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ABSTRACT

The Dirichlet problem in a bounded region for elliptic systems, of the

form

(*) -Au - f(x,u) - v, -Av -u - yv

is studied. For the cuestion of existence of positive solutions the key

ingredient is a maximum principle for a linear elliptic system associated

with (*). A priori bounds for the solutions of (*) are proved under various

types of growth conditions on f. Variational methods are used to establish

the existence of pairs of solutions for (*).
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SIGNIFICANCE AND EXPLANATION

The Dirichlet problem for the semilinear elliptic system

() -Au - f(xu) - v, -Av - du - yv in n,

where Q is a bounded smooth domain in RN, is studied. Here 5 and Y

denote positive constants. The solutions (u,v) of (*) represent steady

state solutions of reaction diffusion systems of relevance in Biology. The

authors consider general classes of nonlinearities f, which are modelled

in examples that often appear in the applications. Namely (i) f behaving

like Au - u3 where A > 0 is some real parameter, and (ii) f(u) -

u(u - a)(1 - u), where 0 < a < 1 is some given real number. A priori

bounds for the solutions of () are established under various types of growth

conditions on f. Then variational methods are used to prove existence of

solutions. The linear elliptic system associated with M') does not fall in

the class for which there is a maximum principle available. However, the

authors show that in the case of (*) there exists a maximum principle under

suitable restrictions on the coefficients. This allows the use of the method

of monotone iteration and the establishment of the existence of positive

solutions in some cases of interest. Accession For
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A MAXIMUM PRINCIPLE FOR AN ELLIPTIC SYSTEM
AND APPLICATIONS TO SEMILINEAR PROBLEMS

Djairo G. do Figueiredo* and Enzo Mitidieri **

INTRODUCTION. In this paper we propose to discuss the elliptic system

(0.1) -Au - f(x,u) - v, -Av = 6u - yv in n

where A is a bounded smooth domain in RN, N ; 2, subject to Dirichlet boundary

conditions u - v - 0 on an. The solutions (u,v) of this problem represent steady

state solutions of reaction diffusion systems of interest in Biology. Namely systems of

the form

(0.2) ut - D AU + f(u) - v, vt - D2 Av + £(u - yv)

where Di0 D2, C and y are positive constants, and one looks for solutions u(t,x),

v(t,x) defined in (0,-) x n, subject to Dirichlet boundary conditions on (0,-) x 3.

The type of nonlinearities which are of importance in the applications will be described in

the examples I and II below. System (0.2) shows that both species may diffuse. In this

sense it is an extension of the well known FitzHugh Nagumo system, which serves as a model

for nerve conduction, cf. (5] or Hastings [7]. We also mention Koga-Kuramoto (101, where

the complete system (0.2) appears and steady state solutions are discussed. There is an

extensive bibliography in this subject. We mention three additional papers, which are more

closely related to the investigation presented here, namely Rothe-de Mottoni (13], Rothe

[14] and Lazer-McKenna [11].

In the applications the constants y and 8, which appear in system (0.1), are taken

to be positive. So we shall make this assumption throughout this paper. It follows then

that the second equation in (0.1) can be solved for v in terms of u. Let us denote by

B its solution operator under Dirichlet boundary conditions. That is, given u we

define Bu as the solution of the problem -AV + yv - Su in n, v - 0 on an. Thus our

eDepartamento de Matemitica, Universidade de Brasilia, Brasilia, Brazil

(Research partially done at the Scuola Internazionale Superiore di Studi Avanzati in
Trieste, when the first author held a Guggenheim Fellowship).
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problem becomes the one of finding u such that

(0.3) -Au + Bu = f(x,u) in n, u = 0 on 30

We observe that the left side of (0.3) contains a local (differential) operator -A, and a

nonlocal (integral) operator B. This fact gives rising to quite interesting questions.

It is essential at the outset to understand the operator -h + B. In Section i we study

its spectral properties and establish a maximum principle for solutions of linear equations

like

(0.4) -Au + Bu - Xu = g(x) in Q, u - 0 on an

where the real parameter X is restricted to certain ranges depending on y, 8 and the

region 0. In Section 2 we establish a priori bounds for solutions of (0.3) under the main

assumption that the nonlinearity f at - is below the smallest eigenvalue of the

operator -A + BI this assumption will be stated precisely as condition (f2) and it

characterizes a class of systems which are here called sublinear. The two examples below,

which were treated by previous authors [9], [11], [13] and [14], are included in the

classes studied in the present paper. Their results are therefore sharpened as far as

ranges of the parameters involved and signs of the solutions.

Example I. f(u) = Xu - g(u), where X is a real parameter larger than the first

eigenvalue of the operator -A + B, and g is a function behaving like u3, but not

necessarily odd. Cf. [11], [13], [14].

Example II. f(u) = u(u - a)(1 - u), where a is such that 0 < a < 1/2. This is the

sort of nonlinearity arising in the FitzHugh-Nagumo equations, [5], [9].

The a priori bounds obtained in Section 2 will be needed in an essential way to

perform appropriate truncations of the nonlinearity f, so the problem could be treated by

variational methods. This will be done in Section 5.

In Section 3 we discuss a class of systems whose model nonlinearity is the one given

by Example I. Using the results of Section I we are able to establish the existence of a

positive and a negative solution. This result complements a previous one by Lazer and

McKenna [11], who proved the existence of two nontrivial solutions by topological degree
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arguments. Their method however does not yield the signs of the solutions obtained. The

maximum principle for equations like (0.4) comea very useful in this respect.

In Section 4 we sketch a result on the existence of positive solutions for a

superlinear elliptic system. Results similar to the ones known for the scalar case hold

true in view of the aforementioned maximum principle. The question of the a priori bounds

for positive solutions of superlinear elliptic systems may be a hard one. If the growth of

the nonlinearity at 4- is at most like (W + I)/(N - 1), for N 0 3, then the results

of Brfzis-Turner (2] extend readily. The range U(N + 1)/(N - I),(N + 2)/(N - 2)] poses

serious difficulties. The methods used in de Figueiredo-Lions-Nusubaum (3] to treat the

scalar case rely on the results of Gidas-Ni-Nirenberg (6], which are not available as yet

for the type of systems studied here. We remark that Troy (15] has extended some of the

results in (6] to systems. However Troy's systems do not include the ones we are concerned

with. Also in Section 4 we prove a nonexistence result basing it on our extension to

systems of the well known Pohozaev's identity.

In Section 5 we consider a class of systems whose model nonlinearity is the one given

in Example 11. Using the Mountain Pass Theorem of Ambrosetti-Rabinowitz [I] we establish

Theorem 5.1 on the existence of two nontrivial solutions for such systems, extending a

previous result of Klaasen-Mitidieri (9]. This result shows clearly the relevance of the

volume of n and of the parameters y and 8 on the existence questions. It also

exhibits the importance of a large positive parameter X on the existence of two positive

solutions for the system

-Au - Xf(x,u) - v -Av - 8u -yv, in 0

subject to Diriohlet boundary conditions, and the nonlinearity f is of the type given by

Example 1I. This relates to the scalar case studied in Rabinowitz [12].

The contents of this paper is as follows,

1. The operator -A + B

2. A priori bounds for solutions of sublinear elliptic systems

3. Existence of positive solutions

4. Remarks on a superlinear system

5. Existence of two nontrivial solutions for a class of sublinear systems

-3-



1. THR OPERATOR -4 B. Consider the linear Dirichlet problem

(1.1) -Av + yv - 6 u in 2, v - 0 on 80,

where Q C R0 is a bounded and smooth domain, Y and 6 are positive constants. Let us

denote by B its solution operator: v - Bu. It is well known that

B : 2) + M) H (n) Y B () * w2'P(), : Ce(i) C2"*0(?)0

Let us define the operator

T -A + B : L 2(Q) L 2(), with D(T) - H2(() 2 i Ho ( M0

Clearly T is symmetric, that is, (Tulu 2 ) - (u1,Tu2 ) for all u1 ,u2 e D(T), where

(,) denotes the L2  inner-product. Using the L2  regularity theory one can prove that

T is a closed operator. Let us denote by 0 < AI < 2 4 A3 4 ... the egenvelues of -A

under Dirichlet boundary conditionsand by $k the corresponding eigenfunctions. Then it

is easily verified that

(1.2) Xk k -Y + k - 1,2,...

are eigenvalues of T. Moreover the same fk's defined above are their corresponding

eigenfunctions. Since ( k) is a complete orthonormal set in L2 , it is readily shown

that the ks are the only eigenvalues of T. We shall prove in the sequel that in fact

the spectrum O(T) of T consists precisely of these eigenvalues. For each A in the

resolvent set 0(T) of T, let us denote by T- (T - A) "I its corresponding resolvent

operator.

LENMA 1.1. (A representation formula of the resolvent operator for some values of ).

Suppose that the real numbers a and b satisfy the following conditions

(1.3) a > - Ai, y + b > -kit b * 0 , and

(1.4) by + 6 - ab

Then A - -a - b is in the resolvent set P(T) and

(1.5) T A - [1 - b(y + b - A)-l](a - A)

-4-



Proof. With A - -a - b, one can write

T - Al - (a - A) + bbI + 6

Using condition (1.4) above one obtains

T - I - a - A I + bY -A) - (a - A)(Y - A)- 1 (y + b - A)

Finally using condition (1.3) it follows that

T -(y + b - )(-)(a-) ,

which readily given (1.5). 0

Remark 1.1. A calculation shows that A, taken in the ranges indicated below, are

representable as A - -a - b, with a and b satisfying (1.3) and (1.4): [
(i) All A < -Y - 24. These A's correspond to b > 0.

(ii} If Y + A1 > /i, there are some additional values of A. Namely

2r8 - y C A < A + These A's correspond to b negative in the range

y+A1

Remark 1.2. (Monotonicity of the sequence k). We observe that y + AI > 15 implies

that A I A C A C ...<. Of course one does not have in general such a monotonicity of

the eigenvalues A k Clearly y + A I / is not a necessary oondition, since it in fact

implies the stronger statement that the function s P-> s + --- is monotonically
y+s

increasing in the whole halfline IA1 m). A necessary and sufficient condition for this

monotonicity involves also the second eigenvalue A2, namely 8 < (Y + A )(Y + A ).
20 1 2

Corollary 1.2. (Compactness of TA). For all A e P(T), the resolvent operator T A is

compact.

Proof. For any A,u e P(T) one has the resolvent equation

TU - TX - (* - A)TUTX 

So if TA is compact for some A, then it is compact for all A's in the resolvent

set. By the previous lesma TA is compact for A 1 -y - 2ri. 0



The following result is an immediate consequence of Lemma 1.1 and Remark 1.1 above.

Corollary 1.3. (Positiveness of T for some values of A). If y + ) I > if, then T,

is positive for all 2/8 - Y A < 1

Remark 1.3. The positiveness of TX is a maximum principle for the equation

-Av + Bv - Xv = u in a, v - 0 on n .

It says that if u e L2 and u > 0 a.e., then v ) 0 a.e. In fact, it follows from the

representation formula (1.5) that a strong maximum principle holds. Namely, if u e C 0)
and u ; 0 in n, then v > 0 in S1 and the outward normal derivative < 0. [Recall

3V
that 0 is being assumed to be smooth. So the interior sphere condition is satisfied].

Remark 1.4. If Y > 2/v, then the condition Y + A1 > /5 is automatically satisfied, and

Corollary 1.3 says that in this case T. is positive for X in an interval which

contains 0. In general one cannot expect that To be positive. Indeed, if y 6 = 1,

then Corollary 1.3 says that TX is positive for 1 4 A < A

Proposition 1.4. The spectrum O(T) of T consists of precisely the eizenvalues k

Proof. We have seen above that the point spectrum PG(T) - {X k : k = 1,2,...}. Let

A # PO(T). Then T - AI is one-to-one. If we show that T - XI is onto, it follows by

the Closed Graph Theorem that X e p(T). Thus we claim that equation Tu - Xu = v has a

solution u for each given v e L2 . Taking v e P(T) we see that this equation is

equivalent to Tu - uu = (X - i)u + v, or

(1.6) u - (A - ij)T u + T U v

By Fredholm alternative (1.6) is solvable iff the homogeneous equation u u( - u)T u has

only the solution u = 0. But this is actually the case, since this homogeneous equation

is equivalent to Tu = Au. Recall that X P M (T). 0
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Remark 1.5. The above proposition follows also from general results in Functional

Analysis. Namely, T being a self-adjoint operator it follows that its residual spectrum

IW(T) is empty. Next, since -6 - I is Fredholm for every e 6 C, it follows that

-A + a - X is also rredholm for all A e C. Consequently the continuous spectrum CO(T)

is also empty.

Remark 1.6. (An useful inequality). At X denote the smallest of the eigenvalues k"

We have seen above that -" if y + X > 4T. We assert that

(1.7) (Tu'u) X')ut 2  V u e D(T)L

Indeed, since (0k) is a complete orthonormal set in L2 , we can write u - * Gk~k where

ak - (uI k). So

(Tuu) )k ak(Tu,* k) ). k(uTk) , X k

from which the claim follows. A similar argument shows that

(1.8 J VuI2 + (Bu'u) ). X- 2 I(1.8) L v +2 v u e 0H

Remark 1.7. (Uncoupling of systems and maximum principles). The usual maximum principle

for systems, as well as the maximum principle proved here, seems to be related with the

possibility of uncoupling the elliptic system. To make precise our observation, let us

look at the linear elliptic system

(1.9) -Au - au + by + f(x)

-Av - cu + dv + g(x)

subject to Dirichlet boundary conditions: u m v - 0 on 3a, where Q is some bounded

domain in RN , and a,b,c end d are real constants. Suppose that b * 0 and c * 01

otherwise the problem trivializes. The uncoupling of system (1.9) is possible if the

matrix of the coefficients
M - ra ]b]

has two distinct eigenvalues, v1 and P2 " Such a condition is equivalent to

(1.10) (a - )2 + 4bc > 0

...- 7-



Of course this is the case if b and c both have the same sign. However to infer the

signs of u and v from the signs of the corresponding functions in the uncoupled system

one needs that both b and c be positive. This gives the usual maximum principle for

systems. On the other hand if b and c have opposite signs the uncoupling is still

possible provided a and d "compensate" for the negativeness of bc. Through some

calculations one can prove the following result, which essentially gives our maximum

principle.

Proposition 1.5 In addition to (1.10) assume that be < 0, c(a - d) > 0, 1 < I and

12 <  I" Then if f ) 0, ) 0 and cf ) (a - )1 )g, it follows that the solutions

and v of (1.9) are positive in S).

2. A PRIORI BOUNDS FOR SOLUTIONS OF SUBLINEAR ELLIPTIC SYSTEMS.

Let us consider the elliptic system

(2.1) -Au - f(x,u) - v, -Av - 6u - yv in Ql

where n is a bounded smooth domain in RN , subject to Dirichlet boundary conditions. We

always assume that y and 8 are positive constants. The nonlinearity f is subject to

the following conditions.

(fl) f s 5 x R + R is locally Lipschitzian,

(f2) lim sup V J ) (uniformly in 9), where 7 denotes the smallest

eiqenvalue of the operator -A + B studied in Section 1. Condition (f2) characterizes

system (2.1) as being sublinear.

Examples. 1) f(u) - ku - h(u)u, where h is a C1 function such that h(0) - 0,

hl(s)s > 0 for all s * 0 and lim inf h(s) > X, (for instance h(s) s2). This is the

case considered in (111 and (14].

2) f(u) - u(u - a)(1 - u), where 0 < a < 1. This is the type of nonlinearity that

appears in the Pitz~ugh-Vaqmo equations. Cf. (53, (9].



Remark 2.1. By a solution of (2.1) we mean a classical solution. That is, a pair of

functions (u,v) which are in C2 (A) r) C0 (ff) and which are 0 on M. We observe that

if u,v e H0(Il) () C0(f() satisfy (2.1) in the distribution sense, then by a bootstrap

argument it follows that u,v e C2 "t(d). We remark that in general one cannot drop the

hypothesis that u and v are in Ca(n) in order to be able to bootstrap. However, this

would be possible provided one assumes some growth condition on f.

In order to obtain the a priori bound for the solutions of (2.1) we shall assume

either one of the conditions below.

(f3) lim f(x,s) . 0, where 1 < p < N--2 if N > 3, and I < p < -, if N - 2
151~N -sI2

(4) lineup f(x,s) < 6
tsl+- 5 Y,

where the limits are uniform in n.

Remark 2.2. In the scalar case (i.e. -Au - f(x,u)) condition (f4) corresponds to

f(x,s) < 0 for a > A > 0 and f(x,s) > 0 for s < -0, where 0 is some real number.

Proposition 2.1. Under hypotheses (fl), (f2) and (f3), the solutions of (2.1) are a priori

bounded in L7.

Proof. It follows from (f2) that there exist 0 < U < X and M ' 0 such that

(2.2) t(x,s) < us + M, for 0 4 a ( -t f(x,s) ) Us - M for - < s < 0

The second equation in (2.1) can be solved for v in terms of u. And in this way

system (2.1) is equivalent to the equation

(2.3) -Au + Bu - f(x,u)

using the notation of Section ?. So we need only to prove bounds on u. The corresponding

bounds on v are obtained immediately from the second equation in (2.1). Multiplying (2.3)

by u, integrating by parts and using (1.8) we obtain

(2.4) X I u2 < f jVuI 2 + f (Bu)u f f(x,u)u

Next we estimate the last term In (2.4) using (2.2)

(2.5) f f(x,u)u < u f u2 + M f tul

-9-



which implies f u 2 ( C. (We shall use the same C to denote different constants).

Using (2.4) and (2.5) aqain and recalling that a is a bounded linear operator in L2 , we

conclude that I IVu, 2 < C. It follows from (f3) that given e > 0 there exists C > 0
£

such that

tf(xs)I C lel p + cc

Finally using this inequality and invoking LP estimates and the Sobolev imbedding

theorem, we conclude that there exist a constant C such that lul C C. 0
L

Remark 2.3. We emphasize that the dependence of C on f is through the constants

i, M and C . So if we change f for 1s I C maintaining P, K and Cc, the new

equation (2.3) with this modified f has the same solutions of the original equation

(2.3). This fact will be used in Section 5.

The following result was proved by Rothe [14] and Lazer and McKenna [11] under less

general hypotheses on f. The main idea in the proof below is taken from those papers.

Proposition 2.2. Under hypotheses (fl), (f2) and (f4), the solutions of (2.1) are a priori

bounded in L7

Proof. (i) We first claim that for u e C0 (a), with u - 0 on 3n, one has_ 5

(2.6) min u 4 (Bu)(x) 4 Amax u, x e n
Y Y

Indeed we know that v - Bu satisfies the equation

(2.7) V - - AV + U
Y Y

Let us prove the first inequality in (2.6). If v ) 0 that inequality is trivially

true. So let us assume that for x, e 0 we have v(xl) = min v < 0. Then Av(x1 ) 1 0
5

and (2.7) implies that v(x,) ) Y u(xl), from which the first inequality in (2.6) follows

readily. In a similar way we prove the second inequality in (2.6).

(ii) It follows from (f4) that there exist positive constants k and m such that

(2.A) (xs) -k < -a, ) m,

-a0-



We claim that lul L ( m for all solutions u of (2.1). Indeed, suppose by contradiction
L

that lult - M > a for some solution u. It follows from (2.6), using the first equation

in (2.1) that

6 6
(2.9) m gin u < Au + f(x,u) 'C max u

If there is x0 e 0 such that u(x0 ) - M we obtain from (2.9) and (2.8) that

- M C f(x0,u(x0 )) 4 -ku(x0 ) m -kN

which is impossible. In a similar way we arrive to a contradiction if u(x) - -N for

some xefl. 0

Next we discuss the question of bounds for positive solutions of the system (2.1). hs

remarked before we need only to obtain bounds on u, and then corresponding bounds on v

follow readily.

Proposition 2.3. In addition to (fl) assume the following condition

(fS) there exists a constant m > 0 such that f(x,s) - 0 for s ) m.

Then all nonnegative solutions u of (2.3) are bounded above by m.

Proof. Given a solution u of (2.1) define the function w as w(x) - u(x) - m for

u(x)> m and w(x) - 0 for u(x) 4 m. Such a w belongs to HI (n). So it follows
0

from (2.3) that

(2.10) J IVI2 + (Bu,w) - j f(xu)w.

In view of (fS) and the fact that (2u)(x) > 0 for x e a, we conclude from (2.10) that
2j .Vw - 0, which implies w - 0. 0

Remark 2.4. This proposition will be used as follows. Suppose that the function f is

such that there is an m > 0 for which f(x,m) - 0. Then we consider system (2.1) with

f replaced by a new function f defined as f for a • m and as 0 for a > a. If for

this new system we could find a nonnegative solution u, then by the proposition above

such a u would be indeed a solution of the original system.

-11-



Remark 2.5. Now if f(x,s) - f(s) satisfies (f2), f(O) 0 0 and f(s) > 0 for

0 < a < 9, then either there is an m > 0 such that f(m) - 0 or f satisfies (f3). in

the first case we treat the problem as in the previous remark. In the second case we

proceed as in Proposition 2.1 and obtain an a priori bound on positive solutions.

Remark 2.6. Similar statements can be made for nonpositive solutions u.

Remark 2.7. A sufficient condition for all (eventual) nontrivial solutions of (2.1) to be

positive. Assume that Y + A > rd and that f(x,u) > au for all u, where

-Y + 26 (4 • ( Then the nontrivial solutions u of (2.1) are positive in Q.

From (2.3) we obtain -Au + Su ) Qu, and the result follows readily by Corollary 1.3.

Remark 2.8. The previous condition applied to Example 2 gives interesting conclusions.

Indeed, we can in this case compute explicitly the value of m in (2.8). Then truncate

f outside 1@1 . m in such a way that the new f has derivative equals to -a for

181 > m. By Proposition 2.2 the solutions of (2.1) with this new f are the same as the

solutions of the original equation. Moreover, from the way the truncation is done, it

follows (by a straightforward calculation) that now f(u) > -au, (where we are denoting

also by f the truncated function) provided 6/y < a. So the previous sufficient

condition applies. Summarizing, the solutions of (2.1), in the case of Example 2, are

positive if
6

(2.11) - < a 4 Y -2/

Observe that, if (2.11) is assumed, then the condition Y + X1 > /6 is automatically

satisfied, cf. Remark 1.4. We remark that no solution of (2.3) in this example can be

nonpositive (i.e. u • 0 in n). In fact the solutions in general change sign.

-12-



3. EXISTENCE OF POSITIVE SOLUTIONS. We consider again system (2.1) of the previous

section or its equivalent expression in the form of equation (2.3). In this section we

examine the question of existence of a positive solution under an additional condition on

the nonlinearity f at 0. In order to simplify the presentation in the sequel we suppose

that f does not depend on x. The case when f depends also on x can also be treated

by the method used here, under appropriate conditions on f similar results may be

obtained. So we assume the condition next.

(fE) Ji inf f >
s*O 1-

Examples. Condition (f6) is satisfied, for instance, if (i) f(0) > 0, or (ii) f(s)

is C
1 

and f'(0) > A1" A special case of (ii) was considered in [11].

Theorem 3.1. Assume that y + X > 1T. In addition to conditions (fl), (f2) and (f6),

suppose that f is C1 for s 0 and

(3.1) inf{f'(s) : 0 ( ( B} < -y + 2/

where B C 4 is the first positive zero of f(s). Then equation (2.3) has a positive

solution u, or equivalently, system (2.1) has a pair (u,v) of positive solutions.

Remark 3.1 The hypothesis y + A > 15 in Theorem 3.1 implies that A = A1  Recall also

that under this hypothesis -y + 2rg < A 1, and so we can make use of Corollary 1.3. The

condition on the differentiability of f can be relaxed and in consequence (3.1) has to be

replaced by an appropriate one-sided Lipachitt condition.

Proof of Theorem 3.1. (i) It follows from (f6) that there exist v > A and s o > 0

such that f(s) ) vs for 0 C a 4 s o . Thus c# is a subsolution of (2.3) for all c

such that 0 < C < 0 = S0 /max #,.

(ii) If S < * then w(x) - B in 0 is a supersolution of (2.3). If B = 4- we

construct a supersolution m for (2.3) as follows. It follows from Cf2) that there exist

- + 2T < v < and C - 0 such that f(m) • Us + C. tie then take w as the solution

-13-



of -Aw + aw - Uw + C in 0, w = 0 on DO. In view of Corollary 1.3 w > 0 in 2 and

c > 0 can be chosen in such a way that e# 1 < W in 0.

(iii) So (2.3) possesses an ordered pair of a sub- and a supersolution. Now

in order to apply the method of monotone iteration, it is still required that

(a) TX . (-A + 3 - A!) be a positive operator for some real number A, and (b)

the function a --> f(s) - As, for the same A, be nondecreasing in the interval

[0, max w]. These two requirements are accomplished if one chooses I - -y + WT.

Indeed, (a) then follows by Corollary 1.3 and (b) follows from (3.1). Therefore the method

of monotone iteration can be applied and one obtains a solution of (2.3) in the interval

Remark 3.2. it should be remarked that besides f2) no growth condition is required on f.

Remark 3.3. A statement similar to Theorem 3.1 holds true for the existence of negative

solutions of (2.1). In this case, condition (3.1) in replaced by

(3.1) inf{f'(e) s B' < a 4 0) ) -y + 2/r

where - 4 B' < 0 is the first negative zero of f(s). In order to prove such a result

we can reduce it to the situation of Theorem 3.1 by the substitution z - -u.

Zmample. f(u) -au -u
3 

with a >0 . In this case B ra, and

min(f'(s) 0 u C B) - -2a. So conditions (fE) and (3.1) are satisfied if

1 a I( Y/2 - /. We then see that in this example there are values of a for

which (2.3) has a positive solution provided

(3.2) < Y/2-

Clearly this is the case for instance if Y is large. This is also the case if

T > (r3 + 1)r8 and 0 is a sufficiently large bell. Indeed. for large bells A. is

essentially zero and this last inequality implies readily condition (3.2). Clearly in this

example there is also a negative solution, namely -u, where u is the positive solution.

; -14-



Comparison with the results of lsAer-Nclenna. *in III] the following system is studied

(3.3) -kAu -Xu -h(u)u -v, -AV +V- u in a

subject to Dirichlet boundary conditions. Under certain conditions on k' A and h it is

proved that

(3.4) -kdu + 01-A u - Au - h(u)u

which is an equivalent form of (3.3), has exactly three solutions. In (III a topological

degree argument is used, which does not give the sign of the two nontrivial solutions.

Under essentially the same hypotheses, our Theorem 3.1 says that one of these solutions is

f positive and the other in negative. Our precise result is the following. We state only

the one, corresponding to the existence of a positive solution. A similar one can be drawn

for the existence of a negative solution.

Corollary 3.2. Under the assumptions below, equation (3.4) has a positive solution:

(3.5) 1 + A1  I Ir/k

(3.6) h e C I(RUE., h(O) -0, h'(s)s > 0, V a * 0.

(3.7) kkA + I +X

(3.8) sup(h'(o)s + h(s) s 0 4 s 4 6) X + k - 26k

where B is the only positive solution of hMe) -A. (observe that 6could be 4-).

Remark 3.4. if h'(s) is nondoreasing then B0 and (3.8) simplifies to

Oh'(B) -C k -26. So positive solutions of (3.4) exist if the diffusion rate k is

large.

mmzz=-15-



4. RZKAAR1 ON A SUPRRLINZAR SYSTEM. Consider the elliptic system

(4.1) -AU - f(u) - v, -AV - - yv in fl

subject to Dirichlet boundary conditions, with y,8 > 0 and -Y + 2/6 < 0. Assume the

following conditions on the nonlinearity f

(fl)' f 2 R
+  

R
+ 

locally Lipschitzian,

~f(.,
(f7) lm inf m )I

f(s)

(fe) lir fsup- (
SUP

(fM) lira f(s) -0 where 1 < 0 4 (N + 1)/(N - 1), if N 3 and I < 0 < -,0

if N - 2.

As seen in the previous section, (4.1) is equivalent to

(4.2) -Au + Bu - f(u) •

Under the hypotheses above we may proceed as in the scalar ease (cf. Brfzis-Turner [2)) and

we prove that (4.2) has a positive solution. Condition (f9) is used to get a priori bounds

for the positive solutions of (4.2). We do not know how to proceed in order to obtain such

bounds in the case when (N + I)/(K - 1) < a < (N + 2)1(N - 2) and N > 3. The results of

(31 for the scalar ease are not immediately extended to this case. For that purpose, the

first step would be to see how the results of Gidas-Ni-Nirenberg (6] look (if at all!) in

this case. We remark that the extension obtained by Troy [15] does not cover the type of

systems studied in this paper.

Remark 4.1. The condition -y + 2/r < 0 is used in order to guarantee that the operator

To 3 (-A + B)-I is positive. If this condition is not satisfied, but one has

y + XI > V-, everything still works provided A I in the right sides of assumptions (f7)

and (fS) Is replaced by A1 " y + 2r.

Nonexistence of positive solutions in the case when f(u) - u
P
, for p ) (N + 2)/(N - 2)

and N ) 3. As in the scalar case this is proved using an identity of the Pohozaev type.
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The function f(u) - up  
for u ) 0 is extended as f(u) - 0 for u C 0. Then it follows

from RAmark 2.7 that all eventual solutions u and v of (4.1) are positive in (1,

provided we assume that -Y + 2rS < 0. Consequently the nonexistence of nontrivial

solutions for system (4.1) (in star-shaped domains fl) with such an f follows readily

from the two lmmas below.

Lea
m
a 4.1. let u and v be solutions of (4.1). Then the following identity holds

2 f v , 2 _ 0 ( x ~ v [ I V , 2 1 I V v 1 2 ]
(4.3) 2V. F(u) - (N -2) uf(u) -2 J uv - I7v2 - (x.[ vu!2

where F(s) - I f and I denotes (volume) integral over R and (surface) integral
0

over 30. Rere V denotes the outward unit normal.

lema 4.2. let u and v be solutions of (4.1). Assume that -y + 2/6 < 0. Then

u - (1//?)v is positive in n] and
Su I v

-1 ( <0 on 3A.

2b conclude this section we prove the two lemmas above.

Proof of Lemma 4.1. First we use the general form of Pohozaev's identity for solutions of

the -Au - g(xu) in A and u - 0 on S0]g see 13]. This identity will be applied

separately to the first and second equations in (4.1). Observe that for the first

equation, g(x,s) - f(s) - v(x), and for the second equation, g(x,s) = 6u(x) - ya. Then

we obtain the following two identities

(4.4) 2N 1 IF(u) - uvj - 2 1 (x-Vv)u - (14 - 2) J If(u) - vlu - 0 (x-v)lVul 2

(4.S) 2N f [6uv 1 v2 + 26 j (x.Vu)v - (N - 2) (6 - vv- 2(x.v),Vv2

(If one prefer* to ignore [3], identities (4.4) and (4.5) may be obtained in the standard

way Fohoseev's identities are proved. Use the multiplier x*Vu in the first equation of

(4.1) and x*Vv in the second). It follows from the divergence theorem that
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(4.6) J (x*Vv)u J (x'Vu)v - -N J uv

Next dividing (4.5) through by 6, subtracting the result from (4.4) and using (4.6) we

obtain

(4.7) 2N j F(u) - (N -2) J uf(u) -41 uw + v2 (x.v)(1Yu12  1 VvI2]

Now it follows from the second equation in (4.1) that

(4.8) j Vv2 UV - 2 I v

Taking (4.8) into (4.7) we obtain the identity (4.3). 0

Proof of Lemma 4.2. It follows from -Y + 2/ < 0 that there eixsts a real number k

such that r( k < Y - /r6. Using (4.1) it is easy to check that

(-A + k)(u -1 v) > 0 in 0

from which the assertion of the lemma follows. Observe that we know that all (eventual)

solutions of (4.1) would be positive. 0

5. EXISTENCR OF TWO NONTRIVIAL SOLUTIONS FOR A CLASS OF SUBLINEAR SYSTEMS. Let us

once more consider system (2.1) under conditions (fl), (f2), (f3) or (f4). As in

previous sections we discuss, instead of system (2.1), its equivalent form given by

equation (2.3). In this section we propose to treat the question of existence of solutions

of (2.3) by a variational argument. So we look for the critical points of the functional

(5.1) 4(u) _ _ J IVu1 2 + _ (Bu,u) - J P(xu)

where F(xs) - f f(x,E)dt. Although this functional is well defined in H
1  

if we assume0

(f3), this is not the case if (f4) is assumed instead. bserve that both (f2) and (f4)

restrict f only in one direction. So some truncation has to be done. The existence of a

priori bounds on the solutions of (2.3) in either case ((f3) or (f4) assumed), as proved in

Section 2, allows us to truncate the nonlinearity f in such a way that the functional 4
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is well defined in H0  and it in bounded from below. Indeed, in came f3) is assumed we

choose an appropriate Z > C and do this truncation for j1e ; Z (see Proposition 2.1

and Remark 2.3) preserving u, N end C eand in such a way that li f(xs)-

1l1 a
where 0 < i ( ). In case we assume (f4) the truncation is done for 181 ; a (see

Proposition 2.2), and in such a way that lim f(x,@) . -k, where the constant k is
is +0 a

given in (2.8). The truncation so done has the very essential feature that the new

equation (2.3) with this truncated function has the same solutions as the solutions of the

original equation (2.3).

It is immediate to see that H : H1(A) + R is C
1 

and
0

(5.2) (01(u),w) - j Vu.VW + J (nu)w - J f(x,u)w

So the critical points of 9 are the H solutions of (2.3). By a bootstrap argument it

follows that these solutions are in fact in C2,a ().

ream 5.1. The functional 9 defined above satisfies the Palais ale condition.

Proof. i) In view of Poincarg's inequality we may consider H0 endowed with the inner
01 1

product (uw) - I Vu.Vw. It is well known that the nonlinear operator f N0  H0

defined by (f(u),w)H1 - f(xu), V W e H0,1 is compact. (Recall that f has linear
H 0- 1 1

growth in view of the truncation). On the other hand the (linear) operator B : H0 * H0

defined by (SoW) I - I (Su) is also compact. This follows readily from the compact

imbedding of H
1  

in L2 . Consequently 01 - I + U - f, that is, 0' is of the form

identity + compact operator. Thus to prove the Palais Miale condition it is enough to show

that any sequence (un e H0  such that 14(un)1 4 C and *'(un , - 0 in H0 possesses a

subsequence (denoted again by un) such that Iuni 1 I C.

(ii) It follows from #'(un) + 0 that given en + 0 there exists a subsequence of

(un) (denoted again by un) such that

(5.3) Il Vun'V" + I (Budt- I f(xun)-I 4 en' '.H I
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Now using (5.3) with w - un  and estimating with the help of (1.8) we get

(5.4) 1 J lu n 2 4 J f(xl,)un + Elul H1nnH 1

From the properties of the truncated f we obtain from (5.4)

(5.5) J u2 < C + Cc Iu I
n n n H1

Next from 14(un)1 4 C we infer that

(5.6) J Vun 12 C j (Bun)un + 2 J IF(Xun)I C

and finally using the properties of the truncated f we obtain from (5.6) and (5.5) that

J 1vu2 C C + Cc lu which proves that ul n I C. C
H

Remark 5.1. It follows immediately from the previous remarks that system (2.1) has at

least one solution under hypotheses (fl), (f2), and (f3) or (f4). Indeed, since 0 is

C
1 

functional, bounded below and satisfying the Palais Smale condition, it follows that it

has a global minimum ul, (u1) = inf(f(u) : u e H 1. One cannot expect in general the
0

existence of more solutions. Indeed if f(u) - Xu with X < 1, equation (2.3) in this

case has only the trivial solutioni So some additional assumption is necessary.

Now we treat a problem which is superlinear at 0, in the sense that the condition

below holds

(flO) f is differentiable at 0, f(x,O) - 0, and f'(x,O) < 1.

Example 2 in Section 2 satisfies condition (ft0).

Theorem 5.2. Assume conditions (fl), (f2), (f3) or (f4), and (MlO). In addition suppose

that there exists > 0 such that

(5.7) F() > F(s) V 0 < a < .

2F() >.minf2 (1 + t)2 (1 + t) N 1 6 (1 + t) N 0N

(52 R t 2 - (1 + t)' Y 2 - (I + t)N
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where R denotes the radius of the largest ball contained in 9. Then equation (2.3) has

at least two nontrivial solutions.

remark 5.2. Condition (5.8) is the analogue of a condition introduced by one of the

authors (D.G.F.) in (4) for the scalar case. We remark that if there is a C > 0 such

that F() > 0 then condition is satisfied for example if 0 is a large ball and 8 in

very small. The special case of Example 2 was studied by Klaasen and Mitidieri t9j.

Condition (5.8) follows readily from their conditions: (i) A to be a large ball, and

Cii) >
2a - 5a + 2

-1

Proof. it suffices to prove that there exists ; e H 0 such that *(u) < 0. Once this is

done we see that the global minium u 1  of * is a nontrivial solution since

i(U -nf 0 ( 0. The second solution in obtained immediately by an application of the

Mountain Pass Theorem of mbrosetti-Rabinowitz [11, since 0 is a strict local minimum in

view of assumption CflO). In order to see that there are points in HO where the

functional * is negative we consider the functions ut below. We may assume that the

ball centered at 0 with radius R is contained in n, where R is the radius of the

largest ball contained in 0. Defining

,if 1I 4 R/(1 + t)

CxW) - if (1 t) if -,x- i -CI tI

0, if x e \BR(O)

the result follows by a calculation from conditions (5.7) and (5.8). 0
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