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S-. ABSTRACT

.o-A'i.u" global existence and decay of classical solutions to the

equations of motion for a class of nonlinear materials with fading memory.

The existence theorem presented here is an improved version of a previous
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GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE P.'. ,

EQUATIONS OF MOTION FOR MATERIALS WITH FADING MEMOR Dist ,

William J. Hrusa

' "-'- 1. Introduction '/
In continuum mechanics, the motion of a body is governed by a set of balance laws.

The balance laws express basic physical principles which are valid for all continuous

C. .°(mechanical) media, regardless of their composition. The type of material composing a body

is characterized by a constitutive assumption which relates the stress to the motion.

Elastic bodies have the property that at each material point, the stress at the

present time depends only on the present value of the strain. Under physically natural

% assumptions on the stress-strain relation, this leads to equations of motion of hyperbolic

type. If the dependence of the stress upon the strain is nonlinear, these equations have

the property that smooth solutions may break down in finite time due to the formation of

shock waves.

Experience indicates that certain materials have memory, i.e. that the stress at the

present time can depend on the entire past history of the motion as well as the present

,* configuration of the body. Typically, the memory fades with time. In other words, defor-

mations which occurred in the distant pest have less influence on the present stress than

those which occurred in the recent past. Under physically natural assumptions, dependence

of the stress on the pest history of the strain has a dissipative effect and precludes the

development of singularities prqiided that certain data are suitably small.

In this paper we discuss global existence of classical solutions to the equations of

motion for a class of nonlinear materials obeying Coleman and Noll's principle of fading

memory. The main theorem given here constitutes an improved version of a result previously

obtained by the author in (14]. The difference is that the assumptions as stated here are

simpler, and at the same time weaker. Essentially the same proof as in [14] applies, so we

confine ourselves to a few remarks.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is

based upon work supported by the National Science Foundation under Grant No. MCS-8210950.
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In order to highlight the main ideas about the effects of memory and avoid significant

technical complications, we consider here only one-dimensional motions. Although the

details have not been carried out completely, similar results can be obtained for multi-

dimensional motions of materials with fading memory. However, a full three dimensional

theory would be considerably more complicated than that presented here.

The paper is divided into four sections. In Section 2, we present some preliminary

material on history spaces. Then, in Section 3, we discuss the relevant mechanical aspects

of materials with fading memory and formulate an appropriate class of dynamic problems.

- . The final section is devoted to global existence and asymptotic behavior of solutions.

Subscripts x and t indicate partial differentiation, and a dot is used to denote

the derivative of a function of a single variable. All derivatives should be interpreted

in the sense of distributions. The symbol : indicates an equality in which the left

hand side is defined by the right hand side.

2. History Spaces

In many situations the value of a certain quantity at each time t depends on the

entire history up to time t of a second quantity. To describe such situations mathe-

matically, it is convenient to work with the "histories" of functions defined on negative

-*' semiaxes. Suppose that w is a function from an interval of the form (-o,T] into some

space X. Then, for each t e (-A,T we define a new function w : [0,-) + X, called

the history up to time t of w, by

w (a) :- w(t-s) V s ) 0 * (2.1)

The advantage of dealing with histories is that they have a common domain, namely [0,-).

The notion of fading memory can be interpreted mathematically as a smoothness require-

ment for the constitutive functional which relates the stress to the history of the strain.

Following Coleman and Noll we introduce an "influence function" h, intended to
JIN.

characterize the rate at which memory fades, and construct an LP-type space of admissible

histories using the influence function as a weight. Here we use the term influence

function to mean a positive, nonincreasing, real-valued function h e L (0,-).

-2-
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For each real number p ) I and influence function h, we denote by Vhp the

Banach space of all measurable functions w : [0,-) + R for which

Jo Iw(s)Iph(s)ds < (2.2)

equipped with the norm IH1I h,p defined by

IWIPh 4w(0).
p + .- jw~b)1Ph(s)ds (2.3)

Functions in Vhp are, of course, regarded as being equivalent if they have the same

value at 0 and agree almost everywhere on (0,-). We note that Vh,p  can be identified

in a natural way with R x LP((CO,)/h).

Keeping the applications in mind, we call the elements of Vhp histories. Moreover,

for w e Vh,p we sometimes refer to w(0) as the present value and to the restriction

of w to (0,-) as the past history.

Observe that the norm II Il h,p makes a fundamental distinction between the past

and present. In particular, it assigns a weight to the present value which is significant

in comparison with that assigned to the entire past history. However, the weight assigned

to any particular past value is negligible. The fact that h is nonincreasing and

integrable means that the distant past has less influence than the recent past. These

properties of can be motivated from more basic principles.
11-1h,p

Coleman and Mizel [4] studied history spaces of the form S :- LP(0,)/di), where
.. . . ,p

u is a (nontrivial) positive Borel measure, under several very simple and physically

motivated postulates, which, roughly speaking, assert that V is finite and that certain

types of translation operations (which arise quite naturally in the study of hereditary

processes) are well-behaved on S . They proved, as consequences of their postulates,

that p must have an atom at (01 and be absolutely continuous with respect to Lebesgue

measure on (0,-). They also showed that if p{(0,e)} $ 0 (i.e. that the influence of the

past is nontrivial), then the Radon-Nikodym derivative of u with respect to Lebesgue

measure must be positive almost everywhere on (0,") and satisfy a certain decay condition

(although it need not be monotone). Some additional restrictions on U also follow from

-3-
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Coleman and Mizel's postulates. However, for our purpose, it suffices to assume that h

is positive, nonincreasing and integrable.

The spaces Vh,p are by no means the only useful history spaces. We refer the reader

to the papers of Hale and Kato [12] and Kappel and Schappacher [17] for a rather complete

discussion of phase spaces for hereditary problems involving unbounded delays. See, for

example, the papers of Renardy [23], (24] and Schumacher [25] for the use of other history

spaces in connection with partial differential equations having unbounded delays. See also

the paper of Coleman and Mizel (5], where the work of [4] is extended to a more general

class of spaces.

3. Materials with Fading Memory 4-

Consider the longitudinal motion of a homogeneous one-dimensional body that occupies

the interval B in a reference configuration (which we assume to be a natural state) and

has unit reference density. Let us denote by X(xt) the position at time t of the

particle with reference position x. The displacement u and strain e are then given by

u(x,t) : x(x,t) - x (3.1)

and -

£(x,t) : u(xt) * (3.2)

For smooth motions, the law of balance of linear momentum here takes the form

u (x,t) - a (x,t) + f(x,t) , x e B, t ) 0 , (3.3)
tt x .

where a is the stress and f is the (known) body force. Equation (3.3) must be supple-

mented with a constitutive assumption relating the stress to the motion. The constitutive

assumption characterizes the type of material composing the body.

If the material is elastic, then

"(x,t) - *(c(x,t)) ( (3.4)

The monotonicity assumption on h can be weakened, but not completely dropped; its
purpose is to ensure that certain translation operations are well-behaved uniformly in the
size of the translation. .%

I-4-
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where is an assigned smooth function with (0) =0, and the corresponding equation of

i yr - r -wmotion is--

-".' ,, - .. -

utt (x,t) ( x(x,t)) x+ f(X,t) (3.5)

J Experience indicates that stress increases with strain, at least near equilibrium, so it is-f

"t natural to assume that ;(0) > 0. Lax [18] and MacCamy and Mizel [21] have shown that "'

(3.5) (with f --- 0) does not generally have global (in time) smooth solutions, no matterO

i!')i how smooth and small the initial data are. .

a",,

For viscoelastic materials of the rate type, the stress depends on the strain rate as ..

! well as the strain. A simple model is given by the constitutive relation"'.

# . O(X,t) - O(F-(x,t)) + ),Ct(x,t) ,(3.6).,

'.
Att

wi ssfor which the corresponding equation of motion istio o
u t) - (Ux) + xt + f . (3.7)

tt x x xt

Greenberg, MacCamy, and Mizel [11] have shown that if X > 0 and > 0 for all

'•' e R, then the homogeneous Dirichlet initial-boundary value problem for (3.7) (with .%

B [0,] and f E 0) has a unique, globally defined, classical solution provided and

lthe initial data are sufficiently smooth. Tus the rate term in (3.6) has a very powerful

idissipative effect. Similar results have been obtaJned for more general viscoelastic

F v osmaterials of the rate type by Dafermos d8e and MacCamy s19a.

-"'" A much more subtle type of dissipation is induced by memory effects. For materials'.,

"' ' with memory, the stress at the present time can be affected by the entire temporal history"-.
eaof the motionr we assume that this depdence is local in space. In particular, we

"-,.,' .. consider only those materials having the property that at each material oint and each .-,.

". time t, the stress depends only on the history up to time t of the strain at that same ".

3oint. 7 -

..- A simple example of a material with fading memory is provided by linear visco- .

-'.'"elasticity of the Boltzmann type. In 1876, Boltzmann (11 proposed the constitutive law -

o(x,t) - C(xt) m(s)C(xt-s)ds (3.8)

where c is a ositive constant and m is ositive, decreasing, integrable, and satisfies

u - m(s)ds > + f (3.7) a-"

GrebrMamad ie 1].aesonthti2.-0ad'C) o l
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The constant c measures the instantaneous response of stress to strain. Positivity of

a means that the stress "relaxes" as time increases, and the fact that m is decreasing

means that the memory is fading. Equation (3.9) also has a mechanistic interpretation. In

% statics, i.e. O(x,t) E_ a(x) and e(x,t) 2 c(x), (3.8) reduces to ,*1

O(x) = (c - m(s)ds)e(x) (3.10)

Thus, (3.9) states that the equilibrium stress modulus is positive.

For functions Y : B x (-,T + R and x e B, t e (-,T, let us agree to set

yt(x,s) := y(x,t-s) V s > 0 (3.11)

Then, (3.8) can be written as ,4

a~x't) = cit(x,0) -im(s)ct (x,s)ds, (3.12)U

and, more generally, the constitutive equation for a material with memory takes the form

-. ;t
a(x,t) = G(e (x,.)), x e B, t > 0 , (3.13)

where G is a real-valued functional (not necessarily linear), defined on an appropriate

set of admissible histories. The history of the strain up to time t = 0 is assumed to be

known.

* Formally, we say that a material has fading memory if there exists a real number

p > 1, an Influence function h, a neighborhood S1 of zero in Vhp" and a continuously

Frhchet differentiable function G : * + R such that the stress is related to the strain

,t by (3.13). This is essentially equivalent to the principle of fading memory formulated by

Coleman and Noll (61, (7]. For such materials, it follows from the definition ofVhp

*, and the Riesz representation theorem that the Frfchet derivative G' of G admits the

representation
" )- ~(0

G'(w;w) Ew)w(0) M(w,s)w(s)h(s)ds V w e , Vh1, , (3.14)

with E :S + R and M(wr) S Lq((0,-)/h) for each w e n, where q is the conjugate

exponent of p, i.e. - + C - 1. Continuity of C' implies that E is continuous and
p q

that the mapping w*+ M(w,') is continuous from Si to Lq((0,-)/h). Some additional

smoothness assumptions will be imposed on E and M in the next section. For convenience

we define K: Six (&,I") R by

K(w,s) :s M(w,s)h(s) V w e S, s > 0 (3.15)

-6- S.
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Our task is to determine a smooth function u B X (+,) * R which satisfies

u (xt) G(u (x,)) + f(x,t), x e B, t ) 0 , (3.16)
tt G (3.16)

u(x,t) - v(x,t) , x e B, t ( 0 , (3.17)

together with appropriate boundary conditions if a is bounded. Here v is an assigned

smooth function on B x (1-,0]. Observe that an elastic material is a special case of a

material with fading memory (having K - 0). Consequently, one should not expect (3.16),

(3.17) to have globally defined smooth solutions (even for small data) unless K satisfies

certain conditions which exclude the case :- 0.

The main (nontechnical) assumptions on G are that E(0) > 0 and that K(0O, °) is

nonnegative, nonincreasing, and satisfies
"V0 < rKl0,Oslds < E(0) ( 3.18)

(Note that h e L (0,-), (0,') e Lq((0,*)/h), and (3.15) automatically imply

K(o,) e L (0,-).) Roughly speaking, the preceding conditions say that the linearization

of (3.13) about the zero history is the constitutive relation for a physically reasonable

linear viscoelastic solid of the Boltzmann type.Coleman, Gurtin, and Herrera [31 and Coleman and Gurtin [2] have studied propagation

of singularities in materials with fading memory under hypotheses quite similar to those

above. The work of Coleman and Gurtin [2] on growth and decay of acceleration waves

provides a great deal of insight into the dissipative effects of memory. An acceleration

wave is similar to a shock wave, the difference being that jumps occur in second (rather

than first) derivatives of u. The amplitude of such a wave is defined to be the magnitude

of the jump in utt. %d

Coleman and Gurtin showed that the amplitude of an acceleration wave decays to zero as

t -, provided that its initial amplitude is sufficiently small. On the other hand, the

'b amplitude of an acceleration wave can become infinite in finite time if its initial -.

amplitude is too large. This indicates the presence of a natural damping mechanism which
'pI.

is effective for "small" motions and ineffective for "large" motions, and suggests that

-7-
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%T.

(3.16), (3.17) should have a globally defined classical solution if f and v are

suitably smooth and small.

Results of this type have been obtained by a number of authors for the constitutive

equation

O(x,t) 0(;t(xO)) - m(s)*(ct(xs))ds (3.19)

under physically reasonable assumptions on 4, 4, and m. Small-data global existence

% theorems have been given for the special case E -, by MacCamy [20], Dafermos and Nohel

[91, and Staffans [26], and for 0 different from 4 by Dafermos and Nobel (10] and Hrusa

and Nohel [16]. Moreover, Hattori (13] has shown (for the case 4 4,) that if 0" if 0,

then there are suitably large data of arbitrary smoothness for which (3.16) does not have a
globally defined smooth solution. We refer the reader to the survey paper of Hrusa and

Nobel [15] for a much more complete discussion of the equation of motion corresponding to

(3.19).

In order for a function u : B x (-.,T] + R to describe a physically meaningful

motion, it should satisfy ux(x,t) > -1 (i.e., E(x,t) > -1) for all x e B,

' t e (- ,T]. Thus the physically natural domain of G on Vhp should consist only of

functions belonging to r :_ {w e Vh,p : w(O) > -1, w > -1 a.e. on (0,")). It is easy to

see that the interior of this set is empty. (In fact, r is nowhere dense in Vhp.) In
%.

%' %the principle of fading memory, as stated above, it is tacitly assumed that G admits aa-..

-' ,smooth extension from a subset of r to a full neighborhood of zero. The assumption

of Frfchet differentiability of G can be replaced by a weaker type of differentiability

condition that only requires G to be defined on F. (The same comment applies to the

additional smoothness assumptions imposed in the next section.) We refer the reader to the

paper of Mizel and Wang (22], where such a condition is proposed and is shown to suffice

for chain rules.

%4%
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4. Existence of Solutions

In this section we discuss global existence of solutions to the history value problem

(3.16), (3.17). For definiteness, we treat the case where B = [0,1] and homogeneous

Dirichlet boundary conditions are imposed. In particular, we consider the history-boundary

"'" 
~~~value problem 

ut't

u t(x,.))t + f(x,t), x e [0,1], t ) 0 (4.1)

tt x (~t) G(u (4.1)

u(0,t) 
- u(1,t) = 0 , -< C t < , (4.2)

u(x,t) - v(x,t) , x e (0,1], t 4 P (4.3)

Other types of boundary conditions (with B - [0,1]) are dif :sed in [14]. Due to the

lack of Poincar6-type inequalities on all of space, the resu7 of [14] do not apply

directly to the pure history value problem with B - R. Alt he details have not been

carried out, a modification of the procedure recently employed wy Hrusa and Nohel [16] (for

the constitutive relation (3.19)) can be used in conjunction with the arguments of (14] to

establish a similar global existence result for the history value problem (3.16), (3.17)

with B -R.

Throughout this section we assume that we have been given a real number p with "''

1 4 p ( -, an influence function h, and a neighborhood f of zero in Vh,P such that

G : n + R is continuously (Frfchet) differentiable. Moreover, we let E, M, and K be

related to G' as in the preceeding section and we denote by q the conjugate exponent

of p. In addition, we assume that

'..
(A-1) E : + R is twice continuously differentiable.

(A-2) The mapping w - M(w,.) is twice continuously differentiable from n to

Lq ((0,)/h).

(A-3) For each w e CI [0,") n n with w e Vh,p, the function K(w,.) belongs to

C (0,"). Moreover, there exists a locally Lipschitz function N x x V +

A.'L ( O -/ ) such thath 
p~h5p

d_
K(w,s) = N(w,w)(s)h(s) V a > 0 (4.4) S

-9-
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\ •.

for all w e C [0,-) n n with w e Vh,p.

(A-4) The function a . [0,w) + R defined by

at K(0,s)ds V t > 0 (4.5)

belongs to L q((O,-)/h).

(A-5) K(0,.) is nonnegative and nonincreasing, and

0 < Kf K(O,s)ds < E(O) (4.6)

Condition (A-3) is somewhat implicit. It can be replaced by a more explicit

assumption (as in [14]) which requires the mapping (w,s) H K(w,s) to be smooth from

Q) x (0,) to R. However, the more implicit (A-3) is substantially weaker. The

mechanistic interpretation of (A-5) was discussed in the last section.

Of the body force f, we require

fx ft e C([O,-); L (0,1)) n L ([0,-); L 2(0,1)) (4.7)

2 2
f e L ([0,-); L (0,1)) , (4.8)
tt

f(0,t) = f(1,t) 0 V t ) 0 , (4.9)

and of v we assume that

V , Vv t , V X V xt, V tt ' vXxx' xxt'

2 (4.10)
V e C((-,0]; L2(0,1))1
xtt

v(0,t) = V (0,t) = V(1,t) V (1,t) = 0 V t 4 0 (4.11)

We also impose the compatibility condition

vt(x'0) G(V (x,0)) + f(x,0) V x e [0,11 (4.12)

2
It follows from (4.10) and standard embedding theorems that v e C ([0,1] x -,0]).

As noted earlier, a global solution is to be expected only if f and v are suitably

small. To measure the sizes of f and v we define

%1'. 1 2 2
J. % .0 FM sup, f0 {f + f t}(x,t)dx

t>o
(4.13)

+ 1,1(f f2 f 2

and00 + 2 f~t}(x,t)dxdt
and

-10-
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- 2 2

(v I- 1 (v 
2  + + v2 x,0)dx) 

p/ 2

0 xxx xt xtt

+ J 0 (f 00  xxx +vxxt + vxtt ) (x,-s)dxlp 2 h(s)d s  (4.14) ,-'- + ;<s <s ,,0 +.. + ,,,V2 -,,x,,:,,
.", Ixxx xxt xt s,,,d) h.tld) 2/Pdt•

Observe that V(v) also provides control of lower order derivatives of v by virtue of

(4.11) and the Poincar6 inequalities. A similar comment applies to F(f).

Theorem 4.1: Assume that (A-I) through (A-5) hold. Then, there exists a constant 5 > 0

such that for each f and v which satisfy (4.7) through (4.12) and

F(f) + V(v)(5 , (4.15)

the history-boundary value problem (4.1), (4.2), (4.3) has a unique solution

2
u e C ([0,1] x (-ei)). Moreover, the restriction of u to [0,1] x [0,a) satisfies

u, u u U u, u xx u tU

222(4.16)

uttt e C([0,-); L(0,1)) n L ([0,-); L (0,1))

u (xt) >-1 v x e (0,1], t ) 0 , (4.17)

and, as t + ,

U, ux , ut, Uxx utt + 0 (4.18)

uniformly on [0,1].

Remark 4.1: If there exists a function g e L (0,-) such that %

h(t+s) ( (g(t))P 2h(s) V ts > 0 , (4.19)
then F(f) can be replaced by (f) in Theorem 4.1, where

-- ( {vv2 2 t}(x,05dx)P/2 -: v2 + v2  + v2

x xt xtt

1+0 (10 <s vL +x ,xxt vxtt} (x,-s)dx)P/h( s)ds

Indeed, in this case, F(f) small implies that F(f) is also small.

-11-
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Remark 4.2: It is clear that exponential influence functions of the form h(s) 2 e

with u > 0 satisfy the condition of Remark 4.1. Conversely, it follows from results of

Coleman and Mizel [4] that if h satisfies (4.19) for some g e L (0,-), then there exist

a, > 0 such that h(s) ae s  for almost all s > 0.

The proof of this theorem involves two main steps. First, one establishes the

existence of a unique local solution defined on a maximal time interval [0,T 0 ) with the

property that if T < f, a certain norm of the solution becomes unbounded as t f T
0 0

The existence of such a local solution can be established by a more or less routine

iteration procedure and continuation argument. A priori estimates of energy type are then

used to show that the aforementioned norm remains bounded on [0,T 0 ). These estimates also

yield (4.17) and (4.18). Although the assumptions are stated somewhat differently here,

the details of the proof are almost exactly the same as in [14].
4-.

There are two important differences between our assumptions here and those in (14].

, -Only the case p - 2 was discussed explicitly in [14], although it was pointed out that

the analysis can be easily adapted to any p with I < p < -. The other major difference

-, involves the smoothness assumptions on K. In (14], K was regarded as a mapping from

n x (0,-) to R (and the function M was not explicitly introduced). Assumptions (A-2)

and (A-3) are more efficient and considerably weaker than the corresponding conditions

imposed on K in (14].

*554" It is interesting to observe that equation (4.1) has a slight regularizing effect in

the time variable. Indeed, our assumptions on v do not imply that vttt  exists as a
J2

function, and yet utt t  belongs to C([0,W)i L (0,1)). In fact, the smoothness assumption

2
on v can be weakened slightly (e.g., C((- ,0]; L (0,1)) can be replaced by

*4" -. L2
((-L,0] L (0,1)) in (4.10)) and (4.1), (4.2), (4.3) will still have a solution u

which satisfies (4.16).

Conditions (4.9) and (4.11), which express compatibility of f and v with the

boundary conditions, can be weakened. However, one must then modify the definitions of

-12-
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- F(f) and V(v) to include terms involving f itself and lower order derivatives of v.

Moreover, in this case, the a priori estimates of [14] require substantial modifications.

Finally, we remark that the compatibility assumption (4.12) is not essential. if it

is dropped, the solution u will still satisfy (4.16). However, utt will be discon-

tinuous across t 0 if (4.12) is violated.
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