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I, Introduction

-'This final rejport covers the most recent period of the Office of Naval
Research Contract N00014-75-C-0245, titled"DYNAMICAL PROPERTIES OF
DISORDERED SYSTEMS . During this period, research has been completed on
a variety of research problems contained inAONR Research Proposal. The
principal areas of research can be summarized under the following categories:

1) The fractal interpretation of amorphous structures,
2) Non-linear conductivity of low dimensional materials,
3) The effect of anodization on the superconducting transition temperature,
4) The time dependence of the remanent magnetization of spin glasses
5) The experimental opportunities for physics at high magnetic fields

In the next Section, we outline the research accomplishments in each of
these areas. The detailed references to published research supported in
these areas by the Office of Naval Research is contained in Section III.

II. Research accomplishments
1) The fractal interpretation of amorphous structures
During the period 1982-83, we began an intensive investigation of the

dynamical properties of physical systems which were fractal in geometry. We
showed that the density of states on a fractal can be calculated by taking
into account the scaling properties of both the volume and the connectivity.
We used a Green's function method developed elsewhere, utlizing a relationship
to the diffusion problem. We found that proper mode counting=required a
reciprocal space with a new intrinsic fracton dimensionality d = 2d/(2 + 8).
Here, d is the effective dimensionality, and 8 the exponent giving the dependence
of the diffusion constant on distance. For example, we find for percolation
clusters d = 4/3 within the numerical accuracy available, independent of
Euclidean dimensionality d. Crossover to normal behavior at low frequencies
was discussed for finite fractals and for percolation above the percolation
threshold p . Relevance to experimental results on proteins was also discussed.

In a follow-up piece of research, we calculated the density of states
for lattice vibrations on a fractal with careful attention paid to the
normalization condition. It was found that at the cross-over between Debye-type
excitations (long wavelength) and "fracton" excitations (short length scale)
the density of states is discontinuous. The size of the discontinuity was
related to the ratio of the fracton dimensionality to the Euclidean dimensionality.
An application was made to percolating structures. A set of missing modes was
identified which may be the origin of the two-level systems hypothesized for
amorphous structures. The specific heat of epoxy-resin exhibits a cross-over
from a Debye-type region (T<8K) to a region (8-50K) where the vibrational density
of states depends linearly on the frequency. Over the same frequency regime,
the thermal conductivity exhibitE an effective phonon mean free path of the
order of (or less then) a lattice constant. We interpreted this behavior in
terms of quantized fractons, with an energy range 8-50K, and we suggested that these
fracton states are localized. This was consistent with the usual interpretation
of a precipitous drop in the phonon mean free path at the cross-over energy
of 8K. Analogous behavior was argued for the thermal properties of glasses which
exhibit a similar structure in the thermal conductivity. Recent neutron-
irradiated quartz experiments tend to confirm this interpretation.



2) Non-linear conductivity of low dimensional materials
The frequency dependence of the electrical conductivity was examined for I.

a classical hopping model of a random one-dimensional system in the presence
of a superposed static electric field. The effect of the field was taken as
a constant bias for the left-right jump rates. A general expression was r4
derived for the mean velocity and frequency-dependent conductivity. Explicit

evaluation of these equations was given for correlated and uncorrelated
hopping rates: (1) in general for high frequencies and (2) to lowest order
in the disorder for all frequencies. In the latter case, an initial decrease
in the frequency dependent conductivity for very small frequencies was found,
with the real part of the conductivity varying as the square of the frequency
while the imaginary pary varyied as the cube of the frequency. For larger
frequencies, the conductivity crossed over to the form previously calculated
by Alexander and Orbach (proportional to the square root of the frequency).
The cross-over frequency increases with the bias. In addition, the variance
in the autocorrelation function was calculated in the long-time limit, for
weak disorder in the symmetric case. It was shown that fluctuations do not
significantly affect the determination of this quantity under these
conditions.

3) The effect of anodization on the superconducting transition
temperature

We measured the superconducting transition temperature of anodized
aluminum films of grain sizes ranging from less than 100 to 3,000 angstroms.
The transition temperature is 1.8K for films of grain size 100 angstroms, and
decreased monotonically with increasing grain size to 1.2K for 3,000 angstrom
grains. The effect depended only on the volume of the grains. We concluded
that the phonon softening model appeared to break down for thin aluminum
grains.

4) The time dependence of the remanent magnetization of spin glasses
The time decay of the thermoremanent magnetization (M. M) was measured

in 1.0% Cu:Mn and 2.6% Ag:Mn spin-glasses. It was shown t t MT= was
neither an algebraic nor a logarithmic function of time. InsteaR it was
found that M,, can bi characterized by a "streched" exponential:
MT,. : MnexpT- (t/t0 -) n/(-n)]. The prefactor (M0) and the time-stretch
exponent (n) are temperature dependent, whereas the exponential factor (C)
and the relaxation rate (l/t0) can be chosen to be independent of temperature
throughout the spin glass region. In addition, we found M0 to depend
linearly on the cooling field H, whereas n, C, and I/t0 are independent of H
for H less than 30 Oersteds. Similar time dependences appear in the
disorder-diffusion theory of Grassberger and Procaccia and the
cooperative-relaxation theory of Ngai, but neither theory in its present form
was found to be directly applicable to spin glasses.

5) The experimental opportunities for physics at high magnetic fields
A brief list of current areas of research in high magnetic field physics

was investigated. Three distinct areas were examined in detail: (1) density
of states for vibrational states on fractals ("fractons"), (2) the
thermodynamic properties of exchange enhanced quasi-magnetic systems, and (3)
p-state pairing in thin film or layered superconductors.

d



III. References to published work (numbering in accord with Section II)

1) "Density of states on fractals: 'fractons"', by S. Alexander and R.
Orbach, Journal de Physique (Paris) Lettres 43, L-625 (1982).

"Fracton interpretation of vibrational properties of cross-linked
polymers, glasses, and irradiated quartz", by S. Alexander, C. Laermans,
R. Orbach, and H. M. Rosenberg, Phys. Rev. B28, 4615 (1983).

2) "Frequency dependence of the conductivity in presence of an electric
field in one dimension: Weak disorder limit", by B. Derrida and R.
Orbach, Phys. Rev. B27, 4694 (1983).

3) "Superconducting transition temperature in anodized aluminum", by C.
Leemann, J. H. Elliott, G. Deutscher, R. Orbach, and S. A. Wolf, Phys.
Rev. B28, 1644 (1983).

4) "Time decay of the remanent magnetization in spin-glasses", by R. V.
Chamberlin, George Mozurkewich, and R. Orbach, Phys. Rev. Lett. 52, 867
(1984).

5) "On the physics of high magnetic fields", R. Orbach, in High Field
Magnetism, ed. by M. Date (North Holland Publishing Company, Amsterdam,
1983), p. 3.
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Density of states on fractals o fractons o~

S. Alexander

The Racah Institute, The Hebrew University, Jerusalem, Israel

and R. Orbach(*

Ecole Supericure de Physique et de Chimie Industrielles de la Ville de Paris,
10, rue Vauquelin, 75231 Paris Cedex 05. Fiance

(Reru le 22 april 1982, accepte le 7 juillet 1982)

Rksum6. - Nous calculons la densite d'etats sur un fractal en tenant compte des proprietes d'ichelles
pour Ic volume et la connecivite. Nous utilisons la methode de Green d6veloppe par ailleurs,
qui utilise une relation au probleme de diffusion. Nous avons trouve que, pour compter les modes
correctement, on doit avoir un espace reciproque avec une nouvelle dimensionnalite de fracton

d -2 d/(2 + 6).

Ici, j est la dimension effective, et est 1exposant que caracterise la variation de ]a constante de
diffusion avec la distance. Par exeniple. nous trouvons pour les amas de percolation, d - 4 3, quelle
que soit la dimensionnalitt Euclidienne d A la precision numbrique disponible. Nous discutons It
(tcrossover o vers un comportement normal aux basses frequences pour des fractals finis. et pour
la percolation au-dessus du seuil de percolation p,. Nous examinons aussi la pertinence de nos
predictions en les confrontant i des resultats exp~rimentaux sur les prot~ines.

Abstramt - The density of states on a fractal is calculated taking into account the scaling properties
of both the volunje and the connectivity. We use a Green's function method developed elsewhere
which utilizes a relationship to the diffusion problem. It is found that proper mode counting requires
a reciprocal space with new intrinsic fracton dimensionality W - 2 j/(2 + 9). Here, d is the effective
dimensionality, and T the exponent giving the dependence of the diffusion constant on distance.
For example, we find for percolation clusters J - 4/3 within the numerical accuracy available,
independent of the Euclidean dimensionality d. Crossover to normal behaviour at low frequencies
is discussed for finite fractals and for percolation above the percolation threshold p,. Relevance
to experimental results on proteins is also discussed.

(0) Permanent address Department of Physics, University of California, Los Angeles. California.
90024, U.S.A.
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The purpose of this note is to calculate the density of states on fractals. We do this using a
Green's function technique [1]. which avoids the use of boundary conditions and wave vector
counting. We show that the usual relationship between the density of states and the Euclidean
dimensionality (d) does not apply. The density of states cannot be described in terms of an ano-
malous dimensionality (d) alone but requires an additional index describing the internal struc-
ture. We determine a fracton dimensionality (d) of the relevant reciprocal space which assures
proper mode counting for a fractal in terms of the index governing diffusion (X) and the ano-
malous or fractal dimension (d). The density of states for free particles and for lattice vibrations
is determined. We apply these results to polymer chains, the triangular Sierpinski gasket, and
to percolation networks.

We were directly motivated by the recent work of Stapleton et al. [2] who found an anoma-
lous temperature dependence for the ESR spin-lattice relaxation time of iron in several proteins.
They interpreted their measurements in terms of an anomalous vibrational density of states
arising from a suggested fractal structure for the proteins. However, they included only the
anomalous dimensionality d in their analysis.

The density of states on fractals should also be of interest in other situations. Examples would
be the role of geometrical disorder in amorphous systems. and the specific heat of fractal-like
systems in the intermediate temperature range (see below).

1. Method of calculation. - We consider problems defined on a fractal so that both the
available volume and the connectivity are determined by the fractal geometry. An explicit way
of realizing a fractal model is to consider solutions of the relevant equations on a network of
wires connected in a suitable geometry [3]. We take the network to be homogeneous. Our results
will apply for times or frequencies such that the associated distances are much larger than the
size of the individual bonds making up the network, but much smaller than the total size of the
network. Formally, we are assuming that one can define some local geometry on the fractal in
which the Laplacian has its usual form (i.e. is equivalent to a local q2 expansion). This is defined
by the wires for a network model. While this may not be possible for all conceivable fractals
we believe it is certainly possible for most cases in which one would be interested. One finds
that the formal relationship between problems initially described by Laplacians (or by equi-
valent finite difference equations [4]) is maintained.

The structure of the diffusion equation is such that it can be mapped onto a master equa-
tion. which in turn has the same form as the free particle Schr6dinger equation and the equa-
tion of motion for mechanical vibrations (see Sec. 3 of Ref. [3], and Ref. [5]). This will enable us
to map the eigenvalue density of states for the quantum vibrational problem onto the eigen-
value density of states of the diffusion problem. The latter can be obtained from the single site
Green's function for the diffusion problem [1] :

N(t) = -lim < Po(- t + iO')) (I

where Po(e) is the Laplace transform of P0 (t), the autocorrelation function, with i the spectral
parameter. In physical terms, if a particle is initially at the origin at time t = 0, the probability
of finding it there at time t is given by Po(t). We now calculate this quantity directly.

On a fractal one expects in general, anomalous diffusion [6]. We write,

< r2 (t)> 3 ,  (2) 

where 3 is an index which depends on the geometry (i.e. it is the diffusion constant scaling expo-
nent). In general one expects , # 0. The total volume available on the fractal, within the dif-
fusion distance, is

V(t) x < r2 (t) )72 (3)
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where 5 is the anomalous or fractal dimensionality. Thus.

< Po(t) > [V )] -I - - 71 (4)

We have thus assumed that the diffusion length is given by a power law (Eq. (2)) and that
it is the only relevant length scale in the problem. Using equation (1), one is immediately led
to the eigenvalue density of states for the diffusion problem

N(E) x e, (5)
where

x = [(2+ )] - (6)
As shown explicitly in reference [1]. the spectral parameter c can be related to the energy eigen-

values of the vibrational problem by replacing 6 by w 2 and multiplying by co

N(o) x coP , (7)

where
p = 2x + l = [2 /(2 + )] -. (8)

We refer to the quantized vibrational states on a fractal as fractons.
For positive 6, x and p are always smaller than the anomalous dimension result (x = (d 2)- 1,

p = d - 1, as suggested in Ref. 12]). The reason for the difference is that the scale dependence
of the elastic constants is also anomalous (i.e. it depends on 6). It is not sufficient to consider
only the mass scaling described by d.

Our results, equations (5)-(8), can be described by a o mode counting )) reciprocal space of
effective dimensionality

d= 2 dl(2 + (9)

We shall call this the fracton dimensionality. For a standard Laplacian (A -= q2) expansion,
this is the relevant dimensionality. It determines the relevant Hilbert space for Laplacian equa-
tions on the fractal. We emphasize that the fracton dimensionality (d) is an intrinsic property
of the fractal geometry. It differs from the mass scaling exponent, or the fractal dimensiona-
lity (d), and from the diffusion constant scaling exponent (6), in being independent of the manner
in which the fractal is embedded in an external space (of Euclidean dimension d). The d depen-
dence of d and 6 cancels out in equation (9).

We note that this seems to be the natural extension of a gradient expansion to fractals. The
obvious alternative of expanding in undistorted real space gradients leads to a singular expan-
sion (t - q2 +) and a reciprocal space of dimensionality d (using Eq. (2)).

2. Some examples. - It is useful to consider some examples.
a) Consider a one dimensional chain whose configuration is described by a random walk

or self-avoiding walk. One has

N" x r, (10)

where N is the length (number of units) of the chain. Thus,

d= -  (11)

For diffusion along the chain.

N'(t} c t.
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and from equations (10) and (14)

< r2(t) >x<N ()>: ,(
so that

leading to (Eqs. (6). (8t and (9)),

X = 1/2, p=O0, and d=1 (141

The fracton dimension (d) for this problem is identically one, and is independent of V,

b) Consider a triangular (d =2) Sierpinski gasket. One has [3, 71

= [(in 5)1 (in 2)] - 2 :_ 0.322, ia

j = (in 3)1(ln 2) _- 1.585, (1 5h)

but the fracton dimension is (Eq. (9),fnt il 5 .6.(6

Thus, the gasket is somehow more one dimensional than suggested by d.For the cigenvalue
density of states, one has the spectral parameter exponent (Eq. (6)%

x = [(tI 3)/(ln 5)].- 1 -0.317, (17ai)

and the fracton co exponent (Eq. (8))

p = [2(1n 3)/(ln 5)] - 1 ;t 1.365. (1 7b)

c) Consider a critical percolation network. Taking the infinite cluster at the critical percola-
tion concentration p, one has from straight forward scaling considerations [81,

d=d - (fl/ v),(8

where d is the Euclidean dimensionality of the external space, and (3, 61

X = (t - #i)/V, (19)
where t is the conductivity exponent. Thus,

d =2(dv - P)I(t-+ 2 v). (20)

Table 1. - The fracton dimensionality d defined in equation (9) and the eigen value density of
states indices x (Eq. (6)) and p (Eq. (8)) as a function of the Euclidean dimensionality of the per-
colation problem (d). The fractal dimensionality d (Eq. (18)) and cS(Eq. (19)) were computed fron:
the numerical values in reference[8].

d d x p d

2 1.36 - 0.32 0.36 1.9 0.80
3 1.42 - 0.29 0.42 2.5 1.55
4 1.39 - 0.30 0.39 3.3 2.71
5 1.44 - 0.28 0.44 3.8 3.3

)c 4/3 - 1/3 13 4 4



No 17 DENSITY OF STATES ON FRACTALS 4<FRACTONS , 629

We give results for d in table I as a function of the Euclidean dimensionality (d) for Stauffer's
values [81 of the indices t, P, and v for the percolation problem. One notes the very weak depen-
dence of the fracton dimensionality (d) on the Euclidean dimensionality (d) of the percolation
problem. This is in sharp contrast to the behaviour of d and 6. The table certainly suggests the
conjecture that, for percolation on the infinite cluster,

d = 4/3, (21)

independent of d (see note added in proof).

3. Crossover and rmite size effects. - The Laplace transform of equation (2) yields a rela-
tion between length scale and the Laplace transform spectral parameter C. We are able to find
a characteristic diffusion length scale appropriate to the spectral parameter a, ;., which varies
as [3)

,;., x/(z ).(22a)

Mapping onto the vibrational problem as before,

3. ( x - 2;(2 + (22b)

Fractal behaviour is found for length scales less than the size (L) of a fractal object. For larger
length scales, the solutions are, in essence, uniform over the fractal and the density of states is
determined by the boundary conditions. Crossover to fractal behaviour occurs when A, :E L,
or for energies

. ... Z L -2 z + , (23)

where the subscript c.o. means crossover. For & > C... (or co > w.), the eigenvalue density
of states is then given by equation (5) (or Eq. (7)). For a percolation network above p , one pre-
dicts normal d-dimensional low frequency vibrational density of states (p = d - 1) crossing
over to fracton behaviour for vibrational frequencies above (Eq. (23))

wO'.o.(P) 0C p(2 +42 (24)

where p is the percolation correlation length.

4. Discuosio. - We conclude with some remarks concerning the relevance of our results
to experiment. We have analysed the eigenvalue density of states for diffusion on a fractal geo-
metry, and mapped our results onto the vibrational eigenvalue density of states for systems
with the same geometrical structure. For the vibration problem, this assumes that both the
elastic constants and the inertial mass are appropriate to a free fractal. It is important to empha-
size that this is not necessarily a proper physical description. It is, in fact, hard to think of a
situation where the vibration spectrum of a polymer would be adequately described by our
free fracton model. For gels, the mass density is always dominated by the solvent, and there-
fore scales with the Euclidean dimensionality of the external space (d). Any fractal anomalies
would only reflect the scaling properties of the elastic constants. It is conceivable that something
similar occurs for proteins where one would also expect an essentially uniform density. This
might be relevant to the interpretation of the results of Stapleton et al. [2] and to other measu-
rements in which the vibrational density of states of proteins is important 191.

This work was supported in part by the U.S. National Science Foundation and the U.S.
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Office of Naval Research. We wish to acknowledge helpful correspondence with H. J. Stapleton.
and very useful conversations with T. C. Lubensky, R. RammaL G. Toulouse, and J. Vanni-
menus (see note added in proof).

Note added in proof - Professor T. C. Lubensky has noted (private communication) that
some intriguing consequences follow if one takes seriously the results of the table for the per-
colation problem. He notes that if one assumes that d = 4,3, independent of d, one can use
equation (20) to generate an expression for the exponent t in terms of v and fP

t= (1/2) [v(3 d - 4) -

Two consequences are worth noting.

1) Using the values of P and v following from the den Nijs conjecture at d= 2 (M. P. M. den
Nijs, Physica (Utrecht) A 95 (1979) 449) = 5/36 and v = 4/3, one finds t = 91/72 = 1.264.

This differs from t = 1.1 presented by S. Kirkpatrick (La matiire mal condensie, Ed. by R. Ba-
lian, R. Maynard and G. Toulouse (North-Holland publishing company, Amsterdam) 1979,
p. 321), and is not in accord with the relation t = v (A. K. Sarychev and A. P. VinogradofE J.
Phys. C 14 (1981) L-487). A very recent finite size scaling (simulations on finite size strips) of
B. Derrida and J. Vannimenus (submitted for publication, 1982) finds t = 1.28, in close accord
with the above consequence (t = 1.264) of setting d = 4,3.

2) The links and node model led A. S. Skal and B. I. Shklovskii [Fiz. Tekh. Poluprov. 8 (1974)
1582 (Soy. Phys. : Semicond. 8 (1975) 1029)] to define t = (d - 2) v + . Setting d = 4/3, solving
for t, and using appropriate scaling relationships, leads to the expression, valid for all d,

= (1/2)(ft + y).

G. S. Grest and M. J. Stephen (Phys. Rev. Let, 38 (1977) 567) and C. Dasgupta, A. B. Harris
and T. C. Lubensky (Phys. Rev. B 17 (1978) 1375) show that =P,, = I + 0(c') where & = 6 - d.
If we use perturbation theory results for fP and y (R. G. Priest and T. C. Lubensky, Phys. Rev.
B 13 (1976) 4159; B 14 (1976) 5125; D. J. Amit, J. Phys. A 9 (1976) 1441):

f= I - (1I/7) z - (61/73 32 22) E2 +

y i 1+ (1/7) t + (565/7 32 22) 2 +

we find
e -fI 1 + 2/49

as required to 0(2). For d f 2, tp = = 1.33, obviously outside the range of safe o conver-
gence (e = 4), but remarkably close to the conjecture (d = 4/3) value of r = 1.264.

Finally, from another perspective, R. Rammal and Angles d'Aurioc (submitted for publica-
tion, 1982) have found values for d and X" for the Sierpinski sponge in d dimensions. They find

f [in (d + )IIn 2, n= {[In(d + 3)]In2} - 2

so that

d = 2[In (d + 1)]/In (d + 3).

These results agre with ours for the case we considered, d = 2. In addition, the asymptotic
d --. o limit for d is 2, quite different from the d --. limit for the percolation problem, 4.3.
The ratio, d/d = (In 4)/[in (d + 3)] is always less than unity for d > 2, exhibiting the same
trend as we have exhibited for d - 2.
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Fracton interpretation of vibrational properties of cross-linked polymers,
glasses, and irradiated quartz

S. Alexander,* C. Laermans,' R. Orbach,* and H.M. RosenbergI
Ecole Superieure de Physique et Chimie Industrielles, 10 rue Vauquelin, F-75005 Paris, France

(Received 28 March 1983)

The density of states for thermal vibrations on a fractal is calculated with careful attention paid
to the normalization condition. It is found that at the crossover between Debye-type excitations
(long wavelength) and "'fracton" excitations Ishort-length scale) the density of states is discontinu-
ous. The size of the discontinuity is related to the ratio of the fracton dimensionality to the Euclide-
an dimensionality. Application is made to percolating structures. A set of missing modes is identi-
fied which may be the origin of the two-level systems hypothesized for amorphous structures. The
specific heat of epoxy resin exhibits a crossover from a Debye-type region ( T< 8 K) to a region
(8-50 K) where the vibrational density of states depends linearly on the frequency. Over the same
frequency regime, the thermal conductivity exhibits an effective phonon mean free path of the order
of (or less than) a lattice constant. We interpret this behavior in terms of quantized fractons, with
an energy range 8-50 K, and we suggest that these fracton states are localized. This is consistent
with the usual interpretation of a precipitous drop in the phonon mean free path at the crossover en-
ergy of 8 K. Analogous behavior is argued for the thermal properties of glasses which exhibit a
similar structure in the thermal conductivity. Recent neutron-irradiated quartz experiments tend to
confirm this interpretation.

I. INTRODUCTION relevant to the predictions of Ref. 2. We shall describe
the relevance of these experiments to fractal behavior

Two of us have suggested that the concept of fractals' below, but first it is necessary to make explicit the cross-
can be applied to the vibrational properties of macro- over from phonon (long-length scales) to fracton (short-
molecules and have derived the vibrational density of length scales) density of states. In particular, we need to
states for fractal structures.2 We found that the usual derive the normalization coefficients which make the
Debye-type density of states crosses over to a "fracton" above Eqs. ( 1)-(4) quantitative.
density of states for length scales less than some charac-
teristic length (L), corresponding to frequencies greater II. PHONON AND FRACTON DENSITY
than a crossover frequency w,,o. We denote the Euclidean OF STATES
dimensionality by d. and call the density dimensionality of
the fractal d (the so-called Hausdorff dimensionality). We wish to normalize the long-wavelength phonon den-
(Thus the mass increases with increasing length r as sity of states to a volume Ld. This is because the phonon
r). The exponent giving the dependence of the diffusion character of the elementary vibrational excitations ter-
constant on distance is denoted by 0, such that minates at the (minimum) length scale L. Thus we set

D (r)ccr - 0  . (1) N ph((W= d (L a Jd[(6U -1 1((coDoI ] , (5)

Alexander and Orbach 2 show that the density of vibra- where a is an atomic distance which sets the shortest

tional states in the regime of fractal behavior can be writ- length scale in the problem (i.e., fracton behavior is ob-

ten as tained for length scales on a descending basis between L
and a). Thus

(2) w = a /L)wD , (6)

where d is the fracton dimensionality, where COD is the apparent Debye frequency as projected by

=24/(2+6 . 3 the low-frequency velocity of sound. The integral of Eq.
(5) from 0 to wo equals unity, indicating that there is one

In Euclidean space, N(wc) d - 1. The crossover frequen- mode per volume Ld as required. Thus at the crossover
cy scales as frequency one finds

[/c~c L -' 2+0'/2 (4 N ph 40"') = d /Coco 17)

Recent experiments of Kelham and Rosenberg -
3 suggest The fracton regime is a little more complex. From the

that experiments involving the heat capacity and thermal definition of the Hausdorff dimensionality there will be
transport of epoxy resins may be exhibiting behavior (L/a IJ atoms per molecule. This leads to an appropriate

28 4615 t 1983 The American Physical Society
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fracton density of states,2 iL /a)[ l -(a IL d -3 ]FC" [L /a 1JIc=fL /a)d,

Nr)--d(L/a)C1(S)?- ((WFD]  (8) (16)
We have introduced another quantity. the so-called frac- and therefore not critical.
ton Debye frequency. Equations (13) and (141 together enable us to calculate

(FD=IUD(L /a)0 the tital number of modes in the finite cluster. We have
to / ( a)'p f R . .o / FD JPR)d

This quantity sets the upper limit on the frequency regime L RR
of fracton behavior. Indeed, if we integrate Eq. (8) from =Ld- /-)(Wo&/FD)9
Wco to WaFD we find (L /a)- I modes as required. That is,
there is one-phonon mode per volume L d , and (L /a)- 1 x I[a/R (Wo)J - d -(alL) - j . (17)
fracton modes, so that in total one finds (L /a ) modes per
volume ad. At the crossover frequency, Eq. (8) reduces to Adding Nfrc(wo from Eq. (12) to Eq. (17, and using Eq.

(15), we find the remarkable result that the total fracton
Nfrlfoo)=d/wco. (10) density of states on a percolating network equals

We therefore find the important relationship at crossover, Nfr(&=J(L /a)d( 1/o)(o/OWFD2/ 2
- . (! 8)

Nf,(w.ol/Nph(wo)=d/d . (11) Should we integrate Eq. (18) over the fracton frequencies,
= we would find,

Because we believe d < d, we shall discover that the exper-
iment appears to be in conflict with the ratio (11), even f'DNfr(w)dw.=(/d)(L - , (19)
though the remainder of the spectrum appears to be con- - o
sistent with the ideas of fractal behavior (see Note added or only did < I modes per atom, and not one full mode.
in proof). This reflects the missing center of mass modes of the fi-

nite clusters. The proof follows from the integration of
III. APPLICATION TO PERCOLATION Eq. (18) from w(R), the smallest frequency allowed for a

cluster size R, to the maximum fracton frequency CaoD,
Though the experimenta portions of this paper are cer- I FDR [

tainly not described by percolating networks, it is of in- faxR Nf, dw = R I - [(R /aFD]Tj
terest (and possibly of experimental importance) to carry
through the ideas of the previous section to illustrate an = R I l 1R 1 )
example of fractal structure. It is necessary, however, to
distinguish between the infinite cluster and finite clusters =R - 1, (20)
when calculating the full density of vibrational states for which proves the statement for the normalization we have
pe solating networks., used. It is intriguing to speculate that this "missing

As shown in Rd. 2, one can use the concept of fractals mode" might be the analogous quantity for percolation
for percolating structures, with (L/a)T atoms (sites) per systems that the two-level systems are for amorphous sys-molecule, where L is the percolation correlation length p. tems.
Denoting the infinite cluster by the superscripts IC, we The total number of missing modes is l -did) per
find Eq. (8) becomes atom [see Eq. (19)). Their frequencies are unknown, but

NIco)=d(L/a) 1 [(w) -/(CL)D]. (12) their mass distribution can be calculated. There are
R -,"+" clusters between R and R +dR, leading to a mass

The finite clusters need to be considered because the distribution of mass M between M ( =RT) and M + dM,
(specific-heat) density of states will be the sum of the in- with r=(d/A7) + 1. The missing mode frequencies fliv (t
finite and finite cluster density of states. The probability for "two-level" systems, and M for the mass of the clus-
per site, or atom, of belonging to a cluster of size R < L is ter) must be less than [from Eq. H 5)]

1P(R) T:c=(d -d)(R/a I +- , (131 fl <R.i(2+eh/2 cM-t/j. (21)

where the subscript FC means finite cluster. Equation Summarizing the results of this section, Eq. (18) exhib-
(13) leads to its the fracton density of states for a vibrational network

f[P(R)dR =I (a/LVd-J- (14) on a percolating structure. The fracton density of states
[PR)FC -at crossover remains that of the infinite cluster:

the probability of belonging to a finite cluster. By defin- • , (22
ing (22

R oi 1/a ' 15 but the slope for higher frequencies i.e.. within the frac-ton regirn, i; pro.rnional to w2d : -o instead of
only clusters with R > R ' w ontain modes of frequency .JJ ' :-' for the infinite cluster alone. This is because of
(a. Next, the total number of site (or atoms, in a volume the contribution of finite clusters to the fracton density of
L d is, from Eq. (14), states. In addition, the integral over the finite-cluster den-
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sity of states shows that one mode per cluster is missing. determined from x-ray scattering 'see the method of
This mode can be attributed to the center of mass motion Stapleton ei al.'. It would be of great interest to see if d
of the cluster, and may be analogous to the "'two-level sys- (now overdetermined, is consistent with such measure-
tems" attributed to amorphous systems. ments.

We also note in closing that percolating structures can There remains a problem between the analysis of the
easily be achie'ed in magnetic systems by simple dilution. specific-heat data of Kelham and Rosenberg" and the
A previous paper4 showed that the diffusion equation not theory developed above [specifically, with Eq. 11)]. Be-
only maps on to the vibrational problem, but also on to cause J < d, and with 6 positive. d < d. so that the fracton
the linearized spin-wave problem for ferromagnetic sys- density of states at crossover will always be less than the
tems. Consequently, for randomly diluted ferromagnetic phonon density of states at crossover. Thus the density of
systems. the spin excitations would cross over from spin- states can only suffer a drop at crossover, whereas the ex-
wave-like at low energies to spin-fracton-like at higher en- periments appear to exhibit a rapid rise at the frequency
ergies, with a density of states proportional to wd / Z -1 which we have interpreted to be crossover. We are at a
for the infinite cluster alone, and to wdl ' 2 ,9-1 for the loss to understand this difference in behavior. It is possi-
sum of the infinite and finite clusters. Either specific heat ble that there is an additional feature to the vibrational
or neutron-diffraction studies on randomly diluted fer- spectrum of epoxy resins in the fracton regime which adds
romagnets would be interesting to compare with these a constant to the density of states. but we are unaware of
forms. its origin. As can be seen below, the analysis of the

thermal conductivity is also consistent with fractal
behavior above the frequency we have identified as cross-

IV. RELEVANCE OF FRACTON THEORY over, so there is some compelling character to the evidence

TO EXPERIMENT for fracton excitations above about 8 K in epoxy resins.
However, the inconsistency with the direction of the

We have already suggested that recent experiments on discontinuity remains, and makes our hypothesis some-
the specific heat and thermal conductivity of epoxy resins what unsettled (see, however, the NVte added in proof .
by Kelham and Rosenberg may have exhibited fracton Perhaps a more extraordinary feature of the measure-
properties. They have shown (from an analysis of their ments of Kelham and Rosenberg is their finding that if
specific-heat measurements' that N(w) cc a): for Ao/ka < 8 one analyzes the thermal conductivity in the usual kinetic
K, but is proportional to o for 8 K <fAw/kB <50 K. theory manner, the mean free path exhibits a precipitous
Their figure for Nt& appears to exhibit a discontinuity drop to less than an atomic spacing above the frequency
between these two regimes. though the analytic form they corresponding to 8 K (or the length of 30 A). Such
have chosen does not. This change of slope is exactly behavior for the effective mean free path was first noted
what one would expect if the epoxy molecules were exhib- for glasses by Zaitlin and Anderson. They used a nearly
iting fractal behavior. The "crossover frequency" is vanishing mean free path [region C of their Fig. (5)] as a
chosen to be 8 K. and corresponds to a length scale of 30 method for analyzing the "plateau region" found for the
A. about the length of the epoxy molecule (diglycidyl eth- temperature dependences of the thermal conductivity of
er of bisphenol A). For stoichiometric hardening it is also almost all glasses.
the distance between cross links of hardeners. Use of the A mean free path of less than a lattice -dnstant certain-
same number of hardener molecules, but of differing ly suggests localized states according to the loffe-Regel
lengths, did not change the crossover fiequency [Nicholls rule.8 We carry the fracton picture further and note that
and Rosenberg (unpublished)] and the crossover length Domany et al. have recently shown9 that essentially all
scale remained the distance between cross links. This is to states are localized on a Sierpinski gasket (a well-known
be expected if the epoxy molecules alone are exhibiting fractal geometry'). In general, for fractal structures,
fractal behavior. Preliminary evidences suggests that in- Rammal and Toulouset ° have recently shown that the
creasing the amount of hardener (i.e., reducing the dis- conductance g(L) scales with length for fractals as
tance between cross-links) tends to raise the crossover fre-
quency. If one associates the length L in Eq. (4) with the g(L) cLJ - e_ . (23)
distance between cross links, then this effect is in the
correct direction. It suggests that the effect of the cross With the use of the scaling relation of Abrahams et al.,.
links is to restore the true Euclidean three-dimensional their quantity 0(g) becomes
character of the lattice vibrations, and that the fractal
behavior is to be associated with the behavior of the epoxy dg ( - -(24
molecules between the connections with the hardener. g)= dn/. (2-

The observed power (linear) for the vibrational density
of states above the hypothesized crossover frequency sug- or, in terms of the fracton dimensionality d, using Eq. 3),
gests d=2. Unfortunately, at the present time we have no
independent estimates for d and 0 for epoxy resin. We 0(g)--j[l-2/, (25)
note, however, that the length scale can be changed for the
epoxy, either by changing the amount of hardener, or by The argument of Abrahams et al.' 1 leads to localized
using different epoxy molecules, which allows the use of states for _ s0. The specific-heat analysis of Kelham and
Eq. (4) to determine 0. Further, j can be independently Rosenberg3 suggests that -I = 1, or j= 2. Use of this
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value in Eq. (25) results in P(L)=0, so that the scaling correlations. For example, Morgan and Smith' have
factor of Abrahams et al. is consistent with localized made similar arguments (even to lengths up to 1000 A),
behavior, though with a very different model in mind.

For localized fracton states one would not expect any It is interesting to note that as pointed out by Morgan
contribution to the thermal conductivity, but rather only a and Smith the plateau temperature width is much larger
scattering of the lower-energy extended phonon states, ex- for amorphous Se than for most glasses (Zeller and
actly as the lower-energy two-level systems' 2 have been Pohl' 3 ). It is known that the characteristic correlation
shown to do in amorphous systems.' We are making a length in amorphous Se is much longer than in most
distinction here between the two-level systems which are glasses. We have already noted this phenomenon above
also found in epoxy resin 3 (and in nearly all amorphous for epoxy resin. Finally, Phillips" has also argued for ex-
materials , 

1) and the fracton modes. The density of states tended correlations in amorphous systems.
of the former are usually added to the extended phonon Recent irradiation experiments on crystalline quartz
density of states, while the latter replace the phonons as also tend to confirm our interpretation of fractal behavior
the fundamental excitation above coo (but see our specula- in glasses. Laermans et al." have shown that electron ir-
tion concerning the origin of the "two-level systems" for radiation of crystalline quartz does not produce a plateau
percolating networks). Localized fractons would then region in the thermal conductivity. However, neutron ir-
manifest themselves by a sharp drop (vanishing) of the radiation does generate a plateau regime with a width
contribution to the thermal conductivity for excitations slightly larger for larger neutron doses.' 8 X-ray scattering
with cw > oc. A conventional thermal-conductivity by Grasse et al. 19 shows that neutron irradiation causes
analysis would result in a negligible mean free path in amorphous regions of diameter 20 , while Grasse et al. 2

such an excitation region. The property of the epoxy resin show that electron damage does not, hence the lack of a
which best maintains the correctness of our interpretation plateau region in the thermal conductivity for the latter.
is that the frequency at which the "mean free path" be- Finally, Grasse et al. 2 point out that the size of the amor-
comes of the order of an atomic spacing is almost precise- phous regime tends to grow slightly 120%) with increasing
ly the frequency at which the density of states suffers a neutron irradiation. This is consistent with the slight in-
discontinuity---crossover from a Debye-type to a fracton- crease in plateau length found by de Goer et al."8 as a
like form. function of increasing neutron dosage.

At yet higher temperatures, the plateau in the thermal
conductivity ends, and begins to increase (e.g., above - 10 V. SUMMARY AND CONCLUSIONS
K for epoxy resin. This could be caused by classical hop-
pinglike transitions between localized fracton states, In summary, we contend that the thermal properties of
analogous to Mott's variable range rate hopping"4 for lo- epoxy resin and glasses can be understood on the basis of a
calized electronic states. We have not as yet carried crossover from Debye-type behavior at low frequencies to
through a detailed analysis for thermal transport in such a fracton behavior at higher frequencies. The density of
regime. states correspondingly changes the exponent of its power

The fracton hypothesis suggests that materials exhibit- law from d - I to J- I [Eq. (2)]. At this same crossover
ing a significant temperature spread for the plateau re- frequency, the vibrational states change their character
gime, in the thermal conductivity, possess a characteristic from extended to localized, thereby profoundly affecting
length considerably larger than an atomic spacing between the thermal transport and serving as a possible explana-
which vibrational excitations are localized (we hy- tion for the extremely small mean free path of phonons in
pothesize, fractonlike). For longer-length scales, one this energy region as extracted from more conventional
passes into the normal Debye-type regime. The width of analyses. The crossover frequency is proportional to the
the plateau region will increase as the crossover length L inverse of the length scale, according to Eq. (4), fracton
increases, behavior expected for shorter lengths. Any increase in

It is interesting to compare the results and analysis of this length should therefore reduce the crossover energy
Kelham and Rosenberg 3 on epoxy resin with that of Zait- and increase the width of the plateau region measured in
lin and Anderson 7 on other noncrystalline materials (a thermal-conductivity experiments.
borosilicate glass and a polycarbonate). As recognized by Note added in proof The form we have used for the
Kelham and Rosenberg, Zaitlin and Anderson were the normalized fracton density of states assumed that the
first to associate the plateau in the thermal conductivity force constant and mass scaled smoothly through the
of almost all glasses (see Zeller and Pohl' 3) with a sudden crossover regime. Recent work of P. F. Tua, S. J. Putter-
drop in the phonon mean free path for frequencies above a man, and R. Orbach [Phys. Lett. (in press)] suggests an al-
minimum wo (the crossover frequency?). This is clearly ternative picture: a drop in co vs inverse length scale at
exhibited in their Fig. 5, region C. The similarity of their the crossover length. This leads to a jump in the density
analysis for noncrystalline materials, and that of Kelham of states (instead of a drop), going from the phonon to
and Rosenberg for epoxy resin, where long-range correla- fracton regimes. Excellent agreement with the experimen-
tions (I-30 A) are expected, is striking. tal results of Ref. 3 is obtained. Finally, an effective

We admit that it is a little puzzling why ordinary medium approximation for N)) has been obtained ver'
glasses should exhibit such a length, roughly independent recently for percolating networks by B. Derrida. R. Or-
of the character of their constituents. However, our bach, and Kin-Wah Yu (unpublished). It strongly sup-
analysis would not be the first to argue for such extended ports the assumptions of Tua et al., giving additional con-
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The frequency dependence of the electrical conductivity is examined for a classical hop-
ping model of a random one-dimensional system in the presence of a superposed static elec-
tric field. The effect of the field is taken as a constant bias for the left-right jump rates. A
general expression is derived for the mean velocity and frequency-dependent conductivity.
Explicit evaluation of these equations is given for correlated and uncorrelated hopping rates:
(i) in general for high frequencies and (2) to lowest order in the disorder for all frequencies.
In the latter case, an initial decrease in oa(w) for very small w is found, ar=ao-aJW',
a, -aw 3 . For larger frequencies, the conductivity crosses over to the form

(w)=bo+b,(ico) ' 2, previously calculated by Alexander and Orbach. The a,,bi are con-
stants which depend on the strength of the bias and the randomness. The crossover fre-
quency increases with the bias. In addition, the variance in the autocorrelation function is
calculated in the long-time limit, for weak disorder in the symmetric case. It is shown that
fluctuations do not significantly affect the determination of this quantity under these condi-
tions.

I. INTRODUCTION Our purpose here is to formulate the problem in
such a manner that the frequency dependence of the

The frequency dependence of the electrical con- conductivity can be calculated directly. Section I1
ductivity in one-dimensional systems with symme- describes the formal calculation of the ac conduc-
trical random hopping rates has been calculated re- tivity in a uniform dc field. Section III exhibits the
cently in a series of papers.' - 3 Recent electrical high-frequency limit for the conductivity. The solu-
conductivity experiments on the quasi-one- tion for weak disorder is developed in Sec. IV, with
dimensional conductor quinolinium di- figures exhibiting the real and imaginary part of the
tetracyanoquinodimethanide (Qn(TCNQ)j have frequency response for different biases. In both
been analyzed using these results by Alexander Secs. III and IV we treat the case of correlated and
et al.4 All of these studies, with the exception of uncorrelated hopping rates. In Sec. V, we derive an
Ref. 3, have only treated the case of symmetric hop- expression for the variance of the autocorrelation
ping rates, and hence were only applicable in the function in the weak-disorder limit, and show that
small electric field regime. fluctuations are unimportant in this, and the long-

Recently, attention has been directed to the ques- time, limit. Finally, we summarize our findings in
tion of transport with random, but biased, hopping Sec. VI.
rates. 5- 7 These calculations have explored the time
dependence of the mean displacement. Our purpose II. FORMAL SOLUTION FOR THE
is to calculate the frequency dependence of the con- ac CONDUCTIVITY
ductivity in the nonlinear electric field regime. We IN A UNIFORM dc FIELD
shall find a result very different from the symmetric
case at the lowest of frequencies, crossing over to a We treat the same master equation for hopping
response which is the same as found for symmetric transfer as in Ref. I, but with asymmetric hopping
hopping at higher frequencies. This crossover has rates. Let P,(t) be the probability that site n is oc-
been anticipated in Ref. 3. cupied at time t. Then, for near-neighbor hops only,
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dP Once Q. and R. are known, we may find V from
d-"-- Ym.+P +X.-1P -t-(X.+ Ya)Pn , Eqs. (5) and (4). From Eq. (6b), XRN =0 whence

(1) I[X, 1 X -aX. - I -Ee"')J][Q. + R.Ee'"] I
where Y. +I is the hopping rate to the left (from V .
n + I to n) and X, - I is the hopping rate to the right 1IQ.
(from n-I to n). In the presence of an applied
static electric field 9o, and a small oscillating field (7)
5' at frequency a, Writing the velocity in the form V v +Ee '0o(c),

Y. I [ ('0+5'e')el W. one identifies

-- ex [ kj T IX(X - aX -12 Q .

I ~ k T x~.. . (2) = Q.(8
where we have taken the potential drop to be the and
same along all segments of equal length 1, and where [(X. -aXR._)R. +aX-,Q.]
W. is the symmetric hop rate between n- I and n
(i.e., the hop rate in the absence of an applied static o(a)- (9)
field). Expanding in V,

Y==a (1-Eel' _j ,(3) These are our two principal relationships (the first is
where E=2#'eIkjT and o=exp(-25'0 el/k,) is merely a restatement of the result obtained in Refs.wher E=2felkaTanda- ep(- oelkmT is 5-7). We can evaluate Eq. (8) immediately for our

termed the bias. The velocity of the particle at time model. Expressing the Q. as
t is given by

SP,(t) QlaPX.+, . (10)

V ff __d = p-o
dt XPa(t) Equation (6a) is solved immediately. One finds

II

Y, W, M =(II-a
( (4)

-- a(t) This is the same result as in Ref. 7, if we note
* a-exp(-2'oel/kBT) and (I/X 0 =exp(5'oel/

Expanding Pm(t) in a power series in the reduced kpT)(1/W), where W, is the symmetric hop rate
field E, between n- I and n in the absence of an applied

P.(t)Q.+,R.Ee'+ • • •,( electric field. InsertingintoEq. (11),

one can derive expressions for Q. and R. from Eq. V =2( l/W)-'sinh(X'oelIkT), (12)

(1). One finds a well-known result, 7 and one which reproduces

X.(aQ + .-Q. )-X. W. (aQ -Q,_)=O , (6a) Rice et al.I for the case of a regular lattice. We now
go on to explicit evaluation of the conductivity, Eq.

iw& -iX.(aR. +1 -,R.)-X. (aR. -A. 1) (9), in the high-frequency (Sec. III) and weak-

-aX.Q8 1 +aX.. 1Q.. (6b) disorder (Sec. IV) regimes.

II. HIGH-FREQUENCY LIMIT

We examine the case when the frequency w is much greater than any of the hopping rates X., Y.. Using the
relationship Eq. (6b), one expands in inverse powers of o) to find R. in terms of Q.:

R.-La(Xt,_,Q1 -X.Q,+ + (a'X...+-a 2 X*Xa+1a+2 -aXmX. .. "Qa +IQ arX.IQa

+a2X.-,X.Q. t+aX.-,X.-,Q.-I-aX '-,Q.)+O "(3

u I) (13)
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One now uses the expression for Q., Eq. (10), in Eq. (13) to obtain the explicit form for R.. Knowing Q. and f
R., aoc) is known from Eq. (9). We exhibit two forms for a(wo): the X. uncorrelated, and the X. correlated.
The former becomes

o ,ro,)f =a (X) + ±l[2a2(X2 -a(a + 1)(XI ) +a(I -a)(X) /( I/X)J

+ I ,[2a'(X)-_3a'(l+a)(X)(X2)+a(l+a)'(X')-a(l-a)(X2)/(i/X)]+ ...

(14)

This expansion is, in principle, valid as long as w > (X') ) This is an interesting form, in that some unusual
averages enter for asymmetric transfer rates (a < 1). For the symmetric case, a= 1, and one recovers the high-
frequency form for a(wa) given in Ref. I (their Eq. (7.8)]. It is interesting to note that the inverse moment of
the X. enters at high frequencies in the asymmetric case. This suggests nonuniversal behavior for distribution
of class (c) (in the notation of Ref. 1) even at high frequencies, whereas the behavior is purely universal in the
high-frequency regime for symmetric transfer rates.

The correlated case has the following high-frequency conductivity:

a,,,(w)=[(l-a)l( 1X)] 1 (XolIX,)aP

p-I

+-i [( -a)/( l/X) ] la ( X ) + 2 P 2 (X°XI /Xi)aP-(l +a) - (X0 /X)aP I+ '  (I)

if o>>(X')I/n. Because of the translational invariance, one can replace averages like (XoX 1 /X,) by
(X.X.+I/X.+p) for any n.

In the symmetric limit (a = 1) for short-range (sr) correlations, it reduces to

cor. W)(X) +-.[ (X 0X) -(X0)+ ,>> (XM)"• (16)

"II

IV. WEAK-DISORDER LIMIT where we shall work only to linear order in e. Using
Eqs. (10') and (18) in Eq. (9), one finds to lowest or-

We pass to the limit of weak disorder in order to der in the disorder, for uncorrelated X.,
obtain a solution of Eq. (6b). To this order the ex-
pression for the frequency-dependent conductivity ua,,,(w)=(I -a)/A]
developed below (e.g., Eq. (23)] is exact for all fre-
quencies (see the Summary, Sec. VI, for further dis- X I /A Na,_ -0 0 )(E2)

cussion of this question). We set +a/( -a)

I- =A +f, (if!)1/2<<A. (17) +[a/(I-a)A2 j(e 2 )I , (19)
XM

where it remains necessary to calculate the 6, de-
In exactly the same manner as before, we can write fined in Eq. (18). The algebra leading to a solution
the exact solution for QN, is tedious, and we merely exhibit the results here.

Q. =A/( -a) + XOaeN+, . (10') Forp,0.

-0 o X(a - I) aP
We must now evaluate R, in terms of the Q, from k (-l. I )A-a)
Eq. (6b). To carry this through (to any order in e, +.-a )2

Y.::_. R. =0), we expand, + (a)( - )(2-a) A (20a)

RN 
and for p < - 1,

= -0 a( G'-l) 2  (20b)
S= (X-a)( I -a)(4 2 -a)

+ A s thlagest,+"o (18)
a - -, € -- ,,where AL is the largest root of

A
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)2-( l --a +iwA) +a =0, (21) in frequency behavior can be traced to the same ori-
gin as for nonlinear electric field effects as discussed

p=a/X, and a < I. In particular, for purposes of in Ref. 3.
Eq. (19), For the first regime (lowest ca), one finds

a a-+ 1-2k (22) a ,(a)-ao-aoa)2+ ia )3+ " (261- A8= -a 2-a '(26)

leading to our principal result, i f<(l-a)
2/A ,

a a (A 2while for the latter regime,

au.,(W) A ) a 2-a (23) u ,,oa)bo+bi(ia)/2 + ...
(27)

The frequency limits of Eq. (23) are interesting, and wa > (1-a )21A
illuminate the essential physics of the transport pro- The coefficients are positive, and depend on the
cess. The behavior of the roots of Eq. (2 1) are essen-tial to our analysis. If one attempts to make a low- strength of the disorder through Eq. (23). The limit-
tireoqurcy eanysis. f Xone tte s ake a low- ing behaviors are easily seen if one plots the full
frequency expansion of ., one is faced with a com- solution to Eq. (23). Taking A = I for simplicity, we
parison of (l--a)Z to €oA (1 +a). have calculated the frequency-dependent part of

21=l+ a+iaiA a(wa), (4-) 2/(AX 2-a), against wa, for a=0.8 and
0.9. Figure 1 exhibits the real part of this factor for

+[(l-a)2  2iaA(l+a)-(aA)1]'1f . (24) the interesting frequency regime with a=0.8. One

Our analysis of this ratio is based on a comparison sees a crossover at w=0.046 between the two-

of the "drift" distance with the "diffusive" displace- frequency regimes. The low-frequency drift-

ment, exactly as in Ref. 3. We shall show that the dominated limiting regime for the frequency-

very small (a (long-time) limit is dominated by the dependent part of o(a) is exhibited in Fig. 2, and

drift of the particle under the influence of the elec- for the imaginary part in Fig. 3. Finally, the

tric field, the larger (a domain by diffusion. The higher-frequency diffusion-dominated regime-

former will result in a diminution of Ounor(a) with limiting behavior is exhibited in Fig. 4. Similar

increasing frequency, the latter in an increase. The plots for a = 0.9 are exhibited in Figs. 5-7. One sees

former is a consequence of electric field driven drift that crossover takes place at lower frequency,

causing the particle to encounter rare very small w)=0.011 from Fig. 5. This follows closely the pre-

transfer rates which diminish the conductivity. It diction of Eq. (24) (as it must).

would not have experienced these transfers if its These curves show that the limiting low-
motion were purely diffusive on the same time scale frequency dependence is an immediate and strong

of i/a. The latter regime is associated with shorter function of the nonlinear response. For small elec-

and shorter root-mean-square distances as w in-
creases, leading to fewer encounters with small
transfer rates.

The crossover condition can be obtained in exactly [ .

the same manner as in Ref. 3 by calculation of the
relevant lengths. The drift velocity has already been
derived in Eq. (11). Approximating (weak disorder) I

(I IX) =A, in a time 1/, the particle experiences a
net average displacement

i dthf,=( 1-a )1/oA .(25a)

Likewise, on the same time scale, the particle's

root-mean-square diffusive distance is

ldff := (A w)'. (25b)

. The ratio of the square of the two is FIG. 1. Plot of the real part of the frequency-

,/l, ff= l-a 2 /A 2o 2 ]/[1/A~o], dependent part of oi(ul, (O.-1 2 .AM-aI (defined in the
• text), vs w for the bias parameter a = 0.8, and background

or, more simply (1-a )2 /Aw which, for small 1-a, regular inverse hop rate A = 1. Note the crossover
is precisely the ratio Eq. (24). Hence, the crossover behavior near w =0.046.
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tric fields, the drift regime is limited to very small 4. ..

frequencies, increasing in scale as the electric field is
enhanced. For the symmetric case, a = 1, we recover
precisely the expression for ~ )given in Refs.
2 and 9, to lowest order in w. .L

For correlated X., the argument goes through as
before, with the following results for the symmetric

* case(a=l1):

).,-w I 1A +W 3 a,

X+1A X FIG. 2. Same as for Fig.l1.but for stall w on anex.
panded scale. The straight dashed line has slope 2, show-

and the asymmetric case (a < D): ing that aoq(a) falls off as wi' for smallest w

a (4~~ a~-llk ______ a(X-l)2  I() J.(9
X'-a A 3  . ' X'-a XP X 2-a XP'

V. FLUCTUATIONS 1 C+am
IN THE AUTOCORRELATION02',f dPW)(W 6)

FUNCTION )0,
(30)

One of the more intriguing questions which exact
treatments of random one-dimensional systems have where POWa) is the Laplace transform (Y) of POWr,
been unable to treat is fluctuations about the ensem- where
ble average. The simplest quantity, the autocorrela- P. fW e MP, (tdt.
tion function, is an example of how difficult such f
problems are. As discussed in Ref. 1, Sec. X, the Because the P.'(w) are correlated' for different w,
variance of the autocorrelation function POW:, in- the averaging process in Eq. (30) does not commute
volves the calculation of with the convolution, and one cannot simplify fur-

'F-, 3 F.4SaeafoFi.1bufothrel01anim

FIG. 3. Same as for Fig. 1, but for the imaginary part aginary (I) parts of (4 - 1)2/(XI -a) above the crossover
of afw), at(w,), for small w on an expanded scale. The frequency on an expanded scale. The straight line has
straight dashed line has slope 3, showing that alw in. slope .~,showing that al(c.) rapidly reaches this limiting
creases as w.' for the smallest wa. behavior, but ot (wJ does so more slowly.
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a - of "1 e FI.Fo

o -a

eeil -- Si01O

FIG. . Plot of the real part of the frequency.depedet pert of o(a,), (X-l) 2 /(AZ-a) (defined in the FIG. 6. Same as for Fig. 5, biut for ol(ae on an ex-
text), vs ai for the bias parameter a =0.9, and background panded scale. The straight dashed lines have slopes 3 and
regular inverse hop rate A--I. Note the crossover y, for comparison with limiting behaviors of ,(a ) for
behavior near a--0.01 !. frequencies below and above crossover, respectively.

ther that expression. As before, we expand in the e1 :

Using the approximation of weak disorder, we
have been able to make some progress. The Laplace P.(W)Q- (ai)+ .a,,e
transform of Eq. (1), with the initial condition that
the particle is at the origin, n =O at time t=O, is + j9 ,p., + .. (32)

W.i=8,,o+X,[P,, +1 (a)--P(a)I +) -fir - -

where Q., a,,, and #,. i are all functions of o. A
. - 1(a)-aFm(a)] • (31) little algebra shows that if the X. are not correlated,

(( ax,, )a. ), (33)
p,---

the 0,,, cancel when taking the difference (33). We need only find the a,,,() to solve Eq. (33). These are
found as before by use of Eq. (32) in Eq. (31). One finds the relations

wQ. 8.o+( 1/A )(oQ1,i-Q, +QM.-- aQ.) (34a)

and

(34b)

If A and/u are the two roots of

a _k-XL(l +a +Aa) -- =, (35)

with I X I > Ii I, then the Q, are given by

n0: Q.=A40 + /(X -X-), n O: Ql=A +')A/(X -u).

The a,,, are likewise given by
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I- A (4,-1)11- , >p+l
p>__ 0, a...= p(;~LA), ,'-

I -,)2 P, n <p

and for

( l- ;L.' A? ._, n >p + ,

p<-, a. -.- 1)(1- , n<p.

Using these expressions, Eq. (33) becomes

cpow)(Jpo~,)) (e');LI.2/LU2[(;.t - 1 )2(;.2_ 1 )2/AU2z + .1.2( 1 -IA 1)'(1 -102'] (6

where 11,IAI and k2, A2 are the roots of Eq. (35) (remembering I X[I> I IA for w and w', respectively. For the
symmetric case, a = I and Eq. (36) "simplifies" to (14, = I A.1, /2 = I A 2 ),

ck ( )°w)) - c (°(°)) ( P°O(W ,)) =(61) (; .LI 1 )2( . + 2 1 2( - .2 (37)

We wish the inverse Laplace transform of this ex- The inverse Laplace transform of (v; + V5)-' is
pression, a formidable task which so far has eluded known, so that the long-time behavior of the vari-
us for general wo'. However, for small w,', ance of PO( ) is approximately given by
L -I + (A )'/ , whence Eq. (37) reduces to (E)

(39)

(_ . (38) -- .
6 VATV'+ VZ'~?) ) Comparing with (PO(t) V/(2vG t'/), we find

- 2 IA 1/2,
(POIt) - (POW:), V/'; (E> A

(Pow), -16v2 A2  t
I (40)

This is a highly satisfying result, for it demonstrates
ow., that the relative variance of Po(t) falls off with in-

creasing time as t - 2 for the symmetric case with
weak disorder. The asymmetric case is more com-

oil. plicated, but it is at least formulated (Eq. (36)] in
terms of the Laplace transformed quantities. The
full problem, for arbitrary disorder, seems out of
reach at present.

, . VI. SUMMARY

We have considered the random one-dimensional
FIG. 7. Same as for Fig. S, but for the real pan of near-neighbor hopping transport problem for asym-

p- I )2/( a) above the crossover frequency on an e- metric hopping rates with constant bias. This would
panded scale. The straight dashed line has slope - for correspond to the problem of measurement of the

comparison with the predicted limiting behavior, frequency-dependent conductivity in the presence of
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a large dc electric field. We have derived expres- higher powers of o)1 2 . This suggests (but we have
sions for the drift velocity and oaw) and have no proof) that the next term in an expansion in the
evaluated them disorder for the asymmetric case would yield fre-

quency corrections of a higher power than we have
(a) exactly for the drift velocity contribution to found in Sec. IV. Said another way, it may be the

the dc conductivity, case that the weak-disorder limit may in fact gen-
(b) exactly in the high-frequency limit, and erate only the lowest-frequency correction to the dc
(c) exactly for weak disorder. conductivity in the asymmetric limit (as it does in

the symmetric case), with higher-frequency correc-
In case (c), we have shown that a crossover frequen- tions arising from higher-order terms in the expan-
cy exists, proportional to the bias, (i.e., strength of sion in ;sowers of the disorder (as it does in the sym-
the electric field) below which the real part of the metric case). This conjecture remains to be proven,
conductivity diminishes as w 2 and the imaginary but if true it means that our expressions for case (c)
part increases as w'. Above the crossover frequency, above can be regarded as a low-frequency expansion
the real and imaginary parts increase as (on/. We for the situation where the disorder is not necessari-
have exhibited numerous graphs which show the ly weak.
real and imaginary parts of a(ic) over the applicable Finally, we have shown for weak disorder that
frequency range. one can obtain a closed form expression for the La-

We have limited ourselves to the first correction place transform of the variance of the autocorrela-
term for the R. (Eq. (18)] when we work to lowest tion function. We have succeeded in obtaining the
order in the disorder (case (c) above], To that order, inverse for the symmetric case, and have shown that

the frequency dependence we have found for o'(eo) is fluctuations above the mean value fall off as t -1
exact. One can pose the question of the effect on for long times.
oa(o) of introducing higher-order corrections in Eq.
(18). Such a task is formidable, but we know the ACKNOWLEDGMENTS
answer in the symmetric case (a--I). There, the
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Superconducting transition temperature in anodized aluminum
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S. A. Wolf
Naval Research Laboratory, Washington. D.C. 20375

(Received 2 May 1983)

We have measured the superconducting transition temperature of anodized aluminum films of grain
sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 10
A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends
only on the volume of the grains.

The enhancement of the superconducting transition tem- bath. Aluminum was evaporated from an electron beam
perature Tc in granular aluminum has been the subject of gun in a high vacuum (base pressure <3 x 10-' torw onto
numerous experimental investigations. t- 3 An unavoidable heated sapphire substrates. Substrate temperature varied
difficulty with the granular aluminum is that the grain size from 40 to 250 °C, resulting in a variation in grain size from
is strongly dependent on the partial oxygen pressure during 300 to 4000 A.' The film thickness was measured with a
evaporation, making it virtually impossible to distinguish crystal quartz monitor. With use of standard photolitogra-
between the effect of the reduced grain size and that of the phy, the films were etched to leave samples that were
presence of the oxide. This led us to study anodized alumi- -0.28 x 1.22 mm. The thicknesses of the samples were
num: both effects are still present, but they are much more further varied with an anodization method.5 A constant
easily separated. We find that in our anodized aluminum current was passed through a solution of saturated boric
films of grain sizes from -100 to -3000 A, the T. acid and ammonium hydroxide with the use of a platinum
enhancement can be attributed to a variation in the grain cathode and the aluminum sample as the anode. This con-
size, in agreement with the conclusions reached by Chui verted the aluminum into oxide, resulting initially in a
et al.3 for granular aluminum films. Our results indicate linear increase in the anode-cathode voltage with time The
that the effect is independent of the surface-to-volume ratio anode-cathode voltage being essentially the voltage across
of the grains: the only relevant parameter seems to be the the oxide, this region represents an increase of the oxide
grain volume. All samples reported here were fabricated by thickness, i.e., a thinning of the aluminum film at a rate of
evaporation in a high vacuum and further processed with approximately 10 /V. At a film resistance of 50Ro. where
the use of photolithographic and anodization techniques. R0 is the initial film resistance, the anodization voltage be-
The substrates were precleaned with the use of acetone gins to increase at a faster rate, indicating that the film is
washes in an ultrasonic cleaner followed by an alcohol vapor not only getting thinner, but grains are being isolated from

one another. In this manner a series of samples, with resis-
tances from 2 to 10' fl, was produced. The resistance of
these samples was measured in a liquid 4He cryostat by

Tc  00000 passing a constant current (1-10 MA) through them and

(K) o measuring the voltage drop by use of an HP3455A digital

09

1.6 TABLE I. Properties of the unanodized samples.
0

1.4 - ++' + 4..4+ Sample T" d0
+ *.g A series (C) (l (A)/R,

OA
0 1 2 0 40 300 230 1.3

10 10 10 R C) R 115 80 500 2
M 250 4000 1000 5

FIG. I. Variation of T, with sample resistance. 0. 0 series; P 250 4000 800 4

R series; 0. Mseries. 1. P series.

28 1644 @1983 The American Physical Society
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T 0To T - 0
C 4'C(K) o (K) 0

W i00 W -0

1.6- 0 1.6- 0

0 0

1.4 " + ' 1.4 + + +  + +

+01e-p + 0 0

S S
1.2 se 1.2 0

10 2  10 3  V/ 3  ( 1 0-3 10- 2 S/V )

FIG. 2. Transition temperature as a function of the cube root of FIG. 3. Transition temperature as a function of the grains'
the grain volume. 0, Oseries: +. R series 0. Vseries. surface-to-volume ratio. , Oseries; +, R series; 0. Mseries.

voltmeter. The temperature was monitored with a Lake- tion, the sample thickness tcan be derived from the sample
shore Cryogenics germanium resistor. The transition tern- resistance at room temperature, with the corrections neces-
perature Tc was defined to be the temperature at which the sary for increased surface scattering. ' The values of do used
resistance falls to one-half its "normal" value above the for Fig. 2 are 200, 900, and 3500 A for the 0. R. and M
transition. series, respectively. These values have been chosen to im-

For low normal-state resistance (R < 100 fl) the transi- prove the agreement between the three series and are well
tion width was small (8T/T < 0.02). At high resistances, within the uncertainty of the values listed in Table 1.
however, this width increases and for one sample (series 0) In the small grain size region (d :< 200 A). Fig. 2 agrees,
the transition was incomplete down to 1.17 K, the lowest within experimental error, with the- measurements on
temperature measured in these experiments. The variation granular aluminum reported in Ref. 3. For large grain sizes
in T, with sample resistance is shown in Fig. 1. Four dif- the slope of the Tc vs logd curve appears to increase (be-
ferent series of samples are plotted, the parameters of which come less negative) and reach bulk Tc value at d - 3000 A.
are listed in Table I. One of the models proposed to explain the increased Tc

In Table I, T, is the substrate temperature during evap- of granular aluminum films is based on an increase in the
oration. to is the thickness of the evaporated films, and low-frequency density of states of the phonon spectrun

R3oo/R 4 2 is the residual resistance ratio of the unanodized brought about by the high surface-to-volume ratio of the
films. The values of do, the grain size of thick films grown grains ? ("phonon softening"). This would require that the
under the same conditions, are not known exactly. The increase in T, be proportional to SI V, the surface-to-volume

values listed are inferred from the relationship between sub- ratio of the grains. For our grains one would expect
strate temperature and grain size,4 and are consistent with S/V-4k0d0 +2/t, where k, of order unity, depends on the
grain sizes observed in electron micrographs of similar shape of the grains. A plot of Tc vs log(SI V) is shown in
films. The error involved is probably - 30%. Fig. 3. For any one series of samples T. increases mono-

Figure I shows that T, initially increases with increasing tonically with SI V. in agreement with the phonon softening
resistance, in qualitative agreement with the measurements model. However, for every sample series the slope on the
of Deutscher et a/.2 for the case of granular aluminum. At T, vs log(S/V) graph appears to be different. We conclude
approximately 103 f1l (the resistance region in which anodi- that, as evidenced by Fig. 2, the T, enhancement in ano-
zation isolates the grains) the transition temperature levels dized aluminum films is a function of the grain volume.
off and then decreases for even larger resistance values. The phonon softening model appears to break down for thin
The dependence of T in logd for three series of samples is grains.
plotted in Fig. 2. The grain size d is defined as d - (d 0)1/;
i.e., d is a measure of the grain volume. Only the samples ACKNOWLEDGMENTS
with resistance values R <! I00Ra are plotted, where Ro is
the resistance of the unanodized film of the series. Since This work was supported by the U.S. Office of Naval
for these samples do is virtually unaffected by the anodiza- Research under Grant No. N00014-75-0245.
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Time Decay of the Remanent Magnetization in Spin-Glasses
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The time decay of the thermoremanent magnetization (aTAM) has been measured in 1.0%
Cu:Mn and 2.6% Ag:Mn spin-glasses. It is shown that OrTRM is neither an algebraic nor a log-
arithmic function of time, but it is found that OTRM can be characterized by a "stretched" ex-
ponential: carm- oexp[-C(wt)-'/(1-n)]. Similar time dependences appear in the
disorder-diffusion theory of Grassberger and Procaccia and the cooperative-relaxation theory
of Ngai, but neither theory in its present form is directly applicable to spin-glasses.

PACS numbers: 75.30.Kz. 75.50.Kj

When measured in a small static field, the tern- terized by a "stretched" exponential of the form
perature dependence of the magnetization of a
spin-glass changes abruptly at the glass temperature

(T,): Above 7g the magnetization obeys the Curie- Here the exponential factor (C) and relaxation fre-
Weiss law, attributable to weakly interacting quency (w) can be chosen to be independent of
paramagnetic spins, whereas below T. the magneti- temperature throughout the spin-glass region,
zation is nearly independent of temperature, indica- whereas the prefactor (cro) and time-stretch ex-

tive of the spin-glass state. The time dependence of ponent (n) are temperature-dependent constants.
the magnetization also changes dramatically in the We have made time-decay measurements on
vicinity of T: In the paramagnetic region the en- three different samples: 1.0% Cu:Mn, 2.6%
tire magnetization responds rapidly to a change in Ag:Mn, and 2.6% Ag:Mn + 0.46% Sb, all of which
field, but in the spin-glass region some of the mag- show qualitatively similar behavior. Here we will
netization responds much more slowly.' One tech- present only the 2.6% Ag:Mn + 0.46% Sb data.
nique of investigating this viscous behavior is to ap- Measurements were made on a stack of thin
ply a field (H) when the sample is in the paramag- ( 25 jim) foils with a total mass of 0.223 g. The
netic region, field cool it through T,. then remove glass temperature for this sample ( T, - 9.30 K) was
H and measure the field-cooled remanence or determined from the maximum in the magnetiza-
"thermoremanent magnetization" (7TIM). 2  tion in a static field of 3 0e. We used a SQUID

The exact form of the time dependence of r'TrM magnetometer to measure G'TRM as follows: (1) a
has not been previously established. Many investi- magnetic field (H- 30 Oe or H - 15 Oe) was ap-
gators 3  have reported a logarithmic decay: plied to the sample when in the paramagnetic re-
iThM ' [I- (1 -n )log(t)], where Oo and n are gion, (2) the sample was field cooled through T. to
constants. Such a decay is unbounded, however, a temperature in the spin-glass region, (3) H was
and must be merely an approximation, valid over removed and the time dependence of the magneti-
some finite interval of time. The Sherrington- zation was recorded by a computer-based data ac-
Kirkpatrick mean-field model' has been successful quisition system; (4) after 1000 sec the remaining
in describing many of the observed properties of remanence was measured by warming the sample
spin-glasses. Calculations based on this modelS sug- through T to establish the base line.
gest that the magnetization should decay algebrai- Figure 1(a) is a plot of a-TiM vs log(t) at four
cally: T

M --- O/t I-' . This suggestion seems plau- temperatures within the spin-glass region. The fact
sible since for n < 1 it approaches the correct that the slope changes with time shows that a'TRM

equilibrium at long times (zero magnetization in does not decay logarithmically. Figure I (b) is a
zero field6), but no data have yet been published7  log-log plot of the same data, here demonstrating
supporting an algebraic decay for 'TRM4. that a'TRI does not decay algebraically. In Fig. 2 we

We have made magnetization measurements in show that a'TRM decays by a stretched exponential
the interval from 0.2 to 1000 sec after removing H function of time. The time-stretch exponent (n) is
and conclude that O'TRm has neither an algebraic nor most easily determined by plotting log[ - (dl
a logarithmic time dependence. We do. however, d)(In)'TXM)] as a function of log(:). This is done
find that the time dependence is accurately charac- in Fig. 2(a) where a fit to the data after 5 sec yields:
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FIG. 1. (a) Semilogi and (b) log-log plot of the ther- 01 , a t

morema nent magnetization (nT~m) of 2.6% ASg:Mn t 1'0 (secl'")

+0.46% Sh as a function of time at TI/T,- 0.771, 0.856,
0.897, and 0.966, from top to bottom, respectively. The FIG. 2. Determination of the time-stretch exponent, n.
solid curves are the best stretched-exponential f its to the (a) Log-log plot of - dln (craM)/dt as a function of time.
data. The slope gives - n and the r -l-set intercept gives

Co' - (b) Semilog plot of rTam as a function of-

The solid lines are the best fits to the data.

n - 0.694, 0.740, 0.766, and 0.831 for
T/T,,0.771,0.856, 0.897, and 0.966, respectively.

The stretched exponential nature Of oTa M iS vei- creases while Oo0 decreases more rapidly than at
fled in Fig. 2(b) by the linear dependence of lower temperatures. The temperature dependence
o(raM) on t-* The quality o s of n allows us to extract the relative values of w and

also shown in Fig. t, where we plot the best C by plotting log (CDe It-), obtained from Fig. 2(a),
stretched exponential fit to each set of data. The as a function of I -n. This is done in Fig. 4 where

deviation before 5 sec can be attributed to the decy linear regression to the data yields C - 0.59 ± 0.05of induced eddy currents in the metallic samples as and w - (3 ± I ) X 10-6 sec- . The only difference
is evidenced by a measurable magnetic absorption,1 we measure between cooling the sample in H - 15

even in the paramagnetic region, at frequencies Oe and in H-30 Oe is a linear dependene 0 on
above 0.2 Hz. After 5 sec, o'Tam is accurately H. n, C, and w do not depend on the cooling field
characterized with the four parameters o-0, C, w, for these relatively small values of H; thus, the
and n. Note that no adjustment is allowed in the changes in n and o-0 for T > 0. 75T cannot be attri-
base line of the data since it is unambiguously s- butedo the saturation Of TraM indHn c
tablished in step 4 of our procedure. Two separate theories of relaxation, which have
The temperature dependence of the prefactor and recently appeared in the literature, give a stretched

the time-stretch exponent is shown in Fig . At exponential time behavior similar to that of Eq. ().
low temperatures ( T <0.75T ) o decreases Neither theory has yet been applied to spin-glasses,
linearly with increasing temperature whereas - so we can only point out the possibility of a connec-
independent of temperature. For T > 0.75to n in- tion. The lito Grssberger and Pro-
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° 1"bf for H-30 Oe (solid circles) and H-IS Oe (open cir-

0o 41_ cles). The solid line is the best fit to the data. The slope
0.4 0.6 (.a 6.0 of this line gives w-(3 ±l)x10-6sec" and the inter-

T/T9  cept gives C -0.59 ±0.05.

FIG. 3. (a) The temperature dependence of n.
(b) The temperature dependence of the prefactor (ff0).
The solid circles are for a 30-Oe cooling field and the Second, we can choose w so that the exponential
open circles are for H - 15 Oe. The dashed lines are factor [g(n) is independent of n. And third, we
guides for the eye. find n 0 4, which implies a nonphysical (d 1 1)

configuration space.
The second theory giving a stretched exponential

cacciam considers the diffusion of paricles through time decay is due to Ngai. 2 The Ngai theory treats
a d-dimensional space interspersed with randomly the cooperative relaxation of a primary system of
distributed traps. A connection to spin-glasses can dipoles perttirbatively coupled (coupling constant
be made by using the model of Bantilan and Pal- V) to a secondary continuum of low-energy excita-
mar 3 in which the energy of spin-glass is pictured tions whose density of available levels is linear in
as a labyrinthine function in spin-configuration energy: N(E)-aE. In the Ngai model the mea-
space containins many maxima and local minima, sured susceptibility of a sample is due entirely to
and several quasidegenrate round-state minima, the particular microstate of the dipolar system, but
The configuration of a gr'oup of spins travels ran- the rate at which the dipoles approach equilibrium
domly through configuration space until it is is influenced by the continuum. If the coupling
trapped into one of the ground-state minima, could be ignored, the dipoles would make transi-
Grassberger and Procaccia find that the number of tions at some time-dependent rate, I/ To. But if this
untrappd "configurations" (Ne) is given by coupling is not negligible, the dipole transitions will

N. (exp[ -g(n) (w0-1/(01 - n) ], excite the continuum, which in turn will influence
the transition rate. Ngpi gives the susceptibility as a

where the time-stretch exponent is related to the function of time [#i(t)1 from which the magnetic
dimension of the diffusive space by response to the removal of H at t-0 is easily
n - I - d/(d + 2). Although this interpretation is found:
interesting, three experimental facts emphasize the
need for further development before this model M(i)-HJo J(I')dt'
may apply to spin-glasses. First, ffritM obeys a sim- 0 - I 1 1-a 1
pie stretched exponential of time; we do not mea- - H - I -o-g , (2)
sure any time dependence to the prefactor [f() . T Eorj inj
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where E, is a cutoff energy for the low-energy exci- Turkevich are also gratefully acknowledged. This
tations and the time-stretch exponent is given by work was supported initially by the U. S. Office of
m -a V2. If E, and lI/To are set equal to w, then Naval Research, Contract No. NOOOi4-75-C-0245,
Eq. (2) has the same form as Eq. (1). The Ngai and subsequently by the National Science Founda-
theory gives a specific value for the exponential fac- tion, Grant No. DMR 81-21394.
tor in terms of Euler's constant: C-e - -
0.5615... which, to within experimental accuracy,
is the value we measure. The Ngai model empiri-
cally characterizes the observed time dependence of
um-M, but a significant inconsistency still exists: Eq. t R. V. Chamberlin, M. Hardiman, L. A. Turkevich,

(2) is an approximation supposedly valid only at and R. Orbach, Phys. Rev. B 25, 6720 (1992).

long times Ur 1 I). which for E - 10 2J. L. Tholence and R. Tournier, J. Phys. (Paris), Col-
loq. 35, C4-229 (1974).

sec-I is never achieved in our measurements. We 3S. Oseroff, M. Mesa, M. Tovar, and R. Arce, J. Appl.
cannot yet explain why Eq. (2) seems to be valid Phys. 53, 2208 (1982); C. N. Guy, J. Phys. F 8, 1309
throughout the time regime of our measurements. (1978).
Furthermore, the source of the low-energy excita- 4S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17.
tions, why lT 0 should equal Ec, and the tempera- 4384 (1978).
ture dependences of oro and n are not yet under- 5H. Sompolinsky and Annette Zippelius, Phys. Rev.
stood. Lett. 47, 359 (1981).

In conclusion, we have shown that the decay of 6A. .Malozemoff and Y. lmry, Phys. Rev. B 24, 489

,Thtm in spin-glasses is neither a logarithmic nor an (1981).
algbraic uncpion- oftme t isneith owevermaccora- J. Ferri, J. Rajchenbach, and H. Maletta, J. Appl.
algebraic function of time. It is, however, accurate- Phys. 52, 1697 (1981), find that aOrtM in Euo4Sro6S isly characterized at all temperatures within the spin- better characterized by an algebraic decay than by a loga-
glass region by a stretched exponential (Eq. (1)l rithmic decay, but they conclude that both forms are still
with four adjustable parameters. The prefactor only approximations.
(-) and time-stretch exponent (n) are tempera- SR. V. Chamberlin, M. Hardiman, G. Mozurkewich,
ture dependent, whereas the exponential factor (C) and R. Orbach, Bull. Am. Phys. Soc. 28, 509 (1983).
and relaxation rate (W) can be chosen to be in- 9The data and analysis of H. Bouchiat and P. Monod, J.
dependent of temperature throughout the spin-glass Magn. Magn. Mater. 30, 175 (1982), give H-mm
region. In addition, we find O'o to depend linearly - (2400 Oe)exp( - 2.1T/T,) for 2.8% Ag:Mn. where
on the cooling field, whereas n, C, and w are in- HTam is a rough measure of the field above which 0raKm

dependent of H for H % 30 Oe. We point out pos- becomes nonlinear. Thus for T -0.75 To, HThM - 500

sible connections to two recent theories of relaxa- Oe, which supports our evidence that the change in n and
oto for T > 0.75 T, is not due to the saturation of ma..

tion, but emphasize that further development is t OPeter Grassberger and Itamar Procaccia, J. Chem.
necessary before either theory may be applied to Phys. 77, 6281 (1982).
the decay of oTRM in spin- glasses. 11F. T. Bantilan, Jr. and R. G. Palmer, J. Phys. F 11.

We are indebted to G. Griner for bringing the 261 (1981).
work of Ngai to our attention. Important discus- 12K. L. Ngai, Comments Solid State Phys. 9, 127
sions with S. Alexander, K. L. Ngai, and L. A. (1979).
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A brief list of current areas of research in high field physics is presented covering
most of the presentations at this Symposium. More detailed description is given for

three topics for which high magnetic fields are required, and which possess unusual
interest. These are: 1) Density of states for vibrational states on fractals
"Frectons", 2) Thermodynamic properties of exchange enhanced systems, and 3) p-state
pairing in thin film or layered superconductors.

1. INTRODUCTION 2. DENSITY OF VIBRATIONAL STATES ON A FRACTAL,
"FRACTONS"

This Symposium follows at least two others in
the rapid development of high magnetic field Fractals are open, self similar structures,
physics.

1
'
2  

In addition, a survey, now rather with interesting properties as a function of the
aging, of opportunities for research in high length scale.' A specific example would be a
magnetic fields has been prepared.

3 
The pur- percolation arrangement where the number of

pose of the present paper is to briefly classi- sites on the infinite cluster (p > Pc' where p
fy the character of those papers to be pre- is the percolation threshold concentration)
sented at this Symposium, and then to describe increases not as
in outline form three areas which are of par- d
ticular interest to the author. r

where r is the distance and d the Euclidean di-
The general areas of research in high magnetic mensionality, but rather as
fields to be discussed at this Symposium can
very roughly be titled as: r

1) Collective phenomena (e.g., p-wave super- where d is an effective dimensionality, equal

conductivity) to d - (8/v) in terms of the usual percolation
2) Magnetic structures (e.g., phase transi- exponents.

5 
This behavior occurs for short

tions, magnetic saturation) leghscales in comparison to the coherence
3) Atomic-like states (e.g., exciton structure length sorlercoaion C o largerengeand dynamics) length for percolation, . For larger lengths

(g. orinttca oone finds usual Euclideanp properties. If now
4) Diamagnetism (e.g.,one examines diffusion along the infinite clus-
of large molecules) tar, the "dead ends" cause a length dependence
5) Thermodynamic properties (e.g., field for the diffusion constant:
dependent susceptibilities)
6) Transport properties (e.g., quantum oscil- Dr) r-6
lations)
7) High energy density of states (e.g., vibra- where again for percolation (t-B)/v, t beingtiong on a fractal) 'weeaanfrproaln6-(-) en

the conductivity exponent.

No list is complete, but this can serve as a The diffusion problem along a fractal can be
rough outline of topics unique to high magnetic solved, leading to the ensemble averaged auto-
field research. correlation function

6

This paper will explore three of the seven areas P -d(2+6)
listed above, The remaining four will be well P
covered by others at this Symposium. Only one where the particle has assumed to have been
of these three represents original work by this localized at tho origin at time t - 0.

*author. However, the significance of the other
two warrants some attention. One now notes that the form of the diffusion

Each of the three topics is described below in equation (Master Equation) is the same as, for
terms of the physical ideaiswhich have been example, the harmonic vibrational problem, with

a simple replacement of the first time deriva-developed, and the possible experimental probes. tive by the second. This mapping allows us to
Space limitations require that the reader be regard the inverse Laplace transform of Eq. (1)
referred to the original treatments for the a the inversevLapatoealrnsity of states
complete details. as the lattice vibrational density of states
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(with _2 replacing the Laplace transform spec- exponent
tral parameter c) for a fractal arrangement of
masses and springs. One finds p 0.65 t 0.04 (4)

They did not report other date which would
NM - w

p , 
p - (23/(2+3)] - 1 (2) enable us to obtain an independent estimate for

6. The use of self avoiding random walks as a
For Euclidean systems, p - d-l, so we are led model for these proteins is inappropriate. For
to define, for mode counting purposes, a recip- such systems in d - 3, 8
rocal space of effective dimensionality

d 5/3, 5 - 4/3, (5)
a - 2d/(2+4) .(3) leading to d - I (p - 0), representing one

We refer to these states, when quantized, as dimensional vibrational behavior.
"fractons." Their properties are most interest- The essential condition for application of these
ing. Before we outline them in more detail, ideas to physical systems is that the length
some experimental examples are of interest, scale be less than the Euclidean correlation

length. For lattice vibrations, this implies
Our attention to this problem was aroused by the that the frequency be greater than a crossover
work of Stapleton at al.

7 
who measured the spin- frequency, w itself related to 6 by the

lattice relaxation time for low-spin Fe(3+) 
in c.o. :

three hemoproteins. These large molecules were following expression
6
:

shown by x-ray measurements (counting the in- 2 >-(2+) (6)
crease of the number of alpha carbons with dis- c.o. 
tance for myoglobin at 250 K) to yield a value where L is the size of the fractal object (e.g.,
for d - 1.67 t 0.04, certainly not integral, the percolation correlation length, or the size
Their data for the spin-lattice relaxation time of the molecule) in units of the monomer length,
as a function of temperature for myoglobin and the frequency scale is that of the Debye
azide (MbN 3) are copied below: frequency appropriate to the fractal object.

For example, Stapleton at al. state that the
temperature range 1 - 20 K is associated with

10 wavelengths of from 10 to 103 bonds. For a
large molecule, this would certainly be consis-
tent with the requirement for fractal behavior.

There are other properties of fractal vibration-
10 al states. For example, the vibrational eigen-

functions are local and should not contribute to
the thermal conductivity. This behavior (though
not with an identification of fractal proper-r. .,-6.29 ties) has recently been reported by Kelham andT 0Rosenberg for epoxy resin, for the energy range
of 8 - 50 K (their measurements spanned the

range of 0.1 - 80 K).
9

/ It is clear that the identification with fractal
10 behavior depends on the condition (6), which

then leads to a vibrational density of states

1 (2). The experimental consequences are immedi-

10 1 1 1 1 t I ate. The one phonon, or direct relaxation
p:rocoss rate, is directly proportional to the

2 3 4 6 0 Z vibrational density of states. If one performs
an electron spin lattice relaxation time mea-

T(K) surement at sufficiently high magnetic fields,
it is possible that one can obtain a direct

Fig. 1. The electron spin relaxation rate of measurement of the fracton density of states.
low-spin Fe(3+) in MbN 3 . The rate is fitted to The field must be sufficiently high that the
the sum of a direction process, varying as T, condition (6) is satisfied. Then the field do-
and a Raman process, with temperature exponent pendence of the relaxation rate will give the
6.29. energy dependence of the density of fracton

states, and hence a value for p using Eq. (2).
The crossover magnetic field will separately

Their interpretation relied on the use of the give an estimate of 6 using Eq. (6). That is,
usual two-phonon integral for the Raman process I Ia not a free parameter, in that it is
relaxation rate, the intogrand being propor- determined by the crossover behavior. Finally
tional to the square of the vibrational density the factor d can also be determined from x-ray
of states. Keeping all other factors the same measurements, over-determining all the fractal
as for Euclidean space, they extracted the parameters.



On the Physics of High Magnetic Fields 5

There are other interesting consequences of exchange enhanced Fermi gas (parabolic band)
fractal behavior. The eigenstates are supposed in the temperature and field regimes T - Ts.f.,
to be localized. This could lead to rather H << T /(S)1/2:
interesting magnetic resonance bottleneck ef- s.f.
fects in that the spatial transfer of excite- M(T,H) H H i 2 (T/TF2
tion will be diffusive rather than wavelike. S XPauli I F
This might lead to strong bottleneck conditions - 0S03 (H/TF)2

for both the direct and resonance relaxation
processes. Here too, large magnetic fields + (B + 4lO) S

2
(T

2
/TF

2
) S

3
(H

2
/T

2
)

would be useful to unravel the dynamical proper- 1 10 F F
ties of a bottleneck. For example, if a bottle- + (9)

s neck is found for the resonance relaxation pro-
cess, the field dependence of the strength of Equation (9) is written in such a way that the
the bottleneck will give a direct estimate ofEcutn(9isrttnnschawyhttethe frctoene ltime(te anaist stimlar oscaling relationships are made explicit. For
the fracton lifetime (the analysis is similar the parabolic band, the coefficients in Eq. (9)
to that of Gill,

10 
but using fractons instead equal

of phonons.

0 . 1/6
3. THERMODYNAMIC PROPERTIES OF EXCHANGE and for H - T,

ENHANCED SYSTEMS an d r2/6 8 1 = 23 H2/(2) 2

The effect of magnetic fields upon the thermo- while for T 1 H,dynamic properties of Fermion systems [e.g.,
the nonlinear magnetic susceptibility and the a -.2/4 , S - 27 w2/(24)
field dependent specific heat], depends on the
relation between field H and Fermi temperature Some discussion is in order. The T * 0 value
T Even for extreme fields, this ratio is for 8, 80, is the value computed in the

small (100 Tesla is the equivalent of 170 K in Stoner-Wohlfarth theory.
12  

The temperaturedependent contributions to M(T,H) diverge with
Zeeman splitting). Exchange enhancement caused increasing S. Fluctuations greatly enhance
by electron-electron interactions in a metal finite temperature corrections to M(T,H). More
can significantly enhance the effect of a mag- detailed discussions can be found in the origi-
netic field. A very recent calculation of nal and complete work of Ref. 11. For more
Edal-Monod and Daniel

11 
gives a complete complicated bands (but still isotropic) a, and

analysis of the scaling factors in the presence 8o are known.
12
'
1
4 Bial-Monod and Daniel sug-

of spin fluctuations (finite temperature cor-
rections to the T - 0 results of Wohlfarth and gest that e, 80, and 81 will all have the same
Rhodes

1
2). These can be used to obtain inter- sign for arbitrary band structure.

eating field-induced alterations of the thermo- Given Eq. (9). Bdal-Monod and Daniel"
1 

go on to
dynamics of exchange enhanced systems. calculate the field dependence of the specific

heat coefficient using a Maxwell relation. ForUsing a method prevouly described,
1 3 

the a parabolic band they find

field scaling factors are found to be: a p

ST/TF (7) y(H) - Y(O) - - XPauli a [1T

and I TF I
9 

1
H/TF S 5

1
H/T Sf. (8fS20 3/2H42(0

Here, S is the Stoner factor, " l- + 1 2J " .. (F)
s- (1 - -1

Bdal-Monod points out
15 

that the first term in
where Eq. (10) arises from the curvature of the zero

IN(E )  field susceptibility at T - 0. At high fields,
Fe hthe second term can contribute significantly,

We have taken a short-range approximation for perhaps even reversing the sign of the field
the electron-electron interaction, I, and N(EF )  dependence of Y(H), though of course higher
is the density of states at the Fermi energy. order terms must also be included.
In units of the square of the magnetic moment,
the Pauli susceptibility (bare) equals Comparison with experiment is becoming possible

Xpauli - 2N(E) with the advent of high field measuremente onexchanged enhanced materials. The case of UA72We have used in Eq. (8) the usual expression will be analyzed at this Symposium by F. R.
for the spin-fluctuation temperature de Bor at l., and seems to show the same

T f T /S qualitative behavior as predicted by Eq. (9).

a. f. F
Bial-Monod and Daniel give the following
expression for the magnetization of an
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B6al-Monad and Daniel 11 have analyzed in some in the presence of large enough magnetic
detail the case of liquid Ha3 where no band field to quench singlet superconductivity.
structure effects are expected. At the malting
pressure, S A 20, and the departure from The idea of using reduced dimensionality for
linearity of M(T.H) is predicted to be of the this purpose was first put forward by Efetov
order of 22 at 10 Tesla. In confined geome- and Larkin.21 They examined layered compounds
tries, however, S can be made as high as 60, [specifically, TaS2 (pyridine)1 /2 ] where a mag-
giving 25% effects under the same conditions. netic field parallel to the layers is able

to induce vortices between the metallic layers,
The case of Pd continues to be difficult to and hence "decouple" the layers from one
sort out. The susceptibility at H - 0 increases another. This decoupling leads to an enhance-
with increasing temperature. This implies, mont of the upper critical field over the bulk
from Eq. (9), that a, is negative. This then value by (roughly)
leads one to expect an increase of the specific Z & T(0)/d 2  (11)
heat coefficient y(H) with increasing H using tr T
Eq. (10). This seems to be at variance with where .tr is the transport mean free path, IT(O)
experiment, though more recent studies do seem
to exhibit smaller decreases of Y(H) with in- is the zero-temperature triplet coherence
creasing H than befors. 16  length, and d the thickness of the metallic

layer. This enhancement can be sufficient to
The utility of Eqs. (9) and (10) lies with exceed the Pauli limit, allowing for quenching
their relationship to one another. The two ef- of the singlet state. Unfortunately, this par-
fects are not independent, and as seen in the ticular system has bean shown to be very dirty,
example of Pd metal, there is a consistency leading Klemm and Scharnberg to question this
requirement. One cannot simply introduce arbi- explanation for the observed very large H.2,11.
trary coefficients for the temperature and
field dependences of the susceptibility and In their paper, 17 Klemn and Scharnberg have
specific heat. Rather, the various behaviors analyzed the nonlocal Gor'kov gap equations for
are linked through a sot of known relationships, triplet pairing in the presence of magnetic
This should greatly assist experimental fields under conditions of reduced dimensional-
analysis, and may serve as an indication of ity.
unwanted impurities present when the consis-
tency relations are not satisfied. The conditions are stringent (specular surface

scattering, clean thin films), but their results
4. P-STATE PAIRING IN THIN FILM OR LAYERED can conveniently be summarized by their Fig. 3:

SUPERCONDUCTORS

Use of high magnetic fields to achieve the p-
wave condensation state for superconductors has H
been re-examined recently by Kle

m and
Scharnberg. 17 There are many problems associ- 0.38 to Itr
ated with observation of this state, the most
serious perhaps being that ordinary impurityd
scattering acts as a pair-breaker for p-wave

1 8

condensation, in strong contrast to the s-wave H
case where the Anderson theorem shows that the
critical temperature is essentially unaffected.
Added to this difficulty is the expectation
that the p-wave transition temperature, TT  0 TT  Ts
(i.e., triplet), is expected to be such
smaller than TS (i.e., singlet) for s-wave con-
densation. One argument favoring triplet pairing Fig. 2. Schematic plot of H 2  (T) for a thin
in a magnetic field is that singlat pairing film. The shaded region is c the regime of
(clean, t3e II), is limited by Pauli pair p-wave superconductivity. Hp is the Pauli
breaking, but triplet pairing is not. Though limiting critical field for s-wave condensa-
this be true, Sharnberg and Klemm have recently tion. A similar, though more complicated, curve
shown2 0 that orbital pair breaking in the is exhibited by Ref. 17 for layered compounds.
presence of a field limits triplet condensation
in nearly the same manner as for singlet conden-
sation. As a consequence, for bulk materials, Kls nd scharnberg go on to suggest physical

ises Tt very close to T systemsly whicha mihaxii rpltspro cunless TT S(unlikely) orbital tivity in high magnetic fields. They suggest
pair breaking would prevent the upper critical cleaved thin films of NbSe2 , or intercalates of
field for triplet pairing from exceeding the the same system.
Pauli c  limit.

One can legitimately ask, beyond the structure
The issue, then, is how to achieve a condition of Fig. 2, what signature triplet superconduc-
where orbital pair breaking can be suppressed, tivity will give which is unique to the p-wave
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