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ABSTRACT

Using the method of embedding a given equation into a higher dimensional

problew, examples of multiple limit point solutions emanating from a single

limit point are constructed within the context of algebraic and ordinary

differential equations. In both instances, the linearized problem around the

limit point is assumed to lead to non-self-adjoint operators.
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SIGNIFICANCE AND EXPLANATION

In order to solve equations of the form

G(u,A) - 0

at a limit point where u = u(M) ceases to be a single valued function of

A, and du/dX becomes unbounded, it has been a common practice in recent

years to imbed the equation G(u,X) = 0 into a 'higher dimensional' problem

so that the Jacobian of the enlarged system is non-singular at the limit

point. This method permits one to seek single valued solutions for u = u(c)

and A - X(e) in terms of a new parameter C. Despite this, it is common to

speak of the solution curve passing through the limit point as exhibiting

limit point bifurcation, because u is a double-valued function of A.

Limit point bifurcations arise in numerous areas of mechanics, such as

the buckling of a shallow clamped shell under uniform pressure, the flow of a

non-Newtonian fluid in between rotating disks and in chemical reactor

problems.

In the present paper, the possibility of two curves passing through a

single limit point is discussed and is shown to depend on the dimension of the

null space of the Jacobian of G(u,A) at the limit point, as well as the

dimension of the null space of the adjoint of the Jacobian. With this method

-4 it becomes possible to study the existence of multiple limit point bifurca-

tions in mechanics and engineering. Finally, because the theory is developed

to be applicable to abstract equations, it is cast in terms of the 'Jacobian'

- being a Fredholm operator and its index is non-zero because the dimensions of

the null spaces of the operator and its adjoint are not equal.

The responsibility for the wording and views expressed in this descriptive
* I' summary lies with MRC, and not with the author of this report.
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MULTIPLE LIMIT POINT BIFURCATION FOR
FREDH(QLM OPERATORS OF NON-ZERO INDEX

R. R. Huilgol

1.INTRODUCTION

Let X and Y be real Banach apaces and A~ e R be a scalar. Consider a map

G X x R + Y and let us seek solutions of

G(uX) - 0 )

0 0
in the vicinity of a known singular solution (u X ) e x x R. Assuming G to be

sufficiently smooth, we shall seek a solution "arc" Cu(C),X(e)), with

(uCO),A(0))) I (U0 ,X ), depending on C in ej <co in the neighborhood of (u0 A)

0 0
If we expand G(uX) about (u , X ) we find that

G(uA) - G Cu -u ) + G (A X) ) + i-d u - u )(u -u ) +

(2)

+ Go( u 0)) 0 + - Go X 0 ))(X - A~ 0 + higher order terms
ux 2 Xx

In (2), Go = 1- Cu ,).), and the other operators are similarly defined.

u1 3

Let Gobe a Fredholm operator' with a null space AI(G ), of dimension m 2, and
u u

G0be such that it does not lie in the range R(G 0  of Go, i.e.,
u u

G0 *RCG 0 ) .(3.)

Now, because Go is Fredholm,u

4 XN(GO) * XI (4)

Y R R(GO) 0 i 5

School of Mathematical Sciences, The Flinders University of South Australia, Bedford Park,
South Australia 5042.

if Suis bounded, the argument that follows is unaffected. If G is unbounded, its
domain which is dense in X can be turned into a Banach space via the graph norm, and one
can proceed with requisite modifications. Details are left to the reader.

* . Sponsored by the United States Army under Contract No. O AAG29-SO-C-004 1.



where Y1 has the eame dimension as that of the null apace of the adjoint (Go)* of c.

If we seek small solutions to G(u,X) - 0 when G(u,A) has the expansion (2), it is

clear that we are led to:

(u - U0 
)(E) - e# + 2w(C) (6)

(X - Ao0°Me) - E2 V= ) (7)

where # e N(G), w eX, c e R. As (7) implies, on every solution arc bifurcating from
U

u°, X°), d)/dc = 0 at e - 0 [1,21.

Following Keller [1], and Decker and Keller [2], Huilgol [3] showed that the solutions

(6) - (7) are of the "multiple limit point bifurcation" type provided G is bounded and
0X

R(Go) R(G) , ()u

i.e.,

R(G0)- (9)

Now, a glance at equations (2) - (3) will show that because A : R + YI# one has

dim Y 1 11 moreover, dim Y, dim N((Go)*) and thus the Fredholm index of G- isU u

m - I 9 0, since m > 2.

In order to establish (6) - (7 , one can fix e N(G°  and define a new map
u

g R RX x + Y through

1 00
- G(u + C# + ev, A

° 
+ cc), e 0 0 , (10)

g(C,v,E)

o(+ V) + Go, 0 (,,,

Clearly, g(0,0,0) - 0 because * e N(G ).
u

Since (8) holds, by the implicit function theorem (4], the equation g(e,v,&) - 0 has

a unique solution v = v(E), E - C(C), for Idj < co, such that v(0) = 0, E(0) - 0.

Using the smoothness of G, one can write v(E) - ew(c), C(C) - LC(£) and recover (6) -
.4

(7).

Now, there are a number of situations as in Hopf bifurcation (Weber [5]), or in the

example below when it is computationally attractive to add an extra condition to (10) -

(11). For instance, if X RP , we know that we can choose v to be orthogonal to 4.

-2-/!
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More generally, if Guo is Fredholm then there is always a linear operator (e.g., a

projection operator) C* : X + Ti such that C* XI * (0) and C* is an isomorphism

between N(GO) and 31m, since dim N(Gu) - m.
*

To incorporate such a C , it is essential to seek the solution of G(u,A) - 0 about

0 0
(u° ,X ) by imbedding the original problem into a "higher dimensional" one. That is to

say, we solve a second equation g1 (e,v,1 = 0, where g, : R 9 X1 x R* Y, and g, is

defined, for a fixed 0 e N(G°), through
U

1G(u° + C4 + ev, ko + CE), e 1 0 , (12)

C V, C # 0 , (13)

g1(c,v,&) -

(G0(0 + v) + G0, C " 0 , (14)

C v, 0 (15

Clearly, gl(0,0,0) - 0 and in order to employ the implicit function theorem so that

gl(e,vA) - 0 has a unique solution (v(c),F()1 with v(0) - 0, (0) - 0, one needs to

establish that the "linear operator"

A~{ ~ J(16)A L0

is non-singular. Note that A arises because one can write (14) - (15) symbolically as:

g(O,v,&) =A (17)

It was proved in Theorem I of [3] that A is non-singular, provided
i R(Go ) R(G) - Y

(ii) N(ct) - xRl(c*) l e"

(iii) dim N(G°) -m ,

(iv) Mc*) n N(G0) - (0)
U

I The above idea has obvious extensions to the case where X e k in (1) - see Theorem I of

J (3]. This is not pursued here.

Now, on putting v(£) - £w(e), F(W) W C€(e) in (6) - (7), we can write G(u,X) , 0

in (2) as:

* -3
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where (6) and (7) are used. Since dim N(GO) P 2, the possibility exists that more than

one solution pair (w,C) can be found by solving (18) when we let # be a different

linear combination of { which span NI(G:).

In this paper, using this idea, we construct two examples of multiple limit point

bifurcation, when A e R.

2. ALGEPRAIC EQUATIONS

Firstly, let us consider the equations

GCU.X) a ( u -u 0) +' * (X. - X 0) 0 0_ , 2 [ Aijk(uj u)(uk - uk)
J- iilk-1 (19)

+ higher order terms 0 0, i - 1,2

where aij is the 2 x 3 matrix:

aGi
S- (oo) , (20)

t R, I' i - 1,2, are the components of the vector spanning N(a ) with a being

the adjoint of 4. Clearly, R(2). Now, let a have a null space of dimension 2,

spanned by ,1 and 2 respectively. Then, dim N(2 ) - 1. Now we can rewrite (19), by

appealing to (18), as:

a a. .. w2 1.l 4 1 + Ok 1

a11  a12  13I I  1  I +j ilk I

o2 1  a22  w2k
22 23  '2 2

-------- ------ .... "2jk0 4
k 

+ 0(c) (21)
.41 1 10

1 *2 *3 1
2 2 '0 0LI 02 03 j OL

t -4-
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In (21), on the left side, we have employed the fact that I and 2 are orthogonal to

w Thus the lower 2 x 3 matrix represents C * On the right side of (21), we have taken
• ( t san fr 1 2

e N(a) to stand for or 1 or a linear combination of both.

Since rank - 1, the row [all a 1 2 a13 is a multiple of [a21 a22 a231, with a

factor Y, say. Provided (B I k - 8 2jk )Y k ).  0 0 we get a solution C(O) 0 0. This

8
a 

12 813 -2anth. 1 7 .

follows from the fact that rank a1 a22 C1*I - 2 and thus *1

Now we can have two distinct solutions for C(0), leading to multiple limit point

bifurcation, provided (say)

" (0jk - YR2 jkl*j(k 0 0 (
0
1jk Y k)0 (22)

J,kk Jk-1 2ik

As Q specific example let

Bi 123aj (23)

Then N(2) is spanned by:

2 .(24)

and the domain X of has the decomposition:

X=10-Nwa 0

span .(25)l X 1 = span

Similarly, since s : R3  R2 , the range space Y has the decomposition,42

Y 1R - )S Y1 ( 26)

where R(2) and Y1 are described through

R(M) = span d I1 - span J dim Y1 -1 . (27)

t -5-
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Moreover, = spans N(Z ) as well and doe not lie in R(al.

For simplicity, let us choose
f111 

=  , 0 213 = 2, 1 1

(20)
other ijk  0

Then, if we take = I in (21) we get at e = 0:

r " r

1 1 1 w0  0

1 1- 0 (29)

1 -1 0 0 iw 0

0
1 1-2 0 i 0

Now, the 4 x 4 matrix on the left side is non-singular
1 
and we get the unique

solutions:

0 0 0 o-
wo w._w

1 2 3
(30)

€o 1

Thus, in this case, the solution to (19) is of the form

(u 20)()- CAI + 2Xo + 0: 31,1 2 (31)'~~~ ~ C +2 013, (31

where -, i - 1,2,3, and Co are given by (30). Had we employed 2 in (21), we would

go get a solution set similar to (31), except that 1 is replaced by A2 and the new values

"'I

!C

The usefulness of incorporating C* in (12) - (15) becomes clear here. For, without it,
we have 2 equations in (19) for w1, w2, w3  and C. Of course, the first three are inter-

related. The operator C* makes this explicit as well as leading to a square matrix A,
which is invertible.

i -6-
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rr
of w°  and Co are:

0 0 0w 1 w 2 w3

(32)
40

4

Hence we have constructed a pair of algebraic equations yielding multiple limit point

bifurcating solutions.

Now, Decker and Keller (2], while assuming A e R, require t to have a Predholm

index zero. Therefore, their theory is inapplicable to the example chosen here since

dim N(a) #' dim N(), while the example follows from the theorem proved in (3].

It seems to be the simplest example of multiple limit point bifurcation, since this

type of bifurcation requires 12] dim N(G0 ) o 2.
u

3. A DIPFERENTIAL EQUATION

Once an example such as in (19), (23) - (28) has been constructed, it is clear how to

generate others. To be specific, let u0 - u°(x) belong to X B L2(0,2w). Now, consider

the differential equation for u e X:

2
G(u,X) - Cu - u ) + (u - u ) + IX - 114 +

dx (33)

+ Vu -u0
,  

(u - u)) -0
dx

4 In (33), f(0,0,0) f 0 and f is not linear in its arguments and is as smooth as one

desires. The boundary conditions associated with (33) are taken to be:

* -"' u(O) - u(2w) * (34)

Clearly, (u°11) it a solution of (33) - (34) if u° e X meets (34).

Now, the adjoint boundary conditions ares

u(O) - u(2w) - 0, u'(0) - u'(2w) ( (35)

Hence, if we let ; - + 1, with the boundary conditions as given by (34), then

- N(G) = span {sin x, cos x} (36)

-7-



d2

However, the adjoint of Go has the form (G) = d 1, with (35) as its boundarydx 
2

conditions, and hence

N((Go)*) - span {sin x} (37)

leading to the index of uo being 1. Now, while the domain P(G) of G contains

u e x meeting (34) we have yet to specify the range R(G) of G. To this end, set

Y = XVcos x~l then we put R(G) = Y. Finally, let the function * be:

V(x) = sin x . (38)

It is now clear that (33) is similar to (19) and, therefore, multiple limit point bifurca-

tions arise from (u°,l) provided (cf. (22)):
- d d

f (4I A - 1, xl ) 4 f(*2,X - 1, 2} (39)
dxi 1 2P~1 dx 2~

where Wl(x) - sin x, #2 (x) - cos x.

4. CONCLUDING REMARKS

As mentioned in (21, there are numerous examples of limit point or tur 4 nt

bifurcation in the literature, especially in mechanics. In this literature, it is said

that there are two solutions near a turning point because in the usual (lul A) diagram

near (u°,A°), there are two values for lul, for each A # X° .  In the approach adopted

here, following (2,31, such a solution is assumed to represent a single limit point

solution for, in terms of C, the solution curve through (u ,A ) has a unique repre-

sentation. To be specific, if e - 0 corresponds to (u°,)°), then the values of E < 0

and e > 0 correspond to distinct values of (u,X), respectively, around (u0 ,A °); or,

we have a smooth solution arc through the limit point.

* What has been done in the present paper is to construct examples of double solution

arcs through the limit point. In the spirit of [2,3), these are called multiple limit

point bifurcations, and are believed to be the first known examples of this kind in the

literature.

* --
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