithms

implemented on a digital computer, the sample rate is the same for both the

envelope and the time history. For a time history of fixed length, Na samples

are obtained. In general, these envelope samples will be highly correlated. A

, . measure of the effective sample rate is required that will produce Ne
statistically independent samples, where Ne  is the effective number of

statistically independent samples. Middleton 12 shows that uncorrelated envelope

samples are also statistically independent, so one procedure for estimating an

effective "sample rate is to compute the autocorrelation function of the

envelope time history and then sample the envelope at time intervals such that

11



this function decays below a set threshold. The use of this procedure, however,

can result in underestimation of extreme events because of the reduced sample

rate; sampling may not occur at the peaks of the envelope. A approach that uses

all of the available samples is required.

Two approaches are proposed for estimating or measuring the effective

sample rate. With either method, the available time history is first divided

into MI segments where each segment contains N aactual samples. The largest

envelope value in each segment is then found; from one segment to another,

these extreme envelope values are assumed to be statistically independent. With

the first approach, a histogram of these extreme envelope values is formed;

this histogram is then matched to the hypothetical distribution given by

Equation (13) by varying the number of independent samples, N. The width of

each class interval is selected to give an equal number of occurrences for the

expected distribution (Equation (14)); the last class interval has infinite

width. Next, the Chi-Square goodness-of-fit test is applied to this histogram

using the procedures described by Bendat and Piersol17. The number of

independent samples that minimizes the Chi-Square statistic is the estimate of

the effective number of independent samples, N e'The effective sample rate ist
Ne dvded by the segment length in seconds. This approach has the advantage
that the measured distribution of extreme values is compared to the

hypothetical distribution.

The second approach for estimating the effective number of independent

samples is based on matching the measured mean extreme value to the

hypothetical mean given by Equation (15). First, the mean is estimated for the

extreme envelope values from the M segments. Next, the number of independent

samples that give the same mean value is found by searching a look-up table

produced by numerically integrating Equation (15). Graphically, this procedure

is shown in Figure 2; here, each of the NI segments contains N a(actual)

samples, and the effective number of independent samples is given by N e.This

approach has several advantages. First, a confidence interval can be placed

around the measured mean extreme value that can then be transformed into a

confidence interval about the effective number of independent samples. Second,

this procedure can be repeated after sampling the envelope at different rates

to determine the effects of undersampling the envelope time history.

12
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A combination of these two approaches was used; the effective number of

independent samples, N and its confidence interval was found from mean value

estimates using the second method, and then the distribution of the extreme

values was checked at this Ne value by using the first approach. The

hypothetical distribution was accepted at a I-% level of significance provided a

N value was found within the confidence interval that also passed the
e

Chi-Square goodness-of-fit test. 90% confidence intervals were found for these

mean value and N e estimates. Since the mean of M samples (M large) from any

distribution will approach a Gaussian distribution, the procedure for

determining the mean value confidence interval given by Bendat and Piersol 1 7

is used. For this application, the true mean value is known to be located

within an interval of width, W where:

S tM -1;0.05

W 2 (16)m M1/2

such that W is centered about the estimated mean value where M is the numberm

of segments, s is the estimated standard deviation, and t is the Student t

distribution. These limits on the mean value estimate are then used to find the

confidence interval for the number of statistically independent samples. Tne

width of this interval is W

EFVECTIVE NUMBER OF INDEPENDENT SAMPLES FOR THE ENVELOPES FROM

THE SIMULATED GAUSSIAN TIME HISTORIES

These procedures for estimating the effective number of independent

samples were applied to a series of simulated Gaussian time histories with

varying bandwidths. From this study, the ratio of the effective number of

samples to the actual number of samoles (N e/N a) is shown to be related to the

equivalent statistical bandwidth of the sampled envelope time history. The

results from this study can then be applied to actual test data, or, if the

test data is sufficiently long, these procedures for directly estimating this

ratio could be applied to these test data.

14

.WL



The methods used to produce these simulated time histories are described

in Appendix A. With filtered white noise produced using a random number

generator, five different time histories were generated that had bandwidths

varying from the extreme narrowband to wideband. In each case, the spectral

shape was a rectangular block centered at 0.51 hertz; the bandwidths for each

time history were 0.078, 0.176, 0.293, 0.1488 and 0.684 hertz. These bandwidths

correspond to runs 2202, 2205, 2203, 2208 and 2206. The variance of each time

history was set to one volt. The duration of these time histories was 10,080

seconds at a sample rate of five hertz. The envelope time histories for these

cases were obtained using the Rabiner and Schafer 1 6 method to produce the

Hilbert transform. In Appendix A, 20 second long segments of each time history

and its envelope are reproduced. Histograms of each time history were obtained

and the Chi-Square tests were run to test the input time history against the

Gaussian distribution, and the envelope was tested for the Rayleigh

distribution. In all cases, the hypothetical distribution was accepted at a 5%

level of significance. Examples of the histograms are given. Also shown are

plots of their autospectra as well as a plot of each envelope's autocorrelation

function.

The procedures for finding the effective sample rates were applied to each

of these five envelope time histories. Each time history was divided into 60

intervals (M=60) that were 168 seconds long. Six different sample rates were

used: 5.0, 2.5, 1.0, 0.5, 0.25 and 0.125 samples per second. Each segment

contained 8141, 420, 168, 814, 42 or 21 samples (N smls tteersetv

sample rates. The mean and standard deviation of the largest sample in each

segment was estimated; the mean value estimates are given in Figure 3. The

solid curve is the expected mean numerically calculated from Equation (15).

These results show the affect of sampling. As the sample rate is reduced, the

estimated mean is almost constant (same peak values found) until the curve of

the expected mean is approached. Here, the estimated mean reduces in value (the

affect of undersampling), and next the estimated mean follows the expected mean

as the sample rate is reduced further. Since the mean is estimated from 60

samples, a 90% confidence interval is placed around these mean estimates. For

these cases, this interval has a widtn, Wt from 0.1140 to 0.236; a nominal

value for each of these cases is 0.200. The width of this interval is shown on

15
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Figure 3; it describes the tolerance of these estimates. A summary of results

for the five hertz sample rate is given in Table 2.

After equating these mean value estimates with the look-up table obtained

from Equation (15), the ratio of the effective number of independent samples to

the actual number of samples (Ne/Na) was found. As a function of the estimated

equivalent statistical bandwidth of the sampled envelope, plots of these ratios

are given in Figure 4. Regardless of the bandwidth of the original time

history, this Ne/Na ratio is shown to be related only to this equivalent

statistical bandwidth of the sampled envelope.

The equivalent statistical bandwidth is described in Appendix B; for our

application, this bandwidth measure is related to the temporai extent of the

sampled autocorrelation function. The equivalent statistical bandwidth, Bst in

radians per second is defined as:

W, 2
[f G(w ]d

0
B st =(17)

W, 2
f G(w) dw
0

where wo 7/T (one half the sample rate in radians per second) and G(M) is the

autospectrum of the random process. From Equation (B.10) in Appendix B, the

equivalent statistical bandwidth is related to the sampled autocorrelation

function of the random process by

W, 
)- C(kT)2  (18)

Bst k=-

Where C(kT) = R(kT)/R(O) and R(kT) is the autocorrelation function given by

R(kT) = EE x(nT) x(nT + kT) ] (19)

where x(nT) is the random process sampled at equal time intervals, T. The

17



TABLE 2 - SUMMARY OF RESULTS FROM SIMULATED TIME HISTORY AT
FIVE HZ SAMPLE RATE

Chi-Square Test
Run # Mean WM/Mean Ne Wn/Ne WO/Bst N INa

NN Test Stat.

2202 2.835 0.082 34 0.68 65.52 0.040 1.00 4.33

2205 3.042 0.056 62 0.52 35.13 0.074 1.13 12.33

2203 3.291 0.059 135 0.64 20.80 0.161 1.04 13.67

2208 3.450 0.038 229 0.45 11.76 0.272 0.98 7.00

2206 3.565 0.061 342 0.79 8.40 0.407 0.96 7.33

TABLE 3 - AVERAGE OVERPREDICTION OF ENVELOPE MAXIMA

Run No. Normalized Average Overprediction
Bandwidth in Percent

2202 0.153 1.9
2205 0.345 1.9
2203 0.575 2.7
2208 0.957 4.3
2206 1.341 6.6

18
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sample period, T, is the , pe ..

statistical bandwidth was trr; .

a finite number of lags 3U0'1 1 , t, A .

short (decays to zero) comparod t. thi, i v-ii 1,, ! Imt-r I!

The equivalent statsti, he r V. .. 0 , ,

random process as the sampl. r :cie, I: ,,ce .-. , . . •. ;, it.t ,

increased (reduced sample rate), the aut')s;,',A ., , , : ci r dor'. prI.r .;"

is aliased until a limit is approiu'h,, eo" t / ; .i;. t';-i:i; th,it

C (kT) is one for k=O and zero els-hier,. h i .! 0i, .5 0'5,. , -3 , V

samples are used in Equation ( 1,) . For dau:J:3:ian r' .nl , >r),e sss irld 'or the

Rayleigh distributed envelope, this also implies that stat istit'ally independent

samples are obtained at this sample rate. Next, as the sampl peri d is reduced

(increased sample rate), the aut> pctr ii of the -mp ,ld r nn t poes: e r 35

unchanged, so the equivalent statistical bandwidth is constant. The sum of the

squared autocorrelation samples (left nand side of Equation (18)) is then

directly proportional to co (one half the sample rate in radia ns per second).

A similar pair of asymptotic limits are expected for the N e/Na ratios

given in Figure 4. When Bst /W = 1, this ratio should be one since

statistically independent samples are obtained for the Rayleigh distributed

envelope. For high sample rates, this ratio s hould be inversely proportional to

the effective statistical bandwidth, since the number of indepenident samples

becomes constant.

The distribution of the largest eriviope values 'trom each of ti, rO

segments was tested against the hypothetical distribution given by Equation

(13) to check the values estimated for N Using the equal number of expectede"

occurrences method, this hypothesis was tested using the CIi-Cquare

goodness-of-fit test on histograms of these extreme values. Ton class intervals

were used, so this test was conducted with seven degree of freedom. As shown

in Table 2, the Chi-Square test statistic was always less than or equal to

14.07, so, for all five cases, this hypothesis was accepted at the b% level of

significance. This test was performed using the N/N value g
e - iven in Table C for

the number of statistically independent samples. For runs ..... , 203 and IA(,

the Chi-Square test statistics plotted against N/N e are given in Figure 5 where

N is allowed to vary. Run 2203 fails this test over a wide range of N; however,

,0 0
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histograms with the hypothetical distribution will 'ai I the eli-Squar ,

five percent of the time. For these tests with varihlie N, the orvo'r+ ti me

histories were sampled at five hertz.

The time history is always bounded by its Rayleigh ii stributd envelope;

however, as seen in Figures A.la to A.le of Appendix A, thf, peok..; of' the, -irv-

history do not always occur at the peaks of its envelope. Far triis to oe.,,

the time history maxima must coincide with an envelope maxima ind a phaer angle

of zero or 180 degrees (See Equation (3).) Since the envelope and pr;,nie, :.nm]"

are uncorrelated, such a mutual occurrence is unlikely. This (chara(T.teristic ,>in

lead to overestimation of the extreme value reached by the time, Iistory. Thie

size of this overestimation was evaluated using the five simulated time

histories. For this study, each run was again divided into ) egT:,-;:t,. For

each segment, the largest envelope value and the largest abcs:. c Lime Ki St

value were found. The difference between these two values w:e; divi i by the

largest envelope value, and this ratio was then averaged over the 60 segments

to form a measure of the average overprediction. Expressed in percent, these

averages are given in Table 3 where the normalized bandwidth is the ;andwidtn

divided by the center frequency. For narrowbanded cases, this average

overprediction is small; however, it increases with the bandwidth of the time

history. Even in the most widebanded case, the predicted extremes; in the

envelope can be used in design applications for motion or wave induced force..

APPLICATION TO EXPERIMENTAL DATA

rnese procedures were applied to two sets of experimentat data bti>l

from wave height measurements. The first data set is a 59bO seond segment ram

the two off-shore platforms operated by the Naval Coastal Systemsi Lahnrat)ry

(NCS'.) at Panama City, Florida. The second data set consists of tnrco 171).'

second segments from hurricane Camille that occurred in 1969. For eaeih tim,

history, Appendix C contains plots of short data segment:3, Ii at 3gr'iina

autospectra and envelope autocorrelation function plots. The hi stegrim were

tested using the Chi-Square goodness-of-fit test.

The NCSL wave height data were taken at both Stages (aff-shor,, piatforrns);

2?



Stage 1 is located 11 miles (17.7 kin) off-shore in 100 feet (30.5 m) of water

and Stage 2 is located 2 miles (3.2 kin) off-shore in 60 feet (18.3 m) of water.
Wave height was measured using surface piercing wave gages. In this report,
this data set is labeled run 21410; channel 1 is data from Stage 2 and channel 2
is from Stage 1. These data represent a mild sea condition; the standard

deviation was 0.8148 feet at Stage 1 and 0.526 feet at Stage 2. The maj or
advantage of these data is that the sea state was reasonably stationary over

the 59140 second run length; tidal mean value shift was removed by subtracting a
best fit straight line from these data.

The wave height measurements taken of hurricane Camille are documented by
Earle 2 0 . The envelope procedures were applied to three 1752 second segments
that were taken at 1015, 1130 and 1500 hours; these segments were assigned run
numbers 2721, 27214 and 2731. The Camille data is assumed to be stationary over
these run lengths. These data represent a rough sea condition; the standard
deviation was 5.972 feet for run 2721, 5.838 feet for run 27214 and 9.966 feet

for run 2731.

These wave data were analyzed using the same procedures that were applied

to the simulated time histories. Each time history was divided into 60 segments
and the largest envelope value from each segment was obtained. For the NCSLJ
data, the segments were 99 seconds long and the following sample rates were
used: 5.0, 2.5, 1.0, 0.5, 0.25 and 0.125 samples per second. The number of
samples, N wa 49,2799 49 24ad1.TeCmledtwsaraya' s19,24,9,19 1 n 1.TeCmledt a led
short, so 29.2 second segments were used at the following three sample rates:
2.5, 1.25 and 0.833 samples per second. For this data set, N a was 73, 36 and
214. The mean extreme values for these data are given in Figure 6; the Camille
data were not undersampled to the point where independent samples were
obtained; however, both sets of results sh~ow the same trends as those seen in
Figure 3. For the NCSL data, the 90% confidence interval ranged from 0.188 to

0.2148, so 0.220 is a nominal width for this interval. The confidence interval
for the Camille data varied from 0.2414 to 0.304; a nominal width for this
interval is 0.275. A summary of results for the highest sample rates is given

in Table 14.

After equating mean extreme value estimates, the ratio of the effective

number of independent samples to the actual number of samples (N e/N a) is given
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TABLE 4 - SUMMARY OF RESULTS FROM MEASURED WAVE DATA AT
HIGHEST SAMPLE RATE

Run # Mean Wm/Mean Ne Wn IN e w/Bst Ne/Na Chi-Square Test

N/N Test Stat.
_____e __ _

2410 Ch 1 3.376 0.062 179 0.71 11.21 0.362 1.00 7.67
2410 Ch 2 3.280 0.076 130 0.83 19.10 0.263 0.81 16.33
2721 2.400 0.126 11 0.64 22.86 0.151 0.91 4.33
2724 2.273 0.135 8 0.62 32.50 0.110 0.75 17.00
2731 2.353 0.129 10 0.70 27.84 0.137 0.90 8.67

TABLE 5 - HISTOGRAMS OF ENVELOPE MAXIMA FOR SELECTED MEASURED WAVE DATA

Run 2410 Ch 2 Run 2724 Run 2731
N = 130 Ne = 8 Ne = 10
e e____ e________ ____

Interval # of Interval # of Interval # of
from to Occur from to Occur from to Occur

0.00 2.84 12 0.00 1.66 10 0.00 1.78 10
2.84 2.97 8 1.66 1.85 10 1.78 1.95 9
2.97 3.06 3 1.85 1.98 5 1.95 2.09 4
3.06 3.15 5 1.98 2.11 6 2.09 2.21 7
3.15 3.24 3 2.11 2.23 3 2.21 2.33 4
3.24 3.33 8 2.23 2.36 1 2.33 2.45 4
3.33 3.44 0 2.36 2.50 6 2.45 2.59 4
3.44 3.57 5 2.50 2.68 4 2.59 2.76 4
3.57 3.77 2 2.68 2.94 3 2.76 3.02 4
3.77 14 2.94 O 12 3.02 w 10

Test Stat: 30.00 Test Stat: 19.33 Test Stat: 11.00

TABLE 6 - AVERAGE OVERPREDICTION OF ENVELOPE MAXIMA
FOR MEASURED WAVE DATA

Run # Average Overprediction in Percent

2410 Ch 1 9.8
2410 Ch 2 8.3
2721 7.4
2724 8.3
2731 5.2 1

25



n Figure 7 as a function of the estimated equivalent statistical bandwidth.

The solid curve is the curve fitted to the simulated time history results given

in Figure 4. These results from the wave data closely match the results from

the simulated time histories. The Ne/Na ratio is again shown to be related to

the equivalent statistical bandwidth of the sampled envelope.

The distribution of the largest envelope values from each of the 60

segments was tested against the hypothetical distribution given by Equation

(13). The Chi-Square goodness-of-fit test results are given in Table 4; the

equal number of expected occurrences method was used with a total of 10

intervals. For runs 2410 (channel 2) and 2724, the Chi-Square test statistic is

greater than 14.07, so the test failed at the 5% level of significance. The

Chi-Square test statistic plotted against N/N e is given in Figure 8. In those

cases where the test failed, larger numbers of occurrences were seen in the

first and last intervals; the extreme envelope values appear to be scattered

over a wider range than expected by the hypothetical distribution. Histograms

for these runs at N = N are listed in Table 5; the histogram for run 2731 is
e

included to give an example of a case that passed the Chi-Square test even

though it to shows wide scatter.

The average overprediction of the envelope maxima compared to the time

history maxima is given in Table 6 for each run. The overprediction is several

percent larger than the values seen for the simulated time histories.

When applying these procedures to experimental data, the Ne/Na ratio for a

puarticular run is the principal result that is then used to estimate extreme

value statistics using the methods of order statistics. Since N (ictual)
a

:samples were obtained over a known time period, the effective number of

statistically independent samples, Ne, over this time period is Na multiplied

by this ratio. This time period is known, so this ratio can be converted to the

effective sample rate that gives statistically independent samples (Ne divided

by this time period). Extrapolation to longer exposure times is accomplished by

vcirying this time interval and calculating a new value for Ne. The expected or

mean extreme value for this time period, for example, is calculated using

Equations (13) and (15) where N is equal to Ne . The Ne/Na ratio is estimated or

measured from the available experimental data, so estimates of this mean

extreme value are obtained.
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CONCLUSIONS

In the design of ships and other marine structures, the ability to

accurately predict extremes in wave induced motions or forces is limited by the

presence of correlated samples in the measured data. This report presents a

procedure for measuring the influence of these correlated samples in this

measured data; corrections are then applied to these extreme value predictions.

The concept of an analytic envelope for arbitrary bandwidth Gaussian random

processes is employed in determining this correction; however, extreme value

predictions are still made within the framework of standard order statistics.

This correction is shown to be related to the equivalent statistical bandwidth

of the random process's envelope time history. This relationship is

demonstrated for simulated data and for experimentally obtained wave data.

The analytic envelope definition provides a consistent, reasonably easy to

apply method for specifying peak occurrences of arbitrary bandwidth Gaussian

random processes. Since the envelope is Rayleigh distributed, this approach

retains many of the features found in the peak-to-trough approach given by

Longuet-Higgins I . Digital filtering is required to produce the envelope time

history, so the computer time required to process experimental data is a factor

in selecting this approach.

In a given time history, the envelope maxima are generally larger than the

time history maxima. The worst cases seen were an average overprediction of

6.6% for the simulated time histories and 9.8% for the measured wave data.

Since the envelope is an upper bound for a given time history, the extreme

value predictions will be conservative; these predictions can be used for

design applications for motion or wave induced force. When extrapolating to

longer exposure times, an important question is the probability law obeyed by

the extreme values; the Chi-Square test performed on the largest envelope

values from each segment will demonstrate if the assumed distribution is

adequate.
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APPENDIX A

SIMULATED GAUSSIAN TIME HISTORIES AND THEIR ENVELOPES

Tne methods used to produce the simulated time histories are described in

this appendix. Also presented here are 20 second long plots of each time

history and its envelope. Histograms of each time history were obtained and

Chi-Square tests were run to test the input time history against the Gaussian

d'stribution and the envelope was tested for the Rayleigh distribution.

Examples of the histograms are given. Also shown are plots of their autospectra

as well as a plot of each envelope's autocorrelation function.

The method for determining the effective sample rate used in the.

statistics estimates requires this series of simulated Gaassian tite .

These time histories were produced using algorithms implemented on a digital

computer. Successive calls to the random number generator produced bandlimited

white noise; this time history was then filtered using a non-recursive digital

filter to achieve the desired spectral shape. The filter was designed using

procedures similar to those described by Helms Since the random number

generator produces uniformly distributed, statistically independent samples and

thirty of these samples were averaged to produce one sample of the bandlimited

white noise, the distribution of this noise and the filtered noise is

approximately Gaussian.

Five different time histories were produced that had bandwidths vrying

from the extreme narrowband to wideband. In each case, the spectral shape 4.as a

rectangular block centered at 0.51 hertz. The bandwidths were 0.078, C.17b,

0.293, 0.488 and 0.684 hertz. These bandwidths correspond to runs 2202, 2205,

2203, 2208 and 2206. The variance of each time history was set to one volt. The

duration of these time histories was 10,080 seconds at a sample rate of five

hertz. The envelope time histories were then obtained using the Rabiner and

Schafer 1 6 method to produce the Hilbert transform. Figures A.a through A.le

show a short segment of each time history; the envlope is plotted on each side

of the axis. The segments shown in Figure A.1 present the most extreme event

that occurred in each time history. For the narrowbanded cases, the envelope

tends to follow the usual concept of a line drawn from one time history maximum
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to the next; however, this is not evident in the wideband cases. The estimated

or measured autospectra of these time histories are given in Figure A.2. The

envelope autospectra are a maximum at or near zero hertz; they tend to show the

triangular hape that would be expected from convolving the time history

spectrum with itself. The frequency range over which they are non-zero appears

to be equal to the range over which the time history spectra are non-zero. The

estimated autocorrelation functions of each envelope time history are given in

Figure A.3. As expected, the narrowbanded spectra have autocorrelations that go

more slowly to zero. These autocorrelation functions are also triangular in

shape. A summary of the basic statistics of each time history is given in Table

A.I. In Table A.1, the normalized bandwidth is the bandwidth divided by the

center frequency (0.51 hertz). The standard deviation is estimated from the

Gaussian time history. The normalized maximum is the most extreme level

(absolute value) that occurred in that time history divided by the standard

deviation. The normalized envelope RMS is the square root of the variance plus

the mean squared for the envelope time history divided by the standard

deviation; as seen from Equation (10), this ratio should be 1.414. In each

case, the estimated RMS is very close to this expected value. The normalized

envelope maximum is the most extreme level of the envelope time history divided

by the standard deviation. The normalized peak-to-trough maximum is the most

extreme peak-to-trough of the Gaussian time history divided by the standard

deviation. The peak-to-trough values are divided by two to make them comparable

to the envelope results.

Data point histograms were obtained from each time history and its

envelope. Using these histograms, the Chi-Square goodness-of-fit test was

performed over a range of at least three times the standard deviation of the

time history to determine the fit to the Gaussian distribution for the time

history and to the Rayleigh distribution for the envelope. The results of these

tests are given in Table A.2; in each case, the hypothesis was accepted at the

5% level of significance. The number in parenthesis under the Chi-Square

statistic is the threshold for acceptance or rejection of the goodness-of-fit

test. The equal interval Chi-Square goodness-of-fit procedures given by Bendat

and Piersol17 were used. Since this test requires statistically independent

samples, the two time histories were sampled at the sample period given in
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Table A.2. The estimated autocorrelation of each time history has decayed well

into the random noise level at this time interval.

For runs 2202, 2203 and 2206, data point and peak-to-trough histograms are

presented in Figures A.4, A.5 and A.6; these histograms supplement the

Chi-Square test results by giving a visual fit to the hypothetical

distributions. The data point histogram for the time history is plotted with

the Gaussian distribution, and the data point histogram for the envelope as

well as the peak-to-trough histogram is plotted with the Rayleigh distribution.

To make the scales comparable to the envelope data point histogram, the

peak-to-trough values were divided by two prior to computing their histogram.

Every sample was used to create these histograms; these are not the same

histograms that were used in the Chi-Square test. The Chi-Square test was not

performed on the peak-to-trough histograms since statistically independent

samples are required for this test. The two data point histograms consistantly

match their hypothetical distribution. As the bandwidth is increased, however,

the number of occurrences in the main body of the peak-to-trough histogram is

seen to increase, while the number of occurrences in the tail begin to

decrease; this behaviour is predicted by Tayfun 5 . In these figures, the number

of occurrences in equal width class intervals are plotted at each class

midpoint.
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TABLE A.1 - BASIC STATISTICS OF THE SIMULATED TIME HISTORIES AND
THEIR ENVELOPES (OVER ENTIRE RUN)

Time History Envelope Peak-to-Trough
(divided by 2)

Run #
Band- Sigma,o Maximum RMS Maximum Maximum
width volts

2202 0.153 1.015 5.070 1.409 5.080 5.034

2205 0.345 0.980 4.199 1.414 4.339 4.007

2203 0.575 0.973 4.373 1.411 4.378 4.087

2208 0.957 1.016 3.920 1.412 4.083 3.740

2206 1.341 0.994 5.052 1.412 5.773 3.692

TABLE A.2 - CHI-SQUARE GOODNESS-OF-FIT TEST FOR SIMULATED TIME
HISTORIES AND THEIR ENVELOPES

Gaussian Distribution Rayleigh Distribution
(Time History) (Envelope)

Run # Sample Degrees of Chi-Square Degrees of Chi-Square
Period Freedom Test Stat. Freedom Test Stat.
sec

2202 16.0 18 21.47 8 8.83
(28.87) (15.51)

2205 13.0 17 20.73 10 13.61
(27.59) (18.31)

2203 10.0 18 15.18 8 7.24
(28.87) (15.51)

2208 6.0 19 18.27 8 11.49
(30.14) (15.51)

2206 4.0 29 27.55 9 5.80
(42.56) (16.92)

Rejection threshold for Chi-Square Test
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APPENDIX B

RELATIONSHIP BETWEEN EQUIVALENT STATISTICAL BANDWIDTH AND

THE AUTOCORRELATION FUNCTION

The definition of the equivalent statistical bandwidth of a filter is

given by Bendat and Pierso11 7 ; their definition is now extended to the

equivalent statistical bandwidth of a random process with any distribution.

From Bendat and Piersol, this "is the bandwidth of a hypothetical rectangular

filter which would pass a signal with the same mean square value statistical

error as the actual filter when the input is white noise". The mean square

value statistical error relationships derived by Bendat and Piersol assume a

Gaussian distributed random process; however, this bandwidth definition has

meaning for random processes other than Gaussian. The equivalent statistical

bandwidth, B st in radians per second of a random process is defined as:

Wo 2
f GM dw
0

BSt (B.1)
wo 2
f G(w) dw
0

where wo = /T (one half the sample rate in radians per second) and G(M) is the

autospectrum of the random process. Since this random process is sampled, it

is bandlimited (G(w) = 0); it has nonzero values only in the frequency interval

-w, < w 1Z w,. The relationship between the equivalent statistical bandwidth and

the autocorrelation function of the random process is now derived; this

derivation is independent of the distribution of the random process. It is

based on sampled random processes; however, this derivation can be extended to

continuous processes.

Balakrishnan 19 proved the following relationships between autocorrelation

and the autospectrum for sampled, stationary random processes. The

autocorrelation function, R(kT), is given by

R(kT) = E[ x(nT) x(nT + kT) ] (B.2)
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where x(nT) is the sampled time history. The Fourier transform pair are

1 WO ikTw

R(kT) --- f G(w) e dw (B.3)
2 -wo

and

1 c -ikTw
G(w) ------ I R(kT) e (B.4)

Wo k=-

The top integral in Equation (B.1) is the variance of the random process, 02,

the zeroth autocorrelation lag:

1 w0o Lao 0

R(O) f f G(w) dw f G(fw) dw (B.5)
2 -wo 0

The lower integral in Equation (B.1) is found by substituting Equation (B.4)

for G(w):

wo WO -iwT(k+l)
f G(w) 2 dw - R(kT) R(lT) f e dw (B.6)

0 2w,2  k=-w 1=-w .o

Since

Wo -iwT(k+l) 2w,, k+l = 0
f e dw { (B.7)

-Wo 0, otherwise

then

co1 ® ~k)
f G(w)2 dw R(kT) 2  (B.8)

0 Wo k=-=

Substituting Equations (B.5) and (B.8) into Equation (B.1) gives the relation-

ship between the equivalent statistical bandwidth and the autocorrelation
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function of the random process:

R(O) 
2

B 3t (B. 9)

R(kT)
2

k=-

or

. C(kT)2  (B.10)
B k=-w
3t

Where C(kT) is the normalized autocorrelation function,

R(kT)

C(kT) - (B.11)
R(O)

Equation (B.9) gives the relationship between the equivalent statistical

bandwidth and the autocorrelation function. At a fixed sample rate, the

equivalent statistical bandwidth is inversely proportional to the sum of the

squared autocorrelation samples. In general, the statistical bandwidth is a

measure of the extent (in time) of the autocorrelation function; it summarizes

this feature of the autocorrelation.
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APPENDIX C

MEASURED WAVE HEIGHT DATA

The experimental data were obtained from two sets of wave height

measurements. The first data set is a 5940 second segment from the two

off-shore platforms operated by the Naval Coastal Systems Laboratory (NCSL) at

Panama City, Florida. The second data set consists of three 1752 second

segments from hurricane Camille that occurred in 1969. This appendix contains

plots of short data segments, histograms, autospectra and envelope

autocorrelation function plots for each data run. Chi-Square goodness-of-fit

tests were performed on the histograms.

The NCSL wave height data were taken at both Stages (off-shore platforms);

Stage 1 is located 11 miles (17.7 km) off-shore in 100 feet (30.5 m) of water

and Stage 2 is located 2 miles (3.2 km) off-shore in 60 feet (18.3 m) of water.

Wave height was measured using surface piercing wave gages. In this report,

this data set is labeled run 2410; channel 1 is data from Stage 2 and channel 2

is from Stage 1. These two wave height records are reasonably stationary over

the 5940 second run length; tidal mean value shift was removed by subtracting a

best fit straight line from these data. The hurricane Camille wave height data

are documented by Earle 2 0 . The three 1752 second long data segments selected

for anlaysis were taken at 1015, 1130 and 1500 hours; these segments were

assigned run numbers 2721, 2724 and 2731. The Camille data is assumed to be

stationary over these run lengths.

Both sets of wave data were processed to obtain the envelope time history,

autospectra, envelope autocorrelation functions, data point histograms and

peak-to-trough histograms, as well as basic statistics. The envelope time

histories were then obtained using the Rabiner and Schafer16 method to produce

the Hilbert transform. A summary of the basic statistics of each time history

is given in Table C.1. The standard deviation is estimated from the wave time

history. The normalized maxima is the most extreme level (absolute value) that

4 occurred in that time history divided by the standard deviation. The normalized

envelope RMS is the square root of the variance plus the mean squared for the

envelope time history divided by the standard deviation; as seen from Equation
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(10), this ratio should be 1.414. In each case, the estimated RMS is very close

to this expected value. The normalized envelope maxima is the most extreme

level of the envelope time history divided by the standard deviation. The

normalized peak-to-trough -i.,ima is the most extreme peak-to-trough of the wave

time history divided by the standard deviation.

Figures C.1 through C.12 present time history segments, autospectra,

histograms and autocorrelation function estimates from these time histories.

These figures are organized by wave data set and run number in the following

manner: For run 2410, 20 second segments of each time history are given in

Figure C.1 for channel 1 and Figure C.4 for channel 2; for the Camille wave

iata, 60 second segments are given in Figures C.8 for run 2721, Figure C.11 for

run 2724 and Figure C.14 for run 2731. Each segment brackets the most extreme

(-,'ent that occurred during that run; the envelope is plotted on each side of

the aixis. For the corresponding runs, wave and envelope autospectrum estimates

a-e plotted in Figures C.2, C.5, C.9, C.12 and C.15. Similarly, the data point

h'stograms and peak-to-trough histograms are plotted in Figures C.3, C.6, C.10,

C.13 and C.16. Autocorrelation estimates for the envelope time history are

given in Figure C.7 for channels I and 2 of run 2410; the autocorrelatlon

estimates for runs 2721, 2724 and 2731 are given in Figure C.17.

The envelope autospectra given in Figures C.2, C.5, C.9, C.12 and C.15

show the general features of the envelope autospectra for the simulated data

presented in Appendix A. Similarly, the autocorrelation functions given in

Figures C.7 and C.17 share the general features of the simulated data

aPtocorrelation functions. The wave autospectrum for run 2410, Channel 1 is

bimodal; however, this feature does not seem to affect its envelope auto

spectrum or its autocorrelation function estimate.

Data point and peak-to-trough histograms are presented in Figures C.3,

C.6, C.10, C.13 and C.16; these histograms supplement the Chi-Square test

re3ults presented below by giving a visual fit to the hypothetical

distributions. ine data point histograms for the time histories (Figures C.3a,

C.6a, C.10a, C.13a and C.16a) are plotted with the Gaussian distribution, and

the data point histograms for the envelope (Figures C.3b, C.6b, C.10b, C.13b

and C.16b) as well as the peak-to-trough histograms (Figures C.3c, C.6c, C.lOc,

C.13c and C.16c) are plotted with the Rayleigh distribution. Every sample was
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used to create these histograms; these are not the same histograms that were

used in the Chi-Square tests described below. Except for the peak-to-trough

histograms, a good qualitative match to their hypothetical distribution is

seen. The peak-to-trough histograms appear to have more occurrences near the

peak of the hypothetical distribution, and less occurrences in the tail; this

feature was more obvious with the widebanded simulated time histories. In every

case, the wave data point histograms have occurrences at a higher level on the

positive side of the distribution than they do on the negative side; non-linear

wave effect probably account for this feature; howeve. , except for channel 1 of

run 2410, the other wave data passed the Chi-Square test for the Gaussian

distribution.

An additional set of data point histograms was obtained from each time

history and its envelope. Using these histograms, the Chi-Square

goodness-of-fit test was performed over a range of at least three times the

standard deviation of the time history for channels 1 and 2 of run 2410 and

over a range of at least two times the standard deviation for runs 2721, 2724

and 2731. These tests were performed to determine the fit to the Gaussian

distribution for the wave data and to the Rayleigh distribution for the

envelope. The Chi-Square test was not performed on the peak-to-trough

histograms since statistically independent samples are required for this test.

The results of these tests are given in Table C.2; except for run 2410 channel

1, the hypothesis was accepted at the 5% level of significance. The number in

parenthesis under the Chi-Square statistic is the threshold for acceptance or

rejection of the goodness-of-fit test. The equal interval Chi-Square

goodness-of-fit proceaures given by Bendat and Piersol17 were used. Since this

test requires statistically independent samples, the two time histories were

sampled at the sample period given in Table C.2. The estimated autocorrelation

of each time history has decayed well into the random noise level at this time

interval.
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TABLE C.l - BASIC STATISTICS OF THE MEASURED WAVE DATA AND THEIR
ENVELOPES (OVER ENTIRE RUN)

Time History Envelope Peak-to-Trough
(divided by 2)

Run #
Sigma,o Maximum RMS Maximum Maximum

feet

2410 Ch 1 0.526 4.643 1.411 4.738 3.379

2410 Ch 2 0.848 4.476 1.417 4.509 3.445

2721 5.972 3.674 1.418 3.878 2.877

2724 5.838 4.722 1.419 4.764 4.374

2731 9.966 4.827 1.418 4.849 3.692

TABLE C.2 - CHI-SQUARE GOODNESS-OF-FIT TEST FOR MEASURED WAVE DATA
AND THEIR ENVELOPES

Gaussian Distribution Rayleigh Distribution
(Time History) (Envelope)

Run # Sample Degrees of Chi-Square Degrees of Chi-Square
Period Freedom Test Stat. Freedom Test Stat.
sec

2410 Ch 1 15.0 17 30.34 9 15.74
(27.59)* (16.92)

2410 Ch2 15.0 15 11.89 7 3.06
(25.00) (14.07)

2721 30.0 6 4.32 4 7.58
(12.59) (9.49)

2724 30.0 7 8.53 5 5.40
(14.07) (11.07)

2731 30.0 7 8.12 4 1.14
(14.07) (9.49)

Rejection threshold for Chi-Square Test
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