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1.0 INTRODUCTION

This document is the Final Technical Report of the Software

Requirements Engineering Methodology (SREM) Evaluation project. SREM was

evaluated for its appropriateness to Air Force applications in the command

and control arena.

The SREM is a set of manual procedures and automated software tools

that provides the following features:

o The generation and independent validation of software requirements

o The reduction of ambiguity and errors in software requirements

o The ability to manage the requirements development process

o Techniques to automate the process of validating software

requirements

The first SREM version was produced by TRW, Inc. for the U.S. Army

Ballistic Missile Defense Advanced Technology Center (BMDATC) in 1977.

The system has been enhanced and improved since that time through

successive versions. The 1980 SREM version was evaluated in this contract.

All work in the SREM evaluation project was performed by Martin

Marietta Denver Aerospace under contract to the Rome Air Development

Center (RADC). Funding for the evaluation effort was provided by RADC

* through Contract F30602-80-C-0272. This report is CDRL Item A002 of that

contract. Technical direction and guidance for the contract was provided

by Mr. William Rzepka and Mr. Roger Weber, both of RADC/COEE. The period

of performance was October 1980 through November 1983.

I
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Two objectives of the SREM evaluation effort were established by the

Air Force. The first was to evaluate the use of SREM for describing

embedded computer systems. The second was to recommend improvements to

allow it to be a more effective system engineering tool.

To accomplish these evaluation objectives, three distinct aspects of

SREM were examined:

o The ability of SREM to describe the properties of Command,

Control, Communication and Intelligence (C 3I) software systems

(detailed in Section 3.0);

* The most appropriate role for SREM in the Air Force software

development life cycle (Section 4.0);

o The quality of SREM training currently available (Section 5.0).

Section 2.0 of this report summarizes the results, conclusions and

recommendations of the evaluation project. The remaining sections (3.0

through 5.0) address each of the evaluation aspects in greater detail. A

large set of appendices are bound in a separate volume. Appendices A

through E contain an example of SREM application to an Air Force problem,

the Narrow Band Emitter Locator Sensor (NELS) subsystem of the Advanced

Sensor Exploitation (ASE) system. Appendix F contains observations on

installing the VAX/VMS version of SREM. Appendix G describes the

objective measures used to evaluate SREM-based designs and design

* specification alternatives produced during the evaluation project.

,4
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2.0 MANAGEMENT SUMMARY

2.1 Introduction.

SREM is a formal, integrated approach to requirements engineering

activities. It begins when the system requirements analysis has

identified system functions, the functional interfaces between

subsystems, the system operating rules (conditional statements

impacting when and in what sequence the functions are performed), and

the top-level system requirements allocated to the computing

resource. SREM is designed to induce certain qualities often lacking

in the specification of many large software systems. The most

important of these are:

1) Internal consistency, which provides agreement among

descriptive statements in level and kind;

2) Explicitness, which requires unambiguous, complete

descriptions of what is to be done, when, and with what kind

of data;

3) Testability, which ensures that performance requirements are

directly testable;

4) Traceability, which allows impact assessment of changes to

system requirements.

In addition to the step-by-step requirements engineering

4 1 techniques, SREM includes a machine-processable "English-like"

Requirements Statement Language (RSL) and a Requirements Engineering

and Validation System (REVS) to automatically process the requirements

statements, and to perform a wide range of analyses and simulations on

its centralized data base. REVS constitutes the automated tools part

of SREM. It uses a relational data base (called the Abstract System

Semantic Model or ASSM) to capture requirements processed from RSL.

2-1
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Functionally, REVS consists of six software components that

create the ASSM and examine its contents. These are identified in

Table 2-1.

Table 2.1 SREM Functions

IMnemonic Name Purpose
JRSL RSL Translator Translate requirements and create thel

ASSM
IRSLXTND RSL Extend Augment/extend the RSL language

elements
JRADX Analysis & Data Extraction Extract info from ASSM for

analysis/documentation;
Identify ASSM subsets for

consistency/completeness;
Analyze ASSM content for data flow

LSIMGEN Simulation Generation Build a simulation package
jSIMXQT Simulation Execute Perform the simulation exercise
ISIMDA Simulation Data Analysis Analyze and document the

simulation

The primary mechanism for evaluating SREM consisted of applying

it to two typical Air Force systems through the existing

specifications that defined these systems. With this exercise, three

evaluation aspects could be examined:

1) The ability of SREM to describe the properties of C 31

software systems (Section 2.2);

2) Where SREM can best be applied in the Air Force

software development life cycle (Section 2.3);

3) The quality of SREM training currently available

(Section 2.4).

Each of these aspects is discussed in the same format-goals of

the assessment, methods used to perform the evaluation, and derived

results and recommendations.

2-2
I.J

f- .
_°. .



2.2 Applying SREM to C 3I Systems

2.2.1 Goals

To determine SRER's applicability to C31 systems, two

areas were examined--specification scope and requirements

analysis capabilities. The first addressed the abil )f SREM

to describe all characteristics of C 31 systems. Th

characteristics of C 31 systems that distinguish the 'rom other

systems and the ones that the evaluation project tr express

in RSL are:

1) RT (real-time) and NRT (near-real-time) processing;

2) The ability of the system to present data to an analyst and

react to his decisions;

3) The ability to deal with real-world objects that

simultaneously are users of C31 data, providers of C 31

data and objects about which the C 31 system maintains data;

4) The ability to manipulate static data, such as cartographic

or hypsographic information, as well as such dynamic data as

tank position or sensor status;

. 5) Distributed processing;

.1 6) Communications processing.

The second area of concern was SREM's capacity to

automatically detect such specification errors as requirement

ambiguities, requirement inconsistencies and specification

incompleteness.
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data ranges, are completed. RSL is again used to describe these

requirements, referred to as Requirement Networks (R_NETs), into

REVS which in turn updates the ASSM. The static analyzer (RADX)

is executed to test for errors in element attributes or

relationships between elements. When all information has been

input and all errors corrected, the result is a formal functional

requirements specification.

Before the requirements specification can be considered

fully complete, a system simulation is needed. To perform the

simulation, simple functional models are created in Pascal for

each of the processing steps that have been identified. These

models are embedded directly in the RSL and used as input to a

simulation generation function to create a behavioral model of

the functional requirements. The simulator is executed to verify

that the envisioned system's interfaces and processing

relationships behave as required.

In addition to verification of the processing relationships,

performance requirements must be specified for the functional

requirements so that system performance constraints can be

tested. Each performance requirement will constrain a processing

path within the system. The establishment of performance

requirements by this method assures the traceability of

requirements and highlights the system structure f-r review.

It may also be necessary to verify that the requirements

specification is analytically feasible. To do this, one more

simulation step, called the analytical feasibility demonstration,

is performed. This simulation uses analytic algorithms of the

intended system instead of simple functioi.al models. The main

goal is to establish that the identified software requirements

can be tested.
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All REVS components were used in evaluating SREM. The RSL

translator function was used to construct an ASSM for each

application, ASE and CSID. The RADX function served three

purposes. First, the RADX analysis capabilities were employed to

verify the consistency of the ASSM by examining the attributes

associated with the ASSM elements. Errors detected could be

traced to one of two places--the RSL description or the

originating requirements documentation. Second, the same

analysis capabilities determined the completeness of the formal

specification by examining the relationships between elements.

Third, the RADX capabilities for user-defined analysis were used

to produce a document resembling a MIL-STD 490 Type B-5

specification. The flexibility of data requirements descriptions

was enhanced by using the language extension function (RSLXTND)

of REVS. The SIMGEN function was used in conjunction with the

SIMXQT and SIMDA functions to exercise the data flow logic.

Models of the RSL processing blocks were added to allow the

SIMGEN function to construct a simulation program executed by

SIMXQT with the results analyzed by SIHDA.

2.2.3 Results

For each system studied, the size of the specification used,

the time spent creating the ASSM data bases and the size of the

ASSMs produced are shown in Table 2-2.

i /I
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Table 2-2. RSL Production Data

I IDocumentlElapsed I 1ASSM Size
ISpec Size IMan- ITime ILineslNumber 1Percent1Percent1Percent

I (pages ) lHoursl [(Mths)IRSL IElements 2IData3 IProc4  lOther 5

ICSID I 196 ]T7498 1 10 1103531 1109 T-53 I 40 7

IASE 1 515 1 11277 1 20 1355501 3016 1 46 6 1 8.861 44.96
ITotall 711 I 18775 1 30 1459031 4125 1 -- I -- I -- I

Notes: I
1 Engineering hours to translate and analyze specification I
2 RSL elements such as DATA, R NET. I
3 MESSAGEs, DATA, ENTITYCLASSes, etc.

4 R NETs, SUBNETs, ALPHAs, etc.

5 SOURCEs, ORIGINATING REQUIREMENTs, etc.

6 Averaged over six subsystems.

The following statistics can be derived from the table:

1) Approximately 19 lines of correct RSL were produced per

eight-hour workday;

2) Approximately 1.8 correct RSL element definitions were

produced per eight-hour workday;

3) While error occurrence data were not kept for CSID,

about 100 specification errors were found when applying

the SREM (not necessarily REVS) to ASE, resulting in

about 120 man-hours expended per error discovered.

4) A significant disparity occurs in the composition of

the data bases; in particular the amount of information

required to express process descriptions (40% vs 9%)

and overhead activities (7% vs 45%) varied

significantly between specifications examined.

/
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The learning curve for RSL semantics must be considered as

well. While RSL was produced at approximately 11 lines/day

initially, experienced analysts were able to achieve about 25

lines/day. A similar difference was experienced in the

production rate of RSL element definitions (1.2 vs 2.1

elements/day).

Analyst effort to achieve these productivity rates averaged

26.4 man-hours per page of specification. Since the project

consisted of only two data points, this is not considered a

reliable predictor of validation effort.

The conclusion that can be reached from Table 2-2 is that

the application of a disciplined methodology like SREM is a

cost-effective means of analyzing software requirements. In

comparison, Figure 2-1 shows a consolidation of error correction

cost data for the Safeguard and Titan New Guidance missile

systems. Cost to correct an error found during requirements

analysis fell in the $100-200 range while correction of those

found during final test and integration were on the order of

$10,000 due to higher complexity and more lines of code

affected. In the SREH test, expending 120 man-hours to correct

an error early is clearly cost-effective.

2-8' i
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Figure 2-1. Error Correction Cost

A detailed analysis of design flaw exposure was done for the

ASE system. Error classes and how they were found are shown in

Table 2-3. Clearly evident here is the strength of SREM as a

methodology as opposed to its automated validation tools. This

should not be too surprising considering its early life-cycle

application where expressive vigor is achieved only after

extensive analyst design iteration to achieve comprehension.

2-9
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Table 2-3. ASE Error Data Summary

I Class lNumberl% of Totalilow Exposed

lInconsistency/Misuse I 30 1 36 180% by analyst; 20% by REVS

[Ambiguity/Lack of Detail 1 17 1 21 1100% by analyst

lncompleteness/Non-use I 35 i 43 1100% by analyst

j82j 100

All of the attributes that characterize C 31 systems were

contained in one or both of the specifications. The real-time

and near-real-time phenomena present throughout the ASE

specification proved very difficult to express because of the

limitation on the description and operation of timing paths to R

NET boundaries. Decision-making characteristics proved difficult

to express when applied to man-machine interfacing in

prompt-driven systems. Throughout translation of the CSID

specification, the project team found it necessary to add state

flags and their related conditional data to describe and

correctly associate the CSID user's reply to the prompt that

evoked the reply. The additions severely reduced the clarity of

the requirements in the ASSM. C I real-world objects were

easily transformed into RSL by using the element types ENTITY

CLASS and ENTITYTYPE. The data requirement characteristics were

*i described easily by using attributes associated with the element

types DATA and FILE. RSL is only capable of describing

* I distributed processing and parallel process thread requirements

in which the sequence of processing is not important. This

generality in processing structure precludes detailed description

of distributed and parallel processing situations where time

sequences are important, and so restricts the appropriateness of

SREM to only software requirements analysis or high level design

activities. Communications characteristics are easily described

/
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by using appropriate RSL attributes of specific element types;

detailed information (e.g., baud rates) can be associated with

the characteristics by appropriate extensions to RSL using the

language extension function (RSLXTND).

2.2.4 Recommendations

The sample application of SEEM to these test systems clearly

demonstrated the benefit of disciplined techniques in

requirements analysis. A formalized scheme uncovers many

problems and questions that help improve the integrity of the

system description. But this is indicative of any disciplined

approach to requirements analysis; benefits outweigh costs

because flaws are detected early and are not permitted to

permeate the system.

3
The major recommendations that relate specifically to C I

applicability are concerned with parallel processing and

distributed processing capabilities. For appropriate detail, the

RSL must be modified to allow explicit description of parallel

and distributed processing. The RSL modifications will in turn

require the modification of RADX to extract and analyze the new

information, and the modification of SIMGEN so parallel and

distributed processing can be portrayed within the simulations.

&

2.3 Role of SREM in the Software Life Cycle

2.3.1 Goals

* The goal here was to determine in which phase or phases of

the software life cycle SEEM is most appropriate. This goal was

addressed using three objectives:

1) Assessment of the methodological technique prescribed for

using SREM;

2-11
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2) Evaluation of the ability of the REVS software tools to

support SREM;

3) Determination of the best placement of SREM within the

software life cycle as used by the Air Force.

The term "software life cycle" is used to identify the

processes that occur in the development of software systems from

initial conception to final realization in an operational

environment. The following phases and associated processes are

considered:

1) Conceptual - The need for a system to solve a particular set

of problems is identified, with feasibility assessments,

tradeoff studies and analyses being performed. Requirements

for computer resources are allocated. The description of

the system takes the form of an initial system specification;

2) Requirements Definition - Requirements are defined for

interfacing, performance, safety, human factors and others.

The functions should be defined, and a data dictionary

produced;

3) Design - The specification for the system envisioned in the

requirements phase is transformed into an overall design of

how the system accomplishes its goals. The transformation

involves the allocation of system functions to hardware

and/or software, a description of the objects the system is

to operate on, and a description of the algorithms to be

used in operating on those objects;

4) Coding and Checkout - The design is translated into a

computer language. It is then executed, in single or

combined elements, to evaluate its performance;

5) Test and Integration - The resulting program is tested to

2-12



ensure that the software performs as intended and the

system, as implemented, fulfills all system requirements;

6) Operational - The system is in operation and must be

maintained. The maintenance process is invoked to correct

problems not previously encountered or to change the system

as the needs of its users change.

2.3.2 Methods

As its name suggests, SREM is intended specifically for

requirements analysis. However, requirements analysis involves

functional specification and data description which occur in both

the Requirements Definition and Design phases of the life cycle.

The first part of evaluating the methodology addressed whether

SREM was an effective technique for defining unambiguous and

testable requirements. The second evaluation aspect was a

comparative one, determining whether the requirements produced

were of sufficient quality that derived designs would be of

higher quality than those produced without the benefit of SREM.

Hence, the use of SREM was evaluated by (1) examining the

consistency and completeness of the requirements produced, (2)

examining the REVS tool products for information content, tool

maturity and utility, and (3) comparing designs produced from

both the original specifications (CSID and ASE) and from the

translations of those specifications into RSL.

To correctly place SREM in the Requirements Definition and

Design phases of the software life cycle and to identify how well

it supported requirements analysis, the completed requirements

data bases (ASSMs) for the ASE and CSID were used as the basis

for validating the original specifications by validating the

corresponding RSL statements. Subsequently, the RSL was used to

create a top-down NASSI-Schneiderman expression of the design.

2-13
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Simultaneously, a design was produced in a conventional fashion

using top-down decomposition expressed via Nassi-Schneiderman

charts by using only the software specification documents.

Figure 2-2 shows this comparison scheme. The resulting designs

were compared on comon bases using McCabe's complexity and

Myer's reliability measures (Vol II, Appendix G), and by

subjectively determining from design walkthroughs if the design

characteristics of hierarchical construction and levels of

abstraction were adequately supported by SREM.

ISPECIFICATONI (AS=)]

VRSL DESIGN tEIHOD
A STATEKS
L

A RE"
T

II
0

'1 N

Figure 2-2. System Comparison Scheme
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2.3.3 Results

The SREH proved to be of great value in the task of

requirements analysis. This structured approach aided the

requirements analyst in identifying inconsistencies and

ambiguities in the specification as the methodology progressed

through all of its steps. However, SRED utility appears to lie

within a fairly narrow range of the life cycle. SREM was

developed to specify software requirements after the system

requirements analysis phase has been completed but before any

detailed processing algorithms have been formed. The consensus

of the analysts using SREM was that it is best used when

defining, correcting or analyzing software specific requirements

of the system.

The RSL Translator cannot adequately recover from a syntax

error and continue its error detection process as if the previous

error did not occur. As a result, the phenomena of RSL syntax

errors being produced as a result of a previous error was

prevalent throughout the entire specification translation

4 process. For example, the omission of quote marks in a

DESCRIPTION field causes subsequent lines to be flagged in

error. This ripple effect caused the project team to become very

sensitive to the quality of the information being entered into

the ASSM and resulted in the RSL being evaluated for errors by

the team and not by the automated language translator. Even

- ithough this meant that team members were doing syntax checking by

, hand, it is not the RSL syntax analyzer that is weak but the

error detection component that needs improvement. The language

translator for RSL has not reached a level of maturity such that

it can discover syntax errors, recover from them and then

continue with the translation.

/ The SIMGEN function of REVS was applied to two of the ASE

subsystems, C 3I and NELS (Vol II, Appendix E). A relatively

2-15



complex chain of events is necessary to create a simulator

(Figure 2-3). In addition to a validated ASSM, a Simulator

Definition File (SDF) is needed. This, along with BETA and GAMMA

definitions in Pascal are all input to SIMGEN to build the

simulation. SIMGEN itself generates additional Pascal code to

complete the definition. All of these then get passed to the

simulator execution function (SIMXQT).

The SIMGEN function will automatically run an ASSM data

analysis (RADX) every time a simulator generation is attempted.

Valuable time and resources may be unnecessarily expended if no

significant changes were made to the simulator definition

(GAMMAs). Moreover, SIMGEN does not maintain any kind of "error

status" flag on the results of the RADX analysis so that the

simulator generation will be run to completion even though the

preceding RADX step discovered an error.

In evaluating the designs produced from both RSL

specifications and the original specification documents (Figure

2-2), no clear advantage of either technique arose (see Appendix

G and Section 4.0 for more detail). For large systems of course

the availability of a machine-readable data base of design

*information just for update purposes is beneficial. Both sets of

designs were approximately equal in complexity and modularity

according to a.cepted measures. However, a controlled experiment

was not intended and the same design team was used for both

versions. Influences certainly occurred as a result of this

commonality.

2.3.4 Recommendations

While the SREM technique itself proved to be valuable for

identifying specification problems, REVS left much to be
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desired. The RSL translator was inefficient and performed error

recovery inconsistently; both of these problems should be

corrected before REVS is released for general use. RADX faces

similar problems. Data flow analysis should be decoupled from

the SIMGEN functions and placed under user control. When a

simulation's data flow has been analyzed once, and as long as it

is not modified, the simulation should be executable without

another data flow analysis.

In general, REVS needs to be made more efficient in terms of

the computer resources used and its user-friendliness. Several

basic structural changes would improve the REVS package. The

changes to consider are:

1) Partition the predefined RADX analytics into smaller

executable pieces so the VAX version is comparable in

modularity to the CDC version;

2) Further investigate VAX multi-tasking to accomplish more

parallel activities (expand on simple foreground-background

concept);

3) The DBMS technique should not utilize its own paging scheme

which encourages thrashing in a virtual memory system;

4) REVS initialization requires inordinate time indicating

extensive processing each time it is started. Table driven

or other predefined structures could reduce the resource

consumption here;

5) The command language facilities would be improved with a

hierarchical HELP structure, more detailed prompting levels

(indicating which subsystems, providing prompt message of

what is needed, signaling when function is complete), and

elaborating numeric error codes with meaningful messages.

6) Decoupling RSL processing from data base creation (syntax

only check) would reduce the time and costs associated with

RSL translation.

2
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Notice that some of these recommendations may be obviated by

future implementation strategies.

2.4 Quality of Available SREM Training

2.4.1 Goals

Assessment of the SREM training course covered three main

areas of concern. First, the planning and logical structure of

the course was examined with respect to:

1) Audience considerations - What was the target audience and

did the course address its needs? Was the amount of

material covered reasonable in the time allowed?

2) Course overview - Were the objectives of both SREM and the

training made clear?

3) Planned activities - Did the class exercises support the

material covered in lecture? Was sufficient hands-on

experience included?

4) Progress evaluation - Were criteria given so the students

could evaluate whether they had learned the material? Were

the criteria related to observable student behavior?

5) Course summary - Was provision made for summarizing or

reviewing difficult concepts?

Second, course execution was considered, including:

1) Teaching methods - Was the quality and amount of

instructor-student interaction adequate? Were discussions

encouraged? Were examples used to clarify difficult

concepts?

2) Environment - Were the conditions under which the course was

taught comfortable and conducive to learning?

/
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Third, course materials were evaluated for utility in both

learning and using SREM.

2.4.2 Methods

The evaluation team attended the SREM training course to

learn the methodology (with its associated software tools) and to

evaluate the effectiveness of the course. The course was

examined with respect to its own stated objectives of

communicating software requirements engineering technology so

students understand how to correctly define requirements and have

the knowledge to use SREM and REVS correctly and comfortably.

The course structure, presentation and materials were also

evaluated. After the first two weeks, the design team "students"

were polled for their reactions. Several "audit" attendees also

submitted individual evaluations of the course. These included

experts in requirements engineering technology, professional

educators and others who were interested in the methodology. The

observations of all attendees were incorporated in the final

evaluation.

2.4.3 Results

Many of those attending the training course as it was given

were interested in the methodology but did not intend to use

SREM. Therefore, to cover the complete methodology, all of the

scheduled initial two-week lectures were presented during the

first week. Many black on white viewgraphs were used as the main

instructional aid. Most of the viewgraphs were reproductions of

selected pages from the SREM Management Overview [PASI80], which

is essentially a user's course textbook and not an "overview" as

the name implies.

/
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Examination of the SREM training course with regard to the

course structure, materials and execution uncovered a number of

serious flaws. The structure and objectives of the course were

not clearly presented to the students. The format of the course

followed the general sequence of the SREM life cycle but it was

not explicitly divided into planned lessons with objectives,

learning activities and achievement criteria specifically geared

to each lesson. Very minimal evaluation of learning was included

in the course structure. Retention of the material was hindered

because no definite framework was presented in which the students

could place the concepts being taught. The course materials were

too voluminous to be easily dealt with and were not organized or

cross-referenced to enable the students to readily determine

where information was located. The fact that course mechanics

were based on viewgraphs, presented in a darkened room,

contributed not only to eye fatigue but to overall poor retention.

2.4.4 Recommendations

The major recommendation concerning SREM training is that a

complete restructuring of the training course on a

criterion-referenced basis be made [MAGE62, MAGE67]. In lieu of

a complete redesign, improvements can be made to render the

existing course more effective. A course overview should be

provided on the first day, including a description of course

objectives in terms of learned student behavior, a course

schedule and a subject matter overview including such topics as

where SREM fits in the software life cycle, its underlying

philosophy, the history of its development and the overall

structure of SREM. This could also serve as a basis for a short

high-level course for managers, customers and others who need not

become skilled in the actual application of SREM. The material

in [TRW79] would serve as an excellent basis for this

presentation.
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The sessions should be clearly divided into short lessons,

each including its own overview, objectives, examples, learning

activities and achievement criteria. Unfamiliar terminology

(such as ENTITY CLASS) and terms used in an unusual way (e.g.,

FILE) should be particularly emphasized so the students

understand what is being done. Examples that clarify the meaning

of each new construct should be liberally used in the lesson and

the learning activities should include the application of new

material to a single system example which is used throughout the

course for continuity. The lessons' place in the methodology

must also be clearly shown by sequencing them to follow the

phases of SREM application.

Students should receive the following materials for the

training course, fully cross-referenced for use during and after

the class:

1) A course guide showing a schedule and a course overview;

2) A text, in lesson sequence, including techniques, constr-cts

and examples of SREM application;

3) A description of an appropriate example software system to

be used throughout the course for application exercises;

4) Enough forms to complete all application exercises;

5) Reference materials describing syntax, semantics, processing

and error messages;

6) A glossary, with examples, of SREH terminology.

If viewgraphs are used as lecture aids, the number of

transparencies and the density of information on each should be

greatly reduced. This will minimize the amount of time students

must spend in the dark and make a higher level of teacher-student

interaction possible.
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3.0 APPLYING SREM TO C31 SYSTEMS

3.1 Goals

SREM was applied to two system specifications, CSID and ASE. As

the specifications were being translated into RSL and the resulting

requirements data bases analyzed and compared, the analysts were

evaluating the ability of SREM to describe and employ the following

C31 characteristics:

1) RT (real-time) and NRT (near real-time) - The need for

systems to assimilate and distribute information within

strict time constraints;

2) Decision-Making - Aspects of a system that deal with the

man-machine interface and the ability of the system to

present data to an analyst and react to his decisions;

3) Operational Entities - The ability of a system to deal with

such objects in the real world as tanks and aircraft that

are simultaneously users of C 31 data, providers of C 31

data and objects about which the C 31 system maintains data;

manipulate static data, such as cartographic or hypsographic

information, as well as such dynamic data as tank position

or sensor status;

5) Distributed Processing - Portions of the system that deal

with the distribution of both processing and data over one

or more nodes of a computer network;
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6) Communications - The ability of a system to perform message

handling, buffering or generation, and to deal with the

idiosyncrasies of modern high-speed communications gear.

3.2 Methods

In the generation of RSL from the specification documents,

([ASE80] and [CSID80]), the methodology described by the Software

Requirements Engineering Methodology (SREM) was employed to keep the

formal specifications of the systems consistant with the source

documents. All of the characteristics that make C 31 systems unique

were contained in one or both of the specifications. The consistency

between translations was important because all of the RSL, and hence,

the resulting data bases, were considered as the specification source

for subsequent designs.

The SREM process is illustrated in Figure 3-1. It starts with a

system specification that can be a formal specification of a system, a

conversation with the intended user, or a mental image of the system.

The specification is translated and interpreted to determine the

interfaces with the outside world, the messages across these

interfaces and the required processing relationships and flows.

(Phase 1). The formal language RSL is then used to describe these

requirements to REVS, which translates the RSL and captures the

requirements in a data base called the Abstract System Semantic Model

or ASSM.

This initial activity produces a nucleus of information called

the "kernel", which constitutes the minimum needed to document the

major elements of a functional requirements definition. The RADX

R program is then used to evaluate this kernel (Phase 2). During this

process, specific problems in the system specification will be found,

e.g., ambiguities and inconsistencies. These problems are corrected

by an iterative process until the specification of the system is
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satisfactory. Next, the details of the functional requirements,

including all of the input/output data relationships, the processing

steps, the attributes and maximum/minimum values, and the allowed data

ranges, are completed. The static analyzer (RADX) is again executed

to test for errors that exist in element attributes or relationships

between elements (Phase 3). Phase 4 complements this completion

process by specifically addressing the traceability of original

requirements to RSL statements and decision rationale for requirements

which may be excluded. When all information has been input and all

errors corrected, the result is a functional requirements

specification which is complete and consistent as defined by SREH.

The purpose of Phase 5 is to verify the completeness of the

functional requirements by validating their dynamic properties. This

is done by modeling the interaction of the data processor component

with its environment by simulating the sequences of messages in and

out of the processor. To perform the simulation, simple functional

models (named BETAs) are developed in the Pascal programming language

for each of the processing steps identified in Phases 3 and 4. These

models are input to a simulation generation function to create a

"simulator" of the functional requirements. The simulator is executed

to verify that the envisioned system's interfaces and processing

relationships perform as required. In addition to verification of a

system's processing relationships (Phase 5), there is a need to

establish constraints (Phase 6) on those functional requirements that

specify performance criteria so that system performance constraints

can be tested and traced. Each performance requirement will constrain

a processing path within the system (named a VALIDATIONPATH) and have

associated with it points (VALIDATION POINT) from which information is

extracted. These information points consist of those data elements

identified in Phases 3 and 4 that are the pass or fail criteria for

the constraint. The establishment of performance requirements by this

method assures the traceability of requirements and high-lights the

system structure for review.

3-4

!_-



It may also be necessary to verify that the formal SREM

specification is analytically feasible. To do this, one more

simulation step, called the analytical feasibility demonstration

(Phase 7) is performed. This simulation will use analytic algorithms,

named GAMMAs, of the intended system instead of functional models. It

need not run in real-time, but should consist of real algorithms. The

main goal of Phase 7 is to establish that the identified software

requirements can produce a design which is testable and meets the

functional and accuracy requirements of the system.

Following the methodology as described in the Management Overview

ITRW79], definition of the ASE and CSID systems in RSL began by

extracting originating requirements from the specification documents

and recording the page and paragraph location as the source of the

requirements information. The next step was the description of

interfaces, the messages that cross them, and the information

contained in each message. Then, items such as DATA or FILEs that

constituted the messages were defined. Operational entities such as

the cartographic data base in ASE were represented as ENTITY-CLASSes

because the element ENTITYCLASS associates FILE and DATA information

4into blocks of information that can be accessed by any process. The

process of correlating data requirements with other RSL elements was,

for the most part, straightforward. The data requirements translated

well into RSL and usually became RSL DATA and FILE elements.

The expression detail in the two specifications were represented

differently. The CSID system was described to the design level using

a Program Design Language (PDL) while the ASE description was a

functional decomposition using DeMarco diagrams. In the application

of SREM, PDL procedure blocks become R_NET structures, as did many of

the DeMarco processes. The Dearco processes not broken down in a

DeMarco diagram became ALPHAs. Likewise, single PDL statements

involving lengthy or complex computations often become ALPHAs in order

to capture the computation in a single process. In the DeMarco

3-5
I



diagrams, the elements describing communication between processes

(ALPHAs) were most often identified as simple DATA or FILE elements.

The more complex MESSAGE element was used if the receiving processing

block did little more with the communication than pass it to an OUTPUT

INTERFACE. The real-time and near-real-time characteristics were

described in RSL by using VALIDATIONPATH and VALIDATION-POINT

elements to identify segments within the R NET structures that were

time-critical.

3.3 Results

While the SREM was being applied to the ASE and CSID

descriptions, several statistics were accumulated. Table 3-1

illustrates the size of the specifications, the effort expended in

translating them into RSL (in man-hours), the elapsed time to

translate them into RSL (in months) and the amount of RSL produced in

terms of the number of lines input to the translator and the number of

elements described (such as process blocks or data descriptions).

Several conclusions can be reached from these data:

4 1) The average production rate of RSL statements (approximately

19.5 lines/8-hour day) can be compared to the range of 32-54

(source lines of programming language) in [WARB83], 8-32

lines (for jobs larger than 10K source lines) in [NELS78],

4or 12 lines per day reported in [TAUS80];

2) The learning curve for RSL semantics is quite severe. RSL

is produced at the approximate rate of 11 lines/day when the

analyst is learning it (see CSID data) but jumps

dramatically to 25.2 lines/day once the analyst has become

experienced (ASE data). Element/day rates confirm the

line/day statistics -- CSID analysts (while learning)

produced about 1.2 elements/day, the ASE (having learned)

rate was 2.1 elements/day;

/ 3) Software requirements analysis is a highly labor intensive
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activity. Analysts salaries, overhead etc (*372,000)

consumed approximately 95% of ASE system evaluation costs.

The associated computer generation and analysis of the

formal requirements specifications accounted for the

remainder ($20.400).

The following observations were also noted concerning the

specifications. The number of RSL elements/page of specification is

remarkably consistent (5.6 for CSID, 5.8 for ASE) despite different

authors and styles. Also, at present there is no reliable predictor

of the effort required to validate specifications. In this evaluation

about 26.4 man-hours/page of specification were expended, but the

project represents only two data points so any conclusions are tenuous

at best.

Table 3-1. RSL Production Statistics

ISpec I lElapsed I RSL Produced I

System IPages I Effort I Time INumber of Lines lNumber of Elementsl

CSID I 196 I 7498 I 10 I 10353 I 1109

ASE 15151 11277 I 20 I 35550 I 3016

Total I 711 I 18775 I 30 I 45903 I 4125 I

A detailed examination of the RSL yielded the data in Table 3-2.

This data confirmed the intuitive perception that, on average,

approximately the same amount of effort was expended in data

definition (47%) and overhead activities (39%), such as requirements

traceability, configuration management and textual descriptions, each

of which far exceeded the amount of effort devoted to the

specification of control processing (13%). This relationship is

particularly emphasized for the ASE, where averages over the six

subsystems are 46%, 45% and 9% respectively.
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Table 3-2. ASSM Composition

I Composition

System/Subsystem IPercent Data IPercent Processing Percent Other

CSID I 53 40 6

ASE/ASET I 61 14 25
/C31 I 37 8 55
/MTI I 49 9 42

/NELS I 56 6 38

/T&C I 41 13 46

/ES I 34 3 63

Average 47 13 39

Table 3-3 presents some data concerning the errors uncovered

during the validation of the ASE specification. Similar data was not

collected for the CSID. The implication of the data is that

approximately 137.5 man-hours (or slightly more than 3 man-weeks) were

spent in discovering each error. This amounts to a cost of

approximately $4785 to detect each error. This figure appears to have

been influenced by several factors. First, many of the textual

descriptions in the ASE system specification were generated from

DeMarco data flow diagrams, resulting in a high quality specification

with relatively few errors. Second, the analysts reported that not

all of the errors detected (about 10%) were documented. Third, in

arriving at the cost/error figure, it was assumed that all of the

man-hours (and hence costs) associated with the ASE evaluation were

devoted to error detection. However, a significant portion was

expended on other activities, such as configuration management,

traceability and textual descriptions. A final perspective from which

to view this data is the total cost of developing the ASE system. To

date, approximately $7,500,000 has been invested in the design and
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implementation of ASE. Hence, the cost of using SEEM to specify and

analyze the ASE system has been about 5% of the total system

development cost.

Table 3-3. ASE Error Data

1 Errors Found I
Error Class I Number 1 Percent of Total I Method Used to Find I

Inconsistency or 180% found by analyst
Misuse 30 36 applying SRE I

120% REVS found I
Ambiguities or 1100% found by analystl
Lack of Detail 17 21 1 applying SREM I
Incompleteness or 100% found by analyst
Non-use 35 43 1 applying SREM ,
Algorithm Flaws I N/A I N/A 1ASE does not specify I

I I I algorithms ]
Total 1 82 1 100 I _

As presently implemented, the ability of REVS to express and handle

real-time and near real-time constraints is limited. The

VALIDATION POINTs which bracket a VALIDATION PATH can be used to

restrict the timing requirements to one or more processes (ALPHAs)

within an R NET or to the entire R NET. Only in the case of an R NET

4enabling another via an EVENT can a VALIDATIONPATH extend into more

than one RNET. But VALIDATIONPATHs cannot cross interfaces and so

by definition are bounded by a single R NET structure. Validation of
3the timing constraints of a complex C I system through separately

identified networks severely reduces the information known about the

interrelations of the system. However, it may be argued that

representation of timing constraints is a rather detailed design

activity, which would restrict the applicability of SEEM to early

design efforts.

The handling of decision-making, in regard to man-machine

interfacing, is difficult using the existing stimulus-response

constructs of SREM. This is because a decision choice is inherently
/

data content sensitive, and because that choice can influence
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subsequent processing paths. Since the human role must be modeled by

an OUTPUTINTERFACE element (a terminal RSL structure node), a

response from that interface can only be returned through the "top" of

the RNET (INPUT-INTERFACE), and not directly back to the originating

process for the message. The only way to tie the origin of decision

choice (stimuli) information to response information is by textual

comments which reflect the nature of the affect of the decision

choices on the subsequent processing. Therefore, a requirements

engineer must spend extra time carefully documenting all such

sequences, structures, message processing priorities, etc. to ensure

that the effect of decision choices is properly conveyed to consumers

of the RSL specification information.

The collection, manipulation and dissemination of information

about application-specific entities can be easily handled by use of

the ENTITY CLASS and ENTITY TYPE elements. These elements are

intended to deal with any information class whose status or contents

can evolve or otherwise undergo state changes over time. The

requirements encountered in the ASE and NELS subsystems to establish

and manipulate data bases and queues were readily handled by equating

such entities to ENTITYCLASSes and ENTITY TYPEs.

The description of data requirements in RSL is straightforward.

Element attributes such as TYPE, RANGE, INITIAL VALUE, UNITS,

MINIMUMVALUE, and MAXIMUMVALUE greatly aid the detailing of data

information. In addition the attributes of DESCRIPTION, PROBLEM and

COMPLETENESS allow the zrquirements analysts to address capabilities

and areas of concern to future users of the RSL information. The

capability to extend the semantics of RSL via the RSLXTND function can

greatly aid the user by allowing him to describe specific data

* requirements as newly introduced attributes and relationships peculiar

to a particular project.

Requirements for parallel processing can be represented using the
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AND construct to show mutually exclusive process sequences within an

RNET. The requirements for distributed processing can be represented

in RSL by using multiple R NETs that communicate via MESSAGEs. This

representation allows for a very obvious separation in processing but

the description of the processing sequence may not be clear if the

specifications to coordinate the process threads do not exist. No

existing RSL structure (beyond the DESCRIPTION attribute) is capable

of explicitly relating or evaluating multiple cooperating process

threads. To rely on textual description for such an important aspect

is not adequate. Further, RSLXTND cannot be used to improve the

semantics because it cannot affect the contents of RSL structures.

Again, this further supports the applicability of SREM to only high

level design.

RSL is very good at handling general details of message handling

such as message origin, content and destination. Because there is no

explicit link between a message output from one subsystem and a

corresponding message that is input to another subsystem, the degree

to which communication characteristics can be automatically traced is

limited. The use of naming conventions to identify either a message

origin or destination proved to be a very practical means to textually

trace messages. For example, a message on troop movements produced by

subsystem A and intended for subsystem B would be named TROOP

MOVEMENTS MSGOUT. This name reveals basic information on the message

content and processing direction. Automatically included in the

creation of this message is the attribute CREATED BY that ties the

message to the subsystem. The corresponding message to be received by

subsystem B would be named TROOPMOVEMENTSMSGIN. Again, the name

reveals basic information on the message content and where it was

created. The "TROOPMOVEMENTS" parts identify the two messages as

having identical information, and the MSG-IN, MSGOUT parts identify

the destination and the source, respectively. More discussion of

naming conventions use appears in Section 4.3.5.
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All of the C 31 characteristics were used during the specifica-

tion translation into RSL and RSL does contain elements that can be

used to describe most C 31 characteristics. The limitations of RSL

in adequately describing C 31 characteristics lie in the realm of

real-time, near-real-time, and the decision-making aspect of the

man-machine interface. Translation of the ASE subsystems uncovered a

serious deficiency in that the description of real-time and near-real-

time characteristics is constrained to individual R NETS. The trans-

lation of the CSID system revealed the problem of adequately matching

the stimuli information to the response (decision) information.

3.4 Recommendations

As long as the basic constraints of the SREM modelling approach

are understood and accepted, no specific recommendations can be made.

In general, the scope of the process coordination and timing specifica-

tion constructs could be increased to encompass more than one R NET.

For increased clarity and human comprehension of the RSL, a more

explicit description of parallelism is needed. By including a keyword

INPARALLEL, the processing requirements would become more specific.

For example, suppose processes A, B and C must be done in parallel and

further that process B contains two processes Bl and B2, which can be

performed in either order. This requirement would be specified as

follows:

IN PARALLEL
[process A]

AND
DO

[process B2]
AND

[process B1]

END
AND

[process C]
END
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SREM should be used to describe C31 systems because the

methodology is sound for such applications. The use of RSL for the

description of C3 characteristics is reasonable if it is understood

that the detailed design characteristics of real-time, near-real-time

and man-machine interfacing must be well described in English text to

assure that requirements associated with these characteristics are

understandable. The SREH approach is particularly well-suited to

modelling multiple process threads as long as each thread consists of

basic sequential processes or simple parallel activities.

SREM is particularly recommended as a disciplined technique for

isolating specification errors. The cost early in the life cycle can

result in significant savings later on.

4 ,
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4.0 ROLE OF SREM IN THE SOFTWARE LIFE CYCLE

4.1 Goals

The methodology as described in the SREM Management Overview

[PASI801 was used to determine the effectiveness of SREM in

identifying, describing and analyzing requirements. The collection of

software tools, the Requirements Engineering and Validation System

(REVS), was evaluated in terms of information content, maturity and

usability. The Requirements Statement Language (RSL) was evaluated in

terms of the RSL syntax, RSL structure and RSL concepts.

Another effort was to determine if SREM was capable of producing

a MIL-STD 490 Type B-5 computer program development specification. The

evaluation centered on the amount of information that could be

extracted from an ASSM and utilized to produce a Type B5 specification.

4.2 Methods

4.2.1 Introduction

The Software Requirements Engineering Methodology was used

to translate specifications into RSL, analyze the resulting ASSMs

and generate a simulator from the ASSM. The ASSM resulting from

a specification translation was considered as a formal definition

of design. The original specification was also used as a design

statement. The resulting designs were then compared to identify

which method (the ASSM or the original specification) produced

the design that best reflected the spe -cation requirements.

The Software Requirements Engineering Methodology was used

exactly as defined. No modification was made to the methodology.
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4.2.2 ASSM Analysis

As the requirements for a software system are being

identified and entered into the ASSM data base, the use of the

REVS capabilities for automated ASSM analysis and simulation

allows one to access and view the requirements as they are

developed. The analyses and subsequent simulation of the system

requirements are the objective "measures" used to validate the

correctness and usefulness of the requirements. The following

discussions deal with the building and analyzing of the ASSMs for

the software requirements specifications ([ASE80] and [CSID8O]),

as well as the building of simulators for the C 31 and NELS

subsystems of the ASE.

The ASSM analysis provided by the RADX function of REVS is

divided into two types. The first type, called data analysis,

checks the relationships and attributes of the elements contained

within the ASSM. For example, a check is made to ensure that

MESSAGEs contain DATA, that those MESSAGEs are properly formed,

and that they are passed through an interface. The second type

of ASSM analysis provided is data flow analysis. The data flow

analysis traces DATA and FILE elements as they are processed by

the elements (nodes) of an R NET structure. All inconsistencies,

such as not using an element, or the use of an element in an

ALPHA that is not input to that ALPHA, are considered errors and

indicated as such. Both types of ASSM analysis (data and data

flow) were employed throughout the specification validation

effort.

The RADX analyses were performed under two sets of

circumstances. For the CSID specification validation, the CDC

implementation of REVS was used. For the ASE, the VAX
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implementation was used. These implementations differ in the way

that pre-defined analyses are supported.

In the CDC implementation of SREM the automated data

analysis has been divided into six phases. Each phase has been

designed to determine the completeness and consistency of the

attributes and relationships of several RSL element types. A

summary of the tests that the phases perform which indicate the

misuse or lack of ASSM elements follows:

1) Loop Detection - to check that the RSL elements used within

an R NET do not create looping conditions by i) direct/indirect

referencing or ii) recursive definitions. An example of

referencing is: SUBNET A calls SUBNET B, and within SUBNET B

there is a call to SUBNET A. An example of recursive definition

is:

DATA a DATA d

INCLUDES INCLUDES

DATA c DATA b

DATA d DATA a

2) Use Designation - to insure that the RSL DATA elements

identified (via the USE attribute) for a simulation (BETA, GAMMA)

are used at that level of data detail and no lower. For example:

DATA POSITION

INCLUDES

DATA x

DATA y

USE BETA

shows that the data POSITION is the level of data detail to be
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used in the BETA simulation and checks will be made to insure

that DATA x and DATA y are not used.

3) Locality - checks that those DATA and FILE elements that use the

LOCALITY attribute, and are associated with an ENTITY-CLASS,

ENTITY-TYPE, MESSAGE, or FILE, have the proper scope value

(global, local). Intrinsically, the locality of MESSAGE and FILE

information is local (upon access of the element) and the

locality of ENTITY- information is global (upon creation of the

element). The locality test insures that any DATA or FILE

element associated with an ENTITY-CLASS or ENTITY-TYPE has a

global LOCALITY, and a LOCALITY of la-al if associated with

MESSAGE or FILE.

4) Membership - insures that DATA elements are members of only one

data set, i.e., DATA cannot be contained in more than one FILE,

DATA cannot be associated with more than one ENTITY-CLASS, DATA

cannot make a MESSAGE and be associated with an ENTITY. It is

illegal for DATA elements to have multiple memberships. It is

also important to note that messages are not considered as one

data set, so a DATA element may be contained in more than one

MESSAGE.

The VAX implementation of SREM has a single RADX consistency

check that incorporates all of the previous tests. The single

RADX consistency check (hence, an all or nothing condition) plus

the knowledge of the large expenditure in time and cost of

running this check, prompted us to employ the user defined set

capabilities within RADX to obtain similar pertinent

information. Table 4-1 identifies the sets used. The

user-defined sets were created by analyzing and then subsetting

the automated static analysis sets.
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Table 4-1. User-Defined Sets for Data Extraction

SET GENERATED INSURES THAT

INPUT INTERFACEs that enable all R NETs are used
INPUT INTERFACEs that pass all INPUT INTERFACEs are used
OUTPUT INTERFACEs that pass all OUTPUT INTERFACEs are used
MESSAGEs without forms all identified ESSAGESs have

been made
MESSAGEs without made all MESSAGEs must contain

information
FILEs without contains all FILEs must contain

information
DECISIONs without choice DECISIONs must be adequately

defined and reasoned
ORIGINATINGREQUIREMENTs without traces all identified requirements

must be used
ORIGINATINGREQUIREMENTs without sources all identified requirements

link to the specification
ALPHAs without refers all ALPHAs are used within a net
ALPHAs with inputs only all ALPHAs are completely

described
ALPHAs with outputs only all ALPHAs are completely

described

4.2.3 Simulation Techniques

Through the SIMGEN function SREM users have available two

types of discrete event simulators. The two types, BETA and

4GAMMA, model different levels of system requirements. The BETA

simulator, which requires user-supplied models written in Pascal,

handles functional simulation of the processing described in the

ALPHAs (RSL processing definitions). The GAMMA simulator, also

written in Pascal, is used for analytic simulation. It requires

models that employ algorithms that mimic those that will be used

in the actual software system. It should be noted that the GAMMA

simulator does not establish real-time feasibility of the set of

algorithms to be used, but is used as "an existence proof of an

analytic solution to the problem [ALF079, pg 9-68]."
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All simulators generated by REVS, either BETA or GAMA, are

composed of five components: RNET procedures, Simulation

Executive, Simulation Event Manager, Simulation Data Manager and

Simulation Driver. An RNET procedure, which is represented by a

BETA or GAMMA model, is the only RSL element executable in a

simulator. The Simulation Event Manager schedules an R NET's

procedures for execution. The Simulation Data Manager controls

all RSL DATA constructs. The Simulation Driver interfaces with

the RNET procedures, and the Simulation Executive is responsible

for overall simulation control, including the simulation clock.

The preparation of an ASSM for a simulation generation is

divided into two parts -- an automated ASSM check for element

completeness and consistency and creation of the Simulation

Driver Definition File (SDF). The checks for completeness and

consistency accomplished by the automated RADX phase runs and

data flow analyses will indicate ambiguities and errors that

exist in the ASSM. The SDF is written externally to REVS in the

Pascal language. The SDF is a counter part of the existing

RNETs in that it handles the accessing (posting) of messages,

the referencing of data, the scheduling of events (in response to

subsystem or special events) and has access to the simulation

clock time. SINGEN merges the existing ASSM and the SDF into an

executable simulator of either variety, depending on the option

chosen when the function is executed.

For this evaluation, BETA simulations were performed on the

C 31 and NELS subsystems of the ASE. A GAMMA simulation was

performed on the NELS subsystem. These simulations were

performed to evaluate the scope of the simulators and the utility

of the results to an analyst.

For the C31 subsystem of the ASE, 4600 lines of RSL were

used for the ASSM of which approximately 3100 lines were actually
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used by SIMGEN, (the others being originating requirements,

descriptions, etc.). Included in the 3100 lines were 186 lines

of BETA definitions. The SDF required 286 lines of Pascal.

SIMGEN itself generated an additional 5784 lines of Pascal.

4.2.4 Design of a System

The specifications ([ASE80] and [CSID80]), and the ASSMs

produced using SREM, were both used as design statements (Volume

II, Appendix B of this document contains an example). This was

done to further identify the utility of SREM within the Air Force

life cycle. The quality of the designs was assessed using

several design evaluation techniques including design

walkthroughs, Myers' measures (Volume II, Appendix G), McCabe's

measure (Volume II, Appendix G) and the design characteristics of

hierarchical structure and levels of abstraction. The results of

using these techniques produced a comprebensive view of the

merits of each design.

All designs, those produced directly from a specification

document and those produced from an RSL specification, were

represented by the Martin Marietta Visual Control Logic

Representation (VCLR) software design method [4MSE79]. For all

practical purposes, a VCLR is equivalent to a Nassi-Schneiderman

diagram.

VCLRs allow neat and concise representations of structured

logic paths such as IF-THEN-ELSE, DO WHILE, DO UNTIL and DO CASE

constructs (Fig. 4-1). The goal of a VCLR is to present the

logical organization of modules, along with control, and data

flow rather than reflect an implementation (code level)

description. For example, when a lower level module is

referenced in a higher level VCLR, an explicit "call" of that

module is not necessarily implied. The implication in that the
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IF-THEN-ELSE

TRUE ACTION 
FALSE ACTION

DO WHILE

DO WHILE condition

LOOP BODY

DO UNTIL

LOOP BODY

DO UNTIL condition

DO CASE

case_item

S~value I value 2 alue 3 OTHERWISE

OTHERWISE
ACTION I ACTION 2 ACTION 3 ACTION

Figure 4-1

Sample VCLR Constructs

/
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lover level module is to be executed at the point in processing

where it is referenced in the higher level VCLR.

To make possible direct comparisons between designs

produced from different requirements sources, some

guidelines were set for the design efforts. First, the

apecification was to be followed precisely in that all

requirements were to be fulfilled. Second, each design was

to be accompanied by a list of assumptions made by the

designer, i.e., decisions made to clarify ambiguities.

Finally, the Martin Marietta standards for VCLRs were to be

followed as closely as possible without making the design

logic too complex or obscure. For example, the maximum

number of branches allowed in a CASE construct was

simplified by Boolean analysis because one CASE construct in

the CSID design required 14 branches. These guidelines

helped to ensure consistency in the presentations and

reviews for each design.

4.2.4.1 Comparison Techniques

To provide objective comparisons between the designs

derived from the two different specification techniques, it

was essential to develop a set of desired characteristics

and a series of measures to determine the degree of

existence of those characteristics. The design

characteristics used for the comparison (based on the

principles described in [ROSS75]), were chosen because they

are characteristics whose presence or absence can be readily

determined in an objective manner.

4.2.4.1.1 Design Walkthroughs

A walkthrough of the design logic is the first
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method employed to evaluate designs for adherence to

specifications. During the walkthrough, any exceptions

are duly noted and the designer is given an opportunity

to answer any questions. The designer is then

responsible for correcting the design immediately

following the walkthrough. This process is repeated,

if necessary, until the design is accepted.

The analysts who participated in the walkthroughs

were all familiar with the VCLR standards, the

requirements for the particular system being designed

and the walkthrough techniques. The final versions of

the designs for the NELS subsystem of the ASE are shown

in Appendix B of Volume II of this report.

4.2.4.1.2 Hierarchical Organization

A hierarchical structure allows a system design to

be divided into different levels of understanding

[HYER76], postponing unnecessary levels of detail.

Each level represents relationships among the parts of

the lower levels (Fig. 4-2). This method reduces the

degree of complexity that the designer must handle at

any one time.

i A

A. A..22

A.2.1 A.2.2

/ Figure 4-2 Hierarchical Structures
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The designs produced directly from the

specifications were done in a hierarchical manner,

following the Martin Marietta software design

standards [MMSE79]. In a loose sense the RSL designs

can be viewed as supporting a hierarchical structure,

(Fig. 4-3), if one considers that the R NET's and

SUBNET's represent processing levels, and there is no

restriction on the detail of processing that any ALPHA

may describe. However, SREM is a data flow

methodology, as is evident in the restriction of single

entrance, single exit placed upon the processing

constructs (SUBNETs and ALPHAs). Note in Figure 4-3

the ease with which a "data element" (GRASSCLIPPINGS)

could be associated with the input and output

interfaces. The importance placed upon data

necessarily increases the level of detail required

during the definition of the processing steps

(ALPHAs). SREM-described systems should be regarded as

having minimal hierarchical organization.

There is a stronger hierarchy concept associated

with SRE-described information structures. This is

enforced in two areas, data structuring and RADX

processing of user defined sets. In the latter case, a

structure can be established for specifying the order

4to extract and display information. In this case a

hierarchy is explicitly defined as a connected graph

and establishes a trace path through the structure. It

is unfortunate that this vocabulary is part of the REVS

terminology because a hierarchical transaction path of

RADX processing or hierarchical data definitions may

impute hierarchical organization to the target system.

4.2.4.1.3 Levels of Abstraction
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R NET: YARDWORK.

INPUT INTERFACE: HOMEOWNERR

STRUCTURE

DO

ALPHA TRIM_ THE HEDGE

TERMINATE HOME

AND

SUBNET MOWTHELAWN
TERMINATE MOW THE HE HOSE

A ND I Dr--

ALPHA FIXTHEHOSE

END

_ BLA DE L- P U

SUBNET MOW THELAWN

STRUCTURE

DO CU-RS

ALPHA SHARPENTHEBLADE

AND CHECKSPARKPLUG

TERMINATE I NG

DO

ALPHA CUT GRASS

END

OUTPUTINTERFACE: GRASS GLIPPINGS BAG

(END)

Figure 4-3 RSL Hierarchical Structure
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Abstraction within a software design can be viewed

from two distinct perspectives -- procedural

abstraction and data abstraction. The idea of

procedural abstraction is closely related to that of

functional decomposition. Each level of decomposition

represents a corresponding degree of detail, or

abstraction, in the description of the processing the

system must perform. The design is formed in a series

of stepwise refinements as each procedure level becomes

more specific and detailed.

Data abstraction can be viewed as the complement

of procedural abstraction as an approach to software

design. The idea of data abstraction is to identify

all the properties of data objects, thus identifying

the characteristics of things before describing the

procedures that manipulate them. This technique allows

for a stricter definition of how data will be used and

results in a set of procedures and descriptions that

together provide less ambiguous and more controllable

data designs.

With the focus of SREM on data flow modelling, it

supports data abstraction very well. Because ASSM

analyses concentrate on the completeness and

consistency of data description and data flow, data

abstraction as a design technique is more readily

accomodated by the SREM approach than procedural

abstraction.

4.2.4.2 Derivation of Design from Spccification Document

The generation of designs using the [ASE80] and

[CSID80] specification documents as the source of
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information was pursued in a top-down manner using VCLR

techniques. A walkthrough of the system was performed after

each level of the system (functional decomposition) was

described .

As each level of description in the specification was

broken down into ito constituent parts, each part, or group

of parts that formed a logical segment became a function.

The information contained in both the CSID and ASE

specifications greatly aided the functional decomposition

process. The CSID specification included a Program Design

Language (PDL) description complete with detailed functional

blocks. Lower level blocks were constructed by grouping

processing statements under a logical name describing the

function being performed. Similarly, the ASE specification

facilitated the breakdown of processes with its sequence of

DeMarco diagrams. These began by showing the overall system

fat a high level) and were followed by a more detailed

diagram of each subsystem. The textual descriptions

followed a similar pattern.

Other than the modules, the primary software items

present in the CSID and ASE specifications were data items

and files. In most cases, the high-level descriptions of

these items were sufficiently complete and consistent that

they could be easily decomposed or even directly included in

the designs.

4.2.4.3 Derivation of Design from RSL

A computer listing of all RSL elements contained in an

ASSM was used as the specification document in the

generation of a design from RSL. The original specification

document was used only for clarification during a design
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walkthrough and even then by someone other than the

designer. On occasion, the reason for an RSL structure, or

a particular portion of a structure, was not clear to the

walkthrough participants. This lack of clarity was usually

caused by insufficient textual description within the RSL

listing; the specification document was used as the

authority in such situations.

The designers were instructed to begin with the R NET

and SUBNET STRUCTUREs to get a feeling for the overall

logic, processing and initial decomposition of the system.

For more detail (and other information, like the purpose or

function of an ALPHA), the designer used the alphabetical

computer listings of all RSL elements with their associated

attributes and relationships.

Because the R NET STRUCTURE provides a logical data

flow path description of a system, much of the logic in the

RSL was directly and simply translatable to a VCLR

representation. There was a conscious effort to use

descriptive element names and provide meaningful

descriptions of each element to keep the time spent

searching the RSL listings for meanings to a minimum.

The more complex RSL nodes (Fig. 4-4) presented little

difficulty in being translated from RSL to a VCLR

construct. The OR and CONSIDER OR nodes became IF-THEN-ELSE

or CASE constructs, depending on the number of branch

points. The FOR EACH node was mapped into a DO WHILE

construct.

An AND node became a sequential process. Since the

order of processing is not specified by an AND node, an

assumption was made as to which branch was to be processed
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first. If an AND node required parallel processing

(documented in RSL text fields), the processes were still

sequenced, because there is no practical way to represent

parallel processing with VCLR constructs. This generally

resulted in some logic changes in other parts of the system,

in addition to forcing some assumptions about queueing up

messages for input into a process.

4.3 Results

4.3.1 The Life Cycle

i! section 2.3.1, the definition of the software life cycle

used in this document was given. According to the evaluation

project's experience, it appears that SREM and its accompanying

tools (REVS) best support the activities that take place part way

through the requirements and into the system design phase. This

must be further qualified by stating that SREK is specifically

targeted for use after requirements have been allocated to

functional system software components but before detailed design

and processing algorithms have been defined.

4.3.2 The Methodology

As stated in the SREM reference materials, the methodology

intends to be a means of defining software requirements to

produce a functional specification for the software components of

a system. The evaluation project's experience, particularly with

the ASE system, has shown that ambiguous and conflicting

requirements must be resolved before RSL can be properly used to

describe a system. Use of the SREM methodology does in fact

greatly aid in identifying ambiguous requirements. The following

tabulation shows the classification of specification errors, the
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CONSIDER DATA ASET MSG NAME-DATA
IF (C31_TEXT MESSA:E) _

SUBNET C3I SUB I
OR (UNIT GROUP ID-RtPORTS)

SUBNET C31 SUB 2
OR (CANDIDATE_TASK_RESPONSES)

SUBNET C31SUB_3
END

AT _MG 
NAME DATA

C31 TEXT UNIT GROUP CANDIDATE_ OTHERWISE
MESSAGE IDREPORTS TASKRESPONSE

DO DO DO ERROR HANDLE
C31_SUB_1 C31_SUB_2 C31_SUB_3

FOR EACH ENTITYCLASS DYNAMIC DISPLAY SUCH THAT
(NODENUMBER = FRAMENODENUMBER) DO

ALPHA COLLECTTEXT
END

ACCESS FIRST DYNAMICDISPLAY INSTANCE

DO WHILE DYNAMIC DISPLAY INSTANCES LEFT

T NODENUMBER = FRAME NODENUMBER F

COLLECT TEXT NULL

ACCESS NEXT DYNAMIC DISPLAY INSTANCE

DO

SUBNET C3ISUB_1
AND

SUBNET C31_SUB 2
END

SUBNET C31_SUB_1

SUBNET C31 SUB 2

p Figure 4-4

Sample RSL-to-VCLR Mappings
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Error Class Percent of Total Method Found

Inconsistencies 36 80% analyst
20% REVS

Ambiguities 21 100% analyst

Incompleteness 43 100% analyst

Algorithm flaws N/A N/A

Total 100

percentage of the specification errors in each classification and

the percentage of each error that each method (found by REVS or

found by an analyst using the SREM methodology) uncovered.

It is the evaluation project's contention that requirements

errors uncovered by SREM occurred rore as a result of the

application of its strongly disciplined approach and not because

of the analytic power of its tools.

4.3.3 Information Content

The discussion of the information content within SREM and

its related software tools can be divided into three topics that

are aligned with the three major sources of information, namely;

the SREM discipline, REVS and RSL. Each of SREM, REVS and RSL

attempts to capture information on the different aspects of the

software requirements development process they support. While it

is an overall SREM goal to capture information on all aspects of

-4 the software requirements development process, sufficient

limitations exist to restrict the application of SREM to specific

function and data definition activities.

SREM can be used to provide management information on the

software requirements development process. To accompany the

distinct phases of the methodology, the tools and procedures can

be used to provide derived management control and schedule
/
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information. The information captured relates to where in the

process of requirements analysis a project finds itself. This is

expressed in terms of the current status of the requirements

analysis and the criteria that determine when one can progress

to the next phase.

REVS provides information about the contents of an ASSM.

This information depends on the phase of SREM application

currently in process and the contents of the ASSM used by REVS in

producing its information. The information in a report has a

broad range; the RSL report contains syntactic and semantic

information on the ASSM elements, RADX has attribute,

relationship, completeness and consistency information, and the

SIMGEN contains information on the structure and information flow

of the system. The report contents are produced by performing

set analysis on the collection of objects and relations between

objects in the ASSM.

In RSL, one describes both the stimuli that put a software

system in motion and the reaction of the system to those

stimuli. The stimuli are described in terms of RSL messages that

describe some data object in the software system. When one of

these messages is created, the RSL requirements network (RNET)

is invoked to respond to the message. The R NET responds to the

message, or class of messages, by creating or deleting data in

the system, creating or deleting messages in the system or by

invoking other R NETs. The information content of RSL is more

easily visualized by treating an RSL description as a mcodel of a

* ., system in terms of a finite state machine. Using this

representation, messages become the stimuli that provoke state

transitions and R NETs become the processing that occurs during a

particular state change.

4.3.4 Maturity of SREM
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Maturity refers to the level of development of the concepts

supported by a system. That is, have the concepts arrived at

some semblance of a "standard", or are they still in the process

of being refined?

SREM is a data flow methodology rather than a hierarchical

decomposition methodology. Instead of organizing requirements

into a hierarchy of functions, SREM uses the data input, process,

output approach. This approach to describing software systems is

well defined and has the attraction of being specific enough in

its descriptions to be understood, yet general enough to handle

many processing situations. This is an appealing method to use

in high-level system specification descriptions.

A SREM-described system can be considered as a finite state

machine description of the software being developed. Finite

state theory is widely taught and accepted as a means of

describing software processes in a manner that allows

mathematical and logical analysis [HOPCR69]. Finite state

automata theory states that all software can be described in a

data flow manner, but in practice it is not always the preferred

method of designing an application system because it does not

provide an overall view of the system structure.

The concepts used to formulate the SREM methodology are

mature and respected. However they do require that the target

system be modeled, and a model is at best an approximation of

what is desired. The strength of this approach is the ability of

humans to cope with and communicate definitive system information

on a more abstract level than is needed for machine

implementation. Consequently one should not expect SREM, or any

other high level specification scheme to precisely represent a

system, but should expect that its expressive power is somehow

proportional to its representation accuracy and remaining

4
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ambiguity. While such an "information content" index cannot be

rigorously derived, we believe that SREM would rate very highly

against comparable systems today.

4.3.5 Usability of SREM

Usability refers to the practical mechanics of dealing with

the SREM methods and tools from an human-factors standpoint. In

particular, the evaluation team addressed the utility of SREM to

a design group as an expression medium for intercommunication.

The management of a project using SREM for requirements

definition and analysis needs some means of monitoring progress

as the requirements definitions become more established. The RSL

elements SUBNET and RNET provide natural boundaries from which

to gauge work loads, time spent and progress made, but there are

no specific elements or attributes in the basic RSL requirements

definition set that qualify the progress. The language extension

function of REVS provided the evaluation team with new attributes

that aided in progress qualification. For example, the new

attribute DATE-ENTERED matched well with the attribute ENTERED BY

to increase information on time spent and progress made. The new

4 attribute JUSTIFICATION allowed textual information on evolving

or changed requirements to reside within the ASSM data base for

future reference or evaluation. It should be noted that the

project manager must understand and be aware of all RSL terms,

constructs and extensions.

A requirements tool used on a large project should aid the

organization of requirements and the communication of

requirements between analysts. The ASSM provides a centralized

location in which analysts may find information concerning

previously defined requirements. Caution should be exercised

when merging analysts' work with an existing ASSM to ensure that
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single elements do not have multiple names and hence add

confusion. For example, an analyst whose responsibility is to

define subsystem B, creates the following message to be output

from one subsystem (B) to another (A):

MESSAGE data to sub a

MADE BY

DATA a

DATA b

DATA c

The creation of this message implies that the analyst has

determined the need for three items (a, b, c) to be sent to

subsystem A. Another analyst, who is responsible for defining

subsystem A, creates the same transaction as a message from

subsystem (B) to subsystem (A):

MESSAGE data-from-sub b

MADE BY

DATA A_123

DATA XYZ

This message implies that the analyst for "A" interpreted the

need for two data items (XYZ, A_123) to be received from

subsystem B. Both analysts are conceptually creating the same

message but have identified the contents much differently. If

these MESSAGEs are not screened prior to their insertion in an

ASSM, there will be information in the ASSM that is inconsistsent.

Naming conventions for RSL elements have a favorable impact

on maintaining control as the project size increases. The

following naming conventions were used by the evaluation team

during the specification translations of the ASE subsystems. The

consensus of the team was that the conventions greatly aided

maintaining control over the data requirements that were input.

Determining whether to use a prefix or suffix depended on the

uniqueness requirements of the names as well as what made sense

when being read.
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ELEMENT TYPE SUFFIX PREFIX

ALPHA ALPHA --

DATA DATA --

DECISION -- DECISION_
ENTITYCLASS EC --

ENTITYTYPE -ET --

EVENT EVENT --

FILE FILE --
INPUT INTERFACE -- INTO_
MESSAGE

INPUT MSG IN --

OUTPUT MSG--OUT --
ORIGINATING_

REQUIREMENT -- ORIGREQ
OUTPUT INTERFACE -- TO_
rERFORMANCE

REQUIREMENT -- PERFREQ
R NET R NET --

SOURCE -- SOURCE
SUBNET -SUB --

SUBSYSTEM -- SS_
SYNONYM ....
UNSTRUCTURED
REQUIREMENT -- UNSTRUC REQ

VALIDATIONPATH VAL PATH --

VALIDATION POINT VALPOINT --

4.3.6 ASSM Analysis Results

Analysis of the ASSM data bases proceeded in standard RADX

fashion by using the set/subset partitioning concept.

Conceptually, a RADX set is a named collection of elements in the

ASSM. Predefined sets are directly referenced when RADX is

activated and consist of the universal set (ALL or ANY of thea
elements in the ASSM), element type sets (all elements of any

named type), and basic element sets (enumerated elements).

Additional subsetting can be achieved by user definition of each

set and the conditions for membership in it.

User-defined sets were created by the evaluation project to

analyze the ASSM by eliminating all the redundancies of the

predefined RADX sets. They were necessary because often the

analyst was not able to choose predefined sets which provided the
//
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information desired for an ASSM analysis and because of the

inefficiency of the predefined sets. In comparing the results of

the user-defined sets and the results of the predefined sets, the

consensus among the analysts was that the user defined sets were

as complete and as usable as the predefined sets. Because the

user-defined sets required substantially less computation time

(in terms of both computer connect time and computer processing

time) and revealed all of the requested information on ASSM

element completeness and consistency, they were considered to be

more flexible and applicable to an evolving ASSM.

RADX can easily check for the existence or nonexistence of

attributes or relationships belonging to an ASSM element and also

distinguish between single and multiple occurrences of

relationships. Hence, the completeness and consistency of an

ASSM is relatively easy to check. Elements contained in an ASSM

but not associated with any RSL structure (considered

inconsistent) can be called to the attention of an analyst, as

can instances of elements that have one or more of their

necessary attributes or relationships missing (considered

incomplete). An example of an incomplete element would be a

MESSAGE that PASSes through an interface but is never FORMed by

an ALPHA.

The interpretation of RADX output is not always

straightforward. Any incompleteness or inconsistencies within

the ASSM can be a result of one or more of three causes:

1) An inherent limitation or inability of RSL to adequately

describe a requirement, for example, parallel processing;

2) An incomplete or inconsistent ASSM. The analyst has not

finished creating the ASSM or has made an error;

3) An incomplete or inconsistent software requirements

specification.
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It should also be realized that an erroneous ASSM caused by an

erroneous software requirements specification will, in most

cases, pass all of the RADX-phase analyses. For example, a

MESSAGE may be MADE, FORMed and PASSed through an

OUTPUTINTERFACE, but a corresponding input message may never be

received by another subsystem in the same ASSM. Neither this,

nor its converse (MESSAGE received, but never sent) can be

detected by RADX. Likewise, RADX was not designed with the

intelligence to detect nonsense processes such as the requirement

to explore the planet of Pluto.

The most disconcerting problem found during the ASSM

analysis was within the VAX implementation of the RADX data flow

analysis. The ASE specification required the C 3 subsystem to

handle many messages from various input sources, filter these

messages for errors and route the messages to the appropriate

process. The data flow analysis would not accept the number of

messages (and hence the volume of data elements) passing through

ALPHAs that were created for the filtering of erroneous messages

despite the fact that the requirements stated that the system

deal with the messages in this manner. The resulting RSL can be

seen in Figure 4-5. The data flow analysis indicated that too

, many messages were passing through one ALPHA (the ALPHA CHECK THE

* MESSAGE filter in Fig. 4-5). This error indication is completely

unacceptable when dealing with the ASE system, or with systems

with like requirements, because the requirement is both

reasonable to do in terms of requirements, design and coding, and

can be described in RSL structure.

4.3.7 Simulation Results

The building of the Simulation Driver Definition file (SDF)

for the C3I subsystem was a relatively simple operation. The

SDF is merged, by the SINGEN function, with predcfined variables
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INPUT
INTERFACE

CHECK THE
MESSAGE-

\_1IF (IN-ERROR)

FIX THE
MESSAGE7

PROCESS D PROCESS H PROCESS N

Figure 4-5
RSL Translation of a Requirement
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and types from the ASSM to create a simulator. The building of

the simulator became difficult when it was discovered that the

rules on name uniqueness for RSL and the simulator are quite

different. Names used in RSL must be unique within the first 10

characters, but the simulator demands that name uniqueness occur

within the first 6 characters. Because these restrictions result-

ed in the need to rename the majority of the ASSM element names

to be used in the simulation to make them unique to six charac-

ters, the evaluation team decided to rename all of the elements

to keep a logical and consistent naming convention throughout.

The simplest solution, and the one employed, was to add a prefix

to the names of the elements. The prefix consisted of a letter

followed by three numbers. For example, ALPHAs were prefixed A

001 through A_999 and DATA was prefixed D001 through D_999, so

the ALPHA FILTER THE MESSAGE became A_001 FILTER THE MESSAGE.

The results of the simulator executions (SIMXQT) consisted

of a computer listing indicating the path traveled through an

RNET by a MESSAGE. The simulator clock time was indicated

first, the message name and the network name appeared next, and

then a listing of all the nodes within the network activated by

the message appeared. Any analyses of these timing and path

trace results must be performed manually. The practicality of

generating a "simulation" only to ultimately perform a manual

evaluation of its results is a questionable capability.

4.3.8 B-Level Specification

A MIL-STD 490 Type B-5 requirements specification document

contains four sections that are directly applicable: Scope,

Applicable Documents, Requirements and Quality Assurance. The

Requirements section has four subsections: General Requirements,

Program Definitions, Functional Requirelvents and Data Adaptation.

The SREH components appropriate to the Requirements section are

9 / as follows:
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Section 3 Requirements

3.0 General Requirements

ORIGINATINGREQUIREMENTs

DECISIONs

3.1 Program Definitions

INPUTINTERFACEs

OUTPUT INTERFACEs

MESSAGEs

R NETs

3.2 Functional Requirements

SUBNETs

ALPHAs

3.3 Data Adaptation

ENTITYCLASSes

ENTITY TYPEs

DATA

FILEs

Section 4 Quality Assurance Provision

VALIDATION PATHs

The computer generated output of SREM (Volume II, Appendix

D) is fairly readable except for the inescapable clutter caused

by RADX echoing every command on tt,# output document. Properly

formatted these could provide a sort of header for the

information that follows.

A problem arises when one considers the amount of

information that must be manually added to the information output

by RADX to complete an entire B5 specification. The additions to

the RADX information include the section headers, the

introduction paragraphs for each section and subsection, and the

textual information between the subsections that is necessary to

make them cohesive.
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The question of understandability of RSL by the people who

would be involved with utilizing a B-5 specification based on the

RSL immediately arises. Because there are some potentially

ambiguous constructs in RSL (e.g., the FILE, ENTITY CLASS AND

ENTITY TYPE element types), it is quite possible that anyone

without significant RSL-experience would interpret them

incorrectly.

The basic information content of SREM covers only two

sections of the B-5 document (Section 3 Requirements and Section

4 Quality Assurance Provision). The evaluation team considers

the amount of information which must be manually added to the

ASSM to generate the entire B-5 document too great to practically

utilize RADX for fully automating B-5 specification generation.

Also, the information which must be added to the ASSM is

sufficiently unique to make it impractical to include as a

permanent extension of RSL.

4.4 Recommendations

4.4.1 The Life Cycle

It is recommended that SREM be used in the life-cycle phases

of Software Requirements Definition and Design. SREM has proved

to be of great utility throughout the entire Requirements

Definition phase by making available element types, attributes

and relationships which can describe software requirements to

varying degrees of detail. In the design phase, SREM was most

useful during the initial steps of identifying proper processing

sequences and conditions. Therefore, the evaluation team

recommends that SREM be used throughout thc Requirements

Definition phase and during the preliminary stages of the Design

phase.
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The usability of SREM in relation to managerial concerns of

project control was not a detailed level objective in its

development. Instead, SREH stresses the higher level,

recognizable completion criteria of its steps and phases to

establish control, and incorporates methods to record

requirements traceability and open issues. The centralized ASSM

data base provides a strong usability focus for requirements

analysis, which can be greatly enhanced by using language

extensions for the description, analysis and clarification of

requirements information, and by establishing naming

conventions. Specifically, the "DATE ENTERED" and

"JUSTIFICATION" constructs add control and tracking data. As in

any design activity, the early establishment of naming

conventions, which should be formalized beginning in SREM Phase

1, contribute to interface consistency.

4.4.2 User Interface (REVS)

The recommendations concerning the REVS user interface are

divided into segments according to the SREH functions of RSL,

RADX and SIMGEN.

4.4.2.1 Language Translation (RSL)

'I
The recommendations concerning RSL include improvements

to the translator and the interface between the user and

REVS. It is recommended that RSL be extended to enhance the

AND construct to emphasize parallel processing

capabilities. By including a keyword INPARALLEL, the

processing requirements would become more specific and the

changes required to the language would be small although

there would be some impact in the simulation software. It

is also recommended that the language be permanently

extended to allow for the inclusion of such managerial
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concerns as metric measure values, statistical veightings,

completeness values, etc.

It is recommended that the RSL translator be modified

to include limitations on the numbers of translation errors

based on a maximum upper error limit and on the severity of

errors detected. Each RSL element attribute, relationship

and structure should be given an error severity number that

correlates to the degree to which an error of that kind

would impact the translation process. For example, an error

of the element attribute DESCRIPTION would have less effect

on the translation, and hence a lover severity number, then

an error occurring in the STRUCTURE of an RNET. The RSL

translation process would stop when (1) the total number of

errors exceeds the error limit number, or (2) the number of

severe errors exceed the severe error limit number. Both

the error limit and the severe error limit numbers should be

RSL parameters that can be changed by the user.

A complete rewrite is needed of the error detection and

posting scheme to include informing the user of errors by

specific textual messages in place of the current error

codes. The ability of the translator to recover from errors

that occur while processing an element requires major

improvement. Further, it is recommended that a 'syntax

check only' option be added to the translator. This

function would take the input to the RSL translator and

perform a normal translation, but would not create or modify

an ASSM.

At the user interface level, an addition to the REVS

executive language to include a HELP command is

recommended. This command should be available from anywhere

in REVS during an interactive session and contain specific

/
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information about each REVS function. For example, a primer

describing each REVS function (RSLXTND, RSL, RADX, SIHGEN,

SIMXQT, SINDA) in the form of function constructs and

executable keywords with descriptive text, would be

extremely helpful, especially just prior to the execution of

the function.

A text editor capable of altering ASSM information

would also decrease the time spent in modifying an ASSM.

Currently, textual and structural ASSM information can be

changed only by a complete removal of the element and then a

reentry of the corrected element. For large descriptions or

descriptions that contain small errors or for large network

structures with only a few errors, the text editor

capability would expedite the corrections.

4.4.2.2 Data Extraction (RADX)

The predefined sets that comprise the data analysis

function should be increased to include sets that reflect

managerial concerns. These sets should deal with such

information as metric measures, completeness values and

statistical weightings. It is recommended that the set

construction function be modified to include combining

multiple selection conditions. For example, a legal

construction should look like this:

SET OK - ALL WITH TRACED OR (ALL WITH DESCRIPTION AND

SET GOODONES).

This construction is more readable than the two separate

sets that presently must be created:

SET B - ALL WITH DESCRIPTION AND SET GOOD ONES.

SET OK - ALL WITH TRACED OR SET B.
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4.4.2.3 Simulation Generation (SIHGEN)

For a smooth transition from RSL to SIMGEN we recommend

that the ASSM element name uniqueness be equivalent to the

identifier uniqueness rules imposed by the Pascal compiler

used.

Because of the computer resources required to run a

simulation, and the personnel resources required to evaluate

the results obtained from the SIMXQT function output, it is

recommended that the BETA simulation function be used only

to demonstrate the feasibility of the defined interfaces.

GAMMA simulations, to be informative, require complete

implementation level elaboration of function and data. This

level of detail is inconsistent with the requirements

analysis activity appropriate for SEEM. The degree of

detail necessary to construct a useful GAMMA simulator

excludes it from being recommended for use.

4.4.3 System Development

4.4.3.1 Personnel

Considering the experience of this project in using

SREM on two USAF software requirements specifications, and

having available a diverse set of project personnel, there

are two recommendations for staffing a project that will

employ SREM. First, we recommend that all persons assigned

to the project have, as a minimum, skill levels that include

a substantial previous computer knowlpdge. They should be

familiar with hierarchical structures, modularity concepts,

design concepts and such relationships between assigned
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variables as data, files, records and variable typing.

These skills translate to approximately the level of a

requirements analyst. The starting point of the SREM

training session is at such a level that a lack of these

skills would significantly lengthen the learning curve.

SREM, as a development tool, has proved to be an

adequate cataloger of requirements information and

relationships. This feature leads to the recommendation for

limiting the number of people involved in using SREM for a

project. While any specific number or ratio depends on the

size or scope of the project, the centralization and

accessibility of information that SREM provides results in

the need for fewer analysts because most of the project

administration, bookkeeping and version control is done by

the SREM tools.

4.4.3.2 Computer Resources

The evaluation project staff believes REVS execution

should be done in a batch environment, because the majority

of the processing on the information residing in the ASSM

does not require any interactive user actions. The batch

*i environment recommendation will also preclude capturing the

terminal as a resource for long periods of time.
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5.0 QUALITY OF AVAILABLE SREM TRAINING

The SREM training course was evaluated from two different frames of

reference. First, the course was examined with respect to its own stated

objectives in terms of the knowledge it was intended to impart. The

course was also evaluated in terms of audience benefits, i.e., did the

course impart knowledge in a way the students found useful and comfortable?

5.1 Goals

To determine if the intended knowledge was imparted in an

effective manner, the SREM course structure, presentation and

materials were evaluated. The logical structure of the course was

analyzed in terms of:

1) Audience considerations - What was the target audience and

did the course address its needs? Was the amount of

material covered reasonable in the time allowed?

2) Course overview - Were the objectives of both SREM and the

training made clear?

3) Planned activities - Did the class exercises support the

material covered in lecture? Was sufficient hands-on

4 experience included?

4) Progress evaluation - Were criteria given so students could

evaluate whether they had learned the material? Were the

criteria related to observable student behavior?

5) Course summary - Was provision made for summarizing or

reviewing difficult concepts?

Training presentation was examined with respect to:

1) Teaching methods - Was the quality and amount of
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instructor-student interaction adequate? Were discussions

encouraged? Were examples used to clarify difficult

concepts?

2) Environment - Were the conditions under which the course was

taught comfortable and conducive to learning?

Materials were evaluated in terms of how well they followed the

lesson seq ce, the degree of cross-referencing, their use of

examples and their ease of use. Every attempt was made to evaluate

the course itself rather than the instructor-dependent qualities of

the course.

5.2 Methods

Before detailing how the SREM training course was evaluated, a

description of the actual course is in order. The training session

attended for this assessment was slightly altered to accoodate the

large percentage of attendees who did not intend to be SREM users but

were interested in the methodology. The actual course was presented

as follows:

Week 1 - 40 hours of lecture with viewgraphs, class work on examples

and some group discussion;

Week 2 - 40 hours of applications exercise, including informal

discussion, instructor assistance in analysis and

preparation of materials for exercise and experience in

submitting, correcting and analyzing the RSL description of

the example;

Week 3 40 hours of lecture, viewgraphs, informal discussion and

applications exercises in preparing simulation models.
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The total 120-hour course was divided into an initial two week

course on SREH, RSL and RADK. The third week, presented at a later

time, pertained to the SREM simulation models.

To achieve the stated objective of transferring software

requirements engineering technology, the SREM training course proposes

to impart the following information [PASI80]:

1) An overview of what SREM will do;

2) The facets of SREM applicable to project management;

3) The steps involved in the Software Requirements Engineering

Methodology (SREM);

4) Features of REVS and RSL that are applicable to steps in the

methodology, where they are applicable and what they do for

the requirements engineer;

5) Hands-on experience through examples and homework.

After completion of the first two weeks of the course, students

were polled for their reactions. Figure 5-1 is a sample of the

survey. In addition to the survey, several attendees, including

professional educators, submitted their individual evaluations of the

course. The final assessment is a synthesis of these results.

5.3 Results

On completion of the SREM training course, review of the student

survey results (Table 5-1) and review of the individual evaluations,

the training effectiveness was assessed. Observations pertaining to

the course structure, presentation techniques and materials are

covered in this section.

5.3.1 Course Planning and Structure

/
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LAST F1NAME I I I I I I I I! I ! I I I I I I T 7 1 1 -1II I

DEPT.- SECTION I II I I
LABOR GRADE IFT

HOW LONG DID YOU ATTEND THE COURSE (WEEKS)? 111
HOW COMPETENT DO YOU FEEL YOU ARE IN WRITING

SYSTEM REQUIREMENTS? 1112131415161718191
SCALE: 1 ... NOT COMPETENT AT ALL

5 ... COMPETENT
9 ... SUPER COMPETENT

HOW EXTENSIVE IS YOUR UNDERSTANDING OF
REQUIREMENTS DEFINITION TOOLS? 111213141516[ 71 891

SCALE: 1 ... NO UNDERSTANDING

5 ... GOOD UNDERSTANDING
9 ... EXTENSIVE UNDERSTANDING

HOW DO YOU FEEL RIGHT NOW ABOUT USING SOFTWARE
REQUIREMENTS DEFINITION TOOLS ON THE JOB? 1112131415161718191

SCALE: 1 ... NEGATIVE FEELING
5 ... AMBIVALENT

9 ... VERY POSITIVE FEELING

HOW WOULD YOU RATE THE AMOUNT OF INSTRUCTOR

INTERACTION WITH THE STUDENTS? 1112131415161718191
SCALE: 1 ... LESS THAN ADEQUATE

5 ... ADEQUATE

9 ... VERY ADEQUATE
HOW WOULD YOU RATE THE QUALITY OF INSTRUCTOR

INTERACTION WITH THE STUDENTS? 111213141 5161718191
SCALE: 1 ... POOR

5 ... GOOD
9 ... EXCELLENT

HOW WOULD YOUR RATE YOUR ABILITY TO APPLY WHAT
YOU LEARNED IN THE SREM COURSE? 11213141516 718I91

SCALE: 1 ... NOT AT ALL
5 ... SOME
9 ... COMPLETELY

HOW WOULD YOU RATE THE OVERALL QUALITY OF THE COURSE? 1112131415161718191
SCALE: 1 ... POOR

5 ... ADEQUATE

9 ... EXCELLENT
HOW WOULD YOU RATE THE QUALITY OF THE HANDOUTS AND

VISUAL AIDS? 1112131415161718191
SCALE: 1 ... POOR

5 ... GOOD
9 ... EXCELLENT

Figure 5-1
SREM Class Questionaire
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Table 5-1. Training Survey Results

qUESTIONS RESPONSES MEAN

How competent do you feel 7*,7,1,6,5,6*,5,3,9,8,7,5*,5.25* 5.70 + 2.09
you are in writing system
system requirements

How extensive is your 5*,7,2,9,5,7*,5,2,2,8,7,8*,6.25* 5.63 + 2.40
understanding of
requirements definition
tools?

How do you feel right 7*,8,5,9,6,7*,7,1,2,8,8,8*,7* 6.38 + 2.40
now about using
requirements definition
tools on the job?

How would you rate the 7*,6,5,4,7,6*,5,5,2,6,3,5*,5.75* 5.13 + 1.45
amount of instructor
interaction with students?

How would you rate the 7*,7,4,3,6,6*,4,5,4,7,3,5*,5.25* 5.10 + 1.44

quality of instructor
interaction with students?

How would you rate your 7*,2,1.5,6,6,7*,4,1,1,4,4,7*,6* 4.35 + 2.34
ability to apply what you
learned in the SREM
course?

How would you rate the 5*,6,5,4,6,5*,2,1,3,7,5,6*,4.75* 4.60 + 1.71

overall quality of the
course?

How would you rate the 4*,5,5,2,6,4*,4,1,4,8,3,5*,4.75* 4.29 + 1.74

quality of the handouts
and visual aids?

*Attended two weeks of the course
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Because the course and lesson plans were not available, some

of the following observations are to some degree conjectures

based on observing the conduct of the course. Course planning

and logical structure were analyzed in terms of the course

overview, the pace of instruction, the intended audience, the

division of the course into planned lessons with objectives and

the techniques used in evaluating the students' progress.

While a brief overview of the subject of the course (SREM)

was provided orally and is shown (in the SREM Management Overview

[PASI80]) as being planned in the first lesson, a schedule at a

very high level of detail was the only thing actually presented.

A schedule appears on the first few pages of the SREM Management

Overview, but was not used in this instance due to schedule

changes and was not referenced to sections or page numbers within

the course documents. Definitions of software life cycle and

software requirements, the motivations behind SREM development,

and the problems SREM addresses would have been motivational at

this point, giving students a better picture of SREM's position

in the development process. A brief description of SREM and its

place in the software life cycle, plus a fairly detailed

schedule, cross-referenced to a course guide, and containing

lesson descriptions should have been provided at this time to

give the students an initial overview of the course.

During the first week of instruction more than 700

viewgraphs (reproductions of text material) were presented, plus

a number of additional slides. This covered more new information

than one can expect students to learn in such a brief period.

The excessive amount of material was partially caused by the

change in the course schedule, but because the second week of
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class was well filled with activities related to applying the

information taught in the first week, it seems unlikely that a

thorough treatment of SREM, including applications experience,

can be accomplished in 10 days. The amount of information

covered in the third week was more closely matched to the time

available for instruction with sufficient schedule flexibility to

allow for review and discussion.

The SREM course was intended to be taught to an audience of

prospective users. In fact, the audience for the first two weeks

of the course consisted of only a few people who intended to use

SREM. The initial audience consisted of 18 people with software

experience ranging from 0.5 to 24.0 years. Of these only three

intended to be SREM users. The others attended because of a

general interest in the methodology. To aezommodate these two

major student groups, the course format was changed from two

weeks of alteinating lectures and applications experiene to one

week of lecture, attended by all 18 participants, followed by a

second week of informal discussions and laboratory work, attended

by only four individuals. Despite this change in course

schedule, the course objectives remained the same. For the third

week of class, the original schedule and objectives were

maintained but the audience changed 3lightly. Total attendance

for the third week of class was six students, four of whom were

directly involved in applying SREM to systems under development

while the other two were attending to gain additional knowledge

about SREM.

The attempt to accommodate both prospective useri and those

wishing a general knowledge of the methodology in the same course

was only partially successful. The accelerated lecture segment,

with no hands-on reinforcement of the things learned, resulted in

5-7
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some frustration and confusion on the part of all of the

students. The majority of the students really wanted a short

course covering only the main points of the methodology. The

details, presented over a week-long class, were not relevant to

these people, but were part of the course material and were

necessary for future users. Two separate courses would solve the

problem. The audience for the third week closely matched the

audience of SREM users for which the course was intended, and the

problems associated with audience mismatch did not occur as they

did in the first two weeks.

As far as the students could determine, the course was not

explicitly divided into planned lessons with objectives, planned

learning activities and achievement criteria for each lesson.

The only apparent structure was based on the phases involved in

applying SREM. The logical format of the course, while it

mirrcred the phases and steps of using SREM, was without clear

transitions between logical units. This resulted in a somewhat

confusing and haphazard sequence of presentation. The constructs

being taught were unlikely to be strongly associated with the

parts of SREM to which they belonged because there was no solid

framework in which the student could place the new constructs

such as would be provided by lesson overviews and susaiies.

A minimal evaluation of learning was included in the course

structure, and evaluation was not based on specified achievement

criteria. During the first week there were occasional attempts

at evaluation in the way of oral review of homework assignments

and the asking (very occasionally) for information from the class

(almost always without response). The second and third weeks

contained no more in the way of criterion-referenced planned

evaluation [MAGE62, MAGE671 than the first. However, the higher

,/
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level of instructor-student interaction and the feedback from the

REVS software during the second and third weeks provided the

students with a clearer understanding of their progress than in

the first week.

5.3.2 Course Execution

While the consideration of course presentation may appear to

be instructor dependent, many of these factors can be

significantly altered by changes in course design. The factors

of teaching methods used, student-instructor interaction and the

environment in which the course was given are considered in this

section.

One of the greatest problems with the teaching of this

course was the choice of "viewgraphs in the darkness" as the main

instructional technique. This method is known to have serious

shortcomings, including: (1) a tendency to put students to

sleep, (2) disruption and confusion resulting from the inevitable

mishandling of the viewgraphs, particularly when attempting to

retrieve a previously shown viewgraph from the stack for review

purposes, (3) introduction of white noise from the projector fan,

,A making comprehension of the lecture more difficult, and (4)

reducing the level of instructor-student interaction. The

viewgraphs used as lecture aids were mostly reproductions of

pages in the SREM Management Overview. The total number of

viewgraphs shown, and hence the total number of time spent in the

dark, could have been reduced by referring the students to the
appropriate pages of the SREM Management Overview. Too many

viewgraphs were used, some shown for as little as 10 seconds.

The viewgraphs were all black on white contributing to eyestrain

and overall fatigue, were often too densely packed with

"M
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information, and sometimes contained sections that were washed

out and difficult to read. The additional disruption caused by

frequent interruption of the lecture to distribute handouts could

have been avoided by giving an ordered set of handouts at the

beginning of each lesson.

The teaching methods employed in the second and third weeks

were much more effective than the pure lecture technique forced

on the first week. They included short lectures followed by

immediate application of the material just covered. Those

students who attended the second week indicated on the survey a

much greater confidence in their ability to apply SREM than those

who attended only the first week even though all of the material

had been covered in the first week. The levels of independent

student activity and instructor-student interactivity was much

higher than in the first week. More indepth review of difficult

concepts such as ENTITY CLASSes and ENTITYTYPEs would have

improved the second week, as would more information concerning

the effective handling of the reports produced in doing a sample

SREM application.

5.3.3 Course Materials

The course consisted of:

SREM Management Overview[PASI8O] - Used as a textbook, reference

and, to some degree, a course guide;

REVS Quick Reference User's Manual ELOSH79] - Used as a reference

book;

REVS Users Manual [GUNT79] - Used as a reference book;
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Requirements Development Using SREM Technology [ALF0791 - An early

version of [PASI80] but includes a section

(Chapter 6) on Functional Simulation as a

1-week course

Viewgraphs - Used as visual lecture aids;

Handouts - Mostly consisting of forms to be used as worksheets

in applying SRE.

The SREM Management Overview is not really a management

overview, or even a text for a management overview. It is

essentially a user's course textbook arranged in lesson order,

interspersed with homework assignments. It was also used as the

primary reference manual for SREM concepts and RSL consztructs.

The book contains a fairly complete description of SREM, with

examples. However, it is too long for practical use as a text

for a two-week course. It is too long and detailed for use as a

course guide, and without a table of contents or index,

insufficiently cross-referenced for use a-; a reference manual.

4The degree of difficulty for examples presented in the SREM

Management Overview was too simplistic in nature, e.g., they did

4 1not go beyond simple relations between processes. Only one

example presented could show differing "angles of attack" that

could be used in describing a problem in RSL. For instance, an

example of a prompt-driven system would havc been useful to show

several effective solution approaches and may have promoted class

discussion.

The text Requirements Development Using SREM Technology

follows the same format as SREM Managemenf Overview and has

similar strengths and weaknesses. The primary use was in

teaching simulation aspects which were not addressed in the

latter document.
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The REVS Quick Reference Manual provides a valuable,

well-indexed reference to RSL syntax information and REVS

constructs and operating procedures. Although it is a valuable

tool when used in conjunction with the REVS User's Manual during

SREM epplications work, it requires too much prior familiarity

with SREM to be an effective instruction tool.

The handouts were mostly worksheets for use in doing

examples during the first week and in performing the application

exercises during the second week. They were definitely of great

utility during the second week, although some confusion resulted

from duplication of function between some of the forms.

5.4 Recommendations

The following suggestions are descriptions of some important

attributes of an improved SREM user's course. To be fully

satisfactory, the course will have to be completely redesigned. This

includes a thorough analysis of the tasks to be accomplished by the

course and a target audience analysis, followed by the creation of

criterion-referenced course objectives, learning activities to achieve

those objectives, and evaluation activities to test achievement of

course objectives. However, even without performing a complete

re-design, specific recommendations can be made.

5.4.1 Improving Existing Course

1) When the students arrive at the first course session, they

should be provided a written overview of the course. This

overview should include a description of course objectives

in terms of learned student behaviors, a brief description

of the subject matter and scope of the course, and a course
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schedule. The first session should include a period for

discussion and questions concerning the points covered in

the overview.

2) In addition to the course overview, the first day of the

course should contain a subject matter overview. At least

the following areas should be covered:

a) The philosophies and types of problems addressed by

software tools in general,

b) The underlying philosophy of SREM in the context of

software tools -."d their environments,

c) A brief history of the development of SREM and its use

on previous projects,

d) Where SREM fits into the life cycle of a software

system,

e) The strengths and weaknesses of SREM in terms of such

factors as project size and type of software being

developed (i.e., real-time vs prompt-driven interactive

systems),

f) The overall structure of SREM, differentiating between

RSL, REVS, RADX, ASSM and any other major structures

4 and substructures, giving the main function of each.

The material presented in the first day of the course could

be expanded to become a short, high-level overview course

for managers, customers and others who do not need to

actually become skilled in using SREM. This first day of

the course should also be used to promote instructor-student

and student-student interaction. Questions concerning

SREM's status as a requirements tool, the validity of the

underlying philosophy of SEEM, or any number of related

/
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areas may arise, and free discussion should be encouraged.

The atmosphere of the student involvement engendered by such

discussions carries over into the rest of the course and is

well worth the time taken from other activities;

3) The details of using SREM should be presented in a number of

short lessons, each with its own overview, instructional

objectives, learning activities and evaluation procedures

based on criteria contained within the objectives. Because

many of the problems associated with using SREM derive from

SREM's unfamiliar terminology, each new term should be

defined at the beginning of the lesson in which it is

introduced. The material to be covered in the lessons

should be chosen to emphasize the parts of SREM that a task

analysis has indicated are especially important in using

SREM. This might include requirements extraction,

entity-class definition, message definition, net drawing,

RSL translation and RADX interpretation. Additional

emphasis should be given to concepts and skills that have

been shown to be difficult for students to learn. The

correct use of entity-classes and entity-types is a good

example of a commonly misunderstood area in SREM that is of

great importance in SREM applications;

4) The lessons should be sequenced and presented in such a way

as to increase student participation in the learning

process. This would be facilitated by sequencing the

lessons in the same order as the various phases and steps of

the SREM methodology that are applied in a project. To

avoid introducing unnecessary complexity, the lectures or

other presentations should be structured around the

application of SREH to one sample system that, at completion
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of the course, will have been developed through all of the

SREM phases covered by the course. The sample system should

require application of all of the methods and constructs

covered in the course, and should require repeated

application of the parts of SREM that are shown by the task

analysis to be especially important in actually applying

SREM on a project or that have been found to be especially

difficult to learn. Short presentations on the material of

each lesson should be immediately followed by a question and

discussion session, which should be followed by instructor

guided application of the lesson material by student teams.

The application part of each lesson should include any

relevant processing by the SREM software;

5) Each student should be provided course materials. While

there may be additional materials required by the instructor

for the presentation portion of some lessons, the need for

these materials can only be determined during the detailed

course design. The materials for this course should include:

a) A course guide consisting of an overview and schedule

as described above, a table of contents keyed to the

lessons to be presented, and lesson descriptions

including lesson objectives, criteria for achievement

of objectives, learning activities, and evaluation

procedures,

b) A description of the sample software system to which

the student will be applying SREM during the course,

c) Enough forms and other aids of the types used in actual

SREM applications to complete all of the application

exercires,

d) Reference materials describing RSL syntax, RADX
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processing and error messages generated by the SREH

software,

e) A text sequenced to follow the order of presentation of

the lessons and including description of recommended

techinques of applying SREM, examples of commonly used

SREM constructs, examples and explanations of the

control cards needed to execute SREM, examples of

common errors made in applying SREM, and sample

completed forms, drawings, translations, and REVS

outputs,

f) A glossary containing definitions, with examples, of

SREM terminology;

(6) A possible means of implementing the redesigned SREH course

is through Computer Aided Instruction (CAI), e.g., the Unix

"learn" program or the PLATO system. If a fully interactive

SREM were available, it could be integrated into a program

that generates lessons to teach SREM. This would provide

flexikility in maintaining the course as well as providing a

quicker introduction to the actual use of SREM.

5.4.2 Outline For Course Redesign

If at all possible the SREM user training course should be

completely redesigned. The recommended methodology emphasizes

criterion referenced instruction techniques as developed by

Robert F. Hager [MAGE67,MAGE621. The following steps are further

detailed in Mager's Developing Vocational Instruction.

(1) Course Purpose

Before an improved SREH course can be designed, the overall
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purpose of the course must be established. We will assume that

the purpose of the course will be to train students who have the

appropriate prerequisites to apply SREM in an actual work

situation as described in the job description. A distinction

should be made between this statement of purpose, emphasizing

training and job performance, and statements of purpose

emphasizing understanding or acquisition of knowledge. Because

our emphasis is on preparing students for the actual application

of SREM, the course will be based on a description of the job the

students will be expected to perform after completing the course.

(2) Job Description

The first step in formal course development is the statement of a

job description. This description consists of one or two

paragraphs mentioning each of the types of things done on the job

such as, in the case of SREM, drawing RNETs and SUBNETs from

functional requirements specifications. The goal at this point

is completeness of the description without reference to the

details of the tasks mentioned.

4 !Input to the job description comes from interviews and

,* observations of those already doing the job, information from

documents describing the job, and the stated expectations of

those who will be managing the job. When created, the job

* description serves as the starting point for doing the task

analysis phase of course development.

(3) Task Analysis

The first step of task analysis is to list every task associated'h I iwith doing the job. Most of the information required to do this
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initial step will have been gathered during creation of the job

description.

By consultation with managers of projects using SREM, observation

of others using SREM, and consideration of our own experience in

applying SREM, the tasks will be weighted according to frequency

of performance, importance, and learning difficulty.

Each task will then be further broken down into detailed

subtasks. For example, within the SREM task "correct RSL syntax"

might be, among other subtasks, "determine validity of error

messages" and "identify error messages". Each subtask will then

be analysed to determine the type of performance involved (i.e.,

recall, discrimination or problem solving) and the difficulty of

learning each subtask will be estimated.

(4) Target Population

One of the most important phases of creating a SREM user training

course will be an analysis of the target population for the

course. The existing skills, level of experience, education and

motivations of the students for whom the course is designed must

be determined, with both averages and ranges established for each

student quality that is evaluated.

(5) Course Objectives

With the above steps completed, the objectives for the course

will be determined. The main purpose of the objectives is to

describe, with reference to measurable criteria, the kinds of

student performance expected on completion of the course.
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The course objectives will not cover every subtask derived in the

task analysis. The main criteria for inclusion of performance of

a task in the course objectives is importance to the overall job

performance. Another consideration is the probability of success

in learning the task in the course versus learning it on the job

once other skills have been learned in class.

Each course objective will be described in terms of a goal, an

associated student behavior, conditions under which the behavior

will be displayed, and a criterion or criteria by which

successful performance will be defined. For example, a SREM

course objective might read:

Goal: Be familiar with symbols used in drawing

R NETs and SUBNETs.

Behavior: Match symbols with their definitions.

Condition: Given list of symbols and definitions.

Criterion: Match 5 out of 7 correctly.

(6) Course Prerequisites

Course prerequisites are descriptions of restrictions to be

placed on incoming students. The prerequisites will be testable

skills thought to be present in the target population that are

applicable to performance of behaviors described in the course

objectives. The inclusion of a prerequisite results in an

associated course objective not being taught in the course.

Entry testing for prerequisites must be done to ensure that

either students not meeting these prerequisites are prevented

from taking the course, remedial instruction is provided to give

the students the required skills, or, if a large part of the

target population does not have the required skills, the course

5
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is expanded to include teaching those skills. The unique nature

of SREM already indicates potential users need to have extensive

software engineering experience before taking the course.

(7) Instructional Procedures

Instructional procedures will be chosen according to course

objectives. Techniques will emphasize student performance of the

behaviors described in the course objectives under conditions

approximating, to whatever degree practical, the conditions under

which the students will be expected to perform on the job. For a

SREM course, techniques involving a team approach to applying

SREM, and practice performing the various steps and phases of

SREM using source documents similar to those to which they will

be expected to apply SREM, will be emphasized.

(8) Sequencing Instruction

The course will be divided into a series of instructional units

or lessons, each with its own objectives and performance

evaluation. After the initial overview lesson, the nature of

SREM will -robably require that the lessons be sequenced in the

order In which the behaviors taught are actually used when

applying SREM.

(9) Evaluation of Student Learning

Each lesson will be followed by an evaluation procedure in which

the students will be required to exhibit the behaviors described

in the lesson objectives. Because of the length of time required

to perform an analysis of a document using SREM, it may not be

practical to have a comprehensive final evaluation to test
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achievement of all the course objectives.

(10) Course Materials

Course materials, aside from a course guide describing the course

objectives and a schedule of lessons, will be included based on

relevance to achieving the course objectives. For a SREM course,

they might include: a text emphasizing the main steps of using

SREM, with sample common problems and their solutions; a concise

reference manual of RSL syntax, REVS control cards, and error

messages; a g.ussary of SREM terminology, with examples; forms

and other recommended aids for performing the applications

exercises; and audio-visual materials if indicated by the

analysis and choice of instructional materials.

5.4.3 Summary

In summary, we most highly recommend that the course be

redesigned. This includes thorough task and audience analysis leading

to a course with criterion-referenced objectives, application

exercises and evaluation activities. Even if the course is not

redesigned, its effectiveness can be significantly improved by the

implementation of any or all of (1) a thorough course overview

*i provided at the first session, (2) a subject matter overview including

I history, the problems SREM addresses and major functions to be

studied, (3) short, clearly defined lessons with definite objectives

and application exercises, (4) the inclusion of one sample system to

be developed throughout the course by application exercises, (5)

well-indexed and cross-referenced materials including a course guide,

a glossary of SREM terminology, reference materials and a text

sequenced in lesson order, and (6) possible addition of Computer-Aided

Instruction (CAI).
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