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. ARSTRACT

;i Simultaneous autoregressive models are applied to balance incomplete
block and lattice square designs. Relationships between the resulting maximum
likelihood estimators and standard analyses are explored and clarified. Also,
it is shown that the Papadakis estimator, as applied to these designs, has the
characteristics of the standard analyses, but simply involves fewer plots in
the adjustment procedure for treatment averages. A worked example illustrates

the differences in treatment estimates in a lattice square design, for

standard inter-block analysis and for simultaneous autoregressive assumptions.
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SIGNIFICANCE AND EXPLANATION

The problem of analyzing data from field trials when observations in
neighboring or nearby plots are correlated is an important one which has been
extensively examined over the years. In 1937, Papadakis suggested a sensible
but mysterious treatment estimator form whose role, and relationship to the
corresponding maximum likelihood estimator has been debated for forty-odd
years. These matters were clarified for certain one- and two-dimensional
designs under certain simultaneous autoregressive models by Draper and Faraggi
(1984). 1In the present paper, simultaneous autoregressive models are applied

to balanced incomplete block and lattice square designs. Relationships

between the resulting maximum likelihood estimators and standard analyses are
explored and clarified. Also, it is shown that the Papadakis estimator, as

* applied to these designs, has the characteristics of the standard analyses,

but simply involves fewer plots in the adjustment procedure for treatment
averages. A worked example illustrates the differences in treatment estimates
in a lattice square design, for standard inter-block analysis and for

simultaneous autoregressive assumptions.
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USE OF SIMULTANEOUS AUTOREGRESSIVE MODELS IN BALANCED
INCOMPLETE BLOCK AND LATTICE SQUARE DESIGNS

N. R. Draper and D. Faraggi

1. INTRODUCTION

The analysis of field trials when observations in nearby or neighbouring
plots are correlated has received extensive study over a number of years.
An early reference point is the work of Papadakis (1937). The relationship
of his suggested estimator to the maximum 1ikelijhood estimators in certain

one- and two-dimensional designs under certain simultaneous autoregressive

models has been explored by Draper and Faraggi (1984).

It has been suggested by Kempton and Howes (1981, p. 65 and p. 69)
that the Papadakis model may be used quite generally for field trials and
specifically, for example, for lattice squares (LS's). On the other hand, a
standard analysis for such designs under the "usual N(O, Ioz)" type of error
assumption is due to Yates (1936, 1939, 1940). Under Yates' analysis, ad-
justments are made to the treatment averages for the incompleteness of the
blocks.

In this paper, we investigate lattice squares under the assumption that
a simultaneous autoregressjve model which assumes correlation within rows
and colums 1is appropriate. This is done with different correlations,
Pp for rows and Pe for colums. We then obtain maximum Tikelihood estimators
for treatnants and correlations and discuss the relationships and differences
between the three possible treatments estimators namely maximum 1ikelihood

estimators, Yates', and Papadakis. It will be shown that, for these designs,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the Wisconsin Alumni Research Foundation via the UW Graduate School.
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the Yates estimator is very close to the first order term in an expansion,
where valid, of the maximum 1ikelihood estimator. Moreover, the Yates' S
and Papadakis corrections to the treatment means have similar forms. However,

neither is actually needed in designs completely balanced for rows and columns

because an explicit solution can be obtained. An example

is presented for illustration in Section 5. ?
The lattice square is a two-dimensional design. As a preliminary, we |

investigate what can be regarded as a one-dimensional equivalent, namely

the balanced incomplete block design. Results and conclusions which closely

parallel those of the lattice square are obtained.




2. BALANCED INCOMPLETE BLOCK DESIGNS

Suppose we wish to examine t treatments in b blocks of size
k < t. Suppose, further, that each treatment occurs the same number, m,
of times and appears A times with every other treatment. Then the design
is said to be a balanced incomplete block design (BIBD). Note that there
are n = bk = tm plots, and that A(t-1) = m(k-1). For the standard details

of analysis reproduced below see, for example, Cochran and Cox (1957), or

Yates (1940). The usual model considered is

y. (2.1)

js = M + a; + Bj + ¢

Js
if "replicates” are not a factor; if they are, some minor differences occur
in some formulas. Here yjS js the observation on treatment s in block j,

u is an overall mean, a* is the effect of the sth treatment, Bj is the

i S
‘; : effect of the jth block and €55 is an error such that € = (column vector of
o I €55 in a defined order) . N(O,Ioz). Two altermative assumptions on the Bj

are commonly made.

(a) Bj js a fixed effect. This leads to the so-called intra-block

analysis.

This leads

to the analysis with the recovery of interblock information. As °§ + o,

;
%
!
i
L i ; case (b) » case (a).

- ) 2\
(b) B8 = (B],...,Bb) ~ N(O,IoB) independently of the €5

e

We set

. ,j‘ - 'l’\“. v !.{: o




B_ = total of all response observations y from

blocks in which treatment s appears.

T = total of all observations on treatment s.

G =ZI T_=grand total (=L B_ ).
s S s S

Then, from Cochran and Cox (1957, pp. 445-446) we can estimate the effect

of the sth treatment by

af = m T +6[(t-k) T -(t-1)B +(k-1)6]} (2.2)

where 3 is an adjustment factor taking the value
o = {t(k-1)}" (2.3)
in case (a) when inter-block information is not recovered, and the value
8 = (b-1)(E,~E,)/{t(k=1)(b=1)Ep+(t-k) (b-t)E ) (2.4)

where it is recovered. The quantities Eb and Ee are the mean squares due
to blocks adjusted for treatments, and residual, respectively. Define the
t by bk = n matrix T as follows. When the blocked design is listed in

order, block by block, T.; = 1 if the sth treatment is associated with the

si
ith observation, and Tsi = 0 otherwise. Let

D = 1" -1, (2.5)




where 1' = (1,1,...,1) of dimension 1 by k. Then define

D=1, ® 0, (2.6)

where (:) denotes the Kronecker product. Then, in matrix form, with

a* = (u*....,a’;,...,a’t")‘, (2.2) becomes

a* = m V{TY-8(t-1)TD[I-m ' T*TIV} (2.7)

where Y 1is the vector of observations, recorded in the same pattern as the
block by block enumeration. '
We now consider, instead of case (a) or case (b) above, an alternative

mode Yy = ag * X4 where

X; =p I NniX; +e (2.8)

and where ni.i = 1| if ¥4 and y‘j occur in the same block, and "1j = 0 otherwise.

e e =

LR Y
e —— e & e e e .t

We assume ¢ = (e],....en)' - N(O,Iaz) independently of the x's. Following

Besag's (1974, Eq. (4.13) with u = 0) simultaneous autoregressive model,

we obtain the likelthood

-

e RS P O TN AR RS -

- (2n02) ™™ 2|8 expl-(26%) VX 'B 'BX} , (2.9)
“
' i
i where 8 = [ - pD and X = Y - T'a. The maximum 1ikelihood estimator a
R fs of form (Ripley, 1981, (5.34))
i/

- ——

o
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(v ) vy, (2.10)

Yt o T(1-50)2T" = m{I-m 'T(200-p20%)T'} using the fact that TT' = ml.

where TV™
The matrix (TV"T')" can be expanded as a convergent series if and only
if the eigenvalues of QB = m']T(ZSD-SzDZ)T' are all less than one in absolute

value. This is true if

min{(142V/2),£1/2.03, « =

=2,
(1-22)/(k-1) < b < { mingH1+2"2), L1}, & = 3, (2.11)
(142"/2)7(k-1), k> 4.
If we retain only terms of orders zero and one in QB’ we obtain
ay = m [TY-{2p-p2(k-2)TD(1-m™ 1 T*T)Y] (2.12)

where we have used the facts that D2 = (k-1)I_ + (k-2)D, and T(I-m™'T'T) = 0.
Comparing (2.12) with (2.7) we notice the estimators are identical except

that 6(t-1) in (2.7) replaces {2p-p>(k-2)} in (2.12). Because of the validity
of the expansion, ;] will converge to the maximum likelihood estimator ;,

for fixed 8, if the former is applied iteratively in the following sense:

G * m“[Tv-{zS-Sz(k-z)}TD(Y-T'&j)] (2.13)

where ;o = m']

incomplete block design produces a TV"

TY. In fact, iteration is not needed here because the balanced

lT‘ of patterned form which can be
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explicitly inverted (Rao, 1973, p. 67) to give & in terms of ; as
& = a(I+bTDT')T(I-4D)Y (2.14)
where a = (m-(t-2)8}/[{m-(t-1)6}{m+6}], b = ¢/{m~(t-2)¢} and
$ = {20-(k-2)02}/{14(k-1)p%}. The maximum likelihood p is obtained as

follows. Setting the first derivative of the log likelihood with respect

to p equal to zero provides

(-T'a)'(-00%)(¥-T')  _ __ (k-)o _ (2.15)
(Y-T'a) (1-20D+p20°) (Y-T'a)  {1+(n=1)p}{1+p}
The & may be substituted from (2.14) to provide an equation in ; which
can be solved, for example, via the Newton-Raphson method. From this, ;
is then obtained. In practice, it is easier to replace a in the likelihood
by a from (2.14) and then to maximize the likelihood numerically by a

search over op.

For least squares estimation, the term on the right of (2.15) is
replaced by zero, so that

b = (Y-Tay o) *D(Y-Ta, )/ {(Y-Tay &) *0P(¥-Tay )1, (2.16)

where ;LS has the same form as & but with 8 replaced by SLS‘ Again

numerical maximization is simplest.
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3. LATTICE SQUARES .
Suppose we wish to examine t treatments in a setof m k by k
lattice squares. Typically m = §(k+1) where & = %3 1, 2, ... . The different

values of & correspond to various association relationships among the
treatments. When § = %3 any treatment s will appear with any other treatment
w once in either a row or a column but not both. When § =1, s and w
appear together both in a row and a column, once each, and so on. The usual

model considered is

Yy,

g tal+ Mot B ¥ Yo gy (3.1)

where the set of subscripts (q,r,c) representing the position in the rth
row and the cth colum within the qth replicate have been replaced by a single
subscript i = 1,2,...,n which denotes the plot's position in a row by row
enumeration of the plots, replicate by replicate. Two alternative assumptions
i on the B's and the y's are commonly made
. (a)_ Bps Y are fixed effects. This leads to an intra-block analysis.
(b) Bp ~ N(O,cg) and Yo ~ N(O.os) and all B's and y's are independent.
Typically it is assumed that 03 = ag, although this is not necessary. As
2

2
o, + « and GY

8 + o, case (b) + case (a).

e e A L e ——

We set, for § > 1,

e




Ts = total of all response observations y from all plots i
which receive treatment s,

Rs = total of all y's in rows in which treatment s appears,

CS = total of all y's in columns in which treatment s appears,

G = grand total of all y's,

L = (m-l)Ts - W + G,

M, = (m-])TS - m, + G.

Then, from Cochran and Cox (1957, p. 493), we can estimate the effect of

the sth treatment by
e ]
a* = m {TS+>\rLS+>\CMS}, (3.2)

where >‘r and )‘c are coefficients for the adjustments needed for the in-
completeness of the rows and columns. The values of Ar and )‘c depend on
the replication selected and which case, (a) or (b) is assumed. Examples
are in Appendix A.

* is of the same form as (3.2) but with

For § = ;—, the formula for ;S

redefined symbols. We do not discuss this because our matrix formulation
does not contain this ambiguity.

Define the t by n matrix T as follows. When the blocked design
is written out row by row within replicate and then replicate by replicate,

T, =1 1if the sth treatment is associated with the ith observation, and

si
Tsi = 0 otherwise. Let Dk =11 - Ik' where 1' = (1,1,...,1) of dimension
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1 by k, and define

Zp = Ip (:) I <:> Dy
z.=1, 0 ®1,, (3.3)

7 = Zr + ZC’

where (:) denotes the Kronecker product. Then, in matrix form, with

ok = (a%.a;....,at)‘, the L denoting lattice, (3.2) becomes

AL = '1 . "] 1y
a m {TY-mT(ArZr+Ach)(I-m T'T)Y} (3.4)
where Y 1is the vector of observations, recorded in the same pattern as
described earlier.
We now consider, instead of case (a) or case (b), an alternative

model Yi = og t Xy i=21,...,n, 8 =1,...,t, where

Xy * 0 Ji1 ngg)xj + o, jii ngg)xj (3.5)

and where ngg) =1 if ¥4 and yJ occur in the same row and replicate and is zero
otherwise, while n$§)=l if Y4 and yj occur in the same column and replicate and %
is zero otherwise. We assume € -~ (e],...,en)' ~ N(O,Ioz) independently of the x's. ’

Following Besag's (1974, Eq. (4.13) with u=0) simultaneous autogressive model, we

obtain the 1ikelihood (2ro?) ™ 2|B|exp(~(207) "X 'B'BX} where B=I-p Z -p 2,
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X=Y - T'a. The maximum likelihood estimator ; is of form (TV"T')"TV']Y.

where TV IT' = T(I—Srlr-ScZC)ZT' = m(1-q_) and where

Nt ot 22822 .
Q = W T2, 2,20 2Pyl p-pele-20 DL I T (3.6)

The matrix (TV']T')'] can be expanded as a convergent series if and only if

the eigenvalues of QL are all less then one in absolute value. This is true
if

-1 < q + (kz-'l)q2 <1,
-]<q]-q2 <1,

where

a = -(-2) (63432,
ap = (29, #20~(m-3)(62402) - 2(k-1)p, 5}/ (K1), (3.7)

For example, if m = 6, k = 5, the conditions imply a feasible region shown
shaded in Figure 1.

If we retain only terms of orders zero and one in QL' we obtain

of = T TY-T(8,2, 4,20 (I- w TV, (3.8)
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The shaded region shows the values of (pr,pc) for which the ex-
pansion of the maximum 1ikelihood estimator involving QL is valid,
for the case m = 6, k = 5 described in the text. For the case

Pp =P =P this region reduces to the intersection of the shaded
region and the 45° line shown, with a multiplicative scaling

1/2

factor of 2~ applied.

Figure 1.
pc
0.4 [-
.2 -
0.0
-0.2
-0.4

N

45° line
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where ¢, = Zpu - (m-3)pﬁ + erSC and u = r, ¢ in turn. In deriving a%

we have used the following facts (u=r or c):

zﬁ = (m-2)1 + (n-3)2,,

T2,2_ = 1,1;T-T-T2, -T2,
T(1-m '7'T) = 0,
IA(I-m']T'T) = 0.

(3.9)

Comparing (3.8) with (3.4), we see that the estimators are identical except

that m, in (3.4) replaces 3u in (3.8). Because of the validity of the

expansion, a% will converge to the maximum likelihood estimator aL, for

fixed Pp and ;c’ if &% is applied iteratively in the following sense

ARELRUR R ER A1 L) N (3.10)

|

L. o1
where “o m

TY. In fact, iteration is not needed here for § > 1, because

1

the lattice design produces a TV 'T' of patterned form which can be explicitly

[

inverted (Rao, 1973, p. 67) to give at in terms of'sr and ;c as

P U VO

((a-b) I+b11 " }T(1-Q)Y, | (3.11)

S W Yo

[
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where
a = {(m-1)q)~(k2-2)ma,}/[{(m-1)ay-(k2-1)may} {(m-1)q +may) 1,
b = qu/[{(m-l)q]-(k2-1)qu}{(m-nq]*qu}]- (3]2)

The maximum 1ikelihood ;r and Sc are obtained as follow. Setting the first
derivatives of the log likelihoods with respect to G and Py equal to zero

provides equations:

3
A oA {%5“ |3£} o
nX'z, B L e (3.13)
= oa + ~ = 0, u=r,c 3.13
X'B™X |B]

where X and B are the values of X and B with a-, P. and oc replacing

the (i,i+1) and the (i,i+k) elements, the designations being reduced modulo

a1

n where they exceed n, respectively of B~ and must be solved, a tedious

: calculation. It is simpler in practice to substitute a selected grid of

L and hence evaluate the likelihood over that grid, so

i! (pr,pc) values into o
! picking out the maximum value of the likelihood.
For least squares estimation, the term on the right of (3.13) is

4 replaced by zero so that

W —

a, P, and Pe- These two simultaneous equations involve, in their second terms,




[ e—

1 PR SRR A

- . _] ,
pr,LS brr brc X er

(3.14)
Pe,LS ber  bec X'z X

= y! . .
where buv = X ZquX. The least squares estimate of a, ofg is of the same

~

form as o~ but has ;u replaced by ;u LS everywhere,

Special Case Pp = P = P-

c

In many practical situations, it is reasonable to assume that
Pp = P = P For comments on this choice, see Kempton and Howes (1981, p. 63).
A1l formulas reduce to their appropriate forms via simple substitution of
Pp = Pe = P- A1l that is needed is to write Z = Zr + Zc whenever it occurs
and to drop subscripts from A, ¢, and p. The equation paralle) to

Eqs. (3.13) is the result of adding these two equations together.

-4
]




" The maximum 1ikelihood estimates for Pp and pc are ;r = 0.108 and ;c = -0.030
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4. LATTICE SQUARE DESIGN EXAMPLE

We shall re-examine data given by Cochran and Cox (1957, pp. 490-493)
comprising a lattice square design with k =4, § = 1, m =5, n = 80. The
appropriate formulas for Yates' estimators Ar and Ac are given in Appendix A

and here result in the numerical values Ar = 0.04787 and Ac = 0.03037 (p. 493).

and these lead to estimates for the 16 treatment parameters given in the

second column of Table 1. These may be compared with the "adjusted means"

of Cochran and Cox (1957, p. 491) which are the corresponding Yates' estimates,
shown as the third column of Table 1. We see that, although two entirely
different models are used, individual estimates are broadly speaking, compatible.
In view of the fact that only one at most of these models can be correct for

the data set, we do not compare them via a model-dependent criterion such as

weighted or unweighted sum of squares of residuals.




-17-

Table 1. Comparison of treatment effects for a 4 by 4 lattice square design
with five replications. Second column: Maximum likelihood estimates under
the assumption of a simultaneous autoregressive model. Third column: Yates'

estimates from Cochran and Cox (1957, p. 491).

*These figures are subject to small rounding errors;
both should be 174.48.

“

Treatment Mle Yates'
1 4.98 6.45
2 12.71 13.68
3 8.90 8.73
4 11.41 11.36
5 9.89 9.44
. 6 5.96 7.58
? 7 7.52 7.37
8 9.79 9.32
, 9 10.91 10.01
y 10 15.77 14.91 !
3 1 18.12 17.59
: | 12 12.91 12.70
I 13 12.07 10.69
.” } 14 13.40 14.27
4 15 10.07 9.28
RN 16 10.05 11.09
hj i Sum 174.46* 174.47* 4
1
[
'
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5. PAPADAKIS AND MAXIMUM LIKELIHOOD
We reconsider the assumption made in connection with Eq. (3.1).

Suppose that now Br is the combined neighbouring effect from the "plot to
the left in a row", and the "plot to the right in a row", these left and

- right adjacencies being determined in torus, wrap-around manner (Martin,

1982). A similar "up and down in a column" definition is applied now to
Yoo Let Nr and Nc be the n by n neighbour-specification matrices for rows
and columns whose ith row contains 1 in positions j for which plot j is
row- and column-adjacent respectively, to plot 1, and zero otherwise. Then

the maximum 1ikelihood estimator of a* is
~ - -] -] 1
a; =m {TY-nT(y N N ) (1-m T T)Y} (5.1)

where wr and wc are coefficients for the adjustments needed for the row-
and colum-adjacency effects. Parallel to the work in Section 3, there will
be two forms for ¥ and wc according to whether an intra-neighbour analysis

(8 random effects)

rYe fixed effects) or an inter-neighbour analysis (Br’Yc
is specified.

If we compare (5.1) with Eq. (3) of Draper and Faraggf (1984), we
see that they would be equivalent if m. = mwc = ; and if N = Nr+Nc. In
fact, (5.1) is the Papadakis estimator for the case ¥ $ Ye» Up to definition
of Ve and Ve- The Papadakis formulation would involve regression estimators
of v, and Ye instead. We thus see that the Papadakis estimator can be
regarded, up to definition of ¥ and Ves a5 2 maximum 1ikelihood estimator

in the particular model formulation described above.

q — SR ‘i“‘"—"“.‘"“"'“ - -._.,:.‘:\_—
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6. REMARKS

A previous paper (Draper and Faraggi, 1984) discussed field trials in
one and two dimensions for designs of Type II(a), Type III, and Type III
\ X cyclically row permuted (Williams, 1952) for one and two dimensional layouts.
In the two dimensional layout, no directional differences were assumed and a
| single p value was used for both rows and columns. The extension to o, and
Pe for that case is easily effected using formulas of the type exhibited in
this paper. The maximum 1ikelihood estimator has the form of (2.10), with

vl e (1o N )2 : (6.1)

rPclNe

where Nr is an n by n row-neighbour-specification matrix defined by

Ne = Tsgen ) O TGN (6.2)

where Nc is an n by n column-neighbour-specification matrix defined by

}: ‘ Ne = 16(k+1fCE?N(E:Hk, - (6.3)

and where N 1s the cyclic k by k matrix

N=]0100...01]. (6.4)

1010...00 ?

1000 10

TGO as - - ".,»\-.s,:»\_?r"j.,‘i;




-
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We can re-write (2.10) as

m (1-mV1Qr ) T (1-0)Y (6.5)

where
Q= 20N, + 20N, - pN2 - 02NZ - 20 0 NN (6.6)

Here,

2, (2) 2. (2) = 1)
NG = 21 + NS, NG = 20 + N5, NN = N,

where Niz), Néz), and NilI) denote n by n neighbour-specification matrices

which contain 1°'s and 0‘s such that

N2 - x6(k+1)<:>1k<:>“(2) (6.7)

JSER NG L O (6.8)
M) = Ty ue COMEN ~ (6.9)

where N(2) is the cyclic k x k matrix




. . 5
- L L

W €T WS vy

<21- .

N2 20010 ...010
0001 ...001
10001...000 (6.10)

0100 ...700

and N 1is defined in (6.4). For example, the ith row of Niz) has 1's in
those columns j for which cell j is located next but one to cell 1

in a row of the design, and has zeros otherwise. Table 2 illustrates the
general situation and has those (row) cells marked with symbol Niz).

Similar remarks apply for Nﬁz) and Nr£11) for columns and diagonals
respectively, as shown in Table 2. When cell i 1is near or oﬁ an edge, the

appropriate torus-generated cells must be used.

N2
[ [
@ [ [ [ [
e [
n£2)

Table 2. Cell patterns which lead to the n by n neighbour-specification

matrices N, N_, N2}, n{2) \(TT),




-22-

The expansion of (6.5), when valid, as far as terms of zero and first

order in Q, can be written

™ TY-TQ(L-n” 1T TV}

= mTY- -T(20, N #25 N, - prN(z) (2) -2, 0N 511))(I-m']T'T)Y}, (6.11)

where we have used the fact that T(I-m']T'T) = 0.
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)
Appendix A. Values of xr, Ac for § = L 1, 2 for

Lattice Square Designs.

P With recovery of Without recovery of
inter-block information inter-block information
Ar Ac Xr = xc
2 klk+1$£r k(k+1$Ec . k(k+
: (Er'Ee;(kEc'Egz (Ec'Ee)(kEr'Eg;* - 1
2 -1)k
(k=-1)(k ErEc'Ee) (k=1)(k ErEc'Ee)
2 Wo-W,. W -W, ]
Eiwr+ﬁc+(k-iiwe} kTwr+wc+(k-l)Hé} k-1)k

i In the above table,

-1
Ee » W = (2k-1)/(2kEr-Ee), W= (2k-1)/(2kEc-Ee),

=
a

E_ = mean square due to rows adjusted for treatments,

m
[}

mean square due to columns adjusted for treatments and rows,

™
]

residual mean square.
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