
D-A141 576 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT RKAPSE) 5
IERFACE TEAM PUBLIC REPORT VOLUME 3(U) NAVAL OCEAN

SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 25 OCT 83
UNCLASSIFIED NOSC/TD-552-VOL-3 F/G 9/2 Nt

EE.EEIhEEIIII
mEEEEEEEIIEIhE

smmuhmhEEEohEE
smh~mEEEEEEEs



H ~13

IIIIL25 liI'.4 11111 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUJRE AU OF STANDARDS 1963-A



NOSC TD 552

I
KERNEL ADA PROGRAMMING

, ISUPPORT ENVIRONMENT (KAPSE)
| INTERFACE TEAM:

PUBLIC REPORT

In
SVCJUME III

I Patricia Oberndorf, KIT Chairman
Naval Ocean Systems Center

San Diego, CA 92152

I .. 25 October 1983
C>

* C-,
...J

L--" Interim Report for 28 October 1982-30 June 1983

Prepared for

ADA JOINT PROGRAM OFFICE D.ELECTE
3D139 (400AN) Pentagon 1AY 3 1984I Washington, DC 20301

Approved for public release; distribution unlimited

84 05 30 088



J7

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

J.M. PATTON, CAPT, USN R.M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report is the third in a series consisting of inputs from the KAPSE Interface
Team and its auxiliary industry/academia team. The work was sponsored by the Ada Joint
Program Office under program element RDAF, project CS22, sponsor order AF0038AJPO-
83-2. The contributions are reproduced here exactly as received.

I would like to extend my appreciation to the many DOD, academic, and commer-
cial activities whose continued support makes this effort possible. The sense of teamwork
and cooperation displayed by all members of these two teams is outstanding and will mean
the success of what we have undertaken.

Released by Under authority of
R.A. Wasilausky, Head J. Stawiski, Head
C3 , Support Systems Command, Control, Communications

Engineering Division and Intelligence Systems Department

LR

___________ !



NOSC TD 552

KERNEL ADA PROGRAMMING
-] SUPPORT ENVIRONMENT (KAPSE)
I _INTERFACE TEAM:

PUBLIC REPORT

in VOL IME III

1 I

Patricia Oberndor , KIT Chairman
Naval Ocean S, stems Center

San Diego, A 92152

0.. 25 October 1983C:>

.._

A. Interim Report for 28 October 1982 - 30 June 1983

Prepared for DTIC
ADA JOINT PROGRAM OFFICE T .

3D139 (400AN) Pentagon , 1
" Washington, DC 20301 M I

Approved for public release; distribution unlimited

84 OS 30 081



I 

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

J.M. PATTON, CAPT, USN R.M. HILLYER
Cornmmar Technical Director

ADMINISTRATIVE INFORMATION

This report is the third in a series consisting of inputs from the KAPSE Interface

Team and its auxiliary industry/academia team. The work was sponsored by the Ada Joint
Program Office under program element RDAF, project CS22, sponsor order AF0038AJPO-
83-2. The contributions are reproduced here exactly as received.

I would like to extend my appreciation to the many DOD, academic, and commer-
cial activities whose continued support makes this effort possible. The sense of teamwork
and cooperation displayed by all members of these two teams is outstanding and will mean
the success of what we have undertaken.

Released by Under authority of I
R.A. Wasilausky, Head J. Stawiski, Head
C3 I Support Systems Command, Control, Communications

Engineering Division and Intelligence Systems Department

I
II4 ,

i 'i,

l ..



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wie Dite eforel_

REPORT DOCUMENTATION PAGE BEFORE COMPLETIG P OI
I. REPORT HMMER 2.GV CESON No. S.RCPE S CATALOG NMB~ER[ ~ ~NOSC Technical Document 552 (TD 552) I&Aj i.j ALy

4. TITLE (and Subtitle) a, TYPE OF REPORT A PERIOD COVERED

KERNEL ADA PROGRAMMING SUPPORT Interim
ENVIRONMENT (KAPSE) INTERFACE TEAM: 28 October 1982-30 June 1983
PUBLIC REPORT * PERFORMING ONO. REPORT NUNgEm

Volume IllII_________________
7. AUTNOR(f) S. CONTRACT OR GRANT NUMBER(')

KAPSE Interface Team
Patricia A. Oberndorf (NOSC), Chairman

iT S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM .LENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
Naval Ocean Systems Center RDAF CS22
San Diego, CA 92152 AF0038AJPO-83-2

1i. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE

Ada Joint Program Office 25 October 1983
3D139 (40OAN) Pentagon '. NUMNER OF PAGES

Washington, DC 20301 300j , 14. MONITORING AGENCY NAME A ADDRESS(1I differemt from Controlilng Office) 15. SECURITY CLASS. (of thl report)

Unclassified
ISo. DECL ASSI FICATIONi DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Repor)

Approved for public release; distribution unlimited.

* t7. DISTRIBUTION STATEMENT (of Cho obstrct netid in Block 20. I dilfeniI from Report)

tO. SUPPLEMENTARY NOTES

-I.

* ISt. KEY WORDS (Continue an reverse ide. 1140c..wer anidloldlp by block inub.)

Computer language KIT
Ada KITIA
Interface standards KAPSE
Programming support systems

20. AnTItACT (Contimne on reverse side It npcosesty l rjool~b' by block muo)
.... The continuing activities of the Kernel Ada Programming Support Environments (KAPSE) interface

team and its industrytacademia auxiliary are reported. (Ada Is a recent, DOD-developed programming language.)
The Ada Joint Program Office (AJPO)-sponsored effort will ensure the interoperability and transportability of
tools and data bases among different KAPSE implementations. The effort is the result of a Memorandum of
Agreement (MOA) among the three services directing the establishment of an evaluation team, chaired by the
Navy, to identify and establish KAPSE interface standards. As with previous ADA-related developments, the

widest possible participation is being encouraged to create a broad base of experience and acceptance in industry,

academia, and the DOD...

0O i Fl" 1473 8T1* I NV o, T UNCLASSIFIED[ S/N 0102- LF. 014- 6601 6ECUR itY CLASSFICATION OF THIS BASE (Ma Date DIo.



SWCUMI1Y CLASSIFICATION OF T141S PAGEL tM DOS OMIO*1

S/M 0 102- BJ. 014. 6601

MSOuMTV CLASUPAION OF tIlS PA@t(WbM 8080bs09



[

CONTENTS

1. INTRODUCTION ............. ........................... 1-1

2. TEAM PROCEEDINGS

A. KIT Minutes 25-27 January 1983 ..... ................ .. 2A-1

B. KITIA Minutes 21-23 February 1983 ..... .............. . 2B-1

C. KIT/KITIA Minutes 18-21 April 1983 .... .............. .. 2C-1

D. SIS Drafter's Minutes 8-9 March 1983 .... ............. .. 2D-1

3. KIT/KITIA DOCUMENTATION

A. Ada Programming Support Environment Interoperability and

Transportability (I&T) Management Plan .. ........... .. 3A-1

B. APSE Interoperability and Transportability Implementation

Strategy .......... .......................... . 3B-1

C. KAPSE File Structure ....... ..................... .. 3C-1

D. A Virtual Terminal Specification and Rationale .......... .. 3D-I

E. Program Invocation and Control ..... ................ .. 3E-I

F. SIS Implementation Issues: Parameter Passing Over the

Standard Interface ........ ..................... .. 3F-1

G. SIS Categories ......... ........................ . 3G-1

H. KAPSE Support for Program/Terminal Interaction .......... .. 3H-1

I. The Difficulty in Developing an Ada Environment for Both

Run-Time and Programming Support Environments ... ....... 31-1

- J. Minimal Host for the KAPSE ...... .................. .. 3J-1

.. K. Of Mice and Command Languages: KAPSE Interface Support

. for Interactive Tools ....... ................... . 3K-I

L. Evolution of an APSE Interface Tool .. .............. 3L-1

j APPENDIX A. Configuration Management System Interim Report on

Interface Analysis ....... ................... .. A-1

IAPPENDIX B. APSE Interactive Monitor Interim Report on Interface

Analysis and Software Engineering Techniques ... ...... B-i

[ APPENDIX C. Ada-Europe/AdaTEC Conference Briefing................. C-I

[
,ii



I
I

I SECTION 1
'I

I INTRODUCTION

Accession For

NTTS GRA&IIi DTIC TAR
U -mi-ic'm(d'L.1 ~Jatif'icatio. 1%

By
Distribution/IAv ai'-bility Codes

Avail and/or

IDist special

-Al



INTRODUCTION

This report is the third in a series that is being published by the KAPSE

Interface Team (KIT). The first was published as a Naval Ocean Systems Center

(NOSC) Report, TD-509, dated April 1982, and is now available through the

National Technical Information Service (NTIS)* for $19.50 hardcopy or $4.00

microfiche; ask for order number AD Al15 590. The second was published as

NOSC TD-552, dated October 1982, and is now available through NTIS for $44.50

hardcopy; ask for order number AD A123 136.

This series of reports serves to record the activities which have taken

place to date and to submit for public review the products that have resulted.

The reports are issued approximately every six months. They should be viewed

as snapshots of the progress of the KIT and its companion team, the KAPSE In-

terface Team from Industry and Academia (KITIA); everything that is ready for

public review at a given time is included. These reports represent evolving

ideas, so the contents should not be taken as fixed or final.

KEETINGS

Both teams have held two additional meetings since the last report: a

KIT meeting in January, 1983, a KITIA meeting in February, 1983, and a joint

meeting of the two teams in April, 1983. The approved minutes from the Janu-

ary and February meetings are included in this report. In addition, many of

the working groups held individual meetings between regular KIT/KITIA meetings.

THE APSE INTEROPERABILITY AND TRANSPORTABILITY (I&T) PLAN

A new version of this plan is included in this report. It reflects some

minor changes in thinking, but the most significant changes are in the sched-

ules. This version of the plan also includes a more detailed and complete

*National Technical Information Service (NTIS)

Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

1-2



I

work-breakdown structure, which clearly states the things the KIT and KITIA

plan to accomplish during the next three years.

J THE STANDARD INTERFACE SET (SIS)

In the last report a section was included which discussed the APSE Inte-

grated Environment (AIE)/Ada Language System (ALS) Analysis. It mentioned

meetings which were taking place between KIT members and representatives of

Intermetrics and SofTech to construct a set of interfaces on which the AIE and

ALS could agree. These meetings were expanded in February to include represen-

tatives of the KITIA as well, and several more meetings have taken place.

Minutes from the March Standard Interface Set Working Group (SISWG) meeting

are included in this report. The result has been a set of steadily maturing

interfaces which were partially presented at the April KIT/KITIA meeting and

which will be presented in full at the July meeting. Several more meetings

are planned following the July presentation to ready these interfaces for pre-

sentation at a public review scheduled by the Ada Joint Program Office (AJPO)

for next fall.

The current version of the interface set has not been included in this

report because of its lack of maturity and lack of approval by the KIT and

KITIA. It is important to note that this set is still based solely on those

interfaces which both the AlE and ALS could support without changes to their

existing designs. They have not been examined for completeness or consisten-

cy; nor have they been examined with respect to fulfillment of the I&T Require-

ments and Criteria, which are also being drafted at this time (see next sec-

tion of this Introduction). The formulation of this initial interface set

serves several purposes:

1) It clarifies the similarities and differences between the ALS and

AIE. Such knowledge will help the KIT and KITIA to establish a final inter-

face set that does not differ arbitrarily from the capabilities which the AIE

and ALS can provide.

2) It provides the KIT and KITIA with a greater understanding of some of

the interface issues which must be addressed in establishing an SIS.

[ !!. 1-3



3) It raises some new interface issues which the teams were unaware of

at the beginning of the project.

4) It gives the public some early insight into what kind of product is

to be expected of the KIT/KITIA effort.

5) It provides a starting point for the evolution of a proper set of

interfaces for achieving APSE I&T.

The version presented at the review in the fall will be included in the

next KIT public report.

REQUIEMNTS ANiD CRITERIA

Considerable progress was made in the formulation of I&T Requirements and

S15 Design Criteria. The document was significantly reorganized due to clari-

fication of what constitutes a requirement as opposed to a criterion. Both

teams have devoted more time to reviewing the document than before, and consen-

sus on many issues is forming. As with the initial version of the SIS, the

current document has not been included in this report due to its state of

flux. It is expected that a final version will be available to the public by

the end of this calendar year. The final document will serve as the motiva-

tion for development of a 515.

POLICY DISCUSSIONS

The policy discussions prompted by the KITIA and expanded upon by the KIT

have culminated in the completion of the document described in the last public

report. Called the APSE lIsT Implementation Strategy, it discusses various

issue areas, the consideration. and trade-offs associated with them, and the

choices which the KIT have made after considering the alternatives. This

document provides an indication of the KIT approach which complements the I&T

plan and clarifies the reasons for some of the I&T plan contents. This report

is included here in Section 3.

1-4



KIT AND KITIA PAPERS

Two working papers by members of the KIT are included in Section 3. The

j authors are Krutar, Naval Research Lab (NRL), and French, Texas Instruments

(TI). Four papers authored by KITIA members also appear in this section.

They include an updated version of a paper by Gargaro, Computer Sciences Cor-ii poration (CSC), which appeared in the last Public Report, and the slides which
Gargaro presented on KIT/KITIA activities at the joint conference of Ada-

1 Europe and AdaTec in Brussels in March of this year.

I&T TOOLS

Two tools are being developed to assist the KIT in discovering and evalu-

ating interface issues. The first of these two is Configure, under develop-

ment by the Falls Church, Virginia, office of CSC. The second is the APSE

Interactive Monitor (AIM), under development by the Lewisville, Texas, office

of TI. Both of these tools have proceeded to detailed design; a critical

design review (CDR) was held with CSC in June and one with TI is scheduled for

July.

At this juncture there is no plan to proceed with the implementation of

the Configure tool. This decision has been prompted by two things. One is a

lack of understanding of what is required for configuration management (CM) in

the context of Ada and APSEs. The second is the fact that, while Configure is

a good tool concept, its generality has resulted in very little substantial

insight into AlE and ALS interfaces. It was originally hoped that such a tool

wnuld delve very deeply into data base issues, but that has not been the case.

The CSC Interface Analysis report is included in this volume as Appendix A.

j In an attempt to answer the first problem - the lack of understanding of

Configuration Management (CM) for Ada and APSEs - a configuration management

workshop was convened in June. A small group of knowledgeable people from a

wide variety of backgrounds was assembled to take up the question. The people
ranged from Ada experts to CM experts who knew little about Ada, and the group3included two representatives of APSE development efforts. The most interest-

ing conclusion of the workshop attendees was that Ada does not radically

1-5



change configuration management for large Department of Defense (DoD) systems.

Although it does make some contributions toward solving the CM problem which

languages in the past have not directly provided, Ada makes no new demands on
CM and does not solve the problem alone. The report from this workshop will

be included in the next public report.

The AIM development has provided considerable insight into APSE inter-

faces, as reflected in the report which is included here as Appendix B. Work

in this area has also contributed substantially to developing the initial SIS,

and a representative of the AIM team has attended recent meetings of the SIS

working group.

OTHER KIT/KITIA ACTIVITIES

A public review of several of the latest B-5 specifications for the AIE

has been conducted over the last few months. The analysis report of this

review will be included in the next Public Report.

CONCLUSION

This Public Report is provided by the KIT and KITIA to solicit comments

and feedback from those who do not regularly participate on either of the

teams. Comments on this and all subsequent reports are encouraged. They

should be addressed to:

Patricia Oberndorf

Code 8322

Naval Ocean Systems Center

San Diego, CA 92152

or sent via ARPANET to POBERNDORF@ECLB.

11



II SECTION 2

TEAM PROCEEDINGS

2-1



KIT MINUTES
MEETING OF 25 - 27 JANUARY 1983

TW LSI PRODUCTS DIVISION
SAN DIEGO, CALIFORNIA

ATTENDEES SEE APPENDIX A

BIBLIOGRAPHY OF HANDOUTS : SEE APPENDIX B

25 JANUARY 1983

1. OPENING REMARKS/GENERAL NEWS

Tricia Oberndorf, the KIT chairperson, brought the meeting to order
and welcomed everyone to San Diego. Highlights follow;

. Hospitality packages are available for those members that are not
familiar with the San Diego area.

. A dinner and meeting will be held tomorrow night for LCDR Jack
Kramer in honor of his retirement from the Navy.

. The national AdaTEC meeting will be held in San Diego during the
month of February.

. The KITIA will meet the same week, members must get clearance to
attend from Edgar Sibley the KITIA chairperson.

. A volunteer is needed to attend the International AdaTEC meeting
which will be held in Brussels during the month of March.

. A status report of the Software Technology Initiative (STI)
meeting to be held in February was given.

. The relationship of the KIT and the STI will be discussed at a
later date.

. The Public Report is being distributed. Members who have not yet
received theirs should receive them shortly.

Due to the anticipated size of the next Public Report, instructionsVi for publication will be distributed for submitters.

. Documents for the AIE review are being released this week. A
schedule for comments is being proposed.

. Examples of the logo were passed out. Several problems were
cited with them Ideas and comments were solicited.

J . The October minutes will be passed out later for review.

2A-1



* Proposed dates for the upcoming KIT meeting are April 19 - 21

in Warminster, PA. and sometime in July for the San Diego meeting.

2. KIT/KITIA ACTIVITIES

Ideas were exchanged as to when and how the KIT and KITIA could meet
both jointly and independently. A new approach to the interactions
of the KIT/KITIA for joint productivity of the I&T effort was proposed.
Other topics in the discussions included:

" A need was expressed for a clear understanding of what the KITIA's

input to the KIT should be.

" A clearer defintion of the KIT's and the KITIA's products and roles
was called for.

ACTION ITEM: Tricia will create and the KIT Executive committee will
review a sample statement of roles for the KIT/KITIA.
The document will be put on the net for review and
comment. It will be fashioned after the APSE I&T
Plan which is included in the Public Report II.

. The differences between the two groups were explained, each groups'
mode of operation was outlined.

. Tricia requested the KIT working group chairpersons to open
communication lines with their corresponding KITIA counterparts.

. The KIT and KITIA address lists were updated and placed in

KIT-INFORMATION.

. AJPO funding for KIT traveling expenses was discussed.

. The role of the STI and the KIT, its products and their operation
were explained.

A vote was taken to resolve if the group wanted to meet with the
KITIA. It was decided that the KIT should meet with the KITIA
at least once a year. No meeting place was proposed although
a joint meeting with AdaTEC was suggested.

3. GENERAL NEWS

General news was discussed and included;

. the distribution of letters of appreciation

. status of CONFIGURE, CSC's configuration management tool

. ideas on revision to STONEMAN passed out for review and follow-up
presentation

. status of AIM, TI's interactive monitor tool - PDR on Friday

2A-2



" RFP for new tool due to be released soon

" document containing initial set of interfaces that can be supported
by the AIl & ALS systems passed out

" paper by W. Wilder (SofTech) discussing the parameters for a
minimum host passed out

" considerations for potential legal problems pertaining to the KIT
and the Ada effort were discussed

4. BREAK FOR LUNCH

5. RECONVSEE

6. REQUIREMENTS AND CRITERIA DOCUMENT

A review of sections 4, 5 & 6 of the Requirements & Criteria
document was performed by the KIT. The group concentrated on
responding to issues and statement contents. Language ambiguites
were corrected only when obviously incorrect. The following topics
were discussed:

. the changing of the acronym "IT" to "I&T" for the abbreviation
of Interoperability and Transportability

. the abolishment of the acronym SI S

. a separation of each section was proposed where all requirements
are grouped together followed by all the criteria for each
section

. the document should include only positive specifications

. considerations for adaptation of another type of organi zation

similar to STONEMAN

. the ingredients of transportability among tools and among
inter-tools that the KIT is attempting to achieve

. a glossary of standard definitions to be developed in a separate
document

. the definitions of design criteria and requirements

. considerations for making something a requirement

. policy issues such as upward compatibility and the evolution of the
SiS

. definition of Extensibility and creation of a new term - Expandability

- the notion of "conforming KAPS".

Following the session, members were asked to rework section 6.4 of the
R & C document the next day when they met in their working groups.

2A-3



This was to take precedence and to be considered more important than

completing KIWs.

26 JANUARY 1983

1. WORKING GROUP MEETING

The KIT met at TRW DSG San Diego facility. Working group meetings
were held.

2. BREAK FOR LUNCH

3. RECONVENE

The KIT reconvened at TRW LSI facility for the afternoon session.

4. WORKING GROUP REPORT

The progress of the four working groups was presented by each of the
four working group chairpersons. The highlights of the reports were
as follows:

Working Group 1

Group 1 presented their "Bootstrap Mapse" model for moving tools
from one APSE to another APSE. Their model assumed no tools on
the target APSE.

Working Group 2

Group 2 proposed their model to port a project in which it moves
a project's complete tool set. The group is attempting to get a
good understanding of the SIS and its relationship to the KAPSE
and the standard MAPS! tools.

Working Group 3

Group 3 worked on the following;

. defined host (and not target) run-time requirements and criteria

. defined requirements and criteria at the interface level for static
and dynamic binding

. changed "performance measurement" to "operational measurement"

. determined interface considerations for operational measurement.

Working Group 4

Group 4 worked on separating SIS requirements from ways to implement
a KAPSE. Other issues covered;

2A-4



" Extensibility Vs Expendability

. Security - should a DOD Instruction be cited as a requirement

" Interface considerations to security

Following the presentations by the chairpersons, a schedule for
submitting updates to the Requirements and Criteria document
Was discussed whereby suggestions would be submitted and the document
updated in time for the KITIA meeting. The reorganization of the updated
document was also discussed.

5. STRATEGY

A strategy for the KIT was discussed. A plan to make the Requirements
and Criteria document and the SIS Specification draft near-term, high
priority Usable products was proposed.

6. UPDATE TO STONEM4AN

A document which updates the STONEMAN concept was presented.
In the interest Of time, all couments were witheld for the next
day when the group would review it again.

27 JANUARY 1983

1.* OPENING REMARKS

Tricia Oberndorf, the KIT chairperson, brought the meeting to order.*
She reviewed the agenda for the day and listed the day's four major
topics of discussion; the KIT Strategy Paper, the SIS Draft,
STONEMAN II and the I&T Requirements and Criteria Document.

2. KIT STRATEGY PAPER

Comments on the KIT Strategy paper were solicited. Responses are
given below.

"considerations as to what the paper represented, a policy or a
strategy

" the paper's relationship to the I&T Plan

- the benefits of developing one and only one standard
" the standardization process involvement (what needs to be done

to make the document a government standard and to get it accepted

by the AJPO and the three services)

2A -5



" the vehicle the AJPO must use to make the paper a policy and the
mechanics required to publish it with respect to the environment

" the available standards which could be used as a guide in
formatting the paper for the standardization process

" management of the standard

" incorporation of a justification section in the paper to show
the many things that were considered in producing the paper

" enumeration of the parts of the APSE that are potential problems
due to lack of experience

" newly identified working groups to include Configuration

Management, Policy and Validation

" considerations for briefing senior service officals of the three
services and a press release of the KIT activities for publication
in software related magazines and journals

" a refinement of the bulleted items in section 4; considered to

comprise the heart of the document

" refinement considerations for submission to the STI

Tricia will update the strategy paper, incorporate the
appropriate suggestions and will have it finished for the upcoming
KITIA meeting. At that time it will be available on the ARPANET
through KIT-INFORMATION.

3. KIT/KITIA COMMUNICATION

A KITIA member Herb Willman (Raytheon) will attend future KIT SISWG
meetings and will keep the KITIA Informed as to the KIT's activities.

Jack Kramer (AJPO) assured the KIT that both the KIT and the KITIA
are pursuing the same objectives as defined by phase 1 of the KITIA's
3 phase plan. Phase 1 plans call for a prototype standard to include
a validation suite.

4. SIS DRAFT

The SIS draft was reviewed. The introduction and each of the five
interface areas were addressed. Conversation concerned the document's
organization and corrections that still needed to be made to the
document. The document itself had "reader notice" notation where
di3crepanci4s and inconsistencies appeared. The highlights by interface
area follow:

The Introduction will be expanded.

" The Input/Output area was taken directly out of the Ada LRM.
Exceptions and definitions for each package will be added. 1

2A-6



* A data base management model based on the UNIX structure was
presented. Rationale for its structure was given. Follow-up
discussion centered on access control considerations in particular
security (need to know) to data bases.

" A process management model developed and built to be analogous
to the data base model was presented.

" Each package in the Utilities section was discussed.

" The contents of the MAPS! Tool Interfaces package are dependent
on STONEMAN II progress.

KIT members were asked to review and comment on the document. A
new method for collecting coaments/suggestions for the SIS
Draft (and any other KIT publication) is being considered whereby
a separate ARPANET directory may be used to collect the
information. KIT members will be kept informed as to its progress.

5. GENERAL

Following the SIS draft update the following topics were discussed:

" distribution of the October minutes

" SIS drafters to get together to decide when the next SIS meeting
will be held

" resolution of the two SIS acronym

" only one logo between the two groups (KIT & KITIA).

6. STONEMAN II

Tricia began by stating the purpose of the session; to define a
set of standard interfaces to which APSEs can be written and therefore
be made to support I&T.

The proposed revision to STONEMAN, called STONEM4AN II, was presented.
STONEMAN II attempts to redefine the NAPSE in two different areas; a
transfer of functionality from the KAPSE data base to the NAPSE level
and the elimination of the APSE data base.

Follow-up discussion concerned STONEMAN and its terminology, in
particular, its definitions of APSE, MAPS! and KAPSE. Highlights
of the discussion follow:

The current approach towards defining a MAPS! is a radical
departure from the old STONEMAN which specified a minimum set of
tools. The approach now is to define the common, standardized
interfaces to tools.

. The imprecise use of the notion of data base in STONEMAN.

The imprecise use by STONEMAN in the use of the word MAPS! with
regard to the tool set. On some ocasions STONEMAN refers to a

L2A -7



MAPSE as an Ada programming environment, on others, the MAPSE U1
used synonomously with the tool set.

" The role of the program library and its implications to the
MAPSE/KAPSE nomenclature.

" The relationship of the SIS (Standard Interface Set) to the STONEMAN
ideas of APSE,MAPSE and KAPSE.

" For the purposes of discussion regarding the SIS, a motion was
proposed to eliminate the words APSE, MAPSE and KAPSE and
replace them with standard computer science terms.

. A need was expressed to clarify STONEMAN document generalizations
to prevent any mis-representation in future development efforts.
A good example of what can happen by mis-representation is evidenced
by the current dual APSE approach.

A new look at the APSE was proposed in which one looks into the
implementation of the standard interface set through the tools or
'windows'. The approach shows how only the tools view the operating
system that supports the APSE.

7. KIT PHOTO

A group picture of the KIT was taken.

8. BREAK FOR LUNCH

9. RECONVENE

10. MINUTES

The minutes of the October meeting were reviewed and approved as
corrected.

11. STONEMAN II (Cont.)

Due to timing considerations, Tricia proposed that the STONEMAN II
discussions be terminated.

It was stated that more work needs to be done on the document. Terms
used in the document were not acceptable and new ones with more
acceptable definitions needed to be introduced.

Again, a mail box type directory for receiving comments and suggestions
concerning the STONEMAN II document will be set up. Any coments
received by Tricia that have not been reviewed by the general KIT
session will be distributed by her, to the KIT.

12. REQUIREMENTS AND CRITERIA DOCUMENT

2A-8

1



Commencing with section 6.1.5 each section of the Requirements and
Criteria document was reviewed and reworked (where appropiate).
A synopsis of the coments follow:

Bulleted items under each subsection were examined to determine
whether they were a requirement or criteria.

. A reformat of the document was suggested where all requirements
(and similarly all criteria) are grouped together under each
subsection.

. The word KAPSE was changed to 'SIS implementation'.

. The definition and relation of the Ada environment to such items
as default parameters, versatility/flexibility, exceptions and
standard defined names were discussed.

. The incorporation of new sections including Security and Evolution
was discussed.

. An examination of existing requirement documents such as STEELMAN
was suggested as a way of providing additional input to the style
and content of the R&C document.

Recomndations for updates to the R&C document are to be submitted
via the ARPA Network to Tricia and/or Hal Hart.

13. SIS DEINITION

Tricia opened the discussion by stating its objective; to decide
where the SIS line should be drawn on the STONEMAN diagram. A
discussion then started. A basic set of very elementary Ada tools
were identified. Known collectively as the Required Ada Host
Development System (RAHDS), this set of tools is considered the
minimum set required to make it possible for other tools to be
transferred.

Efforts continued in the expansion of thinking and definition of
Interoperability and Transportability.

14. LOGOS

A new logo will be 'drawn up' by Tricia. It will be fashioned after
a blank STONEMAN diagram.

15. ADJOURNMENT

Tricia Oberndorf, KIT chairperson, adjourned the KIT meeting. The
next KIT meeting is scheduled for April 19 - 21 in Warminster, PA.

2A-9



APPENDIX A

ATTENDEES

BALDWIN, Rich U.S. Army CECOM

BASSAN, Mitch CSC
, CASTOR, Jinny AFWAL/AAAF-2

FERiGUSON, Jay NSA

FOIDL, Jack TRW

FOREMAN, John TI

FRENCH, Stewart TI

FROH OLD, Barbara U.S. Army CECOM

HARRISON, Tim TI

HART, Hal TRW

HOUSE, Ron NUSC

JOHNSTON, Larry KADC

KEAN, Elizabeth RADC/COES

KRAMER, Jack AJPO

KRUTAR, Rudy NRL

LINDLEY, Larry NAC

LOPER, Warren NOSC
MAGLIERI, Lucas National Defense Hqds.
MALONEY, Jim Intermetrics

MILLER, Jo NWC

MYERS, Gil NOSC

MYERS, Philip NAVELEX

NELSON, Eldred TRW

OBERNDORF, Tricia NOSC

P E, Shirley FCDSSA

2A-10



PURRIER, Lee FCDSSA OTB

ROBERTSON, George FCDSSA OTh

SCHAAR, Brian AJPO

ST-IN, 4o NSWC/DL

TAFT, Tucker Intermetrics

TAYLOR, Guy FCDSSA

THALL, Rich Soffech

WALTRIP, Chuck John Hopkins Univ.

J/

2A-11



APPENDIX B

BIBLIOGRAPHY OF HANDOUTS

1. Ada Programming Support Environment (APSE) Requirements for
Interoperability and Transportability and Design Criteria
for Standard Interface Specification, 29 OCT 82, Hal Hart (TRW).

2. Agenda.

3. KIT minutes of October 1982 meeting.

4. KIT Strategy Paper, Tricia Oberndorf (NOSC).

5. Minimal Host for the KAPSE, 27 DEC 82, William Wilder (SofTech).

6. Proposed Standard Interface Set for an Ada Programming SupportEnvironment, 26 JAN 83, Primary: Tucker Taft (Intermetrics).

7. Revised I&T Schedule.

8. STONEMAN II, Requirements for Ada Programming Support Environment,
JAN 83, Donn Milton (Verdix).

2A-12



MINUTES OF

KAPSE INTERFACE TEAM
INDUSTRY & ACADEMIA
21-23 FEBRUARY 1983

SAN DIEGO, CALIFORNIA

ATTENDEES: SEE APPENDIX A
MEETING HANDOUTS: SEE APPENDIX B

21 February 1983

1. WORKING GROUP MEETINGS

Edgar Sibley, KITIA Chairperson, brought the meeting to order. The KITIA
reorganized into their respective Working Groups for discussions. This
meeting marks the first anniversary of the KITIA.

22 February 1983

2. GENERAL MEETING

Edgar Sibley convened the general KITIA meeting. Lcdr. Brian Schaar (AJPO)
announced that Ada is now an approved ANSI standard language (MIL-STD-1815A)
as of 17 February 1983. The minutes of the October meeting were approved as
corrected.

3. GENERAL DISCUSSIONS

Edgar Sibley opened the floor to discussion of the role of the KITIA. A
summary of the major points follows.

* more technical interaction with the KIT is required including the
insertion of KITIA points in KIT products and the distribution of
KITIA papers to the KIT for comments and information.

* The KITIA should have a creative as well as a review role. Dit Morse
sees the KITIA role as fourfold: 1) providing guidance to AJPO; 2)
definition of activities to accomplish goals; 3) product review;
and 4) performance of requested tasks.

* Working groups see their inputs in the context of their Working
Group charters.

* The KITIA should be responsive to the KIT Standard Interface

Set process.

Additional topics were discussed including:

* A change in the location of the July meeting from Cherry Hill
to San Diego.

I - The need for improvement in the documentation control proces
including meeting minutes and KITIA papers. Submission of
papers via the Group chairs was recommended.

?B-1ILk



* A brief summary of the Murnau conference was presented that
indicated KAPSE problems that were to be addressed in the
STONEMAN II document.

" A directory of products to be included in the Public Report

should be available on the ARPANET. The Group chairs are to
meet with the KITIA chair and formulate a recommendation for
the KITIA.

* The KITIA vice-chair should no longer be an elected position
but should be appointed by the KITIA chair to assist in the
formulation of agendas, document coordination and control, etc. I
This can also be a rotating position within the KITIA.

" There are problems regarding NET access. The group chairs are to
coordinate the problems and report these to the AJPO.

" The KITIA would like the KIT to accept responsibility for the
meeting arrangements for joint KIT/KITIA meetings.

" A COMMENTS directory is planned for the ARPANET similar to the
KIT-INFORMATION. This is to present the comments received for the
various KIT/KITIA documents. Additional data will be sent on the
NET as progress continues.

" Anthony Gargaro presented a status report on the CONFIGURE tool.
A configuration management workshop may be held in Falls Church
in the near future. Additional data will be provided via the NET.

4. BREAK FOR LUNCH.

5. KITIA ELECTION

Edgar Sibley was the sole nomination for KITIA chairperson and elected
unanimously.

6. KITIA PROPOSAL

Herm Fischer presented a three phase plan for execution of the KITIA
proposal suggested at the last KITIA meeting. The first phase would
address 3IS requirements specification starting with the KIT Requirements
and Criteria document and progressing to a B-5 like specification. This
phase would also address the SIS interface specification starting with
the KIT draft SIS and progressing to a C-5 like specification. The second
phase would extend this work to a stable platform. The third phase would
define a long term implementation task. A breakdown of the required
organization and funding estimates to accomplish this task were also
presented. A discussion of the merits and inherent problems in
implementing this work was presented by Brian Schaar (AJPO). The KITIA
was asked to provide an alternative method to implement the goals
of their proposal. A special working group was formed under Dave
McGonagle to examine this problem and prepare a plan.

7. WORKING GROUP MEETINGS

The KITIA reorganized into Working Groups to continue discussion and
prepare future plans.

8. KITIA ADJOURNED FOR THE DAY.

2B-2



23 February 1983

9. WORKING GROUP REPORTS

Working Group 1

* WG1 intends to prepare a Statement of Work for Phase 1 with
emphasis on user services. This group intends to support the
review/critique/normalization process, develop type A level
requirements and develop type B level package specifications.

* In view of this effort the planned Command Language Workshop
will be postponed. Additional meetings will be held 4/13, 4/14
in Blacksburg, 5/18-20 in Valley Forge, 6/15-17 in Cherry Hill,
and 6/11-14 in San Diego.

* Review of the AIM and CONFIGURE tools will continue.

Working Group 2

* WG2 will continue their support of document reviews.

* This group feels the draft SIS implies a hierarchical file system
which may be good for the AIE and ALS but not necessarily for a
global SIS.

Working Group 3

" This group is looking at APSE/MAPSE/KAPSE boundaries for the
standardization of their definition.

" The draft SIS review will continue with comments on the NET by
4 March.

Working Group 4

* This group intends to examine APSE/MAPSE/KAPSE in the context
of SIS questions.

* A paper will be prepared on Distributed APSEs.

* KIT/KITIA document reviews will continue.

It was recommended that all APSE/MAPSE/KAPSE discussions have
KITIA wide distribution.

Special SIS Working Group

* Dave McGonagle presented a plan in response to the AJPO request
of the previous day for KITIA support to the SIS generation
effort. This plan included augmentation of the KIT SIS Drafters
with the KITIA Special SIS Working Group through a series of
joint meetings resulting in a draft SIS for public review in
the Fall of 1983.

* Deficiencies in the present draft SIS were identified with
emphasis on the missing rationale.

2B-3



9 The cooperation of the entire KITIA in this effort was solicited.
The KITIA voted overwhelmingly (YEA-22, Nay-0) to support this
planned activity.

10. MEETING ADJOUJRNE-D

2B -4



APPENDIX A
ATTENDEES

KITIA Meeting
21-23 February 1983

KITIA Members:

ABRAMS, Bernard Grumman Aerospace Corp.

CORNHILL, Dennis Honeywell/SRC

COX, Fred Georgia Institute of Technology

DRAKE, Dick IBM

FELLCW, Jon System Development Corp

FISCHER, Herman Litton Data Sytsems

FREEDMAN, Roy Hazeltine Corp.

GARGARO, Anthony Ccmuter Sciences Corp.

GRIESHEIMER, Eric McDonnel Douglas Astronautics

JOHNSON, Ron Boeing Aerospace Co.

KERNER, Judy Norden Systems

KOTLER, Reed Lockheed Missiles & Space

LAHTINWN, Pekka Oy Softplan AB
Finland

LAMB, J. Eli Bell Labs

LINDQUIST, Tim Virginia Institute of Technology

LOVEMAN, Dave Massachusetts Computer Associates Inc.

MoGONAGLE, Dave General Electric

MORSE, H. R. Frey Federal Systems

PLEODEREDER, Erhard IABG
West Germany

REEDY, Ann PRC

RUBY, Jim Hughes Aircraft Co.

SAIB, Sabina General Research Corp.

SIBLEY, Edgar Alpha Omega Group, Inc.

WESTERMANN, Rob TNO-IBBC
The Netherlands

28- 5



WILLMAN, Herb Raytheon Company

WREGE, Doug Control Data Corp.

YELOWITZ, Larry Ford Aerospace & Communications Corp.

KITIA ALTERNATES:

BEANE, John Honeywell

HUMPHREY, Dianna Control Data Corp.

OTHER ATTENDEES

FOIDL, Jack TRW

MYERS, Gil Naval Ocean Systems Center

SCHAAR, Brian Ada Joint Program Office

2B-6



APP-DIX B
Bibliography of Handouts

I. Point Papers

a. KAPSE Support for Program/Terminal Interaction

II. Minutes

a. KITIA Minutes 4-5 October 1982

b. KIT/KITA Joint Minutes 5 October 1982

III. Documents

a. Ada Package Specification for the Standard Interface Set
1 February 1983 (Draft)

b. KIT Strateg Statement
25 January 1983 (Draft)

c. STONEMAN II
January 1983 (Draft)

d. Ada Programming Support Environment (APSE) Requirements for
Interoperability and Transportability and Design Criteria for
Standard Interface Sets
18 February 1983 (Working Paper)

IV. OTHER

a. Revised I & T Schedule

2B-7



KIT/KITIA MINUTES
MEETING OF 18-21 APRIL 1983

WARMINSTER, PENNSYLVANIA

ATTENDEES: SEE APPENDIX A
BIBLIOGRAPHY OF HANDOUTS: SEE APPENDIX B

18 APRIL 1983 - KITIA MEETING

1. OPENING REMARKS

Edgar Sibley, KITIA chairperson, brought the meeting to order.
Larry Johnston, Naval Air Development Center, was introduced as the local

host.

2. GENERAL BUSINESS

KITIA members were asked to recommend the best time for the joint October
KIT/KITIA meeting through their respective Working Group chairs.

A recommendation was made to have the KITIA rules available through the
ARPANET for members access.

Distribution of lengthy text via ARPANET messages may be facilitated
through identification of a users file name so that interested parties may
copy the file for printout rather than generation of multi-page mail messages.
A NET message of a few lines may then be transmitted using Group lists to
identify the appropriate file.

3. WORKING GROUP REPORTS

Working Group 1 - continues review of KIT/KITIA documents.

Working Group 2 - continues review of KIT/KITIA documents.

Working Group 3 - submitted comments on the Standard Interface Set
document; preparing a proposal to modify the KIT/KITIA strategy document.

Working Group 4 - in the process of electing a new Working Group chairman.

SIS Working Group (SISWG) - held two joint meetings with KIT drafters in
Boston area. Held a KITIA SISWG meeting in Palo Alto. Working toward a
liveable SIS that captures the STONEMAN goals. Work has effectively merged the
KIT/KITIA SIS efforts into a single team effort. Continuing progress on data
management, process control, and virtual terminal concepts. Definition of
Rationale section progressing. Future meeting in Boston area will continue.

4. AJPO STATUS

Ledr. Brian Schaar of the Ada Joint Program Office reported that the KAPSE
development work on the Ada Integrated Environment has been halted by the Air
Force. The work on the compiler and coompiler-related tools is continuing. The
problem was caused by lack of Government Furnished Equipment requiring the
developer to incur unbudgeted computer lease expenses. Plans for the re-start

.2C-1



of the KAPSE work were not yet available. The Ada Language System is
progressing according to its new development plan and schedule. A detailed
schedule should be available by the next KIT/KITIA meeting.

5. GENERAL DISCUSSION

The latest version of the SIS does not appear different from the previous
version. Why?

This version reflects a re-organization agreed to by the KIT drafters but a
major revision is not planned until the KITIA SISWG is integrated into the
team and their contributions can be effectively assimilated. The next version
will contain these changes. All members were requested to provide "constructive
criticism" versus "criticism" when reviewing the KIT/KITIA documents.

6. BREAK FOR WORKING GROUPS

The KITIA members reorganized into individual working groups.

7. RECONVENE FOR ADDITIONAL DISCUSSION

The KITIA was requested to review the Minutes of the previous meeting and
report any problems to their Group chairs.

Suggestions were made for establishment of document review files on the
ARPANET. These include a Version Description Document format to identify
significant revisions since the previous version, responses to individual
comments in the comment file (including status such as incorporated, deferred,
or rejected), and the inclusion of change bars to reflect present changes in
the various documents.

8. ADJOURN FOR THE DAY.

2C-2



19 APRIL 1983 - JOINT KIT/KITIA MEETING

1. OPENING REMARKS

Gil Myers, acting KIT chairperson, brought the meeting to order.

2. GENERAL BUSINESS

Lcdr. Brian Schaar, Ada joint Program Office, announced that Jack Kramer
will continue working on the Ada Program as an employee of the Institute for
Defense Analysis. The AJPO has also initiated a new task directed at the
Evaluation and Validation of APSEs. The initial work is being supported by
the Air Force. The status of the Standard Interface Set document and the
integration of the KITIA members into a joint SIS Working Group was described.

Edgar Sibley, KITIA chairperson, presented the highlights of the previous
day's KITIA meeting including the KITIA initiative to become more actively
involved in the SIS. He suggested the KIT and KITIA Working Group chairs
establish closer working relations. Dr. Sibley also reminded all attendees of
the sensitivity of the documents under development and cautioned against
unauthorized distribution without prior approval of the AJPO.

The KITIA Working Group chairs reported the progress of their respective
working groups. The SISWG will provide additional details later in the
meeting.

Jack Foidl, TRW, described the document review methodology that is being
established. This includes following the review comment format utilized in the
AIE document review, serialization of all KIT and KITIA products,
establishment of a COMMENTS review directory on the ARPANET, and the
submission of materials for inclusion in the Public Report.

Mitch Bassman, CSC, presented the status of the CONFIGURE Tool. The design
of the tool will be completed but will not be developed due to the
non-availability of a validated compiler. Additional options are being
examined.

John Foreman, TI, reported on the status of the AIM Tool and thanked those
that participated in the reviews of the AIM documentation. The interaction
with the SISWG regarding terminal interfaces was also reported.

Hal Hart, TRW, presented an preview of topics to be presented at NCC '83 in
Anaheim, California in May.

Anthony Gargaro, CSC, presented highlights of his presentation to the
Brussels conference on behalf of the AJPO.

3. EUROPEAN Ada/APSE STATUS

Erhard Pleodereder, IABG West Germany, presented an overview of their
efforts which is basically sponsored by their Ministry of Defense. Work
includes development of a front end (which is currently based on Ada-80), two
back ends and a symbolic debug system based on DIANA. Their work will be

[ 2C-3



impacted by ANSI Ada.

Tim Lyons, Software Sciences Ltd., England, presented an overview of the
United Kingdom efforts. The work is directed under Ada Group Ltd. which is a
consortium of three companies developing MCHAPSE, a Minimal Chill and Ada
Programming Support Environment for the U.K. Telecom with some Ministry of
Defense funding. This group expects to have a compiler by the end of 1984 and
an environment in the post 1984 time frame. The initial target is an ICL 2900
with the VAX/VMS as the second target. A description of the KAPSE and database
is contained in the U.K. Study Reports. This effort is currently planned at
approximately $13M.

4. STANDARD INTERFACE SET WORKING GROUP

Dave McGonagle, General Electric, presented the status of the SISWG. The

initial efforts have been to incorporate KITIA concepts and ideas into the
initial KIT SIS document. The ground rules of this initial effort have been to
formulate a SIS that is livable for the AIE and ALS, captures STONEMAN
concepts, and is useable. Members of the SISWG were introduced and a summary
of the progress to date identified. Future potential problem areas were
presented including data management, process control, and extent of
virtualization of the terminal interfaces.

5. BREAK FOR LUNCH

6. STANDARD INTERFACE SET WORKING GROUP (Cont'd)

Eli Lamb presented the results of definition of the SIS Rationale to be
included in the SIS. The SIS was defined as a standard set of host independent
interfaces providing access to system services. Rationale for the various SIS
sections will be included as they are identified. A discussion of the
relationship of the Requirements and Criteria document to the SIS resulted in
clarification of the RC document as applicable to the future SIS and not the
initial SIS. Also,the initial SIS should not constrain the composition of the
RC document.

[NOTE: the following table is provided for the readers understanding of the
context of the various terms that were used in these discussions.

Initial SIS SIS 0 SIS 84 - the SIS applicable to the AIE/ALS

environments

Final SIS SIS 1 SIS 86 - the SIS to be promulgated as a

Military Standard for DoD
environments ]

The data management model as included in the initial SIS was presented by
Tucker Taft. A different perspective was presented by Erhard Pleodereder. A
discussion of the various merits of each model ensued.

A Strategy for Advancement of the Standard Interface Set was recommended.
Possible test cases for a meaningful SIS such as a Command Interpreter and a
Virtual Terminal were also presented.

7. VIRTUAL TERMINALS

2C-4



Perspectives on virtual terminal concepts were presented by Stewart French

of Texas Instruments and Herm Fischer of Litton Data Systems.

8. BREAK FOR WORKING GROUP MEETINGS.

9. ADJOURN FOR DAY

20 APRIL 1983

10. JOINT WORKING GROUP REPORTS

Working Group 1
* continuing review of the Requirements and Criteria document to which

the following observations apply:
Introduction j"

- need a definition of a "conforming SIS"
- missing focus on interoperability
- references to KIT activities should be placed in a cover

letter
- what is the distinction between "serious tool writers"
and "writers who are serious about I&T"

Section 3 (prior to 3.4.1)
- we need to clearly distinguish between guidelines, criteria

and requirements. Guidelines shall not be called criteria.
All criteria should be quantifiable. Guidelines may be
included in a separate document

Section 3.4.1
- Rationale is needed by section and by bullet
- definitionas are required for program, process and user

(clarify 'user' of SIS or APSE)
- requirements should be testable, i.e., "Facilities...for a

user to redirect program input and output" could be satis-
fied by two different SISs

- need a privilege request and access granting mechanism
that is dynamic

- in statements such as "the calling task of the caller waits"
the SIS process facilities must know about Ada tasks and
there may be hidden implications

- there must be a clear distinction between the requirements
on interfaces and the requirements on facilities supporting
the interfaces

* the joint KIT/KITIA working group coordination raises problems
associated with travel so the groups may organize into subsets to

address specific topics

e continuing SOW defined in San Diego in February

Working Group 2

* the KITIA WG spent Monday in a review of STONEMAN II and the RC
document and had the same problems as WG1 with "serious" and the

[-V "interoperabilty" issue

Li 2C-5



* the Joint WG performed some basic review of the I/O section,
as well as the database management and control areas

e this WG is having some trouble with definitions such as the SIS
database. To what level do you address and to what depth is
required in the SIS?

Working Group 3

* D. Wrege is working on a STS related paper for the Public Report

* this WG will provide some recommendations on the structure of the
SIS

* will try to concentrate on areas that that are seperated by needs
such as SIS 0, the RC document, and definition of a Standard Ada
Library (such as math pacs)

" there is a need for more criteria since the SIS is at the boundary
of tool sets and the environment; the information transfer is in
and out of a program's address space, therefore, identification
of facilities that must or must not be standardized will be
required

" future work of this group includes:
- Drake/Saib to formulate a matrix of tools/interfaces
- Fellows to define a process model for the SIS
- Lamb/Willman to continue SIS drafter work
- Johnson to work on the RC document

Working Group 4

* organizing into a number of sub-groups

* defining future plans of action to support
- interoperability issues
- user interfaces
- METHODLMAN liaison
- inter-tool data dependencies (and other DIANA-liKe structures)
- conventions and guidelines
- standard run-time services (nCl. host vs. target issued)
- RC document
- STONEMAN II
- Evaluation & Validation liaison
- SIS
- Policy
- Standard Glossary

11. KITIA MINUTES

The KITIA Minutes were approved as corrected. Corrections included AdaTC
typo aorection and addition of Texas Instruments AIM presentation.

12. OCTOBER MEETING DATES

Tj. Oatober meeting is tentatively scheduled for 17-19 October 1983 in

2C-6



Dallas.

13. AJPO CLOSING COMMENTS

Lcdr. Brian Sohaar expressed pleasure with the joint teams' progress. He
reflected that the pressure for the SIS was increasing and there remains a
great deal of work to be accomplished. The industry perspective provided by
the KITIA participants is especially valuable in this hard endeavor.

14. JOINT KIT/KITIA MEETING ADJOURNED

2

~2C -7



21 APRIL 1983 - KIT MEETINGK

1. DOD SESSION

2. TREASURER'S REPORT

* an accounting of the registration monies Was presented

3. KIT MEETING MINUTES

* the KIT meeting minutes from January were to be revised and
presented at the next meeting for approval.

4. KIT MEETING ADJOURNED

2C -8



APPENDIX A
ATTENDEES

KIT/KITIA Meeting
April 1983

KIT Members:

BASSMAN, Mitch Computer Sciences Corporation

CASTOR, Jinny AFAWL/AAAF-2

DUDASH, Ed NSWC/DL

FERGUSON, Jay NSA

FOIDL, Jack TRW

FOREMAN, John Texas Instruments

FROMHOLD, Barbara U.S. Army CECOM

HARRISON, Tim Texas Instruments

HART, Hal TRW

HOUSE, Ron NUSC

JOHNSON, Doug SoftWrights

JOHNSTON, Larry NADC

KEAN, Elizabeth RADC/COES

KRAMER, Jack Institute for Defense Analysis

KRUTAR, Rudy NRL

LINDLEY, Larry NAC

LOPER, Warren NOSC

MAGLIERI, Lucas National Defense Hdqs., Canada

MILLER, Jo NWC

MOLONEY, Jim Intermetrics

MYERS, Gil NOSC

MYERS, Phil NAVELEX

PEEEL, Shirley FCDSSA, Dam Neck

ROBERTSON, George FCDSSA, San Diego

SCHAAR, Brian AJFO

2C-9

I&OE



STSIN, MO NSWC/DL

STOPYRA, Norma NAV MAT-08Y

TAFT, Tucker Intermetrics

TAYLOR, Guy FCDSSA, Dam Neck

THALL, Rich SofTech

WALTRIP, Chuck John Hopkins Univ.

2C-10



KITIA Members:

ABRAMS, Bernie Grumman Aerospace

BAKER, Nick McDonnel Douglas Astronautics

CORNHILL, Dennis Honeywell/SRC

DRAKE, Dick IBM

FELLOWS, Jon System Development Corp

FISCHER, Herman Litton Data Sytsems

FREDMAN, Roy Hazeltine Corp.

GAJIAK, George Alpha Omega Group

GALLAHR, Larry Georgia Institute of Technology

GARGARO, Anthony Computer Sciences Corp.

GLASEMAN, Steve Teledyne

JOHNSON, Ron Boeing Aerospace

KERNER, Judy Norden Systems

LAMB, J. Eli Bell Labs

LINDQUIST, Tim Virginia Institute of Technology

LYONS, Tim Software Sciences Ltd., United Kingdom

McGONAGLE, Dave General Electric

MORSE, H. R. Frey Federal Systems

PLEODEREDER, Erhard IABG, West Germany

REEDY, Ann PRC

RUBY, Jim Hughes Aircraft Co.

SIBLEY, Edgar Alpha Omega Group, Inc.

WESTERMANN, Rob TNO-IBBC, The Netherlands

WILLMAN, Herb Raytheon Company

WREGE, Doug Control Data Corp.

YELOWITZ, Larry Ford Aerospace

2C -11



APPENDIX B
Bibliography of Handouts

I. Point Papers

a. Rationale for a Standard Interface Specification
(SISWG Working Draft)

II. Minutes

a. KITIA Minutes 21-23 February 1983

b. KIT Minutes 25-27 January 1983

III. Documents

a. Ada Package Specification for the Standard Interface Set
15 April 1983 (Draft)

b. KIT Strategy Statement
25 January 1983 (Draft)

d. Ada Programming Support Environment (APSE) Requirements for
Interoperability and Transportability and Design Criteria for
Standard Interface Sets
15 April 1983 (Working Paper)

2C-12



Minutes of the
SIS Drafters Meeting

8-9 March 1983
Waltham, Massachusetts

ATTENDEES: Lcdr. B. Schaar - Ada Joint program Office
Gil Myers - Naval Ocean Systems Center
KIT SIS Drafters

J. Foldl
J. Kramer
T. Taft
R. Thall
W. Wilder

KITIA SIS Drafters

D. Mc Gonagle
H. Williman

Invited guest: S. French

HANDOUTS: Schedule of KITIA SIS ActivitiesCommat for SIS Introduction from P. Oberndorf
KITIA SIS document format outline
Texas Instruments "Virtual Terminal" presentation hardcopy

TUESDAY 8 March 1983

1. Introductory comments by B. Schaar regarding KITIA efforts in the
development of the 513. Reviewed background of KITIA Proposal and the
formulation of the KITIA SIS Working Group.

2. General discussion were conducted regarding:
* Process model and history model
* relational versus hierarchical data structures

(relational type has not been excluded as yet)
* formulated basic S13 inclusion test utilized to date:
1. Can you obtain a reasonable implementation on the AIS?
2. Can you obtain a reasonable implementation on the ALS?
3. Can you obtain a reasonable implementation on a modern

operating system (as reflected by UNIX, VMS, TOPS-20
time-share systems)?

4. Can you obtain a reasonable implementation on a bare machine?
* use of special terms/formats as "reserved" for top level descriptors

such as TOOLS.XXX
* concept of importing/exporting not fully explored
* discussion of RENAME/LINK as required/handy respectively
* implementation expense of inheritable attributes in tree structure
* although database and process control are similar there may be

differences in their control features
* pointer control in NEXT/INDEX functions

3. Presentation by S. French of Texas Instruments regarding their Virtual
Terminals concept. Counterpoint implementation via an extension of TEXT 10
suggested by T. Taft. Discussion revolves around the level of the interTaces

L20-1



that are required in the SIS.

WEDNESDAY, 9 March 1983

4. KITIA SIS Drafters joined the discussions. A review of previous SIS work
and discussion of rationales followed.

* concern with the implication of a file system as the SIS basis
" recommendation the KITIA SIS Drafters designate one ALS and one

AIE expert as future point of contact.
" missing interface points for debugging support, performance

measurement, help, and security
" although a strict hierarchy may be required at this time, this may

not be a firm requirement in the future
* cursors may have to be passed in a package

5. Discussion of the Process model.
* spawn job cannot be fully implemented at this time
* old Text Manager function from Ada LRM be reviewed for inclusion

in next SIS draft
* SIS Utilities may fall under Inter-Tool Communication
e list processing requires further analysis
* set ordering needs examination; ASCII lexigraphical for now
* interrupts provided but not currently available in ALS

6. Discussion of future activities.
" All future SIS meetings to be held in Boston area
* Next SIS Drafters meeting 6-7 April 1983.

7. Meeting adjourned.

2D-2



SECTION 3
It

KIT/KITIA DOCUMENTATION

13-1



I&T Plan

Ada Programming Support Environment
(APSE)

Interoperability and Transportability (I&T)

Management Plan

15 December 1982

for

Ada JOINT PROGRAM OFFICE
The Pentagon

Washington, D.C. 20301

prepared by

NAVAL OCEAN SYSTEMS CENTER
i )271 Catalina Boulevard

San Diego, California 92152

3A-1



I&T Plan

1.0 INTRODUCTION

The Ada Programing Support Environment (APSE) Interoperability and
Transportability (I&T) Plan is presented in this document. The I&T
activities necessary to achieve sharing of tools and data bases between
APSEs are described. Schedules and milestones for these activities are
presented as well as a Work Breakdown Structure (WBS) for accomplishing
them.

These I&T activities are conducted by the Kernel APSE Interface
Team (KIT).

The major responsibilities are:

a. APSE I&T Management
b. APSE I&T Analysis
c. APSE I&T Standards Development
d. APSE I&T Tools Development
e. APSE I&T Coordination with Implementation Efforts

1.1 BACKGROUND

In 1975 the High Order Language Working Group (HOLWG) was formed
under the auspices of the U.S. Department of Defense (DoD) with the
goal of establishing a single high order language for new DoD Embedded
Computer Systems (ECS). The technical requirements for the comon
language were finalized in the Steelman report [1] of June 1978.
International competition was used to select the new common language
design. In 1979 the DoD selected the design developed by Jean Ichblah
and his colleagues at Cll-Honeywell Bull. The language was named Ada
in honor of Augusta Ada Byron (1816-1851), the daughter of Lord Byron
and the first computer programer.

It was realized early in the development process that acceptance of
a comon language and the benefits derived from a comon language could
be increased substantially by the development of an integrated system
of software development and maintenance tools. The requirements for
such an Ada programming environment were stated in the STONEMAN
document [2]. The STONEMAN paints a broad picture of the needs and

[11] Requirements For High Urder Computer Programing Languages: STEELMAN,
DoD, June 1978

[2] Requirements for Ada Programing Support Environments, STONEMAN, DoD,
February 1980

3A-2



Page 2 I&T Plan

identifies the relationships of the parts of an integrated APSE.
STONEMAN identifies the APSE as support for "the development and
maintenance of Ada application software throughout its life cycle".
The APSE is to provide a well-coordinated set of tools with uniform
interfaces to support a programming project throughout its life cycle.
The Initial Operational Capabilities (lOCs) are called Minimal Ada
Programming Support Environments (MAPSEs).

The Army and Air Force have begun separate developments of APSEs.
The Army APSE has been designated the ALS (Ada Language System) and
that of the Air Force, the AIE (Ada Integrated Environment). The Navy
APSE will make maximum use of those Army and Air Force products that
meet Navy requirements and will require the development of only those
additional components required for Navy applications.

The Ada Joint Program Office (AJPU) was formed in December 1980.
The AJPO coordinates all Ada efforts within DoD to ensure their
compatibility with the requirements of other Services and DoD agencies,
to avoid duplicative efforts, and to maximize sharing of resources.
The AJPO is the principal DoO agent for development, support and
distribution of Ada tools and Ada common libraries.

1.2 DEFINITIONS

INTEROPERABILITY: Interoperabllity is the ability of APSEs to
exchange data base objects and their relationships in forms usable by
tools and user programs without conversion. Interoperability is
measured' in the degree to which this exchange can be accomplished
without conversion.

TRANSPURTABILITY: Transportability of an APSE tool is the
ability of the tool to be installed on a different KAPSE; the tool must
perform with the same functionality in both APSEs. Transportability is
measured in the degree to which this fnstallation can be accomplished
without reprogramming. Portability and transferability are commonly
used synonyms.

1.3 OBJECTIVES

The objectives of the APSE I&T effort are:

a. To develop requirements for APSE I&T.

STONEMAN paints a broad picture of the needs and relationships of
the parts of an integrated APSE. Although STONEMAN is being used as

3A-3



IST Plan Page 3

the primary requirements document for APSE development efforts, it does
not provide sufficient detail to assure f&T between APSEs. APSEs built
to accomodate I&T requirements will insure cost savings in the
development of tools. The cost of re-programming tools for different
APSEs will be significantly reduced.

b. To develop guidelines, conventions and standards to be used
to achieve I&T of APSEs.

Guidelines, conventions, and standards describe the means by which
the requirements can be satisfied. It would be premature to develop
steadfast standards during the early part of this APSE I&T effort.
There is little precedent for I&T between programing support
environments of this anticipated magnitude and thus little guidance for
the development of these guidelines, conventions, and standards. The
guidelines, conventions and standards that are developed during this
APSE I&T effort will evolve over a four year period from 1982 to 1985.
These guidelines, conventions, and standards will be presented in
public forums to insure that they are sound and realistic.

c. To develop APSE I&T tools to be integrated into both the AIE
and ALS.

This APSE I&T effort provides for the development of three or more
tools to be integrated into both the AIE and the ALS. These tool
development efforts will help identify interfaces and surface interface
problems associated with I&T between different APSEs. They should also
show how closely the guidelines, conventions and standards developed by
this APSE I&T effort reflect the reality of the AIE and ALS efforts.
But the tools develoed by this APSE I&T effort will not be limited to
this test function. They will also be well documented tools which will
become useful additions to any APSE.

d. To monitor the AIE and ALS development efforts with respect
to APSE I&T.

This APSE I&T effort provides for the monitoring of the AIE and ALS
development efforts. The monitoring will result in recommendations for
resolution of differences between the AIE or the ALS and the evolving
APSE I&T conventions and standards. Interface areas which would
inhibit I&T between the AIE and ALS will also be identified.

AIE and ALS documents will be reviewed and analyzed, and
recommendations will be made. When questions arise that need
resolution and/or clarification with regard to the ALS and AIE

3A-4



Page 4 I&T Plan

development efforts the KIT (see Section 2.3) will rely on the
assistance of Army and Air Force members who are involved in these
efforts.

e. To provide initiative and give a focal point with respect to
APSE I&T.

A focal point is needed for APSE developers and users with regard
to information about I&T. APSE I&T questions arise frequently within
professional societies and user groups. A forum is needed in which
APSE I&T questions can be addressed and discussed and in which APSE I&T
information can be disseminated throughout the Ada commnunity.

The KIT and KITIA (see Sections 2.3 and 2.4) will provide focal
points for the Ada commnunity. Public reports on the results of this
APSE I&T effort will be published every six months. This is in keeping
with the AJPO philosophy of public exposure of all aspects of the AdaI.
program. The KIT and KITIA will also participate in other programs
connected with APSE I&T, including international development efforts,
whenever possible.

f. To develop and implement procedures to determine compliance
of APSE developments with APSE lAT requirements, guidelines,
conventions and standards.

Procedures must be established by which the reconmmendations that
are developed by this APSE I&T effort will be reviewed and implemented
by the AJPO. The procedures that are to be followed should apply not
only to the AlE and ALS development efforts, but also to other APSE
development -efforts. Work on the determination of compliance
procedures wil be pursued in cooperation with the AJPO's Evaluation and
Validation program.

1.4 DOCUMENT ORGANIZATION

Section 1 of this document discusses the purpose and scope of the
I&T Plan, the objectives of the IT effort, and the basic concepts,
definitions, and objectives.

Section 2 discusses the sponsorship, the participating
organizations, the organizational inter-relationships and
responsibilities, and the potential forums for public involvement.

3A-5~



I&T Plan Page 5

The specific tasks to be accomplished in persuit of I&T are covered
in Section 3. These functions are presented in a work breakdown
structure for the project and a schedule of milestones and
deliverables.

Special needs in achieving I&T are discussed in Section 4.

Appendix A contains a glossary of tems and acronyms applicable to
the I&T effort and Appendix B contains a bibliography of AIE documents.
Appendix C contains a bibliography of ALS documents and Appendix 0
contains other APSE related documentation. Appendix E describes the
elements of the I&T Work Breakdown Structure.

3[

.1
~~3A-6 .



Page 6 I&T Plan

2.0 ORGANIZA1ION

Figure 1 shows the participants in the APSE I&T effort. The
following sections provide a brief description of these organizations
and their relationships.

2.1 Ada Joint Program Office

The KIT is an agent of the Ada Joint Program Office (AJPO). The i'
KIT supports the AJPO by performing the activities outlined in this
plan and by providing recommendations and information to the AJPO. The
AJPO makes final decisions in the areas of requirements, policy,
procedures and funding.

2.2 ARMY, AIR FORCE AND NAVY

Currently the Army and Air Force have begun separate developments
of APSEs. In the development of its APSE, the Navy plans to make
maximum use of Army/Air Force products that meet Navy requirements.
The KIT will review of all these APSE developments and identify
critical aspects of the designs where conventions or standard
interfaces and specifications are needed to insure compatibility. It
will be the role of the KIT to interact with, these services and their
respective APSE contractors for information-exchange and consultation.
The contractor for the Army's ALS is SofTech Inc.; the Air Force
contractor for the AIE is Intermetrics Inc.. The Navy contractor has
not been selected yet. Representatives of both the Air Force and Army
APSE development efforts are members of the KIT, and many members of
the Navy's Design Review Group (DRG) serve on the KIT as well.

i

~3A- 7



ICI
(A Q

00J LL

Iwo-
U- LU

0n

V) CD.= w

a4J

ix,
CD 4J

4J
a,

(AL-

LUL

CDC

V)~

3A-8



Page 8 I&T Plan

2.3 KAPSE INTERFACE TEAM (KIT)

The objectives of the KIT are the objectives of the APSE I&T effort
(see Section 1.3). The Navy is responsibile for chairing the KIT. The
membership is composed of the following representatives:

* Naval Ocean Systems Center (NOSC)
0 Naval Sea Systems Command (NAVSEA/PMS-408)
* Naval Electronics Systems Command (NAVELEX)
* Naval Underwater Systems Center (NUSC)
* Naval Surface Weapons Center (NSWC)
* Naval Avionics Center (NAC)
0 Naval Air Development Center (NADC)
* Naval Research Laboratory (NRL)
e Fleet Combat Direction System Support Activity (FCDSSA) - Dam Neck
* Fleet Combat Direction System Support Activity (FCDSSA) - San Diego
* U.S. Air Force - Rome Air Development Center (RADC)
* U.S. Air Force - Air Force Wright Aeronautical Laboratories

(AFWAL)
o U.S. Army - Communications and Electronics Command
o U.S. Air Force - Information Processing Standards for Computers

(USAF-IPSC)
a Johns Hopkins University Applied Physics Laboratory (JHUAPL)
o National Security Agency
0 Canadian National Defense Headquarters

NOSC is the Navy laboratory which provides the KIT chairman. All
other members participate on a volunteer basis, aided as necessary by
the AJPO with funding for such things as travel expenses. New members
will be added to the KIT at the discretion of the AJPO.

Because of the potentially large membership of the KIT, a
management steering committee called the KIT Executive Committee
(KITEC) has been established. It consists of the AJPO sponsor (i.e.,
the AJPO Navy deputy), the KIT chairman, the primary support contractor
(see Section 2.5, and selected other KIT members as determined by the
sponsor and chairman. The KITEC is responsible for the planning and
management of the APSE I&T effort, including maintenance of this plan
and direction of activities in accordance with its tasks and schedules.

In addition, the KIT is divided into various working groups for the
purpose of small group concentration on specific technical areas
affecting I&T. The number, objectives, and memebership of such working
groups may change as KIT needs change.

3A -9



I&T Plan Page 9

2.4 KAPSE INTERFACE TEAM FROM INDUSTRY AND ACADEMIA

The KITIA was formed to compliment the KIT and to generally
contribute a non-DoD perspective to the I&T effort. The KITIA
supplements the activities of the KIT. It assures broad inputs from
software experts and eventual users of APSE's. The KITIA interacts
with the KIT as reviewers, as proposers of APSE I&T requirements,
guidelines, conventions and standards, and as consultants concerning
implementation implications. The team was selected from applicants
representing industry and academia. The following are the members of
the KITIA:

Al pha-Omega Group
Bell Laboratories
Boeing Aerospace
Computer Sciences Corporation
Control Data Corporation
Ford Aerospace
Frey Federal Systems
General Electric
General Research
Georgia Institute of Technology
Gruman Aerospace
Hazel tine
Honeywell
Hughes Aircraft
IBM
Litton
Lockheed
McDonnell Douglas
Norden
PRC
Raytheon
SDC
Teledyne
TNO (The Netherlands)
UK Ada Consortium
Virginia Polytechnic Institute

In addition, the following have been asked to be special associate
members of the team:

IABG (W. Germany)
Massachusetts Computer Associates
Oy Softplan Ab (Finland)
University of California at Irvine

Membership on the team belongs to a company or university, and not
to an individual representing his/her organization. All participation

3A-10



Page 10 I&T Plan

is voluntary, and the members selected have agreed to provide 1/3 of a
man-year plus other support such as travel expenses. The membership of
the KITIA will not be expanded unless an organization withdraws or very
special circumstances apply. The AJPO sponsor and KIT chairman are ex
officio members of the KITIA.

The KITIA elects a chairman and a vice-chairman from amongst its
participants every year. It, too, is organized into working groups who
in turn select their own chairmen. The KITIA chairman and
vice-chairman together with the working group chairmen form the KITIA
management committee.

The KITIA is responsible to the AJPO through the KIT chairman.
Although the KIT has ultimate responsibility for the development of all
products required to meet the I&T objectives, the KITIA participates
directly in the generation and review of such products. In addition,
the KITIA generates its own contributing papers, products, initiatives,
and recommendations to supplement and guide the basic KIT efforts.
This requires close coordination, which is facilitated by ARPANET
communication mechanisms, parallel working group structures, and joint
team meetings.

2.5 SUPPORT CONTRACTORS

Currently there are four contractors that participate on the KIT.
TRW is the primary support contractor, providing general support and
technical initiatives. Texas Instruments and Computer Sciences
Corporation are developing APSE tools in support of the I&T objectives
(see Section 1.3c). One or more additional contractors will develop
additional APSE I&T tools. Mr. Doug Johnson provides overall review
and consultation for the AJPO.

Any of these contractors may also serve as a vice-chairman of a KIT
working group.

2.6 USER GROUPS AND PROFESSIONAL SOCIETIES

It is anticipated that AdaTEC, the JOVIAL-Ada Users Group (JUG),
and Ada Europe will provide valuable contributions to the APSE I&T
effort. The KIT and KITIA have no formal relationship with these
groups; however, the KITEC will use some or all of these groups as
regular forums for the presentation of reports and technical results
and will solicit feedback from their members.

I-
iIi
S[ 3A-II



I&T Plan Page 11

~.I

2.7 STANDARDS ORGANIZATIONS

The American National Standards Institute (ANSI) and the

International Standards Organization (ISO) are standards organizations

which are already involved in establishing the Ada programming language

as a broadly recognized, enforceable standard. It is possible that the

results of this I&T effort will be submitted for such approval by these

organizations as well, to effect the comonality of APSE's deemed

necessary to achieve DoD's life-cycle objectives. The KIT initially

will become familiar with the organizations' standardization procedures

so that future standardization actions can be planned and accomplished

with minimum difficulty. This will include the study of existing

standards which may interact with or guide the development of, APSE I&T

standards.

2.8 LAISON WITH iMPLEMENTATION EFFORTS

A number of implementation efforts have been undertaken by

organizations outside of the DoD. Three of these (the U.K. Ada

Consortium, the West German IABG and U.C. Irvine) are represented on

the KITIA. Others include the European Economic Community, ROLM

Corporation, Western Digital, and Telesoft, just to name a few. The

KIT will keep such organizations informed of its activities and will

consider all feedback received from them.

3A-12

k11



o a
0~!. 0
S

ill

U

S
0
0
I-

3
0

I-
gui. a.'
.6 0

- u1

Lu
0 CJ

0. 0

4
LI~

0a
0

*1
C
4(

0
C 0
* 0a
0
S
U
C
U

U
1.

3A-13



z~3c

I-

4J)

7 lam

3A-14



* 0

0E

00
&ZiN

0 L
is,

cc1

oil-

3A-1



M 30

U.9

I..>

S.L

iti

.

3 -16



0 =

3

IM

a,

300

3A-1



Ox

0a

0-19o~l,

0.-

w o 
t

0 c.

*jIIt 16)

3A-18



.144

44

144

44

3A-1



hT ilan Page

0 ,IPSF !&T M! AN

this section shows the 'dork 2reakdown tructure ,W8S, for the 1&T

effnrt as wel! as the sch'edules and qilestones for the S elements.
Piqures ? thru 7 orov4id ,in 7verviw 'rlr -he PS eements, Figure 5
ornvides a summary if thp r rhdule.

3,t W4ORK qRFAKDOWN sTRUIT!RF

A lisrussin f -he -aior - loments r -he 4BS is presenoed )elow.

etailed tsk lpsrri tiionR - .-ertanod , Appendix .

-.000 aPSF ntorerehilinv 'n rnntabi!ity I&T) anagement

nis 49 '- ',lement :nvers -he jerer9 iar igement tasks required to
iccomolish the 'PDF T )h.iertives. -t -rludes jeneral project jnd

team ganaiempnt, .)rejert )lnnii4 , 1eril ;eetinq 4nd team support ind
-onfi urition lnalempnt.

1000 PSF nteroperahility , rainsportability I&Ti Analysis

-his 4WS element :overs the technical analysis tasks required to
iccompli<h ,he _,PSF '&T Jbjectives. It includes resourcs reviews,
-enuiromonts rAevelooment, and performance of special studies.

)00 ,P E 'ntereperahility Transportability (i&T)

'his R element ,,escrihes the standardization tasks required to
iccomolish the AP E :&T objectives. it includes guidelines and
:onventions oievelopmen, specification development, compliance and
validation n rmulation, standard interface set analysis, and definition
of the standardization process.

4000 PSE :nteronerability & Transportability (I&T) Tools

This wRS element describes the ievelopment of APSE tools that
support the APSE ;&T objectives, it includes planning and acquisition
Of tools, tool development, test and analysis, and maintainence and

lion of developed tools.

Interoperability & Transportability (r&T)

with Implementation Efforts



Page 20 I&T Plan

This WBS element describes the tasks affecting various APSE
development efforts required to support the APSE I&T objectives. It
includes public reviews of the AIE and ALS, development of an initial
Standard Interface Set, I&T analysis of AXE and ALS, and lalson with
other implementations.

I.
•[ 3A-21



I&T Plan Page 21

4.0 PROVISIONS FOR SPECIAL NEEDS

This APSE I&T Plan emphasizes the development of requirements,
conventions and standards. It is unusual in that it is written for a
programming language support environment that is in the development
state. At this point in development it is essential for the KITEC to
provide an I&T forum and act as a focal point for the Ada community,
APSE developers and the DoD. This will provide broad input to the KIT
from which a complete, realistic set of I&T requirements, guidelines,
conventions and standards will be developed that respond to ongoing
APSE development and long term APSE needs.

Normal~y to achieve APSE I&T the APSE itself would be written in
Ada. However, STONEMAN recognizes that nin cases where there is a
large current investment in software projects, written originally in
other languages", provisions and guidelines must be developed that
account for cost effective transitions to Ada environments. In the
development of APSE I&T requirements, conventions, and standards the
KITEC should provide cost benefit analysis with respect to their
recommendations and decisions concerning implementation.

During the initial phase of carrying out this APSE I&T plan the
KITEC will be studying and contributing to the I&T aspects of APSE
developments by the Army and Air Force (ALS and AIE). When the Navy
begins its development of an APSE the KITEC will also concern itself
with the I&T aspects of its design. The KITEC will develop
requirements, conventions, and standards that can be used for
validation testing. In addition APSE development by the private sector
and international development should be addressed. Criteria for
validation testing for all APSE development efforts should be
established. In the future a central agent can perform I&T validation
testing on each APSE. The model for a strong central validation is the
Ada Compiler Validation Facility.

3A-22



APPENDIX A

GLOSSARY

GLOSSARY OF TERMS

AIE Ada Integrated Environment
AJPO Ada Joint Program Office
ALS Ada Language System
ANSI American National Standards Institute
APSE Ada Programming Support Environment
DIANA Descriptive Intermediate Attributed Notation for Ada
DoD Department of Defense
ECS Embedded Computer System
FCDSSA Fleet Combat Direction System Support Activity
GCS Guidelines, Conventions and Standards
HOLWG High Order Language Working Group
IOC Initial Operational Capabilities
ISO International Standards Organization
I&T Interoperability and Transportability
JCL Job Control Language
JHUAPL John Hopkins University Applied Physics Laboratory
JUG JOVIAL and Ada Users Group
KAPSE Kernel Ada Programming Support Environment
KIT KAPSE Interface Team
KITIA KAPSE Interface Team Industry and Academia
KITEC KAPSE Interface Team Executive Committee
MAPSE Minimal Ada Programming Support Environment
MOA Memorandum of Agreement
NAC Naval Avionics Center
NADC Naval Air Development Center
NAVELEX Naval Electronic Systems Command
NAVSEA Naval Sea Systems Command
NOSC Naval Ocean Systems Center
NRL Naval Research Laboratory
NSWC Naval Surface Weapons Center
NUSC Naval Underwater Systems Center
RFP Request For Proposal
WBS Work Breadkdown Structure

3A-23,I



APPENDIX B

AIE DOCUMENTS

APPLICABLE DOCUMENTS

The following documents are important sources of information relevant to
the KIT effort. While the list does not represent a comprehensive
bibliography on the subject of standardization, interoperability and
transportability it does constitute information sources essential to the
project.

AIE Documents
0 AIE Computer Program Development Specification - Part 1, CSC,

March 1981
* AIE Computer Program Development Specification - Part 2, CSC,

March 1981
* AIE System Specification, CSC, March 1981
* Computer Program Development Specification for Ada Integrated

Environment: Ada Compiler Phases - Type B5, Intermetrics, March
1981

* AIE Design Rationale Technical Report, Intermetrics, March 1981
0 Ada Software Environment Computer Program Development

Specification, Texas Instruments, March 1981
* AIE Interim Technical Report, CSC, March 1981
* Ada System Specification for Integrated Environment - Type A,

Intermetrics, March 1981
* Ada Integrated Environment System Specification, Texas

Instruments, March 1981
* Technical Report: Designs of the Ada Integrated Environment,

Texas Instruments, March 1981

3A-24



APPENDIX C

ALS DOCUMENTS

APPLICABLE DOCUMENTS

The following documents are important sources of information
relevant to the KIT effort. While the list does not represent a comprehensive
bibliography on the subject of standardization, interoperability, and
transportability it does constitute information sources essential to the
project.

ALS Documents
0 ALS Specification, Volume 1, SofTech, August 1982
e ALS Specification, Volume 2, SofTech, August 1982
* ALS Bare VAX-11/780 Runtime Support Library - B5 Specification,

SofTech, February 1982
* ALS Vax-11/780 VAX/VMS Runtime Support Library - B5 Specification,

SofTech, February 1982
* ALS KAPSE - B5 Specification, SofTech, February 1982
* ALS VAX-11/780 Linker - B5 Specification, SofTech, February 1982
0 ALS VAX-11/780 Code Generator - B5 Specification, SofTech, January

1982
0 ALS PDP 11/70 UNIX Code Generator, SofTech, February 1982
* ALS PDP 11/70 Assembler, SofTech, February 1982
0 ALS VAX-11/780 Assembler - B5 Specification, SofTech, January 1982
0 ALS PDP-11/70 UNIX Linker - B5 Specification, SofTech,

February 1982
* ALS Bare VAX-11/780 Loader - B 5 Specification,SofTech,

February 1982
• ALS ROLM 1666 Loader - B5 Specification, SofTech, August 1981
* ALS ROLM 16028 Loader - 85 Specification, SofTech, August 1981
* ALS ROLM 1602B Code Generator, SofTech, February 1982
* ALS ROLM 1666 Code Generator, SofTech, February 1982
* MCF Code Generator, SofTech, January 1982
* ALS ROLM 1602B Runtime Support Library - B5 Specification,

SofTech, August 1981
0 ALS ROLM 1602B Assembler - B5 Specification, SofTech, July 1981
0 ALS ROLM Linker - B5 Specification, SofTech, June 1981
a ALS ROLM 1666 Runtime Support Library - B5 Specification,

SofTech,February 1982
* ALS Compiler Machine Independent Section SofTech, February 1982
0 ALS Data Base Manager, SofTech, February 1982
0 ALS Command Language Processor - 85 Specification,SofTech,

February 1982
0 ALS VAX/VMS Symbolic Debugger, SofTech, January 1982

3A-25



Page C-2 ALS DOCUMENTS

* ALS VAX/VMS Frequency Checker, Soflech, March 1982
0 ALS VAX/VMS Timing Analyzer, SofTech, March 19821
* ALS Configuration Management Tools, SofTech, March 1982
* ALS File Administrator, Soflech, January 1982
* ALS Display Tool s, Soflech, February 1982

3A-26



I
!

IAPPENDIX D

OTHER DOCUMENTS

Other Documents

0 * Requirements For High Order Computer Programming Languages:
STEELMAN, DoD, June 1978

* Requirements for Ada Programing Support Environments, STONEMAN,
DoO, February 1980

* Interface Analysis of the Ada Integrated Environment and the Ada
Language System, J.M. Foidl, TRW, October 1982.

- Kernel Ada Programming Support Environment (KAPSE) Interface Team:
Public Report, Volume I, Naval Ocean Systems Center, Technical
Document 509, 1 April 1982.

iI

I
I
I

i 3A-27

U



APPENDIX E

WBS

WORK BREAKDOWN 
STRUCTURE

A discussion of each element in the WBS is presented in the following.

1000 APSE Interoperability & Transportability (I&T) Management

This WBS element covers the general management tasks required to
accomplish the APSE I&T objectives. It includes general project and team
management, project planning, general meeting and team support and
configuration management.

1110 APSE I&T Team Management

This WBS element covers assembly of the original teams, addition of new
members, establishment of working groups, general team coordination, task
assignments, issue resolution and functioning as chairperson at team meetings.

1120 APSE I&T Presentations and Briefings

This WBS element covers preparation and presentation of materials for
delivery to senior Government management, symposia, and professional
conferences such as AdaTEC.

1130 APSE I&T Coordination with Software Technology Initiative

This WBS element covers coordination between the team and the governments
Software Technology Initiative in areas of mutual interest such as
Interoperability and transportability of tools.

1140 APSE I&T Coordination with Standards Conmunity

This WBS element covers interaction with various Standards organizations
to identify the current procedures and methodologies for submission of team
products for standardization.

1150 APSE I&T Contracts

This WBS element covers preparation and monitioring of various contract in
support of the team goals. It includes preparation of task statements, review
of progress, receipt and distribution of deliverables and coordination of
results with ongoing team work.

1200 APSE I&T Planning

-T

3A-28



Page E-2 WBS

This WBS element provides for the planning necessary to follow through and
complete the APST I&T program. It further provides for the updating of the
APSE I&T plan on a yearly basis.

1210 APSE I&T Management Plan

This WBS element covers the preparation, review, and publication of the
APSE Interoperability & Transportability Management Plan. The Plan is
reviewed and published on a yearly basis to reflect the future direction of
the team.

1220 APSE I&T Funding Allocation

This WBS element covers the maintenance and management of government funds
for NOSC and contractor efforts.

1230 APSE I&T Strategy

This WBS element covers the planning and documentation of the overall
strategy to be implemented in achievement of the team goals. It also includes
the incorporation of the strategy into budget resources and team planning.

1300 APSE I&T Administrative Support

This WBS element provides the administrative support necessary in the
implementation of the APSE I&T program.

1310 APSE I&T Meeting Support

This WBS element provides for the technical support required in planning,
preparing, conducting and reporting on formal APSE I&T meetings. It includes
preparation of agendas, discussion copies of papers, attendees lists, general
meeting arrangements and meeting minutes.

1320 APSE I&T Team Support

This WBS element provides for the msintenance, storage and updating of all
documentation and data in the APSE I&T program. It further provides for the
distribution of all data in the APSE I&T program including maintenance of
team address lists and maintenance of the ARPANET team accounts such as
KIT-INFORMATION and KIT-COMMENTS.

1330 APSE I&T Publications

This WBS element provides for the publication and distribution of APSE
I&T documents.

1331 APSE I&T Requirements, Guidelines, Conventions and Standards

This WBS element provides for the generation of draft version through 4

3A-29



WBS Page E-3

final version of Requirements, Guidelines, Conventions and Standards documents
and their introduction into the formal publication process.

1332 APSE I&T Public Reports

This WBS element provides for the collection, preparation, and
distribution of material for the KAPSE Interface Team Public Report. It also 0
includes notification of availability to cognizant organizations and personnel
and maintenance of notification lists.

1340 APSE I&T Correspondence

This WBS element provides for the correspondence via ARPANET and other
comnunication means including physical devices and required facilities to
support timely and effective team communication.

1400 APSE I&T Configuration Management

This WBS element provides for the Configuration Management of all APSE
I&T documents generated and all tools developed in th APSE I&T program.

2000 APSE Interoperability & Transportability (I&T) Analysis

This WBS element covers the technical analysis tasks required to
accomplish the APSE I&T objectives. It includes resourcs reviews,
requirements development, and performance of special studies.

2100 Resource Reviews

This WBS element provides for the review of literature and documentation
applicable to APSE IT requirements. Such literature and documentation will
include subjects such as APSE requirements, specifications, conventions and
guidelines.

2110 Relevant Research

This WBS element provides for identification of research areas relevant to
APSE I&T.

2120 Existing Standards

This WBS element provides for examination and consideration of existing
standards in Identification of relevant areas for APSE I&T.

2200 APSE I&T Requirements Development

This WBS element provides for the identification, development and
documentation of requirements for APSE I&T. .

2210 APSE I&T Definitions and Categories

3A-30]



Page E-4 WBS

This WBS element provides for identification of APSE I&T related
definitions and functional categories for further examination and utilizatfin.
It further provides for organization and documentation of specific categories
into KAPSE Interface Worksheets for APSE I&T application.

2220 APSE I&T Requirements and Design Criteria

This WBS element provides for the development of requirements for APSE
I&T. This WBS element provides for the analysis of APSE I&T Requirements
developed under WBS element 2200. This analysis will be conducted to
determine completeness, traceability, testability, consistency and
feasibility. It also includes examination of other documentation such as the
Operating System Command and Response Language Design Criteria and
consideration of comments provided during public review of team products.

2300 Special Studies

This WBS element provides for any technical analysis or study not
mentioned elsewhere. Specifically Included are studies resulting in methods
for assessing the risk associated with achieving levels of APSE I&T, and cost
benefit analysis that will provide a quantitative means to assist in making
recommendations and decisions concerning implementation. Examples of such
special studies are possible STONEMAN revision, risk and cost assessments, and
workshops to consider command languages or configuration management.

3000 APSE Interoperability & Transportability (I&T) Standards

This WBS element provides for definition, development, publication and
maintenance of APSE I&T Standards. It further defines and documents criteria
to be utilized in establishing compliance to the developed standards.

3100 APSE I&T Guidelines and Conventions Development

This WBS element provides for the development of guidelines, conventions
and standards to be used to achieve I&T of APSE's.

3200 APSE I&T Specification Development

These guidelines, conventions and standards are to be developed from APSE
I&T Requirements.

3300 APSE I&T Compliance

7 This WBS element provides for: the development of procedures to determine
I. compliance of APSE development with APSE I&T specification of requirements,

conventions and standards; the carrying out of these procedures to determine
compliance including review and analysis of test reports.

3310 APSE I&T Compliance Procedures

LThis WBS element provides for definition, formulation, review and

3A-31



WBS Page E-5

V
This WBS element provides for definition, formulation, review and

documentation of procedures to be utilized in compliance validation with APSE
I&T documentation such as the requirements or standard interface set
documents.

3320 APSE I&T Validation Recommendations

This WBS element provides for the identification and documentation of the
recommendation process following validation of compliance with APSE I&T
standards.

3400 APSE I&T Standard Interface Set Analysis

This WBS element provides for analysis of APSE I&T Standard Interface
Sets through experimental environments and public reviews.

3410 Expr-imental Implementation

This WBS element provides for experimental implementation of Standard
Interface Sets in various environments such as the AIE, ALS or other such
environment implementations. It further provides for the identification and
documentation of potential issue areas, successful methodologies employed, and
recommendations for future implementations.

3420 Public Review

This WBS element provides for Public Review of the results of the Standard
Interface Set developments. It further provides for collection, evaluation,
maintenance and processing of submitted comments.

3500 APSE I&T Standardization Process

This WBS element provides for the methodology to be utilized in submission
of APSE l&T products for standardization including format, control, revision,
submissions and documentation.

4000 APSE Interoperability & Transportability (I&T) Tools

This WBS element describes the development of APSE tools that support the
APSE I&T objectives. It includes planning and acquisition of tools, tool
development, test and analysis, and maintainence and modification of developed
tools. It also includes development of interface analysis reports to document
the problems/issues encountered in the tool development process.

4100 APSE I&T Plans and Acquisition

The WBS element provides for the identification of objectives, criteria
and requirements to be used for the selection of approximately three APSE I&T
tools to be integrated into both the AIE and ALS. These tools will be used as

3A-32



Page E-6 WBS

necessary to recommend the three spectific APSE I&T Tools to be developed. It
further provides for making the recommendation, and developing plans for the
development and acquisition of these three tools.

4200 APSE I&T Tool Development

This WBS element provides for the development and acqulsitlonof the three
APSE I&T Tools to be integrated into the AIE and ALS. It further provides for
the monitoring of the APSE I&T Tool development and participation in the APSE
I&T Tool Development review process and the infusion and reporting of the
results of monitoring and reviews.

4300 APSE I&T Tool Test and Analysis

This WBS element provides for the the overseeing of the use of the three
APSE I&T test tools in their integration into the AIE and ALS. It further
provides for the development of guidelines for use of the tools and analysis
of this use.

4400 APSE I&T Tool Maintenance and Modification

This WBS element provides for the maintenance of the APSE I&T Tools after
they are developed and for any modification which may be required for the
following reasons: to correct inadequacies in the first development; to stress
test standards and conventions; and to respond to changing requirements.

5000 APSE Interoperability a Transportability (I&T)
Coordination with Implementation Efforts

This WBS element describes the tasks affecting various APSE development
efforts required to support the APSE I&T objectives. It includes public
reviews of the AIE and ALS, development of an initial Standard Interface Set,
I&T analysis of AIE and ALS, and laison with other implementations.

5100 Public Reviews of AIE and ALS

This WBS element provides for support of public reviews of the AIE and ALS
development efforts including collection, cataloging, maintenance, and
distribution of comments, inclusion of issues in I&T plans, and submission of
recommendations for future I&T considerations.

5200 APSE I&T Initial Standard Interface Set Development

This WBS element provides for the requirements analysis, design,
development, publication, review and revision of an initial standard interface
set for APSE I&T. This initial set will be directed to the AIE and ALS
development efforts. It is intended that subsequent versions will be submitted
for standardization.

5300 AIE and ALS I&T Analysis

3A-33



WBS Page E-7

This WBS element provides for the analysis of the AIE and ALS development
efforts for APSE I&T. The results of this analysis will provide
recommendations for the evolution of the standard interface set.

5310 KIT/KITIA Coordination

This WBS element provides for the coordination between the KIT and the
KITIA to insure continuing progress in the analysis of the AIE and ALS for
APSE I&T.

5320 Analysis and Recommendations

This WBS element provides for the definition of analysis areas of the AIE

ans ALS with respect to I&T and the submission, review, and disposition of
recommendations resulting from these analyses.

5400 Liaison with Other Implementations

This WBS element provides for liaison with other programming support
environment implementation, particularly APSEs, for identification of
potential issue area and/or solutions for consideration in formulation of APSE
I&T strategies, plans, analyses, and recommendations.

3A-34



I
I

I
APSE INTEROPERABILITY

AND
TRANSPORTABILITY IMPLEMENTATION

STRATEGY

JUNE 1983

i Prepared By:

KAPSE
Interface Team

for the
3 Ada® Joint Program Office

I (-, Ads is a Registered Trademark of the Department of Defense, Ada Joint Program Office)

I
3SB-i



I

CONTENTS

1. INTRODUCTION 1.1

2. GOALS AND CONCERNS 2.1

3. STRATEGY DECISIONS AND POLICY RECOMMENDATIONS 3-1

4. SUMMARY 4-1

5. REFERENCES 5.1

APPENDIX A - MOA A.1

APPENDIX B - CONCERNS AND TRADE-OFFS B-1

APPENDIX C - STRATEGY COMPONENTS C-1

3B-2



EXECUTIVE
SUMMARY

This document discusses the goals of the KIT/KITIA effort and
the concerns which have gone into the establishment of a strategy for achieving those goals.
The resulting strategy can be summarized as follows:

1. There shall be one standard set of interfaces. This set shall be the subject
of a formal standardization process within the DoD.

2. The foundation for this standard set shall be an initial set of interface areas t
In which the AlE and ALS are found to be compatible.

3. The standard Interface set shall be incrementally developed by the KIT and
KITIA, resulting in a candidate standard in CY85.

4. Conformance to the standard interface set will be confirmed and enforced by
the use of a validation ,apability.

5. The DoD will maintain the standard set.

6. The standard set will be designed to be evolutionary, and the maintenance
organization will be responsible for establishing a regular review procedure
and a team of qualified reviewers.

7. Transition to the use of the standard set is an important consideration and

will be the responsit"llty of each service. A strategy for public review is a part
of the approach to transition.

3B-3



I.

SECTION 1
INTRODUCTION

1.1 PURPOSE OF THE KIT

The KAPSE Interface Team (KIT) was formed by a Memorandum of Agreement (MOA)

signed by the three services and the Undersecretary of Defense (see Appendix A). Its pur-
pose is to define a standard set of Kernel Ada Programming Support Environment (KAPSE)
interfaces to which all Ada-related tools can be written, thus assuring the ability to share
tools and data bases between conforming Ada Programming Support Environments (APSEs).
This standard set will include inter-tool interfaces at the MAPSE (Minimal APSE) level as
well as the KAPSE-level interfaces which provide basic services. It is especially important
that the three DoD-sponsored APSEs- the Army's Ada Language System (ALS), the Air
Force's Ada Integrated Environment (AlE) and the Navy's ALS/N - support this standard set
of interfaces, thus making tri-service sharing of tools possible.

1.2 PURPOSE OF THIS DOCUMENT

The purpose of this document is to record the decisions that have been made by
the KIT concerning the course of action which it Intends to pursue in defining the required
standard interface set. Many alternatives have been considered, and those decisions which
follow have been based on necessary trade-offs.

1.3 BACKGROUND

The KIT was formed in late 1981 and held its first meeting in January, 1982. At about

the same time a volunteer team consisting of representatives from industry and universities
was also formed. Called the KAPSE Interface Team from Industry and Academia (KITIA),
the purpose of this team is to act as a board of experts in various areas pertinent to the
definition of this set of standard interfaces. This team generates ideas, contributes to
documents, reviews KIT products and generally raises issues which must be considered
in solving this standard interface problem. The KITIA held its first meeting in February, 1982.

One of the first issues raised by the KITIA was the question of DoD policy with
regard to the APSEs which were under construction by the DoD (i.e., the Army's ALS and
the Air Force's ALE). Although the stated goal of the KIT and KITIA was to define a set of
standard interfaces to which all KAPSEs will conform, there was no stated DoD strategy
for achieving that goal. This situation was found to be far too ambiguous and not conducive
to widespread industry cooperation. This document remedies that situation by describing

Ir 3B -4



I

the strategy which the KITIKITIA will pursue and the DoD policy recommendations which,

if adopted, will support the achievement of the stated goals.

1.4 DOCUMENT ORGANIZATION

The remainder of this document is organized into two sections. The first (section

2) discusses the goals which the KIT and KITIA are trying to achieve and the concerns which
must be balanced and traded-off against one another In pursuing those goals. The next sec-

tion (section 3) discusses the components which a strategy statement must cover and states
the strategy decisions which have been made and how they support the goals and concerns
of the effort. Appendix A reproduces the Memorandum of Agreement which led to the crea- .
tion of the KIT and Appendices B and C provide additional detail and rationale concerning

the choices that have been made.

1.5 ACKNOWLEDGMENTS

One of the first products of the KITIA was an informal statement of several op-

tions which the DoD could pursue. These were generated by Tim Lyons of the KITIA and

covered a wide range of alternatives. This paper has been reviewed and discussed exten-
sively by both the KIT and the KITIA, and many individual comments (most notably those
by Dennis Cornhill of the KITIA and Hal Hart of the KIT) have been added to the delibera-

tions. Out of these discussions has evolved the following statement of KIT/KITIA strategy.

The KIT chairman hereby wishes to recognize the important inputs from those who have
contributed to this effort and to extend to them appreciation for their hard work and

persistence.

I
3B-

1.. A.



SECTION 2

GOALS AND CONCERNS

2.1 INTRODUCTION

In establishing a KIT strategy, there are a number of potentially conflicting goals
and concerns which must be considered and weighed against one another before final deci-
sions can be reached. The goals discussed below are those final objectives which are driv-
ing the entire KIT/KITIA effort, and Indeed much of the Ada program as a whole. The con-
cerns which follow are various aspects of how the job can best be accomplished. Each one
alone is desirable to satisfy; taken together, however, their relative benefits and costs must
be considered and compromises reached.

2.2 GOALS

2.2.1 Interoperability and Transportability

Interoperability and transportability (I&T) are the basic goal of the KIT/KITIA effort.
These terms have been defined by the teams as follows:

* Interoperability is the ability of APSEs to exchange data base objects and their
relationships in forms usable by tools and user programs without conversion.
Interoperability is measured in the degree to which this exchange can be ac-
complished without conversion.

* Transportability of an APSE tool is the ability of the tool to be installed on a
different KAPSE; the tool must perform with the same functionality in both
APSEs. Transportability is measured in the degree to which this installation
can be accomplished without reprogramming.

It is generally agreed that 100% I&T is not likely to be achieved and is not a realistic
goal. The real goal of the KIT and KITIA is to make the sharing of tools and data bases suffi-
clently practical and cost-effective for sharing to become the normal mode of operation bet. 
ween the various agencies of the DoD as well as the Industry which supports them.

It is also generally agreed that in order to accomplish I&T the teams must look
beyond just the interfaces which come to be accepted as necessary parts of a KAPSE. In A
particular, the consensus is that MAPSE-level interfaces will be included in the standard
interface set in order to achieve Interoperability.

: 313-6
=m,



2.2.2 A Viable Standard Interface Set

It is the goal of this effort to define a standard set of interfaces for use In transpor-
ting tools and data bases between APSEs. This interface set is to be supported by the KAPSE
and to provide the services required by tools in order to function properly in an APSE.
Therefore, these Interfaces include those required for data base manipulation, process in-
vocation and control and inter-tool data formatting, among others.

it is not sufficient that this effort result in a standard interface set which is technical-
ly sound. In addition, this standard set must be achieved and administered in a way which
is conducive to widespread cooperation and adherence. It is incumbent on the DoD to take
more than just its own interests and concerns into consideration in the development of the
standard set. The willingness of the DoD to do this has been repeatedly demonstrated

throughout the Ada program and is made apparent in this work by the formation of the KITIA
and the release of semi-annual reports for the broadest possible audience to utilize the stan-
dard set and for the body administering It to enforce its use. In the case of this effort, a
viable standard interface set Is one which will facilitate the rehosting of public domain tools,

the moving of environments from a commercial setting to a government one and the building
of Improved environments on government-sponsored K-APSEs. The standard interface set
which Is put forward must accomplish at least the following things in order to succeed:

1. It must provide a full set of services to tool builders.

2. It must provide an Interface which is standard across a wide variety of machines
and operating systems (i.e., It must be machine- and operating system-
Independent).

3. It must be capable of evolving as new equipment, tools and facilities become

available and desirable as components of an APSE.

it must also be possible to devise a test suite which will evaluate the conformance of an
implementation to the standard set.

2.2.3 Reduced Cost

The ultimate goal of much of the Ada program is to reduce the high cost of soft-

ware which the DoD has been experiencing for the last several years. However, there are
both an investment and a maintenance cost involved in order to save money. Various aspects

of these costs will be discussed in the following sections. The important point in general
is that this standard interface set must promote reduction in costs In the long term while
keeping the investment costs for everyone Involved at a reasonable level during its develop-

ment and introduction.

313-7



2.2.3 Reduced Cost

The ultimate goal of much of the Ada program is to reduce the high cost of soft-
ware which the DoD) has been experiencing for the last several years. However, there are
both an investment and a maintenance cost Involved In order to save money. Various aspects
of these costs will be discussed in the following sections. The important point in general
Is that this standard interface set must promote reduction in costs In the long term while
keeping the investment costs for everyone Involved at a reasonable level during Its develop-
ment and introduction.

2.3 CONCERNS AND TRADE-OFFS

The concerns to be considered in pursuing a strategy are given in what follows.
They have been grouped into four general areas: reasonableness, cost-effectiveness, ac-
ceptability and viability.

2.3.1 Reasonableness

Four concerns have been grouped together under the heading of "reasonableness."
They are that the approach take Into account available experience with current APSEs and
other environments, that the approach provide for the Incorporation of innovations, that the
resulting standard set support a broad scope of Interface areas and that the resulting stan-
dard interface set be able to take advantage of technology advances. Each of these con-
cerns Is further defined and Its Implications discussed In Appendix B, section 1.

2.3.2 Cost-effectiveness

Four concerns have been grouped together under the area of "cost-effectiveness."
They are the principle of noninterference with the AlE and ALS on-going developments, the
desire to limit the proliferation of non-standard APSEs, the anticipated ease of maintenance
of and training on conforming APSEs and the desire to keep the cost of Implementation,
maintenance and training required by the standard set low. Each of these concerns is fur-
ther defined and Its Implications discussed In Appendix B, section 2.

2.3.3 Acceptability

Six concerns have been grouped together under the area of acceptability. They are
the desire for broad consensus on the content of the standard, ease of transition from cur-
rent support capabilities to the standard set, the encouragement of communication and shar-
ing between Implementation sub-communities, wide use of the standard set, the promotion
of adherence to the standard set and the ability of the community at large to anticipate the
standard set and therefore cooperate with it. Each of these concerns is further defined and
its implications discussed in Appendix B, section 3.

33-8



2.3.4 Viability

Seven concerns have been grouped under the heading of viability of the standard.
They are that the standard set be controllable, that it promote commonality, that It be evolu-
tionary, that it be extensible, that it achieve I&T, that It be complete and that it be based
on simple, unified concepts. Each of these concerns is further defined and its implications
discussed in Appendix B, section 4.

31-

3B-9



SECTION 3
STRATEGY DECISIONS

AND
POLICY RECOMMENDATIONS

The following sections describe the strategy and policies recommended by the KIT
to the AJPO. They are discussed In terms of the components covered in Appendix C, and
each component is related to the concerns and trade-offs which have been considered in
reaching the decisions.

3.1 STRATEGY COMPONENTS

In order to succeed in this program, it is important that the strategy include the
following components:

* the number of standard Interface sets to be defined
0 the foundation, or starting point, for defining the standard set(s)
0 the approach to implementing the standard set(s)
* the approach to enforcing compliance with the standard set(s)
* the approach to maintenance of the standard set(s)

* the approach to evolution of the standard set(s)
*the approach to transitloning to use of the standard set(s).

The contribution made by each of these components is discussed In Appendix C; the deci-
sions that make up the current strategy are presented in terms of these components in the
following section.

3.2 THE STRATEGY AND POLICY RECOMMENDATIONS

3.2.1 Number of Standard Interface Sets

Although there are a number of concerns (see Appendix B) that argue for more than
one standard Interface set, they lack practicality in the long run. More than one standard
set not only multiplies the effort the DoD) must put Into defining and maintaining the stan-
dard sets, but It also would lead to a situation not unlike that we have today, in which each
service has its own language and support systems. Although such sub community lines need
not be drawn along service lines, their existence anywhere would be contrary to the basic -

313-10



goals of the Ada program in general and the KIT/KITIA effort in particular. One cannot achieve
general I&T if there is more than one (incompatible) foundation on which it is to be based.

Therefore, the KIT recommends to the AJPO a policy that exactly one standard
interface set be established which is to be utilized in all support systems for Ada-related
work which does not receive a waiver. It is also recommended that this standard interface
set be the subject of a standardization process which will result in the establishment of
at least a DoD standard. The strongest argument for this decision lies In the concerns for
non-proliferation of incompatible APSEs, ease of maintenance and training, and keeping
the (long-term) cost of implementation, maintenance and training low. It will also help avoid
the emergence of non-communicating sub-communities and will promote anticipation and
cooperation by making the DoD approach clear. Most of all, it is the best means of obtain-
Ing a controllable standard set, it will definitely promote commonality (as long as other deci-
sions assure that it is a good, workable standard), and it will achieve I&T better than any
other alternative. This decision tends to work against the concerns of a broad range of ex-
perience, innovation, broad scope, allowance for technology advances and non-interference
in the AlE and ALS, but its effect on these can be eased through the decisions made in other
component areas (see below).

3.2.2 Foundation

With so little experience with APSEs available, it is not practical or cost-effective
to start yet another one by defining a standard set of interfaces which bear no resemblance
to any existing ones. Therefore the choices for basis for the standard set lies somehow with
the existing APSEs. It is most logical for a DoD standard to turn to the Dod-sponsored APSEs,
the AlE and/or ALS, taking advantage of others as often as possible. In doing this there ap-
pear to be two basic choices: either adopt one of the AlE or ALS (implying the restriction
of the other) or derive something based on both of them. There are two very unattractive
aspects of the former choice. First of all, it limits what little chank.e there is now of obtain-
ing some real APSE experience and experimentation with Innovations. Each of the AlE and
ALS contracts has strengths and weaknesses not found in the other, so they complement

one another in terms of the discoveries they have to offer. Secondly, it limits the ability to
transition from one of them to the other; even though no major programs have used either
of them as yet, there Is a growing knowledge of them both and a certain Investment of at
least thinking about their use. In addition, the DoD must consider the comparative risk of
making an early decision to use one and curtail the other; having "all the eggs in one basket"
could prove devastating to the Ada program If the chosen one did not, for some reason,
fulfill the needs of the community and resulted In extraordinary delays.

3B-11



I.

The second choice can be approached in more than one way. An attempt could
be made to force the two implementations (i.e., the ALS and the AlE) into agreement in areas
in which they are incompatible. However, this would be difficult and would be a critical viola-
tion of the concern not to interfere in the on-going developments. It would also have many
of the negative effects cited above for the adoption of one and restriction of the other, par-
ticularly eliminating much of the basis of experience and risk reduction. Another approach
would be to discover those areas in the ALS and the AlE interfaces where there is agree-
ment or which are close enough that building agreement has no negative Impact on either
development. This has the positive effect of taking as much advantage as possible of work
that has already been done. It likewise helps eliminate proliferation of incompatible APSEs,
as the emerging standard interface set will presumably have much in common with the ex-
Isting developments and will be made upward compatible with them wherever possible. It
will also help to reduce the costs in the long term by not starting out wholly independently
of what is already known. It will ease the transition from the AlE and ALS to the standard
set and will help to eliminate the emergence of non-communicating sub-communities. An-
ticipation and cooperation will be promoted because developers will be able to perceive
the direction which the DoD is taking. Finally, this approach will promote commonality, star-
ting with the DoD itself, and has the added benef It of being more likely to produce a com-
plete standard set, as it is unlikely that both developments have left major areas uncovered.

The strategy adopted by the KIT, therefore, will be to define the standard set of
Interfaces by first examining those interfaces which are common to the ALS and the AlE
or which can readily be made common. In order to alleviate some of the interference with
these two developments, the set of interfaces will initially be conceived as those which both
existing designs can support on top of the interfaces which actually appear in their respec-
tive KAPSEs. This will allow both developments to continue as planned while supporting
the emerging interface standard. Of course, it is quite likely that interface areas will be
discovered in which agreement between the ALS and AlE is not possible. In such cases,
the KIT and KITIA must decide on a course of action. The decision could be to adopt the
Interface approach of either lie AlE, the ALS or some other emerging non- DoD APSE or
to take an entirely different approach. The latter might especially happen in cases where
the I&T requirements formulated by the KIT and KITIA dictate considerations which were
not of importance to the AlE or ALS. It is also possible for the KIT and KITIA to decide to
deviate from an interface decision even though the AlE and ALS agree on it. This would be
most likely to occur In the situation just mentioned, where I&T requirements differ from those
driving the AlE and ALS developments. Finally, it will be the responsibility of the KIT and
KITIA to examine the resulting interface set for completeness and consistency and to make
any changes that are dictated by such an examination. This strategy is not intended to
guarantee that the final interface set will reflect an AIE/ALS foundation. It only suggests
that the experience of the AlE and ALS developers will provide a reasonable starting point
from which standard interfaces which meet I&T requirements can be evolved.

3B-12



3.2.3 Implementation Approach

In order to capture the interest and cooperation of the Ada/defense community now,

it would be wise for the DoD to establish a set of standard interfaces immediately. On the

other hand, to prematurely move to a fixed standard set could be risky. Since the decision
has been made to establish a single standard set, it is important that this be done in a way
which addresses some of the concerns (see Appendix B) which argued against a single set.

The strategy of the KIT will be to build the standard interface set incrementally.

Starting in early CY83 with the initial interface set common to the ALS and AlE, the KIT and

KITIA will work on evolving this initial set into a final one which will be submitted for establish-
ment as a standard during CY85. This pace will allow the teams to experiment with the in-

terfaces, to consider their completeness and consistency and to gather considerable feed-

back from the community at large. It will be possible to evolve the standard set over a limited

period of time, taking into account emerging APSE experience. This three-year process pro-
vides the best possible compromise between standardization "now" and the desire to define

a "perfect" standard set.

This incremental development will be accomplished within the KIT and KITIA

through the use of a small technical working group whose work is reviewed by the teams'

full membership. Starting from this initial set which is common to the AlE and ALS, the work-
ing group will define first those critical interfaces which are absent from the initial set. This

will be followed by examination of other sections of the initial set to consider those areas

in which the initial AIE/ALS-based compromise will not be satisfactory for long-term I&T.

Finally, the working group will undertake the definition of those additional interfaces which

can be predicted to be of importance in future APSEs.

As with other AJPO activities, the participation of the general public will be sought.

When the KIT and KITIA have defined a set of interfaces on which there is substantial agree-
ment, this set will be published for wide-spread review by all those parties who are interested.

The feedback obtained from this review will be incorporated in the set as appropriate before

its finalization.

3.2.4 Enforcement

Initially the three services will most likely provide their APSEs as government-

furnished material. However, in order to encourage experimentation and innovation, the DoD

policy with respect to the standard is also expected to be that other implementations which

claim to conform to the standard set will be considered for use. This means that the agency
which oversees the standard set must be prepared to validate whether or not a particular

implementation meets that standard. Such a validation capability is unknown today and will

take time to develop, so it Is possible that It would not be ready as soon as the standard

interface set is. It is recommended that AJPO policy include the establishment of such a

3B-13



capability. The means for achieving this and the nature of its application will be left to the
newly-established Evaluation and Validation (E&V) team. Part of the KIT strategy will be to

cooperate closely with those in charge of the E&V effort in order to achieve a viable means
of determining conformance to the standard interface set.

The ability to validate the APSEs built by others is attractive from the viewpoint
of several of the concerns. Its strongest asset is that it will leave room for contractors and
others to innovate and bring new technology advances to APSEs. It will also ease the
maintenance burden, as proposed changes to the standard interface set can be checked
for their impact on compliance with the standard. It certainly will promote adherence to the
standard set. It will make the standard set more controllable and will promote commonali-
ty, as the validation capability will make clear the interpretation of various portions of the
standard. It will also assist the evolution of the standard set, as the validation capability
will be maintained in conjunction with the standard and will always represent the most re-
cent version. Finally, it will help to achieve I&T by providing a true test of standard com-
pliance for both tools and KAPSEs.

3.2.5 Maintenance

The standard interface set will be maintained by the DoD. This maintenance will
include the correction and disambiguation of interface features and documentation as well
as the evolution of the interfaces over time. It will not be the responsibility of the KIT itself
to serve as the maintenance organization, but one will be set up by the AJPO. The respon-
sibility of the KIT with respect to maintenance will be to create a standard set that takes
maintainability into account. The KIT will also document all the ideas it develops which will
affect maintenance and see that they are made available to the organization which has
responsibility for maintenance of the standard.

3.2.6 Evolution

Because a static standard will soon be an obsolete standard, the standard inter-
face set established by the KIT will evolve. This implies that it must be constructed with
evolution in mind and that the agency responsible for its maintenance must have the exper-
tise to deal with evolution. In order to maintain I&T, the evolution must be gradual and must
adhere to the same basic principles upon which the initial interface set is based.

The decision to make the standard set an evolutionary one clearly meets the
arguments in favor of acquiring a broad range of APSE experience, of innovation, of pro-

,* viding a broad scope of interfaces and of taking advantage of technical advances. It also
helps to relieve interference with the AlE and ALS in the near term. It allows for the building
of a broad consensus in favor of the features of the standard set and eases transition. It
will also promote wide use and adherence, since the standara set can change to keep up

i

38-14

-- UN



AD-A141 576 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT 
(KAPSE)

IERFACE TEAM PUBLIC REPORT VOLUME 3(U) NAVAL OCEAN
SEMS CENTER SAN DIEGO CA P OBERNDORF 25 OCT 83

UNCLASSIFIED NOSC/TD-552 AG -3 FIG 9/2 N



r __33____ 2

[25 [4 1.6

* tIN 1 111 11L25I

MICROCOPY RESOLUTION TFST CHART
NATIONAL BUREAU OF STANDARDS- 1963 A



with new demands. It will promote commonality, since users will not be tempted to move
beyond a stagnant standard set. It provides for extension and expansion of the standard
set as well and helps to ensure the completeness of the set.

In order to accomplish this evolution, It Is recommended that the AJPO establish
a review/update schedule as well as criteria and procedures which are modelled after that
used by ANSI to keep its standards current. In this model, a regular schedule for review of
the standard for currency is established. Generally It will be required that changes are com-
patible with previous versions of the standard. Further recommendations for guidelines for
maintenance and evolution will be addressed by the KIT at a later date.

3.2.7 Transition

All three services hav,2 intiounced plans for their movement to Ada, and all three
services are implementing APSEs which will meet their unique needs. Policy concerning
movement of the three services to the interface standard established by the KIT and KITIA
will have to take into account all of the concerns discussed above as well as others. A careful
approach to transition will help limit the proliferation of incompatible APSEs and will ease
maintenance and training burdens as well as costs. It will help eliminate non-communicating
sub-communities if everyone's needs are considered. It will promote wide use and adherence
as long as it is feasible for all groups to move to the standard set and to keep up with it.
A careful transition strategy w(i promote the commonality which is the major goal of the
program.

The first element in this transition is already incorporated In the KITIKITIA plans
in the form of the public reports and the solicitation of public review of the teams' results.
In addition, specific organizations will be requested to provide reviews of the standard in-
terf ace set during CY85. Such requests for public response assist transition to the new Stan-
dard by building the public awareness of and enthusiasm for the emerging standard set.
In addition, the KIT will produce recommendations for further assistance to the transition
process at a later date.

313-15



SECTION 4
SUMMARY

This document has discussed the goals of the KIT/KITIA effort and the concerns
which have gone into the establishment of a strategy for achieving those goals. The resulting
strategy can be summarized as follows:4

1. There shall be one standard set of interfaces. This set shall be the subject
of a formal standardization process within the DoD).

2. The foundation for this standard set shall be an initial set of interface areas
in which the AlE and ALS are found to be compatible.

3. The standard interface set shall be incrementally developed by the KIT and
KITIA, resulting in a candidate standard in CY85.

4. Conformance to the standard interface set will be confirmed and enforced by
the use of a validation capability.

5. The DoD will maintain the standard set.
6. The standard set will be designed to be evolutionary, and the maintenance

organization will be responsible for establishing a regular review procedure
and a team of qualified reviewers.

7. Transition to the use of the standard set is an important consideration and
will be the responsibility of each service. A strategy for public review is a part
of the approach to transition.

33-16



SECTION 5
REFERENCES

1. STONEMAN

3B-17



APPENDIX A
MEMORANDUM OF AGREEMENT AMOUNG N,0

DEPUTY UNDER SECRETARY (AM)
ASSISTANT SECRETARY OF THE ARMY (RD&A)
ASSISTANT SECRETARY OF THE NAVY (RE&S)

AND
ASSISTANT SECRETARY OF THE AIR FORCE (RD&L)

Subject: Ada Programming Support Environment (APSE) Tool Transportability

Reference: Requirements definition for Ada Programming Support Environ-
ment - STONEMAN

1. Purpose

This memorandum is to establish the procedures and working relation ships within
which the Army, Navy and Air Force will cooperate to converge on a set of Ada Programm-
ing Support Enviroment (APSE) interface standards to permit the sharing of tools and other
software between DoD supported APSEs.

2. Objective

The objective of this effort is to establish the necessary interface conventions for
APSE tools, users and data bases to permit the consistent Introduction of new tools into
the software development and maintenance environment and to permit the portability of
tools among different implementations of the Kernel Ada Program Support Environment
(KAPSE).

3. Background

Numerous studies have predicted that the cost of DoD software will continue to
escalate in the 1980s and that the availability of qualified software personnel will be a critical
factor in the development and maintenance of weapon systems. The Ada Program will make
the goal of a common language within DoD a reality. The high level of cooperation amoung
th Military Departments and agencies required to establish this program has generated a
unique opportunity for the DoD to adopt modern software and management practices and
to develop support tools to improve productivity.

3B-18



4. Agreement

We recognize that to realize the full potential of this opportunity, the DoD must
focus its limited resources, including funding and talent, on the development of an Ada Pro-
gramming Support Environment (APSE) which can be shared by all three Military Depart-
ments, so that software tools may be readily transported amoung systems and across Ser-
vice applications. The STONEMAN requirements document defines the concept of a KAPSE.
We agree with the concept of standard tool interfaces to the KAPSE, and a standard for
all other aspects of the KAPSE which are visible to the tools. Although it may be desirable
for the DoD to support different KAPSE designs to reduce risk In the early phases of the
Ada Program, the long term goal is to establish the necessary Interface conventions so that
multiple efforts may converge to a single set of interface standards in the 1985 time frame.

The current KAPSE designs, namely the Army supported Ada Language System

and the Air Force supported Ada Integrated Environment and any other KAPSEs which the
DoD may support in the future will be closely monitored by th Ada Joint Program Office
(AJPO) and a joint Service evaluation team to identify and establish interface conventions.
The evaluation team will be chaired by the Navy. All APSE tools procured by the DoD will
adhere to these conventions. In the event that, for schedule or contractual reasons, one
KAPSE design violates these conventions, or if conventions are established which are not
supported by a previous design decision, that KAPSE will be evolved to conform to these
conventions. This agreement will be implemented through a set of procedures developed
by the AJPO and coordinated by NAVMAT, DARCOM, and AFSC.

5. Duration

The provisions of this memorandum will commence when signed and will remain
in effect until formally rescinded.

(signed 4 Dec 81) (signed 19 Jan 81)

Mark Epsteir William A. Long
Assistant Secretary of Army Deputy Under Secretary of
(Research, Development for Defense
Research and Engineering
Acquisition) (Acquisition Management)

3B-19

w i J



(signed 14 Dec 81)

Melvyn Paisley
Assistant Secretary of Navy
(Research, Engineering and
Systems)

(signed 5 Nov 81) I.'

Martin Chen "
Assistant Secretary of Air Force
(Research, Development and
Logistics)

3B-20



APPENDIX B
CONCERNS AND TRADEOFFS

There are a number of potentially conflicting concerns which must be considered
and weighed against one another before strategy decisions can be reached. The concerns
which are discussed below are various aspects affecting the establishment of a standard
interface set for APSEs. Each one of itself is desirable to achieve; taken together,
however, their relative benefits and costs must be considered and compromises reached.

B.1 REASONABLENESS

B.1.1 Broad Range of Experience

At the time of this writing, the construction of APSEs is a technology with which
the community at large has very limited experience. A few contractors are at various stages
of construction; the Army and Air Force systems have both been designed and most of the
ALS design has been implemented and is undergoing initial test; in addition, several efforts
are underway in Europe. Since the idea of an APSE as put forward in STONEMAN [ref. 1]
is largely unlike any support system which exists for any current language, the entire APSE
effort is breaking new ground. Certainly the construction of KAPSEs and what interfaces
they should support is the newest ground of all.

This concern leads one to conclude that the current efforts should be allowed to
continue unhindered for some period of time. Much use',ul data could be gathered on general
APSE experiments and experiences and (more importantly for the KIT and KITIA) on which
KAPSE interface approaches have proven most satisfactory. Indirectly, information on re-
quirements for I&T could also be gathered and would provide more guidance for a new set
of standard interfaces.

If the time to really conduct such experimental use is not available, this concern
argues for taking the greatest possible advantage of what little experience is available to-
day. This implies close cooperation with the AlE and ALS developers as well as keeping
channels open for information from other developers.

In conclusion, this concern argues for:

- not perturbing the AIEIALS

- taking time to establish the standard.

3B-21

I



B.1 .2 Incorporation of Innovations

Because of the newness of the APSE concept, there is good reason to believe that
there is much room for innovation in meeting the STONEMAN requirements. These innova-
tions cannot be anticipated today, but it is desirable that it be possible to accommodate
them in the future. Like the previous concern, this one argues for taking time to allow some
of these innovations to be realized so that they could be incorporated into the standard set.
Whether or not such time is available, this concern argues for a careful approach to the
level at which the standard set is established. The higher the abstraction level of interface
specified, the more room there will be various KAPSE implementations to incorporate new
innovations.

In conclusion, this concern argues for:

- taking time to establish the standard

- a high level of abstraction in the interfaces.

8.1.3 Broad Scope

This concern refers to the breadth of interface areas which the standard set defines.
This is of interest from two standpoints: that of the interfaces themselves and that of the
tools which are to be ported. From the standpoint of the interfaces themselves, the broader
the scope is, the more effective the standard set will be in achieving its goals. In general,
a standard set which covers every contingency leaves less room for deviation and interpreta-
tion and is therefore more effective in bringing the community into compatibility. From the
standpoint of the tools and data bases to be transported, the broader the scope of the inter-
face set is, the greater will be the number of tools and data bases which can be transported
reliably between conforming KAPSEs. It will be much less likely that a tool can require a
critical interface which will differ between KAPSEs or not be available at all. This concern
also argues for taking greater time in establishing the set of standard interfaces, allowing
the teams to Investigate every interface which is pertinent, in an effort to include them "all."

In conclusion, this concern argues for:

- a large standard interface set
- taking time to establish the standard.

8.1.4 Allowance lfo Technology Advances

It is well known that technology that could affect the implementation of a set of
KAPSE interface standards is moving very rapidly. Of particular interest are advances in
hardware and tool capabilities. It is important that the standard set take such future ad- -

vances into account and allow for them to be incorporated in APSEs as they mature. This

313-22



concern argues for an open-ended set of interfaces which do not rely too heavily on only

what is available today. For example, it is clear that there is a trend today towards distribu-
tion of development support over a network of computers of various sizes; a standard set
which only would operate in the context of one large mainframe computer clearly cannot
rise to meet the future challenge.

In conclusion, this concern argues for:

- an open-ended set of interfaces.

B.2 COST-EFFECTIVENESS

B.2.1 AIE/ALS Non-Interference

The AlE and ALS were under contract before the MOA was initiated or the KIT form-

ed. Neither includes a requirement to support transportability or interoperability with the

other, yet that is now the DoD goal. Any perturbations to the current AlE and ALS plans

will cost the DoD more money and time which it can ill afford. Besides the cost in dollars,

the longer it takes to realize the DoD APSEs, the less chance there will be to gain experience

with them which can contribute to the viability of the standard set which results from this

effort.

Another aspect of non-interference with the AlE and ALS centers around the ease

with which these two different systems can be brought into conformance with the new stan-

dard set. This concern argues for taking maximum advantage of those features which already

appear in common in these two systems or which can be supported without changing the

current designs.

In conclusion, this concern argues for:

- not perturbing the AlE and ALS

- using what the AlE and ALS offer.

B.2.2 Non-Proliferation of Incompatible APSEs

This concern is basic to the Ada program. A proliferation of incompatible APSEs,

each independently requiring the expenditure of time and money to implement the same

tools and capabilities, is unacceptable today. It is the existence of such circumstances to-

day which prompted the DoD move to a common programming language and a common
programming support environment. This concern argues for one standard interface set which

would make the proliferation of non-conforming APSEs impractical and without justifica-

tion from a cost standpoint, and it argues for this standard set to be established early. It

argues for a well-controlled standard set which satisfies a broad range of user needs and

defuses any temptations to build "another one."

3B-23

tt



In conclusion, this concern argues for:

- a single standard interface set

- early publication of the interface set

- a well-controlled standard

- a complete interface set.

8.2.3 Ease of Maintenance and Training

The ease of maintenance and training clearly affects costs. Exactly one complete
standard would necessitate the maintenance of only one for the DoD, but the problem ex-

ceeds just this consideration. There are two aspects: the ease to the DoD and the ease to
the contractor community. Both of these communities are also concerned with maintenance
of implementations and training on both the standard and the implementations. This con-

cern would argue not only for one standard but also for one implementation, probably con-
trolled and maintained by the DoD. This would present the simplest of all maintenance and

training situations for both the DoD and the contractor community. It might also appear to
argue for a minimal standard, under the guise that the less there is to maintain and train
for, the easier it would be. However, a minimal standard would only enlarge the community-
wide problems of maintenance and training, since the variations made possible by the
"minimum" would also have to be maintained and trained for. Therefore, this concern argues

ultimately for a complete standard.

In conclusion this concern argues for:

- a single standard interface set

- a single implementation

- a complete interface set.

8.2.4 Low Cost of Implementation, Maintenance and Training

This concern has two aspects: the short-term and the long-term. In the short-term,

this concern would certainly argue for exactly one standard set and for that set to be minimal;
the fewer interfaces there are, the less cost to implement. In addition, it would argue for
exactly one implementation, simplifying the maintenance and training needed and therefore
reducing the attendant costs.

However, the long-term aspect must also be taken Into account. It involves the costs

to maintain the standard, to implement APSEs which conform to it, to maintain those and
to provide adequate training. It also involves the costs of generating tools which can be
shared because a standard exists which can be effectively used to achieve I&T. The implica-

tions of this longer-term aspect are harder to discern. On the surface, It, like the short-term

38-24



considerations, would also argue for the immediate selection of one standard and the pro-
vision of exactly one Implementation of that standard. However, since any such "final" solu-
tion which we could devise today is very likely to become obsolete very quickly, this con-
cern might in fact argue for taking the time and expending the money now to learn some
things about building APSEs in general and KAPSEs In particular. This attitude assumes
that a greater cost saving would result in the long-term if the time (and money) is taken now
to do the job "right."

In conclusion this concern argues for:

- a single standard interface set

- a single impiementation

- a minimal interface set
- taking time to establish the standard.

0.3 ACCEPTABILITY

0.3.1 Broad Consensus

One means to acceptability of a standard is to acquire the broadest possible com-
munity consensus as to its contents. One way to achieve this is to make the standard just
as similar to existing capabilities as is possible, making it familiar to the community. Another
way is to carry on the decision-making process in a very public manner, soliciting input and
feedback from a wide range of qualified experts and potential users.

Because of the newness of the concept of an APSE and a KAPSE, it is difficult
to discern just how to make the interface standard similar to existing capabilities. However,
this concern would argue for the greatest possible consistency with other existing stan-
dards that are applicable, particularly the standard for the Ada language itself. The extent
to which other operating system-like interface standards and/or projects will be useful is
yet to be determined, but they are being considered by the KIT and KMTA. This concern also
argues for extensive public exposure of the proceedings of the KIT and KITIA and careful
consideration of the feedback which this process generates. Another consideration raised
by this concern is that broad consensus is more easily achieved for a small set of items
than for a large one. This would argue for a minimal standard, covering only those aspects
for which broad agreement is likely.

In conclusion this concern argues for:

- consistency with other standards
- extensive public exposure

- a minimal interface set.

313-25



B.3.2 Ease of Transition

Transition is an issue for both the implementors and the users of the interface stan-
dard. For both, familiarity would be a very attractive trait, although, as noted above, the ex-
tent to which this can be done in the context of a new language and a new support approach
is yet to be determined. Perhaps the only groups that can be realistically considered con-
cerning ease of transition are those few who currently have or are obtaining experience with
APSEs. These would be the builders and users of the ALS and the AlE as well as those few
companies who are embarking on their own implementations of APSEs. To assist these
groups, this concern would argue for the standard to be as compatible as possible with the
on-going ALS and AlE work; it might even argue that the standard should find its founda-
tion in what the ALS and AlE designs have in common. As for the implementors of other
APSEs, this concern argues for their greatest possible involvement in the KIT and KITIA ac-
tivities and the wide-spread publicity of KIT/KITIA products and proceedings.

In conclusion this concern argues for:

- compatibility with the AIE/ALS

- involvement of other APSE developers in KIT/KITIA activities
- extensive public exposure.

8.3.3 Limited Sub-Communities

There are two types of sub-communities. One arises in an application area, and
this type of sub-community is to be encouraged. It is anticipated that part of the evolution
of the APSE toolset will be in the direction of application-specific tools which can then be
shared by all those working in the same or a closely related application area. The other type
of sub-community is that which grows up around a particular implementation of a standard.
It is desirable to keep this to a minimum. The goal in this effort is to make all facilities as
widely available as possible; isolation of users into implementation-specific sub-communities
works against this.

This concern argues for a complete standard, as most possibilities for an
imp lementation-specific sub-community will arise from those areas which a standard neglects
to define.

In conclusion this concern argues for:

-a complete interface set.

8.3.4 Wide Use

This standard must be achieved in such a way that it encourages wide-spread use.
Without that, all other concerns discussed here will have a much smaller impact and the

313-26



Ada program as a whole will not achieve its ultimate goals. Wide use implies that all of the
DoD must be firmly behind the standard and must be willing and able to enforce its use
on various contracts. However, wide use will best be achieved if the standard is sufficiently
attractive; it is always more effective to obtain voluntary cooperation than to have to resort
to coercion.

This concern argues for broad publicity of KIT and KITIA activities and careful con-
sideration of the feedback that is so obtained. It also argues for a standard which is easy

to work with, easy to implement, easy to understand and easy to build on. It should facilitate
the implementation of a wide variety of tools, as well as the sharing of those tools and their
associated data bases.

In conclusion this concern argues for:

- extensive public exposure

- ease of use of the interfaces

- a complete interface set.

B.3.5 Adherence

As with wide use, adherence is something to be encouraged through cooperation,
even though it can be enforced as well. This concern means that implementors will not be
tempted to "almost" follow the standard, adding a few quirks of their own choosing which
would then endanger I&T. This concern argues for a realistic standard, one which has been
checked out to some degree and in which there is reason to have confidence. It must be
implementable and consistent. It must also be sufficient to support the various tools which
will become important in the future growth of APSEs. Although innovation is to be encourag-
ed, it should not be necessary to depart from the standard in a nonevolutionary way in order
to achieve it.

In conclusion this concern argues for:

- a realistic (i.e., checked-out, implementable) interface set

- a complete interface set.

B.3.8 Anticipation and Cooperation

Anticipation is the ability of various DoD and contractor agencies to foresee where
the standardization process is leading and so to be ready with tools and trained people when
It arrives with its implementations. It also implies the ability of the community at large to
evolve with the standard. This concern argues, as do so many others, for broad publicity
and wide-spread community review and participation in the development of the standard
interface set. It also argues for early delineation of the intended DoD policy with regard to

3B-27

'Ii



the development of the standard set and for the earl. ,l possible publication of a strawman
set of interfaces which will become the standard set during the lifetimes of the KIT and KITIA.
Finally, it argues for DoD sensitivity to contractor concerns, particularly with regard to specific
policies on the use of the standard set, the evolution of the standard set and the transition
to the standard set.

In conclusion this concern argues for:

- extensive public exposure

- early publication of the interface set

- establishment of the DoD policy with regard to the interface set.

B.4 VIABILITY

B.4.1 Controllable
This concern means that it must be possible for a governing standards body to

maintain the standard and enforce its use. At the very least, this argues that the standard
must therefore be clearly specified and unambiguous. Controllability also argues for a com-
plete standard; a minimal or otherwise weak standard leaves so much room for variations
that the ability to control that which IS standard becomes meaningless. Finally, this con-
cern argues for the ability to validate the compliance of implementations to the standard.
This enhances enforceability, as does wide-spread education about the standard set and

its applicability.

In conclusion this concern argues for:

- a clearly specified and unambiguous interface set

- a complete interface set

- a validation capability.

8.4.2 Promotion of Commonality

This is in some sense a restatement of the overall KIT/KITIA goal. However, the
mere existence of a standard interface set is not sufficient to achieve commonality. The
standard set must be widely available and accessible, both in itself and in the form of im-
plementations. It must be reasonable, practical and applicable to a wide variety of DoD work.
Clearly it must be implementable. It must be more attractive to various people to use the
standard set than not, and this would be greatly enhanced if it was easier to accomplish
one's business using the standard set than not. Most clearly of all, this concern argues for
the existence of exactly one standard Interface set which is complete enough to achieve
the program's goals while not unnecessarily restricting future progress towards more
sophisticated support environments.

38-28



In conclusion this concern argues for:

- wide availability

- practicality

- implementability

- a single standard interface set

- a complete interface set.
0

B.4.3 Evolutionary

It is a widely-held belief that we are in no position today to establish a "final" set
of interfaces which will suit all our needs for support throughout the lifetime of Ada. Therefore
it is desirable that the standard set be capable of evolving with time and technical advances
in the state-of-the-art in software support environments. This concern argues for a minimal

standard interface set, consisting only of those interfaces of which we could be sure today.
If such a minimal set is not an attractive alternative for other reasons, then this concern
argues for a level of abstraction in the details of the interfaces which is high enough to
facilitate change and/or a generality of the interfaces which allows them to change with
little impact on implementations. Perhaps most strongly this concern argues for a careful
decision-making process now, so as not to unnecessarily bind those areas which are most
likely to change, and for a highly-qualified governing agency for the standard, which can
make well-considered decisions in favor of change.

In conclusion this concern argues for:

- a minimal Interface set

- a high level of abstraction in the interfaces

- qualified government agencies

- care in construction of the interface set.

B.4.4 Extensible

While evolution mainly addresses the ability of existing interfaces to change, ex-
tensibility is concerned with the ability of the user to use the features of the interfaces to
create others. Like evolution, this is made desirable by our inability to anticipate future ad-
vances. This concern argues for a knowledgeable governing agency and also for care in the
construction of the standard set so as to provide extension capabilities.

In conclusion this concern argues for:

- qualified government agencies

- care in construction of the interface set.

3B-29



B.4.5 Expandable

Another aspect of future change is expansion: the ability to add totally new inter-
faces which cannot be provided in terms of existing ones. As with evolution and extension,
this is made desirable by our inability to anticipate future advances. This concern also argues
for a knowledgeable government agency.

In conclusion this concern argues for:

- qualified government agencies.

B.4.6 Achieve I&T

Since this concern is also one of the goals, it seems redundant to mention it.
However, the standard interface set must actually achieve the goal it set out to achieve in
order to be viable. As discussed in section 2.2.2, viability demands completeness, system
independence and evolution. Primarily, this concern argues for care in the construction of
the interface set. Preliminary KIT analysis reveals that every KAPSE interface has a poten-
tial impact on I&T.

In conclusion this concern argues for:

care in construction of the interface set.

B.4.7 Complete

Although several of the foregoing concerns have already been said to argue for
completeness, it has its own stature as a concern. Completeness means not only coverage
of all possible interfaces which will affect I&T, but it also means completeness of specifica-
tion of each of the interfaces which are included. This concern argues for care in the con-
struction of the interfaces as well as wide-spread public participation in the review of the
suggested standard. It also argues for the attempt to define a validation capability for the
standard (as a test of its completeness) and for attempts to "implement" the standard to
ascertain its practicality and Implementability.

In conclusion this concern argues for:

- care in construction of the interface set

- extensive public exposure

- a validation capability

B.4.8 Simple, Unified Concepts

Simple, unified concepts are an important goal of any design effort; in the establish-
ment of a set of standard interfaces, It is especially important. Emphasis on this concern

3B-30



will result in an interface set which displays many of the qualities which foregoing concerns

have shown to be desirable, such as ease of maintenance, broad consensus, adherence and

completeness, to name a few. This concern argues for care in the construction of the inter-

face set and frequent considerations of overall consistency and clarity.

In conclusion this concern argues for:

- care in construction of the interface set.

3B-31



APPENDIX C
STRATEGY COMPONENTS

C.1 Number of Standards

Some of the foregoing concerns would seem to argue that it is premature to
establish a standard in the near future. The technology is changing so rapidly and so little
is understood about APSEs or KAPSEs that it is dangerous to standardize too early. The
argument is that we should watch and wait and learn from the ongoing implementation ef-
forts, then, gathering that experience together, define the interface standard for the next
generation of APSEs. The counter-argument to this Is that we cannot afford to wait. Two
implementations are already underway in the DoD) and many more are likely to be produced
by industry, both here and in Europe, in the next few years. Once any one of these achieves
some use, it will be all the more difficult to control the situation and to make everything
converge to the use of common interfaces. The longer people work to adapt distinct im-
plementations to their needs, the moire diverse the communities will become and the less
likely will we be to ever achieve I&T.

A midway ground would be to establish more than one "standard," thus getting
the current situation under control and paving the way for future convergence. However,
judging by the experience in other related areas, the likelihood of ever achieving all the poten-
tial of l&T by starting with more than one (even If It is only two) standard is small. Once
time and effort have been invested In one system, there is usually too much Inertia to change.

If all of the benefits of commonality are ever to be achieved, there must eventually
be a single standard interface set. To be practical, that set must be defined soon enough
to capture everyone's Interest and attention and to make it possible for conforming implemen-
tations to be developed by the time they are required. Even though this decision is most
conducive to the goals of the Ada program, It leaves little chance for learning from the cur-
rent developments. Without that experience, it behooves the developers of the standard to
proceed with as much care and openness as possible.

C.2 Foundation

Given that something will be standardized, the question Is what Its basis will be.
One possibility Is that either the ALS or the AlE (or both, if more than one standard Is to
be allowed) should provide the foundation. To choose one of them has the advantage of
choosing something that is already on its way into existence, thus speeding up the process
and automatically capturing one of the few groups with any APSE experience to protect.

3B-32



Since the selection of one as the standard implies the discontinuation or at least restric-
tion of the other, It also has the advantage of saving the money which would otherwise have
been spent on the other, or at least reducing it to the level of a research project instead
of a full development. However, neither the ALS nor the AlE was conceived of in the context
of I&T. While choosing one would solve part of the problem, it is likely that some changes
would have to be made to Its Interfaces to accommodate all of the demands of l&T.

Another possibility Is to derive a set of requirements for achieving I&T and then
to proceed to define a set of interfaces which fulfills them. This could be achieved in either
one of two ways. One would be to start out completely fresh, basically ignoring the current
developments, or at least relying on them only for experience, not real foundation. This has
the disadvantages not only of not learning from what little we have experienced with APSEs,
but also of creating yet another candidate for the standard which bears little or no
resemblence to the two existing implementations. This makes transition from the two to
the one more difficult. The other way would be to start out with a set of Interfaces on which
the AlE and the ALS agree and, using that for a starting point, to build a complete interface
set. This has the advantage of creating something whose relationship to the AlE and ALS
is more clear, facilitating transition. It also uses what little knowledge we have already ac-
quired in building APSEs, assuming that if both of the implementations agree on the inter-
face, it must have importance to a KAPSE. The possible disadvantage to this is that insuffi-
cient commonality may exist between the two systems, so that very little of value can be
so defined. Then it will be up to the developers of the standard to augment that which is
common with other interfaces in order to construct a complete set. Depending on how much
can be found to be in common, this situation approaches the first way, since so many of
the interfaces might be new and not bear any resemblance to either the AlE or the ALS.

C.3 Implementation Approach

This component may also be labeled "timeliness." It is concerned with the approach
taken to constructing the Interface set In terms of how soon the standard will be ready. One
possibility Is that no standard will be immediately formulated; instead, as discussed under
the "number of standards" component, the teams could watch and learn from the ongoing
developments and then proceed to define a standard in the late 1980's. Assuming that
something is needed sooner than that In order to avert the chaos of commitments to a wide
variety of Implementations, the alternative of Immediate standardization could be pursued.
This could be achieved either by adopting either the ALS or the AlE (or both, as discussed
above) or by Immediate construction of a third independent set of Interfaces. Such a set,
in either case, could be established by the end of CY83 and be available then for use. This
has the advantage of capturing the community immediately, but runs the risk of doing so
with a set of interfaces which are not carefully considered or practical.

313-33



A compromise alternative would be to start with an initial set of interfaces soon.
These could be derived from either the AlE, the ALS, some combination of them, or in-

dependently. Then two more years could be spent in two activities: enlarging the interface
set incrementally as new areas are considered and testing out the interface set by doing
partial implementations and other experiments. This would have the advantage of enough
time to gather wide public feedback on the way the interface set was developing, while cap-
turing everyone's attention and diminishing the likelihood that they would be tempted to
strike out on their own without a standard.

C.4 Enforcement

One means of enforcing the standard is for the DoD to accept only that work done
using a government-furnished implementation. Then all responsibility for the adherence of
the implementation to the standard lies with the government. As long as some evidence
can be examined to determine that the work was indeed accomplished using the govern-
ment furnished support environment, no further enforcement would be required, other than
the normal ones of informing everyone in the DoD of the requirement and considering the
granting of waivers. However, this also leaves the government with the responsibility for
all innovation and enhancements for APSEs. It would be desirable to take advantage of the
many contributions which the contractor community is likely to make. This implies that it
would be desirable to allow the contractors to implement their own APSEs.

This alternative places the government in a somewhat different position. Now, rather
than guaranteeing that the DoD implementation is sound, the DoD must be prepared to
validate that APSEs submitted to it by various contractors meet the standard. Without such
an ability to validate, the standard would be largely unenforceable; each contractor would
be able to claim compliance, but minor variations are likely to exist due to varying inter-
pretations, and major variations could also exist because the contractor felt compelled to
improve upon the standard. Only through rigorous validation could the DoD hope to control
the standard. The model which could be chosen here might resemble the approach being
taken to the validation of Ada compilers.

C.5 Maintenance

At the very least, the DoD must be responsible for maintaining the standard itself;

depending on other decisions, It could also be responsible for maintaining one or more im-
plementations of that standard. Despite the fact that some maintenance responsibility is
a foregone conclusion, there are decisions to be made regarding such things as who will
be the responsible agency, how Configuration Management will be performed and how
changes will be distributed.

3B-34



C.6 Evolution

It is not necessary that the standard evolve. It could be declared to be complete
and final when it Is first issued and only Implementations be allowed to evolve as long as
that evolution is not In conflict with the standard. On the other hand, It Is expected that
a large number of advances and new Ideas will emerge In the next few years, not only with
respect to APSEs but also with respect to technology In general. It would seem appropriate
to allow the standard to change with these new discoveries. If It does not, it runs the risk
of becoming obsolete and unusable.

If the standard Is to evolve, a strategy must be established regarding how that evolu-
tion is to take place and in what ways the standard will be allowed to change. In order to
maintain l&T, the evolution must be carefully controlled.

C.7 Transition

Transition concerns the means of moving from today's world (including the early
APSE implementations, which will probably not be written to the standard) to the world of
widespread use of standard-conforming APSEs and l&T. Transition Is not a simple matter
of dropping the way one does business one day and taking up a new way the next. It must
be planned and carefully pursued so as not to disrupt the functioning of the DoD or its con-
tractors. Strategies In this area must also be coordinated with general policies concerning
Ada itself.

313-35



KAPSE FILE STRUCTURE

Rudy Krutar
Naval Research Laboratory

BACKGROUND: The KAPSE Interface Team (KIT) is supposed to specify
a standard KAPSE interface to support interoperability and
transportability of APSE software. See appendices A and B for
diagrams illustrating relations among Ada tools and Ada
Programming Support Environments (APSEs).

A KIT working group has proposed A KAPSE file structure based
on UNIX. It specifies a hierarchical file structure with files
designated by full or relative pathnames as in UNIX, except that
components of a pathname are delimited by 's instead of /'s, and
a pathname beginning with two delimiters has a special meaning.
Pathnames are strings and require string operations.

PROBLEM: A frequent transportability problem is that some
programs designate auxiliary files by full pathnames, but the
receiving host has a site-dependent collection of directories; so
the full pathname is not valid on the receiving host.

Another problem with the proposed file structure is that
common operations on pathnames must be programmed in terms of
string manipulations. Such programming is surely implementation
detail, and a violation of widely accepted principles of
information hiding.

SOLUTION: The standard KAPSE file structure is best specified as
a package of operations on file names, which in turn are
specified as a standard Ada type (say, the 'Knode'). Knode
operations should be designed for convenience in developing and
maintaining Ada programs that manipulate files. User convenience
should be supported at a higher level - the APSE file structure.

PURPOSE: The purpose of this document is to suggest an
alternative standard KAPSE file structure to better support
interoperability and transportability.

CONTFNTS: The rest of this document discusses the following
topics in some detail:

1. REQUIREMENTS: general requirements for a KAPSF file structure,

2. CRITFRIA: desirable features of a KAPSE file structure,

3. ALTERNATIVES: broad approaches to file structures,

3C-1



4. FUNCTIONALI-Y: major areas of functionality to be supported by
the KAPSF file structure,

5. ATTRIBUTES: properties or fields that could be maintained for
each K-node,

6. HIERARCHY: how the 'flat' K-nodes form a relational hierarchy.

7. ISSUES: a list of sticky questions about KAPSE files,

8. OPERATIONS: a list of pseudocode calling sequences (most of
which can be coded in Ada) for operations on KAPSE files,

9. CONCLUSION: a summary of recommendations.

Two diagrams are attached as appendices to show relations
between various tools and programing environments:

A. APSE OVERVIEW: a diagram showing how APSE, MAPSE, and KAPSE
cooperate,

B. MAPSE TOOLS: a diagram showing relations between tools in a
Minimal APSE (MAPSE), which would be supported by the
KAPSE,

1. REQUIREMENTS: Any standard KAPSE file structure should satisfy
the following identified requirements:

Transportability - the degree to which an APSE tool can be
installed on a difference APSE without
reprogramming; the tool must perform with the
same functionality in both ASPSs. Commonly
used synonyms are portability and
transferability.

Interoperability - the degree to which APSEs can exchange data
base objects and their relationships in
usable forms without (explicit) conversion.

Habitability - the degree to which desired APSE tools can be
built in in terms a specified interface to a host
without working around it; thas is, how complete
the interface is.

2. CRITERIA: A good standard KAPSE file structure will also
satisfy the following design criteria:

Convenience - Operations that are frequently coded should be
easily coded.

Efficiency - Operations that are frequently executed should be
quickly executed.

Thrift - Structures that are frequently used should not waste
valuable resources.

3. ALTERNATIVFS: A file structure may be flat (as in UNIX I-

3C-2



nodes), hierarchical (as in UNIX directories), relational (as
supported by UNIX wild cards), or distributed (as in GRAPFVINF at
Xerox PARC).

A flat file structure is the simplest and easiest to develop.
Many systems have a high-level file structure built on top of a
flat one, and a relational data base built on top of that.

A hierarchical file structure is common and well understood. 3'

However, hierarchical file structures are often misused by
appropriating the top levels for device selection and accounting,
both of which are site-dependent. 0

A relational file structure could be best for supporting
transportability by use of relative, usage-oriented file names.

A distributed file structure would have files on many
different devices and hosts, better supporting interoperability.

4. FUNCTIONALITY: The following functional areas contribute
toward satisfying various requirements and design criteria:

Security -- The KAPSE file structure should be robust,
protecting projects and programs from both innocent
and malicious damage.

Database Management - The KAPSE file structure shall maintain
the database required for development and
maintenance of project software so that
that database pertaining to the project is
transportable to other KAPSE hosts.

Configuration Management - The MAPSE or KAPSE file structure

should make development and
maintenance of multi-host distributed
software possible and relatively
easy.

Accounting - The KAPSE file structure should provide mechanisms
for collecting management information, such as cost
accounting and activity monitoring.

5. A7TRIBUTES: Let a KAPSE file be designated by a 64-bit key,
which shall be called a 'K-node'. That key may be stashed
anywhere in any form and reconstituted later. The KAPSE shall
not attempt to track all copies of such keys.

Some portion of the 64-bit key will be used as an index in
internal KAPSE and MAPSE tables. The remaining bits will serve
as a check that the key is a valid K-node; 64 bits is enough to
ensure that no K-node need ever be reused. Some file attributes
drd their domains must be standardized for Interoperability and
transportability. Desirable file attributes include the
following, which are grouped by functionality:

For Security:

3C-3



KNODF the 64-bit key; access via any other key is
invalid; this attribute is changed when a K-node
is deleted.

ACCESS who can do what to this KAPSE file: READ, WRITE,
MODIFY, APPEND, EXECUTE, INTERPRET by a given
program, DELETE.

CLASSIF - the military security classification of the KAPSE
file; system-high operation will be necessary;
files with a higher security classification may
not be created. The KAPSE file structure shall 0
not allow classified data to be passed through it
to less classified hosts.

PASSWORD - an encrypted version of the access password for
this file, if any.

CRYPTO - a reference to the public key under which the
file is encrypted, presumably enough for an
authorized person to find the private key that
decodes the file.

CHECKSUM - a standard redundancy check on the content of a
file for quickly deciding that the file has been
corrupted or differs from a file on another host.

For Data Base Management:

WHERE - host-dependent descriptor of where the content of
the file is kept (host, device, pathname,
component, ... );. this may be a rule for
generating the content from other K-nodes.

TYPE - - a descriptor of the Ada type of each record in
the file; some standard record types, such as
character and integer, should be supported
uniformly for interoperability in all KAPSE file
structures. This attribute records the
representation mode of a file; what it is is
recorded as the LANGUAGE attribute.

SYNCH -- synchronization status of the K-node with respect
to concurrent processes accessing the K-node in
read, write, append, and delete modes.

REFS ------ how many copies of the key have been distributed;
K-nodes with no outstanding references may be
deleted. Privately copied keys should not be
returned, until all copies are obsolete.

FXPIRFS -- when the K-node can be deleted peremptorily;
outstanding references become invalid; no key
will ever be reused.

MIGRATE -_ a rule to be applied when the file expires:
simplify it, move it to a cheaper medium, delete
it, etc.

3C -4



PURGE .... a rule for removing unneeded versions of the
file; versions that exist on backup media should
be retained as long as the backup version is
available.

For Configuration Management:

REVISED -- when the content of the file was last modified;

SOURCES - a table mapping names into K-nodes from which the
content of the file can be recreated; if any
source file is newer than the file to be read,
then the file to be read should be recreated.
K-nodes without sources designate primary input
files. A generated file is thereby a file
directory, which models a configuration. A long
document should be composed from sections, and
sections from pages so that listings can be
updated by change pages, but edited as though it
were a single file.

REFRESH - a rule for recreating the content of the file
from its sources.

NEEDS --- a mapping from K-nodes to expected revision
date-times; this entry is updated whenever the
designated file uses a new feature of another
file or stops supporting a feature used by
another file; these mappings will be combined
mechanically when components are combined intoI
subsystems, verifying that the revisions combined
are intended to be combinable.

LANGUAGE - the language of the content of the file: Ada,
Diana, Object, Linda, English, ...; a language
processor will check whether its input file is in
a sublanguage of the expected language.

For Accounting:

OWNER ---- who is responsible for the file; perhaps the main
K-node for which this one is a source, so that
each K-node then has a standard full pathname.

ACCOUNT - which account is to be billed for the file.

SIZE ---- length of the file in bytes.

COST ------ billing rate for the file based on where it is.

6. HIERARCHY: The proposed file structure is hierarchical in that
each K-node may be viewed as a directory of its sources.

A connand library would be a K-node with named sources
referirg to executable programs. A search path would be a K-node
with rumbered sources refering to !onnand libraries.

3C-5

II I - l . . . . r) m , , , . . . , . ... . .. .. .



7. ISSUFS: The following issues need to be resolved for any
standard KAPSE file structure:

a. Does a KAPSE file refer to a particular file content or
to the current version of an evolving file? (The
latter is preferred.)

b. If the previous version of a file is generated from the
current version and a list of differences, then how can
the content of the current version be changed again
without affecting the regeneration of the previous
version. (Use a 'current version' K-node composed from
extant previous versions.)

c. Which file attributes and operations should be supported
directly by the KAPSE? Which should be supported at
higher levels?

d. How does a programmer get sole responsibility for
changing a piece of software for a while? How does he
release revisions of that software? How does that
software get certified, released generally, and
distributed?

e. A sequence of revisions of a file could be represented
by a K-node, which has each revision of the file as a
numbered source. Is this a better approach than having
a PREVIOUS attribute?

f. How can the need for site-dependent file names be
avoided? The problem is a lack of predefined places to
start relative accesses from.

8. OPERATIONS: Let A, B and C be K-nodes. The following
operations shall be supported (the phrases are pseudocode
statements to be encoded as Ada statements):

For Database Management:

C := A-B; compare KAPSE files designated by A and
B; record their differences as a (new)

file of change directives that would
recreate the content of A from the
content of B; set the revision date of C
as the most recent of the revision dates
of A and B. A and B must have the same
record type T; C will have a generated
record type delta(T) and language
'Changes'.

A :: C+B; define A as a new KAPSE file, the content
of which is generated by applying the
change directives in C to the content of
B; use the maximum revision date. If B

has record type T, then C must have
record type delta(T), and A will have
record type T.

For Configuration Management:
3C-6



I
let A >= B; indicate that A depends on a new feature

of B.

let A > B; indicate that A depends on a future
feature of B.

for X in A do SI; refresh each source of A; combine the
NEEDS mappings of the sources of A to
check for compatibility and to obtain a
NEEDS mapping for A; if A is older than

any of its sources, then refresh A from

its sources, and indicate when A was
revised; verify that X is of the record
type of A; generate each record X in the
contents of A, and execute statement S1
accordingly;

let A F(B,C); define A as a new K-node that is
recreated from B and C by applying
language processor F; list B and C as
first and second sources of A; enter
the range of F as the LANGUAGE of A;

A := Knode K; convert 64-bit integer K to type Knode,
as may be required if a K-node key is
stored offline.

Knode K := A; convert K-node A to a 64-bit integer K
for offline storage.

for A: KAPSE do S; generate all valid Knodes A, executing S
for each.

For Hierarchical File Structure:

B := A/NAME; set B to the NAMEd source file for A.

A/NAME := B; indicate that B is the NAMEd source file
for A, where NAME is a string.

A/NAME := C); indicate that A no longer depends on a
NAMEd source file.

for A/NAME=B do S; do statement S for each source file of A
with NAME and B set accordingly.

HOME NODE a constant naming the K-node associated
with the current user; its sources are
the file structures to which that user
has direct access.

THIS-NODE a constant or variable naming the current
focus of attention for the user.

THAT NODE a constant or variable naming an alternate

focus of attention for the user.

1. 3C-7



PROG_NODF a constant naming the K-node of the currently
running program.

LISTNODE a constant naming the file that is being
regenerated by running the current program;
its sources should include the program and
auxiliary files used by it.

ROOT_NODE a constant naming the K-node associated with
the entire file structure.

USFS(A) returns a sequence of K-nodes that name A
as a source.

CONCLUSION: The above discussion has outlined a file structure
that supports configuration management of software during both
development and maintenance. A good standard configuration
management tool built on such a file structure would greatly
enhance the transportability, event the releasability, of
developed software. A systems manager procuring such software
would not have to guess how the software is put together -- its
configuration is part of the file structure.

I recommend that the suggestions in this paper be seriously
considered in terms of where they ought to fit in an APSE, MAPSE,
and KAPSF. Those that best promote transportability and
interoperability should be included in the statnard interface
file structure or data base.

3C-8



A. APSE OVERVIEW: The APSE, MAPSE, and KAPSE cooperate as
indicated in the following diagram, wherein the arrows represent
interface languages:

II

AL Application Languages
V

Software Project-dependent

Abel, ALS, AIE, ... Service-dependent
V

APSE convenient tools

Mabel/Melinda Military standard
V

MAPSE includes standard tools

Linda Standard KAPSE Interface
V

KAPSE standard kernel

SC's,ESR's,... host-dependent
V

Host arbitrary large computers

3C-9

I.



B. MAPSE 'TOLS: The following diagram represents connections
between various standard MAPSE tools, the arrows again represent
interface languages:

Editor human-dependent

T ext an exchange standard
V

Parser Ada-dependent

II

Diana Ada intermediate language
V

Optimizer! optional simplifier

Diane efficient intermediate language
V V

Coder target-dependent code generator

Object target object language
V

Linker component combiner

Program channel-dependent memory map

Loader target-resident relocator

Image executable images
V

!Controllerl target command interpreter

3C-10



'I

A Virtual Terminal Specification and RationaleI
Stewart French
Texas Instruments, Inc.

Abstract

The character-imaging computer terminal, consisting of a displau

device and keyboard, is the most widely used means o f

communicating with computer systems. Even now, with relatively

well developed techniques for device independence, programs tend

to be targeted for either specific character-imaging con.puter

terminals or a very small subset of character-imaging computer

terminals. A complete intermediate-level virtualization of a

character-imaging computer terminal will promote program

transportability, high level terminal abstractions, and maximum

flexibility for a tool writer. If this intermediate-level

virtualization conforms to an existing standard for the device

characteristics of the character-imaging computer terminal (ANSI

X3 64-1979), there will be many advantageous side-effects The

.iirtuai*zation will closely match the functional characteristics

of the conforming character imaging computer terminals, the

virtualization will be more widely accepted, device independence

• can be promoted, and upward-compatibility of the virtualizatior

will more closely follow the upward-compatibility of the

standard

3D-i



Introduction

This document presents a specification and rationale for an

intermediate-level virtualization of character-imaging computer

terminals. The information presented covers six areas an

introduction to virtual terminals and device independence, a

multi-class and multi-level approach to characterizing existing

computer terminals; a four layer approach to terminal

virtualization, an introduction to computer term.nai

standardization efforts; and, conclusions.

A virtual terminal is "a conceptual terminal which is definec as

a standard for the purpose of uniform handling of a variet y of

* actual terminals" rDAV79] There are four goals that snola be

addressed in specifying a virtual terminal A virtual terninal

should enhance transportability of programs that perform

computer/terminal interactioni provide a common interface for

terminals produced by a wide variety of manufacturers, provide

the tool developer with an extensive set of interactive terminal

control functions; and, provide the virtualiiation at a level

that supports many different models of computer/terminal

interacti on.

3D-2



t

An Intermediate Level Virtual Terminal Rationale

The virtual terminal can be defined at many levels The low

level virtual terminal presents the tool writer with a model of

the computer terminal that supports direct manipulation of the

terminal hardware. An intermediate level virtual terminal

presents the tool writer with a model of the computer terminal

that closely resembles the functional characteristics of the

terminal hardware The highest level virtual terminal presents

the tool wr iter with a model which hides the functional

characteristics of the terminal hardware

A virtual terminal at the low level provides a tool writer with

mag 1,um flexibility An example of a low level model is tne

actual device interface presented to the tool writer from a

modern operating system but the tool writer must completely

define his own model of the computer terminal with each tocl he

writes With many tool writers (alas, even with the same tool

writer), many different terminal models at all levels of

sophistication could then exist. This would promote confusion.

Also, the flexibility gained at this level allows a tool w riter

to indiscriminantls use facilities of one terminal that may not

be available at any other terminal, even with simulation. This

promotes undesirable device dependence

3D-3



A virtual terminal at a high level imposes a model on the tool

writer An example of a high level model is the concept of

equating a phyjsical terminal to a text file and using text file

1/0 techniques to address and control it. This model tends to

hide the functional characteristics of the terminal hardware. it

promotes device independence and generallyj provides a clean

interface with the terminal. The disadvantages of this level are

twofold First, the tool writer mayj wish to define a different

model of the computer terminal than the one with which h~e is

presented. H-e would have to define the new model in terms of the

original model that itself does not model the terminal hardware

Even modeling the terminal hardware is awkward. The tool writer

must model the terminal hardware in terms of the existing model

tohat hides the hardware. Second the ability to integrate n~ew1

terminal hardware into the existing model promises to be very

d if f icult

An intermediate level virtual terminal that presents the tool

writer with a model of a functionally~ advanced hardware

definition of a character-imaging computer terminal permits great

flexibility~ for the tool writer while maintaining a level of -

abstraction An example of an intermediate level model is an

abstract representation of the functiontalityj found in most

advanced computer terminals. Since the virtual terminal models

the advanced computer terminal, those functions supported in the -

30:-4 .



I terminal hardware are available to the tool writer directly.

Those functions not directly supported in the terminal hardware

can be simulated within the virtual terminal. This will be

discussed later. The tool writer could then define his own high-

level abstract model in terms of this intermediate-level abstract

model Through a proper choice of the intermediate-level

interface, the virtual terminal could model most of the terminals

on the market todayj and provide upward-compatibility fcr new

h ardware

3D- 5



Device Independence

Device Independence techniques. Device independence is

typically achieved by assuming some standard device and mapping

existing devices into the standard. There are essentially three

choices for the standard device: the simple device, the complex

device, and some device of intermediate complexity.

The simple device is typically the easiest to implement and

manipulate An example of a simple device is a printing

terminal The major problem with the simple approach is that it

does not address the advanced features of the computer terminals

on the market. A user who pUT'chases a computer terminal with

advanced features will reasonably expect to be able to use some

of the,.

The intermediate complexity device has essentially the same

advantaoes and problems. An example of an intermediate

complexity device is a 2-dimensional display device with direct

cursor addressibility. It is reasonably easy to implement and

manipulate but does not provide the support for the advanced

computer terminals on the market. This level would be the most

frustrating to work with. A tool writer would begin to get a

3D-6



f lavor of what he wanted to do but mayj not be ab le to completelyi

11get at" the features he needs.

The complex device has an interesting set of advantages and

disadvantages. An example of a complex device would be an ANSI

compatible computer terminal with advanced functions such as

graphic rendition (highlighting, blinking, etc), insert line,

delete character, etc. The complex device would have a robust

set of operations available. A tool writer would be presented

with a very complete set of procedures and functions from which

to choose to accomplish his goal. He would be able to take

advantage of manyj features available on the most complex computer

terminals on the market. The complex device would be the most

difficult to implement and manipulate. If a user did not have a

computer terminal that supported the operations defined in the

complex device, it would be left to the device driver or some

simulation level of software to sustain the my~th that he did have

such a device.

Although the complex device requires some level of simulation to

achieve the advanced features on simple terminals, it appears to

be the most advantageous approach. Computer terminals are now

reaching the market that incorporate manyj advanced features. The

terminal manufacturers are beginning to incorporate the concepts

and functionality~ defined in the ANSI standard X3.64. To conform

3D-7



to the ANSI standard has very worthwhile effects. It helps

formulate the model as a complex device that promotes device

independence in character-imaging computer terminals. The

conforming computer terminals appear much the same fro., one

manufacturer to another in terms of their operations.

Device Independence in Existing Applications. Four concepts

concerning device independence that are applicable to character-

imaging computer terminals are presented in this section. The

concept of layered communication is derived from the field of

corripLter networking [DAV79]. The concept of the termrinal

capabilities database was developed by Bell Labs f or the UN.IX

operating system [UNIX is a registered trademark of Bell Labs] to

promote computer terminal device independence 1JOY61]. Two

concepts are derived from the field of computer graphics: The

concept of levels and classes of support EC0R793, and the co-.cept

o4 "bundling" attributes [@KS82].

A two level approach to device independence has evolved out of

necessity in the field of computer networking. A computer

terminal communicates with a local controlling intelligence to

perform human/computer interactions. The local intelligence then

communicates with the remote host in a standard way to transfer

the data the terminal user produced or requested. In this

manner, regardless of the actual terminal connected to the local

3D-8



intelligence, the remote host sees all terminals essentiallu the

same way- It is up to the local intelligence to make use of tme

features available on the computer terminal. [DAV79]

Bell Labs' UNIX operating system provides the tool writer with a

database containing information on many terminals currently on

the market- Using the database, a tool can be made device

independent to a certain degree. Of course, if a tool writer

makes use of a facility of his terminal that is not supported on

another terminal, it is up to the tool writer's software to

s iulate that facility or not proceed with the execution c; tne

progra. [JOYS1

The field of computer graphics probably has the most difficult

task in trying to achieve device independence. There are many

different kinds of graphic devices for both input and output

There are two widely accepted proposed standards for computer

graphic devices: the ACM CORE standard [COR79 , and the ISO

Graphical Kernel System (GKS) [GKS623. This terfina,

virtualization does not encompass computer graphics devices; such

material is available in the references, The two important

deriveo concepts that are applied to this virtualization are

the concept of levels and classes of support from the CORE and

the concept of "bundling" attributes from the GKS.

3D-9



The GKS standard has defined a method that combines graphic

attributes such as color, line width, dashed representation, etc

These attribute combinations are called bundles. For example, a 0

program which draws a line on the display could specify a bundle

number of 1. This line drawn on one display device would have a 1

particular representation (such as dotted and red). On another

display device the line would perhaps have a different

representation (such as solid, thin, and black) Regardless of

the eventual representation the same program would execute on

either graphics display device. Since the program only specifies

the bundle numbers and not the actual representation, it is left

to something other than the program to determine the actual

representations the user would see at his graphic display acv'jce

The COPE system has a complex set of levels for input, oui.put,

and dimension. In order for a given device to provide support

for a given set of levels of input, output, and dimension, the

device must implement all of the features defined in that

combination of levels using any of the following: direct

hardware support; hardware simulation support; or software

simulation support. It must also implement no features found at

higher levels (even if the hardware itself supports it directly).

3D-l10



The Virtual Terminal Classes and Levels

To apply the concepts presented above, the terminals are diviaed

into different classes based on their operations and

characteristics. A class identifies a set of operations and

characteristics that may or may not intersect another classes'

set of operations. Each class is subdivided into levels of

support Increasing levels within classes identify additional

functionality of the terminals in that class. A level that is

said to be above another level within the same class is a

superset of the lower level.

The nun-ber of classes should be small to incorporate as mar,

cei2ferent terminals as possible into each class. This increases

the amount of simulated functionality for those terminals tnat do

not support every function in its class and increases

transport abi I i ty

A terminal that appears in a particular class and level must

support all of the functionality (and pnlu the functionality)

deofined in that class.

*, 3D-Il



There are three obvious classifications: the scroll mode

terminal, the page mode terminal, and the form mode terrminal

These are numbered 0, 1. and 2.

do

The scroll mode terminal encompasses those terminals that operate

like hardcopy terminals. That is, when a carriage return (or any

terminator) is typed the terminal scrolls one line upward The

functionality of this terminal class is severely limited and

therefore, is the simplest of the terminal classes.

The page mode terminal encompasses those terminals that have a

two-dimensional display screen that can be directly addressed and

may or mau not have any local intelligence (i.e. VT100, Concept-

100.. Visual-50). This class of terminal, encompasses 75 peTcer:z

of the terminals on the market today.

Ths form mode terminal encompasses those terminals that have for i,

fill-in capabilities (i. e. IBM 3278). That is, the application

PTog-am presents the user with a form to fill in on his display

screen The user fills in the form by interacting with the local

intelligence and transmits the data to the host tnrougr some

special keystroke(s) (i.e. ENTER key).

Three levels within each class are defined-- A. Bo and C. Level

A is composed of those functions within the class that are well

30-12



defined and required for a computer terminal to resi de inr that

c lass, Level1 B is composed of those functions within the class

that are well defined and not required for a computer terminal to

reside in that class (advanced functions). Level C is composed A

of functions that are not well defined and not required for a

computer terminal to reside in that class. Level C is meant for

special functions that are standardized within a particular

installation or organization.

If a computer terminal is in a particular class and level it must

su~pport e-verj function defined in that class and level. For

those terminals that do not directly support all of the functions

defined, there must be some hardware or software simulation of

those unsupported functions. If a computer terminal cannot be

made to support all of the functions in a class then that

terminal cannot be a member of that class and/or level.

3D.1



The Virtual Terminal Layered Structure

Figure I presents a four layer approach to the terminal

virtualization. The four layers are the user layer, tne

simulation layer, the translator/driver layer, ard tne physical

terminal.

------------------------------------------------------------

Procedure/function
calls

User Layer

Simulation Layer

; __ _ : : generic character codes

Terminal
* Capabilities : Translator/Driver
* File ..... >:F l

specific character codes

* I Physical
Terminal

Figure 1 A Four Layer Approach to Terminal Virtualization

3D-14



The user layer contains the interface that the tool writer sees

This includes all the functions, procedures, abstract types, and

exceptions. At this level of the model the functionality of trne

complex computer terminal is visible.

The simulation layer supplies the software simulation to create

those functions that the physical terminal does not suppoTt out

of those functions that the physical terminal does support. The

simulation layer is written in a high level language (such as ADA

or PASCAL) to support changes and additions as required.

The translator/driver layer provides the mapping from device

independent generic character codes into device spEcific

character codes This layer incorporates a variation of the UNIX

terminal capabilities database which is used to define the

f:app j ng

The physical terminal layer contains the actual physical

terminal. It should be noted that only the translator/driver

layer has any knowledge of the exact type of terminal that

exists. The simulation layer only knows that specific functions

are not available and must be simulated using other generic

functions. The user layer only knows that the terminal is of a

particular class and level

3D-15



The generic character codes that are produced out of the

simulation layer conform to ANSI standard X3.64 fANS79]. As

computer terminal manufacturers begin to conform to the standard,

the tTanslator/driver and the simulation layer will have less and

less to do. And, since the ANSI standard has upward

compatibility built into it, the entire four layer approach has

the same degree of upward compatibility.

II

3D-16



I

Terminai Standardization Efforts

There are two important terminal standardization efforts of

interest the draft standard ISO/DIS 6429. 2-1982 [ISO82] and,

the accepted standard ANSI X3. 64-1979 EANS793. The ISO standard

Was first proposed as a draft in 1975. It was developed as a

snthesis of ANSI X3. 64 and ECMA-48 "Additional Controls for

Character-Imaging I/O Devices. The ISO standard is a superset

of the ANSI standard including additional standaraization in the

areas of graphic rendition, modes, typographic size selection,

and modal interactions. Related standards include [ANS733

[ANr74] [ANS77].

30-17



ANSI X3.64

It is natural to use the functionality defined in the accepted

standard as the complex model of a character-imaging computer

terminal. Acceptance is guaranteed by those that accept the

standard and wish an intermediate-level virtualization of

computer terminal s.

ANSI X3 64 "defines a set of encoded control functions to

facilitate data interchange with two-dimensional character-

-.Aoing input-output devices" CANS79]. These control functions

may be used in either a 7-bit or 8-bit environment following the

code structure deiined in [ANS74]. The purpose of X3. 64 is to

provide a set of control functions to accomodate the foreseeable

needs in a variety of information interchange applications:

interactive terminals of the cathode ray tube type, interactive

terminals of the printer type, line printers, microfilm printers,

software usage, form filling, composition imaging, word

processing. input-output devices with auxiliary devices, ano

buffered and non-buffered devices. In the creation of a virtual

terminal we are interested in only the interactive terminals ano

form filling terminals. Perhaps this is too limiting, however.

it does produce a nice symmetry and limits the scope a great

deal. And, since the virtual terminal does conform completely

3D-18



with the standard, inclusion of other control functions is easily

accomplished.

.1

3D-19



The Supported Functions

This section presents the functions that the tool writer car use

and that form the intermediate-level computer terminal model.

Table 1 presents those operations that are well defined and

required for a terminal to be classified a class 0 terminal.

Table 2 presents additional operations for class 0 terminals,

well defined and not required. Table 3 presents those operations

that are well defkned and required for a terminal to to be

classified a class 1 terminal. This class supports most of the

terminals on the market today. Table 4 presents aoditional

operations that are well defined and not required, supporting

class I terminals. Table 5 presents well defined and required

operations for a terminal to be classified a class 2 term.inal.

The semantics of each of these operations is defined somewhat in

the ANSI and ISO standards. It is beyond the scope of this paper

to give a complete semantic meaning of each of them

There are no additional operations identified for the class 2

terminal. This will probably change as more data is gathered.

Also, note that there are no entries for level c in any class.

This is intentional, as this level is reserved for installation

eutensions.

3D-20



Certainly other classes are possible, they must simply be

i dentified

Table 1 Class Oa - Scroll Mode Support

read _line
write_line
update
open

* close
set
reset
ketboard_actionmode
control-representation _mode

Table 2 Class Ob - Additional Functions for Scroll Terminals

read_character
rri te_character
select__qrap;'ic rendition
cursorhorizontal absolute
cursor horizontaltab
cursortabcontrol

3D-21

{



Table 3 Class la -Page Terminal SuPPOrt

selectgraphic _rendition select-editing_.extent
cursor-horizontal_absolute edit in _display
cursor -next _ line@ edit_In _line
cursor-backward passthrough-asis

* cursor -down redrawdi splay
* cur sor- _orward
*cur sorpos it ion
* cursorup
delete character
delete __line

* erase-characterr
erase_ in display

* erase in line
* insert _line

insert _character
read _character

* read _line
* road-_string

read _display
* write character

Ur rI t e line
* wr ite_ s tr in g
* T wi te_d is pIa y
* update
* open

ClO%*
set
reset

* keyboardaction-mode
* control_.representation mode
* insertion_replacment mode
* status report ingtran";fermode

orasuremode
* vertical cdi ting~mode
* hofizontal -editingmpode

editingboundary~modo
send-receive-mode
dyjnamic.updatoemodt
1 in9_fovd.newlinemode

gotdevicoecharecteristics
pleasreport~status
pleaseriport~c urrentposit ion

3D-22



Table 4 Class lb - Additional Functions for Page Terminal Support

cursor backtab
cursor -hori zontal-tab
cursor 7tab-_control

erase_in -area
define~qualified-area

accept -all-input
accept -noinputand_do-nottransmit
accept~araphics
accept-numerics
accep t aiphabetic s
r ight justif y in_area
zero -fill _in-are ahorizontal _ tab stopatstart -of -area
accept-no~input -but-select-for-transmission
spacef fil _in _area

read _area
urr ite-area
set
reset

guarded -area -transfer _ mode
miultiplearea transfer mode
transfer-termination-mode
selected area transfer mode
ed it irgb oundaru _mode

select _ ediLting extent
edit...in-qualified _area

313-23



Table 5 Class 2a -Form Terminal Support

erase-in-di splayj
* erase in area
define~qualified-area

accept -a]] input
ac cept tno~inp ut and do iot transmit 1
acceptjgraphics

* accept -numerics
* accept -alphabetics
* riqht justify in area

* horizontal _tab-stopatstart-of-area
* accept -no input but select-for-transmission

space _fill _in _area
* reac area

r wi t e area
redraw ~display

* update
* open~

close
* set
* reset

* guarded aree transfer mode
kei~board action mode
status report ing transfer mode

* erasure-mode
* multiplearee _transfervmode

trans feorterminat ion-mode
* selec ted-area transfer-mode
* dyriamic~update-mao

* reset-to-initial-state
* getdev icecharacterist ics
* p1 ease~roportstatus
*please_reportcurrentjposit ion

passthroughasis

3D-24



Future Directions

Testing out the model presented with real application programmers

and tool writers is the direction in which this model will

proceed. This will hopefully answer the questions concerning the

model. Is it complete enough? Is it too robust?' Where are the

deficiencies? It will then be necessary to adjust the operations

within the classes to more accurately reflect terminals"

capab i lit ies.

In the long term, attempts will be made to define new classes to

cover terminals that are just beginning to emerge on the market.

These terminals begin to approach the functionality of displays

found on such workstations as the Apple LISA, Xerox Star, and

Smalltalk. Also, support will probably need to be provided fer

the most simple terminal-like device. An example is an

applications in which a device that is not a computer terminal is

connected into the physical terminal layer. This could be a

hardware debug device or a networking device that needs a

completely different model than that presented here. There will

be a need to incorporate more operations defined in the ANSI

standard as the terminal manufacturers begin incorporating them

into their terminals. Along the same lines, consideration should

be given to incorporating some of the ISO standard into the

3D-25It



model. Consideration should also be given to the now proposed

teletext and videotex standards.

3D -26



Conclusions

Character-imaging computer terminals are complex devices that

need to treated as such. This paper presents a virtualization of

t.ese types of devices to enhance transportability of programs

that perform computer/terminal interaction, to provide a common

interface for terminals produced by a wide variety of

manufacturers, to provide the tool developer with an extensive

set of interactive terminal control functions, and to provide the

virtualizatiorn at a level that supports many different moaels of

computer/terminal interaction.

3D-27



References

CANS73] American National Standards Institute, "Amer i c a n

National Standard Graphic Representation of the

Control Characters of American National Standard

Code for Information Interchange (ANSI Standard

X3.32-1973)," July 1973.

[ANS74] American National Standards Institute, "American

National Standard Code Extension Techniques for Use

with the 7-Bit Coded Character Set of American

National Standard Code for Information Interchange

(ANSI Standard X3.41-1974)," May 1974.

CANS77] American National Standards Institute, American

National Standard Code for Information Interchange

(ANSI Standard X3. 4-1977), " June 1977.

EANS79] American National Standards Institute, "American

National Standard Additional Controls for Use with

American National Standard Code for Information

Interchange (ANSI Standard X3. 64-1979)," July 1975-.

EBOS833 Bos,. J. "Whither Device Independence in

Interactive Graphics," International Journal of

3D-28



Man-Machine Studies, No 18, 1983, pp 89-99

[COR793 "CORE-Status Report of the Graphical Standard

Planning Committee," Computer Graphics (Siggraph-

ACM), 1979.

[COXZ3] Cox, F., "KAPSE Support for Program/Terminal

Interaction," Working Paper for KITIA/Working Group

1. Feb 1983.

[DAV79] Davies, D. , et. al. , "Computer Networks and their

Protocols, " John Wiley and Sons, NY, 1979.

CGKS,S2] Draft International Standard ISO/DIS, Information

Processing, ISO/TC97/SC5/WG2 N117 X3H3/8e2-IC,

"Graphical Kernel System (GKS), Functional

Description," 1982, pp 55, 56.

[GPE8J Greninger, L and Roberts, R , "Considerations fcr

a Logical Virtual Terminal Interface," Proceedingi,

Distributed Computing, CompCon, Fall 1gO, pp 3z-

40.

[ISO8'] International Standards Organization, Standard

number: ISO DP 6429, "Additional Control Functions

for Character Imaging Devices (Draft), " Not

approved. April 1982

3D-29



[JOYS1] Joy, W. and Horton, M. "TERMCAP," LNIX

Programmer's Manual, Seventh Edition, Berkeley

release 4. 1, June 1981.

EMAG793 Magnee, F. , et. al., "A Survey of Terminal

Protocols, " Computer Networks 3, 1979, pp 299-314

ESCH7B] Schicker, P. and Duenki, A., "The virtual Terminal

Definition,"Computer Networks 2, 1976, pp 429-441

[TAJ79] Tajima, T. and Katsuyama, Y. "Layered ard

Parametric Approach to Terminal Virtualization,"

Conference Record, International Conference cn

Communications, Volume 2. Boston, MA, June 10-14,

1979, pp 22 6.1-22.6.-6.

3D-30



PROGRAM INVOCATION AND CONTROL
KITIA INTERIM TECHNICAL NOTE

Anthony Gargaro
Computer Sciences Corporation

This interim technical note refines concepts previously presented in a

paper [1] on the program invocation and control interface of the Kernel Ada[*]

Programming Support Environment (KAPSE), and reflects ongoing working group

participation in support of the following KITIA charter activities [2]:

- further definition of Stoneman [24]

- study of Interoperability and Transportability for Standard KAPSE

Interface Specifications

- approaches to KAPSE design and implementation.

In particular, this note elaborates upon some preliminary observations
on distributed processing and security with respect to the program invocation

and control interface that will enhance tool transportability. The note also

documents the author's response to several KITIA communications and working

papers that have referenced APSE distribution and security, and the debugging

interface.

Earlier drafts of this note were reviewed by members of WG.1 and their

comments have contributed to this revised version. A further revision to this

note is anticipated; it will respond to comments not currently addressed, and

present additional refinements.

[*] Ada is a registered trademark of the U.S. Government, Ada Joint Program

Office.

3E- 1



I Introduction

Recently, there has been an increasing appreciation of the economic,
performance, and reliability advantages of interconnecting multiple computers
i nto a network of shared processing resources. The integration of
microprocessors for personalized local environments into such networks has
accelerated and emphasized the need for shared processing resources. This has
necessitated renewed interest in improved system security for shared
environments, in the commercial, industrial, and military communities. As a
consequence, it has become apparent that the KAPSE Standard Interface Set [25]
must provide sufficient semantic detail to ensure the transportability of tools
and the interoperability of data, especially if APSEs are to achieve some
measure of adaptation to network and secure operations. Through the
Interoperability and Transportability (IT) of APSEs data and tools, the

potential benefits of secure network configurations can be attained.

Fundamental to supporting such operations is a formulation of the more
elaborate tool execution contexts. These contexts must now encompass the
additional requirements for distributed and secure program execution. Each of
these requirements exact increased demands for tool transportability. For
example, within a multilevel secure APSE, a tool must execute concurrently for
differently classified users, while within a network of APSEs a tool's execution
may migrate among processing nodes in order to optimize resource utilization.
This latter requirement adds a dimension to tool transportability that may be
characterized as dynamic rather than static. Therefore, KAPSE interfaces would
include specification detail that is essential for dynamically sharing a tool's
execution among different machines. For conventional status transportability a
tools execution environment is determined when it is called through the program
invocation and control interface, and is not permitted to change through
migration. For dynamic transportability, tool reconfiguration may be assisted
at execution time through some form of dynamic linking [27] in order to adapt
the tool to different environment execution contexts.

3E -2



I I Program Invocation and Conttol

The program invocation and control interface defined in the
Interoperability and Transportability Requirements for Standard KAPSE Interface
Specifications [21] (IT Requirements) presents an abstraction of user
functionality derived from the informal requirements of Stoneman [3], and their
supporting interfaces documnented in the ALS [4] and AlE [5] 85 specifications.
A perspective of this interface was presented in an original point paper [6] in
the framework of code execution services for the APSE. In this canonical
framework, program invocation and control is distinguished by the granularity,
or scope, of the thread of control that is managed by the APSE-KAPSE interface.
The scope of the thread of control for the program invocation and control
interface is normally defined to be an Ada main program. According to the Ada
Definition [18], a main program acts as if called by some environment task, and
is a subprogram that has been compiled as a library unit. Applying this
informal description, an APSE tool is a main program that qualifies as an
environment task, if it uses the program invocation and control interface to
call a main program. However, because an environment task is not defined,
several interpretations of this interface have been identified for further study
in order to motivate tool transportability. In addition, other legitimate
threads of control that comprise the code execution services are derived from
the semantics of the Ada task model, and the services to suport the monitored
code execution contexts required by the debug tool [19].

This perception of code execution services has become useful with the
elaboration of distributed processing, security, and extensibility
considerations on the KAPSE interfaces by the IT Requirements. These
considerations were not specifically included in the Stoneman definition, and
therefore, were not emphasized in the KAPSE interfaces of the current designs
for an APSE.

3E -3



III Capacity Transparent Interfaces

In the referenced point paper, the notion of Capacity Transparency was
introduced as a means to improve tool transportability. An elegant exposition
of capacity transparent interfaces is presented in the Ada definition of numeric
real types. Arithmetic operations are guaranteed consistent accuracy

(semantics) across different compilers by defining all real operations
(interfaces) in terms of model numbers. The different compilers may choose the
most efficient implementation defined standard accuracies, from which the user
specified accuracies are derived using the rules of model arithmetic. The

accuracy of intermediate results is transparent to the arithmetic interface
since it depends on the capacity of the target arithmetic hardware. Similarly,

Capacity Transparency should be applied to the code execution services to
accomodate both static and dynamic transportability, and to retain the

flexibility deemed essential for potential interface extensions necessary for
developing more portable run-time support for Ada tasks [7,12]. As a resul t,
additional processing capacity compatible with the interface semantics may be
used. The specification of the interfaces may specifically limit execution
through an appropriate processing constraint. For example, the permissive
semantics of invoking a program must be refined to state whether or not the
execution of the called program occurs on the same processing node as the
calling program, since its execution may depend upon data accessible at the
calling node (e.g., efficient implementation of a program pipe usually requires
that the pipe couples programs executing on the same node). The Process

Management packages of the Standard Interface Set have included a location
parameter to define an implementation dependent constraint when invoking a
program. In addition, Capacity Transparency is compatible with the promising
approach suggested for designing and formalizing interface semantics using the
denotational method (16, 17].

3E -4



I V Program Distribution and Security

A key concern in specifying a durable interface for program invocation

and control is an understanding of the requirements for distributed program
execution, and the security of program execution in the target systems that may
be associated with the APSE. The requirements for targets are introduced
because the functionality to achieve distribution and security is a fundamental
need in tactical environments, an is outside the province of the conventional 1
Ada run-time support library [13]. This provides adequate justification for

specifying a KAPSE-like analogue on the target computer(s) termed the Target Ada
Support Kernel (TASK). This suggests that standard KAPSE interfaces be

developed that are adaptable as interfaces to the TASK, thereby not only
facilitating tool transportability among APSEs, but also their (restricted) use

on target systems. The increasing emphasis for enhanced target debugging
capabilities in future multilingual environments [26], indicates a need for tool

transportability to target systems.

An important contribution of consistent interfaces for the host and
targets derives from those code execution services that allow the run-time

support for Ada task execution to be more readily transportable. The critical

performance requirements for code execution in the target are delegated to the
TASK, independent of the high level Ada task semantics; a significant advantage
when the target must execute programs from different language environments [26].

A taxonomy of KAPSE interfaces, that is realized through generic units,
packages, and library facilities, is envisaged to provide categories of

interface functionality. These categories do not conform to a layered KAPSE
[20] approach, which is primarily an implementation rather than specification

strategy, since only the outermost layer is included in the APSE-KAPSE
interface. The extensive use of Ada to formulate functional categories is

commensurate with the expected trend that encourages the application of
progranmming languange principles in the design of software systems [8].

The adaptation of KAPSE interfaces for totally distributed and secure
APSEs extends beyond proven software technology, and understanding the
implications of such an adaptation are not readily quantified, especially for

dynamic transportability issues. Therefore, as an initial step, useful

3E -5



principles extracted from existing and experimental designs can be factored into

preliminary interface requirements and KAPSE design be addressing distribution
and security issues as they relate to code execution services. Specific

requirements for the different levels of computer security have been sunmarized
[14] to provide sufficient guidance in developing the rudimentaries for the
execution of tools in a secure APSE. KAPSE interface specifications for program
execution should addresss the classification of tools, the creation of protected

execution contexts, intertool commuunication in a multilevel APSE, access to
global (system) data, and the verification of the KAPSE implementing the
interfaces.

To demonstrate a potential security flaw in the semantics of existing
program invocation and control interfaces, the CALL tree maintained by the ALS
KAPSE can be cited as an example. The semantics of program call and program
control would permit the leakage of information (i.e., the confinement problem)
through the CALL tree, even if the interfaces were refurbished to support
multilevel program execution to monitor calls and parameter passing. In this
instance, the CALL tree becomes an indirect storage channel through which
information can be transmitted by a classified program through the interface
semantics (e.g., adding and deleting nodes), and then subsequently addessed by
an unclassified program.

One of the challenges presented by Ada is that of supporting the
execution of a multilevel secure program, i.e., a program consisting of Ada
tasks that perform operations at different classification levels. For tactical

applications secure task execution may be achieved by an approach that relies on
suitable Ada security pragmas, and the use of the code execution services of the

TASK by the run-time support library to establish secure task execution contexts

[15].

3L-6



V Distributed APSE

Before the security policies and mechanisms relevant to an APSE are
investigated further, it is necessary to delineate the degree to which an APSE

can execute an a distributed configuration. A recent study [9] has presented
substantial arguments for secure systems to be conceived as distributed systems,

where security is achieved partly by the physical separation of the individual
components (tools), and partly by the trusted futnctions performed by some of the

components. As a result, the various security requirements of APSE components
are recognized and enforced by the individual component. The APSE becomes a

network of cooperating, distributed, and independent programs, where physical
separation of each program provides an alternative to the conventional security

kernel. The specification and verification of the properties of the trusted
functions are APSE design issues, while the functionality to guarantee the

distribution and separation of the components are seen as KAPSE design

considerations for program invocation and control . This approach is to be

elaborated upon in subsequent technical notes, but in the interim it will be
used to influence and justify decisions regarding distributed processing

capabilities for the APSE that are motivated from both a logical and physical
perspective.

The Stoneman report does not directly address the requirements for a

distributed APSE. A general guideline proposed is that the APSE should be
designed to exploit the underlying hardware of the host system. Presumably, if

the hardware comprises a network of interconnected machines, the KAPSE is
expected to provide sufficient functionality to utilize the network efficiently.

For example, a user may logon to a local node of the network, and yet have
session processing performed by any node in the network that satisfies the
processing resource requirements. Such a capability would be characteristic of

a KAPSE that provided capacity transparent interfaces that guarantee consistent

tool execution on any node selected. The attainment of this level of
distribution is not anticipated in either of the current APSE implementations.

Each design has recognized that distributed processing requirements must not be

obviated by an overly restrictive interface. This is particularly evident in

the KAPSE for the AlE that specifies both program invocation and program

3E -7



communication services in the 'KAPSE/Tool' interface. A criticism in an earlier

note of this design regarding apparent host dependencies in the interprogram

communication services is resolved by the revised design [5]. 'KAPSE/Host'

communication services are specified that enable a tool to exchange information

with the KAPSE across a protected boundary. These services are distinct from

the tool's interprogram communication services, thereby preserving the

transportability of the tool interface. In addition, a 'KAPSE/KAPSE' interface

is proposed to facilitate distributed APSE support. However, totally

distributed code execution services are precluded by the suggested semantics of

the 'KAPSE/Host' interface, and the integration of task execution within the

run-time system included in each tool. The interface relies on Ada tasking to

effect a communication protocol between a tool and the KAPSE program. It uses a

communication task in each tool and a service task within the KAPSE, thereby

excluding the distributed execution of tasks through the KAPSE and compromising

the transportability of the run-time system.

As a consequence, it is necessary to stipulate formal guidelines for

studying the performance of an APSE on a physically distributed host system.

For convenience, the term 'distributed processing' is used to denote any

hardwre environment that supports either logical or physical separation of

processing. Justification for this definition has been suggested earlier, and

will be argued subsequently in terms of functional isolation for system

security.

The need to consider one aspect of the physical separation of

processing was identified in the Stoneman report as a result of down-line

testing requirements [10]. This style of testing envisaged a target resident

program under the supervision of a host resident debug tool, thereby

distributing the APSE functionality between the host and target machines. Thus,

the host and target form a limited, but legitimate, distributed configuration,

especially when the target is another host that is used to provide the required

resources necessary for testing the application program.

The outcome of this observation has an impact on the program monitoring

interface that must now be perceived as a variant of the program invocation and

control interface. The debug tool communicates and controls the executing

3E-8



application program through a debug implant that has been linked with

application object code. As a result, this variant motivates the need for a

consistent extension to the Program invocation and control interface category to

include semantics for distributed processing. In addition, it establishes the

rationale for the APSE to be distributed on different machines since multiple

users may wish to test programs on distinct or heterogeneous targets. The case

of rehosting the APSE is an excellent paradigm for down-line testing. The user

employs the debug tool executing on the host to test a tool rehosted on the

target (the new APSE host). If the rehosted tool is the debug tool, it may in

turn be testing a program executing on the host which is then considered a
target. In this instance, the functionality of the APSE is not only

distributed, but is configured in the role of both a host and a target

environment.

The expected development and proliferation of personalized local

workstations to improve software productivity favors the concept of an APSE that

is distributed among an APSE Hub and a local network of personal computers.

Only the simpler tools of the APSE that have restricted data demands would

execute on the Hub after having been invoked from a node. It is interesting to

observe that in this configuration if the node was a compiler target, then

compiled programs could be debugged locally. This increases the KAPSE-TASK

intersection of functionality, and substantiates the artificiality of the severe

distinction that has classically separated a host from a target. Consequently,

the functional intersection facilitates the run-time support library to define a

homogeneity level among hosts and targets, which on one side. allows application

testing, and on the other side, can provide partial environme't services on the
targets [27].

Vl Distribution Models for the APSE

In the context of the code execution services elaborated in the

referenced point paper, distribution of processing may be considered at two

levels of user visible functionality, interprogram and intraprogram.

Interprogram functionality Is representative of the program invocation and

control (including the program monitoring variant) services that are essential

i
3E-9



to support the Command Language Processor, and the requirements for tool
synergism. This is clearly demonstrated by the minimal facility through which
the Command Language Processor enables a nonstandard command language to be made
available in the APSE, and the execution of comm~and language procedures by the
Conf igurati on Management System [22]. Intraprogram f uncti onal ity is
representative of the services required to support Ada tasking that are
profitably implemented outside of the run-time support library. This suggests
that different models of logical and physical distribution should be considered
in specifying the code execution services interface. The different models are '

used to define classes of code execution services that a conforming KAPSE
implementation may provide. The transportability of a tool would depend upon
the extent to which it uses the semantic differences these classes introduce
upon an interface. A common example might be the invocation of a tool (e.g.,
the Editor) that is to read the standard input file of the calling tool (viz.,
the Command Language Processor). The semantics of the interface used must
guarantee that the called tool executes on the same processing node as the
calling tool. Omission of such explicit semantic detail can compromise the
transportability of the calling tool. The calling tool safeguards its
transportability through the necessary processing constraints. These
constraints would be materialized through the semantics of the interface class.
Classes for a particular interface might be developed through customized
packages encapsulating the subprogram specification. Figure VI-1 outlines a
possible specification strategy. All code execution services are encapsulated
in a package. The specification of this package includes generic package
specifications that are available for the proposed levels of program management
functional ity. An instantation of these generic packages for the class of
program distribution required by the tool may then be included in the standard
environment of the tool through a context clause. The objective of this
approach is to reduce the changes to a tool's interface to the KAPSE, through
tool recompilation, should a different class of program distribution become
necessary. In the example, a tool is shown to make an explicit call to
interprogram management to invoke a main program. An implicit call to activate
a task is shown as a result of executing an allocator for a task access type or
because of the elaboration of a task object. This implicit call is serviced by
the run-time support library that has been implemented to use the appropriate
instantiation of the intraprogram management package. In this instance, the

3E-10



run-time support library is treated as another transportable tool, except that

it is not invoked as a program. The manner in which the run-time support

subprogram bodies are integrated with a program becomes an implementation

strategy, while maintaining consistency between the class of distribution

services required by the tool and the run-time support library is an important,

and as yet unresolved, configuration control issue. The formulation of classes

is similar to the use of the representation specifications in the Ada language.

The classes provide a means through which the interface specifications can be

selected to yield semantic detail compatible with the host system resources. If

used inappropriately, the transportability of a tool is compromised through the

violation of the capacity transparent interface property.

3E-11



package KAPSE CODE EXECUTION SERVICES is
-- Code execution Tervices fi r all APSE distribution models.

generic

package INTER PROGRAM MGMT is
-- For use by-all toots, includes Program Invocation
-- and Control Interface.

procedure CallProgram ( ...

end INTER PROGRAM MGMT;

generic

package iNTRA PROGRAM MGMT is
-- For use by-the RunWTime Support Library.

procedure Call Task

end INTRAPROGRAMMANAGEMENT

end KAPSE CODE EXECUTION SERVICES;

with KAPSE CODE EXECUTION SERVICES;
package CLXSS NIPROGRAM MGMT is new

KAPSE CODE-EXCUTION-SERVICES.INTERPROGRAM MGMT ( ...

with KAPSE CODE EXECUTION SERVICES;
package CLASS N TASK MGMT Is new

KAPSE CODE-EYECUTTONSERVICES•INTRAPROGRAMMGMT ( ...

with CLASS NPROGRAM MGMT; use CLASS NPROGRAM MGMT;
Procedure Some-Tool is

task Some Task is . . .
begin
ActivateTASK ( SomeTask, ... ); -- Implicit call.

Call Program ( ... ); Explicit call.
end SoWe Tool;

with CLASS N TASK MGMT; use CLASS N TASK MGMT;
package bogy RUNTIMESUPPORTLIBRARY is-

procedure Activate Task ( ... ) is

begin

Call T;sk (...
end Activate Task;

end RUN TIME SUPPORTLIBRARY

KAPSE SPECIFICATION STRATEGY
Figure VI-1

3E-12



Class-O formulates a basis for logical distribution where the code

execution services are provided on a single machine (uniprocessor) with no

facility for physical down-line testing. The machine is multiplexed among

separate threads of control for interleaved execution of programs and tasks.

This achieves the minimum properties required by the APSE. From this basis

additional classes (1..6) are derived to introduce increased physical processing

distribution for interprogram and intraprogram functionality.

Class-i provides for physical down-line testing as described

previously. The code execution services of the KAPSE are upgraded to facilitate

the initiation and control of an application program on the target machine. The

debug implant in the application program uses a KAPSE compatible interface that

must be supported on the target machine. Through the code execution services

interface, the program is loaded, initiated, and controlled via the implant.

The functionality of this interface relies upon the concept of target software

(i.e., the TASK) that is separate from the run-time support included in with the

application program. When necessary, the TASK will allow the target machine to

execute multiple programs in those instances where the target machine is a

critical resource, and must be shared among several users of the APSE debug

tool.

Class-2 is derived to support separate threads of control on a

multiprocessor configuration. Both interprogram and intraprogram functionality

are revised to exploit the opportunity for improved performance through parallel

execution of programs and tasks. It is expected that this upgrade would not

change the KAPSE interface specification, but would influence its design and

implementation. For example, task dispatching would not be accomplished by the

run-time support system. A suggested reorganization of the ALS RSL/KAPSE design

for efficient multiprocessor support was outline in the reference point paper.

Class-3 is derived to support the physical distribution of APSE tools.

Interprogram code execution services are enhanced to facilitate communication

among APSE tools executing in a network of homogenous nodes (machines). These

services require a more elaborate interface since identification of program

executions (processes) is essential if interprogram communication is to include

more than the parameter exchanges at program invocation and termination.

3E-13



Process identification has been perceived as a manifestation of the overall

binding problem [231 that must now emcompass node identification in a manner

consistent with maintaining capacity transparent interfaces. Each node (in its

role as a host), Is required to execute a family member of the same

implementation of the KAPSE, and a program execution environment is constrained

to a single node. For example, the Command Language Process might have multiple

executions on every node, whereas the compiler may be restricted to nodes with

sufficient resources; e.g., the Ada Library may be dedicated to a specific node.

In this instance, invocation of the compiler would attempt initiation on the

appropriate node. Extension to the code execution services would be accompanied

by significant enhancements to the KAPSE-Host interface to support distributed

processing supervision, network topology management, packet handling, and

protocol services.

Class-4 is derived frm Class-3 to support the physcial distribution of

Ada tasks on machines hosting the same KAPSE implementation. Intraprogram

functionality is upgraded to activate and control the execution of Ada tasks on

separate machines. Significant revisions to the KAPSE and run-time support

library must be implemented to compensate for the fragmentation of a shared

program environment. Popular implementation strategies based upon procedure

calls [11] would become obsolete, and many severe problems associated with its

feasibility are anticipated. The difficulties of distributed tasks warrant

elaboration in a future technical note.

Class-5 and Class-6 dominate Class-3 and Class-4 respectively, and are

derived to facilitate APSE tools executing in a network of heterogeneous nodes.

Reduced capability environments executing on personal computers connected to an

APSE Hub would be characteristic of Class-5 distribution. Justification for

Class-6 can be argued from the documented requirements for the execution of Ada

tasks on different interconnected target computers [261, coupled with the need

for the KAPSE and TASK interfaces to converge functionally.

3E-14



package TASK CODE EXECUTION SERVICES is
--Code execution -ervices for Class-1 distribution model.
package INTERPROGRAM MGMT is

package DEBUG SERVICES is

procedure Send Host ,..
end DEBUGSERVICeS;

end INTER PROGRAMMGMT;

package INTRAPROGRAM_MGMT is

procedure Call Task (...);
end INTRAPROGRAMMGMT;

end TASK CODE EXECUTIONSERVICES;

with TASK CODE EXECUTION SERVICES;
use TASK ODE XECUTION S1ERVICES;

procedur e Tac ticalProgram is

task Some Task is
pragma WTEBUG ( On= Downline );

end Some Task;
task body Some Task is
use INTER PROGRAAM MGMT;
begin

Send Host ( ... ); -- Implicit call from implant.

end Some _Task;

begin
ActivateTask ( Some Task, ...

end Tactical Program'

TASK SPECIFICATION STRATEGY
Figure VI-2

I3
i . 3E-15



Although different KAPSE implementations would exist in a network, each

KAPSE would be required to supply a proper subset APSE-KAPSE interface. For

example, one KAPSE, hosted on a multiprocessor, might provide in addition to

Class-5, a Class-2 interface, whereas another KAPSE hosted on a personal

computer would only provide the stipulated Class-5. Class-1 can be viewed as a
degenerate case of Class-5, where the TASK suports a subset of the Class-5
interface. Other classes would include distribution models that provide support

for dynamic transportability.

ViI Conclusions

r
This interim technical note has proposed several areas for continuing

study that appear useful in formalizing requirements for the program invocation

and control interface to promote tool transportability in both a distributed and

secure environment. The reader should understand that one of the primary
purposes of the note is to stimulate views that may be radically different from

those expressed in this note. Furthermore, it is appreciated that some of these

views are controversial, and currently lack the technical rigor necessary to

stipulate either a KAPSE interface or a specific set of formal IT requirements.

In summary the following points are emphasized:

- The program invocation and control interface requirements should be

sufficiently well specified in order to avoid unacceptable
utilization of the host system. The corresponding interface must

evolve into a more comprehensive set of services, and should exhibit

a degree of capacity transparency.

- The run-time system should be transportable to the same extent as a

tool. It should also be adaptable for use on a target machine,
through the functional intersection of the KAPSE and TASK interfaces.

3E-16



-The distribution and security of an APSE is a major requirement of
future program invocation and control interfaces. It is proposed
that security may be achieved partly through an interface that
supports the logical and physical distribution of tools.

- There are potential advantages in developing an interface that is
compatible with its use in a target environment.

- The formulation of APSE distribution models for which IT is deemed
appropriate is reconmmended. These should be included in the IT

Requi rements.L

- A KAPSE specification strategy should be developed that is consistent

with the extensive specification facilities offered by the Ada

language.

L 3E-17



Bibliography

[ 11 Program Invocation and Control; KIT: Public Report

Vol. 2; Technical Document 552; 1982-10-28.

[ 2) Preliminary KITIA Charter; 1982-04-30.

C 3] Requirements for Ada Programming Support Environment;
Stoneman; 1980-12.

[ 4] Ada Language System; KAPSE 85 Specification;
Softech, Inc.; Report CR-CP-0059-B83; 1982-02-28.

[ 5] Computer Program Development Specification for Ada
Integrated Environment; KAPSE/Database Type 65;
Intermetrics, Inc.; Report IR-678-2, B5-AIE(1).KAPSE(1);1982-11-12.

[ 6] Point Paper F; KIT: Public Report Vol. 1; Technical
Document 509; 1982-04-01.

[ 7] Ada Integrated Environment: Computer Program Development
Specification, Part 1; Computer Sciences Corporation and
Software Engineering Associates Inc.; 1981-03-15.

[ 8] SIGPLAN'83 Call for Papers - Programming Languages Issues
in Software Systems.

9 9) Rushby, J. M.; the Design and Verification of Secure
Systems; Proceedings 8th. ACM Symposium on Operating System
Principles; 1981-12.

[10] Fairley, R. E.;Ada Debugging and Support Environmental;
SIGPLAN Ada Symposium; 1980-12.

[ill Habermann, A. N./Nassi, I. R.; Efficient Implementation of
Ada tasks; CMU-CS-80-103; 1980-01.

[121 U.K. Ada Study; Final Technical Report Vol. 4;
Department of Industry; 1981-06.

[131 Ada Language System; VAX/VMS Runtime Support Library;
SofTech, Inc.; Report CR-CP-0059-820; 1982-02-24.

[14) Landwehr, C. E.; Formal Models for Computer Security;
Computing Surveys, Vol. 13, No. 3: 1981-09.

[15) Proprietary Comany Material; Computer Sciences Corp.

[16] Point Paper E; KIT: Public Report Vol. 1;
Technical Document 509; 1982-04-01.

3E-18



[17] Ashcroft, E., Wadge, W., ; Rx for Semantics;
ACM Trans. Program. Lan. Syst. 4/1; 1982-04.

[18] Reference Manual for the Ada Programming Language;

ANSI/MIL-STD 1815A; 1983-02-17.

[19] WG.1 Meeting Minutes (Blacksburg); 1982-08-10/11.

[20] Wrege, D.; Layered KAPSE; KITIA Meeting (Waltham);
1982-06-20.

[21] Requirements for Interoperability and Transportability and
Design Criteria for Standard Interface Sets; 1983-02-18.

[22] Configuration Management System; Interim Report on

Interface Analysis; Computer Sciences Corp.; 1982-08-27.

[23] Kramer, J.; Binding Category; Arpanet Message; 1982-08-09.

[24] Milton, D.; Stonemen II; Draft 1: 1983-01.

[25] Ada Package Specifications for the Standard Interface Set;
Draft 1, Version 1: 1983-02-01.

[26] Ada Language System/Navy; System Specification; 1982-10-15.

[27] Iverardi, P. et.al.; A Distributed KAPSE Architecture;
Ada-Europe/AdaTEC Joint Conference on Ada; 1983-03-16/17.

3E-19

........... .



SIS IMPLEMENTATION ISSUES
PARAMETER PASSING OVER
THE STANDARD INTERFACE

H. Fischer
Litton Data Systems

Abstract: This note discusses physical implementation of the
"Standard Interface" also known by the KIT as the SIS. Use of the Ada
Language parameter passing mechanism and type conversion mechanism is
shown to be a useful mechanism for implementing the calls across the
"KAPSE Boundary". It is shown that applications programs, written in
different environments with different parameter storage variables, can
utilize Ada Language features to automatically correct the parameter
appearance to the routines on the inside of the "KAPSE Boundary", thus
avoiding need to tweak source code calling sequences when porting
applications systems.

The KAPSE Boundary

Using the standard KAPSE model, the KAPSE is a set of standardized
system services usable by tools in a MAPSE and tools and programs in
an APSE. The KAPSE services will be defined by the KIT/KITIA, initially
as a derivation from the "common intersection" of AIE and ALS, and
later by an in depth analysis. KAPSE services include database (file)
access and management, program initiation and termination, and input/
output services. They also include host-dependent services such as
storage management, virtual storage implementation, hardware interrupt
handling, and the like.

The "outside" of the KAPSE boundary is the user's domain, which in the
program support environment, includes both the user's own programs and
the tools to create and maintain the programs (compilers, debuggers,
command line interpreters, and editors).

Most (maybe all) of the published papers referring to KAPSE
implementation describe the boundary between KAPSE and external world
as described (in part) as Ada packages[1],[2]. Actually, it is only
the syntactical appearance of the boundary which is easy to describe
as Ada packages[2]. The syntax describes what the boundary looks like
to coding. It is the syntax which the balance of this paper will

address, because that Is the part which the implementors will provide,
physically, to create the KAPSE "boundary" in code. First, however,
it is necessary to note that the semantics of the interface, the
specification of the meaning and intent of the KAPSE "calls", are an
entirely different issue. Cne can, of course, describe semantics in
English prose. That is how the Ada manual describes Ada features.
English prose is most easily understood by nonscientists. On the
other hand one can describe the semantics in terms of models,

3F-1



representations based on the use of symbols and/or a notational system
which avoids ambiguities and language difficulties. On the third hand
one can describe the semantics in terms of rules, using forms
of predicate calculus to create a model of the KAPSE. (A predicate
calculus or rules description is generally not readable by the public
at large, and thus is separated from a notational form of model. It
is often, however, implementable (modelable) on the computer, and can
be used to prove correctness.)

Physically Building the Syntax of the Interface

Ada facilitates building syntactical descriptions of interfaces, in
the form of package specifications for the "code bodies" which
implement the KAPSE services (or which interface to other facilities
which perform the KAPSE services). These interface descriptions are
packagable separately from the code bodies of the KAPSE routines,
which means that source code and compiler-readable forms of these
interfaces can be distributed to KAPSE users without distributing
corresponding source or reconstructable forms of the KAPSE itself.
This is an important factor when dealing with systems whose security
would be compromised if users had access to internal construction
details of the system.

The interfaces are described by three items: (1) specification of the
KAPSE service, (2) specification of the subtypes of the formal
parameters, and (3) specification of the types referred to in the
subtype and formal parameter descriptions.

KAPSE services are identified by subprogram declaration. The subprogram
aeclaration identifies the name of the KAPSE service as well as the
names, modes, and type marks of formal parameters (arguments) of the
service. (Default values of parameters may also be specified.) A mode
declaration denotes whether a given parameter is supplied to the KAPSE
by the user, returned to the user from a KAPSE service, or both. A
type mark names the type or subtype which describes the nature of the
parameter.

The subtype of a parameter to a KAPSE service identifies the more
general type and constraints on the more general type specification.
Subtypes identify constraints, such as numeric value ranges and
enumeration restrictions (midweek is a restriction on weekday which is
a restriction on days). Subtypes may be private, for those items
which the KAPSE passes to the user, such as file handles, only for
purposes of identificaton and tracking.

A type describes the most general nature of a set of subtypes which
might be more restrictive descriptions of formal parameters.

A user call to a KAPSE service must present parameters required, but
they need not be in the implemented order or in the proper format.
Ada allows different implementors of different KAPSEs to have their
own internal structure. Each KAPSE must provide only interfaces which
use formal parameters of the standardized names, and of types which
are either (1) explicitly convertable to user forms or (2) private
(e.g., not disclosed to the applications user). The type mark for the
parameter must have a standard name. A KAPSE service which has a
subtype which is not directly usable by the applications program will

reed to be "overloaded" with a dummy conversion routine, or else the

3F-2



type mark will need to be explicity named with the instance of each
formal parameter to force explicit conversion. (The way to go is up
to the standards definers.) For example, a KAPSE whose internal
implementation requires a given parameter to be a character string,
but where the standard defines a numeric type, must either overload
the subprogram declaration with a "go between" which performs the
conversion, or the standard must require users to demand the
conversion explicitly by naming the type mark with the parameter in
parentheses (explicit conversion in all cases).

The Ada language allows the syntax of package interfaces to be stored
in libraries and referenced by "with" statements. The !ontent of a
referenced library package would be both statements describing the
types and subtype constraints on interface parameters, as well as
statements describing the sequence, mode, and types of parameters of
each KAPSE "boundary crossing" call.

A user of a KAPSE service need not know the details of internal
representation of parameters passed across the boundary; he need only
Know the names of the parameters and sufficient description of the
type of parameter (e.g., character string versus access pointer) so
that the parameters he names are type-convertible to conform to the
KAPSE implementation requirements. Furthermore, there are many
parameters, such as file identifiers, which are both provided by, and
used by the KAPSE, which the user has no need to understand. These
will most likely be Jescribed to the user as "private" types, merely
having assignment and equality operators.

Using the Interface

A user of a toolset or application system learns what the KAPSE
services can do by reading semantic descriptions (prose, model
notation, or logic rules descriptions). The user causes the services
to occur within his code by referencing ("withing") the library module
containing the particular implementation's type, subtype, and
procedure declarations. The user names the services as function or
procedure calls to cause the action desired to happen. He identifies
parameters by their name (or positionally), and, because the compiler
has the particular KAPSE's parameter details available, it can
generate code compatible with a particular form of the KAPSE.

Porting Applications to Another KAPSE

When porting from one KAPSE to another, the entire set of applications
and tools 'ising KAPSF services will be recompiled, allowing the
compiler to use the library module of the new [APSE's parameter and
procedure interface descriptions. Recompilation is needed because the
user can be expected to refer to the types and subtypes provided for
the KAPSE as he manipulates parameters, file identifiers, and the
like. The code generated within a tool might thus be different
internally, having alternate type conversions, even possible explicit
ionversions required, depending of the particulars of an example.

3F-3



References

[1 "Specifying KAPSE Interface Semantics", R. Freedman. KITIA Group
1.

[2] "Validation in Ada Programing Support Environments", D. Kafura,
J. Lee, T. Lindquist, and T. Probert. page 22 ff.

3 -

3F -4



SIS CATEGORIES

D.E. Wrege
Control Data Corp.

Abstract

This paper proposes that the Standard Interface Set (SIS) be divided into
several non-overlapping categories, therefore allowing several classes of
Ada Programing Support Environments (APSEs). Further, a set of
non-functionality based criteria are proposed to guide the
establishment and evolution of the SIS.

Introduction

The requirement for a standard interface at the KAPSE level to provide
interoperability and transportability (IT) of tools has been a hotly debated
issue. There have been few clear cut criteria or guidelines produced
for determining the level of a KAPSE interface, what functions should be
included, and whether they should be standardized. These problems must be
resolved before many APSEs are implemented and IT can be actually realized.

Definitions

In that there is a profusion of terms referring to KAPSE interface
standards (KAPSE, Standard KAPSE, SIS, BASIS, KISS, etc.) the following
terms and definitions will be used.

KAPSE: The words KAPSE and KAPSE interface will be used to refer to
the interface level of an APSE that encapsulates host
dependencies. It is the virtual operating system interface
definition upon which it is possible to build all APSE tools in
a portable manner (i.e. utilizing only implementation
independent Ada language features). The implementation of the
KAPSE is, in general, not required to be portable or even
necessarily implemented in Ada, although portions may be. Note
that the word standard does not appear in this definition.

* SIS: The Standard Interface Set is one or more sets of interface
definitions and their semantics that are standardized to
provide transportability of APSE tools (and interoperability of
APSE databases). Note that the word standard is crucial in
this definition.

The Portability Non-Issue

If a SIS is adopted and there are multiple APSEs using instances of that

3G-1



interface, then tools depending only on that interface and utilizing only the
machine independent features of Ada will be portable between them.
Regardless of the level of the interface, the fact that it is standard
ensures portability. Thus the portability issue is solved given the adoption
of the SIS approach (and there seems to be no controversy over the
establishment of a SIS). The remaining problem is to determine what should be
included in the SIS. This determination depends on issues other than
portability.

Concerning 81S Inflation

Consider a portable tool running within an APSF. If it has
considerable complexity, it should be composed of many separate
compilation units. One should not expect that all or even most of these
packages represent SIS interfaces. Likely, if the dream of reusable
software becomes a reality, some of these packages will also be used by other
tools. However, the mere existence of a routine used by many, or even all
tools, does not establish any necessity for that routine to be located in
the SIS. Indeed, so long as the procedure is portable, the portability of the
tool is unaffeted by whether the routine is in the SIS or not. Thus, the
SIS is NOT defined to be all the stuff that tools use!

Further, just because a procedure is part of a SIS or KAPSE
interface does NOT mean that it is somehow memory resident or even
implemented in a host dependent way. Indeed it can itself be portable Ada
code, dependent only on more primitive host dependent routines. It could
even, like many Run-Time-Systems, be linked with the tool as would any other
library routine.

Some Guidelines for KAPSE Interfaces

For a particular host there will be some KAPSE boundary that best
utilizes the capabilities of that host. By choosing such a boundary
carefully the amount of "dirty" code can be minimized while maximizing the
efficiency of the resulting implementation for that host. Thus the SIS
concept should allow for the possibility of defining a different (optimal)
KAPSE boundary for each different host. Clearly, the SIS should be
located outside of the locus of optimal KAPSE boundaries of all potential
hosts.

Rehostability considerations drive the KAPSE interface toward a single
minimum KAPSE boundary. This should be clear since the cost of rehosting a
small KAPSE will be less expensive than a larger KAPSE. Security considerations
also influence the location of the KAPSE interface. For example, to
protect classified database objects, the database access functionality must be
behind the KAPSE boundary or the protection mechanism might be
circumvented. Therefore security considerations could provide a requirement
to drive the KAPSE interface to include certain high-level functionality.
Once again, the SIS must encapsulate such KAPSEs.

There are, of course, many additional considerations that must be
used in determining the SIS. The above examples are intended to
illustrate the nature of such guidelines and to point out that
portability is really not the major issue once it is decided that there
will be standard interfaces.

3G-2



The SIS and Its Relationship to the KAPSE

There is the tendency, when considering the STONEMAN concepts of the
KAPSE/MAPSE/APSE, to place everything that is portable into the MAPSE (or APSE)
and place everything else into the KAPSE. Thus the KAPSE (or SIS) interface
encircles all non-portable functionality. Then the erroneous assumption is
often made that, for the tools to be portable, this entire interface must be
standardized across all APSEs. Indeed, the portion of this interface that
portable tools depend on should be standardized, but not necessarily the rest.

The KAPSE will contain interfaces which are not related to

interoperability or transportability of tools. For example, standard
logon/logoff services are not required to insure tool portability. It is
certainly not unreasonable to have a few tools that are host dependent, or

some portions of tools with well identified environment dependent parts.
After all, 100% transportability may be an important goal, but as is often the
case, the last few percent may not be cost effective. As is stated in the
draft "KIT Strategy Statement", "It is generally agreed that 100% IT is
not likely to be achieved and is not a realistic goal. The real goal ...
is to make the sharing of tools and data bases sufficently practical and
cost-effective for sharing to become the normal mode of operation between
the various agencies of the DoD as well as the industry which supports
them."

Portable tools mean nothing if the APSE is so expensive to rehost, due to
the requirement for implementation of a large SIS, that it can be
supported on only one machine. In such an extreme case there will be no place
to port the tools.

Categories of the SIS

The final argument is for multiple categories of the SIS. There is surely
a large collection of tools that depend on some subset of the SIS. For example,
most of the current MAPSE toolset needs only fairly simple access to the
database, file I/O, and primitive terminal I/O. I suspect that most of the
tools in an APSE will fit into this category. Some tools, or collection
of tools, will require additional facilities. For example, tools like the APSE
Interactive Monitor (AIM) being designed by Texas Instruments require
interactive capabilities and process comunication capabilities far beyond
what most tools need. Should it be required that all conforming
implementations of the SIS contain these latter interfaces? Is an all or
nothing choice reasonable? It seems that an APSE with all tools
except the AIM is certainly a useful environment, although one might prefer
one with interactive tools like the AIM.

Consider a strategy where several categories of SIS are defined. A Basic
SIS would consist of those interfaces necessary for the Ada Language
Tools. An Interactive SIS would contain interfaces that highly interactive
tools might need. An Advanced SIS might be defined for some class of advanced
tools, and perhaps an Expert SIS would exist for super-advanced
artificially intelligent tools. I tend to think of these as separate
interface sets, where a union of one or more sets defines the class of an APSE,
(i.e. Basic APSE, Interactive APSE, Advanced Interactive APSE, etc.).
Note that having such categories of SIS is a familiar concept to current
builders of portable programs. A conscious decision is made, with

[3G-3



appropriate tradeoffs, as to what level of dependency a tool should have
(e.g. FORTRAN-II, FORTRAN-IV, or FORTRAN-77). The point is that a toOlsmith
could and should design his tool with careful consideration of which SIS
categories are to be required. Also, such a philosopy would lead to a natural
mechanism for extensions of the SIS as environments become better
understood.

Guidelines for SIS Definitions

Most attempts to definc SIS requirements and criteria have revolved around
defining functionality. Here it is assumed that interfaces providing
certain functionality have been determined. The question is: "Should a
particular interface item (or function) be included in the SIS?"

For an interface item to be included in the SIS:

I. "he item must not be implementable in terms of existing interfaces.
This requirement is to restrict unreasonable growth of the SIS. The
intention is to encourage the use of libraries of reusable, portablesoftware packages rather than continually increase the size of the
SiS.

2. The item must not be implementable in terms of more primitive
functionality without compromising one of the following:

Efficiency of implementation on some desirable APSE host.
Security characteristics.
System Integrity

The purpose of this rule is to strike a balance between the desire for a
very primitive interface standard, thus decreasing the effort required to
rehost, and a very high level interface, to try to ensure that all possible
functions have been included.

3. The item should be required by more than one tool (or a small set of
related tools.) The rationale for this rule is thaZ if only one tool
needs an interface, then that interface should be a part of a
presumably small host dependent portion of the tool. For example,
only the command line interpreter needs to log the user off,
therefore the SIS should not force every host to implement a specific
interface for logoff.

4. The item should not severely impact the rehostability of APSEs. There
is a tradeoff to be made here. How important is the tool? How universal is
its use? Can it be redesigned such that it does not use the functionality
that is impacting rehostability? Can it be put into something other than the
'Basic SIS', for example? When an item passes the above criteria then a
determination is needed for which SIS category it should be placed in. Most
important, an item should be placed in as high a category as possible. For
instance, it should only be placed in the Basic SIS if one cannot do reasonable
Ada program development without it.

Conclusion

In conclusion, we should not lose sight of the motivation for the
portability requirement: AVAILABILITY of rich Ada environments. One

3G-4



I
solution is to subdivide the SIS into categories. Tools would be
designed and implemented to require one or more categories of interfaces. In
this way there will be less restriction on the possible hosts for APSEs
(although the set of tools that can be ported may be limited). Strong
incentives would be established for the extension of operating systems so
that they could implement more SIS categories, and eventually all of it. In
dddition, SIS categories suggest a mechanism for evolution of the standard. A
structured approach to defining these SIS categories depends on developing
specific criteria for inclusions of items 1) in the standard, and 2) in a
particular SIS category. The first category to be defined should be a Basic
SIS. This category should include only those interfaces necessary for the
minimum set of tools needed for Ada program development (MAPSE).

[

,1

,, ,' -h , 7 [1 [111 , 3.. ..- 5.



KAPSE Support for Program/ Terminal Interaction

Fred Cox
Georgia Institute of Technology

Abstract

Programs with high-quality user interfaces commonly require extensive
control over the input and output (1/O) of data to terminal devices.
Interaction between programs and terminals is mediated by the operating system.
Different operating systems handle terminal I/0 differently, cause varying
side-effect. to the data streams, and provide software with differing degrees
and kinds of control over this type of I/O. The K~ernel Ada* Programming
Support Environment (KAPSE) must provide software with full control over
terminal 1/O, while insulating the software from the quirks of individual
operating systems. These requirements must be supported if the quality and
portability of programs in the Ada Programming Support Environment (APSE) are
not to be seriously degraded.

Introduction

In an interactive computing environment, the terminal is the principal
physical component of the user interface. The quality of this interface
depends heavily on the functions provided by the terminal and their control by
software. The means by which terminals are controlled and the degree to which
that control is available to applications software varies considerably from
operating system to operating system and from terminal to terminal. This lack
of standardization has lead to low-quality user interfaces for most software
and to low portability for much software providing high-quality user
interfaces.

There is a popular diagram representing the Ada Programming Support
Environment (APSE) in terms of concentric circles of increasing abstraction and7
decreasing physical detail. Thia diagram seems to place the user interface at
the outermost locus. In fact, the user is physically interacting with a
terminal device, which is physically connected to the computer hardware and
controlled through the operating system. However, these components are
represented in the center of the diagram. A program operating at or beyond the
Minimal Ada Programming Support Environment (MAPSE) level must communicate with
the user via these inner regions. This implies the user is located at the
center of the diagram rather than outside it. It is the information
transmitted through the terminal that permits the user to view the APSE

* - logically from the outside of the diagram. The quality of the user's view Is
therefore dependent on the quality of Interaction sustainable through the
terminal device.

*Ada Is a registered trademark of the U.S. Government, Ada Joint Program
Office.

31!-1



The building of good and portable user interfaces is complicated by
differences in the way operating systems handle the synchronization,
modification and transmission of input and output data streams. The many types
of terminals encountered also adds to the problem.

In this paper, we will first review common operating system implementation
of Input and output. Then we will look briefly at the I/O facilities provided
by the Ada programming language. A discussion of requirements for supporting
program/terminal interaction and related problems will iollow. Finally, the
key requirements will be listed and conclusions summarized.

Only character-oriented terminals are considered in this paper. Graphics
display terminals, non-keyboard input devices (such as graphics tablets, light
pens and mice) and other interactive I/0 devices (such as for voice I/0) are
not explicitly considered. Although requirements for supporting interaction
with these other kinds of devices overlaps requirements for supporting
character-oriented terminals, the additional requirements should be addressed
by those seeking to define KAPSE interface standards.

Implementation of InputlOutput

Characters received from a terminal are normally put into an input buffer
until the buffer is full or a special character or character sequence is
received indicating the termination of the current unit of input (e.g., a line
of text). The contents of the buffer are then made available to the program.

Characters to be transmitted to a terminal are normally also put into a
buffer. This buffer is passed to a system service routine which transmits the
characters to the terminal along with special characters to control the
display. For instance, special characters may be sent which cause an effect
similar to carriage return on a typewriter.

A variety of other services may be provided by operating systems, as
indicated by the following examples.

* Normally, any character received from a terminal (operating in full duplex
mode) is echoed to the terminal to appear on the display.

9 Input characters may be converted automatically to upper case by the
system.

* The system may filter certain characters and character sequences from the
input stream for its own use. For example, a Control/Y character may be
interpreted by the system as a command from the user to abort the current
process.

a The system may automatically transmit a character or character sequence to
the terminal as a prompt to the user whenever a read action is requested by
a program.

* The system may also provide options for the ordering of read and write
operations.

3H-2



The terminal and the host computer must transmit and receive data at
compatible rates. They must also coordinate on the number of bits per
character or block and the kind of parity used for error checkirg. Some
terminals and hosts interpret certain character sequences as requests to stop
or start sending data. This capability helps to prevent loss of data when the
transmitting unit is sending data faster than the receiving unit can process
it.

In some cases, the data link between the terminal and the host contains
modems which may be controlled by the host by means of special control signals.
For example, a smart modem night be directed to dial a phone number to
establish the data link.

The Ada 1/0 Facility

Ada provides two levels of I/O, one operating at the abstract level of
files, the other controlling hardware at a low level. Low level I/O might be
used for control of direct memory access (DMA), for example. At the file level
of I/0, Ada supports a very simple abstraction of input and output operations.
Terminal 1/0 is usually provided through the file I/0 abstraction.

Neither of these facilities is appropriate for general program/terminal
interaction. Forcing the programmer to implement terminal 1/0 using the Low
Level I/0 facility might mean bypassing the KAPSE and much of the underlying
operating system. This method would probably result in inefficient use of
system facilities and conflicts with system operation and Ada file I/0. It
would also make the programmer work at an unnecessarily low level of
abstraction and with unnecessary complexity.

The high-level, file I/0 abstraction is insufficient to support general
program/terminal interaction. It provides no control over operating system
induced side-effects to the data stream, such as synchronization anomalies due
to buffering, and modifications such as the filtering, mapping or addition of
characters. No control is provided over the associated data link
characteristics, such as transmission parameters (e.g., rates, parity, number
of start and stop bits) and link control (e.g., automatic dial; hang-up and
faulty-link detection). Nor are terminal control operations (such as querying
for terminal operability, querying for terminal type, and the sending and
receiving of special escape sequences) assured of support.

The Ada file I/O procedures CREATE and OPEN have parameters for passing
strings containing the file NAME and the FORM of the file (i.e., options for
implementation of the external file). It is possible but inappropriate to use
these strings to indicate that terminal interaction is desired. Passing
information by string is dangerous in any event, since it defeats the strong
typing of Ada. This form of information passing is also a poor way to specify
the great deal of detail necessary for terminal interaction. More importantly,
passing terminal I/O control information via the CREATE and OPEN procedures
limits this passing to one occurrence (i.e., when the file is created or
opened) and so does not support the dynamic requirements of such control.

Whether or not these string parameters are used to pass terminal 1/0
control information, IT IS CRITICAL To APSE PORTABILITY THAT THESE STRINGS NOT
BE PASSED TO THE UNDERLYING OPERATING SYSTEM FOR INTERPRETATION. Portability
will be precluded because the interpretation of these strings will differ from
operating system to operating system. This is a result of the general problem
of naming resources in different operating systems. Each operating system has

3H -3



its own method of resource access, its own required format for the information
in the string, and Its own manner of interpreting the requests and information
encoded In the string. This method also fails to guarantee availability of the
required terminal 1/0 control facilities.

These parameter strings must be considered part of the KAPSE interface and
must be provided a standard interpretation from host to host. This requirement
is critical to portability of software across enviroments.

The preceding criticisms of trying to implement terminal 1/0 control in a
manner supporting software portability are not to be interpreted as a
condemnation of the Ada 1/0 facility. Program/terminal interaction is a
complex and dynamic problem due to the lack of standardization, the rapidly
changing capabilities of terminal devices and the growing expectations of
users. It would probably be inappropriate to address this problem directly
within the Ada language.

Since general program/terminal interaction is not supported within Ada and
is normally supported by operating systems in a non-standard fashion (if at
all), this facility must be provided by the KAPSE to insure its availability
and to insure software portability. The use of the string parameters of file
I/0 procedures to pass information for terminal I/0 control should be limited
(recognizing that it is neither sufficient nor appropriate for most such
information) and standardized in the KAPSE interface.

Discussion of Requirements

Synchronization and I/0 Streams

Many programs use input one line at a time. Even if a program asks for
only a character at a time, the operating system normally waits until It can
put a full line of input from the terminal into a buffer (or fill the buffer)
before it returns the characters one by one to the program. The end of a line
of input may be indicated to the operating system by con :rol characters, escape
sequences, or other specially designated characters in addition to the
"1carriage return" character.

For most programs, this line-oriented input buffering poses no problem.
However, there are some programs which require each Individual character as it
arrives and which cannot wait for a buffer to be filled or a special character
to be returned. Screen oriented text editors and some interactive graphics
programs serve as examples of such programs.

In input mode, these programs typically must receive each character as it
is input in order to update the screen. It is unacceptable to require the Ser
to Input a special character or character sequence after each primary, input
character to cue the system to deliver the contents of the input buffer to the
program. Some smart terminals can relieve the program of this burden, but dumb
terminals necessitate program control of screen update.

314-4



Some command language interpreters handle command lines character by
character, checking for correctness as a line is being Input, or permitting
in-line editting of the command line for error correction. Without the ability
to acquire each input character immediately, such interpreters could not be
produced.

The major objection to providing immediate acquistion of individual input
characters is the inefficient use of machine resources associated with this
operation. However, screen editors are considered to be more efficient of the
human resource which the machine exists to serve. The availability of screen
editors also seems to have a strong influence on user acceptance of programming
environments. This is especially true for the more sophisticated users.
Fortunately there is evidence of Improvement in the efficiency of this kind of 1
1/O, since a major computer vendor has recently announced hardware that handles
single character input several times faster than previously.

Since it would be unreasonable to make it impossible to implement screen
oriented text editors or advanced command line interpreters in the APSE,
immediate acquisition of input characters must be provided. The Ada language
definition avoids this issue and leaves the Ada programmer at the mercy of side
effects arising from system buffering of 1/O. This 1/O facility should
therefore be provided to Ada programmers through the KAPSE interface.

Of those programs which do not require single character input, some do
have requirements for modifying the set of characters and character sequences
which terminate a line of input. These terminators are normally kept in a
table against which each input character is compared as it Is received. The
LAPSE should provide for adding to or deleting from this set of terminators.
(A poor way to achieve single character input would be to designate all
remaining characters as terminators. This would generate a lot of unnecessary
overhead. Fortunately, the terminator table is usually too small to hold an
entire character set.)

On most systems, characters are lost if transmitted by the terminal before
a request for input occurs. However, some systems provide a "type-ahead"
buffer to capture these characters. Although this facility improves life
significantly for th- experienced user, it makes the user/program interface
somewhat more complicated. If the KAPSE provides a type-ahead facility, it
should also provide programs the ability to dynamically enable and disable the
facility.

Another side-effect on I/O is caused by the method used to queue I/O
requests. If all requests are put Into the same queue, reads and writes are
executed in the same order as they were requested. However on some systems,
read and write requests may be put into separate queues. In this way, a write
request which was queued after a read request might be executed before the
read. Although this facility offers great potential for confusion, it also
makes It possible for a program to output a lot of data (e.g., dumping a trace
file) while watching for a signal from the user to desist (without aborting the
program). Related to this queueing technique is the "break-through" facility.
Whereas the double queue system may permit only complete reads or writes, the
break-through permits a write to interrupt other I/O operations in progress.
In this way, an urgent warning message may be displayed without waiting for
other I/O activity to complete.

3H-5



Both the double queue and the breakthrough facilities are implemented
within the operating system. Therefore control of the these facilities should
be provided through the KAPSE interface.

Another feature commonly provided by operating systems is the choice of
synchronous or asynchronous I/0. While there may be some reasons for giving
programs direct control of this facility, it should not be required since the
same effect can be obtained using the Ada tasking facility.

Modification of 1/0 Stream Contents

It is common for operating systems to modify the contents of input and
output data streams, often in ways hard to identify. Stream elements such as
characters or sequences of characters may be added to a stream or filtered from
it as it passes through the system. Some elements may be converted into other
forms by the system.

Input streams may have blanks, form feed or other extraneous characters
added to them. Conversely, certain control characters and escape sequences are
normally filtered from the input stream and interpreted by the operating system

as9 signals, f or instance, from the user to abort a process or to stop or start
transmission of output data. Many systems automatically map lower-case
characters into upper-case or perform code conversion (e.g., from ISO ASCII to

To the output stream, operating systems commonly add character strings for
prompting a user for input. If the terminal link is operating in a full-duplex
mode, the system will echo input characters, putting them into the output
stream. Some systems which keep track of terminal display width and the number
of characters transmitted per line will add "carriage return" and "line feed"
characters to provide a "wrap-around" effect at the terminal so all the data
will be displayed. Line terminator characters in a file may be mapped to other
characters or character sequences appropriate for a terminal when the file is
being copied to the output stream.

In general, there are good reasons for each of these I/O stream
modifications. However, they are very dependent on the particular operating
system being used and consequently can have a serious impact on the portability
of programs and data. At times, these modifications cause real problems for
the programmer. Unwanted additions of characters to a stream can be difficult
to predict and handle. Some programs need to get all input characters without
losing any to system filtering. For instance, a program updating sensitive
files may require that it not be aborted at will by the user, but be permitted
to take remedial action before termination. Such a program will require any
control characters the operating system would normally filter and Interpret as
abort commands to be passed through by the system to the program for
interpretation. Another example of software requiring the pass-through of such
control characters is EUNICE, which Implements UNIX under VAX VMS. The testing
of an operating system or command line interpreter (perhaps being developed for
a different target machine) may also require all characters to be passed
through to it.

31l-6



While it may simplify the writing of programs such as command line
interpreters to have all input characters automatically mapped into upper-case,
other software such as ward processing systems are severely handicapped by this
mapping. Software documentation is degraded In quality when forced to be in
all upper-case letters. Yet, it should be possible to develop documentation on
the same system as the software it documents.

As regards modifications to the output stream, there are circumstances
when a programmer needs to suppress any system supplied prompt string or to
substitute his own. The echo facility also must be suppressed at times. It is
common for operating systems not to echo the password when a user is logging
onto that system, in order to protect the password. However, some applications
programs also require the use of a password and need to be able to suppress the
echoing of that password for the same reasons.

While not wanting to deny an operating system the ability ever to make the
modifications mentioned, the programmer at times requires the ability to
prevent these modifications. Since the kinds of modifications vary widely from
operating system to operating system, the KAPSE must provide not only the
capability to suppress these modifications but a uniform view of them as well.

Transmission of 1/0 Data Streams

The contents of I/0 streams have to be physically transferred between the

computer and the terminal. This transmission is characterized by such aspects
as transmit rate, receive rate, kinds of error detection and correction
implemented, number of bits transmitted per character or block (e.g.,
start/stop bits), synchronous or asynchronous interaction, duplex mode, and
others depending on the protocol used. These characteristics may change during
the period of program/terminal interaction.

Software frequently must be able to determine and modify these
transmission characteristics. When 1/0 streams are transmitted across
telephone links via modems, software may. require control of automatic dial
facilities, modem and link test -%pabilities and detection of hang-up or broken
link states (e.g., to provide automatic logout or suspension of a process and
reallocation of I/0 devices). The LAPSE should provide facilities for
determining and controlling these transmission characteristics and data link
devices.

Terminal Control

Many terminals available today support a wide range of functions for
controlling the display of information. Most CRT terminals permit positioning
of the cursor, forward and reverie scrolling of the displayed data, selective
erasure of parts of lines and the screen, and choice of characters sets (e.g.,
U. K. , or ASCII) and graphic rendition (e.g., underlining and reverse video).
Some terminals provide further functions such as graphics character sets,
raster graphics, automatic wraparound, various character sizes, saving and

3H- 7



AD-A141 576 ERNEL ADA PROGRAMMINO SUPPORT ENVIRONMENT 
(KAPSE)IERFACE TEAM PUBLIC REPORT VOLUME 3(U) NAVAL OCEANA 'SYSEMS CENTER SAN DIEGO CA P OBERNDORF 25 OCT 83

UNCLASSI FIED ROTC TD-52 VOL 3 FIT 9/2 N



2111111111 2
36 III

L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



restoring the cursor position, smooth scrolling, split screen display, ~tabulation, and self-test.

These terminal functions are invoked by sending escape sequences to the
terminal. Some terminals are also able to identify themselves and their
attributes, settings and status on request. This information is very important
in controlling the interaction of a program with the terminal and is sent to
the computer also encoded as escape sequences.

For instance, if the terminal supports the ANSI defined advanced edit
functions (e.g., inserting/deleting a line or inserting/deleting a character in
an existing line), writing a screen editor is grealy simplified and
single-character 1/0 may not be needed. Other terminals may provide the "new
line option" of generating carriage return linefeed characters when the
"RETURN" key is depressed and interpreting a received linefeed character as a
carriage return linefeed sequence, thus changing the control codes a program
must generate. If the XON/XOFF communication protocol is supported, data
transmission may be able to proceed at a higher rate and vithout fill
characters (inserted to provide time for the terminal to execute its functions
before receiving more data). Additionally, a given terminal may be capable of
emulating several other kinds of ter:uinals, permitting the program to switch
the terminal's mode of operation to somo-thing convenient rather than having to
generate special controls for it particular terminal. Most terminals are
also able on request to return an .~.jication of whether they are functional,
thus providing greater control of exceptional conditions to the software
interacting with the terminal.

Given these requirements for determining and controlling terminal
characteristics, the KAPSE must ensure that the escape sequences generated by
both software and the terminal can pass through to their proper destinations,
unimpeded by the operating system. With the great and increasing variety of
terminals available, it would be appropriate to provide an abstract terminal
facility, probably at the level of the KAPSE. The objective in providing such
a facility would be to permit programs to be less dependent on particular
terminal types and therefore able to run effectively in a wider range of
environments.

List of Requirements for Supporting Program Interaction with Terminals

1. interpretation of Ada file I/0 procedure string parameters NAME and FORM by
the KAPSE (not the underlying operating system) in a standard fashion

2. immediate aquisition and output of individual characters by the program
(single character I/O)

3. specification of the set of characters or character sequences which
indicate termination of an unit of input (e.g., carriage control characters
and escape sequences)

311-8



4. control over type-ahead facilities

5. control over the order of servicing of read/write requests

6. provision of a break-through facility

7. control over the addition of characters to the input and output data
streams (e.g., formfeed characters added to the input stream, and character
sequences added to the output stream to effect wrap-around or to provide
prompts)

8. specification of the sets of characters or character sequences which may be A4
filtered by the system from Input and output streams

9. control over modifications of characters in the input and output streams
(e.g., mapping from lover case to upper case)

10. control over the echoing of input characters back to the terminal

11. dynamic control of host transmission characteristics (e.g., rates, parity,
number of bits, full/half duplex)

12. dynamic control over the data link (e.g., for self-test, automatic dial,
hang-up or broken link handling)

13. unimpaired transmission of control sequences and information codes between
program and terminal (e.g., escape sequences for determination of terminal
type and settings)

14.. uniform view of all terminal 1/O facilities from KAPSE to KAPSE

Conclusions

Since general program/terminal interaction is not supported within Ada and
Is normally supported by operating systems in a non-standard fashion (if at
all), this facility must be provided by the KAPSE to insure its availability
and to insure software portability.

The use of the string parameters of Ada file 1/O procedures to pass
information for terminal 1/O control should be limited (recognizing that it is
neither sufficient nor appropriate for most such information). These strings
must be interpreted by the KAPSE (not the host OS) in a standard fashion.

The KAPSE must provide a standard set and a uniform view of functions in
this facility. Programs must be able to disable certain features such as
prompting, echoing, filtering, and line buffering. Software must be isolated
from host operating system side-effects and peculiarities by the KAPSE.

j 3H-9



These requirements must be met to insure portability of software and to
support high-quality user interfaces.

In addition, it would be useful to provide a terminal abstraction facility
in either the MAPSE or KAPSE.

Only character-oriented terminals have been considered in this paper.
Graphics display terminals, non-keyboard input devices (such as graphics
tablets, light pens and mice) and other interactive I/O devices (such as for
voice I/O) have not been explicitly considered. Although requirements for
supporting interaction with these other kinds of devices overlaps requirements
for supporting character-oriented terminals, the additional requirements should
be addressed by those seeking to define KAPSE interface standards.

31II



THE DIFFICULTY IN DEVELOPING AN

Ada ENVIRONMENT FOR BOTH RUN-TIME
AND PROGRAMMING SUPPORT ENVIRONMENTS

Edgar H. Sibley

Alpha Omega Group

1.0 Introduction

The normal way of explaining the relationships between the

hardware-and-"operating system" core of the machine, the KAPSE,

MAPSE, and APSE is by means of a "target" diagram, with this core

as the bullseye and the KAPSE, MAPSE, and APSE radiating rings.

This model will be used here, but the semantics of this model

must be defined, because they have been assumed to be "obvious"

by most writers. However, these same writers have then used their

own (non consistent) interpretations of the terms. Moreover, the

terms KAPSE, MAPSF, and APSE tend to be interpreted in different

ways by different writers, thereby compounding the problem. We

shall not attempt to make any rigorous definition of any of these

terms. Indeed, the provision of an exact definition of a KAPSE -

other than stating that a given implementation is an example of a

definition - would be a major research-and-development effort

for several persons working for some time (say fifteen people for

four years). Also, no definition Such as this, with substantial

complexity, is likely to be proven unless there is a validation

procedure that may be applied to any implementation.

31-1



Kernel Ada Run-Time Support Environment (KARTSE) is a term coined

to be similar to "KAPSE" but to deal with the minimal (kernel)

run-time support environment that will be needed to support Ada

programs. The RTSE is needed once a program has been developed on

a PSE. An RTSE is normally supplied as a part of the Operating

System (OS), but not all "target systems" come equipped with one.

This is because the Ada environment was originally deemed to be

one where the object code ran on the target system, which may

have much less than a normal operating system today...possibly

the bare-bones that allow several special programs to run in a

minimum hardware configuration. Thus the PSE may be substantially

different from the RTSE and a normal OS. When larger systems that

are normally programmed to use the same host and target computer

start to utilize an Ada framework, it will probably be necessary

to reconsider the relative roles of the PSE and RTSE.

A mechanism for developing a set of requirements for a KAPSE and

KARnSE that are effective in their interactions could be as

follows:

First, let us assume that the KAPSE and KARTSE are relatively

"empty" but that we start to fill them with all functions that

are absolutely essential. This implies that we have a definition

that is acceptable (to the KITIA, if not to the entire commun-

ity). This is a first pass at the specification of an architect-

ure of a part of the KAPSE. The specifications considered here

are those needed to support the data and program library

functions.

31-2



Second, we look at the run time support environment to see what

must be added to (or maybe subtracted from) a KAPSE in order to

allow it to be an effective "Kernel Ada Run-Time Support Environ-

ment" (KARTSE). Again, this is mainly considered in the area of

data and program management.

Third, consideration is given to the problem of moving a program

and test data etc. from a KAPSE to the KARTSE.

2.0 The Semantics of a Target Diagram

It may be assumed that there is a reason for a set of rings in a

"bulls-eye" or "target" diagram. The author believes that

such an arrangement is meaningless unless there is isolation

between the rings. Thus an action at one ring interface can only

be interpreted at the single ring under it, and no other. In the

model presented here, the number of the ring increases outward

and the interface designated x-(x+1) is between level x and level

(x+1); naturally,the x-(x+1) interface is the same as the (x+1)-x

interface.

jThe prime rules will then be:

ji Rule 1.

The orly way that a function in one ring can interact with a

j function in another ring is through the interfaces between them,

31-3



using the standardized protocols that are defined across these

interfaces.

Thus ring-1 c-mmunicates with ring-2 through interface 1-2, which

requires that the communication be expressed in a well defined

(local standard) language (possibly at a low level, not intended

for human understanding). Also, when a function in ring-3 commu-

nicates to a function in ring-i, it issues its requests at the 2-

3 interface and is no longer able to affect the outcome of the

action; i.e., the resulting reactions at the 1-2 interface are

hidden from and unavailable to the 2-3 interface (and hence the

initiator function at the ring-3 level).

The corollary to this statement is that it is not possible to

"drop through" from one level to another unless there is a "unity

function" that expresses the relationship between initiation at

one level and initiation at another level. This means that a

lower level is totally hidden to the using function or person,

except through functionallity provided at the interface.

As examples:

1.a. Let us suppose that a function (cl) at level 1 is initiated

by giving it parameters "a" and "b" by issuing the command at the

1-2 interface:

2i(a,b)

Let there be a function (22) that will cause initiation of cl by

giving, at interface 2-3, the protocol:

31-4



1

c2(a)

In order for this to be possible, there must be an action at the

intermediate level (2) that transforms the command "c2(a)" to its

equivalent at the lower level "cl(a,b)." Thus, in level 2, the

command c2(a) is validated and the additional parameter (b)

attached. It is necessary for the system at this level to add the

extra parameter (such as user class) so that its form will be

valid at level 1. Note that the using function at level 3 does

not have enough information to provide the extra parameter,

because it is "hidden" at that level; even if the "user" had this

knowledge, any call of type ci would be invalid at the 2-3 inter-

face or a call of "c2Ca,b)" would have the wrong format at the 2-

3 interface.

1.b. In the case where the commands have the same form (e.g.,

c'2(a,b) replaces the previous call at the 2-3 interface) then

the command must still be checked for form before being passed,

essentially unchanged (except for its "function name" being re-

placed by c; instead of c'2).

Such isolation is essential in order to allow changes at the

lower levels without affecting an upper level. This is a "level

isolation" concept.

I
Rule 2.1.
The implementation of the set of functions that may be invoked atLi 31-5



any level may allow interconnection between any parts at that

level and their implementation may produce further interface

rings, but the architecture that results must not violate the

first rule. Also, any additional interface created within this

ring is there for the convenience of the implementor of the level

(maybe a tool builder), and its addition does not imply an addit-

ion to the set of standard interfaces.

T'he implication of this rule is that a function (which may be a

tool) at a specific level may interact with other functions at

that same level, thereby providing a "suite of tools" that inter-

act, but that these tools may not interact in such a way that

they invoke another function at another level, except through the

"standard" interface protocols. Moreover, the set of functions

may provide the equivalent of an additional layer (e.g., inter-

face A is introduced into 2; the parts of 2 are then 2.1 and 2.2;

the interfaces 1-2 and 2-3 are unchanged, except that they may

be designated 1-2.1 and 2.2-3 respectively, while interface A may

be designated 2.1-2.2). However, the new layer is not defined

anywhere except in the particular tool implementation.

This rule is important when considering the problems in speci-

fying a protocol for inter-tool communication. Indeed, the imple-

menters are apparently the only people that can assure that the

interfaces are well defined. It is apparently impossible to have

inter-tool interfaces that are consistent unless they are:

(a) always at the same side of an interface and always conmnuni-

iating through the interface in order to be able to assure uni-

31-6



form protocol; or

(b) designed according to some well defined intra-layer stan-

dards. These "local standards" apply only to a single ring, and

all tools must adhere to these standards in order for them to

*communicate correctly. Manufacturer specific or industry volun-

tary standards could be defined; then, any additional tool that 1

adhered to the standard would be "mutually" portable. Such tools

would not necessarily be compatible with other manufacturers

tools, but their interfaces would be compatible with any other

tool using the same standards.

It may well be that use of this rule will allow better decisions

to be made on the location of the major software tools, such as a

data resource dictionary, configuration management, and database

management modules.

3.0 Data and Program Support In the KAPSE

Conventional DataBase Management Systems (DBMS) do not deal well

with bulk data in either the form of the so-called unformatted

file or of libraries of non homogeneous data, such as a set of

L programs that have been partially or fully link edited as a

L system ready to be executed. Such data occurs in streams of bits

representing machine structures: words, bytes, paragraphs, syla-

bles, or blocks, etc. The stream or its parts may be directly

or serially accessible. Such data is sometimes called unstruc-

tured data, and the system is said to have no knowledge of the

31-7



internal form of the data. This may be true in some cases, but

it does not capture the essential difference. For example, in

Ada, a file is said to be "associated with an unbounded sequence

of elements, all of the same type". It can be argued that the

system is required to know the element type, to ensure that all

users access it using the same element type.

A suitable treatment of bulk data is essential in the KAPSF,

because the entities that are controlled through a Programmning

Support Fnvironment (PSE) are primarily associated in storage as

bulk text (e.g., Ada source, compiled objects, documents, text,

and test data). In the past, the normal way to deal with bulk

data has depended on its usage. If it was an entire system, a

program, or a part of a program, etc., it was placed in a

"library" that could access the unit by its name. The structure

of the unit was generally simple or non-existent. If the data was

to be accessed by a procedure, then the data was stored as a

relatively conventional set of records in a file or in some

similar fashion (indeed, it could be stored as a stream of char-

acters or even as a stream of bits, but the procedures and the

supplied access methods were the only way that the data structure

was known). One of the special APSE data structures is, of

course, the Diana tree. This has a structure that has been stand-

ardized, and the fact that the Diana tree has needed to be made a

standard is an interesting example of the need for intra-level

standards - in order to allow inter tool action within a level.

Moreover, the fact that some designs today have problems with the

nompiler and related tools (e.g., the editor for Diana trees ard

the validation that is needed to allow this) suggests a greater

need for adherence to the rules in the previous section; it also
31-8



leads us to ask whether it was really sensible to look on compil-

ers and some other tools as a part of the MAPSE rather than the

KAPSE layer, because they provide interfaces that may violate

security.

3.1 The Data Support

As already discussed, there are at least three classes of data

that are important in the Ada environment. These are:

(a) Unformatted data; this is a broad class of data that may have

structure, but which has no structure that may be known to any

program or procedure other than through special communication

from a programmer or through a package and its relevant operators

(in the sense of abstract data types). This class of data could

be a report in character form (possibly internally indexed, or

part of a word processing system with a retrieval mechanism), or

it could be a traditional file (with a well defined file struc-

ture that needs a special access method - such as ISAM - to act

as an indexing device for rapid retrieval), or a "bucket of bits"

which may be the results of a transmission or a program. All

types within the class of unformatted data have at least one

characteristic in common - they consist of a stream of bits that

may have structure, but this structure is unknown outside the

suite of procedures that access the data.

(b) Standard Formatted Data; such data has a predefined format

that nas been previously defined by a community-of-users that use

a boy-scout method to ensure that all tool-using devices are

_ doirg so consistently. Typical of these data are the groups of

31-9



procedures that work on a commnon data structure. In a run-time

environment these may be a suite of personnel programs that

provide accounting, payroll, and personnel support services,

while the compiler and editor interactions (via Diana trees) is

an example of these types of systems in the APSE. Th7e difficulty .0

with such systems is that they rely on the good will of the users

(or the hard heads of auditors) and often are violated, either

deliberately or in error.

(c) Fully Formatted Data; this is seen in any database managed

system and in some structured Programuing Support Environments

(PSE). The essence of such data is that the environment is aware

of the structure of any data or part of the data. As an example,

the PSE being designed in the UK has a built-in structure that

assures that the program parts are properly controlled - thus

the subprograms of a main program are associated with it, and

moreover the particular version of a subprogram that is valid

with the particular version of the main program is associated

properly. Thus the "structure" of this data is an exact match of

the configuration that mujst be managed. Then the run-time envi-

ronment will be able to retrieve the required version of the main

program and with it all relevant and correctly versioned copies

of its subprograms. Of course, the abstract data type concept

also allows this, provided that the package definitions are

available to other programs and known by the progranmmers.

3.2 The Program Support

In order to support the programning environment, it is necessary

to have certain types of tools. These are ftategorized here as:
31-10



(a) Higher to Lower Level Language Translators; these are often

considered to be compilers, but in the Ada environment they are

split into parts - a compiler from Ada language st ements to a

Diana tree representation followed by a low-level code generation

from the tree to a target machine code program.

(b) Editor, configuration, and similar support procedures; these

are some of the tools that make it possible to enter and alter

language statements (and possibly change the Diana tree), to keep

track of program versions, and to generally provide a good work

environment for programmers.

(c) Program Library Support; which generally involves a device to

catalog and store the programs and procedures. As discussed in

the data support above, this library may be structured to provide

one type of configuration management, or this may be provided

externally as discussed later.

4.0 KAPSE and IKARTSE Interaction

The run-time support environment (RTSE) and the programming sup-

port environment (PSE) are not really easy to differentiate,

possibly because the PSE is really a particular type of RTSE; yet

an attempt to do so for the programming environment has led to

the partial definition of an entity termed a KAPSE. Since the

Stoneman document was approved, it appears that the Ada community

has forgotten that the prime reason for a programing environment

is to provide programs that !an be run - presumably in a run-[ 31-11



K

time environment. The idea of a host-to-target environment, of

course, has led to some of this apparent neglect, but most target

machines have a need for some environment, and it seems reasonab-

le to assume that future target machine architecture will benefit

from the definition of a standard run-time environment. Natural-

ly, any other run time environment that interacts with other
10

machine3/computing devices will benefit even more if a standard

KARTSE exists.

Much then has been said of the KAPSF, but little of the KARTSE.

If, as appears very likely, the Ada language is used to implement

logistic and other large scale "non-operational" (large scale

administrative) systems, then some of the requirements of a

KAR SE that were only marginally necessary will be more obviously

essential. These include the need for security features, a way to

store data structures and define the meaning of the data entities

(an information resource dictionary), a means for storing and

retrieving data based on these definitions (a generalised DBMS

with good user interfaces for query, table generation, and repor-

ting), methods for recording versions of requirements, program

structures and their relationships to data and users (a good

software configuration management system), and interfaces to the

system documentation (which can be a part of the combined config-

uration and information resource management system).

The DBMS-like features should include functionallity that allows

interfaces to a dictionary. Modern dictionaries have many dif-

ferent features, but they are all generally able to capture

compiler data to document it and usage by programs. Some are even

able to hold information on the users, security needs, and con-

31-12J



figuration management controls. Any controls between a DBMS and a

diction~ary, and even the configuration manager, could be imple-

mented through an "active "1 interface between the dictionary and

its users (automated or human). The value of the dictionary is

limited if it is passive - merely recording the status; the

value is fully realised when the system is active - acting in a

controlling role.

A short note on each of these features is now given:

1. Security Features.t

Obviously, if the RTSE is a target machine that is not receiving

any 2oninand signals after it is "started," then no security

checking may be needed, other than at the start. And even then it

may be unnecessary, because the target machine may be totally

isolated (i.e., secure physically from outside influence).

If the target machine must comhmunicate with other machines or

devices, then some form of interconmmunicational security may be

needed. But if the target is similar to (or even the same machine

as the host) or if the target has many external "users" (mechan-

ical or human), then there is probably a need for some type of

security.

There are at least three types of security that should be invest-

igated: User Checking, Procedure Validation and Initiation, and

Data Sen~sitive Checking.

User Checking is validation of the user (person, process, or
31-13



machine). It normally involves a check to see if the SIGN-ON

mechanism is valid and some "hand-shake"/password means of valid-

ating the user. Generally, only one such validation is needed in

a session.

Procedure Validation and Initiation occurs in two parts. The

validation takes place during the promotion of the procedure from

the debug library to the run-time library. This may therefore be

considered a Software Configuration Management function. It en-

tails the necessary checks that ensure that the program is fit to

run. These are generally a matter of checking that any referenced

data elements conform to naming and that debugging and other

checking has been acomplished. T"he second part (initiation check-

ing) is accomplished by a mixture of compile and run-actions.

This sharing of responsibilities depends on the architecture of

the PSE and RTSE systems, because the question of whether the

interaction of user and program is best handled as a user or

program function, and whether the interaction of program and data

should best be handled as a program or data function is archi-

tectural and performance oriented rather than design oriented.

As an example, a certain user role may be allowed to utilize data

from a particular file while applying the "Statistics-I" package,

but never when the cells of computation have less than five data

elements, and the local time is between 8am and 5pm, and this

user has not made the same request or used the same set of data

within the last 24 hours. In initiating this procedure, the type

of input data that is valid is found at compile time of the

Statistics-1 package, the matter of who, in general, may use any

procedure or this particular package to access the particular

31-14



file may be a property of the file, and the rest of the restric-

tions must be placed on the request by the system at initiation

time.

2. The Information Resource Dictionary

The term "Dictionary" has come to mean a set of automated proce-

dures that aid all types of users by providing a mixture of

normative naming, proper definitions, and reporting facilities

dealing with the major entities (data, programs, and people) that

interact in an information environment. The term "users" here

means both animate and inanimate initiators of dictionary func-

tions: e.g., systems designers, programmers, transaction proces-

sing clerks, query initiators, programs, and system libraries.

The relationships between these entities may be relatively com-

plex, and they are generally maintained so that the various users

are able to interact in an easy way with the dictionary.

The "passive dictionary" has no major role other than to collect

and report on the entities and their inter-relationships but an

"active dictionary" will aid by controlling as well as recording.

Thus the active dictionary will generally be able to provide at

least some of the following:

(a) Collect data definitions from the programs and database

definitions (Data Divisions and Database Definitions or abstract

data type and their package definitions). Normally it is also

possible for the system to both aid in generating these defini-

0tions and ensure (by use of a precompiler) that the data element

naming, etc., in the programs is according to the standards

31-15



identified in the dictionary.

(b) Allow definition of validation procedures or consistency

requirements so that the System can invoke them according to some

triggering mechanism - or at least include an automatic call to

the procedure during the compilation when a statement is found to

cause data to be input or changed, etc.

(c) Record the versions of the data and programs, and check that

the versions of data definition and database are consistent with

the version used in the programs (version compatibility). As an

extension, the software configuration can be captured in the

dictionary and some (possibly complex) controls enforced.

3. Software Configuration Management

A Software Configuration Management System (SCMS) is a manual or

automated System that keeps track of the documentation and soft-

ware of a complex information system development. Thus an SCMS

would have references to all requirements documents, changes

(proposed and resolved), all software developed, with test data

and results, all relationships between the "version" of the

programs, procedures, data definitions, etc. By careful use of

the SCMS, a well documented and easily recoverable system is

possible.

It is necessary to store this information somewhere, and as the

data structures are complex in an SCMS, it is reasonable to
31-16



consider a DBMS as its storage device. Moreover, the DBMS can

then provide the focal point of control. Thus one would expect

that the SCMS in an Ada environment could provide a dictionary

feature that is "active" and is able to ensures that the object

code programs (or their data manifestation, the Diana trees)

contain only valid dictionary names. In this case, the dictionary

could be implemented as a special program using the DBMS, and the

configuration management System could then be implemented as an

extension to the dictionary - using the tools provided for

dictionary extensibility as well as the procedural security and

control provided by the DBMS. The testing of new programs, or of

modifications would also be under the control of the SCMS, and no

move of a program to production status would be allowed until the

testing had satisfied all the SCMS conditions.

From the earliest days Of program~ing, there have been attempts

to retain and reuse large pieces Of code; indeed, the early

trigonometric functions and sort routines grew from such a need

to avail of other peoples already debugged routines. Today, with

software Costs rising it is even more important not to keep on

recoding the same pieces of code for different machines or for

different purposes (but the same algorithm). Methods are now

becoming available to allow systems to call out possible "Chunks

of node" to reduce the overall effort. The techniques again call

for the ability to utilize complex relationships to provide a

coverage for cataloging and indexing techniques for the classi-

fication of potentially reusable software. This may again

be Implemented as a part of an extensible dictionary.

31-17



From this discussion, it will be seen that the DBMS may be

defined as a software package that exists in the KARTSE and has

control over the storage of any data that has structure and

longevity. Thus a string of characters, having structure, may be

stored using the DBMS, and therefore the DBMS in a KAPSE/KARTSE

will have to deal with textual message or compiled programs with

their linked subprograms. It is clear that if a DBMS is to be

provided for use by the PSE it would be very convenient and

useful if the same DBMS were also suitable for applications

use. This would mean that there was a DBMS in the KAPSE to allow

for the addition of a formatted data concept to the PSE; as a

result, the DBMS could be used for other functions and if the

same DBMS were to support such actions as an ad-hoc query, then

the KARTSE would potentially have the same interface DBMS.

5.0 Conclusions with a Proposed Architecture

This paper was written primarily to propose that there was a need

to consider the use of the KAPSE as a KARTSE and to suggest some

of the problems in transitioning from one to the other. It seems

reasonable to look at architectures that have been developed for

Operating Systems, Database Management Systems, and Information

Resource Dictionary/Configuration Management Systems in the past.

One possible high-level architecture is given in Figure 1. This

shows how it might be possible to use the general architecture of

the Stoneman KAPSE for a combined programing and run-time sup-

port environment, but some additional controls would have to be

31-18



added to the compilation process, and the software configuration

management system would need to have control of any access to the

libraries.

The development of a standard combined programing and run-time

support environment for Ada would make future tools easily

transportable and allow real "software reusability," thereby "

reducing the rising costs of software while allowing major

systems of the future to be implemented in spite of the expected

"gap" in available programmers and systems implementers.

F 31-19



DATABASFS
WITH DATA STORAGE STRUCTURES

AND DATABASE SCHEMA

I

MACHINE HARDWARE AND

ANY OPERATING SYSTEM

I

I

ACCESS METHODS, IF NOT IN OS

I

I

DBMS.. .CHECKING AGAINST SCHEMA
DEFINITION ABOVE

I

I

MULTIPLE INTFRFAC S CF DIFFERENT
DBMS MODELS (COMPILE LEVFL)

I

I

QUERY LANGUAGE INTERFACES FOR

VARIOUS MODELS AND USER ITERFACES

I

I

I DATA I SECURITY I CONFIGURATION I LIBRARY I
I DICTIONARY I I MANAGEMENT I MANAGEMET I
I I I I I

KAPSE/KARTSE INTFRFACE

APPLICATIONS AND COMPILERS, ETC.

NOTE: The lines In this diagram should be Interpreted as ares of

a KAPSE/KARTSE with the top as the bulls-eye or oaeiter.

Figure 1. An Architecture for a Possible New Environment
31-20



MINIMAL HOST FOR THE KAPSE

William L. Wilder
SofTech

10

Abstract

The concept of a minimal host for the KAPSE is explored and several

criteria for categorizing the minimal KAPSE host are collected. This criteria

includes the users' view of the environment that the KAPSE has to support, the

Instruction Set Architecture of the host, the host's hardware configuration,

and the host machine's operating system. Some recommendations as to the actual

requirements for the minimal KAPSE host are given and several interesting

conclusions about the minimal host for the KAPSE are drawn.

Intro d u ctio n

As described in the "Stoneman" document, the Kernal Ada Programming Support

Environment (KAPSE) provides services to the Minimal Ada Programing Support

Environment (MAPSE) that allow the MAPSE to execute on the host computer and

that isolate any host dependencies from the MAPSE. The MAPSE provides the

program generation facilities that allow Ada applications to be developed and

then transferred to a target computer for execution. The MAPSE program

generation facilities include compiling tools and database tools, among others,

that must be written in Ada (per "Stoneman"). This means that a host computer

for the KAPSE is also an Ada target computer, and hosting (or rehosting) the

MAPSE requires a (re)targeting of the MAPSE program generation facilities and a

(re)implementation of the KAPSE for the host.

3J-1



The concept of a minimal host for the KAPSE would be useful in deciding

upon an initial host for a MAPSE or in evaluating candidate host computers for

rehosting a MAPSE. This concept would relate specific KAPSE functionality to

the host computer's capabilities, and this relationship could determine what

KAPSE functionality would be available to a MAPSE. The KAPSE for a minimal

host includes both the services provided by the KAPSE and the implementation of

the Ada language as defined by the Ada Language Reference Manual (LRM). The

Ada implementation must be supported either by an Ada run-time system, or

directly by the KAPSE, or by some combination of the t.:-. Additionally, the

minimal KAPSE host concept would begin the analysis necessary for designing new

host computers for which KAPSEs will be developed.

This paper collects the necessary criteria for determining a minimal KAPSE

host and categorizes this criteria. Some of the criteria are stated as

recommendations, not requirements, because of the desire to develop a complete

set of criteria for the minimal KAPSE host. Any recommendations in this paper

concentrate on the criteria and offer only opinions as to what the requirements

will be. These recommendations are based on the KAPSE implementations for the

Ada Language System (ALS) and the Ada Integrated Environment (AIE), and studies

on other possible KAPSE implementations. Research into the actual requirements
for the stated criteria could then add the necessary level of detail that

would provide a specification of the generic minimal KAPSE host.

Some terminology needs to be defined for categorizing the minimal KAPSE

host. These definitions include both the hardware terms "byte" and "word", and

the software terms "Ada program", "process", "task" and "subprogram". For the

purposes of this paper, a "byte" is eight bits of binary information and a

"word" is four bytes (or 32 bits) of binary information. An "Ada program" is

any compiled and linked entity of Ada source code that executes on a host

computer using KAPSE supplied services. In this paper, the term "process"

refers to an executing Ada program. An Ada program may be executed in several

concurrent instantiations, resulting in one process for each execution. The

terms "task" and "subprogram" are defined by the Ada LRM and are used only in

that context.

3J-2



Categorization of Criteria
I

The criteria for a minimal KAPSE host will be categorized according to the

users' view of the environment that the KAPSE has to support, the Instruction

Set Architecture (ISA) of the host machine, the host's hardware configuration,

and the host machine's operating system. The criteria for the user's view of

the environment are based on various "Stoneman" requirements, while the ISA

criteria are based on the Ada language. The criteria for the hardware

configuration are a combination of top-level "Stoneman" requirements and

implementation-level KAPSE requirements. The host machine's operating system

criteria are a combination of the KAPSE requirements and the Ada language.

The users' view of the environment is really their view of the MAPSE

associated with the KAPSE. Therefore the criteria for this categorization will

be for the MAPSE that must be supported by the KAPSE. Some observations on the

ISA will indicate possibilities for implementing various Ada language

constructs. The necessary capabilities for the Central Processing Unit (CPU),

physical memory and address space, I/O channels, online and offline storage,
and various peripherals will be outlined for the hardware configuration. These

capabilities are given at both a minimum recommended range and a more

reasonable level.

The three possibilities for utilizing the host machine's operating system

in implementing the KAPSE are: (1) implement the KAPSE on the host machine

without the operating system, (2) implement the KAPSE on top of the operating

system, or (3) implement the KAPSE beside the operating system. With the :irst

alternative, only the user's view of the environment, the ISA, and the hardware

configuration need be considered in categorizing the criteria for the minimal

KAPSE host. When implementing the KAPSE on top of the operating system, the

KAPSE should attempt to utilitize existing operating system functionality. The

approach of implementing the KAPSE beside the operating system can be viewed as

some mixture of the first two alternatives. The last two alternatives of

implementing the KAPSE on top of or beside the host machine's operating system

will be discussed in parallel (see the Operating System section).

3J-3



User s View of the Environment

The user's view of the environment that the KAPSE has to support must be

determined before the first criteria for the minimal KAPSE host can be

explored. This view of the environment can be broken down into the areas of

multiple-user/multiple-tool systems, single-user/multiple-tool systems, and

single-user/single-tool systems. The "user" portion of each system

characterization refers to the number of interactive MAPSE users that are

active at any time, while the "tool" portion of each system characterization

refers to the number of Ada programs that can be executing at any one time.

Some examples of these systems are: UNIX, which is supported as a

multiple-user/multiple-tool system on numerous computers; and personal

computers, most of which can be classified as single-user/single-tool systems.

Although no particular systems are discussed, this criteria for the minimal

KAPSE host will be based on existing systems, expected enhancements to these

systems, and new systems that will be available in the forseeable future.

The multiple-user/multiple-tool systems are recommended for the minimal

KAPSE host because it is generally accepted that the MAPSEs will be directed

toward these systems. Note that the KAPSEs currently being implemented for

the ALS and the AIE are supporting MAPSEs for multiple-user/multiple-tool

systems. It is assumed that the distributed-user/multiple-tool systems of the

future will be an outgrowth of these multiple-user/multiple-tool systems as the

distributed MAPSE comes of age. The single-user/multiple-tool systems are the

lower bound of the multiple user/multiple tool systems and probably not hosts

for any currently planned MAPSEs, but these systems could become the minimal

KAPSE hosts of the future when programmer work stations become part of the

MAPSE. The single user/single tool systems will not be considered because -

these systems are not expected to ever host a MAPSE.

Instruction Set Architecture

The Instruction Set Architecture of any machine impacts the Ada language

implementation in several major areas: (1) the machine's instruction set; (2)

the addressability of code and data; (3) the architectural facilities for

reentrancy, recursion, and tasking; and (4) the hardware support for

3J-4



e )tions. The instruction set of the machine should be comprehensive enough

to ensure that implementation of the Ada language constructs do not cause any

serious time or space penalties. The generated code should be reasonably

obvious; it should not be necessary to make complex choices between alternative

means of achieving similar effects or to contort the code in order to exploit

specialized instructions. The machine's instruction set should allow for

referencing data fields of various lengths--bits, bytes, words, and

multi-words. 1

The techniques for allocating space to declared objects in Ada subprograms,

and for their later access, should be straightforward. The use of special

instructions dependent upon the location or alignment of data should be

minimal. Data addressing should be simple; a direct addressing scheme in which

there is no need to use base registers and/or indexing in every reference is

Useful. Ideally, both direct addressing and Offset addressing capabilities

should be recommended so that the implementation of any Ada language construct

could Use either (or both) addressing schemes as required. When Offset

addessing is available, there should be no need for an elaborate strategy in

allocation of base or index registers when addressing data. Any arithmetic

required for these addressing purposes should be straightforward.

Code may be executed in a reentrant manner by the various tasks within a

single Ada subprogram (i.e., tasks can share both code and data); therefore the

generated code Must be reentrant. On many MAPSEs, it will be desirable to

compile Ada programs (especially large programs like the compiler) so that the

code cab be shared by several Users. Any Ada implementation requires the

handling of block-structured data areas because Ada is a block-structured

language, and, potentially, all Ada subprograms can be recursive or can utilize

tasking. This means that the capability to reference code or data via offset

addressing is recommended for implementing reentrancy, recursion, and tasking.

Some form of memory protection (probably along task boundaries) would be

A helpful in isolating the various data areas. Numerous stack or queue

implementations are expected to be present in the generated code, and specific

architectural support for stacks or queues would be a bonus, although many

successful implementations have been done for other languages without this.

3J -5



Hardware support for Ada exception handling ranges from those machines that

offer useful assistance in the implementation of Ada exceptions to those that

make exception handling very difficult. On some machines, the hardware

interrupt structure provides a convenient mechanism to trap and possibly

propagate Ada exceptions. This type of hardware support for Ada exception

handling is recommended. On other machines, it is very awkward or costly to

determine which of several possible Ada language exceptions should be raised.

Hardware Configuration

The hardware configuration must provide a powerful CPU, adequate physical

memory and address space, numerous terminal and printer connections, sufficient

online storage capacity, and offline storage capabilities. The processing

power of almost any currently available CPU with instruction execution speeds

in the sub-microsecond range (i.e., below 1000 nanoseconds) is recommended.

The address space could be implemented by the operating system (or KAPSE on the

bare machine) either directly in physical memory, or as a virtual memory space,

or via overlaying. Terminal connections equal in number to that of the

expected concurrent users are necessary in any interactive system, and several

printer connections are desirable. Online storage includes various disk drives

and possibly other direct access devices, while offline storage capabilities

include mountable media (e.g., disk packs) for direct access devices and/or

online tape drives.

A minimum physical memory size of 256 (20*18) Kbytes or larger is

recommended, whether or not all of physical memory is directlyaddressable

(i.e., having to use base registers and/or indexing for addressing). This

translates into 64 (20'16) Kwords or larger of physical memory, but at least

one Mword of physical memory (20020 words, 2*024 bytes) would be better suited

to the multiple-user/multiple-tool systems. A minimum address space of between

256 (20'18) and 1024 (20020) Kbytes is recommended and could be available

through actual physical memory or hardware support for paging (i.e., page

faulting) in a virtual memory system. This translates into between 64 (2*'16)

and 256 (24*18) Kwords of address space, but several Mwords of address space

(at least 20020 words, 2*24 bytes) would be better suited to the

multiple-user/multiple-tool systems.

3J-6
0



Various configurations of peripherals, such as terminals, printers, disk

drives, and tape drives, must either be supported directly by the KAPSE or be

accessible through the KAPSE. Hardcopy and video terminals should be available

and, if supported, the virtual terminal handler should be able to operate on

the video terminals. When available, the printer must be accessible through

the KAPSE to allow for the generation of listings. Disk drives with the

capacity of approximately 100 Mbytes and transfer speeds of approximately 500

Kbytes/second are recommended for the minimal KAPSE host to keep the KAPSE

database online. It is expected that disk drives with the capacity of 500

Mbytes or several disk drives with the combined capacity of a 1000 Mbytes and

transfer speeds of over 1000 Kbytes/second would be better suited to the

multiple-user/multiple-tool systems. When available, tape drives will be

supported by the KAPSE to allow for file transportation and archiving.

Operating System

In this section on operating systems, the primary discussion will concern

implementing the KAPSE on top of the host machine's operating system, with any

additional discussion of implementing the KAPSE beside the host machine's

operating system being in parenthesis. Any implementation of the KAPSE will

have to provide for concurrent users and, depending upon the characteristics

and utilization of the host machine's operating system, two distinct

possibilites for the overall KAPSE organization can be visualized. On the one

hand, the KAPSE could be organized as a single multiple-user subsystem that

would be active whenever the MAPSE is being used and which could serve

individual users. On the other hand, the KAPSE could be offered as an

operating system (or KAPSE) process that could be invoked by the user through

the facilities of the host machine's operating system (or KAPSE); thus at any

time, there would be an executable image of the KAPSE for each active user.

While either of the above approaches is quite feasible, in practice most

implementations probably will use a hybrid organization that combines aspects

of both (e.g., a control process would be invoked for each Ada user, but this

control process would use services provided by a single central subsystem).

Within the context of this hybrid organization for the KAPSE, such areas as

program execution, I/O support, and the KAPSE database will be addressed.

3J-7

4



1

Program execution includes invocation of, termination of, and cc .nunication

between processes associated with the executing Ada programs. I/O support

addresses support for the SEQUENTIAL IO, DIRECTIO, and TEXT 10 Ada packages by

the KAPSE. Both program execution and I/O support consider the ramifications

of Ada tasking on their respective implementations. The KAPSE database area

includes the underlying file system of the host machine's operating system (or

a disk area maintained by the KAPSE) and the KAPSE database access software.

Program E x e c u ti o n

Whenever an Ada program is executing in the KAPSE, certain basic facilities

should be available in that program's execution. These facilities may be

viewed as an extended run-time environment for the Ada programs provided by the

KAPSE on the host computer. Program execution should offer the ability to

invoke a specified program from within a running process; establish

communications between the two processes, if possible; and return control and

status information to the caller upon completion of the invoked process.

The basic recommendation for Ada program execution by the host operating

system (or KAPSE) includes either (1) creating another process for the Ada

program invoked and each process executing independently, or (2) having the

invoked Ada program subsume the calling Ada program's process during the

invoked program's execution, or (3) suspending the calling Ada program's

process during the invoked program's execution. Some form of message passing

between processes must be available at least during program initiation and

termination, and full inter-program communication should be available if a

suitable form of inter-process communication is supported by the host machine's

operating system (or can be implemented within the KAPSE). Additionally, any

implementation for program execution should permit processes to exploit the

resources normally available to a individual process, rather than constrain the

entire set of processes to share these resources.

When implementing on top of (or beside) an existing operating system,

multi-tasking represents one of the most challenging aspects of the Ada

language. There are two obvious approaches; either use one process for each

task in the Ada program, or use one process for the entire Ada program with the

3J-8



Il

I
Ada run-time system implementing multi-tasking by multiplexing within that

process. Taking the Ada LRM into consideration for tasking suggests that the

process structure of the host machine's operating system (or KAPSE) is unlikely

to provide all of the facilities that are needed for the Ada tasking model.

Therefore most implementations probably would adopt the approach of

multiplexing within a single process. The multiplexing approach, however, has

its own potential difficulties in pre-emptive scheduling of higher priority

tasks and in time-slicing of tasks within priorities. Also, a multi-task

process implies multiple stacks, which must be isolated from each other.

I1/0 Support

IO support must be provided for both sequential and direct access Ada

files, as defined in the Ada packages SEQUENTIAL 10 and DIRECT_10 respectively,

and for the production of human readable text as defined in the Ada package

TEXTI0. Since operating systems already provide these basic file access

methods, it is recommended that the I/O for sequential and direct access Ada

files should utilize the available operating system functionality.

Unfortunately, tasking considerations may require that the KAPSE provide all

I/O support (see the tasking discussion below). The production of

human-readable text also utilizes sequential access Ada files and the host

machine's operating system (or KAPSE) functionality, in addition to the actual

KAPSE or Ada implementation of TEXT 10.

Task switching should occur when one task of a multi-task program initiates

an I/O transfer and suspending the entire process is undesirable. With a

multiplexing implementation of tasking, however, such behavior may be difficult

to accomplish. The host machine's operating system may suspend the entire

process on the first I/O request or may refuse to accept later requests until

the first transfer is complete (any KAPSE implementation should do neither).

Where multiple transfers can be initiated, there may still be a problem with

the maximum number of files or I/0 streams that a single process can have open

- concurrently. There also may be some difficulty in awaiting completion of any

one of several requested transfers and, in particular, the pre-emptive

scheduling of tasks demands that notification of completion for an I/O transfer

be given asynchronously.

I
lb 3J -9



KA P SE Database

There are two extreme approaches to the arrangement of the KAPSE database

structure on (or beside) the underlying file system of the host machine's

operating system. At one extreme, each file in the KAPSE database could be

mapped onto a file in the underlying file system, so that there is a one-to-one

correspondence between the ICAPSE database structure and the files in the

underlying file system. At the other extreme, the KAPSE database could obtain

a large file from the underlying file system (or a single area of unstructured

disk space) and the entire KAPSE database structure could be implemented in

this large tile (or disk area), relatively independently of the underlying tile

system. Various approaches falling somewhere between these two extremes are

possible and most likely will be the implementation of the KAPSE database.

The recommendations for implementation of the KAPSE database access

software are essentially the same as those of the overall KAPSE implementation.

The KAPSE database access software may be implemented as one central process,

or as a process instantiated by each individual user, or as a hybrid approach

in which part of the database access software executes locally in the user's

processes but communicates with a central process for some services. Again, it

is expected that the hybird approach probably will be adopted by Most

implementations Of the KAPSE database access software.

Whichever of these approaches is adopted, potential problems will be

encountered. A centralized approach must be able to identity individual Users

in some appropriate way for checking database access rights, while a localized

approach must be able to maintain the overall consistency of the KAPSE database

through synchronization of access. The hybrid approach could solve these

problems by having the central process access the database on behalf of the

user process to open the underlying file (or a portion of the disk area), and

then have the User process read and write to the tile (or a portion of the disk

area). Unfortunately, many operating systems do not permit open files to be

transferred from one process to another (any KAPSE implementation should). All

KAPSE database access problems essentially arise from the need to permit access

to the KAPSE database from within the MAPSE, while guarding against non-Ada

access and achieving reasonable efficiency in the implementation.

3J-10



Conclusions

The criteria for a minimal KAPSE host have been explored by their

categorizations and several interesting conclusions can be drawn about the

environment, the ISA, the hardware configuration, and the operating system. The

initial user view of the environment for the MAPSE (and its associated KAPSE)

are the multiple-user/multiple-tool systems and any minimal KAPSE host

recommendations that have been specified in terms of these systems.

Additionally, the MAPSEs of the future most likely will expand to include both

the distributed-user/multiple-tool systems in a distributed MAPSE environment

and the single-user/multiple-tool systems with programmer work stations;

therefore the recommendations for the minimal KAPSE host will change. $

The host computer's ISA should provide a comprehensive instruction set with

sufficent data addressability and the necessary architectural features to

support reentrancy, recursion, tasking, and exception handling since the Ada

language must be available in any MAPSE. These ISA features directly relate to

the efficiency of Ada programs and, therefore, the overall productivity of the

MAPSE, but are not obvious criteria for minimal KAPSE host because, for

example, a restricted instruction set could be offset by an extremely fast

instruction execution speed of the CPU.

The critical components of any hardware configuration that should be

closely examined in the minimal KAPSE host are: instruction execution speed of

the CPU, physical memory and address space, and online storage capacity

(including transfer speed). Other components (i.e., terminals, printers, and

offline storage devices) of any hardware configuration are not as critical, but

provide the necessary user interface to the MAPSE. The expandability of the

hardware configuration should also be considered because, although it will

not directly affect the criteria of the minimal KAPSE host, it does relate to

how an individual host might evolve as the needs of the project or projects

change. More main memory may be provided, the number of terminals can be

increased, additional disk drives may be connected, and other peripherials

(e.g., remote and teleprocessing devices) utilized.

3J-11



The options available for utilizing the host machine's operating system

when implementing the KAPSE are either to use no operating system at all or to

implement in conjunction with operating system (i.e., either on top of or

beside). Implementing the KAPSE directly on the hardware provides all the

implementation freedom and problems of a bare machine. The ideas presented

about the KAPSE implemented in conjuction with the host machine's operating

system could be incorporated into the operating system functionality that must

exist in a KAPSE for a bare machine. When implementing the KAPSE on top of or

beside the host machine's operating system, the KAPSE should attempt to utilize

existing operating system functionality and reduce the amount of implementation

effort required. If the host machine's operating system does not provide the

necessary support, the KAPSE must be able either to provide the functionality

or limit itself to a restricted capability.

Acknowledgment

I would like to thank Patricia Oberndorf of the Naval Ocean Systems Command

and Rich Thall of SofTech, Inc., who are also members of the Navy's KAPSE

Interface Team (KIT), and Dr. john Cannon of the University of Maryland for

reviewing a draft of this paper and offering many helpful suggestions.

3J-12



References

Reference Manual for the Ada Programming Language, proposed standard

document; U.S. Department of Defense; July 1982.

Requirements for Ada Programming Support Environment, "Stoneman";

Department of Defense; February 1980.

Ada Language System KAPSE B5 Specification, draft; SofTech, Inc.;

Feburary, 1981.

Ada Integrated Environment: KAPSE/Database Type B5, draft;

Intermetrics, Inc.; June 1982.

PASP/ASP Ada Study; SofTech, Inc.; April 1982.

Ada Support System Study, Phase 3 Report NSupport System Interfaces";

System Designers Limited; November 1979.

Ada Support System Study, Phase 4 Report "The Initial Host"; System

Designers Limited; April 1980.

3J-13



I

OF MICE AND COMMAND LANGUAGES:
KAPSE INTERFACE SUPPORT FOR
INTERACTIVE TOOLS

Roy S. Freedman

Hazeltine Research Laboratories

1. Introduction

£15 tools trat cen be cotrolled by a hmn r quire an interface

to suort the interaction between a dae-ie that the husan cmnrols

directly and the tool that Is to be controlled. If We went theM tools

to be transportable across £ Ss * then EM intsrf&aes mist be provided

that 04VOft thi0 ierati on. This paper prOW1des a rationale for a

future set of draft 1 interface specificatlons for tool that

intert with the huin, throuq the XISK (and tot directly thxou4g the

iwet OpZea1CI syotm). These tools (and necessarily, their intertace)

are maZre bY' Special interactive hardware devices. mIri tools that

are ia-wcters-ied by their important iterwtive features are- c ad

lanquaqe processors. editors and wyoliC debug"ers Other aisi too1

that have iportant interactive comonents are Mi toolA 00otfiguratiMo

COmtzol tools, and dIsply tools. To pemit transportability, these

tools conwmAcate with the MUME and with a deim interface that my

uodel a terminal kyboard a termainal display (C screen), a light-pan.

or a "us."

in this position paper, ve are ooneroI with nelium the mwu

dev ce Interfaces that support the humzn tool user. Thme nterfac

ar Uortnt In order to permit transportability of exriting tools Wd

to help future APW builders develop nwr tools that eloit mor

pmerftl (and less 0enOIve) hardare f~nftinality. HUM of the Ideas

V 3K-I



in this paper were reftned fro an earlier draft with the comments of

the members of KITIA orking Group 1, R.Thall, and R.Fraxl.

2. The Nature of Interactive Tools

interactive tio interact with a human on a variety of leveis.

The Cracteristics of theme levels have been detailed very carefully in

1.31. & basic taznomy shows that these tools can be classified as

having -Inu." "fill-in-the-blanks,- or "parametric" human interfaces.

All NSPSZ and APSE tools imntioned above can be classified by this

tamnoy. Pewer tools and environmnts (for exmple, Sa.llta.lk-so.

Interlisp, Apollo Aegis, and Apple Liza) emplolt this taxonowy, by

offerinq the human user a choice of various odes" he would wish to

interat. For zeample, a tool may Initially assume a prmtric node,

but my then switch to a menu mode if the tool user is regarded as

" ier e "ed by m time-out uschanlm. Thes environents

frequentlT use several lungs or windows" displayed simultaneously on a

screen (for output), and use pointing devices for input in eddi&tLon to

the terminal keyboard. These features ae not explicitly built in

today a APSs but are seen in other prograng support enviroinnts.

Thw Interlisp environment (referenced In section 4. D.4 on command

languaqge and control In Stonemn) Is an emple of on- s

emiroumwt. All tools are completely integrated since the comnd

lanqAqe of this envirmormet Is the same a the target application

lanquae. Sm llemntations support process invocation in

conjunction with window creation, so that a humn user can sme how his

tools Invoked other tools. This gives the illusion of performAn

several tasks simultaneously at "different- terminals. When cowpld

with an Input device used for pointing frequently a "wmie-), humn

3K-2



productivity Is enhanced. Certain textual (keyboard) comans can be

replaced by a menu mode, working in onjunction with push-buttons on an

input pointinq device. Thls device can also be used to facilitate the

m nt of windows. This further given the human more control over his

interaction.

This mltiple windovinq capaIlity is available not only in

nterlisp. Several powerful editor tools (in particular, IDCS) support

multiple windows on a variety of termiLals. These tools are hosted on a

variety of proqrminq envizrnts. The AXI tool aso supports a

windauinq capabi lty, and Is suppoeed to be transportable to both the

The ALA and A= have the capablity of supporting many features.

Tha LS provies for screen ad text modes for the editor but this

reflects the interface of the editor and the VAX VMS operating mystem.

"0 IZA editor Interface does not explicitly utilizeA the DPI! since it

uses the standard VMS supported editor. (Boever, the use of this tool

my be only temporazy. ) The AIE has an ZMACS-like screen editor (without

a maltiple windowinq caob.ty). The device support for this editor is

handled by the DKPI interfaces contained in the terminal handler

packaqes. The A= desiqners are aoa of possible modern extensions to

their enviroent by allowing for a mare powerful display capbility

On pfe 115 In the 9-5 for the AX XP (IU-678-2 NM er 1962) it Is

stated that

it is ected that the terminal handler will be enhanobd
to support mult iple pzogrms simultaneously on serae
parts of the screen, with additiona control characters
for owing between the various screen window.

3K-3



The Ur, APSE also recognizes the need for highly interactive

input-output. A -Vrtual1 terminal" package 2s to be provided for screen

addressable tools. Again, this is similar to the AlE design, but no

alicit M<PSE Interface is provided for these tools.

Thee requirsents are also found in section 4.D in STOKD@., where

several categories of interactive devices are specified, and where it Is

also obserevd that "the Sm control signals will be accepted by the

terminal Interface routines free all devices of these types." If these

devices are to be supported in future APSEs, and tools that use these

devices are to be shared between APSEs, standard Interfaces mst be

provided in order to support "devices of these types." If these

Interfaces are not provided, transportability of tools that use thes

devices will be very difficult to achieve.

3. Device Dependent Intera'ctive Tools

2he Ada input-output pack specification. DIRECTIO and

S UTIAL_.O provide interfaces to -virtual" file-lJe structures.

Th" packg specifications are adequate for interaction that is

text ua.ly oriented. These package specification. are good interfaces

becaum their semantics are defined in tem of an abstract model (the

"virtua- file). This existence of an absrtract model for iPSE

interfaces in an exaple of the property of -capacity transparency,"

I l1. DIXW.IO and SBDrrITIAk o have the property of capacity

transparency becaus they are defined in ter of an abstract edel of a

file.

3 K-4J



The other input-output package that Aa provides In too qneraa and

supports no virtual model of any input-output device. An observed in

(21, the package specification for LOKXZVEL-1O In totally inadequate to

provide for many important MM services that an Interactive tool must

utiize. This package specification relates to the Input-output needs

for an eedded application-specific target.

m now suqqes m other abstract models of input-output that can

be used to help express the semantics of KAPSE Interfaces for

Interactive tools.

Most APSE tool builders define a KAPSE Interface package called

TUU3L1O or U ( or m other similar variation ) that

supports all interaction that a human tool uaer night denime frc a

no-file-like device. In order for this interface to be standardized, a

rtual tezinal" or abstract model mst be provided. The problem

that AP builders mom to be having in this area are that the differen

APSZ builds use different abstract mod ls for their "terminalA." Theme

problems are ompmunded by the fact that a termin.l Is treated as both

an input and output device. Zn reality, not only are the termra~l Input

and output functions loqically distributed, but they are also physicaly

distributed as well. It is suggested that these terminal input-output

packaqe specifications be functionally distributed into KZTBOARDER_

( mhasizinq input) and DISPLaL__XlY ( empas.zing output).

As pred Cox observed in [2], the keyboard input interfaces in both

the ALS and AIX have much to be desired. A standard lUCT83ARD_1NT

XANM interface would have to model sing. 1 Character Input and line

oriented Input. Other requirements (that Include Character teminator

tables ) for such a standard are succinctly grven in (21.

3K-5



IYDOA_ -IPU SupPorts the typed human input associated wth ch&aacters

and text.

Typed human input can also be asOocIated with addresses on a

screen, either through the arw (or control claracters) of cursor

control, or with the aid of a pointing device. This functionality can

be accdated within the packae specification for KJMTBO#MZW by

Including inside It another packaqe specification. This package

Specification (wtUicb we will call pacamge NO=E) Will support devices

that have the capOility of addressing the screen. where the ressing

aschanim Is not necessarily associated with a keyboard. Wit-mapped

Addr*esnq would be supported by pacage

P&Ckaqe NO= can be used to Provide the KU interfaces for the

support of track balls, lght pens, and conventional ouse (ice). One

Iportant requirmnt for the input facilities of this packA is that a

function be provided that senses the memon of the Input device. This

movMnt mist also be coordinated with the display on the screen to take

advantaqe of its Interactive nature.

Auio Input can also be provided in a similar fas .on A package

specification can be developed to support a transducr or a microphone

and would help support tools requirIn audio input.

Package specification DISPLRXA._OfLW can contain other pacage

specifications that support the functionality (aid granularity) of

output evic". One specification can support the functionlity of a

teletypewriter. Another can Support the functionality of a

chara ter-qsneration display, which has the caablity of addre.ing

-ara-term on the Ispay. This would support a (Lmited) winoing

3K-6



Capsility. Another pakage specificeation can support the powirful

functionality of a bit-sapped display, where individua~l pl~rls can be

addreseed. Another packsg can Also be developed to provide for a color

capbilty for all display termlials.

As obsererd above, audio output can also be provided by a package

that supports the capailitie. of a transducer (a speaker).Tw

pakaes my be specified to provide for sonoaural and stereo.

At this point, w observe that there my be a good deal of

difficulty in transporting tools across APSMs even if w have

rigorously defined MMU interfaces. The issue here IS ultimately that

of hardware functionality. For exapl, a screen editor can hardly be

traspotedto a Implementation consisting of a teletypewriter. If It

Is assumed that "a.110 ARS to be built vil onlXy %stilise

teletypowciteru, there ay be a temtation (amng XAM Interface

-t- dard specifiers) to ignore the Interface requirmn -1ta fr

nan-teletyPsvriter Input-output devices. Even though this SIOMLe Is

sonowit unrealistic * it *h~mm that a danger exists if a short tarn

xPSE interface standard (reflecting present APSE tools and Input-output

devices) bems a "de facto" long term standard. Consequeftly, the

quidinq philosophy should not be to design KAME interfaces to blas

future tool builiders. This may happen if certain ahort-tetm IE

interface efforts are to be rgarded am long-term standards.* This

effort m:y not standardize VPSE interfaces that are general (Or

eaztsnsible" - me6[@ ) ernh to allow future tool builders My

leeway. consmecuently, these future tool builders would be ftrve to

bypass the DISE and buil.d a tool that interfaces directly with the host

operating spstim. Thstool would be easily transportable (even thmap

3K-7



It would have been within the technology to insure that the tool be

functionally transportable had the suitable JPSE Interfaces existed ).

An analogy with the Ada language can serve as a possible paradigm.

Just as not every Ada progrm utilizes every Ada language feature, w

anticipate that not every APSE wil utilize every (long tere standard)

USE Interface. Different tools will use different subsets of

interfaces (just as different Ada applications programs rarely use every

Ada language feature).

4. Models for KAPSE Interfaces

KRPS Interfaces that support, as Stonman says, "all devices of

thes types," should conform to a model. "i iodel mist be specified

so that conformance can be checked, and e must alo be careful so that

the del does not restrict any innovation in device technology.

Two qood prototypes for these TAPS interfaces have appeared in the

literature. They both define their device models omwhat differently.

The first met of prototype lP interfaces in found in a

coLlection of Nodula-II modules E51. The Input-output support of

Interactive devices Is defined in term of the specified interfaces,

the "virtual devices" are those entities that conform to the Iodula-1I

modules. Theme -packages" contain m Inform.l semntics associated

with the device functionallty discussed above. S s ls of the

semantice of these devices are contained in the Hodula-X1 "packages"

called LineDxaw.ng, House, and windowSandler.

3K-8



A second prototype for thee KRPSE Interfaces is an International

graphics standard called WW (Graphical Kernel stais) (6] . s

definse Input and output In tern of a set of "logical" devices.

Interfaces to thes devices my be mplemented In a numer of ways. For

exmple, the abstract devices for input can be specifled in Ad& by

type CE Is (CHOICEt, 2 WC-WOR, PICK, STRIOG, VAIM2WOR)

The literal CHOIC can msodel the buttons ("eyes") on a mouse, T W31MR

models position (of a moving mouse), PIC can be used for Menu

selection, and STRING and VRIAOR provide for the input of text string

and the Input of a real nmber, respectively. GIM also defines certain

"attributes." These are classifid according to "Primitive" (pattern

types and indices), "semnt" (visibl3ity, highlighting. 0 eu

transformttons), and wozkotatIon" (pattern areas, representations).

The GKS approach Is to f irt definw the properteM of an

=abstract," generic device and then worry about plamsta.t Ion of the

Interfaces. any programIng language would be suitable for this

implmentation. Mcent articles speak of the suitabiity of DASIC and

pM for implamnIng QM. The Modula-II approaft is to first; defU

the Interfaces (in term of mdula-rl modules) and then worry about

finding devices that can conforu to these Interfaces. The dlfference in

thm approactes are that the =5S approach seem more "top-down," and

thus sore suitable for lom zae Specifications. The Modula-I1

approach msr more -bottom-up," and therefore more suitable for a

short-+.er effort.

3K-q

---



The need to concentrate on long term standards should neither be

undereetimated, nor should one diiss these newer prograin

envlrorments as being several year. away. One interesting project

involving a "newer- programmnq support environment is being spoaored

by the Science and Engineering Research Council(SEW) in the United

KinqdCW71. This project Is developing a high-qUality, "ca018rcially

viable" personal workstation, including high resolution graphics, and

also having the ability to input graphical and non-grahpical input

(epeclally voice). An fax an standards are concerned, SEW has picked

GKS for graphics, X.25 for netwozks, and Berkeley Unli for its "KAPSE."

Ais sc heduled for SPC Iplentation. (The norr-A SERC envIxronent

was targeted for comlletian In June, 1962.) If we want to eploit thes

tools fr these neer environmnts by transporting them to other APSZ*,

we should insure that a long-term MWM interface standard be developed

that will support the device functionality that these tools will use.

5. References

f11 Garqaro,A.,* "Prorn Invocation and Control," KITIA 1N
0. I-4002.3, October, 1992.

[21 Co, P. ,'"JSE Support for Progrm/Teriral Interaction," KITIA I
W0.l,159 r, 1992.

(31 L1ndquift,T. 3.,-A Tamp of Commnd Language Features and Need
Underlying Support, =KITA H 1.1, G October,1992.

E41 Noree,3R.AMW NSSNZ TO KITIA WG.l-l4 NK 3.993-

C51 wirth, K., i UMUM tv m D U-,Spriger-erlagWww York 1992.

(G1 M'o 1.3. ,et al, "GK-1b First Graphlos Standard,- TZX COIWIM
imcs, VOL. 2, no. S,July, 2.

(71 Bopgood,F.Xw1tty,R.W., "F and Advanced Paster Graphics
Ibrktations ,- rM OU MCS, Septmber. 1902.

(91 StaAM.i,. OA RsLzos q ftx a Tool Matenston auradig,- K* T A
RM. POITION PU, August,1"2.

3K-10



EVOLUTION OF AN APSE INTERFACE MODEL

Timothy Lyons
Software Sciences Ltd. United Kingdom

Introduction

This working paper traces the evolution of a model for the interfaces

present in an Apse. The various models that were developed are explained,

and their deficiencies are outlined (rather than just explaining the

current model) as a means of giving greater insight into the models.

The models are based on the current Apse designs (that is the US Army

ALS, the US Air Force AIE, the UK Ada Study and Olivetti's PAPS). However,

it must be emphasised that misunderstandings are solely the responsibility

of the author.

The four designs mentioned are sufficiently similar in their overall

architecture that the models, with the exception of minor details, apply

to all four designs, but of course with different terminology for each.

We feel it is most important to gain an understanding of the architectures

and interface models of the existing designs, as a starting point, rather

than to try to develop an abstract or "ideal" model.

Why Have an interface Model

It could be argued that a model of the interface is unnecessary, and that

all the interfaces could simply be listed one by one. A model however,

allows classification of the interfaces into different types, with the

potential for different descriptive methods for each type. In addition

it might provide~ a means for checking whether the list of interfaces is

complete.

L 3L- 1



MODEL I - Overall System Architecture

We have been using an overall architectual model to explain the relation-

ships between components, for some time. A simple version of this, which

captures the essential points is shown in figure 1, while figure 2 shows

a more detailed version including the target.

If we consider just the host, what we (and the other development teams)

have called the Kapse interface (shown on the diagram as the public Kapse

interface) is provided by the syntax and semantics of a number of Ada

packages which are link edited with, or in the same address space as, the

user's Ada code. The run time system for the host is similarly linked

with the Ada code.

A certain amount of processing or buffering may be carried out by what we

call the Kapse packages (eg AIE Kapse I/F packages) but most of the

processing is carried out by what we call the Central Kapse or the Kapse

database.

All the developers describe the Kapse interface in terms of the facilities

offered by the Kapse packages, rather than those directly offered by the

Central Kapse.

The developments differ in the following minor respects.

a) exactly which packages constitute the Kapse interface. For

example figure 2 (drawn for 1980 Ada) shows TEXT 10 as a

Kapse interface, but other developers may regard this as a

higher level interface built on a BASICIO interface, with

the latter being the Kapse interface.

3L-2



b) the exact mechanism of cormunlcation between the Kapse packages,

the run time system and the Central Kapse. We show all

communication as passing through the run time system, but

alternative architectual details are possible, for example with

Kapse packages communicating directly with the Central Kapse

as well as with the run time system.

c) we have shown the Kapse database as a separate item from the

Central kapse. It may instead be regarded as an integral component

of the Central Kapse.

This interface model provides an effective description of the implementa-

tion of the lowest levels of interface in the system. However it does not

deal with other interfaces, for example between the system and the user.

MODEL 2 - Single Level Model

This model is based on that developed by C. Forrest of TRW in support of

the KIT. Figure 3 shows the (public) interfaces in the UK Ada study

design drawn according to this model.

The model attempts to show all the interfaces in a single uniform level.

Interface K is the public interface to the Kapse, that is, the same

interface as in the previous model. Now, for clarity, the internal

implementation details of Kapse packages and central Kapse etc are not

shown. These internal details are in any case irrelevant to the user.

U1 is the user interface directly to the host operating system. Generally,

the aim is that the host should be hidden as far as possible, but this

interface may perhaps be needed for logon. U2 is the user interface

directly to the Kapse, for example for break in or emergency abort of

programs etc. Il is the special interface by which the Kapse invokes

(activates) the user's command language interpreter (normally the standard

Mapse CLl) when the user logs on. U3 is the user interface to the CLI,

3L-3

V



consisting of the syntax and semantics of the user commands. 12 to 19 are

the various invocation interfaces to the main tools, by which any initial

start-up parameters are passed; similarly U4 to Ull are the various user

interfaces to the tools. There are certain tools, to do with maintenance

of the system, which may be invoked and used in a special way, these are

shown with interfaces I10 and U12. Finally, the inter tool compilation

interface covering the structure and use of the program library and

intermediate languages is shown as M.

The difficulty with this model lies in its attempt to represent things

which are at different levels at a single level. For example, consider

the interface t13 between the user and the command language interpreter.

This is entirely a conceptual interface; the CLl does not really

communicate directly with the user, but does so by 1/O calls to the Kapse.

The Kapse in turn passes these requests to the host operating system, and

thence to the terminal. The diagram shows both levels of interface

together.

MODEL 3 - Two Level Diagram

In an attempt to remedy what was seen as the main difficulty of the

previous model, a two level model was developed, while retaining the

previous overall structure of a diagram showing interfaces between

components.

The two levels are termed the "mechanistic" level and the "conceptual"

level. This layering is suggested by that of the Open Systems Inter-

connection Reference Model (051) of the International Organisation for

Standardisation (ISO). However, the contents of the layers is developed

entirely independently of the OSI model. The lower mechanistic layer

provides the facilities on which the upper conceptual layer is built.

The terminology is quite different from that of the ISO reference model.

The mechanistic layer shown in figure 4 describes how components of the

system are joined together at the lowest level, and the lowest level

3L -4



facilities for communicating between them. In general, this level is not

concerned with information content but with the transfer of concrete items

across interfaces.

Interface IK is again the same public interface to the Kapse. Again, as

in the previous models, the Ada code interfaces to the run time system,

but this interface is not one which is explicitly seen or is identifiable

to the Ada programmer. The RTS provides certain facilities defined inA

the Ada LR4, which it is not convenient to embody inline within compiled 1

Ada code. This will typically include code to implement the Ada tasking

mechanism, and possibly some aspects of storage allocation etc. The RTS

may be target dependent, in the same way as machine instructions are

target dependent. This target dependency is of no concern to the

programmer, since he has no direct access to the interface, rather it is

the responsibility of the compiler to generate the necessary calls on

the interface. The facilities offered by the RTS are no more and no less

than those required to support the appropriate parts of the LRM.

Interface S is to the common support packages, such as the Diana manager,

program library manager, symbol table manager etc. Hl, H2 and H3 are

various interfaces to the host or host operating system.

On the target, we consider only the implicit interface between the Ada

code written for the target and its run time system.

At the conceptual level, we are concerned with the semantic or

information content which is passed across interfaces between components.

At this level we are not concerned with the fact that. for example, the

command language interpreter uses a Kapse primitive to read commands from

the user, but regard this as a direct interface between the CLI and the

user.

It should be recognised that all the interfaces at this level are

realised by some combination of one or more of the mechanistic interfaces

described above. However, in common with other interfaces, the method

RL-5



of implementation is irrelevant, and may in fact vary withouat affecting

the interface. Thus, this level defines expected information content,

and the way in which data is moved around the system is not relevant.

As a specific example, the conceptual level user interface to the CLI

specifies the syntax and semantics of the CLI command language. This is

implemented at the mechanistic level by sequences of bytes. The

conceptual level interface specifies the meaning of valid sequences of

bytes. As another example, a particular tool will make certain

assumptions about the structure and meaning of a Diana tree; for example

that it contains only valid nodes (that it is well formed) and perhaps

that it corresponds in some way to a valid Ada program. Certain of these

checks are carried out by the packages that provide the Diana abstract

data type, and these are described at the mechanistic level. Other

assumptions which are not provided at the mechanistic level are described

at this conceptual level.

In many cases, the interface at the conceptual level is described by a

grammar and its associated semantics. The grammar defines the legal

sequences of terminal symbols, that is, the sentences of the language.

The mechanistic level is generally responsible for the transport of

individual terminal symbols, irrespective of the meaning of the complete

sentence. Viewed in this way, the system, at this level, consists of a

number of active components which generate or act on sentences according

to their defined semantics, and one passive components which provides

storage and retrieval of sentences. This will normally be the Kapse

database, but cases where sentences are passed between tools, or from one

place to another within a tool do not logically differ.

The types of interface at this level are shown in figure 5.

Interfaces Ul, U2, U3 and Il are exactly as in the previous model.

Interfaces U4 represent the tool invocation interfaces, and are shown

as interfaces directly with the user. Interfaces U3 represent the user

command interfaces to the different tools. Interface C represents the

RL-6



information which the debug tool needs to know in order to make effectove

use of the monitored context interface. It may include details of code

generation algorithms, standard uses of registers, layout and allocation

of store, in particular stacks, layout and use of internal data

structures, in particular those for tasking and exceptions etc. This

interface will be entriely target dependent, in just the same way as

machine instructions are target dependent. 1

Interface D represents the various program data interfaces. There are

many such interfaces, which all represent the meaning of data passed

from other programs, typically via the database. For the CLI, this

represents the syntax and semantics of the command language. For the

debug tool, this represents the meanings of the various pieces of

symbol table and other program maps etc. which are read using the various

mechanistic interfaces. This interface also describes such things as the

structure of the compiler listing output, which at the mechanistic level

is simply a stream of bytes.

Two minor points should be made when comparing the diagram for this model

with that for the previous model. First, there is no particular

significance in the grouping of the tool invoication and tool command

interfaces into two large sets, namely U3 and U4 in this model, rather

than a series of interfaces as in the previous model. Such grouping is

rather arbitrary, and either approach fits equally with the overall model.

Secondly, this model suggests that the tool invocation interfaces are seen

as interfaces with the user, rather than with the CLI. Again within the

limits of the model, the choice is rather arbitrary and of no particular

significance; however this point does relate to the defect in the model.

There are a number of difficulties with this whole approach, which are

clarified by examination of this model.

Although the sentence store does provide a neat model for the way in

which, for example the CLI, accepts the syntax and semantics of valid

sentences within its own particular language, the sentence store itself

RL-7



b eems rather artificial. Moreover, output from one tool., for example the

editor, may be in a different language (le just a string of characters)

to the same database object when it is used as input, for example to the

CLI; the sentence store therefore appears to carry out language

conversions.

Another problem area is that, depending on the method of invocation, a

tool might take its input direct from an interactive user, or from a

database object. Although some tools may behave differently in these two

cases, consider the simple case where the tool does not care where the

input is from. The interface is then the same for both user and sentence

store, and representation on the diagram is at best awkward. Similarly,

we have already mentioned the difficulty in deciding whether the

invocation interface which a tool offers is with the user - he certainly

needs to know what parameters to type - or with the CLI, which must pass

the parameters to the tool. There is a spectrum from a dumb CLI which

just passes on the parameters given by the user, to a highly intelligent

one which knows about certain tools and the parameters they require, and

constructs these parameters without explicit user direction. Irrespective

of the position on the spectrum, the tool itself expects exactly the same

thing, and yet these appear to require different representations in this

model.

MODEL 4 - Multi Layer Interface Lists

The problems which arise with the previous interface models are due to a

fundamental flaw in the whole approach. The models are based on the

assumption that interfaces are a link or communication between two

components, for example between the user and the CLI. This view is

intuitively attractive, since the user is clearly interacting with the

CLI and there is an obvious need to describe the rules of this inter-

action. Furthermore this view allows a diagrammatic representation and

this can be seen as an aid to checking whether all relevant interactions/

A interfaces have been considered. Finally, this view does seem

appropriate to the lower level interfaces, as is seen by the consistency

of these interfaces over the various models.

RL-8



Despite its attractions, however, it is clear that an interface is not a

function of a link between two components, but is instead simply a

property of a si<'component; that is it is a specification of what

that component offeirs to the outside world, independently of who wishes

to take up that offer. A diagrammatic model works well enough for the 4
lowermost interfaces, since the components are really only pluggedI

together in one way, but at other levels the arbitrary variety of 1

connections defeat any such representation. 1

We therefore conclude that the only way to represent the interfaces at a

level such as the conceptual level already discussed, is simply to list

each one. As an example, the CLI has an invocation interface; this is

normally used during login to start up the user's CLI, but could also be .
used directly by the user or even by another tool to start up another

instance of the CLI. The CLI also has a command language interface; this

may be used interactively by the user or by submission of a command file.

In order better to model the interfaces in the existing Apse developments

and to provide a basis for comparison, we extend the model in the previous

section to four levels:

Level 4 Conceptual

Level 3 Commion service routines

Level 2 Mechanistic

Level I Physical.

Level 1 contains interfaces at the level of read/write a disc block at a

physical disc address. This level is included since it is the level at

which the existing Apse developments, specifically the ALS and AlE, are

entirely compatible. In the case of the AIE, the UK Ada study and the

Olivetti PAPS, this is probably about the level at which the Central

Kapse communicates with the host operating system; that is it is used to

implement the Kapse. In the case of the ALS, the Kapse uses the host's

filing system, and so this level exists somewhere within the hostI. operating system, perhaps at the boundary between the file handler and

the device driver. Explicit recognition of this level is perhaps rather

more for didactic rather than practical reasons.

[ 3L -9



Level 2 represents interfaces at about the level of standard Ada Input/

output, or BASIC_10 and AUX 10 of the ALS. This is the level that is shown

as K in the earlier diagrams.

Level 3 represents the common services such as symbol table, intermediate

language and program library handling. These are separated out from the

level 2 interfaces since they are thought of quite differently by the

Apse developers. .

Level 4 represents the same high level interfaces as in the previous

model, such as the CLI command language etc.

Note that although the overall architecture of the current Apse develop-

ments is well represented by Model 1, this four level model only considers

the package interface at level 2. We do not consider in this model

whether the interface between the linked program and Central Kapse, or

the Central Kapse and host or Kapse database, should be considered as

further interfaces at level 2, or as a lower level. Such extensions to

the model could be considered, given a clear understanding of this model

and of the purpose of such an extension.

It must be clearly recognised that the choice of layers, and the allocation

of functions and facilities to layers is fundamentally arbitrary, and a

matter for agreement, given guidelines, rather than a process susceptible

to logical deductions from fixed rules. This is clear in the ISO

OSI model, and is equally true here. In particular there has been a

strong desire to "define" what should appear at level 2, so that a

determination could be made for a particular Apse development whether a

particular facility should or should not be in level 2. (Note that we

have taken exactly the opposite approach here, of determining wha.. is

present in each design, and developing a model to describe these designs).

In fact, such a definition is not possible, since an infinite number of

slight shifts in functionality can be made within any overall framework.

* Therefore the only descriptive mechanism is simply to list interfaces

which are deemed to be at each level, or at least to list representative

examples and allow extrapolation.

RL-10



Given the model of interfaces, there are a number of questions relevant to

standardisation.

a) what should the levels be called

b) should levels be bypassable

C) which levels should be standardised

Naming

We emphasise again that these levels are derived as a descriptive model

of existing designs, rather than as an abstract view of what the structure

of an Apse "should" be.

Stoneman, which coined the term Kapse makes it quite clear that the word

is intended to describe both level 2 and level 3 interfaces.

On the other hand, for the current Apse developments, there is an almost

universal use of the word Kapse to mean just the level 2 interfaces.

Recognition of this dichotomy of usage is clearly vital to a sensible

discussion of interfaces in Apses. Given this recognition there are two

possibilities.

a) retain the original Stoneman definition of "Kapse" to mean

both level 2 and level 3 interfaces.

b) change the definition to mean only the level 2 interfaces.

There are arguments in favour of both possibilities which will not be

persued here.

Given this viewpoint, the statement that "the level 3 interfaces should

be in the Kapse" can have two possible meanings.

XL-11



1) the statement is an argument for retention of the orioinal

Stoneman definition of Kapse. As such it is not an argument but

simply an assertion. There are reasonable arguments for changing

the definition (such as present common usage) and so better

arguments than assertion are needed to retain the definition.

ii) the statement may reflect some conception on the part of the

speaker as to a qualitative difference between a "Kapse" interface

and any other interface (a difference such as method of implementa-

tion or security or integrity). However, as has been made clear,

each interface level is simply a list of facilities with associated

syntax and semantics. If particular implementation or security or

integrity constraints are required for certain level 3 interfaces,

then these requirements are part of the specification of the

semantics of that interface. Such semantics do not affect in any

way the simple labelling issue as to whether the term Kapse should

encompass level 3.

Bypassability

The present Apse designs do not generally intend tools or programs to

access facilities at lower levels than level 2, except for ALS which

allows access to host operating system facilities. It is not at all

clear to what extent this denial of access is enforced. In general,

there is some restriction because an interface very close to level 2 is

implemented by a different machine mode or in a different address space.

The question then arises as to whether the facilities offered by level 3

should also be not bypassable. That is, whether objects such as symbol

tables, which are normally accessed by packages defined at level 3, should

not be accessible by level 2 facilities. Logically, if both level 2 and

level 3 were not bypassable, then they would become one level of interface;

certain files, for example symbol tables being accessed by what had been

level 3 facilities, and other files, for example text files being accessed

by what had been level 2 facilities, In fact, it is the architectual

3L-12



structure of the present Apse designs which draws a distinction between

level 2 and level 3. In the present designs, level 3 facilities are

provided by ordinary Ada packages which are linked in with the user's

program in the same way as any other Ada package. Level 2 in contrast

is mainly provided by special requests to the Central Kapse.

To put the argument another way, given the lists of facilities offered by

the current systems, certain files, for example text files, are only

accessible by level 2 facilities; there are no relevant level 3 facilities.

If level 3 were not bypassable, then either:

a) the text access facilities would have to be brought up to level 3

or

b) not bypassable means not bypassable for certain files but

bypassable for others.

The feasibility of denying access to certain database objects except to

certain authorised packages waB considered during the UK Ada Study, where

it was known as "package based access rights". Given the overall system

architecture, and the desire to be able to host that architecture on a

variety of host machine architectures, it was concluded that there were

too many technical difficulties for the facility to be included in the

Apse system design. Clearly, the requirements have to be considered

carefully in the light of possible system architectures.

Standardization

Given the general intention that level 2 should be (or should be regarded

as being) not bypassable, then given appropriate restraints on the way

programs are written, it is not necessary to standardise lower than

level 2.

Conversely, in order to ensure maximum portability of tools, it is

necessary to standardise at all three levels, that is levels 2, 3 and 4.

RL-13



- -~ *J~

S
A

0.

*~ Ci~ z @1
~ Cd, 0

Uz *~ 0

U b.0
4-

9-

I
0

9-

0~ 0
@2
0~~= @2

@2

4,
U
@2

- - - - - - - - - U
E-~ a) I-

- @2 aJ
~C
~ @2 C

~

@2

0
U

Ca.

3L-14



I0

Iv
S4 ~ ~ ~~~0

I I L
z I isl

I ~ ~ 0 CL-n-u

0.1

K-15



-A~

V 4

7-f

R-16



'-4r

(0

U)U

VI I

9A)

cc,
#.A

41.

*1z

Q 4r

3L1



J'I

IA.

0

V
0

R-18



APPENDIX A

A-i



CONFIGURATION MANAGEMENT SYSTEM

INTERIM REPORT ON INTERFACE ANALYSIS

Prepared for

NAVAL OCEAN SYSTEMS CENTER
271 Catalina Blvd., Bldg. A-33
San Diego, California 92152

Under

Contract N00123-80-D-0364

27 AUGUST 1982

COMPUTER SCIENCES CORPORATION

6565 Arlington Boulevard

Falls Church, Virginia 22046

Major Offices and Facilities Throughout the World

A-2



TABLE OF. CONTENTS

SECTION 1 - INTRODUCTION....................................... 1-i 1

SECTION 2 - CONFIGURE'S INTERFACE REQUIREMENTS................. 2-1

2.1 Command Language Interface............................. 2-1

2.2 Program Invocation and Communication Interface.........2-2

2.3 Database Services Interface............................ 2-3

SECTION 3 -- ADA LANGUAGE SYSTEM INTERFACES.................... 3-1

3.1 Command Language and Process Communication

Interfaces.......................................... 3-1

3.2 Database Interfaces.................................... 3-1

3.2.1 Database Structure..................................... 3-1

3.2.2 Database Services...................................... 3-3

SECTION 4 -- ADA INTEGRATED ENVIRONMENT INTERFACES.............. 4-1

4.1 Command Language and Process Communication

Interfaces......................................... 4-1

4.2 Database Interfaces.................................... 4-1

SECTION 5 -- CONFIGURE'S PORTABILITY STRATEGY.................. 5-1

5.1 Environment Independent Processing.................... 5-1

5.2 Environment Dependent Processing...................... 5-4

5.3 Interface Correspondence............................... 5-5

5.3.1 Database Services........................5-5

5.3.2 Standard and Message Output........................... 5-10

5.3.3 Tool Invocation and Communication Services............. 5-11.

4APPENDIX A- REFERENCES......................................... A-1



SECTION I - INTRODUCTION,

The purpose of the Configuration Management System (CMS) is
to automate many of the configuring activities involved in
software developmnent, testing, and maintenance. CMS consists of
an Ada Programming Support Environment (APSE) tool, Configure,
that is being designed to be portable and to be hosted on both the
U.S. ALS and the U.S. Air Force's AIE.

This report is an interim analysis of the interface
requirements of Configure, along with the relevant interfaces of
the Ada Language System (ALS) and the Ada Integrated Environment
(AIE) . It must be recognized that at the present time neither the

ALS nor the AIE exists, and that the available documentation for
both systems is incomplete and presently under revision.

Moreover, although a Program Performance Specification for
Configure is now available, the detailed design is incomplete.
Therefore the present report is a preliminary analysis only, with
the intent of identifying the aspects of the ALS and AIE that may
be expected to impact the design and transportability of
Configure. The report concludes with a summary of the design
decisions that have been made to accomodate the ALS and AIE
interfaces.

The reader should be familiar with Stoneman [12], the CMS
Program Performance Specification [7], the ALS System
Specification [5], and the AIE Interim Technical Report [2].

A -4



SECTION 2 -CONFIGURE'S INTERFACE REQUIREMENTS

The Configure tool' that comprises CMS has three classes of

interfaces that must be dealt with to ensure transportability:

command language, program invocation and communication services,

and database services. This section will discuss Configure's

requirements in each of these areas.

2.1 COMMAND LANGUAGE INTERFACE

The configuration objects processed by Configure contain

Command Language (CL) statements that must eventually be processed

by a Command Language Interpreter (CLI) on the hosting MAPSE.K

Configure perfQrms minimal but important pre-processing on these

statements, and needs to be able to identify database object

names, Configure macro definitions, and inter-statement delimiters.

In pre-processing object names, Configure may need to append

revision indices. Configure is otherwise indifferent to object

name syntax and semantics, and does not need to deal with

directory, partition, or variant structure.

Configure allows configuration objects to include macro

definitions that are to be expanded in both the dependency rules
and in the command lists. For the latter expansion, Configure

must be able to recognize the presence of a macro name in a CL
statement. It is recognized that there is no universally

transportable syntax to ensure this recognition, and the present
definition, specifying 'Wientifier", is a prototype syntax only.

In order for macros to be useful and convenient, it is necessary
for the hosting syntax to permit the specification of an

equivalent macro name syntax that does not conflict (in a

syntactic recognition sense) with other CL structures.

j P.-5



2.2 PROGRAM INVOCATION AND COMMUNICATION INTERFACES

After pre-processing CL statements, Configure transmits them

to the MAPSE's CLI for interpretation. There are three techniques

that Configure could use for this transmission:

(1) invoke the CLI once per CL statement; A

(2) invoke the CLI to process an entire group of statements;

(3) establish a "pipe" to the CLI over which command lines

(not necessarily statements) could be sent one at a time.

Each of these techniques has advantages and disadvantages.

The first method, invoking the CLI once per statement,

obviously incurs a significant recurring overhead for process
invocation. It requires that Configure be able to recognize

precisely what constitutes a CL statement, including compound
statements. Since each statement is processed by a separate CLI

invocation, it is difficult to pass context (e.g., CL variable
values) within which subsequent statements are to be interpreted.

On the other hand, Configure retains some visibility into the

wgranularityw of statement processing. This granularity

facilitates better error messages; with this technique Configure

can identify for the user precisely which statement failed and

(possibly) why.

The second method, invoking the CLI once per group of

statements, reduces the recurring overhead and, more importantly,
allows a group of statements to be processed within the same

context. Granularity is, however, reduced, and dependeir-j on the
kind of error messages generated by the CLI, Configure may not be

able to identify for the user the particular statement that caused

an error. Further, it is not even guaranteed that a CLI will

terminate upon encountering an error in a group of statements.
Such termination can be considered to be a special feature, since

A-6



the normal mode for a CLI in interactive use is to report the

error and then proceed to process the next statement. It must be
noted that the first method, if compound statements are allowed,

will be susceptible to a similar loss of granularity within the
compound statement.

The third method, that of establishing a pipe between

Configure and CLI, is the best from the point of view of errorA

reporting and control, while allowing context to be preserved for

a group of statements. Actually two pipes are required, one to

send CL statements from Configure to the CLI, and one for the CLI

to report errors and confirmations back to Configure. This method

would of course require an extremely cooperative CLI, as well as

KAPSE support for pipes.

2.3 DATABASE SERVICES INTERFACE

For dealing with most aspects of the database, Configure's

requirements are no different from other MAPSE tools. Configure's

requirements to create, read, and write database objects, and to

create, read, and write object attributes, are thus fairly

prosaic. on the other hand, Configure has a very special

interface with the history attributes.

It will be useful to reexamine the original Stoneman

requirement for the history attribute:

Every object shall have a history attribute. The history
attribute records the manner in which the object was produced
and all information which was relevant in the production of
the object. The history attributes shall contain sufficient
information to provide a basis for comprehensive
configuration control.

Since "configuration control" is not defined in Stoneman, this

requirement is somewhat vague. However, a subsequent unpublished

paper by Buxton (6] sheds some light:

A configuration is a well-formed group in the sense that
structural rules, by which configurations are assembled as
groupings of objects which may in some cases be shared with

L A-7



one or more other configurations, are known to the system and
so the possibility exists of automatic manipulation of
configurations by the system. Thus, for example, in some
methodological approaches configurations may be subject to
automatic re-derivation; if one constituent object is changed
it is possible for the system to determine and carry out all
necessary consequential changes to all configurations making
use of that object, however indirectly.

The key question is: what is the history attribute to be

used for? There are three overlapping answers. First, the

history attribute can be viewed as a "commentary" on the

derivation of the associated object. Second, the history

attribute can be used, as indicated above, to direct automatic

re-derivations in the face of consequential changes. Third, the

history attribute can be used to reconstruct a previous version of

an object whose information content has been deleted.

The original concept for Configure was based on the

realization that if history were maintained to a sufficient
precision to satisfy automatic re-derivation, then reconstruction

could be provided with minimal additional effort. In fact, the

algorithms for re-derivation and reconstruction are nearly

identical. Configure was originally conceived to be closely

integrated with the history maintenance system proposed by

Computer Sciences Corporation as part of the database for the Ada

Integrated Environment. Under this design, Configure relieved the

KAPSE of much of the responsibility for maintaining the derivation

information. The notion of a configuration object not only

includes identification of all the objects in the configuration,

but also includes the command language scripts whereby these

objects are derived from one another. This design obviated the

necessity of having the KAPSE maintain derivation scripts.

In keeping with the above design, Configure requires a

database to include in its history attributes only dependencies

and date-time stamps. The dependencies, or dependency attributes,

indicate the specific objects (or revisions thereof) that were

A -8



used in the immediate derivation of the associated object.

Included in the dependency attribute must be a reference to the

configuration object which provides the command scripts that were

used in the derivation. The form of the dependency attribute is

of minor importance to the functionality of Configure, but is A

significant when it comes to moving objects around a logical

database or between databases. Configure only needs to extract

logical object names from the dependency attribute.

Unfortunately, there are cases for which the history

attributes of any "reasonable* database will be insufficient to

provide a guaranteed basis for re-derivation or reconstruction.

The problem is that a tool can access global data (other than file

contents) within the system and use this data in creating files.

If this global data is subsequently modified, the created files

are not reconstructable. This dependence can be very subtle -- a

tool can, for example, monitor system performance characteristics

and use these in file creation. This is a pervasive problem; it

is not feasible to preserve in the history attribute the totality

of available global data, and there is no useful way of detecting

and preventing a tool's access to such global data (this problem

is strikingly similar to that of preventing "covert channels" that

may violate computer security) . In practice, this issue is

unlikely to impair the utility of a tool such as Configure,

although it must be recognized that reconstructablity cannot be

absolutely guaranteed. It should be fairly easy to establish a

set of reasonable, though non-testable, guidelines that, if

followed, will ensure reconstructability.

j A-9



SECTION 3 - ADA LANGUAGE SYSTEM INTERFACES

The ALS interfaces are reasonably straightforward and

well-documented. Except as indicated below, Configure can be

hosted on the ALS with little difficulty.

3.1 COMMAND LANGUAGE AND PROCESS COMMUNICATION INTERFACES

A potential problem with Configure's use of the ALS Command

Language Processor (CLP) is the lack of pipes, which constrains

the form of the interaction (as discussed in Section 2.1).

Fortunately, it is possible to request the CLP to terminate on

encountering an error in a group of commands, and the CLP's output

parameters will contain the statement index of the error-causing

command.

3.2 DATABASE INTERFACES

The ALS database follows the model of a conventional

hierarchial file system. The most significant extension is the

provision for Ovariations" at any node in the hierarchy. Except

for one major problem and a number of relatively minor details,

the ALS database philosophy is fully compatible with Configure.

3.2.1 Database Structure

Below is a list of those aspects of the ALS database

structure that impact the rehostability (transportability) or

functionality of Configure.

(a) The ALS allows the most recent revision of a file to be

modified, while Configure always adds a new revision if a file

needs to be updated. Since only non-current revisions are

automatically frozen, Configure must explicitly freeze the current

revision to prevent non-Configure access from altering it. (Also,

it must be noted, allowing modification of the most recent
revision would violate Stoneman.)

A-10



(b) Configure would, in principle, allow a user to delete

non-current revisions if nothing depended on them. The ALS does *
not allow such deletion, possibly resulting in a pervasive

retention of useless intermediate revisions.

(c) The "variation" concept of the ALS is orthogonal to

Configure. Configure will semantically ignore the variation

portions of an object name, but will have to recognize the 1
syntax. Since Configure will pass such names, unchanged except
for the possible addition, of a revision index, the Command

Language Interpreter will be responsible for the semantics,

including that for default variations, independently of

Configure. If Configure were to recognize aliasing of file names
(a feature that could possibly be added) , it would have to

understand variations as well.

(d) The ALS derivation attribute for a node is defined to contain

"the name of the tool that created the node along with all

parameters to the tool and the names of all other nodes used to
produce the new node.' The precise information that is written
into the derivation attribute when a node is closed is in fact

chosen by the tool that is closing the node.

This design has advantages and disadvantages. If the

derivation attribute were the sole responsibility of the KAPSE,
there would be no way for the KAPSE to distinguish between

temporary (or unimportant) nodes and those nodes actually

essential to the derivation. Frozen temporary files would then

accumulate. On the other hand, every tool must now contain code

to manage history attributes.

There is one aspect of the ALS's derivation attribute that
may make it unreliable from the point of view of re-derivation or
reconstruction. First, a derivation of a file may well entail the

efforts of two or more processes. For example, process A may open
a file X, call on process B to generate some intermediate results,

A-li



and then close X. It would be desirable to include in the

derivation of X all (non-temporary) files opened by B. This

inclusion is not performed by the ALS; one way to incorporate it

would be to allow open files to be passed between processes.

3.2.2 Database Services

Consistent with the ALS database structure, the ALS database I-

services do not otherwise impact Configure, except as noted below.

(a) one of the features of Configure is that it allows the

reconstruction of the information content of an object based on

Its derivation history. The ALS does not, however, allow the

information content of a frozen object to be deleted. Thus, one

of Configure's major features becomes moot for the ALS. We

recognize that the ALS was designed without a Configure-like

capability, and thus was forced (in order to abide by Stoneman's

precepts) to restrict deletions. An option now available to the

ALS is to allow information content deletion if the content is

reconstructable.

(b) Although the ALS documentation implies the availability of

user-defined attributes, no functions are presently provided to

create them. As indicated above, the system-defined derivation

attribute is not entirely sufficient for Configure's

reconstruction function, since it is not guaranteed to list all

the objects actually used In a derivation and, in particular, It

does not seem possible to'ensure that the attribute will include

the name of the relevant configuration object. One way of

circumventing this problem would have been for Configure to define

and manipulate an additional user-defined attribute.

A-12



SECTION 4 - ADA INTEGRATED ENVIRONMENT INTERFACES

From Configure's perspective, the AIE interfaces differ

remarkably little from those of the ALS. However, given the lack

of specificity in the currently available AIE documents, the

following comments should be considered tentative.

4.1 COMMAND LANGUAGE AND PROCESS COMMUNICATION INTERFACES

There are only three significant differences in this area in

the facilities provided by the ALS and AlE. First, the AlE

Command Processor (CP) supports pipes, and thus in principle could

support the more flexible and powerful form of Configure-CP

interaction outlined in Section 2.2.

Second, the AlE CP will not terminate on encountering a

command error, but will resume processing with the next

statement. one hopes that this is an oversight, and that the

different requirements for interactive and non-interactive

invocations of the CP will be recognized.

Finally, there is no distinction between message (or error)

output and standard output. It is clearly desirable to

distinguish these, since many messages will be purely

informational (as opposed to errors) and should not clutter the

standard output which may be subsequently processed by another

tool.

4.2 DATABASE INTERFACES

While the AIE database is conceptually far more complex than

that provided by the AlE, this complexity has very little impact

on Configure.

The most important interface with Configure is via the

history attribute, and the AlE explicitly recognizes the two forms

of the history attribute required for source and derived objects.

j A-13



Essentially the AIE is placing revision maintenance under the

umbrella of history, but the history attribute for a so,rce object

is simply an index used to extract a revision from a source

archive, while for a derived object a program invocation script is

provided. In addition, the script records "the parameters

specified when the program was invoked, an array of copies of the

history attributes of each object read as input, and a count of

the number of objects created or modified as output." While the

ALS makes it clear how the input objects are to be identified (it

is the responsibility of the tool), this identification is not

spelled out for the AIE. In particular, it cannot be determined

how the AIE KAPSE distinguishes relevant files when one tool

invokes a second tool to perform some intermediate processing.

The general ability of the AIE to support revisions is also

unclear. For source archives there is no problem; all revisions

are stored in a single file and they are indexed by "state". For

derived objects, explicit support for multiple revisions is only

discussed in the context of program libraries, where one component

of the object name can be a "Virtual Memory Sub Domain (VMSD)

number." There is apparently no automatic facility for selecting

the latest revision of an object, or for incrementing the VMSD

number when a new revision is created. In short, there appears to

be no direct KAPSE support for revisions. Perhaps more support

for revisions will be included within the VMM, otherwise a large

burden will be placed upon the designers of MAPSE tools.

A-14



SECTION 5 -CONFIGURE'S PORTABILITY STRATEGY

AS indicated in the Configure Program Performance

Specification, Configure shall be designed to minimize the effort

necessary to transport it to a designated APSE. In particular,

Configure shall be designed to be transportable to both the ALS

and AIE. While we have judged this transportability to be

feasible, one general criticism can be made of both the ALS and

the AIE, particularly with respect to the history management

facilities in their databases. in both environments, these

facilities are unique in that no MAPSE tools that the respective

contractors are currently providing will directly interface with

them. Since history management and configuration management are

closely interrelated, one cannot easily be designed without the

other. Thus we have found that in neither the ALS nor the AIE do

the history management facilities accurately support the

configuration management requirements.

To facilitate transportability, Configure will be divided

into two disjoint sets of modules, the Environment Independent

Part (EIP) and the Environment Dependent Part (EDP).

5.1 ENVIRONMENT INDEPENDENT PROCESSING

The EIP shall contain all modules required for internal

processing except for those involving APSE-dependent service calls

and responses. However, the EIP shall contain (in an

APSE- independent manner) the service request specifications for

the command language, database services, and program invocation

and control services. From the point of view of the EIP, the EDP

shall provide a simplified yet sufficient environment to implement

these requests -- the EIP shall issue no direct requests to the

hosting APSE.

A-15



Nevertheless, there are a number of design decisions for the

EIP that are impacted by the choice of candidate APSEs. The most

significant of these is the manner in which Configure communicates

with the CLI. There is a clear semantic difference between the

three modes of communication discussed in Section 2.1, and thus

the choice of mode cannot be relegated to the EDP. In order to

simplify transporting, Configure shall therefore Invoke a single

instance of the CLI to process an entire group of CL statements.

It will then not be necessary for Configure to recognize

individual statements, and a context can be established and

maintained for statement interpretation.

The allocation of responsibility for maintaining the

derivation attribute is a major issue from the point of view ofK

designing a portable Configure, but is less important to the

user-perceived functionality of the tool. The difficulty in

having the KAPSE maintain this attribute automatically is that the

KAPSE cannot distinguish between temporary (or unimportant)

intermediate objects and those actually required for the

derivation history. Moreover, a tool may indirectly access

objects through the invocation of a second tool.

on the other band, if Configure were to maintain the

derivation attribute, it would include in it only the objects

specifically referenced in the relevant dependency rule. In

effect, this transfers the burden to the user, who must ensure

that the dependency rule mentions precisely the correct objects.

Unfortunately, except in simple cases, there can be no automated

way of verifying the correctness of dependency rules. The chief

advantage of this approach is that the KAPSE is relieved of an

enormous burden, and derivation attributes are only maintained for

those object under configuration control (i.e., whose derivation

is specified by a configuration object).

A- 16



There is some concern that the original Stoneman model has

over-complicated the KAPSE, and that the inclusion in the KAPSE of

a sophisticated database only marginally aids tool

transportability while severely hindering KAPSE rehostability. A

significant, though not pervasive, modification to Configure would

be required for transporting to a future APSE with less KAPSE
functionality. 1

The notion of "current working directory3 must also be

defined for Configure. Configure could use the current directory

(or partition) of the process that called it, or it could use the

partition in which the configuration object resides. To simplify

transporting, we have chosen the first option, since it allows

Configure to essentially ignore the problem. Thus all object

names processed by Configure will be assumed to be relative to the

current directory of the process. This decision is also relevant

to the aliasing problem in general. For simplification, the

present design for Configure will assume that distinct object

names identify distinct objects, and Configure will make no

attempt to verify that this assumption is in fact true. Such

verification could be incorporated into a subsequent release.

As has been noted, Configure was designed to avoid the

necessity of storing command language scripts with each revision

of each derived object. These scriptb, in a generic form, are
instead stored in the configuration object, and a single instance

of a script may suffice for numerous revisions of a single

object. Since scripts may contain Configure macro names, it was

tempting to allow these macros to be redefined on the commmand

line invoking Configure. Unfortunately, such redefinitions would

have to be stored with the consequent revisions, and this would be

tantamount to storing the scripts in the first place. As a

result, command line redefinition of Configure macros is be

supported, the configuration object must be revised instead.

A-17



5.2 ENVIRONMENT DEPENDENT PROCESSING

The EDP is essentially an interfacing layer between the EIP
and the hosting APSE. The EDP shall contain those 'nodules

required for the implementation of the EIP's service request)
specifications in terms of the services provided by the hosting
APSE. While the specifications shall be the protocol with which
the EIP shall request and receive responses of the APSE's
services, the EDP shall be the translation of this protocol into

the actual service requests of the APSE. In terms of Ada, the EDP
shall contain the bodies of the subprograms specified in the above

service request specifications.

The EDP shall be tailored to recognize, for the CL of the *

APSE CLI: command statements, database object names, and the
command to invoke Configure. Also, the particular syntax used to
distinguish Configure macro names may also have to be modified so
as not to conflict with a giver~ CL.

The EDP shall translate the database service requests of the
UIP Into actual APSE database service calls. It is recognized
that a hosting APSE may not directly support the history attribute
model needed by Configure. The actual history attributes provided
may be a subset or a superset of those required. The
transportability of Configure is highly dependent on the ease with
which the Configure model can be mapped into that of an APSE.
Further, the ability of the APSE to support user-defined

attributes is crucial to transportability in many cases where the
mapping is not exact.

A-18



5.3 INTERFACE CORRESPONDENCE

The subsections below indicate the correspondence between the

interface requirements of Configure, as embodied in the

Environment Dependent Part, and the relevant services provided by

the ALS and AIE.

5.3.1 Database Services

1. Does a database object exist in the database?

EDP:

function OBJECT EXISTS

(NAME : in STRING) return BOOLEAN:

ALS:

Any KAPSE service that will return an error condition

indicating that the database object name given to it does

not refer to an existing object will suffice (e.g.

READATTR)

AIE:

Again, use of error return from a service call is

sufficient (e.g. GET-ATTRIBUTE)

2. Is the information content of an existing database object

present?

EDP:
function INFORMATION PRESENT

(NAME : in STRING) return BOOLEAN

ALS:

irrelevant (information content not separately deletable)

AIE:

Although it does not appear possible to delete only the

information content of an object, the archive services

for derived and source objects (particularly script

retention) and the current status of a database object

(i.e. on-line, archive-only) are relevant to this

request. Their impact on the Environment Dependant

portion of Configure is being explored.

A-19



3. Given a revision group that exists in the database, wh'at is

the identification of its most recent revision?

EDP:

function LATEST REVISION

(NAME : in STRING) return STRING:

ALS:

procedure READ ATTR

(NODE : in STRING UTIL.VARSTRING RECORD;

ATTR : in KAPSE DEFS.SHORT IDENTSTRING;

START, LENGTH : in STRING UTIL.STRING INDEX INT;

VALUE : in out STRINGUTIL.VAR-STRING RECORD;

RESULT: out KAPSE DEFS.I ORESULT ENU);

AIE:

function GET ATTRIBUTE

(NAME : in STRING:

ATT LABEL : in STRING)

return STRING;

4. Open a Configuration Object for reading

EDP:

procedure OPEN

(FILE: in out OUT FILE;

NAME : in STRING);

ALS:

procedure OPEN

(FILE: in out OUT FILE;

NAME : in STRING);

procedure OPEN

(FILE: in out OUT FILE;

NAME : in STRING);

A-20



I

5. Read a Configuration Object that has been opened for reading

EDP:

function GET LINE

(FILE : in IN FILE) return STRING;

ALS:

function GET LINE

(FILE in IN FILE) return STRING;

AIE:
function GET LINE

(FILE : in IN FILE) return STRING;

6. Close object that has been opened for reading

EDP:

procedure CLOSE

(FILE : in out IN FILE);

ALS:

procedure CLOSE

(FILE : in out IN FILE);

AIE:

procedure CLOSE

(FILE in out IN FILE);

I.
Ii



7. Given a database object that exists in the database, read one

of its history attributes

EDP:

procedure READ-ATTRIBUTE

(OBJECT-NAME : in STRING;

ATTRIBUTE NAME : in STRING;

VALUE : out ATTRIBUTE VALUE);

ALS:

procedure READ ATTR

(NODE : in STRING UTIL.VARSTRING RECORD;

ATTR : in KAPSE DEFS.SHORT IDENT STRING;

START, LENGTH : in STRING UTIL. STRING INDEX INT;

VALUE : in out STRING UTIL.VAR STRING RECORD;

RESULT: out KAPSE DEFS.I ORESULT ENU);

AIE:
function GET HISTORY REF

(NAME : in STRING) return HISTORYREF;

function GET DIRECT CONSTITUENTS

(STATE : in HISTORYREF) return HISTORY REFARRAY;

function HISTORY-TIME

(STATE : in HISTORYREF) return CALENDAR.TIME;

A-22



I
I

8. Create a user-defined attribute for a given database object.

EDP:

procedure CREATE ATTRIBUTE

(OBJECT NAME : in STRING;

ATTRIBUTE NAME in STRING;

INITIAL VALUE : in ATTRIBUTE VALUE);

ALS: not clear that you can

AIE:

The fields for user-defined attributes are set when the

parent COMPOSITE-OBJECT is created, using:

procedure CREATE-COMPOSITE

(NAME : in STRING;

COMPONENT DA : in STRING);

The value for each of the fields of user-defined

attributes is set when the SIMPLE OBJECT is created.

procedure CREATE

(FH : in out FILE HANDLE;

NAME in STRING;

MODE : in FILE MODE);

9. Write a new value for a user-defined attribute of a given

database object.

EDP:

procedure WRITE-ATTRIBUTE

(OBJECT-NAME : in STRING;

ATTRIBUTE NAME : in STRING;

VALUE : in ATTRIBUTE VALUE);

ALS: not clear that you can

AIE:

procedure SET-ATTRIBUTE

(OBJECT NAME : in STRING;

ATTRIBUTE LABEL : in STRING;

ATTRIBUTE VALUE : in STRING);

I

',L A-23



10. Read a user-defined attribute for a given database object.

EDP:

procedure READ ATTRIBUTE

(OBJECT-NAME : in STRING;

ATTRIBUTE NAME : in STRING;

VALUE : out ATTRIBUTE VALUE);

ALS: If you can't create/modify one, you can't read one.

AIE:

function GET-ATTRIBUTE

(OBJECT-NAME : in STRING;

ATTRIBUTE LABEL : in STRING) return STRING;

5.3.2 Standard and Message Output

EDP:

procedure PUT-STANDARD

(TEXT LINE : in STRING);

procedure PUT MESSAGE

(TEXT LINE : in STRING);

ALS and AIE:

Both services are provided by PUT from package TEXT 10.

The appropriate designator for Standard output and

Message output may either be identified explicitly as the

OUT-FILE for a use of PUT, or the default designator may

be assigned the appropriate value (initial default is of

course for Standard output).

A-24



!

5.3.3 Tool Invocation and Communication Services

1. Pass a Command Language sequence to the APSE CLI for

processing, and receive information regarding the completion

of the processing.

EDP:

procedure PROCESS-COMMANDS

(COMMAND SEQUENCE in STRING;

RETURNED MESSAGE out STRING;

RESULT : out COMPLETION STATUS);

ALS:
procedure START LIST

(LIST : in out PROG DEFS.PARMLIST REC);

procedure MAKE-LIST

(LIST : in out PROG DEFS.PARM LIST REC;

PARM NAME in KAPSE DEFS.SHORT IDSTRING;

PARM VALUE : in STRING UTIL.VAR STRINGREC);

procedure FINISH-LIST

(LIST : in out PROG DEFS.PARM LISTREC);

procedure CALL-WAIT

(NAME : in KAPSE. DEFS.SHORTID STR;

PROGRAM-FILE : in KAPSEDEFS.NODE NAME;

PARMLIST In PROGDEFS.PARMLIST-REC;

STDIN FILE : in KAPSEDEFS.NODENAME;

STDOUT FILE : in KAPSEDEFS.NODENAME;

MSGOUTFILE : in KAPSEDEFS.NODENAME;

PROGRAM-STATUS : in out PROGDEFS.CALL STATUSREC);

AIE:

function CALL PROGRAM

(PROGRAM PATH : in STRING;

PARAMETERS : in STRING;

CONTEXT-NAME: in := "SUBPROGRAM CONTEXT")
return STRING; -- Returns output parm list

T A-25



2. Return information regarding the completion of an invocation

of Configure to the process that invoked it.

EDP:

procedure RETURN STATUS

(RESULT : in COMPLETION STATUS;

MESSAGE : in STRING);

ALS:

procedure RETURN WAIT

(RESULT STATUS in PROG DEFS.RESSTATUSINT;

RETURN STRING in STRINGUTIL.VARSTRING REC);

AIE:

procedure SET ATTRIBUTE

(OBJECT NAME : in STRING;
ATTRIBUTE LABEL : in STRING;

ATTRIBUTE VALUE : in STRING);

A-26



I

3. Retrieve parameters passed to Configure.

EDP:

function TOTAL ARGNUMBER return INTEGER;

function KEYWORD ARG COUNT return INTEGER;
function POSITIONAL ARGCOUNT return INTEGER;

function GET KEYWORD ARG

(ARGNAME : in STRING)

return STRING;

function GET POSITIONAL ARG

(ORDINAL-NUMBER : in INTEGER)

return STRING;

ALS-.

procedure GET LOCAL STRING

(STRING-NAME : in KAPSE DEFS.SHORT-ID STRING;

STRING VALUE : in out STRINGUTIL.VAR STRING REC);

AIE:

function GET-ATTRIBUTE

(NAME : in STRING:

ATT LABEL : in STRING)

return STRING;

Parm string is an attribute for the created program

context (i.e GET ATTRIBUTE(".",PARAMETERS);

function PICK PARAM

(PARAMETERS: in STRING;

PARAM NAME : in STRING;

POSITION : in INTEGER 0;

DEFAULT in STRING :

return STRING;

IA
L A-27



rV

APPENDIX A - REFERENCES

The following documents are references for the Interim Report

on Interface Analysis.

1. Ada Integrated Environment Draft System Specification,

Prepared for Rome Air Development Center, Intermetrics, 15

March 1981.

2. Ada Integrated Environment Interim Technical Report, Prepared

for Rome Air Development Center, Intermetrics, 15 March 1981.

3. Ada Language System Command Language Processor B5

Specification, U.S. Army, CECOM, Ft. Monmouth, NJ, Contract

No. DAAK80-80-C-0507, Draft Document CR-CP-0059-B80, August
1981.

4. Ada Language System Kernel Ada Programming Support

Environment B5 Specification, U.S. Army, CECOM, Ft. Monmouth,

NJ, Contract No. DAAK80-80-C-0507, Draft Document

CR-CP-0059-B83, August 1981.

5. Ada Language System Specification, U.S. Army CECOM, FT.

Monmouth, NJ, Contract No. DAAK80-80-C-0507, Draft Document

CR-CP-0059-AOOO, June 1981.

6. Buxton, J.M., "Objects, Versions, Configuration, and

Partitions', Unpublished Paper.

7. Configuration Management System (CMS) Program Performance

Specification (PPS), Contract N00123-80-D-0364, CDRL A0001,

20 August 1982.

8. Draft Computer Program Development Specification for Ada

Integrated Environment: KAPSE/Database Type B5, Prepared for

Rome Air Development Center, Intermetrics, 13 March 1981.

9. Draft Computer Program Development Specification for Ada

Integrated Environment: MAPSE Command Processor Type B5,

Prepared for Rome Air Development Center, Intermetrics, 13

March 1981.

A-28



10. Draft Computer Program Development Specification for Ada

Integrated Environment: MAPSE Generation and Support Type

B5, Prepared for Rome Air Development Center, Intermetrics,

13 March 1981.

11. Draft Computer Program Development Specification for Ada

Integrated Environment: Program Integration Facilities Type

B5, Prepared for Rome Air Development Center, Intermetrics,

13 March 1981.

12. Requirements for Ada Programming Support Environment,

STONEMAN, February 1980.

A2I

[,



APPENDIX B

B-1



APSE
Interactive Monitor

Interim Report
on

Interface Analysis
and

Software Engineering Techniques

Prepared for

NAVAL OCEAN SYSTEMS CENTER
United States Navy

Contract No. N66001-82-C-0440
CDRL Seq. No. A011

Equipment Group - ACSL
P.O. Box 405, M. S. 3407
Lewisville, Texas 75067
16 May 1983

TEXAS INSTRUMENTS
INCORPORATED

B-2



AIM -- Interface Report 1 TABLE of CONTENTS

TABLE of CONTENTS

Paragraph Title Page

SECTION 1 INTRODUCTION

1.1 Purpose .......... ..................... i-

1.2 Background .......... .................... i-

SECTION 2 ACKNOWLEGEMENTS

SECTION 3 AIM INTERFACE REQUIREMENTS

3.1 General ............................. 3-13.2 ~~~~~Terminal Communication Serie.nefcs . . -
3.2 Terminal Cmmunicti e.ice Interf . . . . 3-1
3.2.1 Terminal Capabilities...............3-1
3.3 APSE Program Control and Communication Interfaces 3-5
1.3.1 Program Control Interfaces .. ........... . 3-5
3.3.2 Interprocess Communication .. ........... . 3-5
3.4 KAPSE Database Interfaces . .... ......... 3-6
3.4.1 Summary of Database Interfaces.. . ........ 3-6
9 Miscellaneous Interfaces .... ............. 3-7
4. .I Date information . . .... ............. 3-7
3.c.9 Call-Tree Information .... ............ 3-7

SECTION 4 ADA LANGUAGE SYSTEM INTERFACES

4.1 General ............. 4-1
4.7 Terminal Communication Services Inte;faces .... 4-1
4.2.1 Sufficient Interfaces ............. 4-1
4.2.? Insufficient Interfaces .. . . . .. . .... . 4-1
4.3 APSE Program Control and Communication Interfaces 4-3
4.3.1 Sufficient Interfaces ... .. ........... 4-3

| 4.1.2 Insufficient Interfaces ... ............ 4-5
4.4 KAPSE Database Interfaces ... ............ 4-5
4.4.1 Sufficient Interfaces .... ............. 4-5
4.5 Miscellaneous Interfaces ............. 4-7

Texas Instruments 1 16 May 1983

B-3



AD A141 576 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE)
INTERFACE TEAM PUBLIC REPORT VOLUME 3(U) NAVAL OCEAN ''
SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 25 OCT 83

UASSIDNGS/D55-O- F/ /2



IlII

1111111_4 L 8L

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURI.AL Of STANDARDS 1963 A



AIM -- Interface Report 1 TABLE of CONTENTS

4.5.1 Sufficient Interfaces . .. .. .. .. .. .... 4-7

SECTION 5 ADA INTEGRATED ENVIRONMENT INTERFACES

1.1 General...........................5-1
S.? Terminal Communication Services Interfaces .... 5-1
5.2.1 Sufficient Interfaces...............5-1
9.2.2 Insufficient Interfaces.............5-3
5.3 APSE Program Control and Communication Interfaces 5-3
5.3.1 5uffIcient Interfaces............. 5-3
S.3.2 Insufficient Interfaces..............5-4
5.4 KAPSE Database Interfaces.............5-7
5.4.1 Sufficient interfaces...............5-7
5.5 miscellaneous Interfaces...............5-8
,.5,.1 Sufficient Interfaces...............5-8

5.5.2 Insufficient Interfaces..............5-8

SECTION 6 STANDARD INTERFACE SET

9;.1 General.........................6-1
,;.2 Rackground......................6-1
,.3 Terminal Communication Services Interfaces . . .. 6-1
15.3.1 Sufficient Interfaces...............6-1

A.3.2 Insufficient Interfaces . . . . . . . . . . .. 6-2
5.4 APSE Program Control and Communication Interfaces 63

C'..1 Sufficient Interfaces .. .. .. .. .. .. .. 6-3
6.4.2 Insufficient Interfaces.............6-5
r.5 KAPSE Database Interfaces .............. 6-6
A.5.1 sufficient Interfaces...............6-6
9.0 miscellaneous Interfaces...............6-7

SECTION 7 AIM PORTABILITY ISSUES

-7.1 rneneral Portability Issues.............7-1
7.2 AIM Environment Dependencies.............7-1

7.3 AIM Environment Dependent Areas...........7-1
7.3.1 Terminal Communication Services . .. .. .. .. 7-1

7..1 APSE Program Interfaces.............7-3
7.3.3 Database interfaces . . . . .7-8

7.3.4 miscellaneous Interfaces* . . . . .7-11

7.4 KAPSE Document Quality . .. .. .. .. .. .. .. 7-12
7.4.1 Document Deficiencies .. . . . .. .. .. .. 7-13

Texas Instruments ii16 May 1983

B-4



AIM -- Interface Report 1 TABLE of CONTENTS

SECTION 8 USER INTERFACES

8.1 Constraints on User Programs . . ........ 8-1
R.l.l APSE Program I/O . . . . . . .. . . .. 8-1

M. . MASTER IN, MASTER OUT, and MESSAGEOUT . .. 8-2
R.7 Command language Pricessor Constraints. ...... 8-2

SECTION 9 KAPSE ISSUES

0.1 General.... . ......... .... 9-1
9.2 Bypassing KAPSE Services for Program Control . . . 9-1

o% 1 ALS "Break-In" facility ... ............ 9-1
9.2.2 AIE "Scroll Mode Control" . .......... 9-2
q.3 Broadcast Messages . . . ..... 9-2
9.4 Bypassing KAPSE Services for Terminal Cont;ol 9-2
9.5 Programs targeted for specific terminals ..... 9-3

APPENDIX A AIM INTERFACES SUMMARY

A.l Interface Comparison . .. . .............. A-I
A. Interface Summary . . .............. A-3

APPENDIX B ARPANET COMMUNICATIONS

APPENDIX C GLOSSARY

APPENDIX D REFERENCES

.In Government Standards . . . . o .......... . D-1
0.2 Government Specifications .... .. . D-I
n.1 Other Government Documents .... . . . D-3
D.4 Special Sources . . ..... . . . D-3
D.5 Other Publications . . . . . . ........ . . D-3

Texas Instruments iii 16 May 1983

B-5



AIM -- Interface Report 1 INTRODUCTION

SECTION 1

INTRODUCTION

1.1 Purpose

An Ada* program requires clear and well-defined interfaces to interact

with an Ada Programming Support Environment (APSE). To meet the goals [
of interoperability and transportability, an Ada program intended to

execute under more than one APSE should interface equally well with
each system. Accomplishing this communication entails study of
existing APSE features mapped against the requirements of the Ada
program. Through analysis, APSE interface strengths and deficiencies

are revealed.

This interim report is an analysis of the APSE Interactive Monitor
(AIM) presently under development by Texas Instruments under NOSC

contract N660nl-82-C-0440. AIM requirements are mapped against the
designee features of two APSEs: the U.S. Army Ada Language System

(ALS) and the U.S. Air Force Ada Integrated Environment (AIE). Also
considered in the study is the Standard Interface Set (SIS) currently

unaer development by the KAPSE Interface Team (KIT). Since neither the
ALS, the AIE, nor the SIS is complete at the time of this report, the
analysis is preliminary. The information herein is the most current
available; future changes in the aforementioned systems may affect AIM
interfaces.

1.' Background

The APSE Interactive Monitor (AIM) is a tool designed to act as an

interface between the user of the APSE and the programs the user

executes in the APSE. It enables a user to execute multiple APSE

programs from a single terminal while keeping their interactive inputs

and outputs separate both logically and physically. The standard

terminal and program control facilities available through the APSE will

he temporarily supplemented or replaced by the AIM during its
execution. For a complete description of AIM functionality, consult
rTIR31.

* rAda is a registered trademark of the U.S. Department of Defense, Ada

Joint Program Office.]

Texas Instruments 1-1 16 May 1983

B-6



AIM -- Interface Report 1 INTRODUCTION

The primary objective of the AIM project is to assist the KAPSE
Interface Team (KIT) in studying ALS and AIE interface issues while
secondarily producing a useful tool for APSEs. The reader should be
familiar with the AIM Program Performance Specification [TI83], the ALS
System Specification [SOF82], and the AIE System Specification [INT82].

S
-A

tI
iI.

Texas Instruments 1-2 16 May 1983

jr B-7



AIM -- Interface Report 1 ACKNOWLEGEMENTS

SECTION 2

ACKNOWLEGEMENTS

The APSE Interactive Monitor (AIM) is under development by Texas
Instruments, Inc., under U.S. Navy contract number N66001-82-C-0440.
John Foreman is the project manager for this effort. Preliminary
Mesign for the AIM was accomplished by Tim Harrison and Stewart French.
The research for this report was performed by Tim Harrison, Stewart
French, and Melody Moore. This report was written by Melody Moore in
collaboration with the other members of the AIM design team.

Texas Instruments 2-1 16 May 1983

B-8



AIM -- Interface Report 1 AIM INTERFACE REQUIREMENTS

SECTION 3

AIM INTERFACE REQUIREMENTS

3.1 General

This section outlines the interfaces the AIM requires of the KAPSEs and

the rationale behind them. Described below are general issues and
ideal solutions to AIM implementation problems. The next three

* sections of the report parallel this section, relating AIM requirements
to ALS, AIE, and SIS provisions.

The AIM requires well-defined interfaces in the following areas:

1. Terminal Communication

2. APSE Program Control and Communication

3. Database Services

4. Miscellaneous KAPSE Services

a. Date

b. Call-tree information

3.2 Terminal Communication Services Interfaces

The AIM interacts with scroll mode ("TTY"), page mode (screen-

oriented), and form mode (IBM 3270-type) physical terminals. The
capabilities of a terminal intended for use with the AIM must be a

functionally compatible subset of the standard capabilities described
in [ANSI'91.

3.2.1 Terminal Capabilities. Scroll mode terminals are line-oriented

and possess a very limited set of capabilities. Generally, charactersIare transmitted and received one at a time, or as a line blockS delimite6 by a line feed and/or carriage return.

Texas Instruments 3-1 16 May 1983

I.I
l I I I I I 1 . .. . II I II H I II IIIII .. .. .. ' . . ..--



Alm -- Interface Report 1 AIM INTERFACE REQUIREMENTS

Page mode terminals are screen-oriented and possess extended two-
dimensional functional capabilities. Characters are transmitted and
received one at a time.

Form mode terminals are also screen-oriented with two-dimensional
capabilities, but data is transferred in blocks delimited by a
keystroke (such as "enter") instead of one character at a time. Simple
editing functions can be performed by the terminal itself without host
computer interaction. Some form mode terminals possess the capability
to write-protect selected screen areas.

Terminals that provide the facilities of all three types (scroll, page,
and form mode) do exist, but for AIM purposes, the functionalities are
considered separately.

The AIM requires the following support from the KAPSE terminal
communication services:

1. The ability to read single characters from the keyboards of
terminals which support this functionality with no automatic
I/0 buffering.

Rationale: The AIM belongs to a group of highly interactive
proqrams which ideally should have access to characters
immediately as they are generated by the keyboard. In order
to afford maximum control of terminal I/0 to these programs,
there should be no interpretation of key sequences entered at
the host OS or KAPSE level; interactive programs provide
their own interpretation. Buffering usually implies an
interpretation of at least one character (the "end of buffer"
mark, usually carriage return) . This rationale does not
precluele buffering which supports the desirable type-ahead
capability. Characters may be piped into a channel to wait
for reading and still be accessible singly.

In addition to the AIM, programs such as screen editors and
powerful interactive command language interpreters require
character-by-character input for implementation. This need
is further supported in (C0X831:

"Since it would be unreasonable to make it
impossible to implement screen oriented text
editors or advanced command line interpreters in
the APSE, immediate acquisition of input
characters must be provided. The Ada language
definition avoids this issue and leaves the Ada
programmer at the mercy of side effects arising
from system buffering of I/O. This I/O facility
should therefore be provided to Ada programmers
through the KAPSE interface." [C0X831

Texas Instruments 3-2 16 May 1983

B- 10



AIm - Interface Report 1 AIM INTERFACE REQUIREMENTS

I/0 buffering also affects the AIM updating mechanism. The
cursor is always positioned at the current read or write
location on the screen. The AIM updates several vlewports
asynchronously while allowing the user to enter keystrokes
destined for a particular APSE program's input.
Consequently, the AIM requires the freedom to move the cursor
immediately to any location where an I/0 transaction is
destined to occur. If characters are buffered by the
terminal (i.e., transmitted only on depression of carriage
return) , the AIM waits for the input of an entire character
string before releasing the cursor for I/0 elsewhere on the
screen. This buffering would limit the AIM asynchronous
screen updating mechanism, because the AIM would not receive
each character as it was generated.

2. The ability to enable and disable character echo on the
display as characters are input from the terminal keyboard.

Rationale: The argument for screen echo control is similar
to the p revious rationale for single-character read and
write. Screen echo may be controlled from a variety of
sources:

a. Directly in the terminal (acceptable for form mode
termi nals)

b. From a communication line (i.e., modem)

c. From the KAPSE

d. From the host operating system

e. From an APSE program (required for terminals capable of
transmitting a character at a time)

To permit asynchronous update and to control the screen
display, the AIM requires the ability to disable echo in
order to place characters in the correct screen location.
For example, if the cursor is involved in a write operation
at the top of the screen, and a character intended to follow
a command prompt at the bottom of the screen is typed from
the keyboard, the newly-input character could be echoed in
the middle of the write transmission unless the AIM can
disable character echo. The AIM itself should receive the

*character and echo it in the appropriate place. The KAPSE
terminal communication services should permit echo disabling

when possible in order to facilitate this diverse control.
It should also be noted that some interactive editing tools
(such as EMACS) cannot be implemented unless echo disabling

Texas Instruments 3-3 16 May 1983

B-il

Iid



AIM -- Interface Report 1 AIM INTERFACE REQUIRE14ENTS

and non-buffered I/0 are provided. These tools must also be
able to intercept data without echo in order to control the
display of data on the screen.

1. The ability to obtain exclusive access to the user's
terminal.

Rationale: The AIM needs to be able to manage all data
destined for, or received from, the terminal. If the AIM
cannot protect the screen from other programs' I/0, any APSE
program could write to the screen, perhaps causing
undesirable data transmissions to collide with or overwrite
AIM transmissions. Since the AIM maintains an internal
representation of the screen, a re-write facility could be
provided; however, constantly rewriting the screen would be
inconvenient for the user.

4. The ability to write variable length character strings to the
terminal display device exactly as they are represented in
the generating program.

Rationale: The AIM must be able to write one or more
character Is to the screen with no extraneous characters (such
as line feed) automatically appended, and no character
translation operations occurring. Terminals are controlled
by specific protocols transmitted by the AIM and interpreted
by the display device. Terminal communication protocols
consist of character sequences in which the relationships
between specific characters are given meaning. Adding or
removing any character in a sequence may alter its meaning.

5. The ability to obtain specific information concerning the
terminal's capabilities and features.

Rationale: Some standard method of naming terminal types
must exist to enable terminal capabilities to be mapped into
a database file. The AIM must be able to retrieve this
Information and identify the correct physical terminal in
order to initialize the correct logical terminal. If the
'(APSE does not provide this feature, the AIM may ask the user
to identify the type of terminal to initialize.

4. Screen-oriented facilities.

Rationale: The AIM requires the control to position or move
the cursor and perform simple editing functions on its two
dimensional display, With these minimum capabilities, the
AIM can simulate other more complicated editing functions
such as insert or delete line.

Texas Instruments 3-4 16 May 1983

B-12



AIm -- Interface Report 1 AIM INTERFACE REQUIREMENTS

1 3.3 APSE Program Control and Communication Interfaces

3.3.1 Program Control Interfaces. The AIM interfaces with the KAPSE

proqram control facilities to govern the execution of specified APSE
programs and their corresponding interprocess communication. The AIM

I requires the following capabilities:

1. Initiate a new program

12. Abort program

3. Suspend program

4. Resume program

5. Determine program status

Rationale: The AIM controls APSE programs and subordinate programs

spawned from these programs through this interface. The AIM user may
invoke APSE programs from the AIM and control their execution. The
above proqram control functions are defined as basic APSE requirements

in "STONEMAN" rDODRO1 and therefore should be common to all APSEs.

3.3.2 Interprocess Communication. Interprocess Communication is an

1 important AIM interface. The AIM "captures" terminal-directed output
from APSE programs and program-directed input from the terminal.

Rationale: The AIM requires that all data be received in the same
order as it was transmitted, in essence, a data "pipe". This pipe

scheme should be totally transparent to the APSE program running under
the AIM; the AIM sh oulTnot in any way affect the implementation of
APSE program I/O.

Since an APSE program is defined as one which only uses KAPSE services,

The AIM requires APSE programs to use only Standard In and Standard Out
for terminal directed I/O. An APSE program which bypasses the KAPSE to

use underlying host services is considered erroneous, and may produce
undesirable results when executed under the AIM. Only one terminal may

- be associated with an APSE program, since there is no method of
identifying multiple terminals. (See section 7, "User Interfaces".)

Texas Instruments 3-5 16 May 1983

j *. B-13

L.



AIM -- Interface Report I AIM INTERFACE REQUIREMENTS

3.4 KAPSE Database Interfaces

The AIM manipulates database files during initialization and execution.
The packages TEXT 10, SEQUENTIAL 10, and DIRECT 10 defined in [DOD82]
provide the AIM with clear interfaces for file- manipulation. Both
APSEs augment the I/O capabilities defined in the Ada language with
extended features.

3.4.1 Rummary of Database Interfaces. The following is a list of AIM
functional requirements which the KAPSE database services should
fulfill:

I. Open a file for reading/writing

2. Read from a file

3. Write to a file

4. Close a file

5. Create/delete a file

Rationale: During its initialization, the AIM reads information from
several specific KAPSE database files. When invoked, the AIM attempts
to read commands from a predefined indirect command script. The KAPSE
database services must provide for opening and reading this indirect
command script.

The AIM also requests KAPSE database service support for accessing the
predefined Terminal Capabilities File. This file describes common
terminal functions in terms of device-specific control sequences,
allowing the AIM to manipulate many different physical terminals with a
common interface. It is possible to update terminal capabilities;
therefore, this file must also be modifiable.

The Arm also requires KAPSE database services during execution. In
oreer to log all terminal-destined I/O to permanent files, the AIM
provides an optional "pad" feature. A pad consists of two KAPSE
aatabase files which mirror all input and output transferred between an
APSE program executing in the environment and its associated AIM
window. Each APSE program mapped to an AIM window may have its own
pad. The AIM requires a method of creating, deleting, and controlling
pad files from the KAPSE database services.

Texas Instruments 3-6 16 May 1983

B-14



!
AIM __ Interface Report 1 AIM INTERFACE REQUIREMENTS

3.S Miscellaneous Interfaces

3.r.1 nate information.

Rationale: The AIM requires KAPSE services to obtain the current date
to display in the viewport header.

3.R.2 Call-Tree Information.

Rationale: The AIM queries the KAPSE program call-tree structure to
determine subordinate program information. The AIM examines this
structure to manage programs executing under its control. For example,
the user may not exit the AIM unless all subordinate programs have
terminated. The AIM determines which programs and subprograms are
currently executing by examining the call tree.

iI
Texas Instruments 3-7 16 May 1983

B-15

. ... .. . . -.... . , ,. ..... -.......... , ......



7

AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACES

SECTION 4

ADA LANGUAGE SYSTEM INTERFACES

4.1 General

The Ada Language System (ALS) is under development by SofTech, Inc.
under U. S. Army contract number DAAK80-80-C-0507. The implementation
of the ALS is not yet complete.

4.2 Terminal Communication Services Interfaces

4.9.1 Sufficient Interfaces. The following ALS terminal
communications interface is satisfactory and well-defined for the AIM
requirements:

1. Write variable length strings to user terminal. This
capability is provided in TEXT IO by the following procedure:
(FDOD821 p 14-9)

procedure PUT (FILE : in FILE TYPE;
ITEM : in STRING) ;

4.2.2 Insufficient Interfaces. There are many interfaces in the
terminal communications area that are missing or not well defined in
the ALS. The following are the AIM interface requirements which are
nonexistent or undefined in the ALS:

1. Read single character - not provided.

According to ARPANET response from SofTech, the ALS KAPSE
does not perform any I/O buffering. However, the underlying
host (VMS) buffers keyboard input except for special control
character sequences which cause interruption (such as <CNTL>-
Y). The ALS provides no mechanism for bypassing this VMS
huffering. (See Appendix B question 3.)

Texas Instruments 4-1 16 May 1983

B-16



AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACES

The VMS terminal driver waits for a carriage return to
transmit characters. The AIM can circumvent buffering of
character I/O by using the VAX QIO macros [DEC82]. This is a
significant interface issue because it requires bypassing the
ALS KAPSE. Consequently, the portat'lity of the AIM is
reduced.

An issue closely related to reading single characters without
buffering is writing a single character. The ALS
implementation of the Ada package TEXT 10 also buffers
output. Characters are transmitted only-upon execution of
NEW LINE, PUT LINE, or when the line length is exceeded. It
is -possible to set the line length to 1 to transmit one
character at a time; however, the "end of line" mark would be
inserted after each character.

2. Enable/disable echo - not provided.

The ALS defines only two packages to supplement Ada file I/O:
packages BASIC 10 and AUX 10; there is no TERMINAL 10
package. Neitier of the -defined packages support echo
enable/disable.

3. Exclusive access to user terminal- not provided.

The ALS documents were not clear on the subject of user
terminal access. Verbal response from SofTech [RT83]
indicated that exclusive access to the user terminal is not
provided by the ALS.

4. Write exactly as internally represented - not provided.

The ALS KAPSE does no character translations of its own.
Package BASIC 10 provides byte string read and write from the
KAPSE to the VM4S terminal driver. Again, however, the ALS
does not allow the user to control the VMS device driver
through the KAPSE. (See Appendix B, question 1.)

The VMS terminal driver has the potential to perform
character string translations. For example, if a terminal
uses an 8-bit ASCII character code and the TT$M EIGHTBIT mode
is not set, the device driver assumes a seven-bit code,
masking out the eighth bit (dropping a bit from the received
byte). Clearly, this behavior could alter an AIM
transmission. VMS also allows syntax validation of escape
sequences if TT$M ESCAPE mode is set, which forces certain
interpretations 1f AIM control sequences. The ALS KAPSE
provides no services for setting these VMS terminal
characteristic modes; the user must perform an ESCAPE to the
underlying VMS operating system.

Texas Instruments 4-2 16 May 1983

B-17



AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFAC7ES"

To write strings exactly as represented, the ALS KAPSE may be

bypassed to access the VMS device driver and set the terminal

characteristic TT$M PASSALL. This mode ensures that all

input and output is binary and that no interpretation

whatsoever occurs in the device driver. Again, AIM

transportability is significantly reduced by the VMS

dependent services required. ([DEC82] p 9-19)

. Terminal identification - not provided.
The ALS documents do not describe a method for obtaining

terminal identification, and verbal communication confirmed

that this AIM requirement is not supported. [RT83]

. Screen-oriented facilities - not provided

As described above, the ALS defines only two auxiliary I/O

packages to supplement Ada I/O. Neither of these packages

mentions any screen manipulation procedures, and ARPANET

communications confirmed that explicit x-y cursor positioning
is not supporteHiby the ALS. (Appendix B, question 2.)

4.3 APSE Program Control and Communication Interfaces

4.3.1 Sufficient Interfaces. The AIM program control requirements are

supported by the ALS as follows:

1. Initiate program - Procedure CALLWAIT is provided in package

PROG CALL to invoke a program and wait until the program

compTetes its execution. Procedure CALL NO WAIT invokes a

new APSE program allowing the caller to c-ontinue execution

without waiting for the invoked program to complete:i ([SOFP2] p 9n-138, [SOF82A])

procedure CALL WAIT (PROGRAM NAME : in

KAPSE 1EFS.SHORT ID STRING;

PROGRAM FILE : in KAPSE_DEFS.NODE_NAME;
PARAMETER LIST : in
PROG DEFS.PARM LIST REC;
STDIN-FILE : in-KAPSE DEFS.NODE NAME;
STDOUf FILE : in KAPSE DEFS.NODE_ NAME;
MSGOUT--FILE in KAPSE-DEFS.NODENAME;
PROGRAM_STATUS : in out

PROG_DEFS.CALLSTATUS REC);

Texas Instruments 4-3 16 May 1983

B-18



AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACES

procedure CALL NOWAIT (PROGRAM NAME : in
KAPSE DEFS.SHORT ID STRING;
PROGRAM FILE : in KAPSEDEFS.NODENAME;

PARAMETER LIST : in
PROG DEFS.PARMLISTREC;

STDIN-FILE in KAPSE DEFS.NODE NAME;
STDOUT FILE in KAPSE DEFS.NODE_NAME;
MSGOUT-FILE in KAPSE_DEFS.NODENAME;
PROGRAM STATUS : in out

PROGDEFS.CALLSTATUSREC);

. Control of APSE proqrams from within other APSE programs.
Package PROG CONTROL defines program control procedures to
suspend execution of an APSE program and all of its
subprogram descendants, to restart a specified APSE program,
to abort a program and all of its subprogram descendants, and
to request program status:

a. Suspend program (rSOF82] p 90-156)

procedure REQ SUSPENSION (PROG NAME : in
STRING UTIL.VARSTRINGREC;
REQUEST STATUS : out
PROGDEFS.PROCALSTATUSENU)

b. Resume program ([SOF82] p 90-162)

procedure REQRESUMPTION (PROG NAME : in
STRING UTIL.VARSTRINGREC;
REQUEST STATUS : out

PROGDEFS.PROCALSTATUSENU)

c. Abort program (rSOF821 p 90-161)

procedure REQABORTION (PROGNAME : in
STRING UTIL.VARSTRINGREC;
REQUEST STATUS : out
PROGDEFS.PROCALSTATUS ENU);

d. Determine program status ([SOF82 p 90-157)

procedure REQSTATUS (PROG NAME : in
STRING UTIL.VAR STRING REC;
PROGRAM STATUS : out
PROGRAMINFOREC)

Texas Instruments 4-4 16 May 1983

IB



AIM -- Interface Report 1 ADA LANGUAGE SYS"M INTERFACES

4.1. Insufficient Interfaces. The APSE program interfaces which are
not sufficient in the ALS are:

1. Intercept APSE program's terminal I/O - Not provided.

There are no provisions in the ALS for intercepting an APSE
proqram's terminal I/O. To support this requirement, the AIM
may have to bypass the ALS KAPSE to access underlying VMS
mailboxes. The VAX Create Mailbox and Assign Channel
(SCREMBX) system allows processes to create channels for
terminal I/0, which may allow the AIM to intercept an APSE
proqram's I/O destined for the terminal. ([DEC82] p 8-2)
Naturally, transportability is impaired whenever the KAPSE is I"

bypassed.

2. Exclusive access to the APSE program's terminal I/O - not
provided

The ALS defers to VMS which allows concurrent read and write
access to multiple internal files which are associated with
the terminal. The KAPSE provides no mechanism for obtaining
exclusive access to the APSE program's terminal I/O (Appendix
S, question 4). VMS, however, provides a device allocation
service ($ALLOC) which reserves the device for the exclusive
use of the requesting process and its subprocesses. Again,
this requires bypassing the ALS KAPSE.

1. Interprocess communication - not provided.

The ALS makes no provisions for this capability. There is
also no way to open an I/O file in SHARED STREAM mode, as the
AI describes. As described above, the ALS KAPSE can be
bypassed to access VMS mailboxes to accomplish this
communication, which hinders transportability.

4.4 vAPSE Database Interfaces

4.4.1 Sufficient Interfaces. The ALS KAPSE Database Services are
complete and sufficient for AIM implementation. The ALS replaces and
augments the file manipulation capabilities defined in TEXT 10 [DOD82]
with the package BASIC 10, which contains procedures to-control the
standard ALS I/O streams. Although the TEXT 10 provisions are
sufficient for AIM needs, BASIC 10 enhances I/O for the ALS interface.
The AIM database interface requiements are fulfilled as follows:

Texas Instruments 4-5 16 May 1983

B-20



I
AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACES )

1. Open/Close a database file

The ALS provides open and close procedures in package
BASICIO: ([SOF821 p 90-50,53)

procedure OPEN FILE (STREAM : out IODEFS.STREAM ID PRV;
NAME : in STRING UTIL.VAR STRINGREC;
MODE : in 10 DEFS_.IO MODE ENU;
FILE CLASS :-out 10 DEFS.FILECLASSENU;
RECORD FORMAT : out-

10 DEFS.RECORD FORMATENU;
RECORD LENGTH : out

10 DEFS.DATA INDEX INT;
RESUT : out 10_DEFS.IORESULTENU;
RESULT STRING : in out

STRIIG_UTIL.VARSTRINGREC) ;

procedure CLOSE FILE (STREAM : out IO DEFS.STREAM ID PRIV;
RESULT out IODEFS.IO_RESULTENU;
RESULT STRING : in out
STRINGUTIL.VARSTRINGREC)

2. Read/write to a database file

Package BASIC 10 in the ALS supports procedure READ FILE
which reads data from an open input file. Similarly,
procedure WRITE FILE writes data to an open output file:
([SOFP2] p 90-557-57)

procedure READ FILE (STREAM : in IO DEFS.STREAMIDPRIV;
BUFFER : in KAPSE-DEFS.ADDRESS.INT
LENGTH : in 10 DEFS.DATA INDEX INT ;
COUNT out 10 DEFS.DATA LENGTH INT ;
RESULT : out IO-DEFS.IO RESULTENU
RESUJLT STRING : in out -

STRINGUTIL.VARSTRINGREC) ;

procedure WRITE FILE (STREAM : in 10 DEFS.STREAM ID PRIV;
BUFFER in KAPSE DEFS.ADDRESS.INT;
LENGTH in 10 DEFS.DATA INDEX INT
COUNT out IO DEFS.DATA LENGTH INT ;
RESULT : out IO-DEFS.IO RESULT ENU 
RESULT STRING in out

STRING UTIL.VAR STRING REC) ;

3. Create database files t

Texas Instruments 4-A 16 May 1983

B -21



AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACES

V

File creation is also handled in package BASIC I/O by
procedure MAKEFILE ((SOF821 p 90-47):

procedure MAKEFILE (STREAM : out 10 DEFS.STREAM ID PRIV;
NAME : in STRING UFIL.VAR STRINRG _EC;
MODE : in 10 DEF9.IO MODE-ENU ; -
FILE CLASS :-in 10 DEFS.FILE CLASS ENU;
RECORD LENGTH : in-IO DEFS.DATA INDEX INT;
RESULT-: out 10_DEFS.IO_RESULT_ENU; -
RESULT STRING : in out

STRTNGUTIL.VAR STRING REC)

This procedure associates an I/O stream with the new file.

4. Destroy database files

Package BASIC 10 also supports file deletion by procedure
DELETEFILE: T[SOF821 p 90-49)

procedure DELETE FILE (STREAM : in 10 DEFS.STREAM ID PRV;
RESULT : out I0 DEFS.IO RESULTENU;
RESULT STRING : in out
STRING UTIL.VAR STRING REC)

The database file associated with the STREAM parameter is
deleted, after all streams with which the file is associated
are closed.

4.5 Miscellaneous Interfaces

4.9.l Sufficient Interfaces.

1. Date information.

In addition to the predefined Ada package CALENDAR [DOD82],
the ALS defines procedure GET TIME DATE in package MISC SERV
([SOF82] p 90-184) to retrieve-the Eurrent time and date in
standard ALS format:

procedure GETTIMEDATE (TIME INFO : out
- - MISC-DEFS.TIME INFO REC;

DATE-INFO : ou-t
MISC DEFS.DATE INFOREC)

Texas Instruments 4-7 16 May 1983

B-22 .-i



'I Arm -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACES

2. Call-tree information.

Package PROG CONTROL describes procedure REQ STATUS which
provides the capability to query the call tree: ([SOF82] p
90-157)

procedure REQ STATUS (PROG NAME : in

STRING UTIL.VAR STRING REC;
PROGRAM STATUS : out PROGRAM INFOREC)

The PROGRAM STATUS parameter is a record which contains
descendant program names. The user may repeatedly call
RRO STATUS to retrieve names one by one, in effect traversing
the call-tree for information. ((SOFSB] p 3-174)

This approach to information retrieval has some interesting
Implications. The call-tree is a dynamic structure. It is
not clear if the REQ STATUS procedure takes a "snapshot" of
the call-tree at a givIn instant, or (more likely) the call-
tree continues changing as the status of various programs
also change. A user that repeatedly calls REQ STATUS to
traverse the call-tree has no way of assuring that the
information retrieved in one instant will be valid the next
instant. For example, if the user wishes to count the total
number of subordinate programs of a running program "A", a
call to REQ STATUS would indicate one child program, "B",
directly under "A":

Program A <== parent

Program B <== child

Program C Program D <== grandchild

The user would then call REQ STATUS again to determine if
program "B" has any subordinate programs. While the user is
querying program "B", program "A" could start another
program, "E":

Program A <== parent

Program B Program E <== child

IA
Program C Program D <=- grandchild

Texas Instruments 4-8 16 May 1983

I"



AIM -- Interface Report 1 ADA LANGUAGE SYSTEM INTERFACESN

The user will never know about program "E" unless he or she
performs another REQ STATUS on program "A". Therefore, the
program count will p-obably be invalid.

Fortunately, the AIM requires call-tree information to
determine simply whether or not a program has subordinate
programs, so repeated calls to REQ STATUS and the possible
problems described above are not anticipated.

Texas Instruments 4-9 16 May 1983

B-24



!
AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES

SECTION 5

ADA INTEGRATED ENVIRONMENT INTERFACES 0

5.1 General

Intermetrics, Inc. is performing the design and implementation of the
Ada Integrated Environment (AIE) under U. S. Air Force contract number
F30902-8-C-0291. Neither the design nor the implementation of the AIE
are complete at this time.

9.? Terminal Communication Services Interfaces

5.2.1 Sufficient Interfaces. The following AIM terminal communication
interfaces are sufficient for AIM requirements and are well-defined in
the AIE:

1. Enable/disable echo.

The AIE provides package INTERACTIVE 10 as an extension to
TEXTIO. The following procedures are defined in this
package for echo control:

procedure SETECHO (INPUT : in FILE TYPE ;
OUTPUT: in FILE-TYPE) ;

procedure NOECHO (INPUT : in FILETYPE) ;

procedure NOECHO (OUTPUT: in FILETYPE) ;

SET ECHO enables echo at the current line and column of
input. NO ECHO breaks echo associations for either input or
output. (fINTP21 p 73)

. Exclusive access to the user terminal.

Althouah this requirement is not discussed in the documents,

verbal communication with Intermetrics indicated that there
will exist a method for obtaining exclusive access to the
user terminal. ETT83]

Texas Instruments 5-1 16 May 1983

'1 B-25



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES'",

3. write to terminal exactly as internally represented.

Verbal communication [TT831 confirmed that character
sequences may he sent to the terminal with no intervening
interpretation or character additions or deletions.

4. Write variable length strings.

This functionality is defined in the package TEXTIO by the
following procedure: ([DODR2] p 14-19)

procedure PUT (FILE : in FILETYPE; ITEM : in STRING)

5. Terminal identification.

Packaqe TERMINAL 1O is defined in the ATE for terminal
interaction. The following primitives could potentially

retrieve a terminal identification string: ([INT82] p 58)

procedure GETTERMINALINFO (TERM : in INTEGER ;
INFO : out TERMINAL INFO BLOCK);

If TERMINAL INFO BLOCK (yet undefined) contains a component
such as TERMINAL ID STRING, these procedures would suffice
for this interface-requirement. Verbal communication [TT83]
confirmed this assumption.

4. Screen-oriented facilities

Since the ATE treats the terminal display as a random text

file, the package TEXT ACCESS defines several procedures
applicable to two-dimensional display manipulation. The AIM
can simulate all the screen "editing" functions it requires
with the primitives in this package. For example, a "clear
to end of line* command can be implemented by positioning the
cursor to the appropriate line and column, and writing blanks
across the line. Included in package TEXT ACCESS are:
([ITS? p 70)

a. Procedure SETOFFSET - selects the next read/write

character.

procedure SETOFFSET (FILE : in FILETYPE;
TO : in COUNT) ;

h. Procedure SET LINE - positions the cursor vertically at
the beginning of a selected line.

Texas Instruments 5-2 16 May 1983

B-26



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES

procedure SET LINE (FILE : in FILETYPE;
TO : in COUNT) ;

c. Procedure SET COL - positions the cursor horizontally
at a selected column.

procedure SET COL ( FILE : in FILETYPE;
TO : in COUNT);

5.2.2 Insufficient Interfaces. The following are problem areas where
AIE terminal communication interfaces required by the AIM were either
nonexistent or not well defined in the AIE:

1. Read single character - not provided

Arpanet response from Intermetrics indicated that I/O
operations to interactive devices are buffered to permit
local line-editing before the characters are received as part
of the text input file. (Appendix B, question 3) Buffers
will be delimited by ENTER/Carriage Return characters.

Projections indicate that the SET INPUT INFO procedure of
package INTERACTIVE 10 will provide control of this
buffering. (FINT821-p 73)

5.3 APSE Program Control and Communication Interfaces

C.1.1 Sufficient Interfaces. The following APSE Program Interfaces
are sufficiently well-defined in the AIE to support AIM requirements.

1. Control of APSE programs from within other APSE programs.
The AIE defines package PROGRAM INVOCATION to support program
control requirements: ([INT82]-p 105-6)

a. Initiate. Function CALL PROGRAM invokes an APSE
program as a subprogram- of the caller. The calling
proaram is suspended until completion of the
subproaram. Procedure INITIATE PROGRAM invokes an APSE
proaram in a manner similar To CALL PROGRAM, but the
calling program is not suspended:

1.
Texas Instruments 5-3 16 May 1983

B -27



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES

function CALL PROGRAM (PROGRAMPATH : in STRING;
PARAMETERS: in PARAMS STRING;
CONTEXT NAME : in STRING

".SUB CONTEXT";
STD IN - in TEXTIO.FILETYPE
CURRENTINPUT;

STD OUT : in TEXT IO.FILE TYPE
CURRENT OUTPUT)

return RESULTSSTRING

b. Suspend. Procedure SUSPENDPROGRAM allows execution to
be temporarily stopped.

procedure SUSPEND PROGRAM (CONTEXT NAME : in STRING);

c. Resume. Procedure RESUMEPROGRAM restarts a suspended
program.

procedure RESUMEPROGRAM (CONTEXTNAME : in STRING)

d. Abort. Procedure EXIT PROGRAM stops program execution.
A boolean parameter indicates whether to wait for
subprocesses to complete, or to abort all subprocesses.

procedure EXIT PROGRAM (RESULTS : in RESULTSSTRING;
ABORT SUB CONTEXTS : in boolean

false)

r.3.2 Insufficient Interfaces. The following program control

interfaces are either nonexistent or not well defined in the AIE:

1. Intercept APSE program's terminal I/O - unable to determine.

The AIM desires channels for pipe I/O that are transparent to
an APSE program. According to ARPANET response from
Intermetrics, pipe I/O can be accomplished through package
TEXT 10, opening the file in SHARED STREAM mode. The OPEN
procedure allows a FORM string parameter which can be
specified as SHARED STREAM through a label=>value list:
(lINT821 p 72) ([DOD81, 14.3.10) (Appendix B, question 4)

OPEN (FILENAME, IN_FILE, "RESERVEMODE=>SHAREDSTREAM")

Texas Instruments 5-4 16 May 1983

B-28



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES

SHAREDSTREAM mode allows synchronization of database object
access so that WRITE ORIGINAL access is "reserved" (granted)
only at the time of t~e READ or WRITE. ([INT82] p 94)

This approach to pipe I/O may riot be acceptable for the AIM.
The AIM requires that APSE programs use only the STD IN and
STDOUT files for terminal I/O. These files are impficitly
opened upon program invocation, so normally the APSE program
never calls the OPEN procedure. The AIE mechanism requires
that the APSE user program explicitly open STD IN and STD OUT
in SHARED STREAM mode. This implies that- the AIM pipe
mechanism Would not be transparent to user programs.

A more attractive alternative is for the AIM itself to open
the file in SHARED STREAM mode, and then pass the file to the
APSE program as -part of the INITIATE call. The AIM pipe
mechanism would then be transparent to the APSE program.
Verbal communications indicate that this is a viable
solution. [TTP3A]

2. Exclusive access to the APSE program's terminal I/O - unable

to determine.

The AIE documents presently contain minimal information about
terminal I/O. The TEXT 10 package [DOD82] defines facilities
for many I/O needs, but does not define a method for
connecting the STD IN and STD OUT files to the terminal, as
required by the AIR. Therefore, it is difficult to determine
whether the AIM may be granted exclusive access to an APSE
program's terminal I/O.

3. Determine program status - indeterminate.

There is no explicit provision in lINT82] for querying the
status of a program. Package PROGRAM INVOCATION contains
procedure SUSPEND PROGRAM, which stops the execution of the
named program, Wallowing the state of the execution to be
examined" (rINT82] p 106). It is not clear if the state of
execution returned is the current status, or the state of the
program before suspension. Since it would be useless to
query the status of a process that is known to be suspended,
one would assume that the execution state returned consists
of program information (such as register contents). Under
this assumption, program status information is not available
to the user.

4. Interprogram Communication.

AIM interprogram communication consists of intercepting input
and output from the APSE program executing in the

Texas Instruments 5-5 16 May 1983

B-29L.



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES

environment. The AIM may be able to accomplish this with the

provision for opening a file in SHARED STREAM mode (see item
1 above).

It is not clear that the AIM will need further interprogram
communications facilities, but for the sake of completeness,
the existing AIE IPC interfaces are analyzed below.

The package INTER PROGRAM COMMUNICATION defines several
functions and proEedures -for manipulating and controlling
program I/O channels. The communicating programs must agree

on the format and interpretation of PARAMS STRING and
RESULTS STRING for interprogram communication. T[INT82] p.
lln)

a. Accept next waiting entry call:

function IPC ACCEPT (CHANNEL NAME : in STRING;
TIME LIMIT : in DURATION

DURATION LAST)
return PARAMS STRING ;

b. Resume IPCENTRYCALL after an IPCACCEPT:

procedure IPCENDRENDEZVOUS (CHANNEL NAME in STRING;
RESULTS : in RESULTSSTRING)

c. Send data through channel:

function IPCENTRYCALL (CONTEXT-NAME : in STRING;
CHANNEL NAME : in STRING;
TIMELIMIT : in DURATION

:= DURATION'LAST;
PARAMS : in PARAMS STRING)
return RESULTSSTRING;

d. Select channel for IPC: procedure IPC SELECT is named
but not yet defined in this package.

Facilities to create channels are not provided in this
package; however, Intermetrics has indicated verbally that
channel creation will be provided. [TT83]

Texas Instruments 5-6 16 May 1983

B-30|,,



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACES

5.6 KAPSE Database Interfaces

5.4.1 Sufficient Interfaces. The KAPSE Database Services interfaces
are sufficiently defined for the AIM implementation in the package
TEYTIO: ([r)ODR21 14.3.10)

1. Open/Close a database file

Package TEXT 10 contains Open and Close procedures
(rDODt2] p 14-2,3)

procedure OPEN (FILE : in out FILE TYPE
MODE in FILE MODE-:= OUT FILE
NAME : in STRING
FORM in STRING) ;

procedure CLOSE (FILE : in out FILE TYPE) ;

2. Read/write data to a database file

The TEXT 10 package defined in [DOD82] contains PUT and GET
procedures for file I/O which support variable length
strings: ([DOD821 p 14-19) String I/O is accomplished by
calls to PUT and GET single characters for the length of the
string.

procedure PUT (FILE : in FILETYPE; ITEM : in STRING) ;

procedure GET (FILE : in FILETYPE; ITEM : out STRING) ;

3. Create database files

Procedure CREATE in TEXT 10 allows the AIM to create database
file objects. ([DOD82] p 14-3)

procedure CREATE (FILE : in out FILE TYPE
MODE : in FILE MODE DEFAULTMODE
NAME : in STRING
FORM : in STRING "")

4. Destroy database files

Procedure DELETE in package TEXTIO is sufficient for file
deletion. (rDOD821 p 14-4)

Texas Instruments 5-7 16 May 1983

B-31



AIM -- Interface Report 1 ADA INTEGRATED ENVIRONMENT INTERFACESP

procedure DELETE (FILE in out FILE-TYPE) ;

5.5 Miscellaneous Interfaces 0

5. .l Sufficient Interfaces.

1. Date information.

Package CALENDAR defined in ([DOD82] p 9-11) specifies
several functions and one general procedure for date
retrieval:

function YEAR (DATE : TIME) return YEARNUMBER ;

function MONTH (DATE : TIME) return MONTH NUMBER

function DAY (DATE : TIME) return DAYNUMBER

procedure SPLIT (DATE : in TIME
YEAR : out YEAR NUMBER;
MONTH : out MONTH NUMBER
DAY : out DAY NUMBER ;
SECONDS : out DAY-DURATION) ;

5.5.? Insufficient Interfaces.

1. Call-tree information.

Call-tree information services could not be found in the AIE
documents. The ability to access call-tree information is
implieH by procedures such as EXIT PROGRAM, which can wait
for sub-contexts to complete. However, a procedure which
explicitly allows the user to query the call-tree is not
provided. ((INT821 p 106)

Texas Instruments 5-8 16 May 1983

E-32



AIM -- Interface Report I STANDARD INTERFACE SET

SECTION 6

STANDARD INTERFACE SET

'.I General

The STS package specifications evaluated in this Interface Report are
currently under development by the KIT and KITIA. The SIS document

analyzed here is only a preliminary draft, dated February 1983.
subsequent versions of the SIS will be evaluated in subsequent

interface reports. The package specifications currently lack semantic
explanations, which neccessitates some speculation. With this in mind,
this section examines the SIS interface provisions which do exist,

outlining the AIM requirements which are met and identifying those
which are insufficient or missing.

9.1 Background

The Standard Interface Set (SIS), described in [SIS83], is a result of
an effort by the KAPSE Interface Team (KIT) and the SIS Drafters group
to provide APSE users with a transportable interface to any KAPSE. Ada
tools which use only SIS packages should be portable to any APSE which
has an implementation of the SIS. The areas the SIS addresses are:

1. Input/Output

'. natabase management

3. Process management

4. Utilities

9.3 Terminal Communication Services Interfaces

9.3.1 Sufficient Interfaces. The SIS defines several I/O packages
which support primitive terminal functions required by the AIM as
follows:

Texas Instruments 6-1 16 May 1983

B-33



AIM -- Interface Report 1 STANDARD INTERFACE SET

1. Enable/disable echo.

The SIS defines procedure SET ECHO in package INTERACTIVE 10
which allows echo to be turned on or off, and function E!HO
which queries the current status of echoing: ([SIS83] p 14)

procedure SETECHO (FILE: in FILE TYPE;
TO: in boolean := true)

function ECHO (FILE: in FILE TYPE) return boolean ;

2. write variable length strings.

The SIS supports string I/O in package SISTEXTIO, procedure

PUT: (rsIs31 p 10)

procedure PUT (FILE: in FILE TYPE; ITEM : in STRING) ;

The STS also supports a READ and WRITE in the generic package
SIS SEQUENTIAL 10, which perform I/O on the private type
ELEMENTTYPE, potentially a string. ([SIS83] p 4)

3. Screen-oriented facilities.

The SIS provides one procedure to set line and column cursor
positioning in package SISINTERACTIVEIO: (iSIS83] p 14)

procedure SETCURSOR (FILE: in FILE-TYPE;
TO : in CURSORTYPE)

,.3.2 Insufficient Interfaces. The following AIM terminal services
requirements are not described or are yet undeveloped in the SIS
documentation:

1. Read single character - unable to determine.

Whether I/O is buffered or not is largely implementation
eependent, sometimes contingent upon host machine services.
The SIS makes no provision for specifying "no-buffered" I/O
modes.

2. Exclusive access to user terminal - unable to determine.

The SIS describes the skeleton of a generic device control
package called SIS DEVICE CONTROL. Package TERMINAL CONTROL
is defined but not yet elaborated. It is possible t1at this

Texas Instruments 6-2 16 May 1983

B-34



AIm -- Interface Report 1 STANDARD INTERFACE SET

package may provide some control over user terminal access.

3. Write exactly as internally represented - unable to
determine.

This requirement, like "read single character" above, is
largely implementation dependent. The SIS does not describe
a "passthrough" mode (as VMS defines) to write byte strings
with no system translation.

4. Terminal identification - unable to determine.

The terminal capabilities in package TERMINAL CONTROL
([SIS831 p 15) have not yet been defined. It is possible
that this package may contain a procedure similar to the
AIE's GET TERMINAL INFO which allows the AIM to query the
TERMINALINFOBLOCK-to obtain terminal identification data.

A.d APSE Program Control and Communication Interfaces

6.4.1 Sufficient Interfaces. The package SIS PROCESS-STRUCTURE
provides program control support consisting of process creation and
termination. Processes may be explicitly started using the SPAWN
procedure. Several options are available for terminating and aborting
processes and their spawned processes.

The package SIS PROCESS CONTROL supports process suspension,
resumption, and abortion. Process status queries may be satisfied
using the STATUS function from this package. The procedures which
satisfy the AIM APSE program interfaces are as follows:

1. Initiate APSE program from within another APSE program.

When an Ada proqram or task is invoked, a process is created
to represent the execution of the program. By default, each
process is created as a subprocess of its creator ([SIS83] p
25). Procedure INVOKE in package SIS PROCESSSTRUCTURE
invokes an APSE program and waits for it to complete.
Procedure SPAWN in the same package also invokes an APSE
program, but the calling program continues execution:
(rSISR31 p 27)

Texas Instruments 6-3 16 May 1983

B-35



pI

AIM -- Interface Report 1 SANDARO3 INTERFACE SET

procedure INVOKE (KEY: in KEY STRING;
PARAMS: in PARAMS STRING;
RESULTS: in out RESULTS STRING;
STATUS: out PROCESS STATUS ;
STD IN: in FILE TYPE:=

SIS TEXT IO.CURRENTINPUT;
STD OUT: FILE TYPE:=

IS TEXT IO.CURRENT OUTPUT;
STD ERR : in FILE TYPE:=

SIS INTERACTIVE IO.CURRENT ERROR;
LOCATION : in PROCESSLOCATION : 0

procedure SPAWN (KEY: in KEY STRING;
PARAMS: in PARAMS STRING;
STD IN: in FILE TYPE :=

SIS TEXT IO.CURRENTINPUT;
STD OUT: in-FILE TYPE

SIS TEXT IO.CURRENTOUTPUT;
STD ERR: in-FILE TYPE :=

SIS INTERACTIVE IO.CURRENTERROR;

LOCATION: in PROCESSLOCATION := 0

2* Suspend execution.

Package SIS PROCESSCONTROL provides a suspension primitive:

(rSIS831 p 31)

procedure SUSPEND (NAME: in NAMESTRING)

The process identified by NAME and all of its subprocesses
will be suspended from execution.

3. Resume execution.

A process resumption primitive is included in the same
package: ([SIS831 p 31)

procedure RESUME (NAME : in NAMESTRING) ;

The suspended process identified by NAME and all of its
suspended subprocesses will be restarted.

4. Ahort proqram.

Package SIS PROCESS CONTROL defines process abortion as a
primitive: -(rSIS83T p 32)

Texas Instruments 0-4 16 May 1983

B-35



AIm -- Interface Report 1 STANDARD INTERFACE SET

procedure ABORT (NAME: in NAME STRING)

This procedure aborts any named process. Package
SIS PROCESS STRUCTURE also defines a procedure to terminate
the-current-running process and all of its subprocesses. The
difference in functionality is not clear from the document.
(r1STS91 p 2A)

procedure ESCAPE (RESULTS: in RESULTSSTRING)

1. Determine program status.

Package SIS PROCESS CONTROL contains a procedure which allows
the AIM to query the status of programs running under its
control: (ISIS83] p 32)

function STATUS (NAME : in KEY STRING)
return PROCESSSTATUS

r.4.2 Insufficient Interfaces. Program control interface issues are
Intricate and sometimes implementation dependent. The preliminary SIS
draft (SIS83] does not elaborate on the semantics of the packages it
defines, so these AIM requirements are considered yet unsupported by
the SIS:

1. Intercept APSE program's terminal I/O - unable to determine.

The SIS defines the OPEN procedure in package SISTEXT_10 to
contain a FORM mode parameter: (ISIS831 p 8)

procedure OPEN (FILE : in out FILE TYPE ;
MODE : in FILE MODE ;
NAME : in STRING ;

FORM : in STRING := "") ;

Tt is possible that the SIS intends to declare a
"RESERVE MODE" similar to that found in the ATE, to permit
5HARF STREAM access. It is not clear that even this
functlonality will be appropriate for AIM requirements (see
J.1.2.1). SHARED STREAM access requires the user to

explicitly open the file, which is not normally done with
STDIN and STDOUT.

2. Exclusive access to the APSE program's terminal I/O - unable
to determine.

Texas Instruments 6-5 16 May 1983

B-37I



AIM -- Interface Report 1 STANDARD INTERFACE SET

The terminal I/O packages are currently undefined in the SIS;
this feature may be implementation dependent.

3. Interprogram Communication.

The SHARED STREAM mode described above (if it exists) could
provide the AIM with the required interprogram communication
functionalities. As stated in the AIE rationale, it is not
clear that the AIM will utilize IPC facilities, but for the
sake of completeness, a parallel analysis of the SIS IPC is
provided below.

The SIS defines package SIS PROCESS COMMUNICATION which
contains minimal provisions for-interprocess entry and accept
calls. A conforming implementation of the SIS must support
up to twenty simultaneous accepting channels from one
process. No method for creating these channels is defined.
The following procedures form the basis for interprocess
communication in the SIS: ([SIS83) p 33)

procedure ENTRY CALL (NAME : in NAME STRING;
CHANNEL : in CHANNEL STRING;
PARAMS : in PARAMS STRING;
RESULTS : in out RESULTS STRING;
LIMIT : in CALENDAR.DURATION :=

CALENDAR.DURATION'LAST);

procedure ACCEPTENTRY (CHANNEL : in CHANNEL STRING;
RESULTS : in RESULTS-STRING);

The ENTRY CALL procedure passes the parameters to the process
and suspends itself until an ACCEPT is performed on the
channel (before time limit expires). Procedure ACCEPT ENTRY
waits on an ENTRY CALL to the named channel or until the time
limit expires. -

1.5 KAPSE Database Interfaces

6.5.1 Sufficient Interfaces. The SIS considers its database
representation to be a forest of trees with each tree consisting of a
node (a node being either a file or a directory). Nodes may be
created, deleted, opened, closed, read from, written to, copied, and
queried for status. The following procedures fulfill the database
service requirements of the AIM:

Texas Instruments 6-4 16 May 1983

B -38



I
AIM -- Interface Report I STANDARD INTERFACE SET

1. Open/Close a database file.

Package SIS TEXT 10 provides procedures to open and close a
file. (ES1S831 p 8)

procedure OPEN (FILE in out FILETYPE
MODE in FILE MODE
NAME : in STRING ;
FORM in STRING = ) ;

procedure CLOSE (FILE in out FILETYPE)

2. Read from/Write to database files.

The packages SIS TEXT 10, SIS DIRECT 10, and
SIS SEQUENTIAL_10 define PUT and GET procedures for various
database file types. Following are the string I/O read and
write routines from SISTEXT_10: ([SIS83] p 10)

procedure GET (FILE : in FILETYPE; ITEM : out STRING) ;

procedure PUT (FILE : in FILETYPE; ITEM : in STRING) ;

3. Create database files.

The package SISTEXTIO provides a file creation procedure:
(5IS83] p 8)

procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE := OUT FILE;
NAME : in STRING :=
FORM : in STRING

4. nestroy database files.

The same package provides for file deletion: ([SIS83] p 8)

procedure DELETE (FILE : in out FILETYPE);

9.4 miscellaneous Interfaces

i. nate Information.

Texas Instruments 6-7 16 May 1983

B -39



Alm -- Interface Report 1 STANDARD INTERFACE SET

The SIS contains a package called PACKAGE-CALENDAR which
handiles current date retrieval (rSIS831 p 36). The
procedures in this package are yet undefined.

2. Call-tree information.

Definitions for Call-Tree information retrieval could not be
found in the SI6 draft. However, this capability is implied
through procedures such as SUSPEND which must have access to
call-tree information to suspend subprocesses of a named
process. The information must exist; an access method has
not yet been defined.

Texas Instruments 6-8 16 May 1983

B-40



AIM -- Interface Report 1 AIM PORTABILITY ISSUES

SECTION 7

AIM PORTABILITY ISSUES

7.1 General Portability Issues

The transportability of any APSE program, and specifically the AIM,
will depend largely on consistency among APSEs. The AIM design
emphasizes portability; however, there are functions that by the nature
of existing APSEs must be environment dependent. Separate packages
must be written for both the ALS and the AIE to isolate and accommodate
these dependencies. The SIS package currently under development by the
TiT and KITIA (see previous section) would provide a standardized
interface to environment dependent functions, greatly enhancing program
portability.

7.2 AIM Environment Dependencies

Most functional areas of the AIM are environment independent, although
differences in design approach between the ALS and AIE force the AIM to
utilize environment dependent features of each APSE for some
capabilities. The database services and text I/O tend to be similar
between the ALS and AIE, however, interprocess communication and KAPSE
terminal services are often quite different in design. The SIS package
augments features of both APSEs, and adds design differences of its
own.

1.1 AIM Environment Dependent Areas

Relow is a comparison of the ALS and AIE environment dependent
interfaces relevant to the AIM. SIS procedures are also listed to
illustrate the merit of the standard interfaces in resolving APSE
transportability problems. For detailed functional analysis of each
interface, see the AIE, ALS, or SIS sections of this document.

1.1.1 Terminal Communication Services.

Texas Instruments 7-1 16 May 1983

B -41I



AIM -- Interface Report 1 AIM PORTABILITY rSSUES

1. Enable/Pisable Character Echo.

ALS:

Not supported.

ATE:

procedure SET-ECHO (INPUT : in FILE TYPE
OUTPUT: in FILE-TYPE);

procedure NOECHO (INPUT in FILE-TYPE);

SIS:

procedure SET ECHO (FILE : in FILE TYPE;
TO : in boolean-:= true);

2. Exclusive access to the user terminal.

ALS:

Not supported.

ATE:

Intermetrics has stated that this interface will exist, but
the method is not yet documented.

SIS:

The SIS describes package SIS DEVICE CONTROL which contains
package TERMINAL CONTROL. This currently unelaborated
package potentially may support this interface.

3. Write to terminal exactly as represented.

ALS:

The ALS does not directly support this interface. The AIM
must bypass the KAPSE to use VMS services, which allow the
AIM to specify terminal characteristics in the device driver.
The TT1M PASSALL characteristic may be set to ensure that all
terminal-I/O is binary and no character interpretation is
performed.

AIE:

Intermetrics indicated verbally that character strings may be
sent to the terminal with no translation. Specific methods

Texas Instruments 7-2 16 May 1983

B-42



AIM -- Interface Report 1 AIM PORTABILITY ISSUES

have not yet been defined.

SIS:

Not supported.

4. Terminal Identification.

ALS:

Not supported.

ArE:

procedure GET TERMINAL INFO (TERM : in integer;
INFO : out TERMINALINFOBLOCK);

SIS:

Package TERMINAL CONTROL potentially may support this
interface, however, the interface is currently undefined.

5. Screen-oriented Facilities.

ALS:

Not provided.

AIE:

procedure SETLINE (FILE : in FILETYPE; TO : in COUNT);

procedure SETCOL (FILE : in FILETYPE; TO : in COUNT);

procedure SETOFFSET (FILE : in FILETYPE; TO in COUNT);

SIS:

procedure SET CURSOR (FILE in FILE TYPE;
TO : in CURSORTYPE);

7.3.7 APSE Proqram Interfaces.

1. Initiate program.

Texas Instruments 7-3 16 May 1983

B-43



AIM -- Interface Report 1 AIM PORTABILITY ISSUES

ALS:

procedure CALL WAIT (PROGRAM NAME in
KAPSE _EFS.SHORTID STRING;
PROGRAM FILE : in- -
KAPSE 5EFS.NODE NAME;
PARAMETER LIST :-in
PROG DEFS.PARM LIST REC;

STDIN-FILE in-KAPS-E DEFS.NODE NAME;
STDOUT FILE in KAPSE DEFS.NODE NAME;
MSGOUT FILE in KAPSE-DEFS.NODE-NAME;
PROGRAM STATUS : in ou-t
PROGPFS.CALLSTATUSREC);

procedure CALL NO WAIT (PROGRAM NAME : in
KAPSE DEF-.SHORT ID STRING;
PROGRAM FILE : in KAPSEDEFS.NODENAME;
PARAMET-ER LIST : in
PROG DEFS.PARM LIST REC;

STDIN-FILE : in-KAPSE DEFS.NODE NAME;
STDOUT FILE : in KAPST DEFS.NOD _ NAME;
MSGOUT-FILE : in KAPSEt-DEFS.NODENAME;
PROGRAM STATUS : in out

PROGDEFS.CALLSTATUSREC);

AIE:

function CALL PROGRAM (PROGRAM PATH : in STRING;
PARAMETEIAS : in PARAMS STRING;
CONTEXT NAME : in STRING

.SUB CONTEXT";
STD IN :-in TEXT IO.FILETYPE

CURRENT INPUT;
STD OUT : Tn TEXT IO.FILE TYPE
CURRENT OUTPUT)
return RESULTSSTRING;

procedure INITIATE PROGRAM (PROGRAM PATH : in STRING;
PARAMETERS : in PARAMS STRING;
CONTEXT NAME : in STRI'G;
STD IN : in TEXT IO.FILE TYPE;
STD-OUT : in TEXTIO.FILETYPE);

Texas Instruments 7-4 16 May 1983

B-44



I
AIM -- Interface Report I AIM PORTABILITY ISSUES

515
SIS:

procedure INVOKE (KEY in KEY STRING;
PARAMS T in PARAMS STRING;
RESULTS in out R-SULTS STRING;
STATUS ou PROCESS STATUS;
STD IN in FILE TYPE :=

SIS TEXT IO.CURRENTINPUT;
STD OUT :in- FILE TYPE-:-

"IS TEXT IO.CURRENTOUTPUT;
STD ERR : in FILE TYPE-:=
SIS INTERACTIVE IO.CURRENT ERROR;
LOCATION : in PROCESSLOCATION 0);

procedure SPAWN (KEY in KEY STRING;
PARAMS-: in PARAMS STRING;
STD IN : in FILE TYPE

IS TEXT IO.CURRENTINPUT;
STD OUT : in FILE TYPE-:=
SIS TEXT IO.CURRENT OUTPUT;
STD-ERR - in FILE TYPE
SIS INTERACTIVE IO.CURRENT ERROR;
LOCXTION : in PROCESS LOCATION := 0);

2. Suspend program.

ALS:

procedure REQSUSPENSION (PROGNAME : in
STRING UTIL.VAR STRING REC;
REQUEST STATUS : out
PROGDEFS.PROCALSTATUSENU);

AIE:

procedure SUSPEND PROGRAM ( CONTEXT NAME : in STRING);

SIS:

procedure SUSPEND (NAME in NAMESTRING);

3. Resume program.

Texas Instruments 7-5 16 May 1983

B -45



AIM -- Interface Report 1 AIV PORTABILITY ISSUES

ALS:

procedure REQRESUMPTION (PROGNAME in
STRING UTIL.VAR STRING REC;
REQUEST STATUS : out -
PROG DEFS.PROCAL STATUS.ENU);

AIE:

procedure RESUMEPROGRAM (CONTEXTNAME : in STRING);

SIS:

orocedure RESUME (NAME in NAME STRING);

4. Abort program.

ALS:

procedure REQ ABORTION (PROG NAME : in
STRING UTIL.VAR STRING REC;
REQUEST STATUS _ out
PROGDEFS.PROCALSTATUSENU);

AIE:

procedure EXIT PROGRAM (RESULTS : in RESULTS STRING;
ABORT SUB CONTEXTS :-in boolean

false);

SIS:

procedure ABORT (NAME : In NAME STRING);

5. Determine program status.

ALS:

procedure REQSTATUS (PROG NAME in
STRING UTIL.VAR STRING REC;
PROGRAM STATUS 7 out PROGRAMINFOREC);

Texas Instruments 7-6 16 May 1983

B-46



AIM -- Interface Report 1 AIM PORTABILITY ISSUES

AIE:

Implied but not supported.

SIS:

function STATUS (NAME : in NAME-STRING) return PROCESSSTATUS;

6. Interprocess communication.

ALS:

Not supported.

AIE:

function IPC ACCEPT (CHANNEL NAME : in STRING;
TIME LIMIT : in DURATION
DURATION'LAST) return
PARAMSSTRING;

procedure IPCENDRENDEZVOUS (CHANNELNAME : in STRING;
RESULTS : in RESULTSSTRING);

function IPC ENTRYCALL (CONTEXT NAME : in STRING;
CHANNEL NAME : in STRING;
TIME LIMIT : in DURATION
DURATION'LAST) return
RESULTSSTRING;

SIS:

procedure ENTRY CALL (NAME : in NAME STRING;
CHANNEL : in CHANNEL STRING;
PARAMS : in PARAMS STRING;
RESULTS : in out RESULTS STRING;
LIMIT : in CALENDAR.DURATION
CALENDAR.DURATION'LAST);

procedure ACCEPT ENTRY (CHANNEL : in CHANNEL STRING;
RESULTS in RESULTSSTRING);

7. Intercept APSE program's terminal I/O.

ALS:

Not provided. The AIM may bypass the KAPSE and access VMS

Texas Instruments 7-7 16 May 1983

B-47



AIM -- Interface Report 1 AIM PORTABILITY ISSUES "

mailbox facilities to create channels.

The following is a procedure call which may provide this
interface:

OPEN (FILENAME,INFILE, "RESERVEMODE=>SHAREDSTREAM");

SIS:

The following procedure call may provide this capability in
the SIS:

OPEN (FILE,MODE,NAME,FORM : in STRING

"RESERVE MODE");

7.3.3 Database interfaces.

1. Create a database file.

ALS:

procedure MAKEFILE (STREAM : out 10 DEFS.STREAM ID PRIV;
NAME : in STRING UTIL.VAR STRING_REC;
MODE : in 10 DEFS. IO MODE-ENU;
FILE CLASS : in 10 DEFS.FILE CLASS ENU;
RECORD LENGTH : in-IO DEFS.DATA INDEX INT;
RESULT-: out 10 DEFS.IO RESULTENU;
RESULT STRING : in out

STRING UTIL.VARSTRINGREC);

AlE:

Procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE := DEFAULT MODE;
NAME : in STRING :=
FORM : in STRING :=

Texas Instruments 7-8 16 May 1983

B-48



AIM -- Interface Report 1 AIM PORTABILITY ISSUES

SIS:

procedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE = DEFAULTMODE;
NAME : in STRI]RG :=
FORM : in STRING :=

2. Destroy database files.

ALS:

procedure DELETEFILE (STREAM : in IO DEFS.STREAM ID PRV;
RESULT : out IO DEFS.IO_RESULT_ENU;
RESULT STRING :-in out
STRING-UTIL.VARSTRINGREC);

AIE:

procedure DELETE (FILE: in out FILETYPE);

SIS:

procedure DELETE (FILE : in out FILE TYPE);

3. Open/Close a database file.

ALS:

procedure OPEN FILE (STREAM : out IODEFS.STREAM ID PRV;
NAME : in STRING UTIL.VAR STRING_REC;
MODE : in O DEFS.IO MODE ENU;
FILE CLASS :-out O _DEFS.FILECLASSENU;
RECORD FORMAT : out
10 DEFS.RECORD FORMAT ENU;
RECORDLENGTH T out -
IO DEFS.DATA INDEX INT;
RESULT : out 10DEFS.IORESULTENU;
RESULT STRING : in out

STRING_UTIL.VARSTRINGREC);

procedure CLOSE FILE (STREAM : out IO DEFS.STREAM ID PRIV;
RESULT : out O DEFS.IO RESULT_ NU;
RESULT STRING :-in out
STRING_UTIL.VARSTRINGREC);

Texas Instruments 7-9 16 May 1983

B-49

I.a



AIM -- Interface Report 1 AIM PORTABILIY'ISSES

AIE:

procedure OPEN (FILE in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :=

procedure CLOSE (FILE : in out FILETYPE);

SIS:

procedure OPEN (FILE in out FILE TYPE;
MODE : in FILE TYPE;
NAME in STRING;
FORM : in STRING :

procedure CLOSE (FILE : in out FILETYPE);

4. Read from a database file.

ALS:

procedure READ FILE (STREAM : in 10 DEFS.STREAM ID PRIV;
BUFFER : in KAPSE-DEFS.ADDRESS.INT;
LENGTH : in 10 DEFS.DATA INDEX INT;
COUNT : out IZ DEFS.DATT LENGTH INT;
RESULT : out 10_DEFS.IO RESULT ENU;
RESULT STRING : in out
STRINGUTIL.VARSTRINGREC);

AlE:

procedure GET (FILE : in FILE-TYPE; ITEM out STRING);

SIS:

procedure GET (FILE : in FILE-TYPE; ITEM: out STRING);

S. Write to a database file.

Texas Instruments 7-10 16 May 1983

B-50



AIM -- Interface Report 1 AIM PORTABILITY ISSUES
V

ALS:

procedure WRITE-FILE (STREAM in 10 DEFS.STREAM ID PRIV;
BUFFER : in KAPSE DEFS.ADDRESS.INT;
LENGTH : in 10 DEFS.DATA INDEX INT;
COUNT : out Id DEFS.DATA LENGTH INT;
RESULT : out 10_DEFS.IO _RESULTENU;
RESULT STRING : in out

STRING_UTIL.VAR_STRING_REC);

AIE:

procedure PUT (FILE : in FILE TYPE; ITEM in STRING);

SIS:

procedure PUT (FILE in FILE TYPE; ITEM : in STRING);

iI
7.1.4 Miscellaneous interfaces.

1. Date information.

ALS:

procedure GET TIMEDATE (TIME INFO out
MISC DEFS.TIMEINFO REC;
DATE INFO : out
MISC DEFS.DATEINFOREC);

AIE:

function YEAR (DATE : TIME) return YEARNUMBER;

function MONTH (DATE : TIME) return MONTHNUMBER;

function DAY (DATE : TIME) return DAY-NUMBER;

SIS:

PACKAGECALENDAR is defined but not elaborated.

9. Call-tree information.

Texas Instruments 7-11 16 May 1983

[B-51



ATm -- Interface Report 1 AIM PORTABILITY'ISSUES

ALS:

procedure REQ STATUS (PROG NAME : in STRING UTIL.VAR STRING REC;
PROGRAMSTATUS out PROGRAM_INFORECT;

ATE:

Not supported.

SIS:

Not supported.

I.d KAPSE Document Quality

Since the size of the KAPSE design itself is so large, it is not
surprising that there were some areas of design documentation for both
KAPSEs that were not sufficiently complete to resolve some issues

raised by ATM design. A primary goal of the AIM project is to identify
the issues inherent in transporting a tool between the AIE and the ALS.
Document completeness and consistency is a significant part of this
study. Relow are the areas which were found to be weak in both the AIE
ane ALS documents fSOF821 and (INTS21:

1. Terminal control and communication

a. Is it possible to read or write a single character?

b. Can exclusive access to the user terminal be granted to
the AIM?

c. Is it possible to implement a terminal identification
scheme?

d. May a character string be written to a terminal exactly
as represented internally (with no characters added or
removed)?

1. Process control and communication

a. Can the AIM intercept APSE program's terminal I/O?

b. Can the AIM obtain exclusive access to the APSE
program's terminal I/O?

Texas Instruments 7-12 16 May 1983

B-52



I1

AIM -- Interface Report 1 AIM PORTABILITY ISSUES

7.4.1 Document Deficiencies. Both the AIE documentation [INT82] and
the ALS documentation (SOF82] could be improved in the areas of
terminal communication and APSE program interfaces. Many of the
questions enumerated above were answered by ARPANET response and
telephone or verbal communication from SofTech and Intermetrics.

The major problem with both sets of documentation is ambiguity spawned

from incompleteness. Ideally, the documents define what the systems
support and only that. Some of the questions generated from AIM
interface issues were not addressed by the documentation at all. An
important question is raised: do the ALS and AIE not support what is
not explicitly defined? Or do they only support wha-hey do define?
Semantic explanation and examples would help to alleviate this
confusion. Speculation upon the extent of document completeness and
validity can lead to design and implementation problems.

Texas Instruments 7-13 16 May 1983

B-53



AIM -- Interface Report 1 USER INTERFACES

SECTION 8

USER INTERFACES

8.1 Constraints on User Programs

Although the AIM is intended to be transparent to APSE programs, it is

possible that APSE programs may be required to follow some guidelines

in order to interface with the AIM, especially in the area of terminal
I/O. This section describes some restrictions that might be imposed
upon programs which are intended to execute under the AIM.

A.1.1 APSE Program I/O. If the appropriate KAPSE services are

provided by the ATE and ALS, the AIM mechanism required to intercept

program I/O will not impact APSE program design. APSE programs should

need no special I/O file parameters to function in the AIM. APSE
program terminal-destined I/O must be accomplished through the

STANDARD IN and STANDARD OUT files; an APSE program which accesses the

terminal in any other way might not be AIM-compatible. APSE programs

should generate only the standard printable ASCII characters. If an

APSF program generates characters outside the ASCII printable range,

the AIM may interpret the characters as AIM control sequences with

unexpected results.

In order for the AIM to obtain exclusive access to an APSE program's

terminal input and output, the user program may use only STANDARD IN

and STANDARD OUT for terminal I/O. There may be no other fiTes

associated wiTh the terminal. Multiple terminals are not currently

supported, since neither the ALS or ATE defines a method of associating

a terminal with a unique name accessible from within the APSE program.

Terminal I/O is accomplished through these standard files which are

connected to the terminal. No logical name translation is provided to
access a unique device. (The ALS, however, allows the user to bypass

the KAPSE to use VMS services to perform logical name translation. A

proqram which bypasses the KAPSE is by definition not an APSE program.)

An APSE program is by definition a program which uses only KAPSE

services. Therefore, a program which bypasses KAPSE services for any

reason is not an APSE program and therefore might not be AIM

compatible. For example, the ALS permits the following:

mpen ("<<VMS>>TT:")

Texas Instruments 8-1 16 May 1983

B-54



AI -- Interface Report 1 USER INTERFACES

This statement causes an implicit ALS ESCAPE to the underlying host
operating system (VMS, in this case). Host services are used to open
the terminal file. This statement is not portable and is considered
erroneous.

Q.1.7 MASTER IN, MASTER OUT, and MESSAGE OUT. The ALS defines two
extraneous files for 170 besides STANDARD IN and STANDARD OUT, called
MSTR IN and MSTR O1T. These two extra files are always associated with

the terminal. The purpose of these files was not clear from the
documents. Verbal communications (RT83A] indicated that MSTR IN and
MSTR OUT are provided to allow batch streams to send status messages to
the Terminal, such as "please mount tape". There is no way to
disassociate MSTR IN and MSTR OUT from the terminal; these messages
will always be directed to the screen. This could disrupt the user of
an interactive program (such as the AIM or a text editor) if a batch
stream sends a message which demands a response.

The AIM restricts APSE programs to use only a single pair of files for
terminal I/O, specifically STANDARD IN and STANDARD OUT. Therefore,
using MSTR I and MSTR OUT by definition creates an APSE program which
might not- run correctly under the AIM. The ALS additionally defines
MqG _OuT, a file which is always associated with the terminal

(presumably intended for system messages, (RT83A]). Use of this file
will also create problems when executing under the AIM.

A.? Command Language Processor Constraints

The KAPSE Command Language Processor is treated like any other APSE
prooram which may be invoked from the AIM. Therefore, there are no
user interface problems which arise.

Texas Instruments 8-2 16 May 1983

B-55



AIM -- Interface Report 1 KAPSE ISSUES

SECTION 9

KAPSE ISSUES

9.1 General

This section describes features provided in both the ALS and the ATE
KAPSEs which may adversely affect the function of the AIM and APSE
programs invoked from the AIM.

Q.2 Rypassing KAPSE Services for Program Control

Both the ALS and the ATE provide the user with the capability to

suspend program and terminal I/O from the terminal: the ALS "break-in"
facility and the ATE "scroll mode control". This allows the user to
suspend the AIM itself. The user has control of the terminal and may
randomly change screen data without AIM supervision. When AIM
execution is resumed, the user may become confused because the AIM
assumes that mappings between AIM images and the actual display are
intact, when in reality they have been changed.

Q.2.1 ALS "Break-In" facility. The ALS allows a user to type <cntl>-C
to receive control of any currently running job. This gives the user
control of the screen and terminal-directed I/O. Since the AIM is an
APSE program, it may be suspended by the "break-in" facility, which
returns control of the user's terminal I/O to the KAPSE. If the user
changes the information on the screen and then resumes AIM execution,

the results are unpredictable. The AIM makes certain assumptions about
the screen and mappings among images, windows, and viewports, and if
the user moves or deletes screen information, the display will not
correctly reflect AIM mappings. Therefore, the use of the ALS "break-
in" key is potentially hazardous to the AIM user.

If the "break-in" facility is suspendable, however, these problems
could be alleviated because the AIM would then control the break-in.

The break-in facility would even become useful for the AIM itself to
control programs and terminal I/O. Conversely, the facility is
4esigned as an "emergencyR mechanism to provide the user absolute
control, and implementing it as a program may defeat its purpose.

Texas Instruments 9-1 16 May 1983

B-56



AIM -- Interface Report 1 KAPSE ISSUES

Another possibility is that the KAPSE might reinstate the screen status
automatically upon program resumption. This would ensure that the AIM
screen mappings would remain valid even if the AIM is suspended.

The AIM cannot automatically refresh the screen upon resumption because
it has no knowledge of having been suspended. The user must choose to
restore the screen display arbitrarily. The AIM itself will provide a

* screen refresh function invoked by a special key sequence. If the AIM
is suspended for some reason (intentional or unintentional) and the
screen data Is modified, this function will reinstate the correct
mappings between the internal AIM images and the screen.

.7.7' AIFR "Scroll mode Control". The AlE extends the ALS "break-inn
facility to include terminal I/O functions ([INT821 p 114). The user
types a (CNTL>-S to stop terminal output and enter scroll control mode.
This mode is intended to provide a "cache" of output which the user may
have lost from scrolling or printer malfunction. Once in scroll
control mode, the user has control of terminal I/O and may scroll the
screen or perform simple editing functions through a "terminal
handler". The user may also interrupt program execution. All terminal
input and output is stored in temporary files for historical purposes.

If a user invokes scroll control mode while under the AIM, the
consequences are rather unpredictable. It is not clear if all running
proarams are automatically suspended, or if execution continues.
Fither result could adversely affect the function of the AIM.

9.3 Broadcast Messages

The AIE enables the AIM to obtain exclusive access of the user terminal
I/O. The ALS does not provide a mechanism for granting the AIM
exclusive access to the user terminal. The absence of exclusive access
enables the host operating system to generate system "broadcast"
messaqes which may overwrite portions of the screen. The AIM should
allow system messages to be generated, but these messages may disturb
the proqress of an APSE programming session. The user's recourse is to
reinstate the screen with the AIM refresh function described above.

9.4 Bypassing T(APSE Services for Terminal Control

The ALS permits the user to perform an implicit escape to the
underlying host operating system for some terminal control functions
(such as opening the terminal file, see para 7.1.1). The use of this

* feature may alter the appearance of the screen to incorrectly reflect
AIm mappings. A program which bypasses KAPSE services in this manner

Texas Instruments 9-2 16 May 1983

B-57



AIM -- Interface Report 1 KAPSE ISSUES

is not a true APSE program and is considered erroneous.

9.5 Programs targeted for specific terminals

APSF~ programs which take advantage of specific host capabilities might
not interface with the AIM. For example, the ALS imports the VAX EDT
editor rather than implementing another one which uses only KAPSE
services. This implies that EDT may not work with the AIM, since all
APSE proqrams running under the AIM must only use KAPSE services.
Attempting to invoke EDT from the AIM will make terminal I/O
unpredictable, since both EDT and the AIM will assume that they each
have complete control of the terminal. Obviously, this may lead to
control conflicts and undesirable results.

Texas Instruments 9-3 16 May 1983

B- 58



AIM -- Interface Report 1 AIM INTERFACES SUMMARY

APPENDIX A

AIM INTERFACES SUMMARY

A.1 Interface Comparison

WAPSE Terminal Services

AIM Interface Requirements ALS AIE SIS

Read sinqle character No [E] No [D] No?
Enable/Disable echo No Yes [D] Yes
Exclusive access No Yes ?
Write variable length strings Yes Yes Yes
Write exactly as internally No [E] Yes ?

represented
Terminal identification No Yes [A] No?
Screen-oriented facilities No Yes Yes

Program Control Interfaces

AIM Interface Requirements ALS AIE SIS

Initiate APSE programs from Yes Yes Yes
within other APSE programs
- suspend Yes Yes Yes
- resume Yes Yes Yes
- abort Yes Yes Yes

Determine program status Yes No Yes
Intercept APSE program's ? ? ?

terminal I/O
Exclusive access to the APSE No [E] ? (D]

program's terminal I/O
Interprocess Communication No Yes Yes

Yes => Support provided
Mo => No support provided

? => Could not determine if support is provided

Texas Instruments A-1 16 May 1983

C-I



AIM -- Interface Report 1 AIM INTERFACES SUMMARY

KAPSF Database Services Requirements

AIM Interface Requirements ALS AIE SIS

Read/write data to a D8 file Yes Yes Yes
Create database files Yes Yes Yes
nestroy database files Yes Yes Yes

miscellaneous Services

Obtain current date Yes Yes Yes
Call-tree information Yes No? No?

Yes => Support provided
Yo => Mo support provided

? => Could not determine if support is provided

References:

[AM Intermetrics Inc., "Draft IR-678-2 Computer Program
Development Specification for Ada Integrated Environment:
;(APSE/Database Type 85," Wakefield, MA, November 1982.

p A 5.

rsi ibid, pp 0-42.

[CI SofTech Inc., "Draft Ada Language System Specification,"
Waltham, MA, June 1981.

I[D1 ARPANET response from Intermetrics Inc.

rF1 ARPANET response from SofTech Inc.

i
I ,1

Texas Instruments A-2 16 May 1983

B-60



AIM -- Interface Report 1 AIM INTERFACES SUMMARY

A.2 Interface Summary

AIM Interface Area ALS AIE SIS

SJ

Terminal communications * ** **

APSE programs ** ** **

Database services ***

Miscellaneous services ** **

Key :
- Satisfactory

• * - Minimally deficient
* - Oulte deficient

I

Texas Instruments A-3 16 May 1983

8-61Ii



AIm -- Interface Report 1 ARPANET COMMUNICATIONS

APPENDIX B

ARPANET COMMUNICATIONS

Confusion about document content spawned the following question and
answer exchange between Texas Instruments and the APSE contractors
Intermetrics (ArE) and SofTech (ALS). Most of this information
pertains directly to KAPSE interfaces, so it is included in transcribed
form. (Answers are dated 8 Nov 82 for AIE, 12 Nov 82 for ALS.)

1. Ouestion:
Within the KAPSE is there a facility for directly referencing
an interactive device? (ie. can character sequences be sent
to and received from the device without any translation?)

AIE: The initial KAPSE/Tool interfaces include no mechanism
T-- direct reference to an interactive device. Instead,
full-screen terminals are made to look like a text file with
random access to line and column (see below).

ALS: In the ALS, interactive devices can be referenced in
two ways :

a. Explicitly open the "file" named "<<VMS>>TT:",
where TT: is the name that VMS assigns to the
device, in this case the terminal.

h. If you want the terminal that the user is
connected to, use the predefined and preopened
"files" named .MSTRIN (keyboard) and .MSTROUT
(terminal display device).

Once open, you will be able to use basic io.read file and
basic io.write file to pass byte strings to and from the
DEVICT DRIVER: The ALS KAPSE will not do any translation of
the bytestrings. HOWEVER, you will have to get by the VMS
device driver. This could be the subject of a VMS
experiment. The ALS KAPSE does not support any official way
of opening a device in "raw" mode. If you can do it by
passing bytestrings to the opened devices, then it can be
done, otherwise not. I do not know the nature of the
character translation performed by the VMS device driver.

2. Question:
Does the KAPSE support any functionality for interactive
devices other than teleprinters? Are there any
multidimensional capabilities, for example, cursor
positioning?

Texas Instruments B-1 16 May 1983

B-62



AIM -- Interface Report 1 ARPANET COMMUNICATIONS

AIE: The KAPSE supports x-y cursor positioning using the
primitives of the package SIMPLE OBJECTS.TEXT ACCESS (see
KAPSE 85 IR-678-l, p. 24), SETLINE, SETCOL.

ALS: Unless it can be done by passing a byte string, there
Tsno explicit x-y cursor positioning supported by the ALS
KAPSE. The notion of a two dimensional display is not
supported by the KAPSE. However, the Ada TEXTIO package
should work for CRT based terminals.

3. Question:
Are I/O operations to interactive devices buffered? Must
NEW LINE or PUT LINE be called before the text is actually
senE to the devTce?

AIE: It is our intention that I/O may be buffered. Probably
an end-of-line will cause flushing, but in any case,
requesting input from a file which is echoing on the output
file (see B5 ,;. 65, package INTERACTIVE _O), will cause a
flush. Input is buffered up so that local line-editing may
be performed before the characters are received as part of
the text input file. The initial KAPSE will probably always
buffer up input until an ENTER/Carriage Return key is
dopressed. Eventually, using the SET INPUT INFO call of
Package INTERACTIVEIO, more control wilt be available.

ALS: Keyboard input is buffered by VMS which does the line
e?Tting. In general, the KAPSE sees no keyboard input until
the line is sent by use of the return key. The exceptions to
this are some of the special control operations like control-
C and control-Y used for interruption; but these are very
special-purpose operations. For most of the standard DEC
terminals, the CPU sees each keystroke. I believe that the
device driver performs the buffering, not the aardware. The
ALS KAPSE does no input buffering itself.

For output, buffering is performed when using Ada TEXT 10. A
new line or put line Is necessary to obtain the transmission
of The characters buffered. Characters are also transmitted
when the line length is exceeded. Presumably, the length
could be set to 0 or 1, but this would cause the insertion of
the line mark after each character. Basic io.write file
performs no buffering. Every call to this service will
result in transmission to the device driver.

a. Ouestion:
Can two or more logical devices have concurrent access rights
to an interactive device? (Two "internal files" referencing
the users terminal.)I.

Texas Instruments B-2 16 May 1983

KB-63



AIM -- Interface Report 1 ARPANET COMMUNICATIONS

AIE: It will probably be undefined what happens when two
Tr-grams/tasks try to read from the same terminal input
stream (and hence "erroneous" if not an explicit exception).
To accomplish your task, I would recommend that your virtual
terminal manager be the only process with the terminal
input/terminal output open, and that all other processes do
interactive I/O by using pipes to the virtual terminal
manager. The KAPSE allows multiple (Ada) tasks within the
same program to each be doing synchronous pipe I/O, with only
the particular task suspended which is actually waiting for
input.

Pipe I/O is accomplished using normal TEXT 10, but with the
pipe/file opened in "SHARED STREAM" mode Tsee B5 pp. 40, 41
for explanation of Shared Stream read/ write, and p. 25 for
explanation of use of FORM string for RESERVE MODE
specification).

ALS: If the device is a terminal, VMS will allow concurrent
read and write access by multiple "internal files".

5. Question:
Does the AIE work with 3270-compatible devices?

AIE: The AIE will support 3270 compatible terminals, but
will not initially support the field protect/field read
features in a way that is useful to the application
programmer. Instead, the terminals will be made to look as
much like a full-screen ASCII terminal with cursor
addressing.

ALS: N/A

Texas Instruments B-3 16 May 1983

B-64



AIM -- Interface Report 1 GLOSSARY

APPENDIX C

GLOSSARY

AIE
Ada Integrated Environment 4

AIm A
APSE Interactive Monitor

ALS
Ada Language System

APSE

Ada Programming Support Environment

APSE program
A proqram that can be executed in the hosting APSE and uses only
KAPSE supplied services to perform its function.

character
A member of a set of elements that Is used for the organization,
control, or representation of data.

character echo
The act of re-transmitting a character immediately upon receipt of
It back to the entity that originally transmitted it.

character imaging device
A device that gives a visual representation of data in the form of
graphic symbols using any technology, such as cathode ray tube or
printer.

character stream
An unbounded sequence of ASCII characters.

character string
A bounded sequence of ASCII characters.

database file
A standard file in the APSE database.

Texas Instruments C-i 16 May 1983

.



AIM -- Interface Report 1 GLOSSARY

display
The area for visual presentation of data on a character imaging
device.

display terminal
A data communications device composed of a keyboard and a display
screen (usually a cathode ray tube).

EDT
An interactive full-screen editor supported by DEC on the VAX

machine.

environment-dependent
Usinq features which are unique to a specific Ada Program Support
Environment (such as ALS or AIE).

erroneous
An Ada program which does not conform to the requirements of an
APSE program. The program might execute correctly within an APSE
in a given situation, but the program may not be considered
entirely reliable. An APSE program must use only KAPSE services;
any other services (such as host services) result in an erroneous
program.

exclusive access
Control of a file (or, the terminal, in this case) which prohibits
any other program besides the AIM from writing to the terminal
screen.

hardcopy terminal
A data communications device composed of a keyboard and a printer.

host services
Facilities provided by the operating system of the host machine
underlyinq the KAPSE.

image
An analog of the physical display device. The image is the entity
that is mapped onto the display. Given a number of user defined
images, only one at a time can be mapped onto the display. The
rest exist and are updated asynchronously but are not mapped onto
the display until the user requests it.

indirect command script
A database file containing commands to a command interpreter (in
this case, the AIM command interpreter). The command interpreter
reads commands from the indirect command script rather than
prompting the user interactively.

Texas Instruments C-2 16 May 1983

B-66

.1



K AIMI -- Interface Report 1 GLOSSARY

Interface
The place at which independent systems meet and act on or
communicate with each other.

ICAPSE
K~ernel Ada Proqraminq Support Environment.

keyboard
The physical input device.

KAPSE InterfaceTem

line
A set of adjacent character positions in a visual display that
have the same vertical position.

Terelationships managed by the AIM connecting logical

representations of windows, images, and viewports to physical
representations on a display device.

node
Pertaining to the KAPSE database, either a file or a directory in
the tree-structured database.

MJOsc
Naval Ocean Systems Center

pad
A file which contains a complete history of window activity that
transpires from the beginning of pad mode until it is terminated
by the user or the window is destroyed. This includes the input
to the APSE program from the user through the keyboard as well as
the output to the display from the AIM and any program initiated
by the AIM.

pieA logical connection between an output file of one program and an
input file of another program.

screen
TIhe area for visual presentation of data on any type of character
imaging device, including printer and cathode ray tube device.

scroll mode terminal
A display terminal that presents data by moving all the graphic
symbols of the screen in one direction to make room for new data.

Texas Instruments C-3 16 Ma~y 1983

B-6?~



AIM -- Interface Report I GLOSSARY

Ss
Standard Interface Set, the KIT/KITIA effort to standardize
certain KAPSE interfaces.

STANDARD IN and STANDARD OUT
Input and output files defined in the package TEXTI0. For AIM
purposes, these must be the only files used for terminal I/O,

task
An Ada program unit that operates in parallel with other program

units.

terminal
AWdata communications device consisting of a keyboard and a
character imaging device.

Terminal Capabilities File
A file which describes common terminal functions in terms of
device- specific control sequences, for many different terminals.

terminal communication protocols
Sequences of characters in which the relationships between
specific characters are given meanings for different types of
terminals.

transmit
To send data as a data stream for purposes of information
interchange.

user terminal
The terminal with which a user interacts in order to communicate
with an APSE program.

VMS
Virtual Memory System, the DEC operating system for the VAX 11-
780.

viewport
The portion of the window displayed in the image.

viewport header
A single optional highlighted line located at the top of a
viewport.

window
An analog of the APSE program's view of the terminal.

Texas Instruments C-4 16 May 1983

B-68



AIM -- Interface Report 1 REFERENCES

APPENDIX D

REFERENCES

D.1 Government Standards

The following documents of the exact issue shown form a part of this V

specification to the extent specified herein. In the event of conflict
between the documents referenced herein and the contents of this
specification, the contents of this specification shall be considered a

superceding requirement. K
rY)ODR0 ] United States Department of Defense, "Requirements for

Ada Programming Support Environments" ("STONEMAN"),
February 1980.

(DOD82 ] United States Department of Defense, "Reference Manual

for the Ada Programming Language Draft, Revised MIL-STD-
1815," July 1982.

rDOD83 I United States Department of Defense, "Reference Manual
for the Ada Programming Language Draft, Revised MIL-STD-
1815A," January 1983.

rDID73 ] Data Item Description, "Informal Technical Information,
tIT-S-3n593," March 73.

n.7 Government Specifications

The following documents of the exact issue shown form a part of this

specification to the extent specified herein. In the event of conflict
between the document referenced herein and the contents of this

specification, the contents of this specification shall be considered a

superceding requirement.

TNTPlDI Intermetrics Inc., "Draft IR-679 Computer Program
Development Specification for Ada Integrated
Environment: MAPSE Command Processor Type B5,"

Wakefield, MA, March 1981.

Texas Instruments D-1 16 May 198"

B-69



AI -- Interface Report 1 REFERENCES

fINTSIF1 Intermetrics Inc., "Draft IR-680 Computer Program
Development Specification for Ada Integrated
Environment: MAPSE Generation and Support Type B5,"
Wakefield, MA, March 1981.

rINTSIF] Intermetrics Inc., "Draft IR-681 Computer Program
Development Specification for Ada Integrated
Environment: Program Integration Facilities Type B5,"
Wakefield, MA, March 1981.

rINTRIHI Intermetrics Inc, "Draft IR-683 Computer Program
Development Specification for Ada Integrated
Environment: MAPSE Text Editor Type B5," Wakefield,
MA, March 1981.

rINT81J1 Intermetrics Inc., "IR-684 Ada Integrated Environment
(AIE) Design Rationale: Technical Report (Interim),"
Wakefield, MA, March 1981.

rINT82 1 Intermetrics Inc., "IR-678-I Computer Program
Development Specification for Ada Integrated
Environment: KAPSE/Database Type B5," Wakefield, MA,
November 1982.

TSIS83 1 KAPSE Interface Team (Ada Joint Program Office), "Ada
Package Specification for the Standard Interface Set
(SIS)" Draft 1, Version 1, February 1983.

[SOF81A] SofTech Inc., "Draft Ada Language System
Specification," Waltham, MA, June 1981.

TSOFglB] SofTech Inc., "Draft Ada Language System KAPSE C5
Specification CR-CP-0059-C83" Waltham, MA, December
lgR1.

(SOF1C] SofTech Inc., "Preliminary Draft Ada Language System
KAPSE B5 Specification," Waltham, MA, August 1981.

rSnFR2 1 SofTech Inc., "Draft Ada Language System
Specification," Waltham, MA, August 1982.

rSOFA7Aj SofTech Inc., Ada Problem Report *602, Waltham, MA,
November 1982.

Texas Instruments D 16 May 1983

B-70



I
AIM -- Interface Report 1 REFERENCES

n.i Other Government Documents

The following documents of the latest issue per date of this report
form a part of this specification.

[TI82 1 Texas Instruments, Advanced Computer Systems Laboratory,
"Proposal for Development of Ada Software Tools and
Interface Standards," Lewisville, TX, February 1982.

rTIR3 1 Texas Instruments, "AIM Program Performance
Specification," (Initial submission) Lewisville, TX, 1
March 1983.

n.4 Special Sources

[TT83 I Verbal communications with Tucker Taft of Intermetrics,
Inc., Jan 26, 1983 at the San Diego KIT meeting.

rTT83A ] Verbal communications with Tucker Taft of Intermetrics,
Inc., April 21, 1983 at the Willow Grove, PA KIT
meeting.

rRTP3 ] Verbal communications with Rich Thall of SofTech, Inc.,
Jan 26, 1983 at the San Diego KIT meeting.

rRTA3A] Verbal communications with Rich Thall of SofTech, Inc.,
April 20, 1983 at the Willow Grove, PA KIT meeting.

n.5 Other Puhlications

[AKIMP11 Akin, T. Allen, "Virtual Terminal Handler Preliminary
Quick Reference," School of Information and Computer
Science, Georgia Institute of Technology, April 1981.

rANSI731 American National Standards Institute, "American
National Standard Graphic Representation of the Control
Characters of American National Standard Code for
Information Interchange (ANSI Standard X3.32-1973),"
July 1973.

Texas Instruments D-3 16 M;-" 1983

B-71



AIM -- Interface Report 1 REFERENCES

rAirSI771 American National Standards Institute, American
National Standard Code for Information Interchange
(ANSI Standard X3.4-1977)," June 1977.

[ANS1791 American National Standards Institute, "American
National Standard Additional Controls for Use with
American National Standard Code for Information
Interchange (ANSI Standard X3.64-1979)," July 1979.

fAPSE82] "Working Paper: Ada Programming Support Environment
(APSE) Requirements for Interoperability and
Transportability and Design Criteria for Standard
Interface Specifications," Not Approved, October 1982.

rCOXS3 ] Cox, Fred, "KAPSE Support for Program/Terminal
Interaction", Working paper for KITIA/ Working Group 1,
February 1983.

rCSC82Al Computer Sciences Corporation, "Configuration
Management System Program Performance Specification
(Draft)," Falls Church, VA, August 1982. Prepared for
Naval Ocean Systems Center under contract #N00123-80-D-
03r4.

rCSC82B] Computer Sciences Corporation, "Configuration
Management System Interim Report on Interface
Analysis," Falls Church, VA, August 1982. Prepared for
Naval Ocean Systems Center under contract #N00123-80-D-
0364.

rDECP2 1 Digital Equipment Corporation, "VAX/VMS I/O User's
Guide (Volume 1)", Maynard, Massachusetts, May 1982.

rnPR2 1 Ftapro Reports on Data Communications, vol 2., Sept
1982, "Display Terminals", p C25-10-101

rFH83 ] French, Stewart and Harrison, Tim, "The APSE
Interactive Monitor" Texas Instruments, Inc., March
1983.

(FRA 1 Franck, R., "Design and Implementation of a Virtual
Terminal for a Real-time Application System"

rGRENP0] Greninger, Lars and Roberts, Roger, "Considerations for
a Local Virtual Terminal Interface," Presented at IEEE
Conference, September 1980.

Texas Instruments D-1 26 May 3963

B-72



I7

AIM -- Interface Report 1 REFERENCES

rlS06421 International Standards Organization, Standard number:
ISO DP 6429, "Additional Control Functions for
Character Imaging Devices (Draft),* Not approved, April
1982.

r.70yq] 1 Joy, W. and Horton, M., "TERMCAP," UNIX Programmer's

Manual, Seventh Edition, Berkley release 4.1, June

rLAN7Q 1 Lantz, Keith and Rashid, Richard, "Virtual Terminal
Management in a Multiple Process Environment,"

Proceedings of the Seventh Symposium on Operating
Systems (ACM), December 1979.

rMAC7Q 1 Magnee, F., Endrizzi, A., and Day, J, "A Survey of

Terminal Protocols," Computer Networks, 1979, pp 299-
314.

rMEYl 1 Meyrowitz, Norman and Moser, Margaret, "Bruwin: An
Adaptable Design Strategy for Window Manager/Virtual
Terminal Systems," Department of Computer Science,
Brown University, December 1981.

rsCH7R 1 Schicker, P. and Duenki, A., "The Virtual Terminal
Definition," Computer Networks, 1978, pp 429-441.

[STE1 1 Stenning, Vic, Et Al., "The Ada Environment: A
Perspective," Computer, Volume 14, number 6, June 1981,
pp 29-34, 36.

rsuxql 1 Sukamar, Srinivas and Wiese, John D, "Hardware and

Firmware Support for Four Virtual Terminals in One
Display Station," Hewlett-Packard Journal, March 1981.

rTAF2 1 Taft, S. Tucker, "Portability and Extensibility in the
Kernel and Database of a Programming Support
Environment," Intermetrics, March 1982.

rTAJ79 1 Tajima, Takashi and Katsuyama, Yoshiki, "Layered and

Parametric Approach to Terminal Virtualization,"
Presented at International Conferencc on
Communications, Boston, MA, June 1979.

rTI9IA 1 Texas Instruments, "Ada Integrated Environment,"

Lewisville, TX, March 1981. Prepared for Rome Air
* Development Center (RADC) under DoD Contract F30602-80-

* fC-0293.

Texas Instruments D-5 6 ta.; 1-.r3

1 1B-73



Arm -- Interface Report i REFERENCES

rTRA82 I Thall, Richard, "The KAPSE for the Ada Language
System,O SofTech Ic, Proceedings of the Adatec
conference on Ada, October 1982.

rWOL81 1 Wolfe, Martin I., et al., nThe Ada Language System,"
Computer, Volume 14, number 6, June 1981, pp 37-45.

Texas Tnstruments D-66 M 1983

B-74 _I



I

II

II

I:-

I.-



0
0; e /

(D C/)= w 0
: O-W -2c



IL

C,,O

(~w co

CD < CD

0D N0 AD

-U- /

LL (D UC-3



C)

o LaJ

La 3
3 3 w

0 L
CL

o C-

c - ix C=

C) z
0 <a

o) 0

- 0 CO:
LLJL OjLL

oz z I= I-

11 0 1 La

NL 0 M

<t zc 0 z l

0a 0 r-
U. cr.C

0 ZO, 00

La Z r% ix 0w 0O LaI w
(-..) r-I C/) V/)

C -4



wj z

QD LL.wj U.

0
W: w

U ) w
-i CD u

~z w' wL 0
C)D .J

Ow I-
CL. 0- >- < X

Co w

w w 0

L- w D w
ixX CD : < >z z iuJ W IL

ixi
~> *C Lii 0C (Y
Oza b" 0 I- I-

CI-5



q F

LU
< LU
LL .J

w~ a

LU U - I:
U- Ll) w. I

LL-J

UC w. Ln
z ~ -3 Ej Y

00 LU C) LU/ <
z LU

u ww
> o-

= =U - . U-

LU 0L 0 C/

U

C -6



1

-JJ

o NO
LL L'. .

W>1

111 7:z g-,.>

CL~ Clo
~CLU 1 -L

W 0)Ii-iLL
L). x <L

I-- C)uj UJ C-?



C)
.4 ~ z

- 0

0 ~ w

I- Q 0

wi I. z C..

L) - Q

cn w u- 0 w
LL CL ft W

ow~ w w Z I-

U) c< = w w
Q 0- W < *; 1

Ct) 0 w- W 00

m gr

WL LLJ L -)

C-8



V0 - j (n

-t LL V Wm . V3~.

ccr U)c
Co o

N D

L m 0 Zi D

_3uju

Zooox

(A g.
> _3

< - LL LVU UU;
L) z : U-IIw



0

C-

(uj

Co z

0) LIi ~
ZL -jz L ) LL

I(- Cl, z ~
- C) ~ ~ -1 C

w u

g~ w c'n >- < 00~ ~w LL.

z
-i A C - -

Il I I I I I

C#D1



I0

0.
0-A

w'

w

I- I-

0 E-
IL ixz

I-
0- c CA 0

0 m

< (c)

u z L >- I-
- *0 - ca

C,) - 0 -
0 w 'L 7 ix U

CL CL
Wi Wm 0

WL w LL coL

LU Ci) LL U
L) WJ

a.. a--1



10

0
- -Jc

(J Z 0 LLw -
ui

UJJ 0! ,w <
0~~~ 0 cc 

W ~o~LI

OOw Vj U0

-I) LU 2 0- I c j z -
C) -

>- cni (.9.zLu c
-- Zc 300C u> c0c

~ 2 -'. 

I

0 0 CD

o o. o z _

z 0 w 1j 0

M CCW- LL U. < Q
(w C±-" in .; 0

< CC-j 3 0 - J
0 L) C"LJ W M

ccb C)-.,A

Lima C3 LUE C .

Li~~ w - i~-
Li 'a J - ;

d< < -C-12 j



10*

ILL-

l

C- 13



Cl;o

m (X
C-14



Cf) ce w
W (0 -J I

w Ix A Cd)

U)< 0 0 WL
C/) W Im Q.. 0 C/)

CD -

I-0 Q W I

w u a.. - X: LLi
CL .) W W LL = C/)

o - x LL 0 0..

CO) X: I I>
C/) 0 2: 0 C- N

=0 LL. (n Lii F-
Co LU.) 0

- Z - I- C/)
w. 0 -

- - n CL cJ > L 0 -I- <l - < CL LL < C 0
L- -m W LM F- w. 0):3

LL cn Lii ci Q-- U) GO I ULL II U'
>- Wm w - -L 0 a-

w - 0 0- 'c (D c
w > > W _jz 0 0- -i

LL = CL. ' 0. - C..) 0.
w z

4D do w ft

>C 1



C4wZ 
M L2

j , 0 n- w . c

-T C0E- OZ

U.~ a 0

> -0 30

r- I--

FO i U UJa - 9L W - Z



Zj O, L"

< LU U 0 0LL
n.. >w 0I u4c

S C - LU LL i) C 0  >w

0 .,< .. 4 L.. 0'-,'~ 0 w :
cc *z( LLwLd* z 3 J>I.

ZO40 zu..cWowoo O.IO

-w Q: F-z - 0 Z C.)
4  . J W.LJ z 2 e wo CL m IC 0y

V-OO~ LL - 3:L... J

j 1  Z> .0 0 yj W -

~w~44 ZOZ 4 z 1...(5

1 0 ) uj Lo. < C. I -

-I I1-u
2 0 a=U4

0) cc z ) L

WU LU LU

J C-17



CL - J wJ

-J 0 -' zo-C 'a-

C., C.,);
cc Q ~. I-

w-Ihh

0 C
up - UJ _j /l I0 D CD c i L

S2 0 -l l<
40 0 < C-I

<~ 16 ir to
wdD pi>a.(

uj LL 2 .

00

0 D C-



I.V I

V-1 121 20 .
0 ca 'Iti W

INAN
tuL

uuL" U

Li'

0 L

0

ww 3~-

CC.1



o. LLOw- tl

C) 
L. a Lu~V

u~~Cj

LU LL

0M -j I-am am --a ~

000VOW-- 

p F [

-, L>

0o U 00
-LL.

* 0 0

C -20



II)

0

LU (

L ;iLJ U.,

z 0 ci LJ7
LL L. cc L. :

cold 4  0 C) . - 12

IEMl LU
0 LP 0. CC:~ >

=L - C)5~C
Dl QOCJft- _

C, LU LU 0L cnL

a. LL 0

'-ci
~~LL t-~C.

_ LUrl

L- ' - e ~ r- e (

UI- - (1

J _j Oq cj6

P U S 0.i Q: C

C-21



00

C)r

LLJ

LU o 'j~

LUU

C ~ ~ ~ L in.L) C)O

CrCa

Ir-i C) UJ J

o.- 0. eUul W~ L U

Ci Lwj 0. 2 0

-V:C LIL LL. L...

gum0 o c) U
a.<C,'o0 Q

C..

CO2

CIO LI



V)~ 0 Lu
4 0 z

V- 1 0j -
UL-. i.~ o- 'C

LUU

LL <j L L ,r,~

-r- W U

4f) LL. tU.

.'0

44 - -i D ) l

UJ I-

LL I- a: ~ Lij u.~ r

j~~~~- furi mLi..0 iSLJ

@ 00 0 0U. 0 0 uj

LLI ~ ~ -23 , pL



U)All,

w

W LL -

o z w

LI

o - C C14

C)> < -L

I- CT U ) U ) > ) -

r-.j N e < : :
-- I LI. U- LU 0

<i C/1 w w
o 0 0- - J

F- WU
LU L 0 C C
= = LU I-Z U

z< <

0i CD CL CL o-

0 0

<- N -0(Dt (

cIJx

C -24



I.J

00

um

Lz. z 00-
L00 0Z

m0 0 ~ Cl

Co z-
0 0 L

zr

r- 0I I

z 00 w

C-25



AD-A141 576 KERNEL ADA PROGRAMMING SUPPORT ENVIRONMENT (KAPSE) us 1
INTERFACE TEAM PUBLIC REPORT VOLUME 3(U) NAVAL OCEAN
SYSTEMS CENTER SAN DIEGO CA P OBERNDORF 25 OCT 83

UNCLASSIFIED NOSC/T-552-VOL-3 F/G 9/2 NLImEI1
IIIIIEND]



1.0 ts 18L

I II1II -llU 5nlll2
L3.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-J96 3 -A

1_



00

Q z

~z31

Z w0
0

C-2-



- I

iu

Ic

0Ny: 0

tL L

uu)

0 Wo

o==-

2 J 0 <

co uj 0 S.

C -27
f= N

WC o o

Wt_
I-



0

z

0io w)C)

a. -J o

o D 0 l

9 0 2 0 -O

ca ~c 0 cc cu 0nu

C -28



L)
II-

F-'"N 0

_z 

0

2 a.Z z

w -•. .

C 0 x c-

C-29



2 C)

o Cl Z<

oa

L ) L.m '

z 0 CO ccz 0

LJ rzL

-C 30



elf

1r3J U-

wz z

I.. z 01 U
0 0L

0) a IL /) a wl qF
Do z 0 zw 0 a..U 0 C) w

a. CJ cn z - u
a. W w >

ZZ 0 0 0- LJ w C

0 0 0 0 0 0

C-31



4'

No) LU

LL. 0 D
_ c4. U U ( c5:<' 0 0i

~IJ . 9

C-32 (f



ww

C,/)

0

LLL
z w:

CDJ 0 LiX
I- . 0 9- L

z w w w

-j 0 LL Z I
u wU z

w. U). -L L
cc i 0 0,

I-- ix cc WL L
C-. u LJ 0 <

w z 2:-

co C/ - N o /

=- 0.0-

3r ) 0c 0 L x c
F- W~ C L CL

C-) U) i C-33



pz

NX. Z

C-)L

z C/) w
Xw n wi

>U r- 0 0 1--

.4 CDI - 0

I- 0 >- z l
C/)(~ ix z /

w w F-

0~~ U) <) 4
0Z I- >-zI

ix z C/) z4

Q z 0 z/ x
- w w I- (D-01

U)) LL -j -j z

CL . zi . -
X0 x 1: X-

U) -~ ~ -34 .) C



LU w- L

oL X4 L .

-iz z
< 0 - -

-. z 00 - z
(n) 0 O3) <.

z- I--I
LU Co 0 C/

2:- 0 0

C) < r

LLU < Z z 4 4
F- 4 j w LU M L.

I-J I-- .-i w 00IL
SL< LU u 0

zI-- - - u i-
.4I U 4 -wC) - 0.

w I-00 > -. w

0a. - -I LU -c < CD

x 0: 0 .. CD C) L

cnI" < L Co z - U0.

z> z z w z
2: 0 <- < 0 ~

0 Z

C-35



> U

o w

:P- wL co -

C/)

LU u LL =

LU U W

-L LL Z

I-. F- V) L K
z z

Lii LU -
ix U..CLU -

Lii CI U z

-r CL u - L)
ZU LU U

F- wL La. o
0 ~ - 0UL .

mi C) ui w- I

U-0 w Lw. Co 0
- - U- w = L

I- U ) LU Co
oi ox I L I--~

uJ 0 -- =

0i 0 w a.-

- n 0 -LU CU) < I~ 0 0

) ri z wC) m w
w /

C-36



1.0

cr-J

---------------------------------------------------------------

IL CI

CLI

LL It
(L) to IL La-

L.J us -J

IL-

L - -

IL Ii

LU C

C-3



o 0 #
LL.
z

z
- w LU

Lu LL U.

Z /) (n

wi ix w wL
4c w rx 0
3E LU
m X: L&i WL

1=i 4- Co

w z
4c L) C'

<. U. .0 0.
3. 0 0

CD c w to-4 U

At Z z 'C Z "w ~ - L -W -

w W

-. IL. W - Lj

SU.

0 w C.oa CL

I- - -

iLL

C -38



U-

C C/)

LU)

0 - 0:

o LU
C4 ,,

zz

I-I

- i 0 : L U

o w
Lii C.) CZ w

>- LU w 0 M-
0 - z L U
wi x - W

IL U LU > >
x- LU i LU -

05

rn..ao

-39



7l

w w I-
cn -i 0

I< I-U

z
LL=LL. w 4

0 0

0 r-4 C

< I

U-' I- > c#) C*l) u
LL cic 0 0

0-C 0 ix 0

< I- I- I-

0 w 0.Sz LU LU <4

I-- x I LL.

z z -w
zz

2: 0

LU LU Uf Ul)

-i = () LU
m. 0 no - -j

~J 0. LD cc U l

> z z w (nI
LU 0 LU 0 x 4

r~LL 2= C-) *

C -40



LI

LU

LUJ

CO -

I- go

Wj cz C/)'
U - LU

C-) o- w w

LU LL C,
C', w - L

a.J u- LU z (9

ULU LUJ C/ x
< I- =D LU 0
LL Z (D Q- U-

CL w < L 1

C/ ) LU 

CL W 1--

i i : ; ; i i

C-41

j A



L-J

C/,) 0
w LL.

LU a-
I- >- a

Z: w

z > <

wd 0 w LU U ) 0- .

zz'~ Ix w LU -L A

w 0 LU >~L
X:~ LU J LU

o = I-- L 0 03 0 In -
-. 0 U) z LL. L z

0: Z 0 1= I- < u
- (L L) U) <

*~~~ ImI. L 0E I z ct L
-j 0 > U - -L - = U)

< .4 - cc (L CDU)
I- C/ <) u.. Z3 I-Y U

-n Ei U)J 0. ix LU 0 <
LL. LC~L LU : ca u
0D ix 0 ) L IL w
LUw 0 0 U) z z I

0. w - 0 U) E~U. I

LUJ LU) C-- L LU > I- )-

(D 'C 0 cn E U -0.. 0 -
L LUI m ) W O > U U) '
CL go 0 C) < LJ - -L.

0 U wL U L - I L -
- Z ' > > zL

- > 0j U LU >- - C3L

U) w 0 0

6-4 ~ ~ -42 w l

C-42



04 A
00 v00

000

0-0

C).

o) LAOC
Ln LAOC

P- - 0aU

C/) LA CO %

v-I C C:)

LU LA C= -t

-1
> D :> (D C.N

=-

LU w

ca l Co LU

C3 C)

-J ~Jx
dw L

0r r) I

*1 C-43


