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ABSTRACT

For a given countable partition of the range of a regenerative sequence

x n ) 0), let Rn be the number of distinct sets in the partitionn

visited by X up to time n. We study convergence issues associated with the

range sequence {R n 01. As an application, we generalize a theorem of

Chosid and Isaac to Harris recurrent Markov chains.
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SIGNIFICANCE AND EXPLANATION

Consider a system which evolves randomly in time; the trajectory of such

a system traces a path through space. If one partitions space into a disjoint

collection of subsets, one can study the number of subsets visited by the

trajectory up to a certain instant. In this paper, we show>that, under

certain conditions, the number of subsets never grows linearly in time,

regardless of the partition used. On the other hand, the precise order of

growth (which can be arbitrarily close to linear order) does depend on the way

in which space is partitioned. These results are obtained for regenerative

random processes. Such processes describe systems which, when viewed on a

certain random time scale, evolve in an independent and identically

distributed fashion. Virtually any ergodic discrete-time Markov chain has

this property.
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ON THE RANGE OF A REGENERATIVE SEQUENCE

Peter W. Glynn

1. Introduction

Let {Xn : n ) 0) be a stochastic sequence taking values in a measurable space

(EE). For a given family [A. s n ) 01 of E-measurable sets partitioning E, set

Yn " k k X(ln ' Ak)

where I(A) is I or 0 dependinq on whether or not w e A. Let 6(ii) - 1 and set
€(1,j) - z yt  # ' Jr Y +1 10 yj ..... J - 1 0 Y i

(1.1)
R(i,J) - (i.k)

kai

for i < J. The process {R(0,n) s n ) 01, which is called the range sequence associated

with {Xn  n # 01, counts the number of distinct sets Ak visited by X up to time n.

The range process (R(0,n) t n ) 01 has been extensively studied, in the case that

(X n : n b 01 is a random walk with stationary increments; see, for example, Dvoretzky and

Erdos (1951), p. 35-40 of Spitzer (1976), and Jain and Pruitt (1972). Chosid and Isaac

(1978, 1980) have considered the problem when {Xn : n ) 0) is a recurrent countable state

Markov chain.
In this paper, we wish to study the range process in the case that {Xn : n ) 0) is a

delayed regenerative sequence, with associated regeneration times T1 , T2 ,... (see p. 298-

302 of Cinlar (1975) for the definition). Our starting point is a simple decomposition

formula for the range. In Section 2, we use this formula to improve the main result of

Chosid and Isaac. Section 3 discusses the application of the results to Harris recurrent

Markov chains, and considers a generalization to the case where {A n ' 0) is not an

partition of 3.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2. Convergence Results frr the Range

Let Rik ' R(TiTk-1) for i < k, WI - Rli+ 1 - Rl, and set S(n) -

inffj A T1  Y - n). Then,

Ti+
1

W= k!Ti (T1 ,k)

Ti+1- I

= f *CT 1 ,k) I(Y - n)
k-T n-0

(2.1)
- ? i+il

n0 kT

= I(T1 ( S(n) < Ti+ I )
n-0

The decomposition formula (2.1) plays an important role in our development.

(2.2) LeAmma. i.) Set Ti - Ti+1 - Ti . Then E(Wi/ri) 0 as i + .

ii.) If MI' < -, then EW- * 0 as i + .
1 3.

Proof. For i.), observe that

E(W/ri) T E{/ Ti S(n) < T 1 )
n-0

(2.3)

I P(S(n) ) T I- E{/T S(n) < TI
2-0 2 2n=0

where the second equality follows from the regenerative property of X. Since

E{I/T I 1 S(n) < T2} - E(WI/T I) I
n0

one may apply bounded convergence to (2.3) to obtain i.). For ii.), note that
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£ , P{T, S(n,),...,S(n) Is<T (

(2.4) = . P(S(n) I T 2,...S(n, Is T 21 P{S(n1  I < T (. .~ T 2

The bounded convergence theorem then applies to (2.4) provided that

S P{S(n ) < T ,....,S~n ) < T me < 31 2 Is 2
nit ....,n

By Ninkowski's inequality

(FR )31/ ~n-I a(I/y
in ±1

in-

so the following corollary is immediate.

(2.5) Corollary. if LIP < -, then~ Z(R /R s nI In

The following lemma shows that the process {R ik 0 4 i < k) (T 0) obeys a sub-

additive inequality.

(2.6) Leuma. If 0 1 i< j < k, then RX I Ruj OR

Proof. If 0 4 1 < j < kC, then (1.1) implies that

Tk-i

, R u- ~ T i

T k-I

. Ri, + 7 Y CT~ 0 hj,..., 1- Y

.1 R__+___ T0Yt .. Y -
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The following theorem now follows easily.

(2.7) Theorem. If EW I < ,a then %n /n * 0 &a..

Proof. The regenerative structure of X implies that the distribution of

{1 k(,~ k < J) is identical to that of {Rj 1 4k < J1. By virtue of Corollary

2.5 (m - 1), the non-negativity of Rkjf and Lema 2.6, this implies that

f~j;1 4 k < J) satisfies the postulates of the subadditive ergodic theorem (see Kingman

(1973)). Hence, R1,/n - 0 as n + - a.s. But by Lemm~a 2.6,

0 4 ROn /n 4 ( / + R1./n + 0 a.

as n + .

We wish to point out that the subadditive ergodic theorem has been previously used to

analyze the mean range in a different setting? see Derriennic (1980).

Corollary 2.5, Lemma 2.6, and the observation that R(0,n) -C RO,n1i yield the next

result.

(2.8) Corollary i.) If NW1 < -, then R(0,n)/n + 0 a.a.

mii.) if ICR01 + w1 )- < , then E(R0On/n) * 0 as n + *

Recall that any irreducible recurrent Markov chain {Xn: n >0) on f 0,1,.... can

be regarded as a regenerative sequence. In particular, Corollary 2.8 shows that if

T(I)M-1

MMi A E{ F 4(0,j) I 0 X ii <

(T -isff here n-i M m . il, i TO 0) for some i, then RO,n)/n + 0 &as. This

is heoem1 of [1]. Note that if (Xn n > 01 is positive recurrent, then a(i) 4

EfT (i) IX(0) - i) < -, so that the mean range then automatically converges to zero

a.m. Our results are somewhat stronger than those of (11 in the null recurrent case.

Theorem 2.7 proves that R on A 0 &a., whereas (1) only proves that R0 n/n is a..

bounded under the hypothesis NW1 < -. In the same spirit, Corollary 2.8 11.) and Lemma

t 2.2 i.) are more complete than those of [1).
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A natural question, in the context of the Markov chains discussed above, is whether

finiteness of G~i) is a solidarity propertyl in other words, if a~i) in finite for

one 1, need a~i) be finite for .11 i. Of course, if R(O,n)/n + 0 a.s. were to imply

that a(i) < -, we would be done. However, as pointed out in (21, a symmetric nearest

neighbor random walk on the integers obeys IR(0,n)/n + 0 s.*., and yet CL(i) for

all i.

lot z C. denote expectation and probability respectively, conditional on

)0 Lot*

V~i,j) - inf{n t T 1 (j) C 1 I) TC

(2.9) Lama. Let X be an irreducible recurrent Markov chain. Then, for any i and ~

m~)C* if and only if Z~ R(O.TV~i j)(i) - I) < -

Proof* By a 2.6,

k-'I

kk-I

+ R(T klTk-l)ICV(i~i) - k)
k-I

Taking expectations in (2.10) and using the regenerative property yields

9 1R(,T ~ij) J)- 1)

C P (T TCi (IjkI {RT J - M) T M C)- T (j)I
k-Ij I I

+ P(TM ,)lk-12 (R(0,T (J) - M T M r1T(j))

It- (i I )

-4-
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(2.11) Theorem. Let X be an irreduibtle recuirrent tMarkov chain. Then, if a (i) <

for one i, QM~i is finite for all i.

Proof. By Lemma 2.9, we will be done if we prove that

(2.12) EjiR(OTv(i,i )(0) - 1) - EiR(O.Tv(i 'i)(i) - 1)

By the same reasoning which produced (2.1),

(2.13) R(O, Tw ) - 1) 7 0~ 1((n) <T V i~)M)

where Sg(n) - inf(k > 0 : Yk - n). But by the strong Markov property applied at T~)

Pi (n)<TV(i±j)(j)}

- P 1 {S(n) < T1(i)1 + Pj{S(n) > TI(i)) P i S(n) < (~

- Pi {S(n) < I(j)) + Pi{S(n) ) TI(j)) P 1{S(n) < T(i))

- Pi[S(n) < TV(,i)(i))

Substituting in (2.13) yields the equality (2.12). I

it should be mentioned that a similar argument appears in Chung (1966), p. 84, in

connection with a solidarity problem concerning moments of certain functionals.

As indicated in [1), the mean range R(0,n)/n can display a wide range of different

limit behavior, in the absence of the moment condition EW1 I

(2.14) IxaMple. Let T1,T 2 .... be a sequence of positive independent identically-

distributed integer-valued random variables. Suppose their cow-n distribution F is in

the domain of attraction of a stable law with parameter 0 < ai < 1. Let Sn

T .. T nand set 1(n) - msxflc : S ( n). The process Xn - S1(n)+1 - n is an

irreducible recurrent Marlcov chain on (0,1,2,...). Letting A - (n), we consider the
n

mean ranoe on the subsequence (S :n 31 1). It is easily checked that
n

-1)S _/S n maxT tk/S n

so that

R(OeS ni)/Sn _-' Z(ci)

as n + - where Z(ci) is a non-degenerate r.v. and -) denotes weak convergence (see

Feller (1971), p. 465).



So far, our study of convergence has centered on normalizing R(O,n) by n. rn view

of the geometric factors in (2.3) and (2.4), it is natural to investigate whether

normalizing by nn(O (0 < C' 1) is adequate for ERCO,n).

(2.15) Example. Let {X n : 01 be a sequence of non-negative independent identically

distributed integer-valued random variables. Then, X in regenerative with T .n 

and Ew, 4 1. Suppose that n -a R(0,n) + 0 as n where a < 1. Then,

n n
I EfC0,k)/k I (,k) - ROk1)

k-i k-t

(2. 16)
n
7ER(0,k)/k(k+1) + P(0,n)/(n+I) - R(0,0) i

k-I

letting n + - we see that the second term vanishes and the first is sumakble since we

are assuming that ER(D,n) - 011n0 ) for a < 1. We will now show that (2.16) diverges in

general, proving that ER(0,n) -0OnL) is not valid without further assumptions. Using

(2.1), we see that

73$(0,k)/k -( 1 0 n{X k- ni~P~x1 - ni/k
k I n-0 k-I

(2. 17)

--7log(P{X~ - n))P{X i - n

nft

where we interpret log(0) - 0 - 0. choosing the mass function P(X1 n)m to be

-'C/n(log n ) 2  (some constant C) for n ), 2 causes (2.17) to diverge.

We therefore have tbe. following conclusion. rt (X t ni V 0) is a regenerative* n

-4 *sequence for which CP I , then ER(0,n)/n converges to zero regardless of the

partition used. On the other hand, one needs conditions on the partition to ensure

convergence of ZR(0,n/na to zero, for a < 1.

f(2.18) Proposition. Suppose that I0 nyP(S(n) < T2 ) - for some Y )1. Then,

n nRo+0 .as. and n ERR In+0, as n* where a - /y.

On7



Proof. Let -n iax~k i(k) < T +, and observe that RIn 4 Zn * But Z n

max{v1 1 ...,VIn , where (V i i O 1} is the independent and identically distrU'---

sequence defined by

(2.19) V1  max(k : Ti 4 SWk < i1

Noin ha VY nP(S(n) <T2 I S(m) )T for m nI
1 - 2

(2.20)

n YP{S(n) < T 2

n-0i

qattwhich implies that Z Y/n + 0 a.s. Thus, n -aRo + 0 a.s.n O

Frthe convergence of na ER In, we use the finiteness of Eilk to conclude that

ZZY/n 0as n + (see p. 90 of Chung (1967)). But

weetelast inequality is a statement of the fact that (EIXlr)l/r is a non-decreasing

funtio ofr for any random variable X. (Feller (1971), p. 155.) Relation (2.21)

Recalling that R(0,n) 4 R 01 + RinW we obtain the following corollary.

(2.2) _Crolary Assume that the conditions of Proposition 2.18 are in force. If

4 KR01 < -, then n_ SR(0,n) + 0 as n -. for a ;o I/y.

To conclude this section, recall that if {X : n ;00) is a delayed regenerativen

sequence for which "I! < a, then

n -I kETI T I + I

a n 4. (see (4,p 9) h rbblt scalled the ergodic measure for the

sequence. Note that

P(S(n) < k.0 C X Ik c Ani T, > k)
T2) -C +

/( 
P



Hence if 91 * a sufficient condition for n 'ER In* 0 is to require that the

partition satisfy ny-(A n) <( for some Y I /cg, where w is the ergodic measure
n-0

of X.

3. Some Extensions

The analysis of Section 2 can be easily extended to cover the case in which

{X an )l 0) is a Harris recurrent Markov chain (see ROVUZ (1975), p. 75, for the

definition). Tor any initial distribution for X0 , a probability space can be constructed

which supports both the Markov chain (X n ) 0) and a sequence {T n n )- 1) of random

times, and which satisfy:

i.) (Xr T +k k )o01 has an identical distribution for each n 1
n

ii.) B(x~ s j < Tn) is independent of B(X~ j j ' Tn+i) for n > 1;

se ieni and Wuawelin (1982) for details of the construction. The Markov chain X can

therefore be analyzed as a stochastic process analog of a 1-dependent sequence of

identically distributed random variables. To extend the results of Section 2 to our

current setting, It is necessary to obtain a moment bound similar to (2.4). Retaining the

notation of Section 2, we note that the 1-dependence yields the bound

a

ZW 2mI EP(Tm+ 4 S(n) < T2m+2
1

(3.1) 4 n F(Y 10 n,... 'YT 10 n).P{S(n) < T2 }
n.0 J0 2 2 +

- P{S(n) )' T 2)mP{(() <T 21

Since Lema 2.6 clearly continues to hold, systematic application of (3.1) proves that

Theorem 2.7 and its Corollary 2.8 remain valid in the Harris chain setting. Further

verification, based also on (3.1), proves that Proposition 2.18 also works for Harris

chains.

-9-



Our second extension concerns the came where the collection r (An z n ) 0) is not

a partition of E. For a given family r of sets satisfying U A = E, let
Aer

(3.2) *(r,A) - card(A n A . A c r}

for A c E. If r is a countable partition of 2 and A. - (X0 ,...,Xn), then

*(r,An) = R(O,n) + 1, where R(0,n) is the range process associated with the partition

r. Thus, (3.2) legitimately generalizes the range sequence studied in Section 2. In the

case that F is not a partition, *(r,A n ) can potentially be of magnitude 2n , and hence

it is not reasonable to expect that s(r,A )/n will always converge. Instead, it is
n

natural to study log *(r,A n)/n.

Set #ik = #(rA k) for 0 C i ( k where Aik ' {- i' " k

(3.3) Lemma. For 0 < i < j < k, log Oik ( log #ij + log jk"

Proof. The argument follows that used by Steele (1978). Note that A n Aik

(A n Aij) u (An Ajk), so that there are fewer sets of the form of the form A n Aik than

pairs of sets A n Aij, A n Ajk" It follows that #ik C #ij#jk"

The following theorem is an easy consequence.

(3.4) Theorem. Let X be a delayed regenerative sequence satiefyinq K loq #12 <

Then, (log In)/n + v(r) a.s. as n + -, where V(r) is a finite constant.

Proof. Since (log - I ( i < k) has the same distribution as (log #i+1,k+1

I ( i < k), Lemma 3.3 and our moment hypothesis allow one to apply the subedditive ergodic

theorem. As a consequence, (log in)/n + V(r) a.s. as n + -, for each i ) 1. Since#i

the limit holds for each i ) 1, it follows that V(r) is a tail random variable, in the

sense that v(r) is independent of O(Xj : J T T) for each i 0 1. Hence, a zero-one

law applies and V(r) is constant a.s. H

(3.5) Corollary. Let X be a delayed regenerative sequence satisfying ZT1 < -. Then

(log #(r,A ))/n + v(r)/ZT1 a.s. as n -.

Proof. Since log ,12 • log 2, the moment hypothesis of Theorem 3.4 is satisfied, so

(3.6) (log #In)/n + v(r) a.s.

as n*.

-10-I,'
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We now show that if Wl1  W2., then *(r,wl) c #(r 'V2)' Observ that two sets Ai nl V

are distinct if and only if (Al A A 2 ) n w 0 #, where A denotes symmetric difference.

Thus, it WV1 W 2 . there are more sets of the form A n W2 than a n 1 proving that

*(,w) I *(r,w 2 ). since AO 'A, it follows that #o V*#i. Thus, Lemma 3.3 proves

that log O0n can be squeezed by log 4 In

(3.7) log 61n f log 0On C loq 4 0* log #in

Let N(m) =max~k iTk 4 m) and observe that

(3.8) AT ~N~m)-l S- Ana- N()I

Relations (3.7) and (3.8) allows us to "squeeze" log #(r,A Is)via

(3.9) log #~ 4 log #(r,A )Clog * log

Dividing through in (3.9) by N(m), using (3.6), and exploiting the fact that

N(M)/u + 1/ET.I a.s. yields the desired conclusion. I

To conclude this section, we wish to point out that the constant v(r)/w I has been

extensively studied in a rather different context. Vapnik and Chervonenkis (1971) showed

that if {X n: n )- 01 is a sequence of independent and identically distributed variates,

then the empirical discrepancy function associated with r. namely

s ). I(X~ eA) - nP{X1 C All
AuF i.I

converges to Zero a.s. if and only if v(r)/LET, vanishes (see also 1131)1 the constant

v~)LT is called the Vapnik-Chervonenkim entropy associated with r.

41
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