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ARSTNACT

Simultaneous autoregressive models are applied to balance incomplete

block and lattice square designs. Relationships between the resulting maximum

likelihood estimators and standard analyses are explored and clarified. Also,

it is shown that the Papadakis estimator, as applied to these designs, has the

characteristics of the standard analyses, but simply involves fewer plots in

the adjustment procedure for treatment averages. A worked example illustrates

the differences in treatment estimates in a lattice square design, for

standard inter-block analysis and for simultaneous autoregressive assumptions.
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SIGNIFICANCE AND EXPLANATION

The problem of analyzing data from field trials when observations in

neighboring or nearby plots are correlated is an important one which has been

extensively examined over the years. In 1937, Papadakis suggested a sensible

but mysterious treatment estimator form whose role, and relationship to the

corresponding maximum likelihood estimator has been debated for forty-odd

years. These matters were clarified for certain one- and two-dimensional

designs under certain simultaneous autoregressive models by Draper and Faraggi

(1984). In the present paper, simultaneous autoregressive models are applied

to balanced incomplete block and lattice square designs. Relationships

between the resulting maximum likelihood estimators and standard analyses are

explored and clarified. Also, it is shown that the Papadakis estimator, as

applied to these designs, has the characteristics of the standard analyses,

but simply involves fewer plots in the adjustment procedure for treatment

averages. A worked example illustrates the differences in treatment estimates

in a lattice square design, for standard inter-block analysis and for

simultaneous autoregressive assumptions.
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USE OF SIMULTANEOUS AUTOREGRESSIVE MODELS IN BALANCED
INCOMPLETE BLOCK AND LATTICE SQUARE DESIGNS

N. R. Draper and D. Faraggi

1. INTRODUCTION

The analysis of field trials when observations in nearby or neighbouring

plots are correlated has received extensive study over a number of years.

An early reference point is the work of Papadakis (1937). The relationship

of his suggested estimator to the maximum likelihood estimators in certain

one- and two-dimensional designs under certain simultaneous autoregressive

models has been explored by Draper and Faraggi (1984).

It has been suggested by Kempton and Howes (1981, p. 65 and p. 69)

that the Papadakis model may be used quite generally for field trials and

specifically, for example, for lattice squares (LS's). On the other hand, a

standard analysis for such designs under the "usual N(O, I02)" type of error

assumption is due to Yates (1936, 1939, 1940). Under Yates' analysis, ad-

justments are made to the treatment averages for the incompleteness of the

blocks.

In this paper, we investigate lattice squares under the assumption that

a simultaneous autoregressive model which assumes correlation within rows
-W

and columns is appropriate. This is done with different correlations,

P for rows and pc for columns. We then obtain maximum likelihood estimators

for treatnents and correlations and discuss the relationships and differences

between the three possible treatments estimators namely maximum likelihood

estimators, Yates', and Papadakis. It will be shown that, for these designs,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the Wisconsin Alumni Research Foundation via the UW Graduate School.
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the Yates estimator is very close to the first order term in an expansion,

where valid, of the maximum likelihood estimator. Moreover, the Yates'

and Papadakis corrections to the treatment means have similar forms. However,

neither is actually needed in designs completely balanced for rows and columns

because an explicit solution can be obtained. An example

is presented for illustration in Section 5.

The lattice square is a two-dimensional design. As a preliminary, we

investigate what can be regarded as a one-dimensional equivalent, namely

the balanced incomplete block design. Results and conclusions which closely

parallel those of the lattice square are obtained.

'1

/i
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2. BALANCED INCOMPLETE BLOCK DESIGNS

Suppose we wish to examine t treatments in b blocks of size

k < t. Suppose, further, that each treatment occurs the same number, m,

of times and appears X times with every other treatment. Then the design

is said to be a balanced incomplete block design (BIBD). Note that there

are n = bk = tm plots, and that X(t-l) = m(k-l). For the standard details

of analysis reproduced below see, for example, Cochran and Cox (1957), or

Yates (1940). The usual model considered is

Yjs + a* + 8. + (2.1)

if "replicates" are not a factor; if they are, some minor differences occur

in some formulas. Here yjs is the observation on treatment s in block j,

vi is an overall mean, a* is the effect of the sth treatment, Bj is the

effect of the jth block and cjs is an error such that E = (column vector of

, Cs in a defined order) - N(O,I 2 ). Two alternative assumptions on the B.

, are commonly made.

4 (a) 8. is a fixed effect. This leads to the so-called intra-block

analysis.

(b) 8 = (Bl,... ,Bb)' ~ N(O,Ici) independently of the c.s" This leads

to the analysis with the recovery of inter-block information. As 2 2 -0,

case (b) - case (a).

We set

I. /4
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Bs = total of all response observations y from

blocks in which treatment s appears.

Ts = total of all observations on treatment s.

G = Z Ts = grand total (= B .
s S

Then, from Cochran and Cox (1957, pp. 445-446) we can estimate the effect

of the sth treatment by

A m-lT 

=( - T +e[(t-k)T -(t-I)Bs+(k-I)G]} (2.2)
s s 8 1

where 6 is an adjustment factor taking the value

e = {t(k-l)} "  (2.3)

in case (a) when inter-block information is not recovered, and the value

e = )/t(k-1)(b-1)E b(t-k)(b-t)Ee}  (2.4)

:1 where it is recovered. The quantities Eb and Ee are the mean squares due

to blocks adjusted for treatments, and residual, respectively. Define the

t by bk = n matrix T as follows. When the blocked design is listed in

order, block by block, T6 i = 1 if the sth treatment is associated with the

! ith observation, and Tsi = 0 othenvise. Let

D 11' - k (2.5)
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where 1' = (1,1,...,l) of dimension 1 by k. Then define

D = Tb (2) Dk (2.6)

where ( denotes the Kronecker product. Then, in matrix form, with

= (aq 9... ,cSI,... ,a)S, (2.2) becomes

* a m" TY-e(t-l)TD[I-m'T'T]YI (2.7)

where Y is the vector of observations, recorded in the same pattern as the

block by block enumeration.

We now consider, instead of case (a) or case (b) above, an alternative

model Y, - as + xi, where

x ap E n1 x + E (2.8)
j~i

and where nlj 1 if Yi and yj occur in the same block, and n1 j - 0 otherwise.:(j
We assume c - (Cl,... ,€n)' ~ N(O,lo2) independently of the x's. Following

4 1 Besag's (1974, Eq. (4.13) with iv = 0) simultaneous autoregressive model,

we obtain the likelihood

I -n21
(2w o)n Bexp{-(2a) X 'B 'BX}, (2.9)

where B- I - p0 and X a Y - T'. The maximum likelihood estimator a

is of form (Ripley, 1981, (5.34))

* i I iN~------~ it r



-6-

(TV-1 T')'ITV- Y, (2.10)

where TV'T' = T(I-pD)2T' = m{I-m'T(2pO-p2D2)T'} using the fact that TT' = ml.

The matrix (TV- T')" can be expanded as a convergent series if and only

if the eigenvalues of = m'IT(2pD-p2D2 )T' are all less than one in absolute

value. This is true if

min{(l+2 1/2 ),t112_1), k = 2,

(1-2<)/(k-) P < p min{l+2 1 ), k 3, (2.11)

(+2 1/2 )/(k-1), k > 4.

If we retain only terms of orders zero and one in QB' we obtain

a1 m [TY-{2 -2 (k-2)}TD(Im 1 T'T)Y] (2.12)

where we have used the facts that D2 = (k-l)I n + (k-2)D, and T(I-mIT'T) = 0.

4i Comparing (2.12) with (2.7) we notice the estimators are identical except

that e(t-l) in (2.7) replaces {2p-p2(k-2)} in (2.12). Because of the validity

of the expansion, a, will converge to the maximum likelihood estimator ci,
A

for fixed p, if the former is applied iteratively in the following sense:

V4~ ~ M-1 2(.}T(_,)
aj+1 - m'[TY-{2P-P (k-2)]TD(Y-T'G )J (2.13)

iA

where a = m TY. In fact, iteration is not needed here because the balanced

incomplete block design produces a TV-IT' of patterned form which can be

• - - : * . :-, .. *-*
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A A

explicitly inverted (Rao, 1973, p. 67) to give a in terms of p as

eL= a(I+bTDT')T(I- D)Y (2.14)

where a = {m-(t-2)¢}/[{m-(t-l);}{m+;}J, b = 4/{m-(t-2)$J and
2 =2A
2

{2p-(k-2)p 2/{l+(k-l)p2}. The maximum likelihood p is obtained as

follows. Setting the first derivative of the log likelihood with respect

to p equal to zero provides

(Y-T'a)'(D-pD2 )(Y-T'a) _ (k-l)p (2.15)

(Y-T'a)(I-2pD+p2D )(Y-T'a) {l+(n-l)pI{l+pl
AA

The a may be substituted from (2.14) to provide an equation in p which

can be solved, for example, via the Newton-Raphson method. From this, a

is then obtained. In practice, it is easier to replace a in the likelihood
Aby i from (2.14) and then to maximize the likelihood numerically by a

search over p.

For least squares estimation, the term on the right of (2.15) is

replaced by zero, so that

'D(Y'TaS )/{(YT S) D 2-L) (2.16)

AgaiA

where oL has the same 'orm as a but with p replaced by PLS Again

numerical maximization is simplest.

. . -,
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3. LATTICE SQUARES

Suppose we wish to examine t treatments in a set of m k by k
lattice squares. Typically m = 6(k+l) where 6 = 1, 1, 2, ....

2The different

values of 6 correspond to various association relationships among the

treatments. When 6 = , any treatment s will appear with any other treatment

w once in either a row or a column but not both. When 6 = 1, s and w

appear together both in a row and a column, once earh, and so on. The usual

model considered is

Y i =  + a* +  +r + Yc +  (3.1)

where the set of subscripts (q,r,c) representing the position in the rth

row and the cth column within the qth replicate have been replaced by a single

subscript i = 1,2,...,n which denotes the plot's position in a row by row

enumeration of the plots, replicate by replicate. Two alternative assumptions

on the B's and the y's are commonly made

(a) Br' Yc are fixed effects. This leads to an intra-block analysis.

(b) B r N(O,a 2) and y ~ N(O, 2 ) and all a's and y's are independent.

Typcaly I I asume tht 2 = 2Typically it is assumed that cy as , although this is not necessary. As

a2  - and ay case (b) + case (a).

We set, for 6 > 1,

/'

__,_ ____
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Ts = total of all response observations y from all plots i

which receive treatment s,

Rs = total of all y's in rows in which treatment s appears,

Cs = total of all y's in columns in which treatment s appears,

G = grand total of all y's,

Ls = (m-l)Ts - mRs + G,

Ms = (m-1)T - mCs + G.

Then, from Cochran and Cox (1957, p. 493), we can estimate the effect of

the sth treatment by

^ M* {Ts+XrLs+XcMs }  (3.2)
s  s

where Xr and Xc are coefficients for the adjustments needed for the in-

completeness of the rows and columns. The values of Xr and X c depend on

the replication selected and which case, (a) or (b) is assumed. Examples

are in Appendix A.
1

For 6 -- , the formula for Sa* is of the same form as (3.2) but with

redefined symbols. We do not discuss this because our matrix formulation

does not contain this ambiguity.

Define the t by n matrix T as follows. When the blocked design

is written out row by row within replicate and then replicate by replicate,

Tsi - 1 if the sth treatment is associated with the ith observation, and

T s = 0 otherwise. Let Dk = 11' - Ik9 where 1' = (l,l,...,l) of dimension

4 -
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1 by k, and define

Zr= Im Ik c Dk

Zc Z Im ' 0k ® 'k- (3.3)

Z = Zr+ Zc,

where 0 denotes the Kronecker product. Then, in matrix form, with

L= (aL L)P, the L denoting lattice, (3.2) becomes

= m-1 {TY-mT(XrZr+Xc Z)(1im-lT'T)Y} (3.4)

where Y is the vector of observations, recorded in the same pattern as

described earlier.

We now consider, instead of case (a) or case (b), an alternative

model y, as + xi, i = 1,...,n, s = 1,...,t, where

" E nr) + P (c) (3.5)

Sx Pr ij j j c j In j (.
'1

and where n (r) 1 if Yt and yj occur in the same row and replicate and is zero

otherwise, while n1 )=1 if y and yj occur in the same column and replicate and

is zero otherwise. We assume c - (cl,...,on)' - N(O,c 2) independently of the x's.

Following Besag's (1974, Eq. (4.13) with U=0) simultaneous autogressive model, we

obtain the likelihood (27o 2)f 1 2 l BIexp{-(202 )1 X'B'BXI where B=l-PrZr-PcZc ,

InI
R I

'S,*AI:

. .
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X Y T'. The maximum likelihood estimator a is of form TV'Iy,

where TV'T' = T(I-p rZr-PcZc)T ' = m(I-QL) and where

_1., ^  +^. ^2Z2 ^2 2 ^ ^

QL = m T(2Pr r+2Pcc-pr r-PC c-2prpc~rcT'. (3.6)

The matrix (TV-1T')-1 can be expanded as a convergent series if and only if

the eigenvalues of QL are all less then one in absolute value. This is true

if

- < q + (k2-)q 2 < 1,
-I< ql " q2  <1,

where

A2 ^2

* ^ q2 a (2pr+2Pc-(m-3)(pr +p) - 2(k-l)$pc /(k+l). (3.7)
'I-

, For example, if m = 6, k = 5, the conditions imply a feasible region shown

.,. shaded in Figure 1.

If we retain only terms of orders zero and one in Q we obtain

AI A

al TYTrZr"ZC)(I- mT)Y,(3.8)
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Figure 1. The shaded region shows the values of (prPc for which the ex-

pansion of the maximum likelihood estimator involving QL is valid,

for the case m = 6, k = 5 described in the text. For the case

Pr = Pc = p this region reduces to the intersection of the shaded

region and the 450 line shown, with a multiplicative scaling

factor of 2 112 applied.

PC

0.4 

0.2

0.0

-0.2

-0.4

-0.8 _ _ __ __ _ _ _ _ _
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A^ 2  L
where u 2 u (m-3)PU + 2Prc and u = r, c in turn. In deriving I

we have used the following facts (u=r or c):

Z2 . (m-2)I + (m-3)Zu

TZrZc = I lT-T-TZr - TZc

T(I-m'IT'T) = 0,

ln(I-mIT'T) = 0.

Comparing (3.8) with (3.4), we see that the estimators are identical except

that nXu in (3.4) replaces 0u in (3.8). Because of the validity of the

expansion, aL will converge to the maximum likelihood estimator ;L , for
e r ad I

fixed Pr and PC, if C1 is applied iteratively in the following sense

+l - m {TY-T( r Zr+;cZc)(Y-T'j))}• (3.10)

AL -
where o m TY. In fact, iteration is not needed here for 6 > 1, because

the lattice design produces a TV-IT' of patterned form which can be explicitly'L A A

inverted (Rao, 1973, p. 67) to give aL in terms of Pr and P as

- -((a-b)Il+bll')T(I-Q)Y, (3.11)

1~~~~~ • -' ""..- .,w' " ."
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where

a = {(m-l)ql-(k 2-2)mq2)/[{(m-l)ql-(k
2-1)mq 2}{(m-1)ql+mq21,

b = mq2/[{(m-1)q 1-(k
2-1)mq 2){(m-l)q 1 +mq2}]. (3.12)

A

The maximum likelihood pr and pc are obtained as follow. Setting the first

derivatives of the log likelihoods with respect to p1 and P2 equal to zero

provides equations:

nX 'ZuBX L'u J PrPr Pc
r C = O, u = r,c (3.13)

where X and B are the values of X and B with a p r and Pc replacing

a, Pr and pc. These two simultaneous equations involve, in their second terms,

the (1,1+1) and the (i,l+k) elements, the designations being reduced modulo

n where they exceed n, respectively of B- and must be solved, a tedious

* calculation. It is simpler in practice to substitute a selected grid of
A AL

(*.o ( ) values into a and hence evaluate the likelihood over that grid, so

*picking out the maximum value of the likelihood.

For least squares estimation, the term on the right of (3.13) is

replaced by zero so that

IMP
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Pr,LS brr brc x1 r x

(3.14)

Pc,LS b cr b cc X'Z cX

LS

form as a but has Pu replaced by pu,LS everywhere.

Special Case p = PC = P .

In many practical situations, it is reasonable to assume that

Pr = Pc = p. For comments on this choice, see Kempton and Howes (1981, p. 63).

All formulas reduce to their appropriate forms via simple substitution of

Pr= = p. All that is needed is to write Z = Zr + Zc whenever it occurs

and to drop subscripts from A, 0, and p. The equation parallel to

Eqs. (3.13) is the result of adding these two equations together.

1N

!i!'
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4. LATTICE SQUARE DESIGN EXAMPLE

We shall re-examine data given by Cochran and Cox (1957, pp. 490-493)

comprising a lattice square design with k = 4, 6 = 1, m = 5, n = 80. The

appropriate formulas for Yates' estimators X r and Xc are given in Appendix A

and here result in the numerical values Xr = 0.04787 and Xc = 0.03037 (p. 493).
A A,

The maximum likelihood estimates for pr and pc are Pr = 0.108 and pc = -0.030

and these lead to estimates for the 16 treatment parameters given in the

second column of Table 1. These may be compared with the "adjusted means"

of Cochranand Cox (1957, p. 491) which are the corresponding Yates' estimates,

shown as the third column of Table 1. We see that, although two entirely

different models are used, individual estimates are broadly speaking, compatible.

In view of the fact that only one at most of these models can be correct for

the data set, we do not compare them via a model-dependent criterion such as

weighted or unweighted sum of squares of residuals.

. . .
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Table 1. Comparison of treatment effects for a 4 by 4 lattice square design

with five replications. Second column: Maximum likelihood estimates under

the assumption of a simultaneous autoregressive model. Third column: Yates'

estimates from Cochran and Cox (1957, p. 491).

Treatment Mie Yates'

1 4.98 6.45

2 12.71 13.68

3 8.90 8.73

4 11.41 11.36

5 9.89 9.44

6 5.96 7.58

7 7.52 7.37

8 9.79 9.32

9 10.91 10.01

10 15.77 14.91

11 18.12 17.59

12 12.91 12.70

13 12.07 10.69

14 13.40 14.27

15 10.07 9.28

16 10.05 11.09

Sum 174.46* 174.47*

*These figures are subject to small rounding errors;

both should be 174.48.

'
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5. PAPADAKIS AND MAXIMUM LIKELIHOOD

We reconsider the assumption made in connection with Eq. (3.1).

Suppose that now Br is the combined neighbouring effect from the "plot to

the left in a row", and the "plot to the right in a row", these left and

right adjacencies being determined in torus, wrap-around manner (Martin,

1982). A similar "up and down in a column" definition is applied now to

Yc" Let Nr and Nc be the n by n neighbour-specification matrices for rows

and columns whose ith row contains 1 in positions j for which plot j is

row- and column-adjacent respectively, to plot I, and zero otherwise. Then

the maximum likelihood estimator of 0* is

= m1 {TY-mT(OrNr+*cNc )(I-m'1 T'T)Y} (5.1)

where ir and * are coefficients for the adjustments needed for the row-

and column-adjacency effects. Parallel to the work in Section 3, there will

be two forms for 4r and 0c according to whether an lntra-nelghbour analysis

(BrYc fixed effects) or an inter-neighbour analysis (Br~yc random effects)

is specified.

If we compare (5.1) with Eq. (3) of Draper and Faraggl (1984), we

see that they would be equivalent if mer a mc " and f N =N+N

fact, (5.1) is the Papadakis estimator for the case *r t *c' up to definition

of 1r and *C The Papadakis formulation would involve regression estimators

of *r and *c instead. We thus see that the Papadakis estimator can be

regarded, up to definition of Vir and c, as a maximum likelihood estimator

in the particular model formulation described above.
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6. REMARKS

A previous paper (Draper and Faraggi, 1984) discussed field trials in

one and two dimensions for designs of Type ll(a), Type III, and Type III

cyclically row permuted (Williams, 1952) for one and two dimensional layouts.

In the two dimensional layout, no directional differences were assumed and a

single p value was used for both rows and columns. The extension to pr and

PC for that case is easily effected using formulas of the type exhibited in

this paper. The maximum likelihood estimator has the form of (2.10), with

V"I - (I-PrNr-PcNc)2  (6.1)

where Nr Is an n by n row-neighbour-specification matrix defined by

Nr I6(k+l) -Ik .N , (6.2)

2 where Nc is an n by n column-neighbour-specification matrix defined by

Nc  I-)

I~~)x Nc 'x(~)G~2k (6.3)

and where N is the cyclic k by k matrix

N ,. o1 0 0 ... 0o, (6.4)
1010... 00

11 1000 10iio

,-



-20-

We can re-write (2.10) as

-1 -1 -
m~ (I-m TQTI )T(I-Q)Y (6.5)

where

2 2 2 2
Q_- 2PrNr + 2pcN _ pr-r . c - 2PrpcNrNc "  (6.6)

Here,

12 . 21 + N(2), N2 21+ N(2 ) NrNc =NM )
r r = 2 c

where N(2 ) , Nc2 ) , and N(") denote n by n neighbour-specification matricesr

which contain l's and O's such that

r = 6(k+l)GIkO N(2) (6.7)

N(:I,2) I ZN(2)®Z (.8
2 N~2) = 6(k+l) ~~Ik(6)

rcN( 11 ) =) N@N (6.9)rc 8 I(k+l C

where N(2) is the cyclic k x k matrix

/
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N( 2 ) = 0 0 1 0 ... 0 1 0

0001 ...001

1 0 0 0 1 ... 0 0 0 (6.10)

0100 ...100

and N is defined in (6.4). For example, the ith row of N(2) has l's in

those columns j for which cell j is located next but one to cell i

in a row of the design, and has zeros otherwise. Table 2 illustrates the

general situation and has those (row) cells marked with symbol N(2 )

Similar remarks apply for N(2 ) and Nr( 11) for columns and diagonals

respectively, as shown in Table 2. When cell i is near or on an edge, the

appropriate torus-generated cells must be used.

N (2)
C

N ( 1 1 ) NN ( 1 1 )

rc, C rc

N(2) N Cell N N(
r r I r r

N(ll) Nc N11rc c rc

N (2)

Table 2. Cell patterns which lead to the n by n neighbour-specification

ma4trices Nr Nc, N() 4(2 N(1ti

• iN 
ii m 

. , i _M



The expansion of (6.5), when valid, as far as terms of zero and first

order in Q, can be written

m- (TY-TQ(I-mIT T)YI

=(TY-T( ~+pN -P N$2 "-P N 2 -2P P N$))(-m T'T)Y), (6.11)

where we have used the fact that T(I-m IT T) 0.
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Appendix A. Values of Xr 1. , for

r6 c for1 2fo

Lattice Square Designs.

With recovery of Without recovery of
6inter-block information inter-block information

X Xc Ir a c

1 2(Er-Ee) 2(Ec-Ee) 2
2 k(k+l)Er k(k+l)Ec kkl

I(Er-Ee)(kEc-Ee) (Ec-Ee)(kEr-E e) 1
1(k-i) (k2E E -E') (k-i) (k2E Ec-Ez) (k-l7k

2 We-Wr We-Wc 1
k(Wr +W c+(k-l)WeJ k{Wrc9(klJ)Wei (k1)Tk

In the above table,

A ~W aE',W-11 ~ )2~~ W W a(2k-l)/(2kE -E
* 9e e r (kl/2 Ee', Wc c-e)

Er 0 mean square due to rows adjusted for treatments,

EC mean square due to columns adjusted for treatments and rows,

Ee aresidual mean square.
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