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SIGNIFICANCE AND EXPLANATION

In order to solve equations of the form
G(u,X) =0

at a limit point where u = u(lA) ceases to be a single valued function of
A, and du/dX becomes unbounded, it has been a common practice in recent
years to imbed the eguation G(u,A) = 0 into a 'higher dimensional’ problem
so that the Jacobian of the enlarged system is non-singular at the limit
point. This method permits one to seek single valued solutions for u = u(e)
and A = A(e) in terms of a new parameter €. Despite this, it is common to
speak of the solution curve passing through the limit point as exhibiting
limit point bifurcation, because u is a double-valued function of .

Limit point bifurcations arise in numerous areas of mechanics, such as
the buckling of a shallow clamped shell under uniform pressure, the flow of a
non-Newtonian fluid in between rotating disks and in chemical reactor
problems.

In the present paper, the possibility of two curves passing through a
single limit point is discussed and is shown to depend on the dimension of the
null space of the Jacobian of G(u,A) at the limit point, as well as the
dimension of the null space of the adjoint of the Jacobian. With this method
it becomes possible to study the existence of multiple limit point bifurca-
tions in mechanics and engineering. Finally, because the theory is developed
to be applicable to abstract equations, it is cast in terms of the 'Jacobian’
being a Fredholm operator and its index is non-zero because the dimensions of

the null spaces of the operator and its adjoint are not equal.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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MULTIPLE LIMIT POINT BIFURCATION FOR
FREDHOLM OPERATORS OF NON-ZERO INDEX

L]
R. R. Huilgol

1. INTRODUCTION

Let X and Y be real Banach spacegs and A € R be a scalar. Consider a map
G : XX R+ Y and let us seek solutions of

G(u,A) = 0 (1)

in the vicinity of a known singular solution (u°,x°) e X x R. Assuming G to be

sufficiently smooth, we shall seek a solution “arc" (u(€),A(€)), with

(u(0),2(0)) = (2%, depending on € in le| < €.+ in the neighborhood of W%,
If we expand G(u,A) about (uo,Xo) we find that

1
Glud) = Gtu - v’y + 670 =% + 5 @ (- u’iu -’ 4

1

+ G:X(“ -u% =129 G:X(X - 2% - 1% + higher order terms .

2
o_9G ,6 0,0 .
In (2), Gu = 3; (u ,A" ), and the other operators are similarly defined.

lLat G: be a Fredholm opeutor1 with a null space N(G:), of dimension m > 2, and

G; be such that it does not lie in the range R(G:) of Gz, i.e.,
Gy ¢RG) . (3.)
Now, because Gg is Fredholm,
X =N(GD) ® X, , (4) i
Y =R ey, , (5)

*

School of Mathematical Sciences, The Flinders University of South Australia, Bedford Park,
South Australia 5042.

1

If Gg is bounded, the argument that follows is unaffected. If dﬁ is unbounded, its
domain which is dense in X can be turned into a Banach space via the graph norm, and one
can proceed with requisite modifications. Details are left to the reader.
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where Y, has the game dimension as that of the null space of the adjoint (Gg)' ot Gg.
If we seek small solutions to G(u,A) = 0 when G(u,A) has the expansion (2), it is
clear that we are led to:

(u - u2)(e) = eb + e2wie) , (6)
o 2
(A = A7 )(e) =e“Cley , (7)

where ¢ € N(G:), w e x1, T € R. As (7) implies, on every solution arc bifurcating from
(w®2%), aAsde =0 at € =0 [1,2).
Following Keller (1], and Decker and Keller [2], Huilgol [3] showed that the solutions
(6) = (7) are of the "multiple limit point bifurcation" type provided G; is bounded and
R(G) @ R(Gy) = ¥ (8)
i.e.,

R(c;’) -y, . (9)

1

Now, a glance at equations (2) - (3) will show that because G; 1t R+ Y1, one has
dim Y, = 1; moreover, dim Y1 = dim N((Gﬁ)') and thus the Fredholm index of Gg is
s m- 190, since m > 2,

' In order to establigh (6) - (7), one can fix ¢ € N(G:) and define a new map

g : RXx x1 x R+ Y through
1o’ veprev, A% ret), em0 (10)
‘ g(e,v,E) =

o] O,
Gu(Q + v) o+ GXE' € =0 . (1)

PR

Clearly, g(0,0,0) = 0 because ¢ € N(G:).

[ Since (8) holds, by the implicit function theorem [4), the equation g(e,v,E) = 0 has
a unique solution v = v(e), £ = E(e), for Iel < eo, such that v(0) = 0, £(0) = 9,

f_ Using the smoothness of G, one can write v(€e) = ew(e), E(€) = €Z(e) and recover (6) -
A (7).

Now, there are a number of situations as in Hopf bifurcation (Weber [5]), or in the

example below when it is computationally attractive to add an extra condition to (10) -

4 . (11). For instance, if X = RP, we know that we can choose Vv to be orthogonal to ¢.
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More generally, if Gg is Predholm then there is always a linear operator (e.g., a

*
projection operator) C  : X + K® such that C : X, {0} ana c' ig an isomorphism

between N(Gg) and R", since dim N(Gg) =~ m,

To incorporate such a C., it is essential to seek the solution of G(u,A) = 0 about
(uo,lo) by imbedding the original problem into a "higher dimensional” one. That is to
say, we solve a second equation 91(e,v,E) = 0, where gy = Rx x1 xR+ Y, and g, is

defined, for a fixed ¢ € N(Gz), through

e
% Gu® +e¢ +ev, \° +ek),epo0 , (12)
c'v,evo (13)
g,(e,v,E) = <
cﬁ(o +v) + c‘;s, e=0 , (14)
»
cCv,€E=0 , (15)
\

Clearly, g4(0,0,0) = 0 and in order to employ the implicit function theorem so that
9.(€,v,E) = 0 has a unique solution (v(€),E(€)) with v(0) = 0, £(0) = 0, one needs to

establish that the "linear operator”

Az (16)

is non-singular. Note that A arises because one can write (14) - (15) symbolically as:

v
91(01‘115) =A € . (17)

It was proved in Theorem I of [3] that A is non-singular, provided
(1) REYH @ RGT) =¥,

(1) Nch) = xRt = R,

(1i1) dim N(GD) = m ,

(1) Mc®)n NGO = (o} .
The above idea has obvious extensions to the case where X & IF in (1) ~ see Theorem II of
{3]. This is not pursued here.

Now, on putting v(e) = ew(e), F(€) = €g(e) 4in (6) - (7), we can write G(u,A) = 0

in (2) as:




o 1 o
w Gu GX w 2 Guu“ + Ote)
A = |, - - (18}
4 c 0 4 0

where (6) and (7) are used. Since dim N(Gg) > 2, the possibility exists that more than
one solution pair (w,{) can be found by solving (18) when we let ¢ be a different
linear combination of (0‘....,0‘} which span N(Gﬁ).

In this paper, using this idea, we construct two examples of multiple limit point

bifurcation, when 1 e R.

2. ALGEPFRAIC EQUATIONS

Firstly, let us consider the equations

3 3
0 o 1 o o
Gy, M) = § a tu —u)+p A=A+ T 8 (u, - 0D -ud
i's’
=1 1y 3 4 2 J, k=1 LEL 3 x (19)
+ higher order terms = 0, i = 1,2 ,
where aij is the 2 x 3 matrix:
3G1 o ,0
qij - a“j (2 IX ) ’ (20)

* -
A eR, 01, i = 1,2, are the components of the vector y spanning Nga ) with a being

the adjoint of 4. Clearly, Y ¢ R(a). Now, let a have a null space of dimension 2,
*
spanned by 21 and 22 respectively. Then, dim N(g ) = 1. Now we can rewrite (19), by

appealing to (18), as:
[

r -

- j
N
—

3
1
%11 %2 %3 : Ve ™ 7, Z_1B1jk’j‘k + 0te)
921 G Gyl ¥y |v,
| , 3
; =-l3 , E_,“z;k‘j‘x + 0(¢) . (21)
’
1 1 1
2 $H 4 : 0 Y3 0
2 2 2
¢ ¢ < 1o z ] J
L ! 2 3 | P L. J .
-d-
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¥. Thus the lower 2 x 3 matrix represents C‘. On the right side of (21), we have taken

In (21), on the left side, we have employed the fact that 21 and 22 are orthogonal to

1 2
¢ € N(a) to stand for § or ¢ or a linear combination of both.
Since rank a = 1, the row [a‘|1 ay., a”] is a multiple of [021 ey, n23], with a
factor Y, say. Provided 2(8131( - Yszjk)ojok) # 0 we get a solution 7 (0) ¥ 0. This

S41 %y %3 ¥
83y 33 %p3 ¥

@ 1

follows from the fact that rank = 2 and thus *1 td “’2'

Now we can have two distinct solutions for Z{(0), leading to multiple limit point

bifurcation, provided (say)

%(a-a)“#ie-s)zz (2
3ok 1K ALPTIRL I ) x-1( 19k T Bagd®yty - 2)

As & specific example let

aQ,, = . (23)

Then N(a) is spanned by:

¢ == . =11 . (24)

and the domain X of g has the decomposition:

Xz R =Nig © x,,

1] . (25)
x,' = gpan 1

Similarly, since & : Il3 * llz, the range space Y has the decomposition,

' vsnz-mg)o Y, o (26)
where R(g) and Y, are described through
1 1
R(g) = span » ¥y = span . Qim Y, =1 (27)
1 -1
-5-
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] spans  N(a ) as well and does not lie in R(a).

Moreover, ¥ = [

1

For simplicity, let us choose

Bigg = Vo Byy3 = 2
. (28)
other Bijk =0
Then, if we take ¢ = Q‘ in (21) we get at ¢ = 0:
- 1) A
1 1 1,w‘; 3
i
1 1 1 =1 |w‘2’ 0
!
} - - . (29)
!
L0
1 -1 0 0 |wy ]
L1 1 =2 o iz° oj
o J L

Now, the 4 x 4 matrix on the left side is non—aingular‘ and we get the unique

solutions:

. (30)

Thus, in this case, the solution to (19) is of the form

(- w®)e) = eg' + 2 + 0y,

31
(O - 2%)e) = 4% + 0ed,

where wg, 1=1,2,3, and ;° are given by (30). Had we employed 22 in (21), we would

get a solution get similar to (31), except that Q‘ is replaced by 22 and the new values

1
The usefulness of incorporating c* in (12) - (15) becomes clear hers. Por, without it,

we have 2 equations in (19) for Wy, Wy, w3 and . Of course, the first three are inter-

related. The operator c' makes this explicit as well as leading to a square matrix A,
which is invertible.




of !° and C° are;
2w ==l
v 2" Y3 T g
. (32)
o k) 2
¢ 2

Hence we have constructed a pair of algebraic equations yielding multiple limit point
bifurcating solutiong.

Now, Decker and Keller [2], while assuming A € R, require Ga to have a Fredholm
index zero. Therefore, their theory is inapplicable to the example chosen here since
dim Mga) # Aim N(g'), while the example follows from the theorem proved in [3].

It seems to be the simplest example of multiple limit point bifurcation, since this

type of bifurcation requires [2] dim N(G:) > 2.

3. A DIFFERENTIAL EQUATION

Once an example such as in (19), (23) - (28) has been constructed, it is clear how to
generate others. To be specific, let u® = 4®(x) belong to X L2(0,21|). Now, consider

the differential eguation for u € X:

R R R B MR

(33)
+ flu=-u® A -1 9—(u-u°))-o .
; . . dx
i In (33), f£(0,0,0) ~0 and f is not linear in its arguments and is as smooth as one
‘ desires. The boundary conditions associated with (33) are taken to be:
i u(0) = u(2w) . (34)
i
S Clearly, (u®1) is a solution of (33) ~ (34) if u® e X meets (34).
k q '
S Now, the adjoint boundary conditions are:
|
f u({0) = u(2x) = 0, u’(0) = u'(2%) ., (35)
; o _ a2 |
Hence, if we let G\: 2 =g+ 1, with the boundary conditions as given by (34), then
dx
¥
. ‘ . N(Gg) = gpan {sin x, cos x} . (36)

7=




2
However, the adjoint of Ga has the form (Gg). = S—E + 1, with (35) as its boundary
dx
conditions, and hence
N((Gg)') = gpan {sin x} (37)

leading to the index of Gg being 1. Now, while the domain D(G) of G contains
u @ X meeting (34) we have yet to specify the range R(G) of G. To this end, set
Y = X\fcos x}; then we put R(G) = Y. Finally, let the function ¥ be:
Y(x) = gin x . (38)

It is now clear that (33) is similar to (19) and, therefore, multiple limit point bifurca-
tions arise from (u®,1) provided (cf. (22)):

O -1, e r e -1, ) (39)

1’ ! dx "1 ‘2' ! ax 02

where Qt(x) = gin x, Qz(x) = cos Xx.

4. CONCLUDING REMARKS

As mentioned in [2], there are numerous examples of limit point or turr g .nt
bifurcation in the literature, especially in mechanics. In this literature, it is said
that there are two solutions near a turning point because in the usual (lulf,l) diagram
near (uo,ko), there are two values for 1lul, for each A 2°. In the approach adopted
here, following (2,3], such a solution is assumed to represent a single limit point
solution for, in terms of €, the solution curve through (uo,Xo) has a unique repre-
sentation. To he specific, if € = 0 corresponds to (uo,ko), then the values of € < 0
and € > 0 correspond to distinct values of (u,\), respectively, around (uo,ko); or,
we have a smooth solution arc through the limit point.

Vhat has been done in the present paper is to construct examples of double solution
arcs through the limit point. 1In the spirit of [2,3), these are called multiple limit
point bifurcations, and are believed to be the first known examples of this kind in the

literature.
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