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1.1 INTRODUCTION

The Upper Air Physics Branch (Code 4120) at the Naval Research Laboratory
(NRL) conducts upper air and astrophysical research by means of rockets and
satellites. This research includes studies of the wavelength distribution of
solar radiation and the time variations of such emissions as well as the resonant
scattering of solar radiation by atmospheric species. The Branch also conducts
a rocket astronomy program to study nighttime ultraviolet and x~ray radiations
from galactic sources and studies the effects of radiation and particles inci-
dent on the Earth's atmosphere. This data is used to determine the ionic and
molecular composition, temperature and density of the high atmosphere. The
Ionospheric Diagnostic Section is involved with measurement of ionospheric
plasma phenomena; specifically, F-region irregularities at equatorial and high
latitudes.

Accumulating information regarding the equatorial F-region ionosphere has
proven to be important for the communications and ionospheric sciences. This
interest has brought considerable intensity into equatorial investigations with
major technical, scientific, and engineering advances contributing to the
current understanding and future plans for adaptive communications system design
and ionospheric modification and control. In this report the S3-4 satellite
data analysis is summarized.

2.1 EQUATORIAL IONOSPHERIC IRREGULARITIES

The cause-effect relationship for the equatorial ionospheric irregularities
was investigated by znalyzing the S3-4 and Plumex~1 data. The results of S$3-4
satellite data analyses can be summarized as follows:

® Near the nighttime equator there are irregularity structures with
depletions in plasma density up to 3 orders of magnitude and range in horizontal
extent from ten's of kms to less than 1 km. These depletions show east-west
asymmetry with more spectral strength on the western wall of the depletionms,
suggesting more scintillations on the western wall. The mean ion mass, as infer-
red from the ratio square (I /I )2), is more inside the depletions in most of
the depletions suggesting more molecular ions inside the depletions.

° The power spectral analyses of S3-4 data inside the irregular structures
show that in the intermediate wavelength domain (2km - 25m), the power spectral
index is 2.4(20.4). This supports the belief that these irregularities are pro-
duced by collisional Rayleigh-Taylor instability. Simultaneous power spectral
analyses on electron density and mean-ion-mass have shown a general behavior
tending to lower power and soften spectra in ion mass fluctuations as compared
with the fluctuations in total plasma demnsity.

° The ionospheric irregularities during the equatorial spread-F conditions
are known to range from ten's (may be hundreds) of kms to 1 meter or even 11 cm.
To investigate the plasma process(es) responsible for the generation of these
irregularities which range six orders of magnitude in the wavelength domain,
the histograms of spectral indices ( obtained by FFT analyses of a number of
S3-4 orbits) in the different wavelength domains have been drawn. The long
wavelength domain (50 km >A> lkm) 1lies near 1.5 while for intermediate
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(lkm >X> 20m) and transitional (100m >X> 10m) wavelengths (A> 10m) two types of
phenomena have been observed on the power spectra: the peaks at frequencies of
few hundreds Hz corresponding to wavelengths of few meters and a break in FFT
near 3 meter wavelength. These are explained on the basis of excitation of
drift wave and lower~hybrid instability respectively.

The total spectra ranging from ten's of kms to few meters is explained by
the concept of cascading of irregularities or heirachy of instabilities. The
equatorial spread-F starts at wavelengths range of hundreds of kms to tens of kms
by either TID s or gravity waves. The longer wavelengths generate the conditions
which are ripe for the onset of Rayleigh-Taylor (R-T) instability. The gradient
scale sizes for R-T instability is near 20 km. Once R-T instability has taken
over, it produces the gradient scale sizes of few hundred meters which start
gradient driven drift instability in the transitional wavelength domain. This
phenomena of cascading of irregularities to shorter and shorter sizes produces
conditions for excitation of drift waves, parametric instabilities and lower-
hybrid instabilities.

The most significant results of the investigations have been the two-
dimensional picture of depletions and the understanding of different plasma
processes in the different wavelength domains of ionospheric equatorial irregu-
larities.

e
o

3.1 LONGITUDINAL VARIATIONS IN EQUATORIAL IRREGULARITIES

One of the advantages of STP/S3-4 was that it was sun-synchronous and
polar orbit satellite which made it possible to study the longitudinal variations
in equatorial irregularities, as well as global coverage. During the six month
(March~-September 1978) life of the satellite, about 24 percent orbits of the
total number of orbits which covered the nighttime equator observed the ionos-
pheric irregularities. Although the irregularities can be present at almost
any longitude, 50 percent of the observed irregularities lie in the narrow
longitude zones of 0~15° and 165~195°E.

4.1 CALCULATION DEVELOPMENT ‘1
To perform the above tasks, a large number of routines were developed for

both PDP 11/10 and PDP 11/34 minicomputers. A partial list of these routines is

given below: ‘

° To read the data from tapes provided by Aerojet for S3-4 data.

° Calculation and the plot routines for the saturation currents
(I_(E), I.(I)) and the ratio square [(I (E)/IB(I)) ] for S3-4,

Plumex-1, agd DNA/PLACES data in various formats.

° Plot routines for I-V characteristics for S3-4 data and the temperature
calculation routine.

° Calculation of gradient scale length both for $3-4 and Plumex-1
data and subsequent plot routines.

° FFT analyses routine along with the addition of window and filter.

° Calculation and plot routine for a chapman layer used in BIME
simulations and SAR applications.




5.1 SCIENTIFIC DOCUMENTATION

Presentations:

1. "High resolution satellite measurements of equatorial
F-region irregularities", presented at AGU Spring meeting in
Toranto, Ontario (May, 1980).

2. “"Satellite and rocket observations of equatorial spread-F
drregularities?, presented at 6th ISEA meeting in Aguadilla,
Puerto Rico (July, 1980).

3. "The STP/S3-4 satellite expt; equatorial F-region
irregularities", presented at I.E.S., Alexandria, VA (April, 1981).
4, "Spectral classification of equatorial irregularities™,
presented at AGU spring meeting in Baltimore, MD (May, 1981).
L "The STP/S3-4 satellite experiment: Equatorial F-region
irregularities", presented at U.R.S.I. meeting, Washington, DC
(August, 1981).

6. "Synoptic measurements of small-scale variations in the
midlatitude ionosphere with a radio astronomy interferometer",
presented at AGU fall meeting, San Francisco, CA (Dec., 1981).
7. "Drift waves in equatorial spread-F", presented at

AGU spring meeting, Philadelphia, PA (May, 1982).

8. "Expanded probe diagnostics in multi-component plasmas",
presented at AGU spring meeting, Philadelphia, PA (May, 1982),.
Publications:

1. "Satellite and rocket observations of equatorial spread-F
Irregularities”, J. Atmos. Terr. Phys. 43, 779 (1981).

2. "The STP/S3-4 Satellite Experiment: Equatorial F-region

Irregularities"”, NRL Memo Rept. 4531, proc. I.E.S.,6 228, 1982.
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3. “The STP/3-4 Satellite Experiment: High Latitude Large Scale
Density Irregularities'", NRL Memo Rept. 4514, proc. I.E.S.,431, 1982,
i 4. "The S3-4 Ionospheric Irregularities Satellite Experiment:

| Probe detection of multi-ion component plasmas and associated effects
on instability processes", NRL Memo Rept. 4728. Also in Astrophys.
and Space Science (1982).

5. "An Atlas of Ionospheric F-region structures as Determined

by the NRL-747/S3-4 lonospheric Irregularities Satellite In-

vestigations", NRL Memo Rept. 4862, 1982.

& 6. “"The Two-dimensional Wave Number Spectrum Classification of

the Equatorial Spread-F", J. Geophys. Res. (to be submitted).
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Satcliite and rocket
observations of equ:torial spread-F irregularities:
a two-dimensional model

E. P. Szuszczewicz, M. SingH* and J. C. HouMEs
E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, DC 20375, US.A.

Abstract—Recent rocket and satellite measurements of equatorial F-region irrcgularities have been
able 10 resolve wavelengths comparable 10 the meler-size sensitivities of the Jicamarca and Altair
radar backscatier techniques. In a July 1979 rocket campaign at the Kwajalein Atoll, vertical profile
mecasurements by ‘in situ’ plasma probes showed the F-region marked by a number of large scale
plasma depletions, each having its own distribution of smaller scale irregularities and a trend toward a
co-lacation of the more intense irvegularitics with positive gradients of larger scale features. Similar
measurements on the $3-4 Tonospheric Irrepularitics Satellite have shown large scale depletions (1-3
orders of magnitude) with east-west asymmetries that point toward the western wall as the sight for
the more intense plasma density fluctuations. The combined rocket and satellite measurements provide
a two-dimensional model of macroscopic F-region depletions with small structures tending to develop
more readily on the top and western boundaries. The model and associated power spectral analyses is
in concert with a developing catalog of radar observations and the predictions of numerical simulations
which cmploy the Rayleigh-Taylor instability as the primary mechanism for the generation of

PRI SN TR BN TPV RIS TV SEIAN Y TRV
[KEFRTTETS LIS W]

intermediate wavelength irregularities.

1. INTRODUCTION

Recently, there have been considerable advances in
the understanding of equatorial spread-F as a re-
sult of improved ground based radar observations
and coordinated in situ measurements. The long
«tanding Jicamarca radar results [e.g. WooDMAN
and LaAHoz (1976) and associated references] have
been studied in greater detail by the expanded
capabilities of the Altair radar facility in the Kwa-
jalein Atoll (Tsunopba and Towrg, 1980). These
more recent results have investigated plume de-
velopment in an east-west cross-section and pro-
vided some tentative identification of plume ele-
ments with local F-region plasma depletions
(TsunoDA, 1980a, b).

Early efforts to examine the exact relationship
between radar plumes and ionospheric depletions
by performing simultaneous in situ and ground-
based radar observations (KeLiey et al, 1976:
1 MORSE et al., 1977) were limited to conditions of

bottomside spread-F and required extrapolations in
space and time to establish correlations. These
frustrations, as well as two unsuccessful attempts at
Kwajalein in 1977 and 1978, were finally relieved
. by the successful DNA/PLUMEX campaign in
E 1979 (Szuszczewicz et al., 1980a) which defini-
tively established the co-location of intense radar

*Sachs/Freeman Associates, Inc., Bowie, MD 20715.
On leave from Punjabi University, Patiala, India.

returns with the upper region of a topside F-layer
depletion. The PLUMEX results also provided the
first vertical profile of large-scale plasma depletions
with superimposed distributions of smaller scale
irregularities.

In an attempt to establish a 2-dimensional east~
west in situ profile that complements the develop-
ing catalog of Altair observations, we present in
this paper a composite of rocket and satellite obser-
vations, from the PLUMEX campaign on the one
hand and the S3-4 satellite on the other. These
results are summarized in subsequent sections and
synthesized in a way that suggests a two-
dimensional mode! of macroscopic F-region deple-
tions with smaller scale structures tending to de-
velop more readily on the top and western bound-
aries.

2. ROCKET-BORNE MEASUREMENTS

The coordinated measurements of equatorial
spread-F conducted during July 1979 at the Kwa-
jalein Atoll involved the launch of two in-
strumented rocket payloads designed to probe the
detailed in situ structure of the turbulent ionos-
pheric plasma. The first launch operation
(PLUMEX I; 17 July 1979; 0031:3025LT) was
conducted during the late phase in the development
and decay of spread-F. The associated results and
discussions of ground-based and rocket-borne diag-
nostics have been presented by Szuszczewicz et
al. (1980a, b).
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Fig. 1. Relative electron density profile of macroscale features as measured simultanec oy ‘on and
electron saturation probe currents collected on the upleg trajectory of PLUMEX 1.° ‘irregularity
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P pnrposes of L'mnpuri.\()p with subec G nt prg
writations of 83-4 satellite data we <how here in
i 1 the upleg measurements of refative domay o
[,,l-wnlcd by correlated ion- (') and ciectron:
wturation L'¢V7) currents collected by a pair of
on-board  pulsed-plasma-probes  (Hoians  and
G7USZCZEWICZ, 1975: Szuszczewicz  and
Hoirmes, 1980) in the PLUMEX 1 operation. The
ordinate has a linear scale for time-after-launch
with altitude superimposed at 50 s increments. (Be-
cause ion and electron saturation currents have
o nificantly different sensitivities to velocity, sheath
and magnetic field eflects, variations in Iy' and
L'(V") not mutually corroborated were attributed
to the various aspect sensitivities and excluded

from Fig. 1. This approach facilitated analysis, re-

Juced computer time, and established credibility in
(he interpretation of the curves as relative electron
Jensity profiles.)

The results in Fig. 1 show that a number of
major depletions (AN./N,°<0.9) were distributed
throughout the F-region. Each of the large scale
depletions (identified alphabetically) has its own
distribution of irregularities, illustrated in Fig. 2 by
the expanded view of regions C,D, H and L It is
clear that C is not a single narrow biteout but a
collection of rather large irregular structures ex-
tending over a total altitude domain of about
12 km. (Vehicle velocity in region C was 2.4 km/s.)
To develop a quantitative view of irregularity fluc-
tuations observed in the F-region, contiguous
linear detrends over 4-s intervals were executed
throughout the entire upleg trajectory. The varia-
tions about those linear detrends were then plotted
in Fig. 1 as ‘Irregularity Intensity,” with a maxim.um
relative scale of 4. A fluctuation as great as 4
approximately represents a £80% fluctuation about
the linear detrend. (Correlation of these results
with macroscale gradients and Altair backscatter
contours are discussed by Szuszczewicz et al.,
1980a). The results show that the most intense
irregularities occurred on the bottomside gradient
(region C) with corresponding measurements at all
other altitudes at a much lower level. We note that
the fluctuations in the largest depletion (region
H-1) are smaller than those at C. Furthermore, the
fluctuations at C, D, E and I are more intense than
at adjacent locations; and C, D, E and I are co-
located with positive density gradients of large scale
features.

3. S3-4 SATELLITE RESULTS
While rocket-borne instrumentation can provide
vertical profiles of irregularities, a circular or necar-
vircular orbiting satellite with high resolution in-

Yoot oo adaniti w1

sttine nLition s reguired 10 assemble iregularity
intensities and power law behavior in the horizontal
pliane. The §3-4 satelhite carnies just such an experi-
ment.

The $3-4 ionospheric irregularities experiment
employs a pair of pulsed-plasma-probes (HoLmes
and Szuszczewicz, 1975; Szuszczewicz and
HoiMEs, 1980) on a polar (96.4° inclination), sun-
synchronous (2230 h LT, equatorial crossing), F-
region orbiting satellite. The experiment provides
direct measurements of the ilonospheric state
(N,. T,). s condition of irregularity (8N,), and
associated clectron density fluctuation power
spectra [ P(k)] with §-20 m resolution.

Figure 3 presents a sample of relative electron
density data collected during a nighttime equatorial
crossing with the satellite orbiting at an altitude of
240 km with a velocity of 7.53 km/s. The velocity
component perpendicitar 1o the geomagnetic field
is 2.0km/s. 50s of data are displayed covering a
total horizontal extent equal to 366 km, moving
from east-to-west with increasing time.

While the data represents a transit from the
southeast to the northwest, our discussions and
associated interpretations will assume that all varia-
tions along the magnetic field are negligible. We
therefore interpret our results in the framework of
a two-dimensional system, perpendicular to the
magpetic field. This assumption is similarly em-
ployed in theoretical analyses of equatorial spread-
F (e.g. Scannaprieco and Ossakow 1976) and
supported by 6300 A airglow intensity measure-
ments of F-region depletions which show signific-
antly greater variation in east-west extent than
north-south (WEBER et al., 1978). Our discussions
will also assume temporal variations to be nonexis-
tent during the satellite traversal across any given
depletion (tvpically 10s or less in Fig. 3). We
consider this a reasonable position since saturation
times for unstable Rayleigh-Taylor modes are of
the order of 4000s (KeskiNEN et al.,, 1980a) and
F-layer vertical drift velocities are generally in the
10-20 m/s range (e.g. Szuszczewicz et al., 1980).
In neither case should our interpretations be in-
fluenced by a 10s time lapse as the satellite passes
from the eastern to the western boundary of a
depletion.

The data reveal four large scale depletions rang-
ing up to 98 km wide and a factor of 300 in depth,
with smaller scale structure visible down to a frac-
tion of a kilometer. The upper portion of Fig. 3
presents ‘irregularity intensity’ as measured by rela-
tive fluctuations about continuous 0.27s (2.1 km)
linear detrends.

Further discussion is facilitated by identifying
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Fig. 3. The electron density variations as measured by the electron probe aboard $3-4 on rev. No.
2123. On the top is the irregularity intensity (8I/1) determined over contiguous 2.1 km intervals
throughout the depletions.

certain features in Fig. 3. First, there are clearly
‘defined regions of undisturbed background ionos-
phere, marked alphabetically A through D; the
smoothness of the relative density and the corres-
ponding 0% fluctuations attest to their undisturbed
nature. The eastern boundary is defined as the
region of density gradient moving westward from
an undisturbed domain to the least lower bound of
relative plasma deansity in the depletion. Everything
to the west of that minimum is defined as the
western boundary. Admittedly these definitions
leave no room for a region that might be called the
‘depletion ceater,” but depletions 3 and 4 suggest
that there is no easily defined ‘depletion center.’
This is also borne out by other sets of P’ data.
Focussing on depletions 3 and 4, we see that the
irregularity intensities are 2 to 3 times farger on the
western boundary than on its eastern counterpart.
This same relationship is true in depletions 1 and 2,
but only after a qualification that suggests that 1
and 2 are halves of a larger depletion bounded by
A and B. This is supported in part by the nonexis-
tence of a quiescient ionosphere between the two.
When viewed from this perspective the western

boundary is approximately twice as intense in ir-

regularity intensity as the eastern boundary.
Signatures in irregularity strengths and relation-
ships to plasma instability mechanisms can he

ko souih. Sedt. oD, ch ockiet

further explored through power spectral density
analyses. We present in Fig. 4 just such results for
each of the boundaries in Fig. 3 (1E and 1W refer
respectively to the eastern and western boundary of
depletion number 1). Power spectral analyses are
presented across the boundaries of each of the four
depletions with spectral indices (n, in a spectral fit
to P = Pof ") ranging from 1.9 to 2.3. (These indi
ces are in agreement with the work of KEskiNgN ef
al. (1980) where numerical simulations predict n -
2.0 to 2.5 for horizontal irregularity structures pef-
pendicular to B. This result runs parallel to an
earlier comparison (Seuszcziwicz and Hotan s,
1980; Keskinen e¢ al. 1980b) which showed that
the power spectral index across region C in
PLUMEX 1 also agreed with the predictions of
Keskiven et al. (1980a) in the vertical planc.'
More important to the discussion of east-west
asymmetries is the ratio of the spectral strengths
(P,) across the two boundaries. By defining P, &
the Py(West)/Py(East), we find the ratio P, to ¢x-
tend from 1.4 to 11.3, i.e. the irregularity spectral
strength on the western wall is 1.4 to 11.3 times
more intense than on the eastern counterpart.
These results are in concert with the radar obser-
vations of Tsunoba (1979) which show that the
bottomside backscatter strength is often asymmet-
ric in the east-west plane. with the western side of
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bounaary) + P, (eastern boundary).

the plumes being the more intcnse. The combined
observations support a model of E-W asymmetry
which allows for a neutral-wind-driven instability-
rrowth-rate enhancement on the western side of a
rising bottomside F-region depletion (TsUNODA,
1979).

4. CONCLUSIONS

The combination of recent rocket and satellite
data allows for the development of a two-
dimensional empirical model of equatorial deple-
tions and associated irregularities. Elements in the
data have led to the following conclusions:

(1) Equatorial depletions are macrostructures
within which much smaller scale irregularities are
imbedded;

(2) These smaller scale irregularities (in the ver-
tical plane) tend to derive their energies from posi-
tive density gradients on the topside of local deple-
tions;

(3) Vertical and horizontal power spectral anal-
yses display indices from 1.8 to 2.5, a result which
is consistent with Rayleigh-Taylor instability gener-
ation of intermediate wavelength irregularities dur-
ing the occurrence of equatorial spread-F (Kesxi-
NEN et al. 1980a);
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(4) When viewed horizontally, bottomside deple-
tions have an east-west asymmetry with the maore
intense fluctuations and spectral strengths being
observed on the western boundary. This result i
consistent with the radar measurements of
Tsunopba (1979) and scintillation observations of
LivingsTon et al. (1980);

Sinitt and 10 Co Howans

(5) The combination of all resulls leads o a
two-di. cisional mode) of macroscopic Forevion
depleticas with smaller scale structures descloping
on the top and western boundaries. This model and
associated spectral indices fully supports the com-
putational work of KeSkINEN et al. (1980a).
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THE STP/S3-4 SATELLITE EXPERIMENT:
HIGH LATITUDE LARGE SCALE DENSITY IRREGULARITIES

INTRODUCTION

The polar regions of the earth's ionosphere are known
to exhibit a wide range of plasma kinetic interactions that
are very dynamic and complex. The plasma kinetic processes
have interaction scale sizes that range from the order of
auroral longitudinal dimensions down to particle gyroradii.
Although the phenomenology and morphology of auroral processes
are well known, the physical mechanisms are not well under-
stood. Plasma density irregularities in the auroral F-
region have been detected through ground-based scintillation
observations (Aarons, 1973; Fremouw et al., 1977; Buchau et
al., 1978; Rino et al., 1978), satellite measurements (McClure
and Hanson, 1973; Dyson et al., 1974; Sagalyn et al., 1974;
Phelps and Sagalyn, 1976; Clark and Raitt, 1976; Weber and
Buchau, 1981), and rocket observations (Kelley et al.,

1980). Several physical mechanisms have been suggested to
explain the high latitude irregularities. A recent review
({Fejer and Kelley, 1980) lists three general sources of the
irregularities: 1) particle production (especially by low
energy precipitating electrons), 2) electrostatic turbulence,
and 3) plasma instabilities. Except in extremely simple
situations, it is likely that all three mechanisms will
contribute to the spectrum of irregularities.

In this report we will examine two cases of high latitude
measurements of electron density irregularities obtained in
the nightside auroral F-region with the pulsed plasma probe
experiment on the STP/S3-4 satellite. These two cases
suggest the importance of plasma instabilities associated
with particle precipitation, i.e, field-aligned currents,
and illustrate the variety of density irregqularities en-
countered at high latitudes. The first observation we
discuss is that associated with a quiescent aurora, in which
the structure of density irreqularities is relatively well
defined on several scale lenaths, from 10 km to about 300
km. These scale lenaths are significant for some recent
theoretical studies on the applicability of the current
convective instability in diffuse auroras. The second
observation we discuss was obtained during a more dynamic
state of the aurora and serves to illustrate some of the
complexity associated with possible gradient- and/or current-
driven plasma instabilities in discrete auroras.

MEASUREMENTS AND ANALYSIS

Plasma Density Measurements

The polar-orbiting STP/S3-4 satellite is instrumented
with a pair of pulsed-plasma-probes that allow high resolution
measurements of electron density N_, temperature T_, density
fluctuation power spectra PN (k), Slasma potential”™ V_ and

e
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variations in the mean ion mass 6M./M, [Szuszczewicz et al.,
1981]. We briefly review the expe%imental operation only

for the particular data mode of interest here. In the low-
data-rate mode, the double probe system sampled electron-

and ion- saturation currents simultaneously at 100 samples

s !, Under conditions of fixed-payload potential and stable
velocity-field and magnetic-field aspect (see e.g., Szuszczewicz
and Takacs, 1979), the density N_and density fluctuation

ANe are directly proportional to®the probe saturation current
Ie and its fluctuations AI . The STP/S3-4 satellite was in

a sun synchronous orbit With an inclination of 96.5°

and crossed the equatorial plane at local times of 2230 and
1030. The altitude ranged from 160 to 260 km. In the
discussion below of irregularity scale lengths, we will use
an average spacecraft velocity of 8 km s ! to convert time
variations to spatial variations, using AL=vAt, where AL is
the spatial length, v is the spacecraft velocity, and At is
the sampled time interval.

Quiescent Aurora

About five minutes of saturation currents, I_and I,,
obtained on orbit 390 are shown in Figure 1. Thesé measurements
were obtained in the night side auroral F-region over the
south pole at an altitude of 260 km with the spacecraft
moving from the south polar cap region toward the nightside
equator (left to right in Figure 1l). The probe currents
clearly show that irregularities were detected on both
electron and ion probes. The detailed tracking of one probe
by the other indicates that the probe system was working
properly and that the irregularities were due primarily to
variations in the ambient electron and ion densities and not
the result of secondary effects such as changing spacecraft
potential, aspect sensitivity, etc. 1In this preliminary
report, only the electron density irregularities will be
discussed, and we simply note the correlative behavior of
the ion density irregularities.

The large depletion in electron density (almost an
order of magnitude) centered at 1840 UT corresponds to a
diffuse aurora. The geomagnetic Kp index for the period of
this measurement was 1+, indicating relatively quiescent
auroral conditions. The ion density shows a similar depletion.
Both the electron and ion depletions extend over a time
interval of about 25 s, corresponding to a distance of about
200 km along the approximately south-north direction of
spacecraft motion. This aurora was also detected by Huffman
et al. (1980) with the vacuum ultraviolet (VUV) experiment
on board the same spacecraft. A detailed comparison of the
density measurements in Figure 1 with the VUV measurements
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(Fig. 15 in Huffman et al.) indicates that a good correlation
exists. A few discrete arcs detected by the VUV measurement

in the time interval 1839-1840 UT appear to be correlated .
with some of the density structure. Equatorward (to the

right) of the large depletion, the electron density shows a i
relative enhancement with a scale length of about 300 km. ]

A more detailed plot of the electron density depletion
of Figure 1 and its contiguous domains is shown in Figure 2.
(The expanded interval is indicated by the arrows above the H
electron current trace in Fi?ure l.) 1In this plot every l
data point sampled at 100 s is shown and the density scale ' !
on the left of the figure is approximate. Within the depletion
at least three well-defined density variations with nearly
periodic behavior are indicated. Assuming the auroral structure
to be relatively stable, the width of the three density
structures along the spacecraft trajectory is about 20 km
and the large scale depletion has a width of about 200 km.
On either side of the large scale depletion the density
irregularities generally appear to have high and low frequency
components with the low frequency components having scale
widths comparable to the widths of the density structures
within the depletion, i.e., about 20 km.

The Fast Fourier Transform (FFT) power spectrum of the
density irregularities in each of three intervals are shown
in the insets to Figure 2. The data time interval over
which the FFT was calculated is indicated below each spectrum.
The Nyquist frequency for each spectrum is 6.25 Hz, corresponding
to a minimum scale size of about 0.6 km. Each spectrum is
normalized to the maximum power calculated from the FFT.
The straight line drawn_through each spectrum is the least-
squares power law P=P f , where P/P_is the normalized
power, f is the frequgncy, and n is the spectral index.
The spectra are calculated without smoothing, except for
the removal of the lowest frequency (DC) component by applying
a linear detrend.

The first power spectrum (on the left) suggests a k-
dependence of k !**®, where k = 2n/)1 is the wave number and
A is the wavelength of the spatial irregularity. The value
of the index is consistent with previous reports (Dyson et
al., 1974; Sagalyn et al., 1974; Phelps and Sagalyn, 1976;
Kelley et al., 1980) on high latitude irregularities where
scale sizes from less than 1 km up to 200 km have been
considered. In the second power spectrum, taken within the
large scale depletion, the spectral index implies a k !°%%
variation in spatial irregularity. The low frequency
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Fig. 2 - An expanded time-scale plot of electron density irregularities in

the diffuse aurora of Figure 1.

The power spectra indicate the frequency

dependence of the least-squares power law. Frequency f is directly propor-
tional to wave-number k, assuming the irregularities are spatial structures.




spectral range 0.1-0.3 Hz corresponds to the well-defined
structures of about 20 km half-width in the density-vs-
time plct. The spectral power in the 20-km structures
inside the large density depletion is about three times
greater than the power in similar scale size structures
outside the depletion, a fact not obvious in the power
spectra because of the normalization. The third power
spectrum shows a power law dependence with a spectral index
of -1.69.

An examination of the density-vs-time plot of Figure 2
shows that approximately 20-km scale size structures are
clearly evident both inside and outside the large depletion.
A possible source of these 20-km density irregularities is
suggested by recent theoretical studies on the current
convective instability in diffuse auroras (Ossakow and
Chaturvedi, 1979; Keskinen et al., 1980; Huba and Ossakow,
1980) . The current convective instability is proposed as a
mechanism for generating large scale (~ 10-50 km) density
irregularities in the diffuse auroral F-region. The current
convective instability may thus provide an explanation for
the sheet-like density irregqularities that have been detected
by Fremouw et al. (1977) and Rino et al. (1978) in their
analysis of enhanced scintillations at auroral latitudes. In
a numerical analysis, Keskinen et al., (1980) considered the
nonlinear evolution of the current convective instability
with an initial density gradient scale size of 50 km. They
obtained a spectrum of irregularities with a spectral index
of -1.7 in the north-south direction. This scale size and
spectral index are similar to the scale lengths and to the
spectral indices shown in Figure 2. Thus we suggest that
the observations provide experimental support for the current
convective instability as a possible mechanism for the
density irregqgularities associated with the diffuse aurora.

Dynamic Aurora

The plasma probe measurements of Figure 3 illustrate
the case of a dynamic aurora observed on orbit 244 in the
southern night-side auroral F-region. The K_ index for this
period was 3+, indicating that moderately active geomagnetic
perturbations were occurring. As in Figure 1, the electron
and ion saturation currents were sampled in the low-
data-rate mode (100 s !). The two currents track each other ' i
very well so that we are confident of proper measurements
directly proportional to the ambient plasma density. The
outstanding features of the density measurements in Figure 3
are the sharp transition in density occurring at about

g
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1915:15 UT and the large peak-to-peak variations between ;
1916 and 1917 UT. The sharp transition in density is more ,
apparent in the electron current than in the ion current

because of noise interference occurring in the ion probe

before about 1915:10 UT. A detailed comparison of the two

currents shows that the transition itself is unaffected by

the noise and the two currents track each other almost

exactly within the transition. 1

A detailed plot of the electron current in the time
interval indicated by the arrows in Figure 3 is shown in
Figure 4 with an approximate density scale to the left. The
sharp transition begins at about 1915:17 UT and consists of
large irregular oscillations over the transition width of
about 1.5 s. The density jump associated with the transition
is about a factor of 4. Immediately behind the transition
there are at least four distinct oscillations with an average
period of about 2 s. These oscillations seem to decay
exponentially, as indicated by the dashed line (on a log
scale, an exponential curve will appear as a straight line).
The VUV observations on the same spacecraft indicate that
auroral emissions were detected at the same time the density
transition occurred (R.E. Huffman, private communication)
suggesting that the density jump is associated with a discrete
auroral arc. The observation of a sharp transition suggests
that a moving boundary has been detected and we conclude
that the density jump is associated with the surge of an
auroral arc. The surge direction cannot actually be determined
from our observations; generally the movement is westward
and poleward (Akasofu, 1968). The sharp transition in
density implies that gradient-driven plasma instabilities
are likely to occur; with our interpretation of a surging
auroral arc, the decaying oscillations behind the density
jump would represent spatial oscillations left behind by the
movement of the source of instability, the surge front. The
electron density increase by a factor of 4 across the surge
front probably results from the enhanced ionization due to
precipitating particles. Similar ionization enhancements of
the F~layer associated with discrete auroral arcs have been
observed with ionospheric sounders (Pike et al., 1977). The
surge front very likely has field-aligned currents associated
with it (Iijima and Potemra, 1978), so that current-~driven
plasma instabilities are also likely to be present and may
contribute to the density oscillations. It is possible that
the large and irregular variations seen at later times
(after 1915:55 UT) also may have had their origin in the
surge of the auroral arc. If the irregular density structures
behind the surge front are quasi-stationary, then a wide
range of scale lengths is evident, from about 4 km to 70 km
and longer. In contrast, the region ahead of the surge
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front has a distinctly different appearance, with only low
amplitude, high frequency variations. This region ahead of
the surge front may be a relatively quiescent ionosphere
about to be perturbed by the surging auroral arc. The
different character of the irregqularities on either side of
the density jump that we have identified as a surging
auroral arc is additional evidence that the density jump is
a dynamic transition between two states of the F-region
ionosphere.

The power spectra for three time intervals are also
shown in Figure 4. Just ahead of the density jump the
spectrum of the irregularities shows that the slope of the
least-squares power law is relatively flat, suggesting that
thermal fluctuvations dominate the spectrum and the ionosphere
is in a quiescent state. The spectrum immediately behind
the density jump shows a power law with steeper slope,
indicating the presence of enhanced power at low frequencies.
The well-defined decaying oscillations behind the density
jump appear in the spectrum as the component centered on a
frequency of about 0.3 Hz. Under the assumption that they
are spatial variations, these oscillations have a scale
length of about 10 km. The spectral index n = -1.66 for the
second spectrum in Figure 4 is nearly identical to one of
the spectra in Figure 2. This near-equality suggests that
similar transfer processes in spectral energy may be involved.
(We note, however, that a specific spectral index does not
uniquely define an instability process.) The third spectrum
in Figure 4 corresponds to the region of large peak-to-peak
variations. The spectrum clearly shows the predominance of
structure in the range 0.1-1.0 Hz (40~-4 km). The spectral
index is near -2, possibly due to the presence of steep
edges in the irregularities.

CONCLUDING COMMENTS

The aurora-related F-region density irregularities
discussed in this report illustrate the variety of plasma
kinetic processes that are involved in high latitude ionospheric
effects. Our study of the density irregularities is in a
preliminary stage, and we expect that new and significant
results will be forthcoming as the study advances. It is
already obvious from an initial survey of available satellite
data that aurora-related effects are detected outside the
average auroral boundaries, i.e., both at higher and lower
latitudes. Since the high latitude region is directly
associated with magnetosphere-ionosphere coupling processes,
we anticipate that the analysis of the ionospheric density
irregularities in regions such as the polar cusp will address
problems of global importance.
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THE STP/S3-4 SATELLITE EXPERIMENT:
EQUATORIAL F-REGION IRREGULARITIES

INTRODUCTI1ON

Equatorial F-region irreqularities have drawn much interest
in recent years because of their undesirable effects on trans-
ionospheric communications and their cause-effect relationship
with fundamental plasma instability processes. 1In efforts to
understand the causative mechanism(s), considerable advances have
been made in areas of detailed ground-based radar observations
and "in situ" measurements. The radar observations (e.g.,
Woodman and La Hoz, 1976; Tsunoda et al. 1979) have found that
meter-size irregularities primarily populate the bottomside F-
region in the early evening, at later times tend to rise up and
break away from their lower altitude source regime and develop
structures extending up to the 700-1000 km region. These structures
have come to be called "plumes”.

On the macroscale {100's of meters to 10's of km) "in situ"
nighttime equatorial measurements have revealed large biteouts in
plasma density ranging up to three orders of magnitude (Hanson
and Sanatani, 1973) and considered just as characteristic of
spread-F as the much less intense (meter size) irregularities
observed by radar. Later works on biteouts (Brinton et al. 1975;
McClure et al. 1977) showed that ion composition inside and
outside the holes can be vastly different. The molecular ions
can be more abundant inside the holes than outside the holes, and
the holes can vary from a few km to tens of km in the horizontal
extent.

In examining potential relationships between radar plumes
and ionospheric depletions, Szuszczewicz (1978) suagested that
equatorial holes and spread-F were the same phenomena with small
scale irregularities imbedded within the large scale depletions.
He argued that a chemical volume of ion density on the bottomside
(containing the signature cf bottomside species) could move
upward through a stationary neutral atmosphere and appear as
biteouts at higher altitudes with much smaller structures (down
to the meter range) populating the density gradients which
bounded the macroscale depletion. This model was in concert with
the numerical results of Scannapieco and Ossakow (1976) and the
drift measurements of McClure et al. (1977).

To further study and definitively unfold the detailed
relationships between large scale depletions, meter size
irreqgularities and chemical transport processes, a coordinated
investigation was conducted which involved simultaneous obser-
vations by radar and "in situ" rocket-borne diagnostics
(Szuszczewicz et al., 1980). The combined observations have
shown that

Manuscript submitted April 10, 1981.




{a) During conditions of well-developed equatorial spread-~F
the most intense "in situ" irreqularities occurred on the bottom-

side F-layer gradient.

(b} Within a large scale topside F-layer depletion
radar backscatter and "in situ" irregqularity strengths
maximized near the depletion's upper wall.

(c) Ion composition within a topside depletion provided
signatures of its bottomside source domain and estimates of
average maximum vertical drift velocity. For long-lived
depletions, it was found that molecular-ion signatures (NO
and O;) can be lost while bottom§ide leyels of N can be
maintained when [0"] » N, >> [NO'] + [0;]; and finally,

(d) Large scale fluc;uation of o' accompanied by a
near-constant level of NO and O; on the bottomside F-layer
gradient suggests that neutral atmospheric turbulence was
not a major source for bottomside icnospheric plasma irregu-
larities and the associated triggering of equatorial spread-
F.

To complement the vertical profile information provided
by the rocket observations, we present and analyze a sample
of "in situ" measurements conducted on the STP/S3-4 satellite
carryino a pulsed plasma probe experiment. The probe experi-
ment employed a self consistent test for measurement integrity,
while determining electron density and temperature as well
as density and mean ion mass fluctuations at 5-20 meter
resolution. The S3-4 experiment has been discussed by
Szuszczewicz et al. (198l1l). In this paper, we discuss some
of the recent results with emphasis on general horizontal
morphology, relationships to basic instability processes
and associated scintillation effects.

EXPERIMENTAL RESULTS
Plasma Depletions

The data reported here was made available by the NRL-747
paired-pulsed-plasma-probes (P4) experiment (Szuszczewicz et
al. 198l) on STP satellite S3-4 in a sun~-synchronous orbit
at lower F-region altitudes. The satellite crossed the
nighttime equator at about 2230 LT when the the frequency of
occurrence of spread-F was high. One probe was biased to
respond to variations in plasma electron saturation currents
(Ie « Ne) and the other probe responded to the ion saturation

PO




currents (I. « N,/Vil). Subject to the selection of a
number of cdmmandable’modes of operation, either probe could
be repetitively pulsed from its fixed-bias level using a
special electronic procedure (Holmes and Szuszczewicz, 1975)
to generate conventional Langmuir characteristics for full
determinations of electron density N _, temperature T _ and
plasma potential V_. The different fiodes of operati®n and
experimental details are discussed by Szuszczewicz et al.

(1981).

Figures 1 and 2 present samples of nighttime eguatorial
irregularity structures as measured by the currents collected
by the electron (I_) and ion (I.) probes. The Figures show
that the holes ext&nd from a fe® kms to tens of kms, with
depletion levels ranging from a factor of 3 (hole A) to a
factor of 500 (hole F). A cursory analysis of Figures 1 and
2 reveals three particularly interesting observations:

(a) The density gradients on the opposing sides of each
hole are different. Noting that the inclination of the
satellite orbit is 96.4~ (traveling in the east-to-west
direction with time increasing left-to-right) it can be seen
that density gradients in holes C-E (Fig. 1) and F (Fiag. 2)
are sharp on the eastern boundary and soft on each western
counterpart. In the case of hole A, B and H (Fig. 1), the
density gradients are not quite as sharp in comparison with
holes C-F but the average density gradients are still softer
on the western boundary. For the holes L (Fig. 1) and N'
and L' (Fig. 2), the difference in density gradients on the
opposina sides does not constitute any specific behavior
while in the hole C' (Fig. 2) the density gradient is sharp
on the western boundary. These observations can be summarized
by noting that the density gradients are different across
the boundaries of each depletion, with a preference for the
density gradients to be sharper on the eastern side.

(b) Another interesting feature of the holes is their
similarities in structural morphology. Holes A, B and H are

similar in their horizontal profiles. A similarity feature
can also be identified in the depletion L (Figure 1) and L'
(Figure 2). Both of these depletions have a center point (M

and M' re.pectively) around which the structures look similar.
At the central point (M and M'), the plasma density approaches
the background (undisturbed) level suggesting that one large
hole is breaking up or alternatively two smaller ones are

merging.

(c) The top panel of Figures 1 and 2 displays relative
density fluctuations, 8I/I determined by variations about
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Figure 1

Horizontal profile of ionospheric F-region plasma
density as indicated by electron (I_ ) and ion (I.)
saturation currents measured on rev #2177. GI/Ilis
the relative irreqularity intensity as calculated
by variations about linear detrends over sliding
2.1 km intervals.
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lincar detrends over sliding 2.1 km intervals throughout the
depletions. The fluctuations (8I/1) easily 1dentifies the
deyrece of disturbance. The percent vartiaticn in the holes
A, B and H (Figure 1) is less than 20% in must parts, while
in other holes of Figqures 1 and 2 the variation can be

more than 50%. In addition, the variations ~an be different
across the opposing boundaries of thc¢ holes. We discuss

this more fully below.

East-West Asymmetry

Further illustrations of F-region irreqularities appear
in data revs 2122 and 2123 shown in Figure 3. Rev 2123
shows four depletions (numbered 1 through 4) with the depletion
level extending to more than two orders of magnitude. The
rev 2122 shows three depletions (numbered 5 through 7} with
depletions in density up to one order of magnitude.

The discussion is facilitatea by identifying certain
features in rev 2123. First, there are clearly defined
regions of undisturbed background ionosphere, marked alphabetically
A through D; the smoothness of the relative density and the
corresponding 0% fluctuations attest to their undisturbed
nature. Focussing on depletions 3 and 4, we see that the
irreqularity intensities are 2 to 3 times larger on the
western boundary than on eastern counterparts. This same
relationship is true in depletions 1 and 2, but only after a
qualification that suggests that 1 and 2 are halves of a
larger depletion bounded by A and B. This is supported in
part by the non-existence of a quiescient iocnosphere between
the two. When viewed from this perspective the western
boundary is approximately twice as intense in irregularity
intensity as the eastern boundary. 1In rev 2122, the depletions
6 and 7 show the irregular intensity as more intense on the
western boundary by a factor of 3-4. (On the basis of
similar considerations applied to Figures 1 and 2, we note
that the irregularity intensity is greater on the western
boundaries of depletions D, E and H (Figure 1) and F (Figure
2), while the eastern boundary in holes a-C (Figure 1) is
more intense. Based on irregularity intensity (8I/I)
observations, we conclude that there is a high probability
of occurrence of more intense fluctuations across the western

boundary of bottomside F-region depletions.

The asymmetry in irregularity strengths and relationships
to plasma instability mechanisms can be explored further
through power spectral density analyses. We present in
Figures 4 and 5 just such results for each of the boundaries
in Figure 3 (lE and 1W refer respectively to the eastern and
western boundary of depletion number 1l). Though the experiment
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provides the density fluctuation power spectra with a maximum
Nyquist frequency of 400 Hz (19 m resolution along the orbit
and 3-5 m resolution perpendicular to magnetic field) the
data in this figure has been decimated by a factor of 3 in
order to include greater spatial domains across the depletion
walls. Power spectral analyses are presented across the
boundaries of each of the seven depletions with spectral 4
indices (n, in the equation P = P f ") ranging from 1.9 tco

2.5. More important however, is “the ratio of spectral strengths
(entered as PIEPO(west)/P {east) in Figures 4 and 5) found to

be 1.4 to 11.3 times more intense on the western boundaries.
These intensity ratios extend down to a 15 meter wave-

length perpendicular to the geomagnetic field. The spectral
indices support the work of Keskinen et al. (1980) which

predicts the same approximate range of values for horizontal
irreqularity structures perpendicular to B. The east-

west asymmetry in the depletions is apparent from the

linear detrend of data and the ratio of spectral strengths.

N

i ’ ! e £a

We now show that the asymmetry bears on scintillation
observations. To do this we note that scintillations depend
upon AN(AN=AI) rather than AN/N (as calculated by

AL, 2

(AX) and the power spectral analysis P, = +T—) ). For the
parpose of scintillation-effect calculations, we have determined
|a1|*-™*%* in the wavelength domain 80 m to 8 km by assuming

that p F-m-S-.
Defining P, as

(A1)

in this domain is equal to (|ar|T-™S:/T)2,

(in the wavelength range 80m-8km on the west wall)

P r.m.s.

5 =
(AI) (in the wavelength range 80m-8km on the east wall)

r.m.s.
we find the values of P, ranging from 1.1 to 7.7. These

results suggest enhancea scintillation effects on the western
wall of the depletions, in agreement with the observations

of Livingston et al. (1980). Furthermore, the radar measure-
ments (Tsunoda, 1979) also show that the bottomside back-
scatter strength is often asymmetric in the east-west plane with
stronger backscatter from the western wall of a plume. The
combined observations support a model of E-W asymmetry which
allows for a neutral-wind driven instability growth rate
enhancement on the western side of a rising bottomside F-

region depletion. The maximum growth rate occurs on the

western wall of the rising depletion, where the electron
density gradient is most closely aligned with the plasma

drift velocity vector in the reference frame of the neutral
wind (Tsunoda, 1979; Zalesak et al. 1980).
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Power spectral analyses across the boundaries of the
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Power spectral analyses across the boundaries of the
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COMMENTS AND CONCLUSIONS

The results of the high resolution S3-4 satellite
experiment for equatorial F-region irregularities show large

F scale plasma depletions (1 km to 10's of km wide) with
smaller scale irregularities superimposed (smallest detectable
scale size n 10 meters perpendicular to B). The depletions

(which may in fact represent the bottomside upwelling process
that has come to be identified with the lower F-region
manifestations of spread-F) show east-west asymmetry with

the irregularity intensity and spectral strengths generally !
more intense on the western boundary. Associated calculations ]
over density fluctuations in the range 80 meters to 8 km 8
suggest that scintillation effects would be similarly more

: intense on the western boundary. We find these observations
: consistent with radar (Tsunoda, 1979) and scintillation
measurements (Livingston et al. 1980) as well as the recent
computational work of Zalesak et al. (1980). Furthermore,

we find the horizontal power spectral indices to lie between
1.9-2.5, supporting the role of Rayliegh-Taylor instability
(Keskinen et al. 1980) and the recent theoretical and experi-
mental comparison in the vertical plane (Keskinen et al.

1981).
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THE S3-4 IONOSPHERIC IRREGULARITIES SATELLITE EXPERIMENT: b
PROBE DETECTION OF MULTI-ION COMPONENT PLASMAS
AND ASSOCIATED EFFECTS ON INSTABILITY PROCESSES E

INTRODUCTION )
In recent years interest in ionospheric research has 4

turned from the definition of the zero-order ionosphere to j
an understanding of the more dynamic processes involving

plasma instability mechanisms and their cause-effect relation-

ships. While much progress has been made, more detailed
experimental and theoretical work is needed to unfold the
active first principles that govern the geoplasma environ-
ment. For example, we have yet to define the electron
density fluctuation power spectrum over the broad domain

encompassed by equatorial spread-F (tens of kilometers to

fractions of a meter).

It is noted that density fluctuation power spectra
represent an important approach to understanding the multi-
stepped plasma processes in which large scale irregularities

cascade to much smaller dimensions. In this regard the

works of Dyson et al. (1974), along with the cataloging

efforts of McClure and Hanson (1973) have identified some
characteristic spectral features down to 70 meters. From
here the definition of spectral characteristics needs to be 1
extended down to sizes less than 1 meter (e.g., Huba et al. |

1978 and associated references), and the same spectral

characteristics must be studied within the context of positions
relative to the F-layer peak (Ossakow et al, 1979) and any
superimposed ionospheric depletions (McClure et al. 1977 and

Szuszczewicz, 1978). These measurements must be time correlated

in order to study the development of multi-step instability

processes.
Manuscript submitted November 6, 1981.
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Extended studies of fluctuation power spectra cannot

stand alone in determining all the causal mechanisms. Existing
equatorial data show that studies of F-region irregularities
must determine the degree of balance between the chemistry

and dynamics. To this end, the temperature and high resolution
ion composition measurements must be made inside and outside
of ionospheric holes, as well as across the sharp boundaries
that are a characteristic feature of many of the depleted
domains. The temperature measurement should also be done
simultaneously with the determination of electron density
power spectra in order to determine the role of electron
energy in the naturally occurring instability processes
(Ossakow, 1974).

In order to develop a more comprehensive experimental
profile on ionospheric irregularity structures, the pulsed
plasma probe technique (Szuszczewicz and Holmes, 1975) has
been expanded to include measurements of electron density
fluctuations and variations in mean ion mass. These measurements
are conducted simultaneously with the standard determinations
of absolute electron density (Ne)’ temperature (Te) and
plasma potential (V_). The capability for high spatial
resolution measurements of mean ion mass opens up the possibility
of exploring the coupling of electron density variations and

ion composition irregularities by the comparison of electron

density fluctuation power spectra PN(k) and a newly developed

——




parameter, the mean ion mass fluctuation power spectra,

PM(k). The new instrument (designated NRL-747) has been
sucéessfully flown on the lowet F-region, polar orbiting,
sun-synchronous (2230 LT equatorial crossing) STP/S3-4
satellite launched in March 1978. The orbit allows a global
study of Ne‘ T, and PN(k), an information set that will help
catalogue similarities and differences between polar and
equatérial irregularities and ultimately sort out first and
second-order cause-effect relationships operating between
plasma instabilities and ionospheric irregularities. The
experiment provides the first effort to study the role of
ion composition in the distribution of wave energy in the
cascading process of large-to-small scale ionospheric plasma
irregularities, a role considered important at the equator
during the occurrence of spread-F conditions and peotentially
important at high latitudes under conditions of current-

convective instability.

Figure 1 schematically depicts the latitudinal differences

in the irregular ionosphere at F-region altitudes, with one

of the initial investigative targets in the S3-4 effort

being the complete experimeﬁtal definition of thermal electron

distributions in the "biteouts" at nighttime equatorial
latitudes under spread-F conditions. These "biteouts'" are
naturally occurring ionospheric holes which can be three
decades deep in depletion and can have widths ranging from
fractions of a kilometer to tens of kilometers (see e.g.,

McClure et al., 1973 and 1977; Szuszczewlcz, 1978; and

Py
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Szuszczewicz et al., 198l1). There can be major changes in
ion chemistry which take place across the boundaries of the
holes...changes which now appear to be trendable and strongly
coupled to the mechanism(s) which generate the holes themselves
(Szuszczewicz et al., 1980; Narcisi and Szuszczewicz, 1981),
and cascade the irregularity distributions from 10's of
kilometers to fractions of a meter (e.g., Keskinen et al.,1981;
Kelly et al., 1981).

Qutside the latitudinal domain of equatorial spread-F,
the regions of primary interest in the S3-4 study of F-
region irregularities involve the main trough, auroral oval,
and domains encompassing the ring current, polar wind and
the cusp. The mid-latitude and dayside equatorial F-regions
are generally very regular in structure and consequently of
less interest.

Within the framework of the relatively simple picture
in Figure 1, the improved plasma diagnostic capabilities on
the S$3-4 satellite and associated analysis efforts will
attempt to assemble a relatively comprehensive catalogue of
polar and equatorial irreguiarities along with an improved
understanding of their cause-effect relationships. Indeed,
some initial efforts have already been published (Singh et
al., 1981; Rodriguez et. al., 1981; and Szuszczewicz et al.,
1981). In the subsequent sections, the experimental technique

will be described, associated data presented, and evidence

will be provided which suggests that ion composition plays
an important role in multi-stepped plasma instability

processes active in the F-region ionosphere.

4
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THE EXPERIMENTAL TECHNIQUE

The NRL-747 experiment employs a pair of pulsed plasma
probes (PA is the designated acronym), each of which is
capable of simultaneous measurement of electron density,
temperature and density fluctuation power spectra regardless
of the state of turbulence or the degree of irregularity in
the ionospheric plasma medium. Together, the pair of probes
also provide mean ion mass fluctuation measurements to a maximum
Nyquist frequency of 200 Hz. The instrument is a Langmuir-
type probe using a special electronic procedure for generating
the current-voltage characteristic (Holmes and Szuszczewicz,
1975; Szuszczewicz and Holmes, 1975). The pulse modulated
approach reduces the distortion of the current-voltage
characteristic that can result from surface contamination
and allows millisecond tracking of density fluctuations that
might occur during the time required to generate the current
voltage characteristic. (The temporal resolution is limited
only by telemetry.)

Subject to the selection of 1 of 8 commandable modes of
operation, each of the probes had applied to it some variation
of the voltage function illustrated in Figure 2. The pulse
modulated waveform, following the sawtooth envelope, provides
the fundamental data set for a "conventional”" Langmuir
current-voltage characteristic and associated determinations
of Ne and Te (Chen, 1965) at a nominal 3 Hz rate. During

the interpulse period, a fixed-voltage V_, is applied, with

B
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associated current measurements providing a running measure

of density fluctuations (assuming GIB « GNe) and a time-

dependent data set for power spectral analysis with a Nyquist
frequency of 400 Hz in the high data-rate mode. In addition ;
to pulse-modulation, each of the probes could be operated in
a simple fixed-bias mode and as a "conventional" continuous-

sweep Langmuir probe, the latter having been introduced for

systematic studies of hysteresis and contamination effects

during satellite mission lifetimes (a minor mission objective). 4

The probes were routinely operated with VB on one probe
set for electron-saturation-current collection (defined as
the E-probe with IB = Ie(sat) = E) while the value of VB on

the second probe was biased for ion saturation current

collection (defined as the I probe with IB = Ii(sac) = I).

The expressions for the currents collected by the two cylindrical ﬁ

probes take the forms

: a i
i ) 0%\t | i

EZ1I (sat) =N Y=— ace{!{r ~—[1+ (1)
e e ZﬂMe P ,,w_' kTe s :

t 4

(Chen, 1965; for thick sheaths) and 1
. ’ . i . |

7 ( 2 leq;%l Mow
- ‘, k i Ae - + (2)
I = I,(sat) = N Eyrv p \,w
1 iV 2™y kT %%T.. ,

i i . .

(Hoegy and Wharton, 1973; for probe axis perpendicular to i
i

the vehicle velocity vector in the ionospheric plasma rest }

frame). In the above equations Ap is the probe area, Me(i)

and Ne(i) are the mass and density of the electron (ion)




population, Te(i) is the associated temperature of an assumed

Maxwellian distribution, e is the fundamental electron

charge, k is Boltzmann's constant, w is the satellite velocity

and ¢:(i) is the baseline voltage Vg applied to the E (I)

e(i)
P

The square of the ratio Ie(sat)/Ii(sat) can be written

probe and referenced to the plasma potential (¢ = VB- v, -

e
I (sat) 2 JENE T, oM s L+ | et vkt | 3
Ii(sat) ( 1 ; T; H: ( (MiWZ/ZkTi + |e¢;/kTil

with additional manipulation (assuming | e¢; | >> kTe) resulting in

2 ¢S '
((Lele2®) = LA LMt << epl (4a)
\ Ii(sat)-' Me 4):i. 2
’ P
2 e 2 i
Ie(sat)\ = 2 | e¢p | ; M. WE >> e¢p (4b)
Ii(sat) M w2
N 2 . 2 i
- w N,
Ie(sat)\ - Mﬁ | ¢ Mow2 \7L 1M N e¢p (4c)
) : : 2
—_ ] — 1l + .
I,.(sat) M i i)
i
e ¢p 2e¢p /

For laboratory and rocket-borne experiments equation (4a)

would apply, whereas in the S3-4 satellite investigation
equation (4c) applies. Equation (4c) is plotted in Figure

3 for two sets of bilas potentials, ([¢:|, |¢;|) = (2V,1V)

and (1V,2V). The results in Figure 3 show that with limitations

placed on the ratio ¢:/¢;, variations in (Ie/Ii)2 can be

taken as a direct measure of ion mass variations.
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DATA ANALYSIS AND RESULTS

Initial reduction routines for bulk processing and
plotting of P4/83-4 data begin with an orbit-by-orbit plot
of relative electron density as measured by changes in fon-
and electron-saturation currents. A representative sample
of this data collected on orbit 2177 is shown in Figure 4
where the abscissa coordinates are universal time (UT),
altitude (ALT in km), latitude (LAT), longitude (LONG),
magnetic lathude (MLAT), and L-shell value (L). The probes'
magnetic aspect angle is also plotted in the figure.

The left hand edge in Figure 4 corresponds to the
satellite's ascending node (south-to-north) in the midnight
hemisphere near the south magnetic pole (MLAT = —900).

With increasing time (UT) the satellite passes through the
nighttime equator, the main trough, over the northern auroral
oval and into the dayside ionosphere where vehicle solar cell
voltage blases the entire vehicle such that both probes draw
approximately equal ion saturation currents.

The simultaneous measurements of electron- and ion-
saturation currents, IB(E) and IB(I) respectively, provide
confidence that the observed irregularities involve plasma

variations and not just secondary effects (e.g., aspect

sensitivities and variations in spacecraft potential).
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Figure 4, characteristic of data accumulated to date,
shows that the nighttime F-region 1is orders of magnitude
more irregular than its dayside counterpart. The irregularities
in the nighttime southern high-latitude region (MLAT < - 400)
is considered characteristic of that domain, with the most
intense structures generally showing electron density
variations less than an order of magnitude. There are other
characteristic features in the data within p 15° of the
nighttime equator, where observations of large scale plasma
depletions (1 to 3 orders of magnitude) occur with a frequency

typical of equatorial spread-F.

While data sets like that shown in Figure 4 provide a
global map of large scale ionospheric features , primary
investigative objectives are directed at the relationships
between the large scale features and much smaller scale
irregularities (tens of meters and less) believed to result
from multistepped plasma processes. To this end, the fundamental
data sets Ie(sat) and (Ie.(sac)/Ii(sat))2 are Fast Fourier
analyzed to determine their density fluctuation power

spectra, PN(k) and PM(k) respectively, where

WOV TR Ve et o oo e et
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be simply established for a 2-component ion distribution of

masses aund densities (Ma’ MB) and (Na’ NS) respectively. We

2 2

81, Isue

—- 2 —=| 7 By (k) (5) !
I l N

e e
and ;
N My L f
e’ "4 = M (6) ;
PR, 2 -~ f
(171 i, !
) i
v The analytical relationship between GNe/ﬁe and GMi/ﬁi can . i
]
(.
4
§

‘ 1 do this by use of the definitions

4
o MN o+ MN, 5
M, = (6a) ;
; (Na+ NB) i
]
N, = Ny + Ng (6b) }
o 1 ;
Na - Na + Na (6¢c) E
% o 1
} NB NB + NB (6d)
E 1 1
: GNe GNQ + GNB Na + NB (6e)
and a straightforward manipulation to derive
Gﬁi 5Ne -
Mi Ne ’
where .
M
"a\ -1 e NO /NO
g/ o f o 8 (7b)
f(a.B) P 1 1 1 (
My (Na/NB) +
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It is appropriate to note that the experimental determination

of mean~ion-mass fluctuations Gﬁi(+PM), through variations
in [Ie(sat)/Ii(sac)lz, assumes the relative constancy of all
potentials. (This includes the spacecraft potential as well
as the potentials which each probe preseats to the plasma.)
The spacecraft potential can vary as a direct result of
changes in local plasma density since the floating potential
of a body is dependent upon the ratio of its radius to the
Debye length. For large space vehicles hqwever, floating
potential variations caused by even substantial plasma
density variations should be small (Szuszczewicz, 1972).
Another possible source of potential variations involve
charging of contamination layers on the vehicle and/or on
the probes (Szuszczewicz and Holmes, 1975). From the S3-4
data examined to date, variations in (Ie/Ii)z associated
with charging on contamination layers, appear to be a slowly
varying function of time with no attendant effects on PM.
Therefore, we have concluded that the spectral dependence of
PM is indeed representative of variations in mean-ion-mass
Gﬁi.
To experimentally demonstrate PM(k) and the associated
relationship with PN(k) congsider the high-resolution measure-

ments (rev #2123) of the relative electron density across

the nighttime equator (Figure 5). The peak electron density

is approximately 5 (105) cm™> at I. = 3 (10-6) amp. The

B
large scale depletions are seen to extend to 2 orders of
magnitude with widths ranging from 50 to 170 km over a 600 km

orbital segment.
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Fig. 5 — An expanded view of relative electron density encountered during the nighttime equatorial
crossing on 83-4 rev 2123. The relative electron density is presented by baseline electron saturation
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In Figure 6 are presented the PN and PM results for a i

1l second interval located by point A in the density profile

of Figure 5. Fitting the results to a power law behavior we

find
-2.9
PN - An f (8a)
' -1.5
and PM - Am f . (8b)
. By assuming that the time (frequency) domain spectral analysis

in Figure 6 can be converted to wavelength through the

vehicle velocity (7.53 km/sec), the experiment shows fN -2.9

-2.9

(“ k ) from k N 2n/1 km-l to k = 27/20 meters-l. This
is the first such satellite determination to wavelengths as
short as 20 meters, with the earlier work of McClure and
Hanson (1973) having defined some of the spectral features
of equatorial spread-F down to 70 meters. (Conversion to
the component of k perpendicular to the geomagnetic field
extends the low wavelength end of Figure 6 down to k = 2m/6 meter,
the approximate value for the 0+ Larmor radius.)

The spectral index for PN is approximately 157 steeper
than previously reported values for conditions of bottomside
spread-F (Keskinen et al., 1981) but well within the distribution ﬁ
of S3-4 spectral indices currently being accumulated and ]
analyzed (Singh, currently unpublished) for conditions
identified with the intermediate wavelength domain (k =

1 l). i

to k = 27/20 m~

2m/1 km~




ssew uof ueaw pue NJ winnyoads 3omod uoyenjony £}isusp pauruudjap Asnoauejmuits Jo uorjensny ajdureg — 9

(ZH) ADN3IND3YS

00l

0l

3

Wg umnoads zamod uorenjonyy

I

mreey 17 1

LLAR LSRR B ] 4

LLAR LR DL

g
(ZH) ADN3IND3Y4
10 001 0l ] 1’0
Lo ol LA R BRI T Ty TrT T LARAR BB ml
1G- 0 1G-
o 674 68YL ="Ng m
13 o =
X X “
1&% 1%
g 2
123 13
C -
|- \ |-
0 _ A\ 0

SH31IN

20l

e0l v0l

SH31l3W




The P, « £ =1.5 observation is the first of its kind

M

and unique to the NRL-747/S3-4 experiment. Currently there

are no computational guidelines on the expected behavior,

but there is sufficient evidence in laboratory plasma studies
to warrant such systematic considerations of ions and their
role in the hierarchy of possible mechanisms covering the
spectrum of observed ionospheric irregularities. The importance
of ions is clear...even from the simple considerations of

the Rayleigh-Taylor instability in which a difference in
charged-particle drift velocities produces an electric field
across a horizontal perturbation. These drift velocities

are mass dependent (Vi « Mi(g X 3)/82) and vary directly as

the mass of the ith species. Similar mass discriminatory
effects play an important role in ambipolar diffusion processes
across gradients in plasma density. The process operates l
more rapidly on lighter ions and can result in "patches'" of
varying ion mass, with local variations in conductivity and
electric fields, and ultimately an ion dependent interaction

in the process of energy dissipation in the large-to-small
scale irregularity distribution. The P, measurement has been

M
designed to test for just that type of interactive mode.
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Gﬁi/ﬁi is a fairly complicated function of Ma/MB’

1
B

0,,0 1l = .
NG/NB' Na/N and GNe/Ne itself (See Eq. 7b); and at this

point we can only speculate on the many manifestations that
PN and PM

encountered in the S3-4 mission. For example, it has been

might take for the varied ionospheric conditions

suggested (J.R. Goldman, private communication) that differences
in gradient scale lengths for Ne and Ma’B's would result in

a more rapid fall off with increasing k for the quantity

with an initially larger gradient scale length. This difference

should be a direct observable through the P, and P, determination.

N M
Furthermore, there is the possibility that the simultaneous
measurement of PM(k) could help differentiate between a k.2
spectrum due to sharp edges and a k-z spectrum due to
gradient~-drift or say drift-dissipative waves.

Currently, we have not analyzed sufficient data to
exact any of the above analyses. We are at the beginning of
a synoptic study designed to systematically unfold the

interdependence of P, and P and the contributing roles of

N M’
ion mass distributions through MG/MB and N:/Ng. However,

the results in Figure 6 as well as in Figure 7 can be used

to reflect some of our observations:

(i) The absolute power in PN 1s generally much greater

than that in PM. In Figure 6, for example, power law fits

yield An/Am ~ 86, reflecting a situation in which the

absolute density fluctuations 6Ne/§e are two orders of
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magnitude more intense than counterparts in GﬁilMi.
(11) More often than not the k-dependence of PN is

maintained to shorter wavelength (ﬁigher frequencies) than PM (k).

1 (111) The relationship becween%ﬁhé'specttal indices of

Py and P, is highly variable. Figure 7 is an illustration

of a random selection of 1l.2-~second.interval spectra near

the domain sampled in Figure 6. Panel A represents the power
spectrum of the éuiescent region before the depletion, wﬁile.>
panels B chfopgh D represent contiguous power spectra within
the depletion. 1In the quiescent region (Panel A), both
density and mean ion mass fluctuations show noise spectra,
while inside the dep;qtion wel%:def}qu k-dependencies in

PN and (less frequeng) k-depend;nt spéctra in PM‘are observed.
While sméll in number, this samﬁle of data is rather représencative
of results accumulated to date. More frequently than not PM

is equal to or softer than PN (e.g., panels B,C and D). In
addition, there are observations of well-defined k-spectra

in P, with none in PM (i.e., only noise, as in panel D).

N

Panel D 1is interpreted as an unstable plasma environment

with a single component ion bopulation. This is in agreement

with the predictions of Eq. (7b) with Ma - MB.
Results like those outlined above are continuing with a
view to a synoptic definition of the PM’ PN interdependence

and the assoclated roles of ﬁi’ gradient scale lengths and

geoplasma conditions (Ne,Te and MLAT).




COMMENTS AND CONCLUSIONS
In order to develop a more comprehensive experimental
profile on ionospheric irregularities, the pulsed plasma

probe technique has been expanded to include the measurement

of mean ion mass and associated mass variations, 6M1/Mi, on a

spatial scale limited only by geometry and telemetry. Conducted

simultaneously with the standard determinations of absolute
density Ne, temperature Te’ and density fluctuation power
spectra GNe/ﬁe - PN (k), the expanded capability has opened

up investigations which explore the coupling of electron and

ion plasma wave energies which may influence the way in which

large scale plasma perturbations cascade to much smaller
dimensions.

Although the relationship between GMi/ﬁi and GNe/ﬁe
is a complicated function of ratios in the ion populationmns,

R ) 1,.1
i.e., M /M,, N /N,, N /N, it may be systematically related
o o' "B a8
to absolute Jensities, gradient scale lengths and time in
cascading instability processes.

The new technique has been successfully flown om an F-
region, polar orbiting satellite with some of the2 early
results including:

(l) Extension of GNe measurement capability down to
dimensions of the order 5-20 meters, with associated power
spectra of spectral index in the range 1.6 to 2.9. While

short of the 1-3 meter limit desireable for comparison with

Jicamarca or Altair radar coherent scatter results, the S3-4

S e e ;




experiment goes beyond the 70 meter limit of earlier satellite
measurements and lends itself to additional arguments which
support the association of the Rayleigh-Taylor instability
occurrence of equatorial spread-F.

(2) Measurements of 8M, with resolution that allows

i
detection of macroscale features (e.g., transitions from ot

dominant to NO+ dominant environment) and microscale spectral
analysis down. to dimensions comparable to the GNe capability.
As expected, power law fits (P (k) = at™%) to Py and P have

revealed considerable variations with X generally (but not

M

always) smaller than XN. Similarly, the absolute power AM
in ion mass fluctuations have been found to be considerably

less (@ 2-100) than the power in P A systematic study of

NQ
the detailed relationships and dependence on zero-order

plasma conditions is currently underway.
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