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global existence and decay of classical solutions to the

equations of motion for a class of nonlinear materials with fading memory.
The existence theorem presented here is an improved version of a previous
result of the author. This paper corresponds to a talk given at the
Conference on Physical Mathematics and Nonlinear Partial Differential

Equations held at West Virginia University during July 1983.
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EQUATIONS OF MOTION FOR MATERIALS WITH FADING MEMORYDist Spucind

william J. Hrusa

1. Introduction A— l

In continuum mechanics, the motion of a body is governed by a set of balance laws.

The balance laws express basic physical principles which are valid for all continuous
(mechanical) media, regardless of their composition. The type of material composing a body
is characterized by a constitutive assumption which relates the stress to the motion.

Elastic bodies have the property that at each material point, the stress at the
present time depends only on the present value of the strain. Under physically natural
assumptions on the stress-strain relation, this leads to equations of motion of hyperbolic
type. If the dependence of the stress upon the strain is nonlinear, these equations have
the property that smooth solutions may break down in finite time due to the formation of
shock waves.

Experience indicates that certain materials have memory, i.e. that the stress at the
present time can depend on the entire past history of the motion as well as the present
configuration of the body. Typically, the memory fades with time. In other words, defor~
mations which occurred in the distant past have less influence on the present stress than
those which occurred in the recent past. Under physically natural assumptions, dependence
of the stress on the past history of the strain has a dissipative effect and precludes the
development of singularities pravided that certain data are suitably small.

In this paper we discuss global existence of classical solutions to the equations of
motion for a class of nonlinear materials obeying Coleman and Noll's principle of fading
memory. The main theorem given here constitutes an improved version of a result previously
obtained by the author in (14). The difference is that the assumptions as stated here are
simpler, and at the same time weaker. Essentially the same proof as in [14] applies, so we

confine ourselves to a few remarks.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-8210950.
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{-f‘ In order to highlight the main ideas about the effects of memory and avoid significant _:-1
e .
( technical complications, we consider here only one-dimensional motions. Although the . . »
! details have not been carried out completely, similar results can be obtained for multi- .::
dimensional motions of materials with fading memory. However, a full three dimensional _:.:
theory would be considerably more complicated than that presented here. :.‘J
The paper is divided into four sections. 1In Section 2, we present some preliminary :‘]%
¥ ‘- AR
::}: material on history spaces. Then, in Section 3, we discuss the relevant mechanical aspects :'l-:'-'
< <
:\%: of materials with fading memory and formulate an appropriate class of dynamic problems.
-\"': The final section is devoted to global existence and asymptotic behavior of solutions. :
_. o Subscripts x and t indicate partial differentiation, and a dot is used to denote
:E: the derivative of a function of a single variable. All derivatives should be interpreted
;-.).'; in the sense of distributions. The symbol := indicates an equality in which the left
hand side is defined by the right hand side.
N0
N 2. History Spaces
g:: In many situations the value of a certain quantity at each time t depends on the .
{ _ entire history up to time t of a second quantity. To describe such situations mathe-
'E-\.:‘ matically, it is convenient to work with the "histories” of functions defined on negative
::;: semiaxes. Suppose that w is a function from an interval of the form (-=,T] into some
:\: space X. Then, for each t € (-»,T]) we define a new function :lt : [0,°) + X, called
\.“.' the history up to time t of w, by
.':Z-':: Wie) 1= wit-s) ve>0 . (2.1)
:-f:\: The advantage of dealing with histories is that they have a common domain, namely (0,=).
< The notion of fading memory can be interpreted mathematically as a smoothness require-
:‘:-\ ment for the constitutive functional which relates the stress to the history of the strain.
ii‘\: Following Coleman and Noll we introduce an "influence function" h, intended to
:'-;' characterize the rate at which memory fades, and construct an np-type space of admissible
histories using the influence function as a weight. Here we use the term influence
'_,E function to mean a positive, nonincreasing, real-valued function h € L‘(O,w).
N
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For each real number p 2 t and influence function h, we denote by vh,p the f,:
. Banach space of all measurable functions w : [0,») + R for which T‘:
i o
[o 1w(e)|Pnisras <=, (2.2)
. equipped with the norm l'l'lllh P defined by :}ﬁ
’ . e
o,
WP = w0 1P + [T |w(s) |Pnisras . (2.3) e
h,p 0

ey -
el
lm Ao ®.2

Functions in vﬁ,p are, of course, regarded as being equivalent if they have the same

e e
Y
Voa e
'l

value at 0 and agree almost everywhere on (0,»). We note that Vh'p can be identified

.
o
o

in a natural way with R x Lp((O,“)/h).

Keeping the applications in mind, we call the elements of vh,p histories. Moreover,
for we vh,p we sometimes refer to w(0) as the present value and to the restriction
of w to (0,%) as the past history.

Obgerve that the norm |||-|||h'P makes a fundamental distinction between the past
and present. In particular, it assigns a weight to the present value which is significant
in comparison with that assigned to the entire past history. However, the weight assigned
to any particular past value is negligible. The fact that h is nonincreasing and
integrable means that the distant past has less influence than the recent past. These
properties of ffl-fffh'p can be motivated from more basic principles.

. Coleman and Mizel ([4] studied history spaces of the form su.p = 1P([0,)/au), where
u is a (nontrivial) positive Borel measure, under several very simple and physically
motivated postulates, which, roughly speaking, assert that u 1is finite and that certain
types of translation operations (which arise gquite naturally in the study of hereditary
processes) are well-behaved on su,p' They proved, as consequences of their postulates,
that u must have an atom at {0} and be absolutely continuous with respect to Lebesgue
meagure on (0,®). They also showed that if u{(0,2)} # 0 (i.e. that the influence of the
past is nontrivial), then the Radon-Nikodym derivative of u with respect to Lebesgue

measure must be positive almost everywhere on (0,®) and satisfy a certain decay condition

(although it need not be monotone). Some additional restrictions on u also follow from
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Coleman and Mizel's postulates. However, for our purpose, it suffices to assume that h

L"

is positive, nonincreasing', and integrable. Y
The apaces vh,p are by no means the only useful history spaces. We refer the reader }j

to the papers of Hale and Kato [12} and Kappel and Schappacher {17] for a rather complete :E
discussion of phase spaces for hereditary problems involving unbounded delays. See, for Ej
example, the papers of Renardy [23), (24] and Schumacher ([25] for the use of other history i@
spaces in connection with partial differential equations having unbounded delays. See also :Ei
o

the paper of Coleman and Mizel (5], where the work of [4) 1is extended to a more general }:
3

class of spaces.

-

Iy

3. Materials with Fading Memory

Consider the longitudinal motion of a homogeneous one-dimensional body that occupies

Al A

the interval B in a reference configuration (which we assume to be a natural state) and
has unit reference density. Let us denote by x(x,t) the position at time ¢t of the
particle with reference position x. The displacement u and strain € are then given by
ulx,t) := y(x,t) - x (3.1)
and
e(x,t) := ux(x,t) . (3.2)
For smooth motions, the law of balance of linear momentum here takes the form
utt(x,t) = cx(x,t) + f(x,t) , xeB, t2>0 , (3.3)
where o is the stress and £ 1is the (known) body force. Equation (3.3) must be supple-
mented with a constitutive assumption relating the stress to the motion. The constitutive
assumption characterizes the type of material composing the body.
If the material is elastic, then

ol(x,t) = ¢(e(x,t)) , (3.4)

The monotonicity assumption on h can be weakened, but not completely dropped; its
purpose is to ensure that certain translation operations are well-behaved uniformly in the

size of the translation.
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P:J where ¢ is an assigned smooth function with ¢(0) = 0, and the corresponding equation of ey
L i
] A
( ’ motion is o
~ ..
N o~
ASAS = .
N utt(x,t) ¢(ux(x,t))x + f(x,t) . (3.5) T
:{: ‘ Experience indicates that stress increases with strain, at least near equilibrium, so it is
N ;
ANy natural to assume that ¢(0) > 0. Lax [18] and MacCamy and Mizel [21] have shown that
y (3.5) (with £ = 0) does not generally have global (in time) smooth solutions, no matter
,‘ how smooth and small the initial data are.
.-.'.;
et For viscoelastic materials of the rate type, the stress depends on the strain rate as
- well as the strain. A simple model is given by the constitutive relation
Y
,-::,- o(x,t) = ¢(e(x,t)) + Xst(x,t) ' (3.6)
S
1:\-: for which the corresponding equation of motion is
ho- 7 = + . .
o u.. M“x)x + Xuxtx f (3.7
4 Greenberg, MacCamy, and Mizel ([11] have shown that if A > 0 and 3(5) > 0 for all
";_‘; £ € R, then the homogeneous Dirichlet initial-boundary value problem for (3.7) (with
.4
. ) B = (0,1 and £ = 0) has a unique, globally defined, classical solution provided ¢ and
P
: !J the initial data are sufficiently smooth. Thus the rate term in (3.6) has a very powerful
‘, - dissipative effect. Similar results have been obtained for more general viscoelastic
‘.--.. -
£ materials of the rate type by Dafermos [8) and MacCamy ([19]. .
"-" A much more subtle type of dissipation is induced by memory effects. For materials -
A A
oy with memory, the stress at the present time can be affected by the entire temporal history el
1 - -
Ko, ', of the motion. We assume that this dependence is local in space. In particular, we B
Pot. >
= consider only those materials having the property that at each material point and each S
'\":- time t, the stress depends only on the history up to time t of the strain at that same .,
O .
i point. =
vy
_.:-' A simple example of a material with fading memory is provided by linear visco-
:"' elasticity of the Boltzmann type. In 1876, Boltzmann [1] proposed the constitutive law
o .
o o(x,t) = celx,t) - ]o m(s)e(x,t-a)ds , {3.8)
a
add where ¢ 1is a positive constant and m is positive, decreasing, integrable, and satisfies
9K
-.' “ 0
Cs c-[,ms)as >0 . (3.9)
AN
SN
>
o
‘-. 4
»
S
.".‘n
Y
ASA
Ny

R
D
- '.. o«

A Ve Tt
ST etetaw
et aBas a0 "n ‘a

PREIE I
)
Y

'

N
A
e te 0 L




SRR R AMACASAE AL SC AN S I ALl S AT IR i be do g

[
R

3 MY
.

L3
LY

= I

.
1'_.A

The constant ¢ measures the instantaneous response of stress to strain. Positivity of

1
s

b

m means that the stress "relaxes" as time increases, and the fact that m is decreasing
- !
means that the memory is fading. Equation (3.9) also has a mechanistic interpretation. 1In }}
- - 29
statics, i.e. O(x,t) 2 o(x) and €(x,t) = €(x), (3.8) reduces to \.:-'
5 " aterasit =
o(x) = (¢ - ]0 m(s)ds)e (x) . (3.10) e
._'.q
Thus, (3.9) states that the equilibrium stress modulus is positive. =
For functions Y : Bx (=,T) * R and x € B, t € (-==,T], let us agree to set f}:
-~ l.'.l
YH(x,8) = Y(x,t-s) vs>o0 . (3.11) )
\]
Then, (3.8) can be written as NS
- - -
olx,t) = c®(x,0) - [T ms)et(x,8)as (3.12) »:
and, more generally, the constitutive equation for a material with memory takes the form .
o(x,t) = 6(e%(x,*)), xes, t>0 , (3.13) -
where G is a real-valued functional (not necessarily linear), defined on an appropriate e
o

set of admissible histories. The history of the strain up to time t = 0 is assumed to be

DR I T ey )

known.

Formally, we say that a material has fading memory if there exists a real number ;i

p > 1, an influence function h, a neighborhood @ of zero in Vh'p, and a continuously i;:
Fréchet differentiable function G : @ + R such that the stress is related to the strain T?
by (3.13). This is essentially equivalent to the principle of fading memory formulated by iﬁ
Coleman and Noll [6]), (7]. For such materials, it follows from the definition of vh,p ii
and the Riesz representation theorem that the Fréchet derivative G' of G admits the !E
representation :3

G'(wiw) = E(w)w(0) - o M(w,8)w(s)h(s)ds VweQ, we Vop v (3.14) _:’
with E: Q@ + R and M(w,*) € L3((0,#)/h) for each w €92, where q is the conjugate :::

exponent of p, 1i.e. %-+ % = 1. Continuity of G' implies that E is continuous and

that the mapping w™ M(w,*) is continuous from Q to Lq((O,ﬂ)/h)- Some additional

PR
D

smoothness assumptions will be imposed on F and M in the next section. For convenience

we define X : Q2 x (0,») » R by

K(w,8) := M(w,s8)h(s) vVweg s>0 . (3.15)

el .
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":- Our task is to determine a smooth function u : B x (-»,®) + R which satisfies
“.

. 3 Tt

i ) U, (%£) = 3= Glu (x,*)) + £(x,t), x €B, £ > 0 , (3.16)

)

R u(x,t) = v(x,t) , xeB, t<0 , (3.17)

"‘
:.‘ ! together with appropriate boundary conditions if B is bounded. Here v is an assigned
\-1
-‘t': smooth function on B x (-»,0]. Observe that an elastic material is a special case of a
e M
_ material with fading memory (having X = 0). Consequently, one should not expect (3.16), ",.‘:
o
- (3.17) to have globally defined smooth solutions (even for small data) unless X satisfies -
) certain conditions which exclude the case X S 0. -]
1 The main (nontechnical) assumptions on G are that E(0) > 0 and that X(0,*) 1is ;i'a

L id &

\-: nonnegative, nonincreasing, and satisfies e
., o

N e
N 0 < j‘;’ K(0,s)ds < E(0) . (3.18) "
3
o (Note that h e L'(0,=), M(0,+) e £3((0,%)/h), and (3.15) automatically imply :
L* K(0,°*) € L1(0,')-) Roughly speaking, the preceding conditions say that the linearization E-,‘
-: of (3.13) about the zero history is the constitutive relation for a physically reasonable "_
e :—:'«-
s linear viscoelastic s0lid of the Boltzmann type. .
N Coleman, Gurtin, and Herrera (3] and Coleman and Gurtin [2] have studied propagation ;’,-;_'

{ %

L™ of singularities in materials with fading memory under hypotheses quite similar to those ?'-_'.
-* Ny
“J . -
::'_4 above. The work of Coleman and Gurtin [2] on growth and decay of acceleration waves ;::'
o -
.‘-: provides a great deal of insight into the dissipative effects of memory. An acceleration 7_-:{

wave is similar to a shock wave, the difference being that jumps occur in second (rather ol
-‘ .;

.. - than first) derivatives of u. The amplitude of such a wave is defined to be the magnitude s
_{' of the jump in Upy o :'.
. )
- Coleman and Gurtin showed that the amplitude of an acceleration wave decays to zero as
t + ®», provided that its initial amplitude is sufficiently small. On the other hand, the
>
:; amplitude of an acceleration wave can become infinite in finite time if its initial

ﬁ
'’
.;j amplitude is too large. This indicates the presence of a natural damping mechanism which
»

9

) is effective for "small" motions and ineffective for "large" motions, and suggests that
i L]
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. "::, (3.16), (3.17) should have a globally defined classical solution if f and v are g

<
( - suitably smooth and small. . C.""
4 .I ' - !
‘.-.\'f Results of this type have been obtained by a number of authors for the constitutive
c‘- i
N equation

N N
L t ® “t
~t alx,t) = $(e (x,0)) - jo m(s)¥(e (x,8))ds (3.19)

- under physically reasonable assumptions on ¢, ¥, and m. Small-data global existence 0.
“ h\ . -~
:.':: theorems have been given for the special case ¢ = ¢ by MacCamy [20], Dafermos and Nohel e
T : N
*-:,\ [9], and Staffans [26), and for ¢ different from ¢ by Dafermos and Nohel {[10] and Hrusa .'_-'
s and Nohel [16]. Moreover, Hattori ([13] has shown (for the case ¢ = ¢) that if ¢ 7 0, j

-
)
Auch

3 _,:" then there are suitably large data of arbitrary smoothness for which (3.16) does not have a g
':.('_‘:3 globally defined smooth solution. We refer the reader to the survey paper of Hrusa and E;i
‘E:: Nohel {15] for a much more complete discussion of the equation of motion corresponding to 5
A (3.19). 2
_\.2; In order for a function u : B x (~,T}] + R to describe a physically meaningful
E{; motion, it should satisfy ux(x,t) > -1 (i.e., €(x,t) > -1) for all x € B,
S8
-:'..~ ' t e (~,T]. Thus the physically natural domain of G on Vh,p should consist only of
_' , functions belonging to I := {w € vh,p : wi(0) > =1, w> -1 a.e. on {0,2)}), It is easy to
S::-: see that the interior of this set i.s empty. (In fact, T is nowhere dense in vh,p') In
::-.:1': the principle of fading memory, as stated above, it is tacitly assumed that G admits a
. ‘."

smooth extension from a subset of T to a full neighborhood of zero. The assumption

of Fréchet differentiability of G can be replaced by a weaker type of differentiability

condition that only requires G to be defined on TI. (The same comment applies to the -{
[ ]
additional smoothness assumptions imposed in the next section.) We refer the reader to the :-:
(W
o

paper of Mizel and Wang (22], where such a condition is proposed and is shown to suffice

for chain rules.
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4. Existence of Solutions

In this section we discuss global existence of solutions to the history value problem
{3.16), (3.17). For definiteness, we treat the case where B = [0,1] and homogeneous
Dirichlet boundary conditions are imposed. 1In particular, we consider the history-boundary

value problem

ug, (xet) = = G(al(x,0)) + £lx,t), x € (0,11, £ 0 (4.1 ;

w(0,t) =u(l,t) =0 , =<t<m , (4.2) o

u(x,t) = vix,t) , xe (0,1}, £t < D (4.3) : .

Other types of boundary conditions (with B = (0,1)) are dis ged in [14], Due to the "i
lack of Poincaré-type inequalities on all of space, the resu’ of (14] do not apply 2;-
directly to the pure history value problem with B = R. Alt 4 he details have not been ESE?
carried out, a modification of the procedure recently employed oy Hrusa and Nohel [16] (for ::;
S

the constitutive relation (3.19)) can be used in conjunction with the arguments of (14] to
establish a similar global existence result for the history value problem (3.16), (3.17)
with B = R,

Throughout this section we assume that we have been given a real number p with
1< p <=, an influence function h, and a neighborhood { of zero in Vh'p such that
G : Q + R 1is continuously (Fréchet) differentiable. Moreover, we let E, M, and K be
related to G' as in the preceeding section and we denote by q the conjugate exponent

of p. In addition, we assume that

(A-1) E : @ + R is twice continuously differentiable.
(A-2) The mapping w » M(w,*) is twice continuously differentiable from Q to
L((0,=)/m).

(A=3) For each w € C'[O,w) nf with w e Vh'p, the function K(w,*) belongs to

C1(0,”)- Moreover, there exists a locally Lipschitz function N : @ x vh P +
’
Lq((O,O)/h) such that
L Kw,s) = Nlw,w)(s)h(s) V& >0 (4.4)
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1 .
for all wecC [0,2)N 0 with we V, ..
({A-4) The function a : [0,%) * R defined by
L
a(t) := ]t K(0,8)ds ¥V t >0 (4.5)
belongs to Lq((O,”)/h).
(A-5) K(0,+) is nonnegative and nonincreasing, and

0 < j: K(0,s)ds < E(0) . (4.6)

condition (A-3) is somewhat implicit. It can be replaced by a more explicit
assumption (as in [14]) which requires the mapping (w,s) » K(w,s) to be smooth from
R x (0,) to R. However, the more implicit (A-3) is substantially weaker. The
mechanistic interpretation of (A-5) was discussed in the last section.

Of the body force £, we require

2
£.£, £, €C(10,2); t?(0, 1) n 20,2 2o, 1), (4.7)
2 2
£, € L2102 tio, ) (4.8)
£(0,t) = £(1,t) = 0 yt>o0 , (4.9)

and of v we assume that

v,V ,V. ,V v , Vv v v ’
’ xI xxl ’ r

t xt tt XXX Xxt

2 (4.10)
Vett ¢ Cc((=,0); L (0,1)) ,
v(0,t) = v_ (0,t) = v(1,t}) = v_ (1,t) =0 ve<o . (4.11)
XX XX
We also impose the compatibility condition
3 )

vtt(x,O) = 3% G(vx(x,O)) + f(x,0) vxe [0,1)] . (4.12)

It follows from (4.10) and standard embedding theorems that v € C2([0,1] x (==,0]).
As noted earlier, a global solution is to be expected only if f and v are suitably
small. To measure the gizes of f and v we define
1 2 2
F(f) := sup IO {fx + ft}(x,t)dx

t>0
(4.13)

w1 2 2 2
and + ]0]0 {fx *EH ftt}(x,t)dxdt
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b
1,2 2 2 p/2
&14 Vev) = (!0 {vxxx T Vaxe vxtt}(x'O)dX)
. ® 1 .2 2 2 p/2
oy + ]o (!0 {vxxx Vot vxtt}(x,-s)dx) h(s)ds (4.14) bt
b © (o 1, 2 2 2 p/2 2/p ~
+ + - + .
. + Io(!o(!o (vxxx Vit vxtt}(x, 8)Ax) ¥ “n(s+t)yds) “Fac Y
A
|
Obgerve that V(v) also provides control of lower order derivatives of v by virtue of ‘;.ﬂ
¥
(4.11) and the Poincaré& inequalities. A similar comment applies to F(f). :'._1
- hi

l’l.’

A _a

f s

/
P

Theorem 4.1: Assume that (A-1) through (A-5) hold. Then, there exists a constant § > 0

such that for each f and v which satisfy (4.7) through (4.12) and

F(f) + V(v) ¢ 6§, (4.15)

the history-boundary value problem (4.1), (4.2), (4.3) has a unique solution

ue cz([0,1] x (=w,»)), Moreover, the restriction of u to [0,1] x [0,») satisfies

u u u u u
' Txx’ Txt’ tt! !

u, u, u
¢ Tx! xxx’

t xxt’ Uxtt

(4.16)

2 2 2
uttt e c((0,»#); L (0,1)) n L ([0,®); L (0,1)) [

ux(X,t) > -1 vyxe[01],t>0 , (4.17)

and, as t *» «,

U s Upr Uy Uger Yee * O (4.18)

uniformly on {0,1].

Remark 4.1: If there exists a function g e L‘(O,“’) such that

hit+s) € (g(t))P2n(s) we,s8>0 , (4.19)

then F(f) can be replaced by F(f) in Theorem 4.1, where

Scey o [V o2 2 2 p/2
F(£) : (]o {vxxx * Vot vxtt}(x,o)dx)

2

2 2
ot vxtt)(x,-s)dx)p/ h(s)ds .

1
+J: (JO {vszcxx+ v

Indeed, in this case, F(f) small implies that F(f) is also small.
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Remark 4.2: It is clear that exponential influence functions of the form h(s) = e M8

with u > 0 satisfy the condition of Remark 4.1. Conversely, it follows from results of 9—

Coleman and Mizel [4] that if h satisfies (4.19) for some g € L’(O,“), then there exist ;?:

a,8 > 0 such that h(s) < ae™®® for almost all s > 0. I,
0.

The proof of this theorem involves two main steps. First, one establishes the
existence of a unique local solution defined on a maximal time interval [O,To) with the
property that if To < ®, a certain norm of the solution becomes unbounded as ¢t + TO' Q'
The existence of such a local solution can be established by a more or less routine
iteration procedure and continuation arqument. A priori estimates of energy type are then
used to show that the aforementioned norm remains bounded on [0,Ty). These estimates also
yield (4.17) and (4.18). Although the assumptions are stated somewhat differently here,
the details of the proof are almost exactly the same as in [14].

There are two important differences between our assumptions here and those in [14].
Only the case p = 2 was discussed explicitly in [14], although it was pointed out that
the analysis can be easily adapted to any p with 1< p < ®». The other major difference
involves the smoothness assumptions on K. 1In [(14], K was regarded as a mapping from
Qx (0,2) to R (and the function M was not explicitly introduced). Assumptions (A~2)
and (A-3) are more efficient and considerably weaker than the corresponding conditions
imposed on X in [(14].

It is interesting to observe that equation (4.1) has a slight regularizing effect in
the time variable. 1Indeed, our assumptions on v do not imply that Veey €xists as a
function, and yet uy,, belongs to c([0,»); L2(0,1))- In fact, the smoothness assumption
on v can be weakened slightly (e.g., C{{(-»,0]; L2(0.1)) can be replaced by
Ly

which satisfies (4.16).

.oc((-“,ol; L2(0,1)) in (4.10)) and (4.1), (4.2), (4.3) will still have a solution u

Conditions (4.9) and (4.11), which express compatibility of f and v with the

15‘

~

q:l

boundary conditions, can be weakened. However, one must then modify the definitions of

PP
‘?.":.5
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F(f) and V(v) to include termg involving f itself and lower order derivatives of v. o

* Moreover, in this case, the a priori estimates of [14) require substantial modifications. ;
!

Finally, we remark that the compatibility assumption (4.12) is not essential. If it cd

R

' is dropped, the solution u will still satisfy (4.16). However, u,, will be discon- :‘.j
tinuous across t = 0 if (4.12) is violated.
4
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