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ABSTRACT

The possibility of expressing any B-spline as a positive combination of

B-splines on a finer knot sequence is used to give a simple proof of the total

positivity of the spline collocation matrix.
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SIGNIFICANCY AND EXPLANATION

The total positivity of the spline collocation matrix is the basis of

several important results in univariate spline theory. This makes it

desirable to provide as simple as possible a proof of this total positivity.

The proofs available in the literature don't qualify since they-all rely on

certain determinant identities which are not exactly intuitive. W give her-L

a proof that uses nothing more than Cramer's rule (hard to avoid since total

positivity is a statement about determinants) and the geometrically obvious

fact that a B-spline can always be written as a positive combination of

B-splines on a finer knot sequence.

The geometric intuition appealed to here stems from the area of Computer-

Aided Design in which a spline is constructed and manipulated through its

B-polygon, a broken line whose vertices correspond to the B-spline

coefficients. If a knot is added (to provide greater potential flexibility),

the now B-polygon is obtained by interpolation to the old. This has led Lane

and Riesenfeld to a proof of the variation diminishing property of the spline

collocation matrix and is shown here to provide a proof of the total

positivity as well.

The responsibility for the wording and views expressed in this descriptive
slnsary lies with URC, and not with the authors of this report.

ONE"I



A GEOMETRIC PROOF OF TOTAL POSITIVITY FOR SPLINE INTERPOLATION

C. de Boor
1 and R. DeVore

1 '2

11. Introduction. Perhaps a better title would be "Adding a knot can be

illuminating" since the purpose of this note is to show how this idea can be used to give

simple proofs of several important properties of B-splines, including the total positivity

of the B-spline collocation matrix and the sign variation diminishing property of the B-

spline representation. We show that variation diminution follows immediately from the

fact that a B-spline on a given grid is a non-negative linear combination of B-splines on V
a refined grid. We use the same fact to prove the non-negativity of any minor of the

collocation matrix and, with a bit more care, even characterize which of these minors are

positive.

The total positivity of the collocation matrix was originally proved by S. Karlin [5]

in his development of the general theory of total positivity. Later C. de Boor gave a

spline specific proof (3]. In both cases, variation diminution was derived as a

consequence of total positivity. We obtain both properties directly. This was motivated

in part by the work of J. Lane and R. Riesenfeld (6], who gave a direct proof of variation

diminution based on spline evaluation algorithms used in computer-aided design which can

be interpreted as "adding knots". But we follow B~hm's idea [1] of adding one knot at a

time. We note that Jia [4] has done related work concerning the total positivity of the

discrete B-spline collocation matrix.

Let k > 0 be a fixed integer which is the order of the splines. We call

t (ti)i+ k a knot sequence if ti 4 ti+1, 1 ( i < n + k and ti < ti+k, i 1,...,n.

The B-splines of order k for this knot sequence L are given by

iSponsored by the United States Army under Contract No. DAAG29-80-C-0041.

2Supported by the National Science Foundation under Grant No. 8101661.
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(1.1) i(X) so Vi~Lt(x) so (tifk - ti)[tl#,...,ti44k](* - X)
k
-1

,  
"1,.,

where It, ... ti k ) denotes a k-th order divided difference and u. so mx(u,O) It

follows that NL • 0 and supp Nj - (ti,ti+k). on each interval (tjttj+,)# Ni is a

polynomial of order k (degree < k). The B-eplines are linearly independent and

) S 1 on (tk,tnl. in particular if the number x 9 (tiotn+k ) appears exactly

k-1 times in t, then there is only one B-spline which is non-zero at x and its value

at x is one. For these and other properties of a-splines, see (31.

;2. Knot refinement. We say that the knot sequence a is a refimismmot of t if

c contains t as a subsequence. Our only tool in the subsequent arguments is the

observation that

(2.1) any B-spline Ne - N),t is a positive linear combination of isme of the

3-splines 3 3 - N1j,, for the refined knot sequence a . Precisely,

N M 1 i N~

with a@ nonnegative, and supp a- (1,u] , where (ejt,*,+k) is the smallest

of es s containing (tJ 1 .. tj+k) as a subsecuence.

We first prove (2.1) for the special case that

tv1 OV tv .

i.e., s is obtained from t by the addition of the knot a. (satisfying tv..1 4 &v

t v , of course). Then

(2.2) 
N - W for J+k < v

N ;+ for v j

For j < v 4 J+k , we have two ways of writing the divided difference [5j...,ej+k 
1

J + 1 - . 8 1 .

aj+k+l"j ) 8 J+k+i"*V

with Bi I fail ... i+k) Tj so Ii 1 ... Iti+kJ - Therefore

(ti+k - tj)T ( - ), + (8+k1 - V3)ffJ41

hence
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v - sj+k+1
(2.3) NJ= N; + N+ -

J < v •
J+k - ~ J+k+l-J+l

We can combine this with (2.2) into one formula, as follows: !A

(2.4a) N1  - (1 - yj)N3 + YJ+INI+, all J

with (s;j+k- % +  I) alh.-
(2.4b) : ( ll- 1

Consequently , [ i

[j] , if jjk  ks

(2.5) supp o.J - [j,j+l] , if t < s < tJ+k

[j+1] if 8 v 4 tj

and this finishes the proof of (2.1) for this case.

The general case follows from the repeated application of this special case, by

induction: 8uppose that r is, in turn, a refinement of s , hence

NI 1a(1) NI

with NJ = Nt,r Then it follows that

(2.6) N " J 0() N; , with %1(1) -. (i)(L) •

Therefore 0 ) 0 since we already know that , a) 0 . Further

supp Bj = uU supp Cq - [,u'],

with (r1,, ... , ru,+k) the smallest segment of r containing (t, ., su+k )  a

subsequence. out, since [,u) is the support of J, i.e., (s, .... su+k ) is the

smallest segment of a containing (tj,...,tj+k) , it follows that (r....,ru,+k) is

also the smallest segment of r containing (tj,...,tJ+k) •

The coefficient function ai in (2.1) has been called a discrete 3-spLme. The

above argument shows that the matrix (aj(1i)) is the product of bi-diagonal matrices with i

nonnegative entries, hence totally positive by Cauchy-Binet. This is the basic idea behind

the proof of such total positivity in Jia (4].

-3-



13. Variation diminution. We use the customary notation SW(a) for the number of

(strong) sign changes in the sequence or function a. We want to show that S'(E XNj) 4C
n

S"(3. i.e., the spline f a- )A N changes sign no more often than its coefficient
I

sequence A. This follows from

(3.1) i) if f s- l A.U -j .N T; with N' t- aj.. and a a refinement of t , then

S'CA) ) S'(_) ,

ii) if. in addition, x 6 (tltn+k) apsears as a knot in a with (exact)

multiplicity k-1 * then A - f(x) for some j

Property ii) is clear. To prove property i), we first consider the special case

when a is obtained from t by the addition of a single knot. In that case, we infer

from (2.4) that
n n

Therefore

(3.2) A 191 IN 116 with I; a- iA~ J + (1-Y j)AJ all

(mere, we set A0 v- 0 .) Bince 6 C 0,1), this implies that 8"(XjI, 3 , j ) -

'(1 .19,j). Therefore '(_) - S-( .... . 3, I, l 1, 3.... ) ), S-(A')

This shows (3.1.1) for a mingle knot refinmnt. But then by induction we gt (3.1.) for

any refinement.

Theorem 1. (Variation Diminishing Property). 8(Z A 13) C "1)

Proof. Let f - )-I A U We want to show that, for any increasing real sequence

), ((f(xQ))) 4 S(Q) We can assume that the z, are not knots and that "i

(tlutnk) (since f a 0 outside this interval). Let a be a knot refinement of t such

that each a, appears exactly k - I times in a. Then from (3.1.11) the sequence

(fsI)'is a subsequence of X and the desired result follows from 03. 1 i). -

It is sometimes useful to visualize the coefficients (A) geometrically. If

L -I- (tj 1 + ... + tjk. 1 )/(k - 1). then the continuous piecewise linear function

-' P(ft) with vertices (t 1 ,A 1 ). j - I,...,n is called the B-polyg m of f. This polygon

-4-



changes sign exactly as often as X. For a single knot refinement s of t, the

points s are related to t* as in (3.2), i.e.,

s = Yjr;_1 + (1-,Y1 )t.

Hence the vertices of P(f,s) lie on P(f,t); which is another way of viewing property

(3.1.i).

14. Spline interpolation. We now consider spline interpolation at nodes (xi)n,

x1 < x2 < ... < x, (later we allow coalescence). Given (yj)n, we have the

interpolation problem
n

(4.1) N jj(x i} Yi, i =1,...,n

j-1

with coefficient matrix

(4.2) A :- At :- (Nj(xi))i..i

In case xi - tj, we require that this point appear at most a total of k times in x

and t.

We will show that A is totally positive and furthermore characterize which minors

of A are strictly positive. For this, let B be a square submatrix of A

B - A(I,J) := (Nj(xi))iei,jej

with I and J subsequences of (1,2,...,n) of the same length,

I -: (iI, . ... ' ) ' J -: (Jl' "'''Jm )  I

say. We call such a submatrix "good" if all its diagonal entries are nonzero. This is a

natural distinction to make here because

(4.3) if B is not "good", then det B = 0

Indeed, assume that Njp (Xi p) = 0 for some p . Then xip 0 (t.p~tjp+k) • Assume that

xi P tj . Then Nj(xq) - 0 for q < ip, j ) jp , and this shows that columns p,

m., s of B have nonzero entries only in rows p+l, ..., m , hence are linearly

dependent. So, det B = 0 . The argument for the case xi t) +k is similar.
p p

-5-
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Next, we write dot B as a linear combination of determinants of the form A'(I,K)

with A

and (N3) the B-splines for a refinement a of t . Precisely, we claim that, for a

certain nonnegative aj

(4.4a) dot A(I,J) = )+aj(K) dot A'(IK)

with the superscript "+" indicating that the sum is only over jASE"MM K • Further,

(4.4b) supp aj = supp ej,

where aj(K) :- a1 1 (k1 ) -*. ao(ks) and the 9 are as in (2.1).

For the proof, we consider first the special case that a is obtained from t by

the addition of a single knot. Since Nt = e .j(i)Nl by (2.1), the linearity of the

determinant as a function of the columns gives

(4.5) dot A(I,J) - ) 4j(K) dot A'(IK)

with aj(E) :W J1 (ki) *- ain(ka) • Recall from (2.5) that supp ej C [,j+1]

Therefore, retaining in (4.5) only terms with aj(K) pi 0 , we have k- jp or Jp+

all p . Thus K is strictly increasing unless kp - kp+l for sme p (possible in

case jp+1 - jp+j ). But in the latter case, the determinant is trivially zero and hence

can be ignored. This finishes the proof of (4.4) for this special case.

We prove the general case by induction on the length difference d s- Is1 - It,

having just proved it for d - 1 Assuming it correct for a given d , let r be a

refinement of t with ItI - It._ - d+l and let a be a one-point refinement of jt

which i refined by r . Then, with

A" s- (.;(x,)) and N; :- N , all j

we have 33 - Z a(i) NJ - Further, from (4.5) and the induction hypothesis,

dot A(IJ) - I b 3(L) dot A"(I,L)

with

(4.6) b3 (L) : + ej(K)a*(L) ) 0

which makes (4.4a) obvious.

-6-



The proof of (4.4b) is a bit more complicated. It can be skipped if only the total

positivity of A is of interest. We must show that supp bj = supp Oj , with Oj(L) :=

OjI(1 I ) ... Bjm(I) . Suppose first that Oj(L) - 0 . Then Oj(1) = 0 for some e J,

A e L . Therefore, from (2.6), E aj(i) aj(f) - 0 , and, since all terms in this sum are

nonnegative, they must all be zero. Thus, Qj(K)c(L) - 0 for all K . But by induction

hypothesis, supp aj - supp aj , therefore also aj(K) aj(L) 0 for all K . We

conclude with (4.6) that supp bj C supp Oj .

To see that supp bj D supp Oj , we must show that

(4.7) Bj(L) # 0 implies qj(K) ai(L) 0 0 for some increasing K

Since supp ak - supp ft , this implies that (K)a(L) 0 0 for this increasing K

hence also bj(L) 0 0 from (4.6).

For the proof of (4.7), it is sufficient to show the existence of a K with

(4.8) kp e Ajp :- i : a(i)az(1) p 01 , all p

and kp < kp+l , all p . Since

OJ(L - CaJ(i)05(t) + mj(J+I)%3+1 (,)

O3 (L) # 0 implies that

0 0 Aj C {j,j+l) , all j e J

Hence, the existence of K satisfying (4.8) is assured. To finish the proof, we must

show that it is possible to choose such a K which is also increasing. If Aj fl A Jp+1
p ~+

,then we have kp < kp+1  for any K satisfying (4.8). Thus we only have to consider

how to choose the components of K corresponding to a anacte4 ocoment Aj , ... ,
p

A q • By this we mean that

A J n AjlA, for p ( v < q,

while, for any i # Jp, ..., Jq I

Ai n AjV for p 4 v q•

Then we can write (jp,...,Jq) - (J,J+1,...,J') , hence, q-p - j'-j . Further, i e Ai

for i - J+1 , ... ,J . Hence, if also j e A1 , then the choice kv - J, , all v will

do. In the sam way, we have i+I e Ai for i j, ..., J'-1 . Hence, if j'+1 e Aj, I

-7-



then the choice kv - Jv
+ ! 

* all v , will do. We claim that the remaining case

J 0 Aj and J'+1 0 Ajo

cannot occur since it would imply that there are at least k entries in r between

rp and r. k . Indeed, with supp 04 -: (1,u], it would follow that u < while

also Iq < i' , with supp at,+l -: (0',u'1 . Further, let sV be the additional knot

in 9 . Then, by (2.5), Ai n Ai+l WI o implies supp ae - (i,i+l} , hence, by (2.5), si <

8v < Si+k , i-j,...,Jl , therefore @j.+1 < Sj+ k , and so V < u+k while also p+k - q-1

= Jek - (j1+l) 4 u+k - I' • This would imply that

,p <p+1 < ... < - < u+k < ,p+k

hence k - L,4k - 1p ) I + (u+k-tl') 4 I + q-p A 1 + (p+k-q-1) + I + q-p = k+1

Theorem 2. The matrix A of (4.2) is totally positi' ftreover, the submatrix

8 of A formed by rows i1,...i and columns as,...,j _a a positive determinant if

and only if it is "good". i.e.,

xi * supp NJ, V ,...,
v

Prooff. We already proved that det B = 0 unless B is "good". Now, to prove that a

"good" a has a positive determinant, we choose a refinement s of t so fine that

(4.9) for each i 6 1 , N;(xi) 0 0 implies that N3(xp) - 0 for all p 0 i

Then each A'(IK) appearing in (4.4a) has at most one nonzero entry in each column,

hence is "good", therefore nonzero, only if it is diagonal, in which case its determinant

is obviously positive. To finish the proof, we must show that at least one of the

matrices appearing in the sum in (4.4a) with a positive coefficient is "good*. Here is

one such. Choose K so that sk is the first point in s to the left of xip

*-1,..., . Since Nj p(Xi ) iP 0 , this implies that ajp (k.) 0 0 , all p • I

Corollary. (I. schoenberg and A. Whitney [71). The interpolation problem (4.1) has

a unique solution for all (yi)q if and only if xi e supp Ni, i - 1,... ,n.

18-



We can also allow coalescence of the interpolation nodes. If (zi ) is such a

nondecreasing sequence of nodes, then we can think of it as the limit of strictly

increasing sequences (xi) . Correspondingly, repetition of a zi  corresponds to repeated

or osculatory interpolation, i.e., the matching of higher derivatives. Precisely, (4.1)

becomes

n 11UN (Z.. 1, . ,(4.10) X.D i.z.) , ' 1...,n

where ui is the number of j < i for which zj = zi . We still iequire that any point

appear at most k times totally in z and t. The coefficient matrix of (4.7) is

4.11) A : A ,z = (D 1 (z ))n j

It is clear that A need not be totally positive since entries involving derivatives

may be negative. However, as a well-known argument shows, if M is a minor formed by

rows i ,...,im and columns jl,...,Jm with the property

(4.12) iv I < iV - i implies zi -1 < zi I V .... ,
V V

then M ) 0. In fact, if M(x) denotes a minor corresponding to distinct nodes

A = (xl,...,Xm), then subtracting row one from row two shows that M(x)/(x 2 - x1 )

converges as x2  + xi to the minor MI which replaces row two of M() by first

derivatives at xi . Hence M' ) 0. Using this type of limiting process we see that any

minor M satisfying (4.12) is non-negative.

We can also characterize those M satisfying (4.12) which are positive, namely, they

satisfy

(4.13) zi e supp N. , V = 1,...mv 3v

The necessity of (4.13) is proved in the same way that the necessity of (4.9) was

established.

The sufficiency of (4.13) is proved by making slight modifications to the earlier

proof. For this, it will be convenient to allow a point zi to appear a total of more

-9-



than k times in a and x. This is acceptable provided we stipulate that all 9-

splines and their derivatives be interpreted as right limits at such si, that is at

Z+. With this, let a be a refinement of t such that each node zi appears as a knot

in a exactly k times, and similarly each t I appears in a exactly k times. If

3 satisfies (4.13), we choose L so that a - i  and the number of J < Ip with

p P
sj- s is Up. Since the coefficients a(t) in (4.4a) are independent of x , we

P
then obtain det A(I,J} as a positive combination of certain (nonnegative) minorS of A'

- Ai's In particular, the submatrix A'(J,L) will appear in that sun with positive

coefficient since aj(L) > 0 , and dot A'(J,L) > 0 since A'(J,L) is lower triangular

with positive diagonal. We have therefore proved the following theorem.

Theorem 3. For the matrix A of (4.11), and each 1, 3 satisfying (4.12),

det A(I,J) ) 0 . This minor is positive if and only if (4.13) is satisfied. in

particular (4.10) has a unique solution if and only if z I e supp vi, i = 1,...,n.
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