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\ SIGNIFICANCF AND FXPLANATION
>

The total positivity of the spline collocation matrix is the basis of
several important results in univariate spline theory. This makes it

desirable to provide as simple as possible a proof of this total positivity.

FPERTA

The proofs available in the literature don't qualify since tﬂey-all rely on

certain determinant identities which are not exactly intuitive. Wé give here- <L

a proof that uses nothing more than Cramer's rule (hard to avoid since total
positivity is a statement about determinants) and the geometrically obvious
fact that a B-spline can always be written as a positive combination of
B-splines on a finer knot sequence.

The geometric intuition appealed to here stems from the area of Computer-
Aided Design in which a spline is constructed and manipulated through its
B=-polygon, a broken line whose vertices correspond to the B-spline
coefficients. If a knot is added (to provide greater potential flexibility),
the new B-polygon is obtained by interpolation to the old. This has led lane
and Riesenfeld to a proof of the variation diminishing property of the spline
collocation matrix and is shown here to provide a proof of the total

positivity as well.
"

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

A PrT ST SNV




A GEOMETRIC PROOF OF TOTAL POSITIVITY FOR SPLINE INTERPOLATION

1 1,2

C. de Boor' and R. DeVore .

§1. Introduction. Perhaps a better title would be "Adding a knot can be
illuminating” since the purpose of this note is to show how this idea can be used to give
simple proofs of several important properties of B-splines, including the total positivity o
of the B-spline collocation matrix and the sign variation diminishing property of the B- -
spline representation. We show that variation diminution follows immediately from the Q
fact that a B-spline on a given grid is a non-negative linear combination of B-splines on
a refined grid. We use the same fact to prove the non-negativity of any minor of the
collocation matrix and, with a bit more care, even characterize which of these minors are I
positive.

The total positivity of the collocation matrix was originally proved by S. Karlin (5]
in his development of the general theory of total positivity. Later C. de Boor gave a
spline specific proof (3]. In both cases, variation diminution was derived as a
consequence of total positivity. We obtain both properties directly. This was motivated

in part by the work of J. Lane and R. Riesenfeld (6], who gave a direct proof of variation

diminution based on spline evaluation algorithms used in computer-aided design which can
be interpreted as "adding knots". But we follow B8hm's idea [1] of adding one knot at a
time. We note that Jia [4] has done related work concerning the total positivity of the C 4
discrete B-spline collocation matrix.

Let k > 0 be a fixed integer which is the order of the splines. We call
t ;= (ti)?*k a knot sequence if ty € tj,q, 1 <1 <n+ %k and ty <ty i =1...,n h

The B-splines of order k for this knot sequence t are given by

1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

2Supported by the National Science Foundation under Grant No. 8101661.




(1.1) '1(3) t= -i'ﬁ(x) t= (ti*k - ti)[t‘o---:t‘*](‘ - 3’2-10 1= %040,

where [tj,...,tj4] denotes a k-th order divided difference and u, 1= max{u,0}. It
follows that N; >0 and supp Ny = (ty,t;,x). On each interval (t,.tjﬂ). Ny is a
polynomial of order k (degree < k). The B-splines are linearly independent and

1 Ny 21 on (ty,tpl. In particular if the number x @ (ty,t,,,) &ppears exactly

k-1 times in t, then there is only one B-spline which is non-zero at x and its value

at x is one. Por these and other properties of B-splines, see [3].

§2. Xnot refinement. We say that the knot sequence 8 is a refinememt of t if
8 contains t as a subsequence. Our only tool in the subsequent arguments is the
observation that
(2. 1) any B-spline llj - “3'5 is a positive linear combination of some of the

B-splines l:', = Nj'. for the refined knot sequence s . Precisely,
N 5 -) a’(:l.) ni

with ay nonnegative, and supp ay = (2,u] , where (s,,s,,,) is the smallest

seguent of s containing (t,,...,t#k) as_a subsequence.
We first prove (2.1) for the special case that

B % (ever Byagr By Ty oon )
i.e., 8 is obtained from t by the addition of the knot s, (satisfying t, 4 < s, ¢
t, . of courae). Then
LM for j+k < v

(2.2) N, = .
‘3." for v <3

Por 3 ¢ v € j+k , we have two ways of writing the divided difference [lj,...,-jﬂ‘”) ]

8,.,-8 ?, -

_21__-_1 = s r000s8 §k+‘|] _L—-—i ,
Byexe1™?y 3 3 ekt

with " = t'i"""i“k) ’ Ti 3= [ti"“'ti’k) « Therefore

(ej*k - tj”j = (s, - .j’sj + (.j+k#1 - l“)3,+1 .

hence
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[} -8 - -8
(2.3) N, = 22y 4 Ll vNi_" R EELE
40k~ %y ] 854 +1 B34

We can combine this with (2.2) into one formula, as follows:

(2.4a) Ny o= (1= YNG4 ygNyq . all g,
with
(‘Iﬂg-‘v)#»
(2.4b) v, = min { — — 1}, a1l 3.
3 i~ %
Consequently,
13} DALty Cay
(2.5) supp oy = [§,3+1) , if tj <8 < tj+k
{3411, if s, < tj

and this finishes the proof of (2.1) for this case.
The general case follows from the repeated application of this special case, by
induction: Suppose that r is, in turn, a refinement of s , hence
Ni =) ai(l) N'i ‘'
with Nj := “l,r « Then it follows that

(2.6) Ny = L Bju) N§ . with B () = 4 aj(i)ci(l) .

3
Therefore Bj > 0 since we already know that ay a:', > 0 . Further

nd U - [L',u'] ,
supp sj Leluppuj‘upp o "

with (rgs, eses Tyryg) the smallest segment of r containing (mg, ..., B,.x) as a
subsequence. But, since ([f,u] is the support of ay 4 i.e., (mg, ooes Byyx) is the
smallest segment of 8 containing (ty,...,tyy) » it follows that (Tgsi,ees,Tyiyy) i8
also the smallest segment of r containing “’-j"""'-jﬂ() .

The coefficient function ay in (2.1) has been called a discrete B-spline. The
above argument shows that the matrix (aj(i)) ie the product of bi~diagonal matrices with
nonnegative entries, hence totally positive by Cauchy-Binet. This is the basic idea behind

the proof of such total positivity in Jia ([4].
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§3. Variation diminution. We use the customary notation 87 (a) for the number of
(strong) sign changes in the sequence or function a. We want to show that S57(I *j“j’ <
87(\), i.e., the spline £ ;= ;{‘ Ajﬂj
sequence ). This follows from:

changes sign no more often than its coefficient

(3.1) 1) 4if £ =) ljllj =-) liu; with N} 1= Ny, and s a refinement of t , then

87(A) >87(1)

i) if, in sddition, x @ (ty,t.,,) appears as a knot in s with (exact)

mltiplicity k=1, then X; = f(x) for some § .

Property ii) is clear. To prove property i), we first consider the special case
when s is obtained from t by the addition of a single knot. In that case, we infer
from (2.4) that

n n

N, = A 1=~ M A .

TR R TG R L
Therefore
(3.2) ) Ajlj =) Aiui with As 1= 1113_1 + “-Yj”j , all 3} .
(Here, we set g := 0 .) Since vy € [0,1], this implies that 87(Ay_q, A}, 2y) =
87(Ay.q.2y). Therefors 87(X) = 87 .ecodyiqs A§e Ags Ajyqs co0 ) 2 8T(AY) .
This shows (3.1.i) for a single knot refinement. But then by induction we get (3.1.i) for

any refinement.

Theorea 1. (Variation Diminishing Property). 87(I ljuj) < 87(A) .

Proof. lLet £ =~ )_': A jll 3° We want to show that, for any increasing real sequence
(:1)% ¢ 87((£(2{))) € 87(1) . We can assume that the =z, are not knots and that z, €
(tqotpyx) (since £ = 0 outside this interval). Let s be a knot refinement of t such
that each =, appears exactly k - 1 times in s. Then from (3.1.1i) the sequence
(f(l‘)]: is a subsequence of ) and the desired result follows from (3.1.i). |||

It is sometimes useful to visualize the coefficients (A,) geometrically. 1If

p

t; 1= (tyyq * 000 ¢ tjﬂ:-\""‘ = 1), then the continuous piecewise linear function

L]

P(f,t) with vertices (tj,lj). 3= 1,...,n 48 called the B~polygom of f. This polygon

4=

o - ._-4‘,.U




changes sign exactly as often as ). For a single knot refinement s of t, the

points s; are related to t; as in (3.2), i.e.,

: e+ (1my ]
83 = Yitj-1 Yylty -
Hence the vertices of P(f,s) 1lie on P(f,t); which is another way of viewing property

(3.1.4).

§4. spline interpolation. We now consider spline interpolation at nodes (xi)?,

Xy < xp3 < s ¢ x, (later we allow coalescence). Given (yj)?, we have the

interpolation problem

n
(4.1) ‘l X.Nj(xi) =¥ i=1,..0,n
=1

with coefficient matrix
sz o n
(4.2) A : 52 H (Nj(xl))i,j=1 .

In case x; = tj, we require that this point appear at most a total of k times in x
and t.

We will show that A is totally positive and furthermore characterize which minors
of A are strictly positive. For this, let B be a square submatrix of A ,

B = ALJI) := (Ny(x;))jer, jeq ¢
with I and J subsequences of (1,2,...,n) of the same length,
Io=: (1q, eveyp dig) v T = (Jq0 cerdy)

say. We call such a submatrix "good” if all its diagonal entries are nonzero. This is a
natural distinction to make here because

(4.3) if B is not "good", then det B = 0 .

Indeed, assume that N, (x, ) = 0 for some p . Then x. € (t. ,t. ) . Assume that
Ip ip p Jp' TIptk

x; < tj .« Then Nj(xq) =0 for q < 1p PR I jp , and this shows that columns p,
P 4

«»e, m of B have nonzero entries only in rows p+1, ..., m , hence are linearly

dependent. So, det B = 0 . The argument for the case x; » tj + 18 similar.
P p
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Next, we write det B as a linear combination of determinants of the form A°'(I,K)

with |

A' = (ll;(xi))

and (li) the B-splines for a vefinement 8 of t . Precisely, we claim that, for a

certain nonnegative a; ,
(4.4a) det A(I,J) = )*aj(KX) det A'(I,K)

with the superscript "+" indicating that the sum is only over imcreasisg K . Further,

(4.4b) supp a3 = supp aj
where ay(K) := aj1(k1) e aj-(k-) and the oy are as in (2.1).

For the proof, we consider first the special case that s is obtained from t by
the addition of a single knot. Since Nj =) cj(i)lq by (2.1), the linearity of the
determinant as a function of the columns gives

(4.5) det A(I,J) = ) a;(K) det A'(I,K)

with az(K) = ah(k‘) (X1 uj-(k-) « Recall from (2.5) that supp ay C (3.3+1] .
Therefore, retaining in (4.5) only terms with ay(K) ¥ 0 , we have kp = jp or jpﬂ v
all p . Thus K 1is strictly increasing unless kp - kp," for some p (possible in

case jp-ﬂ - jp," ). But in the latter case, the determinant is trivially zero and hence

can be ignored. This finishes the proof of (4.4) for this special case.
We prove the general case by induction on the length difference 4 := |s| - |t| ,
having just proved it for 4 = 1 . Aasuming it correct for a given d , let r be a

refinement of t with |r| ~ |t| = a*1 and let s be a one-point refinement of |t}

which is refined by r . Then, with

A" = (N;(xi)) and N := ,all 3,

357 M
we have “3 =T ai(l) N§ - Further, from (4.5) and the induction hypothesis,
det A(1,3) = )'B (L) det A®(1,1)

with

(4.6) by(L) = }* ay(Rrag) >0,

which makes (4.4a) obvious.




o —

—

The proof of (4.4b) is a bit more complicated. It can be skipped if only the total
positivity of A is of interest. We must show that supp by = supp 83 , with B85(L) :=
Bj1(!1) oo Bjn“‘m) . Suppose first that 83(L) = 0 . Then Sj(l) =0 for some jeJ,
L €L . Therefore, from (2.6), [ aj(i) aj(£) = 0 , and, since all terms in this sum are
nonnegative, they must all be zero. Thus, a;(K)og(L) = 0 for all K . But by induction
hypothesis, supp ag = supp a} , therefore also aj(K) ag(L) = 0 for all K . We
conclude with (4.6) that supp by C supp By .

To see that supp by I supp 83 , we must show that
(4.7) B3(L) # 0 implies ay(K) ag(L) ¥ 0 for some increasing K .

Since supp ag = supp ay , this implies that a(K)ag(L) ¥ 0 for this increasing K,
hence also by(L) ¥ 0 from (4.6).

For the proof of (4.7), it is sufficient to show the existence of a K with

(4.8) k@ Ajp = {1 ay (Waj(t)) # 0}, al1 p,

P
and k, < kpﬂ . all p . Since

P
Bj(l) = aj(j)ui(l) + uj(j“)niﬂ(l) ’

85(L) ¥ 0 implies that

F#Ajg{j,jﬂ} , all jedg.
Hence, the existence of K satisfying (4.8) is asgured. To finish the proof, we must
show that it is possible to choose such a K which is also increasing. If Ajp n Ajpﬂ =
¢ , then we have kp < kpﬂ for any K satisfying (4.8). Thus we only have to consider
how to choose the components of K corresponding to a connected component Ajp, csny
qu « By this we mean that

Aj“nnjvﬂ #¢9 for p<vVv<gqg,
while, for any i # jp, e, jq ’

Aiﬂhjv-d for p<v<qg.
Then we can write (jp,...,jq) = (3,3+1,...,3') , hence, q-p = j'-j . Further, i e Ay
for 1 = j+1 , ..., j' . Hence, if also j € Aj + then the choice k, = j, , all v, will

do. In the same way, we have i+1 € A; for i =3, ..., 3'-1 . Hence, if j'+1 e Age

-7-




then the choice kv = j,+1 , all v, will do. We claim that the remaining case
}# Ay and j'r1 ¢ Aje

cannot occur since it would imply that there are at least k eontries in r between
rlp and tlp+k . Indeed, with supp o =: [L,u], it would follow that u < f,, while
also "q < &' , with supp ui.” =; [R',u'] . Purther, let s,, be the additional knot
in s . Then, by (2.5), A; NA;,q #9 implies supp a; = {i,i+1} , hence, by (2.5), s; <
8y < B4k ¢ i=§,¢44,3* , therefore Byi49 < Sy4x ¢ and so &' < u+tk while also p+k - gq-1
= J¢k = (§°+1) < utk = L' . This would imply that

L]

"P"’P”<'“ <l,q<!. <u+k<l.p+k'

hence k-l.pﬂ:-tp>l+(u+x-z')+1+q-p>1+(p+k-q-1)+1+q-p-k+1.

Theorem 2. The matrix A of (4.2) is totally positi- Mureover, the submatrix

B of A formed by rows i4,...,i, and columns Jq,..s,] #8_a positive determinant if

and only if it is “good™, i.e.,

x, € supp N veE 1,00.,!

’
1\’ jv

Proof. We already proved that det B = 0 unless B is “"good”. Now, to prove that a

"good” B has a positive determinant, we choose a refinement s of t so fine that
(4.9) for each 1 €1, '3‘*1) ¥ 0 implies that “5("1)) =0 for all p¥i.

Then each A'(I,K) appearing in (4.4a) has at most one nongero entry in each column,
hence is "good®, therefore nongero, only if it is diagonal, in which case its determinant
is obviously positive. To finish the proof, we must show that at least one of the
matrices appearing in the sum in (4.4a) with a positive coefficient is “good". Here is
ona such. Choose KX 80 that 'kp is the first point in 8 to the left of xip '

p*t,.0.,m . Since “ip‘“ip’ ¥ 0, this implies that ajp(kp) #0,a1 p. J|

Corollary. (I. Schoenberg and A. Whitney [7]). The interpolation problem (4.1) has

a_unique solution for all (y,)] 4if and only if x; @ supp Ny, 1 = 1,...,n.

-8~
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R uke.

We can also allow coalescence of the interpolation nodes. If (zi) is such a
nondecreasing sequence of nodes, then we can think of it as the limit of strictly
increasing sequences (xi) . Correspondingly, repetition of a z; corresponds to repeated

or osculatory interpolation, i.e., the matching of higher derivatives. Precisely, (4.1)

becomes
n w
. = i Treae
(4.10) % XjD Nj(zi) Yyir i =1, ,n
where Wy is the number of Jj < i for which zy = z;- We s8till iequire that any point

appear at most k times totally in 2z and t. The coefficient matrix of (4.7) is

u,
1 n
:= (D Nj(zi)) .

(4.11) A :=a i,9=1

L.z

It is clear that A need not be totally positive since entries involving derivatives
may be negative. However, as a well-known argument shows, if M is a minor formed by
rows 11""'im and columns j1,...,jm with the property
(4.12) iv—1 < iv - 1 implies ziv_’ < ziv, v=1...,m ,
then M » 0. In fact, if M(x) denotes a minor corresponding to distinct nodes
x = (%y,...,%y), then subtracting row one from row two shows that M(x)/(x; - x4)
converges as x, *+ x4 to the minor M' which replaces row two of M(x) by first
derivatives at x4. Hence M' ?» 0. Using this type of limiting process we see that any
minor M satisfying (4.12) is non-negative.

We can also characterize those M satisfying (4.12) which are positive, namely, they
satisfy
(4.13) z, @ supp Nj ’ v=1,...,m .

v v
The necessity of (4.13) is proved in the same way that the necessity of (4.9) was
established.

The sufficiency of (4.13) is proved by making slight modifications to the earlier

proof. For this, it will be convenient to allow a point 2z; to appear a total of more

-9-
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than k times in s and x. This is acceptable provided we stipulate that all B~
splinea and their derivatives be interpreted as right limits at such 5, that is at
II. With this, let s be a refinement of t such that each node g, Aappears as a knot
in 3 exactly k times, and similarly each t; appears in s exactly k times. If

J satisfies (4.13), we choose L so that s, =z and the number of J < "p with

i

| 4 P

sy =8, is u, . Since the coefficients a(K) in (4.4a) are independent of x , we
P P

then obtain det A(I,J) as a positive combination of certain (nonnegative) minors of A'

= Ag.g * In particular, the submatrix A'(J,L) will appear in that sum with positive
coefficient since ay(L) > 0 , and det A'(J,L) > 0 since A'(J,L) is lower triangular

with positive diagonal. We have therefore proved the following theorea.

Theorem 3. For the matrix A of (4.11), and each I, J satisfying (4.12),

det A(I,J) > 0 . This minor is positive if and only if (4.13) is satisfied. 1In
particular (4.10) has a unique solution if and only if z; @ supp Ny, 1 = 1,...,n.

REFERENCES

(1] W. BShm, Inserting new knots into B-spline curves, Computer~Aided Design 12 (1980)
199-201.

[2] C. de Boor, Total positivity of the spline collocation matrix, Indiana U. Math. J.,
25 (1976), 541-551.

[3]) C. de Boor, A Practical Guide to Splines, Springer Verlag, App. Math. 8ci., Vol. 27,
1978.

{4] Jia Rong-qing, Total positivity of the discrete spline collocation matrix,
J.Approx.Theory 39 (1983) 11-23.

{51 8. Karlin, Total Positivity Vol. I, Stanford University Press, Stanford, California,
1968.

{6) J. Lane and R. Riesenfeld, A geometric proof for the variation diminishing property
of B-spline approximation, J.Approx.Theory 37 (1983), 1-4.

{7} 1. J. Schoenberg and A. Whitney, On PSlya frequency functions III, Trans. Amer. Math.
8oc., 74 (1953), 246-259.

i
|
!
i




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS :
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM i
. REPO NUMBER 2. GOVT ACCRSSION NOJ 3. RECIPIENT'S CATALOG NUMBER
2677
4. TITLE (and Subtitle) $. TYPE OF REPORY & PERIOD COVERED {
A GEOMETRIC PROOF OF TOTAL POSITIVITY FOR Summary Report - no spectfic ‘_ ’

SPLINE INTERPOLATION reporting period

6. PERFORMING ORG. REPORT NUMBER N |
7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s) | ‘
C. de Boor and R. DeVore . DAAG29-80-C-0041
8101661
P ERF ORMING ORGANIEATION NANE AND ADDRESS 10. PROGH ’:82'.._—‘%,'0‘..‘&".}5- f‘v-T-n'm%’:'f; TASK
Mathematics Research Center, University of Work Unit Number 3 - Numerica]
610 Walnut Street Wisconsin |analysis and Scientific
Madison, Wisconsin 53706 Computing
! 11. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT DATE
; April 1984
% See Item 18 below. 3. NUMBER OF PAGES
t 10
ITE HONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | 18. SECURITY CLASS. (of this repori)
i UNCLASSIFIED

OECL ASSIFICATION/ DOWNGRADING
SCHEDULE

m(d this Rt’no
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, It different from Report)

18. SUPPLEMENTARY NOTES
U. S. Army Research Office National Science Foundation

P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709
19. KEY WORDS (Continue on reverse side il neceesary and identily by block number)
spline interpolation
total positivity
variation diminishing
B~polygon
adding knots
20. ABSTRACT (Continue on reverse side If neceseary and identify by block number)
The possibility of expressing any B-spline as a positive combination of

|
I
§

B-splines on a finer knot sequence is used to give a simple proof of the total

positivity of the spline collocation matrix.

DD, J“ n 1473 =oimion oF 1 wOV 88 18 OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)







