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ABSTRACT
For a given countable partition of the range of a regenerative sequence
{xn :n >0}, let R, be the number of distinct sets in the partition
visited by X up to time n. We study convergence issues agssociated with the

range sequence {Rn :t n>0}. As an application, we generalize a theorem of

Chosid and Isaac to Harris recurrent Markov chains.
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> SIGNIFICANCE AND EXPLANATION
-
Congsider a system which evolves randomly in time; the trajectory of such
a system traces a path through space. If one partitions space into a disjoint

collection of subsets, one can study the number of subsets visited by the

- N

trajectory up to a certain instant. In \this papef, we show that, under
certain conditions, the number of subsets never gréws linearly in time,
regardless of the partition used. On the other hand, the precise order of
growth (which can be arbitrarily close to linear order) does depend on the way
in which space is partitioned. These results are obtained for regenerative
random processes. Such processes describe systems which, when viewed on a
certain random time scale, evolve in an independent and identically
distributed fashion. Virtually any ergodic discrete-time Markov chain has

this property.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




ON THE RANGE OF A REGENERATIVE SEQUENCE
Peter W. Glynn
1. Introduction
Let (xn :t n > 0} be a stochastic sequence taking values in a measurable space

(2,E). Por a given family {An : n > 0} of E-measurable sets partitioning E, set

L]
Y, =~ § xux_ €a) ,
n k=0 n Ak

where I{(A) is 1 or 0 depending on whether or not w € A. Let ¢(i,i) = 1 and set
$(1,3) = I(Yi # Yj' Y41 # Yj,...,vj_1 [ Yj)

(1.1) %
R{i,3) = $(1,k)

k=i
for i < j. The process {(R(0,n) : n » 0}, which is called the range seguence associated
with {X : n > 0}, counts the number of distinct sets A, visited by X up to time n.
The range process {R(0,n) : n > 0} has been extensively studied, in the case that
(xn : n? 0} is a random walk with stationary increments; see, for example, Dvoretzky and
Erdos (1951), p. 35-40 of Spitzer (1976), and Jain and Pruitt (1972). Chosid and Isaac
(1978, 1980) have considered the problem when {xn : n > 0} is a recurrent countable state
Markov chain.

In this paper, we wish to study the range process in the case that (xn :n? 0} isa
delayed regenerative sequence, with associated regeneration times T,, Ty,... (see p. 298~
302 of Ginlar (1975) for the definition). Our starting point is a simple decomposition
formula for the range. In Section 2, we use this formula to improve the main result of
Chosid and Isaac. Section 3 discusses the application of the results to Harris recurrent

Markov chains, and considers a generalization to the case where (An tn> 0} is not a

partition of E.

Sponsored by the United States Army under Contract No. DAAG29-80-C=-0041.
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2. Convergence Results fir the Range

Let Ry, = R(Ty,T,-1) for i <k, Wy = Ry 4,4 - Ryy, and set §(n) =

int{34 > Ty ¢ Yj = n}., Then,

Ty~
wo= 1osr
k=T,
Tieq™! -
= 7 #(T k) ¢ ) I(Y = n)
k=T n=0
i
(2.1)
o Tipr~t
=¥ ) ¥, /=n,ee., ¥ _,/=n, ¥, = nl
n=0 k=r, T k=1 k

@
= 7 onry <sm) a1 .
n=0

The decomposition formula (2.1) plays an important role in our development.

(2.2) lemma. i.) Set - Ti+1 - Ti' Then E(wi/Ti) + 0 as { + =,
11.) If EW) <=, then EW +0 as i+ .
Proof. Por i.), observe that

E(W, /7)) = nzo E(1/1, 5 T, < S(n) <7}

(2.3) -
= } p{s(n) > 12}1'15{1/11 1 S(n) < Tz}
n=0

where the second equality follows from the regenerative property of X. Since

o«
§ el g 8tm) <1y} =B/ S0,
n=0

one may apply bounded convergence to (2.3) to obtain i.). PFor ii.), note that

-2




:uq - I ] P{T, < 8(ny),e.e,S(n) <7 )
I'\1,oco m
(2.4) . 1 .
= ] ) i P{s(n)) > T, eeu,8(ny) > T} e P(8(n) < TyoeeesB(n ) < T,}
geeeeiny

The bounded convergence theorem then applies to (2.4) provided that

I Pistn) ¢Ty.e8n) <} =mffco o]

Noeeeony

By Minkowski's inequality

n=-1
(rer, /™% < T e m™®
n im1 i

1
T (ru:)'/"

1
- -
L

so the following corollary is immediate.
(2.5) corollary. If W <», then E(R,/n)"+0 as n =+ =,
* * 1 ’ n
The following lemma shows that the process {le t 0€4i<kl (Tg = 0) obeys a sub-

additive inequality.

(2.6) lemma. If 0 <1< j<k, then Ry <R, +R

ik ik °

Proof. If 0 < 1L < j <k, then (1.1) implies that

T, -1

Rip = Ryy * IZT $(T,,2)
3

T

=Ry o+ ly Yy F Yy,eees¥y B Y))

!
-7 i
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The following theorem now follows easily.

(2.7) Theorem. If nw1 < @, then ROn/n + 0 a.s.

Proof. The regenerative structure of X implies that the distribution of
{Rk+1,j+1 : 1<k < 3} is identical to that of {Rkj : 1<k < j}. By virtue of Corollary
2.5 (m = 1), the non-negativity of Rkj' and Lemma 2.6, this implies that
(Rkj : 1<k ¢ §} satisfies the postulates of the subadditive ergodic theorem (see Kingman
(1973)). Bence, R,n/n + 0 as n + * a.s. But hy lemma 2.6,
0« ROn/n < R°1/n + R1n/n + 0 a.s.

as n+ e, ||

We wish to point out that the subadditive ergodic theorem has been previously used to
analyze the mean range in a different setting; see Derriennic (1980).

Corollary 2.5, Lemma 2.6, and the observation that R(0,n) < Ro,n+1 yield the next
result.
(2.8) Corollary 4i.) If zw1 < ®, then R(O,n)/n + 0 a.s.
11.) If E(Rgy + W)™ ¢ =, then E(R  /n)" +0 as n > =,

Recall that any irreducible recurrent Markov chain {xn :n>0} on {0,1,...} can

be regarded as a regenerative sequence. In particular, Corollary 2.8 shows that if
T1(1)-1
aci) g 0 T 600,3) | x = 1) <=

320
(Tp(1) = inflm > T _,(4) : X = i}, To(4) = 0) for some i, then R(0,n)/n + 0 a.s. This
is Theorem 1 of [1). Note that if (xn :n> 0} is positive recurrent, then a(i) <
!(Ti(l) | X(0) = 1} ¢ =, so0 that the mean range then automatically converges to zero
a.8, Our results are somewhat stronger than those of (1] in the null recurrent case.
Theorem 2.7 proves that R°n/n + 0 a.s., whereas [1] only proves that Rop/n 18 a.s.

bounded under the hypothesis EW, < =, In the same spirit, Corollary 2.8 ii.) and Lemma

2.2 1.) are more complete than those of [1].
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natural guestion, in the context of the Markov chains discussed above, is whether

finiteness of a(i) 1is a solidarity property; in other words, if a(i) is finite for

one 1,

need a(i) be finite for all i. Of course, if R(O,n)/n + 0 a.s. were to imply

that a(i) <=, we would be done. However, as pointed out in [2], a symmetric nearest

neighbor random walk on the integers obeys R(O,n)/n + 0 a.s., and yet a(i) == for

all i,

let E_ (), P_(*) denote expectation and probability respectively, conditional on

Xy = 3.

(2.9)
al(j) <

Proof.

(2.10)

Taking

which

3 3
Lat

V(i,)) = inf{n > 1 : Th-t(3) € Ty(d) < Tn(j)} .

Lemma. et X be an irreducible recurrent Markov chain. Then, for any i and 3,
® if and only if !j R(O'TV(i,j)(j) -~ 1) < =,

By lLemma 2.6,
vii,3)

3 -N< ) ORT_,,T-1)

R0 Toe1,9) 1

-
= T R(T,_.,T-0IX(V(4,9) > k)
R ’

-
+ ¥ OR(T, LT ADI(VL,E) =X)L
X=1 k=1'"%
expectations in (2.10) and using the regenerative property yields

'1“°"v(1,3)‘3’ -1

-
k=1
< kz’ pj(r1(1) > 11(1)} B,(R(O,T1(j) =T > 11(3)}

-
k=1
+ xZ1 rj{m1(x) > T, (1} :j(n(o,m1(1) SR NEVIRR NET):

= u(j)/Pj{T1(1) < 1,9}

proves one isplication. For the other, note that T,(}) ¢ Ty, gy (3 ]
’

e e rAn Gt




(2.11) Theorem. Let X bhe an irreducihle recurrent Markov chain. Then, if a(i) <=
for one i, a(i) is finite for all 1i.

Proof. By lemma 2.9, we will he done if we prove that

(2.12) EyR(0,Ty(y,4)(3) = 1) = EyR(0,Ty(y 4y(4) = 1) .

By the same reasoning which produced (2.1),
-

-1y = ) 1(8(ny < 3 .

(2.13) R(O,T
nio vii,3)

V(l.j)(j)
where S(n) = inf{k > 0 : Yk = n}. But by the strong Markov property applied at Tq(1),

Pj[s(n) < Tv(ilj)(j)}
- Pj{s(n) < T, (1)} + Pj{s(n) > 7))} pi{s(n) < M}
= P, {s(n) < T1(j)} + P {s(n) > T,(N} Pj{S(n) < (1)}
= P, {stn) < TV(j,i)(i)} .

Substituting in (2.13) yields the equality (2.12). ||

It should be mentioned that a similar argument appears in Chung (1966), p. 84, in
connection with a solidarity problem concerning moments of certain functionals.

As indicated in (1], the mean range R(0,n)/n can display a wide range of different
limit behavior, in the absence of the moment condition :w' C -,
(2.14) Example. Let TyeTgeses be a sequence of positive independent identically -
distributed integer-valued random variables. Suppose their common distribution F is in
the domain of attraction of a stable law with parameter 0 < a < 1. Let § =

Ty *eeot T and set L(n) = max{k : 8, < n}. The process X, = Sg(ny+t1 ~ N is an

1
irreducible recurrent Markov chain on {0,1,2,...}. Letting A = {n}, we consider the
mean rance on the subsequence (Sn : n?> 1}. It is easily checked that

R(0,5 -1)/S_ = max T, /S
n n cken X

so that
R(0,8 _,)/8, ==> Z(a)
as n + ®, yhere 2(a) is a non-degenerate r.v. and ==> denotes weak convergence (see

Feller (1971), p. 465).

-6=
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So far, our study of convergence has centered on normalizing R(O,n} by n. In view
of the geometric factors in (2.3) and (2.4), it is natural to investigate whether
normalizing by n%0 <a <) is adequate for ER(O,n).

(2.15) Example. Let (xn : n > 0} be a sequence of non-negative independent identically
distributed integer~valued random variables. Then, X is regenerative with T, = n,

and EWy € 1. Suppose that n-GER(O,n) +0 as n+ ® yhere a < 1. Then,

n n
7 E4(0,k)/k =~ ) (ER(O,k) - ER(0,k=1))/k
k=1 k=1

(2.16)

n
= J ER(0,k)/k(k+1) + R(0,n)/{n+1) - R{0,0)
k=1

letting n + ®, we see that the second term vanishes and the first is summable since we
are asguming that ER(D,n) = 0(n®) for & < 1. we will now show that (2.16) diverges in
general, proving that ER(O,n) = 0(n®) 1is not valid without further assumptions. Using

(2.1), we gee that

T =k = ) ) ex #a*eix, = bk
k=1 n=0 k=1
(2.17) -«
- - nzo log(P{X, = n})P{X, = n}

where we interpret 1log(0) * 0 = 0. Choosing the mass function r{xi = n} to be
C/n(log n)2 (some constant C) for n > 2 causes (2.17) to diverge.

We therefore have the following conclusion. If {x“ : n>0) is a regenerative
sequence for which 311 <=, then ER(0,n)/n converges to zero regardless of the
partition used. On the other hand, one needs conditions on the partition to ensure

convergence of !R(O,n)/nu to zero, for a < 1.

[_J

(2.18) Proposition. Suppose that Z n'p(s(n) < Tz} <o for some Y > 1. Then,
n=0

n'"non + 0 a.s. and n-atn‘n + 0, as n+ », wvhere a =~ 1/y.




¢

Proof. Let Z, = max{k : S(kx) < T

n*!’ and observe that Ry, ¢ Z

ne But Zn"

nnx{V,,...,Vn), where (V1 :t 1 2 1} is the independent and identically distrih +~a

sequence defined by

(2.19) v, = max{k : T, € Stk) < 'r“,) .

Noting that

o«
Ev! = [ n'P{stn) <T, : S(m) > T, for m > n}

1 n=0 2 2
(2.20) .
< § n'pis(n) <1},
n=0

& oY

it follows that EVI < ® under our hypotheses. Hence, T Vk/n converges tc a4 Lte
k=1

quantity, which implies that z:/n + 0 a.s. Thus, n—akon + 0 a.s.

For the convergence of n-QER1n. we use the finiteness of EV; to conclude that

Ezz/n +0 as n+ ® (gee p. 90 of Chung (1967)). But

a,y a,y A\
(2.21) 0 < (ER1n/n ) < (Ezn/n ¥y g Ezn/n '

where the last inequality is a statement of the fact that (E[X|T)VT g & non~decreasing

function of r for any random variable X. (Feller {1971), p. 155.) Relation (2.21)
implies our result. N

Recalling that R(0,n) < Ro1 + R'n, we obtain the following corollary.
(2.22) corollary. Assume that the conditions of Proposition 2.18 are in force. 1f
ERyy < =, then n “ER(0,n) + 0 as n+ =, for a » 1/y.

To conclude this section, recall that if {xn : n> 0} is a delayed regenerative

sequence for which 211 < ®, then

=N B

n
1
PiX € B -_— P{X >
k£1(“ }”(B)emt{rﬁk‘s'ﬁ x}

as n >« (see (4], p. 299); the probability % is called the ergodic measure for the

sequence. Note that

P{s(n) < T,} < kZ‘O ’("r‘ﬂ: €A T, > k)

- w(An)!11 .




Hence, if 811 <=, a sufficient condition for n-"!R1n + 0 is to require that the
-

partition satisfy f nyﬂ(An) <® for some Y ? 1/a, where « is the ergodic measure
n=0
of X.

3. Some Extensions

The analysis of Section 2 can be easily extended to cover the case in which
{Xn : n > 0} is a Harris recurrent Markov chain (see Revuz (1975), p. 75, for the
definition). For any initial distribution for X,, a probability space can be constructed
which supports both the Markov chain (xn : n> 0} and a sequence {Tn : n>» 1 of random
times, and which satisfy:

1.) {xy , @ k > 0} has an identical distribution for each n > 1

ii.) B(x: 1 3« Th) is independent of B(Xj t 32 Tn+1’ for n> 1;
see Niemi and Nummelin (1982) for details of the construction. The Markov chain X can
therefore be analyzed as a stochastic process analog of a 1-dependent sequence of
identically distributed random variables. To extend the results of Section 2 to our

current setting, it {s necessary to obtain a moment bound similar to (2.4). Retaining the

notation of Section 2, we note that the t-dependence yields the bound

o
Momer ~ ngo P{Tomeq € 8(R) < Topyp)

® m~1
(3.1 < T nmorlYy, AneeYy # n}eP{s(n) < T,}
n=0 3j=0 2 2

b] pAR

= [ elstn) > T,}"P{stn) < T,} .
n=0

Since Lemma 2.6 clearly continues to hold, systematic application of (3.1) proves that
Theorem 2.7 and its Corollary 2.8 remain valid in the Harris chain setting. Further

verification, based also on (3.1), proves that Proposition 2.18 also works for Harris

chains.
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Our gecond extension concerns the case where the collection T = (An : n>» 0} is not
a partition of E. For a given family I of geta satisfying U A =E, let
(3.2) #(T,A) = caralA 0 A : A€ T} e
for AcE. If T is a countable partition of ® and A = (X5,...,X }, then
0(!‘,1\\) = R(0,n) + 1, where R(0,n) is the range process associated with the partition
. Thus, (3.2) legitimately generalizes the range sequence studied in Section 2. In the
case that T is not a partition, O(P,An) can potentially be of magnitude 2", and hence
it is not reasonable to expect that O(I‘,An)/n will always converge. Instead, it is
natural to study log Nl‘,An)/n.

Set ¢, = é(T,5,) for 0< 4 <k where A, = {xTi,...,x,rk_1}.
(3.3) Llemma. For 0 < i < j <k, log oik < log ‘U + log ‘jk'
Proof. The argument follows that used by Steele (1978). Note that A N Ay =
(A n AU) u (A n Ajk)' so that there are fewer sets of the form of the form A n Ay than
pairs of gsets A n Ajye A0 Ayy e It follows that .1k < oij.jk' I

The following theorem is an easy consequence.
(3.4) Theorem. Let X be a delayed regenerative sequence satisfyinqg E log 012 -,

Then, (log ‘1n)/" + V(T') a.s. as n + », yhere V(I') is a finite constant.

Proof. Since {log 1€ ¢ k} has the same distribution as {log 01‘”"‘”
1< 41 <k}, Lemma 3.3 and our moment hypothesis allow one to apply the subadditive ergodic
theorem. As a consequence, (log ‘in)/" + V(T') a.s. as n+ e, for each i > 1, Since
the limit holds for each 1 > 1, (it follows that V(T) is a tail random variable, in the
sense that V(T) is independent of B(Xj t 3 < '1'1) for each i » 1. Hence, a zero-one
law applies and V(') is constant a.s. I

(3.5) Corollary. Let X be a delayed regenerative sequence satisfying ET, < =. Then
{log O(T,An))/n + \l(!‘)/m'1 a.8. as n + &,

Proof. Since log 012 <1, log 2, the moment hypothesis of Theorem 3.4 is satisfied, so
(3.6) (log 01n)/n + W(T) a.s.

as n *+ &,

«10=




We now show that if W, c W,, then Q(P,w‘) < Q(P,uz). Observe that two sets ‘1 nw
are distinct if and only if (A, 4 Az) nWy P, where A& denotes symmetric difference.
Thus, it w, £ wz, there are more sets of the form A n Wy than A n W,, proving that
Q(l‘,wi) < o(l‘,wz). Since A9, 2 A, it follows that ‘On ? Qm. Thus, Lesma 3.3 proves
that log °0n can be squeezed by log ‘1n'

(3.7) log ‘1n < log ‘On < logq 001 + log ‘1n .
Let N(m) = max{k : T, < m} and observe that

3.8) A A
( Mrymy-1 S 0 S Argipyer=t

Relations (3.7) and (3.8) allows us to "squeeze” 1log 0(?,Ah) via
(3.9) log 01,N(n) ¢ log O(P,Ah) < log 001 + log ’1,N(u)+1 o

pividing through in (3.9) by N(m), using (3.6), and exploiting the fact that

N(m)/m + 1/Et, a.s. yields the desired conclusion. 1]

To conclude this section, we wish to point out that the constant V(l‘)/it1 has been i
extensively studied in a rather different context. Vapnik and Chervonenkis (1971) showed
that if (xn : n > 0} is a sequence of independent and identically distributed variates,
then the empirical discrepancy function associated with T, namely

1 n
o sup | ) Ix

€ A) - nP{X' e A}l
AcT  i=1

1

converges to zero a.s. if and onlf if v(r)/!:'r1 vanishes (see also [13]); the constant

V(I‘)/L'T1 is called the Vapnik-Chervonenkis entropy associated with T.
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