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ABSTRACT

We consider the Cauchy problem u = Au + f(x,u), x € RP, t > 0, and
prove that if there exist a strict supersolution w and a strict subsolution
w with w > w then there exists at least one stable equilibrium solution
between w and w provided that f satisfies certain conditions. The
stability is with respect to the 17 norm. Unlike the case where the spatial
domain is bounded, some difficulties occur near |x| = o in the present
problem. The major part of this paper ié devoted to dealing with such

difficulties.
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Key Words: Nonlinear parabolic equation, stable solution, super and
subsolution, comparison principle
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SIGNIFICANCE AND EXPLANATION

8 The equations w;,éﬁtéyfhere arise in many fields of mathematical sciences .
such as populatipn dynamics in ma?hematical ecology, population genetics, !
chemical reaction theory, etc. b;r study concerns the stability of i
equilibrium solutions of these equations.

Among the solutions of nonlinear evolution equations, the practically

important ones are those which are stable in a certain sense. However,

A _amA.t o L amemae. s

finding a stable equilibrium solution is in many cases considerably more

difficult than just proving the existence of equilibrium solutions. 1In this

—
=,

\\
paper we give.a useful sufficient condition for the existence of stable

equilibrium solutions.
TN
The result we presenti&n this paper is a generalization of the author's
former results on equations in bounded domains. However, the equations we
considerﬁhere {which are in the whole spacé R") exhibit much more complicated )
dynamical behavior, and therefore only a few results have been known about the

existence of stable equilibrium solutions. The objective of this paper is to

make a systematic study of these equations and to give rather a general

theorem on the existence of stable equilibrium solutions. Accession For
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L STABILITY OF AN FXPONENTIALLY DECREASING SOLUTION OF

THE PROBLEM Au + f(x,u) = 0 IN R

Hiroshi Matano

1. Introduction
In the earlier paper [S] the author has studied the dynamical structure of rather a

wide class of equations in which a certain stronger version of comparison principle

e B\ St 0" S &

holds. Such equations, characterized as strongly order-preserving local semiflows,
include single semilinear parabolic equations in bounded domains, weakly coupled reaction
diffusion systems of competition type with two unknowns, those of cooperation type with
any number of unknowns, etc. An interesting feature of strongly order-preserving local 3
semiflows having a certain compactness property is that any unstable equilibrium point has
non-empty unstable manifold. This property, which is not trivial since linearized
instability is not assumed, has far greater implications than it apparently seems (see [5]
for details). Hirsch [3] has made an independent study of baasically the same class of
local semiflows and has obtained other interesting results. Among other things, he has

proved that almost all the bounded orbits are quasi-convergent; in other words, their

w=-limit sets are contained in the set of equilibria. As a consequence, any periodic

orbit is unstable.

Another 1ntere|€1ng property of such local semiflows is that if w is a time-

independent strict supersolution (the definition of which will be given in the next

section) and if w is a time-independent strict subsolution with w > w then there

exists at least one stable equilibrium point (i.e. equilibrium solution) between W and

w ([5S7 Theorem 3]). This theorem is a generalization of the author's former result [4;

Theorem 4.2] on single semilinear diffusion equations in bounded domains, and is

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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exceedingly useful in finding stable equilibrium solutions. One of its applications to
reaction~diffusion systews of competition type is found in Matano and Mimura [6].

What all the above results show is the usefulness of the strong comparison principle,
which until recently has not been appreciated in the context of evolution equations.
While the standard comparison principle is not by itself powerful enough to have profound
implications on the dynamical behavior of solutions, its slightly stronger version, on the
other hand, can play a significantly powerful role in the qualitative analysis of a
certain class of equations.

With all these developments in the theory of strongly order-preserving systems, there
are nonetheless some practically important equations that are order-preserving (which
means that the comparison theorem holds) but not strongly order-preserving in the sense of

[3} or [5]. These include initial value problems of the form

a3

=2 - Au + £(x,u), xeR, t>0,
(1) 3

u(x,0) = uy(x), x e R*,

where A = az/axf + eee 4 32/8x:, and porus media type equations of the form
)
(2) = = A(u™) + £(x,0) ,

it

where m > 1.° The unboundedness of R® in (1) or the degeneracy of aiffusion near u = 0
in (2) prevent these equations from being strongly order-preserving (although they are
both order-preserving), hence the general theory of [3] or (5] does not apply. In order
to study these equations we need careful analysis near lxl = ® or near the free
boundary. The aim of the present paper is to show that some of the results obtained for
the strongly order-preserving systems still hold true for the problem (1) under certain
circumstances. The problem (2) will be studied in the forthcoming paper [2].

Let us consider the initial value problem (1), where the initial data uqy is a
bounded continuous function defined on R". We assume f(x,0) = 0, so that u =0 is an
equilibrium solution of (1). We may call u = 0 the trivial equilibrium solution.

Various kinds of sufficient conditions are known for the existence of non-trivial
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. . equilibrium solutions. In many cases, however, the harder part of the analysis is to
\ study the stability of those equilibrium solutions. '!‘
':E‘, In an attempt to extend the above-mentioned result (4; Theorem 4.2] (bounded domain :
:::3 ' case) to the present equation (1), Crandall, Fife and Peletier (1] proved the following: %

) If f satisfies (A.1)-(A.3) (see next section) and if w and w are time-independent i
.:-:‘ strict super- and sub-solutions respectively with W > w and ;(0) = w(®) = 0, there )
*:EE exists at least one stable equilibrium solution between W and w. !
\E:: If, in particular, one can find w(x) and w(x) such that w > w > 0, then their
\ result guarantees the existence of a positive stable equilibrium solution that decays as
.'::‘ |x| + o, However, the stability they discussed was rather a weak one, namely the
‘E-:.} stability with respect to perturbations decaying rather rapidly as |x| + o, The question

::'-.: therefore still remained open as to whether the equilibrium solution they obtained is L.

stable or not; in other words, whether or not it is stable under any bounded small
{::" perturbation that does not necessarily decay as |x| +> o, 4
?-E; ) The major contribution of the present paper is to give an affirmative answer to the

. above question. The key point of the discussion is the idea of “strong stability” (see
N

‘f::‘ ' Definition 5), which was first introduced in [5]. Since our problem (1) falls outside the
_:“.::‘ category of strongly order-preserving systems, we need some extra careful analysis near

N x| = .

a
]

Notation and the main theorem will be given in Section 2. The proof of the theorem
will be carried out in Section 3. Pinally, in the Appendix, we give a counterexample that
shows the assumptions (A.1)-(A.3) in the Theorem or Proposition 2.3 cannot be dropped;

this illustrates the difference between the present problem (1) and an initial-boundary

o
o
1

L}

value problem in a bounded domain (the latter being strongly order-preserving).

T
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2. Notation and Main Theorem
We assume the following:

2

(A.1) £ : K" xR+ R is a C° map, and for any K > 0 the derivatives f, f,

fur fxur fyuy are bounded in the region x € R, |u| $ K.
(R.2) f£(x,0) = 0 for all x € R".
(A.3) There exist positive numbers a, M, § such that
fu(x,u) § -a
for all |x| 2 M, |ul ¢ &.

By a solution of (1) we mean a classical solution with bounded continuous initial
data; in other words, we are considering golutions that are bounded (in x € R') for each
t 2 0. Let {U(t)}t>0 be the semigroup generated by (1); namely, for each t 2 0, the
operator U(t) is d:fined by the correspondence
(3) u(t) : ¢ > u(-,t14) ,
where u{x,t;$) is the solution of (1) with initial data uy = o

Definition 1. A function v e cz(nP) N La(nn) is called an equilibrium solution of
(1) if it satisfies
(4) Av + £(x,v) = 0 in R".

Definition 2. A bounded continuous function w = w(x,t) is called a (time-

dependent) supersolution if

U(t)w(e,t') € wie,t + t')
for any t 3 0, t' > 0, where U(t) is as in (3) and the relation ¢ < ¥ denotes the

pointwise order relation ¢(x) < ¥(x) in R'. w is called a (time-dependent)

subsolution if the reversed inequality holds for any t 2 0, t* 2 0.

Definition 3. A supersolution is called a time-independent supersolution if it is

independent of the variable t; in other words, a bounded continuocus function w = w(x)
is called a time~-independent supersolution if
U(t)w g W

for any t 2 0, where U(t) is as in (3). 1If, in addition, w is not an equilibrium
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solution, then it is called a time-independent strict supersolution. A time-independent

(strict) subsolution is defined likewise.

a1t Remark 2.1. w = w(x,t) is a time-dependent supersolution if and only if
:._:;: . we 2 AW + £(x,W), x€FR', t>0

in a certain generalized sense. Similarly, w = w(x) 1is a time-independent supersolution

if and only if

7 Aw + £(x,w) 0, xe R
.x:\;_z
N in a generalized sense (see Sattinger (8}).
J'\(. i
Definition 4. An equilibrium solution v of (1) is said to be L”-stable from above
) ——————————
e [
n'\-:- {resp. from below) if for any € > 0 there exists a § > 0 such that for any
AN wecrR) N La(ln) with Iw -vl < § and w2 v (resp. w g v) we have
e
o,
& i o(t)w - vl < ¢
J'. for all t 2 0, where HKel denotes the L norm; namely
]
A4
N 191 = sup [$(x)] .
~ n
% ‘ xeR
-‘.‘1
¥
Lt Remark 2.2. We say v is L -stable if it is stable (with respect to I  norm) in
R ¢ —— _—n
ol ‘ the sense of liapounov. By the comparison theorem (Proposition 3.1), v is Lw-stable if
&,
LS
" -.:: \ and only if it is L -stable both from above and from below.
\.l
'
,-:",: Definition 5. An equilibrium solution v is said to be strongly stable from above
.\
: if there exists a decreasing sequence of time-independent strict supersolutions
e ‘
.. ~ 01 > 02 > wa > eeee guch that Wm(x) + v(x) as m*> ® uniformly in R'. We say v is }
3, 1
‘\"\ strongly stable from below if there exits an increasing sequence of time-independent
<3
B strict subsolutions 01 < ¢2 < ¢3 ¢ eeee converging to v uniformly in R®. If an
- |
S equilibrium solution is strongly stable both from above and from below, then it is called |
.\ :
"y |
:::; strongly stable.
3 ;
:za Proposition 2.3. ILet (A.1), (A.2), (A.3) hold, and let v be an equilibrium
3
ot a), solution of (1) satisfying
N S
s ) (5) lim w(x) =0 .
Y3 | x| >
o 0%
>,
Y

» A -5=
5
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Suppose v is strongly stable from above (resp. from below). Then it is ﬁn stable from

above (resp. from below).

Remark 2.4. If we drop the assumption (A.2), (A.3) or (5), then strong stability
does not necessarily imply Lﬂ stability (see Appendix). This is in marked contrast to
the case of diffusion problems in bounded domains, where Proposition 2.3 holds true
without such assumptions as (A.2), (A.3) or (5). The proof of Proposition 2.3 will be
carried out in the next section.

Remark 2.5. The concept of strong stability is related to that of structural
stability in the following sense: Suppose v is a strongly stable equilibrium solution
of (1). If one perturbs the equation slightly, then the perturbed problem always has a
stable equilibrium solution in the vicinity of v, provided that the amplitude of
perturbation is small (cf. Remark 4.3 of [5]).

Theorem. Let (A.1), (A.2), (A.3) hold, and let W be a time-independent strict
supersolution and w be a time-independent strict subsolution such that w > w. Assume
(6) § > lim sup W(x) 2 lim inf w(x) > =§ ,

x|+ x|+
where & is as in (A.3). Then there exists an L. stable equilibrium solution v of
(1) satisfying W > v > w and

vix) + 0 as |x| »=.

Remark 2.6. Since the proof of the above theorem does not make use of the Liapounov
functional, this theorem remains true even if the operator A is replaced by any second-

order uniformly elliptic linear operator that is not necessarily symmetric.

-6=-




™
A

——

-

-
4 4

Pl S A
P

YAARRRARR

s

it

AR AR

70

4 s

‘. {‘f '.

&
26 e »

G AN LS

|

3. Proof of Theorem

Proposition 3.1 (comparison theorem). ILet ¢, ¥ be bounded continuous functions

on R satisfying ¢ 2 Y. Then U(t)d 2 u(t)y for each t 2 0, where U(t) is as in
(3).
This proposition follows from the standard maximum principle and we omit the proof.

Proof of Proposition 2.3. Let & be any positive number and put ¢ = min{§,c},

where § 1is as in (A.3). Since v is strongly stable from above, there exists a time-
independent strict supersolution ¢ = Y(x) such that v < ¢ < v + 5/2. Let t* be a
positive number and set ¢ = U(t*)y. By the comparison theorem, the function ¢ is again
a time-independent strict supersolution; and, as is easily seen,
(N Ad + £(x,4) <0 in R*
in the classical sense and
(8) v<d<v+e/2 in R
(see Remark 2.1; the strict inequality in (7) follows from the strong maximum principle
for parabolic equations). In view of (5), (7), (8) and (A.3) as well as the continuity
of f, we see that if c > 0 is a sufficiently small constant then the function
OC(x) = ¢(x) + ¢ satisfies
(9) Bp_ + £(x,9 ) <0 in R,
(10) v+c<¢c<v+E in R,
The inequality (9) implies that ¢c is a time-independent supersolution. Take any
w e C(IP) with v ¢ w v +c. By (9), (10) and the comparison theorem,
v g Utw g U(t)¢c hd oc
for all t 2 0, and therefore
1o(t)w - vl < ¢

for all t 2 0. The observations above show that v is L? stable from above,
completing the proof of Proposition 2.3.

Lemma 3.2. let v, < vy be distinct equilibrium solutions of (1) such that there

exists no equilibrium solution v satisfying v, < v < v, Then there exigts either a

-7-
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time-independent strict supersolution or a time-independent strict subsolution between
vy and vj.
Proof. Let g = g(x,u) be a nonnegative smooth function defined on R x R such

that its support supp(g) 1is compact and satisfies

n
(11) supp(g) N {(x,vz(x))lx eRrR} =
N (12) g(x,vy(x)) > 0 for some x € ) :
N
~
..:: Consider the Cauchy problem
D
':\‘-* u = Au + f(x,u) + g(x,u), xeR, t>0,
~rd t
- (13)
u(x,0) = uo(x), x € R .
‘ By the conditions (11), (12), vy is an equilibrium solution of (13), whereas V4 i
‘ time-independent strict subsolution. Iet u be the solution of (13) with initial &
T
:_' uy = v4. A standard argument shows that u(x,t) is strictly monotone increasing in
b and converges ags t + 4® to an equilibrium solution, say v: and u(+,t) is a time-
.r:'/
SN independent strict subsolution of (13) for each t 2 0 (see Sattinger {8]). The
1.*1' -
M \3 convergence here is locally uniform on R?, and clearly we have Vy <V gV, If
PN
L) v # Vs then Vv is not an equilibrium solution of (1) and therefore it is a time-
i -
- independent strict supersolution of (1) since g 2 0. On the other hand, if v = v,, .
AN
"r_,.: then it follows from the compactness of supp(g) that
e
R ™ n
AN supplg) N {(x,u(x,t))|x e R'} = ¢
J -"-q
for all large t. This implies that for each large t the function u(x,t) is a time-
::J‘: independent strict subsolution of (1). In either case, we have either strict super- or
-
2 ]
AS ¥ subsolution between vy and Vge This completes the proof of Lemma 3.2.
Sy
:-': Lemma 3.3. Let 9 be a domain in R° with smooth boundary 32 such that
. i = l“\f-) is connected. let u = u(x,t) be a continuous function defined on P x r*
D
o such that
e
-’
.r":: (a) u is ¢2 in x and c' in t in each domain 9 x R*, a* x R*; moreover
Wl
P "' u is C‘ in x on each 2 x R', a* x r*;
Wi
N {b) u satisfies the equation (1) in each of the domains Q x R", o+ x RY;
o
3
~. -8~
N
1o
“.'N:
\.,\
S5

¢
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~ . () g +37—- S0 on 30 x ®*, where uy, uy are the restrictions of u onto
S n
RO 1 2
Ly

e
! uiw B, M  respectively and 8/3n1, 3/3n2 are the normal derivatives on 3Q toward
S '-'-

N .
\ Q, Q* respectively.

Then u is a time-dependent supersolution of (1). In other words, we have
Ult)u(e,t') < ule,t + ¢t')

for any t 2 0, t' 2 0 (see Definition 2).

Proof. Fix t' 2 0 and set we(x) = u(x,t') - € for each € > 0. We first show

\
SO0 (14) U(t)we gule,e + ') for t 20 .
N -
:};: Write ue(-,t) = U(t)we. We shall prove even a stronger version of (14):
.:i:' (14) ;e(x,t) < u(x,t + t') for x € K, t 20 .
o Clearly (14)' is satisfied at t = 0. Suppose (14)' holds true for t € [0,t;), but
}:;: fails to hold at t = t,. Then we have
W, ~
R Sgtagrty) = ulxgetg + £1)
}:;: for some x, € R’. By the strong maximum principle, x; can neither be in 2 nor in
L | N*, for otherwise we should have
N
\ u_(x,t) = ulx,t +t')
558 .
AR everywhere in Q x [0,t3] or everywhere in Qr x (0,ty], neither of which is possible.
\'\'
g On the other hand, if x, € 32, then it follows from Hopf boundary lemma (see, for

instance, Protter and Weinberger [7]) that

3u1 3u€1
‘5‘;‘— (xolto + t') > 'an_ (XOItO) ’
1 1
(15)
3u2 3u€2
LI (xo,to + t') > e (xo,to) ,
2 2
where LI Yoo are the restrictions of u. onto &, 7% respectively. Since uC is a

smooth function, we have 3ue1/3n1 = -3u€2/3n2. Combining this and (15), we get

.‘l." ‘l '. .
!
v
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o
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4, «
.
! 3u 302
‘\ T (Xortg + £') + 5= (xg,tg + ') > 0,
Lo 1 2

-"\-'

-'.-’

z: which contradicts the assumption (c). This contradiction proves (14)'. Letting ¢ + 0,
Lo

o we get to the conclusion of Lemma 3.3.
5 lemma 3.4. let (A.1), (A.2), (A.3) hold, and let v be an equilibrium solution of
~
:g'a (1) satisfying

0N

R (16) lim sup |v(x)| < & ,
[x]+o

W, where 6§ is the constant in (A.3). Then
YoM (17 im v(x) =0 .

\Y ]+

g

More precisely, there exists a constant A > 0 such that

.l :,?"?"

n-1
o’ v | g alx] 2 Xl goran1 xem .
o Lemma 3.5. Let Vv = v(x) be as in Iemma 3.4, and take a constant R, R 2 M, such
P that |v(x)] $ & for all x @ R® - By, where M, § are as in (A.3) and
ENC;
.,
~ (18) Bp=i{xe® | x| <R .
o
£ Consider the initial-boundary value problem
E
ow
EsAv+f(x,w), xeR“-ER,t>0,
w(x,0) = wo(x), xerR -8B,
R\: w=yv, xeanR,t>0.
% If the initial data w, satiafies Iwo(x)| £ 8 for all x € e - B, then the

solution w(x,t) together with its derivatives Sw/Bxi (i = 1,...,n) converges to v(x)

ik
:.:-:: uniformly in R - Bp as t * =, Moreover, the rate of convergence is not slower than
'\q.; =-at

[4

A""
s

v 1.4

e , where a is the constant in (A.3).
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These lemmas can easily be proved by constructing appropriate comparison functions
AN . and applying the maximum principle; the convergence f ?hr/ax1 follows from that of w

and the standard a priori estimates. We omit the detail of the proof.

%

lemma 3.6. Let (A.1), (A.2), (A.3) hold, and let v be an equilibrium solution of

AAr

(1) satisfying (17). Suppose there exists a sequence of equilibrium solutions

_'-..: vy > vy > vy > eeec  that converges to v uniformly in R". Denote by XR the least
LSS
_.;-\\. eigenvalue of the eigenvalue problem
Y
R 8¢ + £ (x,v(x))é + X4 =0, x @By,
& (19) u
. ¢ =0, x € 3BR v
t': where B is as in (18). Then A is monotone decreasing in R and
‘h. e, R R
L
.‘-’:x.:: (20) Ag*0 as R*>e=.
’ -
X Proof. The monotonicity of XR in R follows from a simple argument based on the
| , maximum principle (or the variational method), so we only prove (20).
o
‘.
SRR Suppose (20) does not hold. Then
g
Y : o=
o ¥ c=lim2A_> 0 ,
3 ..: " Rbe R
A
N, ’ since we have A > 0 for each R > 0 by virtue of the existence of the sequence
T ®
A
.ﬁ,}- Vy > vy > ecee. Set
) \',P -
B\ ¢ g = min(o,a) ,
* v
wvhere a is as in (A.3), and consider the (linear) initial value problem
~ts
:',- ' wy = Aw + £ (x,v(x))w + ow, xer, t>0,
J-'.‘-"‘ (21)
] w(x,0) = wy(x), xerR .
o 8 As is easily seen, W, = v, = v satisfies
>
q.-‘ Awn + fu(x,v)vn + ovn >0
I:-
. ‘:. if n 1is sufficiently large; hence, for each large n, w, is a time-independent strict
",
o) 1'1
:,'-: subsolution of (21). Arguing as in the proof of Proposition 2.3, we see that for each |
> |
r -
at large n there exists a small constant en > 0 such that wn(x) = w,(x) - en is a time- !
bl !
ot ’ independent strict subsolution of (21). We can choose en sufficiently small so that ‘
ois i
4«
,‘."‘\ -11=-
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(22) ¥ (x) > 0 for some x € R" .
Since wn(x) = v,(x) - vix) + 0 as |x| + o by virtue of Lemma 3.4, we have

(23) 1lim vn(x) = -en .

x| e

¢ (x) = man(x),o} .

‘n is a time-independent subsolution of (21), since the pointwise maximum of a pair of
subsolutions is again a subsolution (see, for instance, [5; Proposition 2.5] or the proof
of lemma 3.7 below). By (22) and (23), Qn has a compact support and is not identically
equal to zero. Choose a positive number R such that

lupp(on) C BR .
Considering that ‘n is a time-independent subsolution of (21) and that it vanishes near

BBR, we easily find that the restriction of Qn onto ER (again denoted by bn) is a
time-independent subsolution of the initial-boundary value problem

w, = Av + £, (x,Vv(x))w + ow, x €@ Bg, t >0,
(24) wix,0) = wy(x), x € Bp
w=0, xeanR,t>o.
Moreover, ‘n is a strict subsolution of (24) since it is not an equilibrium solution of

(24) by virtue of the unique continuation theorem for elliptic equations. The existence
of such a function ‘n implies that w = 0 is an unstable equilibrium solution of (24);
hence the least eigenvalue XR of (19) should satisfy

A_ <O .

R

But this is impossible since o < o = lim X' < XR. This contradiction shows that the
s+o
supposition ¢ > 0 1is false, completing the proof of Lemma 3.6.

Leowa 3.7. let (A.1), (A.2), (A.3) hold, and let v, < v, be a pair of ecuilibrium

X |>o >y

solutions of (1) with lim vo(x) = llim vq(x) = 0 such that there exists neither a
x
time-independent strict supersolution nor’ a time-independent strict subsolution between

vo and v,. Denote by S the set of all the equilibrium solutions of (1) and put
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Then Y is a totally ordered connected subset of S. Moreover, each v € Y - (vo} is

O] -
:‘-‘:‘ L «
YN L stable from below and each v € Y - (v1} is L stable from above.
s
SACA
‘.-. Proof. Take any pair v, v* € Y and set
LS
w(x) = max{v(x),v*(x)} .
} 3 By the comparison theorem we have
LY
K U(t)w 2 U(t)vy = v,
1V
e Ult)w 2 U(t)ve = vv ,
»d
. hence
W ¥
w5
"‘.: U(t)w 2w for t 20 .
~
"(“: This means that w is a time-independent subsolution. Since w cannot be a strict
N
bt h" subsolution by the assumption of the lemma, it is an equilibrium solution. Therefore, by
“ the unique continuation theorem, we have either w = v or w = v*; in other words,
-
i:.-. either v 2 v* or v g v* holds. This shows that Y is a totally ordered set.
sl .
}‘:,-: Wext we show that Y is connected in the topology of C(R') N l..(ltn). Using the
NS
g
boundedness of the derivatives of f(x,u) and the fact that v,, v, vanish at |x| = =,
{.:4' ‘ one easily finds that Y is compact. Suppose Y is not connected. Since Y is totally
~,
i:;. ordered and compact, the disconnectedness of Y implies that there exist v,,v, @ Y
i)
-'\‘;:: with Vy < Vy such that there exists no other equilibrium solution between vy, and v,
e
But this is impossible by Lemma 3.2 and the assumption of the present lemma. This
::-:: contradiction shows that Y is connected.
e
-.\éa‘ It remains to show the stability. We only prove that each Y - {v1} is L stable
ey 4
TS from above, for the other part follows from a similar argument. Since Y is a totally
ordered compact connected set, we can express Y as
\Q
.&'
':‘-:,' Y={vo|logog},
£
5‘-: where ve < v whenever 0 ¢ 8 <p g 1.
)
L
- 3 Take any 6, 0 ¢ 6 < 1, and let us prove the stability of Vg+ let € be any
,.::‘j ’ positive number, and let p, 8 < p < 1, be such that
L]
-P\q
»od
1y, -13~-
I
.’i.
7.
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ve(x) < v (x) < vylx) +%

for all x € R'. Since v (x) > 0 as |x] + ®», there exists a constant R with R 2 M
such that

8

va(x)l <3

for all x € R' with |x| » R, where M, & are as in (A.3). Now consider the following

initial-boundary value problems

( gf-aAp+f(x,p). xeBp t>0,
(25) 1 p(x,0) = pyix), x € Bp

L p=v,. x€edB ., t>0;

( %‘E-Aqe,f(x,q), xeRrR -B,t>0,
(26) { atx,0) = qqotx), xer -8,

L a=v, xed, t>0.

In both of the problems (25), (26), vp (or more precisely the restriction of vo onto

1 ]
.BR or R" - B)) is an equilibrium solution. And v_ , v + £ are a time-independent
R 8’ "p 2

strict subsolution of (25) and a supersolution of (26) respectively, where
e &
€' = n:l.n(; . ;) .

L]
Let p(x,t), q(x,t) be solutions of (25), (26) with initial data Y vo + sz_
respectively. By Lesma 3.5 we have
(27) lim {q(x,t) ~ v (x)} = 0 (uniformly in R'\Bp) .

toim P
Also it is not difficult to see that
(28) 1im {v _(x) - p(x,t)} = 0 (uniformly in Bp) .
tre d

Note that the positivity of the term vp - pi{x,t) in (27) implies that this term is
agymptotically proportional to cxp(-xnt)on(x). where XR is the least eigenvalue of

(19) and OR is the corresponding positive eigenfunction. And we have

XR»O ag R+ =

-14~-




by lemma 3.6. On the other hand, by Lemma 3.5, the convergence rate in (27) is not slower
than that of exp(~-at). Take a sufficiently large R such that XR < a, and fix it.
Then the convergence rate in (27) is faster than that of (28). Consequently, there exists
a T >0 such that
(29) %§+g—§;o. Ix| =R, 2T,
where 3/3N, 3/3n denote the inner and the outer normal derivatives to QBR
respectively. Now defins a function w by

pix,t + T) (Ix] s r, t20),

wix,t) =

q(x,t + T) (x| 2R, t20) .
By virtue of Lemma 3.3 and (29), w is a time-dependent supersolution of (1). It is
clear that
(30) ve(x) < wix,t) < ve(x) + €
for all x € ®* and t 2 0. It is also clear that
(31) inf {w(x,0) - ve(x)} >0 .

xex

As € 1is an arbitrary positive number, (30) and (31) together with the comparison theorem
and the fact that w is a supersolution imply that v is L. stable from above. This

[}
completes the proof of lLemma 3.7.

Proof of Theorem. Let {U(t)}vo be the semigroup generated by 1) (see (3)). As
is easily seen, U(t)w is strictly :onotone increasing in t and converges as t * =
to an equilibrium solution of (1), say v (see Sattinger [8]). Similarly, u(t)w
converges to an equilibrium solution, say V. Obviously we have w < vy Vv < w and
that v is strongly stable from below while Vv is strongly stable from above. We also
have
(32) lim v(x) = lim ¥(x) = 0

x| sm = x| oo
by lemma 3.4. Denote by S the set of all the equilibrium solutions v of (1)

satisfying v ¢ v § V, and set
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so={ves | v is strongly stable from below} .
Sy 1is not empty since it contains v. Arguing as in the proof of {5; Theorem 2'), we
easily find that Sg is an inductively ordered set; in other words, any totally ordered
subset of S, has an upper bound in S;. By Zorn's lemma, S, has a maximal element,
say vg. Set
Sy = {ves | V2 Vg V is strongly stable from above} .
A similar argument shows that 8, has & minimal element, say Vqe

If vg = vy, then v, is strongly stable both from above and from below; hence it
is L. stable by Proposition 2.3.

Next consider the case vj, < v,. In this case there exists neither a time-
independent strict supersolution nor a time-independent strict subsolution between Vo
and vy. In fact, if w = w(x) is a strict subsolution satisfying v, < w < v,, then
U(t)w is monotone increasing in t and converges as t + +° to an equilibrium solution
Vi Vg <V S vy, which is strongly stable from below. But this is impossible by the
maximality of vg in Sg. Similarly, the existence of a strict supersolution contradicts
the minimality of V4 in 84 This contradiction shows that the above claim is true.
Therefore, by lLemma 3.7,

v-(v_es|v05v5v1}
is a compact connected set and each element of Y is :? stable. This completes the

proof of Theorem.

~-16-

|~

3
.
)
-
S
.



Aggendix

As mentioned in Remark 2.4, if we drop the assumption (A.2), (A.3) or (5), then

LatabdE A

Proposition 2.3 is no longer true; in other words, strong stability does not necessarily

imply L. stability. In this case, our main theorem also fails to hold.

To see this, consider the following example: 3
%% = Au + u3, x € Rs, t>0,
(33) .
u(x,0) = uo(x), x € R5 .
u £ 0 is an equilibrium solution of this problem. A simple calculation shows that
A
W, (x) =
A 'x|2 .1
is a time-independent strict supersolution of (33) for 0 < ) A3 /70, while it is a time-
independent strict subsolution for -’10 ﬁ A < 0. Moreover, we have
wx(x) +0 as X+ 0
uniformly in x € Rs. Therefore, u = 0 is strongly stable. On the other hand, as is
easily seen, u = 0 is not L- stable. This shows that the conclusion of Proposition
2.3 (as well as that of the Theorem) is not true if we drop the assumption (A.3).
{
1
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