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ORIENTATION

This is Part II of a six-part report on the results of an

investigation into the problem of determining the scattered field

resulting from the interaction of a given electromagnetic incident

wave with a perfectly conducting body executing specified motion and

deformation in vacuum. Part I presents the principal results of the

study of the case of a general motion, while Part II contains the

specialization and completion of the general reasoning in the situation

in which the scattering body is stationary. Part III is devoted to

the derivation of a boundary-integral-type representation for the

scattered field, in a form involving scalar and vector potentials.

Parts IV, V, and VI are of the nature of appendices, containing the

proofs of numerous auxiliary technical assertions utilized in the

first three parts. Certain of the chapters of Part I are sufficient

preparation for studying each of Parts III through VI. Specifically,

the entire report is organized as follows:

PartI. Formulation and Reformulation of the Scattering
Problem

Chapter 1. Introduction

Chapter 2. Manifolds in Euclidean Spaces.

Regularity Properties of Domains
[Summary of Part VI]

Chapter 3. Motion and Retardation
[Summary of Part VI
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Chapter 4. Formulation of the Scattering Problem.
Theorems of Uniqueness

R.°

Chapter 5. Kinematic Single Layer Potentials
[Summary of Part IV]

Chapter 6. Reformulation of the Scattering Problem

Part II. Scattering by Stationary Perfect Conductors
[Prerequisites: Part I]

Part III. Representations of Sufficiently Smooth Solutions
of Maxwell's Equations and of the Scattering
Problem
[Prerequisites: Section [1.1.4], Chapters (1.2
and 3], Sections [1.4.1) and [1.5.1-10])

Part IV. Kinematic Single Layer Potentials
[Prerequisites: Section [1.1.4), Chapters [1.2
and 33]

Part V. A Description of Motion and Deformation. Retardation

of Sets and Functions
[Prerequisites: Section [1.1.4], Chapter [1.2]]

Part VI. Manifolds in Euclidean Spaces. Regularity
Properties of Domains
[Prerequisite: Section [1.1.4]]

The section- and equation-numbering scheme is fairly self-

explanatory. For example, "[1.5.4]" designates the fourth section of

Chapter 5 of Part I, while "(1.5.4.1)" refers to the equation numbered

(1) in that section; when the reference is made within Part I,

however, these are shortened to "[5.4]" and "(5.4.1)," respectively.

Note that Parts II-VI contain no chapter-subdivisions. "[IV.14]" r

indicates the fourteenth section of Part IV, "(IV.14.6)" the equation

numbered (6) within that section; the Roman-numeral designations are

never dropped in Parts II-VI.

.
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A more detailed outline of the contents of the entire report

appears in [1.1.2]. An index of notations and the bibliography are

also to be found in Part I. References to the bibliography are made

by citing, for example, "Mikhlin [34]." Finally, it should be

pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in [1.1.4].

.4-.

Accession For__

NTIS GR~tT

DTIC TAB 
L i

DTIC TATUnannounced

...

J us t if e rin
NT IS 

R 
-

DTIC Ds-b -o
ELECTE Ava .lbility Cctlz

MAY 3 0 1984 Avail end/or

%. -" 
-

LI

101z

N4I



PART II

SCATTERING BY STATIONARY BODIES

We consider in this part the (still non-trivial) scattering

of electromagnetic waves by a stationary perfectly conducting body.

For certain classes of incident waves and fixed scatterers, we intend

to complete the line of reasoning begun in Part I, by producing the

solution of the reformulated problem set up in [1.6.1 and 5], and so

subsequently generating the solution of the scattering problem.

The first step involves the simplification of the integro-

differential equations of [1.6.5] under the assumption of a null
d

motion.

[II.1] THE REFORMULATED PROBLEM IN THE

C A S E 0 F. A S T A T I O N A R Y B O D Y. Suppose,as we

. shall throughout Part II, that Ml is a null motion in IM(2): we

shall provide the explicit forms of the systems (1.6.5.4 and 6) in

this case, by appropriately specializing the results of [1.6.6].

Now, we have B 8 0 for each EIR (so 1B = S0 lR). The inclusion

ME 11(2) serves merely to ensure that 3B0 = C{B0 is a

(2,3;2)-manifold (so B0 is a 2-regular domain). To surmnarize
0

further the simplifications cited in [1.5.13], recall that we have

agreed to employ in this stationary case the reference pair (B0 ,'° )

! -, -
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for M, wherein x0(.,0) is the identity on as of course,
00

X (*,) is also the identity on a80 for each 4 EIR, as is
0 0

[X I for each (X,t) EIR. Thus,

X, 4 -0 on as0 ×xR,

and

U =0 on o 01R.

The field v on a8 0 XI is independent of its fourth argument:

v(., ) = v(-,0) on a50 for each C EI. Accordingly,

[V](Xt) (.,0) on as0  for each (X,t) ER 4.

Let us write v(.) in place of v(.,0). It is easy to see that

SxO(.,) - JxO( ,0) :. JX0  1 1 for each EIR.
1~ 0

nn
If f is an R n_ or IK-valued function on aB0x]R, there is no

0
distinction between f and f with the present choice of reference

pair. Moreover, the retardation function T corresponding to

(60 ,X
0 ) is given by simply.4.

T 0 I(Y;Xt) r (XO (Y,t-T0 (Y;x,t))) _1r (Y)' (¥X't =c = c

.- for each Y 3 8s and (X,t) EI,
0

whence

T? 0 ,
'4

'

4- ".°-"" ,"2,.,'. " " " , , . . ". '. ."," ' '.." .""''"""""% ,- -,-%,' . ,,. " ". '' "- 2 '..2¢g g
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while

[fxt(Y) f(Y,t- c r Y)) for YE CO and (Xt) E R

if f is defined on xR.

Upon taking into account all of these simplifications, and

supposing that {E ,B } is an incident field appropriate to M

as in [1.4.11, from (1.6.6.18)1,2 we infer that the system (1.6.5.4)

[(1.6.5.6)] can be given the explicit form, with N = 1 [X = -1],

i 1 & ,Vk (Z) ) dXN 0
O r 0
O0

-Z.~~~ 1 k kz
+ 2rc r r Zkv (Z)- (, 4]( ) d,

aBB

0

+ {V zk} k dA"[*'4r1z(z';) 3Ba 0

- 2 k kZ c (ZO

=)2,Ek(z).Blk (Z,0),

and

1 f i 
Akvk(z)

Xqi(z,') +  d -- 'z ", ]z X8

B 0 z

+ r IV k k (k-

r50

CB 4

'p

,.

I' ,

.1,
-. 444}

4, ', .,,= .,',,: . .; ,.,, ' 4.''..:.2 v .- v . ..- ,--.,..: .... ' '..-v . .,,va '..,.,'.'.-,.4 .-?. __i.' ," ' -11 '



+ L k ,i
2-c J r z "[(Z)[ ,4 1(Z) 3

1 -rZ{-(Z).(1)2

2-rc rz r[z,i*'-Vk(z)) "  4](Z, ) d13\0

0

E 2ijkv (Z) .Bk (z, )

[-2E VJk (Z).El k c z M )0],

iuk

for each (Z,;) E So xlR.

One can also derive the latter equalities by using the

expressions given in (1.5.13.5 and 6).

It is to be observed that certain of the troublesome

characteristics of the more general equations persist in the systems

(1); the retardations of the unknown functions and their 4-derivatives

must still be dealt with, although the retardation is independent

of the time variable, as are the kernels of the integral operators.

We note also that each of the systems (1) is "partially uncoupled."

That is, (1)2 involves only the "vector part," -p, of the unknown;

once the solution of this (sub)system has been shown to exist, one
S.

can proceed to examine (1)1 for the "scalar part' of the unknown, +.

* Again with M a null motion in 14(2) and TE B an

incident field appropriate to 'If, as in [1.4.11, the statements of

(1.6.1 and 5] direct us to seek locally H6ider continuous functions

,, and -y on 360 x such that

.0

" ' , ,,V '< , t ' ,' ,r ,€ . . - ' ' -" + " " " " " " . ' ¢ - " . " .' . . " - '. ' - - . . + . . . . .. . . . . . - -
4 +, + _ . r + + i m r i . .
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1,~= ~i1 r yi on=?= =0 on o BO0 -,

DJ4 D D a C(a50l) for j 1 and 2,

4' 4/ D4 , and ~ o]) o

and T and i satisfy (1) with 1 = , while and

are solutions of the system (1) with X = -1. Recall that,

e.9., now

= zT(y)) for Y,Z E D0 and EI. (2)

If we succeed in this, it follows from [1.6.1] and [1.6.5] that there

exists a solution of the scattering problem corresponding to M

and {El ,B }, which can easily be displayed explicitly in terms

i i
of either T and i or r and y (cf., [11.9], int3tta). Other

relations amongst these functions are cited in [1.6.11. Now,

the systems (1) are similar in form to the single integro-differential

equation considered by Fulks and Guenther [17] in the course of

carrying out a potential-theoretic investigation of initial-boundary-

value problems for the wave equation in a cylindrical domain in

4
IR4. We intend to show here that, under additional hypotheses on B0

and {E'',B' i} (corresponding to conditions imposed in [17]),

their clever implementation of the familiar technique of successive

approximations can be carried over to serve in the examination of

(1).

[11.2] S P A C E S 0 F F U N C T I 0 N S. We begin by establish-

ing notations for the various linear spaces of functions within which

%
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we shall work. We shall have no need to equip these spaces with any

sort of locally convex topological structure. Let M be a null

motion in IM(2). For k 1 1 or 3, we define

4 0-

for each j EIN},

a 34,0(0RQKk )  {w E C ( Ox]R <k)I P 0 on So0 (--,0];
40 04 0 J0 o

for each T > 0, there exist b > 0,

C ijT > 0, and 6 E (0,1) such thatCuT u,T

hi (ZoI k < b (2)

.LCID uzm)o k < b uCT J

. for Z E 3b0' 0 < C < T, and j EN},

S' and

, 4,0 (OBXk):- {u E a40(a60x]Rk)I P is locally H6lder

(3)

continuous}.

We shall write simply C4(; 0xAR) in place of C4 (^ 0C×]RK), CtC.

The utility of the estimates imposed on the 4-derivatives of an

elemient ; of either &4, 0(5 0x1R) or &-4,0( 6 0 ;]KR R) will beccme

apparent in [11.7]. In [17], it is pointed out that C4,0(0'OR) is

large enough to be dense in "most standard functions spaces" on

" ,

JI A."-
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as >0 [0,); this can be verified by constructing mollified functions

to approximate a given function, in which the mollifying kernel is

chosen to lie in &4, 0(OB 0 ). Fulks and Guenther also note that if

one were to allow 6 - 0 in the definition (2), then it wouldij,T

follow that u(Z,') is analytic for each Z E aS0, so jj -O,

since it vanishes on aB 0(-,O].

[11.3] 0 P E R A T 0 R S. It is also convenient to introduce

concise notations for the operators figuring in the integro-differential

equations which we are to study. For the null motion M E14(2), we

employ the usual reference pair (Bo,X0 ) and the modified notation

v(.) for v(-,C) (C EIR); ef., [II.1].

We find it necessary to begin by citing facts concerning

certain auxiliary functions on 3B 0AR, following from the general

considerations of Part IV. Let (Y,Z, ) i-* 0MO(Y) be a continuous
o

function on asxBXo4R. Noting that B0  is a Lyapunov domain, we

can define W*{1} on DBaxR according to

1 1 k
*10}(Z,) - r 9 r 1kv (Z, ) dS

O rz 0 (1)

for each (Z, ) Ea Box1;

this is just the specialization of Definition [IV.20] to the present

case of a null motion. Next, suppose that (Y,Z) - Fz (Y) is bounded

and continuous on the set {(Y,Z)I Y E 309 Z E aS0' Y # Z):

then the function W*{ } is given on 3Sox1R bv31

-. '_4 -' ._[. ,-q'..' ,r , v ¢ ''.v .'.>.' .. '..' .. '....
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..

,.- , 1 I 8
W31¢}(, ):= -*.

4 .0S. W r "

B aS0  (2)

for each (Z, ) E aBOx1R;

the existence of the integral here follows from the considerations of

Definition [IV.30.i]. Finally, assume that 0 is also such that

whenever K C IR is compact, there exist kK > 0,

AK > 0, and aK E (0,1] for which

M(Z)Y)S Z K.rZ (Y) for Z E B0 9 E K,

and Y E as0nB
3 (Z).
K

* Under this hypothesis, it is easy to see that we can define (Y*2{¢!

on 3B 0R by

" * I rZ. (Z. dX OP.,, W32{'(Z 2) :MO as.(Z

as 0 z (4)

for each (ZC) E 3BoxJR;
. ".

cf., Definition [IV.30.ii].

Now, consider the following hypothesis on the function

(Y,Z,;) (Z,;) (Y), continuous on 0X3Bo x1:

J00
-

..-

S.o

":''.,',¢ ,.N v v..,< ,,- -. . . . . ..-.. ..". ., --. .-'.- .. .. .. .-...-...-.- v v '.- •.. '- .-. . - -.-.-. .
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for each compact subset K C R, there can be

found KK > 0 and SK E (0,1] such that

4 4(Z29 Y ) (Z I ,  (  K'(Z2'2)-(ZI';I) 14 (5)

whenever Y E 98 0, Z1 ,Z2 E as0,

and ;l'2 6 K.

If (5) holds, then W*{01 is locally Hilder continuous on aB0AR,

i.e., is Hblder continuous on each compact subset of a 0 x]R; this

follows directly from [IV.24]. If the bounded and continuous

function (Y,z) + rz(Y) on {(Y,Z)l Y E aBB0 Z E B0, Y Z )

satisfies the condition

there exist K1 > 0, K2 > 09 A0 > 0, and

80 E (0,11 such that

20 12rz2¢)- zl( 1*I-z2-zll 3  r (Y) "t2-z113

2 1rz I  (6)

for Z1 ,Z2 E as0  with IZ2-Z113 0 9

and Y e aS0 {Z1 }',1{Z 2 }'

while (5) holds for 0, then W*I{ €} is locally Hdlder continuous

on as xR; if, in addition, 0 fulfills (3), then W2 I;} is also0 32'

* _. locally Hdlder continuous on 3B xlR. These assertions concerning
0

S3 and W32t €} are consequences of conclusions (ii)' and

A (iii)' of Theorem [IV.31], respectively.

Again supposing that (Y,Z,4) k -,(Y) is continuous on

%"Pb
* ' , , -,.,,.r_ o -. ' y - . ' :, , " . , . " " ; ' ' t , . '. - - .. . - - . - . . . - .- ' ." . • " . . ' . " . . '



asOXaB x]R and (5) holds, if we now introduce functions W0 03i 31"

31ij{ 10), and 31io{o} on 3%xI according to

~ f 1 rZkk

W31(Z',) :" Z V (Z, ) d O  (7)

I r {v i d , (8)
W31iJ{$(') f" r z Zi~v-Jz} MO ;B0

aso

and

r31 f r z v1-vi(z)}'$(Z') d B0
-. 4 o

0 (9)

for (Z,) 3B0 xR,

it is obvious we can use the cited property of W three times

in order to deduce that each of these is locally Hblder continuous on

0 xR. For example, in the case of W3 {$}, we can take rz(Y)

as rZk(Y).Vk(Y) and show that (6) is fulfilled thereby, noting

that

IrZ2k(Y).Vk(Y)-rZl tk(Y) .vk (Y)! _ Igrad rz (Y) -grad rZ 1 (Y)
'

r (Y) 1 2-Z 1 3 '

- z

Next, maixtaining the hypotheses on t, let us set

( , )(Y) : { J( ) 'J ) . ( , )(Y)

for YZ E B and E I,d ~0

%A

.4.
'.|
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and take rz(Y) to be given by r zi(Y) (so that (6) is true).

Observing that v is Lipschitz continuous on as in the presentI0

setting, whenever K is compact in IR we have

1, M0 Mj < { max ( , )(Y)}ary(Z)

1EK.'* for Y,z a5?0

for YZE3B0  and E K,

for some a > 0, so that (3) holds when is replaced therein by

€. Further, since 0 satisfies (5), it is easy to check that

also fulfills a condition of the form of (5). In consequence of these

facts, we can define W" {o} on as oxR, as a function of the form
lii 0

S32{$}, by setting

V32

W,* w(' 1-2 r,,VJ-VJ dXs 0 9

(10)

for (Z, ) E 3B0xlR,

and assert that Wl {0} is locally H61der continuous on 33 xR.
lij 0

Turning next to the definitions of the operators in which we

are primarily interested, we first suppose that u E C( 0 IR) is

such that ;'4 4 C(5 0 xR), and define the corresponding function

L;,: a0 "R -1K according to
0

L(Z) :-T L Z 1-: (z,;)+rcz[J. 4]( I d*:.

00(.1)

'V for 09 G .sR ,

v9



-'S;

-12-

.0

0.*. wherein

L Z(Y) r (Y)v (Z) for Z E 35 YE S0 {Z'; (12)
"" 21 Zky) k z)

,-: ~rz(Y)
z

clearly,

LP- lIJ kk]lJJ 2c 1 (13)

1 kk[ ]- W 31'L4 2, 1

If e C3 with u,4 E COB 0X1R X , we take the function

Ljf: *x]R X 3  to be given by

- .L j, . . . 4] (, } d{m }i~z' :'- 2" L 0 +z r c [  z: o
,-, {IiJ(Z) 2T 0  Z

,B 0 
(14)

for Z r aBo E R,

wherein

i Zj Y) :- 1 rz,~ y~cL ,,Y (r/ { (Y)%)J(Y)-CikE mrz (Y)Vk (Z) }

,z rz2 (Y) ' kZm m

z

Z-k ZIjr ' 21 (Y{rZ,k (y)v W6z +rz'i (y){Vj(y)_%J(z)} } ,  (5
rz ~(Y) (5
z

for Z E Y E 3S ' 'Z I

one can easily check that

' k (16)
21TC 31{ [ 4  L+  

- 1';[ 4  k --

- 1 4' 2c 31kk' 4 27c 31ik

Finally, with 1 as in the preceding definition, the function

B.: O x -1I is given by

0'
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1 I 1__{vk_vk(z)}.[-kdt 0

A (Z,) :- 2 r v(Z,)

.s 0 (17)

for Z E 80, C EIR,
-t 0

so that

1 - ~k

2rc 31k '4

Let us make several observations concerning the operators so defined.

(i) Suppose that U, W,4 and p,4 4  lie in COB 0×R).

Let K be a compact subset of IR. If Y E a8, , Z2 E SB0,

and i' ;2 E K, then, supposing without loss that i < 2' we

may apply the mean-value theorem to write, for some 12 (Y) lying

between ;-rc (Y) and ;-rc (Y) or equal to their common value
1 2 2

if these numbers are not distinct,

I [u](Z 2, 2 ) (YNI(Z (Y)i

IU(Y,; 2-rz (Y))-U(Y,cI-rI (Y))I

" P'4 (Y ';12 (Y )) "I{;2-rz2()) 1-rzI()

2 1

I sup
l- w'4(Y'C12 Y)  14l2-l I "C Z2-Z lY3

s ph , ; •Z-) •+ _Z, ; ) ( Z l , l
Z 6 asO 4 (Z"2

1 ciam 80 < <_2
1- c 0 2

We can derive a corresponding estimate with vi, 4  replacing i.

Thus, we have shown that (u] and [u, 4] satisfy hypothesis (5),

so that equality (13) and the remarks made concerning the local

- " •

,. . . ....,i , , , . ",,,,,,' .,' " ' ." ,' ' -..,,, ' . :.".".". - . ."" "","' "".. ,"' "_" ' :.. . ?". . . ., ' "' ' ' "
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H61der continuity of W*{O}, W*i 1, and W {}, for
1 lij 3 1]jf o

% satisfying (5), allow us to conclude that Lw is locally Holder

continuous when k possesses the properties required. For example,

if p E C (380 xR), then L. is locally H6Ider continuous on

a 0x]R.

Reasoning similarly, we can deduce that E and ' are

locally Hilder continuous if 4, and '44 are elements of

COB0 x]RK3) (which is true if, say, E C(BxR' X3)); here, of

course, we appeal to (16) and (18).

(ii) Again, let w E C(OS 0xR) be such that u, 4  and L,,4

are also in C(OB0 x]R). In view of the definition (11), and keeping

in mind (11.1.2), it is an easy exercise to show that D L exists

on a 0 .R (cf., Lemma [IV.7]), and

D4Lw - LD4W (19)

(and that (D4Li.)(Z,.) 6 COR) for each Z E B0). If, in addition,

it is known that W, E C(OB0 xR), then (i) and (19) imply that

D4 Lu is locally H6Ider continuous. Consequently, it is clear that

for CwO 6 ' ), we also have Lij 6 C 00(asx1R) with DL

being locally H~lder continuous and

D4L - LD4 W, for each j r. (20)

~3

In an analogous fashion, for u E C4(0;K), one can

show that D4 and Dj. exist and are locally H61der continuous
.94 4

on as 0R, with
""0

9'.%



I .- .. , .-.V. , .- . . ' .. -. <-. w . . - r -.. r- r r' r . -. r .- , r U- .- .- . . , .-. .. . , _. r .

AV - LDj .D , (21)

and for each j EIN: (2
-I

in particular, Uj E C4(a 0RX . 3), and A,, E C4(;S0I).

(iii) We shall have need of various facts pertaining to the

iterates of the operators L and L. First, since L maps

0C 4(aB Ox) into itself, it is evident that the sequence of iterated

operators {Ln} Go is well-defined in this linear space, wherein

n-0

0
L°

.n-i nEIN, for each I E C 4 (;B0 R). (23)
Lnu :LL u for each n ,

Suppose that p E C4 (a5 0x xR): explicitly, from (11) we have

L 2 I(Z0,t) :- {L(Luj)}(Z0,t)

- 1 L z(Zl)'.(l+rz (ZI)D4)L,"'(ZI,t-r0 (Zl)) di (ZI)

I (Z 01l 4(( z } 0 1 O(0I)

L _ Lz0  0(Zl)D 4 ) ))(Zl,t-r(Z)) ' (Z
21r z 0

o0

2,} f LZ (Z i)Lz(Z)
a0 ;0

.e{- (l+rzl (Z.))D4)(l+rz0(Zl)D4),,j (Z2".t-rz0 ( Z I )  -rzl ( ))
z 12 z0 l4~z 0  1 z 1

dX s0(Z 2) d'.- (ZI).
0 0 1

in fact, by induction it is not hard to prove that

-N.

-' V * ,% *.% % .-,' -- '%,% .-. .. .-. "." ".: .- ,' "."-"----?'•b - ; - -%i .'--%..'---g..'-.*-. -
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L -(ZOt) "o L z (Zi+l

aS0  as0

n-I

Uin .j+l 4J n' 0 k l

(24)
d 0(Zn ... (Z),

s0 nB01
%4'.

for Z0 E &BO, t e IR, and n E IN.

Moreover, using induction on n, we can show that, for each i. E

coo 4 (ax]), n 61I, and j E14, Lu exists and is locally Hblder

continuous on as0x]R, with.Ia
DjL n. = L nDip. (25)

44

For, we have already seen this to be so if n 1 1, in (i) and (ii).

If ii EIN and the result is assumed true for n and for each

.J j 1E4I, then (i) and (ii) can again be applied, since L n E

C4 (Bo xR), giving, for each j EIN,

A w= DLLn - LDLn w = L ADj4

and implying the local H61der continuity of D4L W, because of4

the equality DjL4 +I- LDJLn.

Since IL takes C) Go(s0]RX 3  into itself, the iterates of

this operator can be defined by

5%%
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L. n IL -l fr ah, I foeah IE 4OB0XRK).(6

3

E for each E C(8 xF.;K w.(26)

4 
;',.4Explicitly, freach G C4(aBx]1 3), we find

n- 1f0 f j -1 Ii z 1Z
., (Z0,t) 3I Lz (Z

3B, B0  ;B 0

f n-1 
j n-ij{2 {1+r' (Z )D4} n (Z n,t- (Z k+l))

Sj j+i 4 k=0 k

(27)

%dA (Z ... (ZdaS 0Z n ) 3So(Z I )

for Z0 E B0, t EIR, and n EiN;

note that, by the summation convention, for n > 2,

n-i 3 3 1ii ii 2  i

L (Z .. l(Z)LI (Z n-lin
-0ill inl 1 z1zn-I n

Finally, again for u e C4 (0B 0xRI ), if j and n are positive

integers, then D4Lnu exists and is locally H6ider continuous on
4

, %0 x1R, with

D~n nDiw (28)-
4. 4

(iv) Regarding L as defined on & 4,(0R), and L and
4,0 

0
A as defined on &4,0(;0 ]R;K3), let us satisfy ourselves that

LH (0& (B0 R) (29)L 4,0(0 ) 4 0 ,

.
-4 --. ". ''- ,'..... . '''.. - . .. : """" ..-- ' . '- .,".. .'-. '- - . . ",.", ": - ". ". -. , .



L: & B xIR. 3 ) ~H OBxRI 3 (0
4,0 0 4,0(oxRK , (30)

and

A: Box]R K3 ) -H Box1) (31)

Suppose that P E &4 0 (aB0 x1R): by (i) and (ii), LI., E C4(aBoIR)

and is locally H61der continuous (along with DJLw, for each j E I;).

" Since w vanishes on as0 x(-,0], it is obvious from (11) and the

form of M[ O(Z,) for Z E as0  and ; ER (cf., (11.1.2)) that

L;, also vanishes on as x(--,O]. Consequently, to secure the

E ,0(  , we must verify that the estimates re-

* quired in (11.2.2) are fulfilled by (DJLI}J.1. Choose T > 0
4 jl

and j E F; if Z E as0  and E (0,T], then
j(DJLuL)(Z,;')j ,,(LD u)(Z,;))o4 0

1. 1 f L {[DW ](Z,)r +[D J+l (Z,)
as03o 4 ] Z 4  li(Z', ) d

0
r. ,kk(z j ,rk Z)' d d

as 0, asz
+ f L- -r kZ  )I-I[D 4 j(Z, 1 dc r z  Z 4 (ZO B

05

b. . <3'- ... j •"T 1 Z k (2.7T -- ,T" w,T j " Zk " 00
-as, B0  rz

(j~l) j T l) • . d'-L

r- z B0
-k' 

0

"0..



p ... . .

2- b .2 r i r Z  (Z)' d\2 7T l,T r 2 Z ,k O OLa 0  r2
+ d^8as 0 ) (l+6'T) J (l+T)J

+ _ , .{(2e) '.C ' T (32)fB rZ  as •T

z 0

since, for a > 0,

CL Q 1 -- p .a L.a .a(jQ ) (j+l ) < (2j) 2 2.2aj cj < 2 .(2e)'J.jic
.a n j ". j

having noted that j = e < e . It is easy to show that each

of the integrals in (32) can be bounded independently of Z E as 0 .
For example, if (a,l,d) is a set of Lyapunov constants for Bo

r2 irZ,kvk(Z) I as30%8 rz0
as z0

< dX + 1l kd80

Sr 2 f r2IrZ,kVI
a as" (BdZ), Z aSOnB3(Z )  z

d dP

+ f 2 Iv(z)-v13 da

.4:

as lB3 (Z) z
0Od

X (6o0 )+(a+a) fz dX °
d 2 a0 0rZ 3 0

3BOBr. d(Z)

1 • )+(a^+a)'23/2 rd.

-d 2 B0

Thus, from (32) we see that the partial derivatives :D L, }j;l satisfy
4 '~

1-

*1-,r"
,,,'p.t-'-.... .. .. .. - .- . . . - " . •. ."" . : ' - - - . •".,.-.- .- ' ''',- '"" . .,.- """''''"""""";-.

4'.'p' . ' -, , " . . " ,' :, ' , = '. , . , =' " ". :.'.' " : ' _ , ' ' ' ' - ," ; " . " / ,- , '
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the required inequalities, which completes the proof of (29).

Similarly, one can demonstrate that L: E &H (" '0IR ;3) and
4,0 0

. H whenever H 04,0

and (31) are correct.

-: [11.4] R E M A R K S. (a) Using the operators introduced in [11.3],

the systems (II.1.1) can be written concisely in the form

-AL = AF +AA (1)1
%.0"on 

3BOx1R,
0

-= Xf (1)2
A2

for A = 1 or -1, wherein we have set

c
F k 2E a xR, (2)

F1 F1  k B vk ;,0xF, (3)
f 2E %) aoB×R, (43)

""' fl := 2ci.kB ~j BI I 0R (4)

and

i - .'
f -2e 3E ; 0IR. (5):, -1 ijk (

We are then led to examine separately the single equation

-->.L = F on ;S0XIR (6)

and the system

=f on ;sIR (7)
." ''.

°°.me- "
,'.
-% .'

' 5, .', w. - ....... .**4* ."-" ... ".,,.... , , . .f:?':"..2-'9< .- ':'i.i i.;'-;'--i.?i-,..5.v
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which we shall do in [II.71, subsequently applying the results to the

system of ultimate interest, (1).

(b) The study of (6) and (7) is greatly expedited with the

imposition of the following global geometric condition on 0 (as

usual, we consider a null motion M E IM(2)); let (a,l,d) denote a
".4

set of Lvapunov constants for BO'
0*

there exists a positive number a0  such that

whenever Z E 3B0  and d < 1 < 029

(G) (8)

aB 0 B, PB (Z)CB 3 (Z)'4'. T u o

This is essentially the hypothesis employed by Fulks and Guenther

[17], who point out that it is fulfilled by a fairly large family of

* domains. Observe that if B 0 satisfies (G), then no point of 3B0W0
can be the center of a ball whose boundary contains a subset of S0

of positive X8 -measure (if Z E a0 were the center of such a
0 0

ball of radius ol, then obviously (3) would fail to hold for all

> P with p2-_l sufficiently small).

Use of condition (G) leads to the following facts, which are

simple variants of a result presented by Fulks and Guenther.

(11.5] L E M M A. Let 'M be a nLUC motionn Lt IM(2) 6c"L ceIht'a

" 0  'sati ,cs" cc id. tic , (G) . Thzc,,e exizts a pcs.- ii ubc a0

- uch w:e.t k• t > 0, g is a it-nnc-af t& ° cc' ° ,,

%* ~. a ,. .4 a
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on~ [0,c], and Z 31a30,

3 (L i 2 } / gor~ dXa <c g d~1, (1)

as TB 3 (Z) 0
00

f , (Li)2}.gor~ dX fg s (2)

'.*as 0'B (Z)

and

P

f ILzIgrz a l, 3

asnB3 (Z)0
%% 0oP

PRO0 0 F. Let (a,1,d ) denote Lyapunov constants for Sand

a'd E(O,do ). To prove (1), choose Z E as . From (11.3.15), for each

z (L)Y) 4(Y) Z {~ YvkZ 1
2 i

Jul rZ jli

k2{ (y ~ (Yk{vz)}4jjz
+2 Z,k Y v ( )1 j

Z,i}

4 1 rZ,k (Z) k } 2+2{r Zk(Y)vk (Z)'i-r jY)
r z(Y)

12. 2.
*{\(Y)-.,)(Z)}+{r Z(Y)}. v(Y)-V(Z)! 3

< 1 {rr (Y)v) k(Z 2+2!r MIYY(kZ).ar (Y)
r~ 4 (Y) Z,k Zk Z

+ar(Y)
6z
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while

IrZk(Yv(z) I .< rZ,kY)v k (Y)I+j rZk(Y).{vk(z)-vk(Y)W}

r< Z,k (vk(Y) +a'rz(Y),

so that

3 ,ij 21/
( M <2 1 {{a.rz(Y)+IrZYvk(Y )}2(Y) z Z,k

+2a-rz(Y)-{a.rz(Y)+IrZ k(Y)vk (Y)I+a 
2 r2(Y)}1 /2

1 2a+ _rz k( Y k ( Y)  
(4)

(Y) [ r (Y)

This gives

3 LJ) 2}11/2

(2a+i) if y E as(51B3)Z),){Z}'

r z(Y) ' i (5)

S 2a+ < d if Y E aB0B 3(Z)'r Z (Y) -- d 2  'O

Now, let p > 0, and suppose g: [Ot] - [0,-) is continuous.

Consider first the case in which p > d: write

L (L) 21  -gor z dX . 0  I (Z,)+I2(Z,:), (6)

;0 .B (Z)

wherein

5%,

-2

SP-;4
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I ()( gcr z d; 0  (7)

a B0 -B d (Z)

and

S12 (Z) :3 L (L /2 .gor z d) (8)

aorB3 (Z),B 3(Z)

To estimate Il(Z), we begin by noting that, provided do  is

sufficiently small (and 0 < d < d0 ), there exists a positive a6

-N..-. such that
-J.

"''' :I &i3d < a' (C2-

rZ  a80 --

asB (Z)B (Z)'(
2 1(

,_ whenever ZE aS0  and 0 < 1< 2 < d;

at the end of the proof, we shall verify that this is so. Select

a partition, {pk}kffiO , of [O,d]: 0 p <  
=1 

<  < ID <  N0k k=0 f [, 0 1 < . N-1 N

d. Then, with

g): sup {g() k_ 1 _< _"for each k E (I,...,N., (10)

we have, by (5) and (9),

IC N(z I (LzJ2 .gcrZ d.\Bkffil jul " db0

;6 oB 3 (Z);-B3 (Z)'

0c 0k P k-l

'p
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N 1
< (2a+,). [ M(g)" z o

'1k-i z 0 ~
aB nB3 (Z)'B 3  (Z) '

k  Ok-l

N< (2a+i) -a'. [ kg -Ok) (ii
k=O
d

(2a+i).a. g d

0
d

N

Thus,

d

Ii(Z) < (2a+^)'a6. g dl, (12)

0

since the second term on the right in (11) can be made arbitrarily

small by choosing a partition of sufficiently small norm. In

examining 12 (Z), we invoke condition (G) (cf., (11.4.8)): for any

partition, {Ok}k0 of [d,o], with d m p, < ... < rN-I <

p, defining (g)}kN1  as in (10), and again using (5), we

find that

N 3rj21/
2 (z) k I ( j)2 "g rz d 0k=l 1ji0

a^B'-B3 (Z)'B 3  (Z)'
0 u k k-i

1+2ad N (• d Mk(g). "i d" .

d-1 ki 3 3:0
*Bo-B (Z)rB (Z)'

k Ok-1

- l+2ad 2  " " (g) "-

d 2 - k~l k k-
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P
1+2 ad g d
d d

. -# p

-"+ l+2ad M*a ) ,(kk~) g dXI}

Reasoning as before, this implies that

+2ad *(3

2Z _0 d2 "a0  g& I  (

d 2l

d

From (6), (12), and (13),

3 (Li 2} 1/2.gor dX3 j-I r z 3Ba 0

as 0'B (Z) (14)
p

{a6(2a+1), dA1
< max a 0* g d

0

If 0 < P < d, then (14) still holds, for, then we need only effect

an estimate of the type already carried out for Il(Z); for this,

note that we have no need to appeal to hypothesis (G).

Again with Z E aBO, a computation of the same sort leading

to (4) and (5) produces the inequalities

I (L (Y))

i=l j=l

1 {(6a2+8a+3a2 21/2 3rz (y)  , if Y E B oB (Z) Z'

- (15)

2+ + 31/22+a+ 1/
1 6a2 + - 1 + 8a +- if Y E ;B B

r(Y) d d22, d 0Bd(Z)
Z d d
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while it is easy to see that

IL z(W) 21 Ir Zk (Y)v k(Z)I

r(Y)

r (Z).(a+a) if y E aBd (Z)-'Z} '  (16)

a+ <-- if Y E aBoB 3(Z)'.

r ___(Z )ldd 3

Using (15) and (16), we can construct an argument like that which

produced (14) in order to conclude that there exist a > 0 and

a2 > 0, depending only upon Bo t for which

' 3  3  1"2"/2 P

(Lz) gor z dXas 0 < a g , (17)],~ ~~ i-1a1< "dBo

aso0mB, (Z)0

and

',l P

3 nJ, / [ g r
z d8 2  g B , (18)

a 0B(-B (Z) 2

for Z E Bo and > O,
'V. 04.

whenever g: [0,c] - [0,-) is continuous.

In view of (14), (17), and (18), the existence of a positive

number co0 possessing the required properties shall follow once we

4.have shown that there is an a6 > 0 such that (9) is true, provided

0 d d and d0  is sufficiently small. Select Z E ZBo and set

--.
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Sz  3(Z) 0
.B05'B 

(19)

*Jh" d 2  for 0 < p < d

fr oh-1 Z 2 0'
B3(Z)) zohz

since

I = )- as for 0 < Pl <
p2  do9

... )a,.'3 (Z),lB3 (Z)'
3B" 0 u P2 Z )B0l()

.. " .%

in order to prove (9) it suffices to show that Iz  possesses a

derivative on (O,d0) which is bounded uniformly in Z. Now, for
3

each p CE (O,d0), we know that h Z(SB (Z)) is starlike with

respect to 0 CEI 2  and coincides as a subset of ]R3 with the pro-

jection onto {Y EIR3 y3 _ 01 of the intersection of B 3(0)
P

2-w3
and the graph of a function f C2 (hz(Bo rBd (Z))); the boundary

D. . 0{hz( BP (Z))} is also starlike with respect to 0 and can be

identified as the projection of the intersection of B 3(0) with

'-. * the graph of f Thus, there is a 24-periodic function R(i,')

3
on R such that a{hz(5 0 nB (Z))} is described in polar coordinates

% with pole at the origin as the set {(R(;,6),e)I 0 < e < 27}.

Clearly, if we let a denote the map (s,e) t- (s cos e, s sin 8)

on (0,-)x(0,2-r) and define f on the open set c (hz(,B 0''Bd (Z)))

"J,';"via

%f := fog,

.°...

. %,,

-*;3
.4. ,. ........ , - -. .. %. .. ..-.. %.. ... ;... . ;.v ... .

•
. . -","-k ," ''"-" ", -
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we have

R 2(;,e)+f2(R(P,e),e) = 02 for 0 < Q < dO  and 0 < e < 2-. (20)

20

Since f is of class C 2 , it follows from (20) and the implicit

function theorem that RE C 2((0,d0)x(0,2')). Then (20) also gives

{R(pe)+f(R(pe),) .f,l(R(p,e),e)}.R,l(p,e) = p,

whence we must also have

R,I,)=
R(o,9)+f[(R(p,9) ,e) .f,l(R(c,e) (1

(21)

for 0 < p < do  and 0 < 6 < 27r.

Using (VI.64.iii.2 and 4], it is easy to see that

2 8

8 2(22)
7 a-d 0 R(o,)

for 0 < 0 < d0  and 0 < 6 < 2,

since

jil(s,e) - Icos e .f, (s. cos 9, s. sin e)

+sin e "f,2(s- cos ., s. sin e)j

L Igrad f (s. cos 9, s" sin

'12

Supposing now that d0  is so small that, say,

", ,

A , , o -. ,.-..,-.-,-.€ ' ' ' : . , , ' . ' ,. . , . . . , . . " .. r - . . , . - - . . € . . .
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aid 1 (23)
7 0- '

and observing from [VI.64.iii.6] that

7

R(p,e) > , for 0 < p < do  and 0 < 6 2

(21)-(23) give

0 P 18R,l(P,e) < 1 7

1. R(p,e)- R P(p,e)
(24)

for 0 < p < d0  and 0 < e < 27.

03

The starlike nature of each set hZ( OB0B3(Z)), for 0 E (0,d0),

and the properties of R show that

27 R(P,9)

I z(P= Af {ro J lOa(e,)s ds de,

0 0 z (25)

for each P E (O,d0).

We have

rz ohz ( r z > r GK, Z = 12

3
if E • hZ (&BO'.Bd (Z)),

so

r chz ca(s,e) > s if e E (0,2r) and s E (O,R(..,?)),z z

wherein P E (0,d o ).

S0

1%

'4.

:-:
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Therefore, recalling that Jhz < /2 on hZ(B 0 B (Z)), we can

conclude that the integrand in (25) is majorized by /2 whenever

z Ea 0 and p E (O,d0 ). We may then assert that I' exists on

2(O,d 0) and compute, using (24) and (25),

2Tr

0'P)R 1P'6)*{rZ-h Z o;R;1 )8-~,! ~

Z I

As(we hav Remre,(te) e iec o on(R( ,) foRc eac0

f ,2 w2n, for p F (O,d and Z E 3B
70

As we have remarked, the existence of on (0,d. for each

z R E a 0  and its uniform boundedness in Z show qie thte Lipschitz

condition (9) holds, provided that do is chosen as in (23); in

fact, we can take

This completes the proof of the lemma. D

[11.6] R E M A R K. If, in [11.5], it is not required that 0

satisfy condition (G), then the conclusions of that lemma still hold

for p E (0,d], wherein d is chosen as in the proof of the lemma.

This follows from an inspection of the proof presented.

As promised, we proceed to state and prove existence results

for (11.4.6) and (11.4.7).

4. e
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[11.7] T HEO0 R EM. Let m be a nuLC mot.*onii.a V(2) ~w<,

so at~Zcs ccatd~ticn (G) . Let X E X, X 0.

33

(i.a) The/Le exi6t-6 a 6unctioii ip E F. ), ];

suLch .tha~t

IP-MILP - f on aBSx]R

- - lin 6act, the 6unct.cn

'p ~Lf (2)

ha,6 thZs pu~peA.ty, .the s'ties coiiv'e.g4ng absc'Zwte-

Z-y onla ] and unZo,Lmf- con eacti comrpaiz

(.b) With 'pgiven by (2),

=4 L )YI1D~f on ;B6
n=o0

(3)

6mc~c acti - N,

each sei, convct,ti ab.5cZutcey oiin -o]

-' and unjc'6rneu ca eacti compact 6ubsci ct

a ].Fc i cach j E INU," I a;Id T > 0,

0
We employ the convention 0 :0 1.

.P

.0.

ft.



4'p, T=f 0 ~(+fTCfTV~~

6 n

6 f,Tn

1+6
C :2 ,T.
,Tf,T'()

anid

6 :6 (7)
p,T f,T'

In pat'.cu.Zwt, 6o.tL each j CEIN

I4j T / (Z0 cip

1cL a, f E&H.
4,0 0

a- e &4 , 0(~0 i,.)

a(UL) SLuppo s .Cha t F E a4o( B6I).

(ixi.a) Thicexf5t a 'tuicticn T E 4,0 0'r tC

=-L F OflI B' r (9)0o



In 6act, the 6wnction

n=0

absotwteZti on a 0 xiR and uai'oc-Lm&I on each

comnpac~t .6be o6 aS x1R.

D = 'j on ;BI
4 4

n=0 (10)

6ot each j EIN,

each .6ei cove.A9Ling ab.soZutcy on ; I

and un, o.tmeqy on each comnpac-t *ubse4-' c6 'SQXR.

Fco't each j E iVj(Q} anzd T > 0,

II .bY , < Cb id (1+ 6 T on 9B x[0,T], (11)

*whe,%A

-~ 'F, FT
b (12) TjlaoT

6F,Tn

(Lv til a 0 5 i- n [11.5]),

*,T.
T :2 ' C (13)

Yj F,T'

adi
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6.T :=6F,T" (14)

In pao,.-tcuct, 6o'r each j e iu,,o,

DJ(,)< b C
-- ,I TI

(15)

6or Z C aBo, C > 0.

C)m F EH oas1), then Y E & H o(aBo ]R)4&Lc] 16 F 1E , 0( , 4, 1 0

P R 0 0 F. (i) We define the sequence ( )= (of "successive
n n=O

approximations") on a0 xI according to

00

n :- f+)L-I for each n E IN;

by (11.3.30), each bn lies in a4,0(B 0 x]RX3 ). We have

'. "" . f+MIf,

. ' f+)M(f+)Mf) - f+Mlf+XAL2 f,

and an easy induction gives

n
n = kf for each n E {0},
k-O

just the partial sums of the formal series 7 kf. Let us then
k=O

examine the convergence properties of the latter, beginning by deriving

an estimate for the modulus of the general term of the series. For

a'i.
'a"

4#.
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k E IN and points Z0 ,...,Zk chosen from aS 0, we define, if

t > 0,

as (Z0 ;t) :- {Y aB0 t-rz (Y) > 0}, (16)
0

'

as (oZoIZ t)  (Y E a ol t-rzo(Z )-r c(Y)>, 0),
0 1z0 1 1

and

k-1as0(Z0, ... ,Z ;tl): {Y E a801 t-J0 rz'(ZJ+)-rzc (Y) > 0). (17)

Then, because f vanishes on as0×(--,0], from (11.3.27) it is

clearly permissible to write

i

{ILnf} O(Zo 1 t)

c )I n ,zBo(Zo; t )  60 (Z0,-. .,Zn1 ; t)

(l+r ( )D f Znt- n c (Z
zi' J~ 4 )(ng Zk k+1)

, ti- k=O

d o (Zn) d Bo(Z 1)

for Z0 E ;Sol t > 0, and n EIN,

with which Cauchy's inequality produces

4.

• ' . -<.N..v ;:.. ... :¢. _.,. . , ,, , , .-- ... .,.-.-.:.v .:.---/, . ,, _ . ,.... . '. . . .. ..'-.--.-- "."'._. ,>: ...' """- "'- -. . .. .. ..-- -'"' .-.-
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nf) i o( O t

InI
s 0 (Zo;T) B0 (Z0 ,... Zni ;t)

3 .1 n -l i j +1 ( ) 1/2

I ': ; +

in 1 (18)

n- }f n-i
THIo {l+r' (Zii)D 4JJ. t-~ I= r (Zk 1

S' 
0Z 0)}

• - z J + 1 4n k = O z + 1 3

dX ;so(zn . . dX Bo(Z I1)

for Z0 E aBO, t > 0, and n EIN.

Now, let k EIN, and suppose that {6 k. CIK. We claim

that the expansion

k k+1 k (9

k 
k

holds, with ak (B£) 1, and, for j E (1,...,k+l}, ak (B) is a
0i

sum of k terms, each term being a product of j of the 5's.

This is obviously the case for k = 1. Suppose n EIN and the c..

is true for k = n. Then

n+l n
(12 1+,: D )D

.(1I+ 1D4) = (+n+1 4 j=O 4

n+1

1+E D n0 ,
n.... j 4o

-,J.

.1

q , •;.. _ .% 'S 
- :. [ . . .
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n+l

0= a0(,)+ l {z ( *cn+1  1- z" 4 (20)j~l

+5n+l an+l~2 4S 2D n4 -l-I,.

so

n+l ncz0  (S%) = 0 O( %) 1 ,

nl = a(B£) for j E {I ... ,n+l}
a. l 2.1

and

n+l n n

n+2 z n+l n+l Z.
n+l ^.n+l

Obviously, a0  (a and a n+2(6 ) are of the required form (note
tna xn2 k

that an (2) has n+l I i term), while for j E {l,...,n+l},
n+Z

a (2 ) has

(n+l+ n+l] [ (n+2]j. tj-1j •

terms, each term comprising a product of j of the B's. Thus,

our claim is substantiated, (20) being of the required form for
.4

k - n+l.

Returning to the integrand of (18), let n E N with n > 2,n-i

t > 0, and Z0 .... ,Z n E B0 with t- kO r zk(Z k+l) > 0. Using

the familiar inequality

{a 1/m 1 m{aI •.a <- a
m -m k=l k

0.

d.



;,: ,;'. - ' ._ . - -. . . . -. . . . . . . . .. . . -.. - . -. . . . . --. . . .. .

relating the geometric and arithmetic means of m nonnegative

numbers a.,.. .,am, if {i } 1  consists of distinct integers

chosen from {0,...,n-1} (1 < j < n), we must have

rc J1 < )
k r (Z k l < r (21)
k i kk ik

Consequently, if T > 0 and t E (0,T], recalling the estimates
for the 4-derivatives of f E & 4,0(aB0 x 3),

If'n-i n-i,nlI t- r~k(Zk+l)H
JjO{i+rc(Z +)D)jifJ{Z t- rc(

Jk0 +k 3

n n-i
_ ( (Z+ D fr t- r(Zk

j-o zkO k k 3

n n-i c Jf,T
< bfT+ O L. (r (Z )).b C . ff T j=l j z £+I)  ,T f ,T0 )

(22)

< b +jj .bf,
. f,T+ j T1 ,T"

,. .

b -n6 fTn n n ( .~
f,T n J

j -0

b f,T f,TT+n n n

If n - 1, it is easy to check that the final estimate in (22)

remains valid. Using this with (18), when T > 0 and n E D;, we

*find

- f;.]Lnf0 (Zot) -< bfT -(f+CfTT) n i0 (Zt)

(23)
for Z0 E ;B0  and t E (0,T],

blh0

o-S

'plk

'p4I

'p



,p .

S..having written
*- 0 t)°

0n (Zo't)
n 0

V%.

f3 fn-i Liik+ , 21/2
= j".. I X , (z i+l}

aso (Zo ;t) aso(Zo, . ,Z t) n (24)

.ddX;BO(z  .. d ;B (Z 1 ).
00

We must next estimate the integrals given by (24); for this,

we shall use the hypothesis that B0  satisfies condition (G), and

Lemma [II.5]. Let T > 0, and choose Z0 E a60  and t E (0,T].

Directly from (11.5.1),

SI1 0(Zot) M fj 1  (L )21 dX;
aB O 3 (Z )

0 ct 0

ct (25)
'e ,< a0  d A

a ct

< a.cT.

If n > 2 and {a j, i,j = 1,2,3; k 0 0,...,n-1} CIR, then
-k

iiiit



< 
. . . . . .

3 (0 i i2 in-li n 2 1/2
(al .. an-i

n

3j 0 2 )/2 3 i /2
0~ 0 /1 30 (a" I (a,

t h c 3n- /2

this can be proven by induction, using Cauchy's inequality. Thus,

for n > 2,

~i o
0 (Zot)

, aso(Z0;-t) I.0 (Zo, ... ,Zn l ;t)

'3 ii ili2  . i . 2.1/2

L 0 {L 10Z (z)-L1Z 2 ) nin (Zn
ki 1 0 1 n-i

• " n

,: as80 (Z n) ... dX 3Bo0(Z 1) (26)

0 0
- .L.Z

a 80 (Zo;t) aso(Z o0 .. . ;t) 0

3 3 1 j1  2}i/2

3 {L (Z2 )I .

q 3 3 -1 1  T/2

" (9n-lin-I (7. .,.( Lz (Zn)}d (Z ) ..n d

-1-i n n-i 0 0

.= I

Upon appealing to (II.5.2),we see that the innermost integral in (26),

I

.. .. *.* .. . . .~ ~ ;. . . .. ..- ,. s. - . . *% .. ° --. -* .- . .-. . '.. ..
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taken over aso •.t) I ;t) 3B 3  t2 (Zn_
". ... Zn-l' 0S B  n-2 -

ct- 7 rz(
J.0

(cf., (17)), is majorized by

n-2
ct- I rZ (Z .+)

j-0 n-2fr (
"L O  d I 1 aO . ct- 1 rZ. j+ I ) ,

J=0

so that, for n - 2, using (11.5.1) again,-- F f! 202 (Zo9t) < a0  {L 1)} (Z 2

~2 0 z
IO 0 B~orBt (Zo0) j 1-

*{ct-rz (Z 1 ) } d), B (Z1)

ct (27)

< (a0)2 f (ct-s) ds

0

1 2" 7. (aoct)

1 2
< L (acT)

while if n _> 3, (11.5.2) is to be reapplied, showing that the inner-

most two integrations in (26) are bounded above by

I.

.

J?

q* S S '
S. *I . .;'**.*** 2-? ... * .. ,



141
-4 3- l

f {3 3 in_2Jn_ 2  i/ao 0 L <z (Zn
3 (Z 2 ) n-2- 1 jn-2= I L n-2

ct- I r (Z +
~ j+1

S-O r (Z ) - (Z 1 )} dX (Zn-l)

n-3
ct- rz (Z.+l)

2 r22 1 n-3
<(L ct- I r z (Z j+ ) -sf ds

0 j=O j

~ n-3 2.

1 ao)23 r (Z l)1

= ~ " '~~L z. j+i'j=0O

In fact, for n >_ 3 and k {,...,n-11, one can prove by

induction and (11.5.2) that the k innermost integrations in (26)

are majorized by

n-k-i
T" (.' 0 t- . r z  .Z

j=O j

Finally, then, taking k - n-i in the latter and using (11.5.1)

to estimate the remaining integral in (26), we obtain

i0  (al ) n-1 f 3 1 1/2
0 (Z0 9t) < 0 U0( Z~ 2)

n (n-l)! Zo (Z) 1 I"

SO B ct (Z0 )

• (ct-r (Zl) }n-i d) (Zl

0 0

I,

-#. 'W'.-~'~.*'...f.. ~-v2I
-ft ** t * .2 ,-a .' -~* . 2- A 2 ' 2 -
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-,- +-, ' W .- ~ * -

n ct

S(n-1) f (ct-s)n - ds (28)

(c ct) "for n > 3.
n. 0

From (25), (27), and (28),

i0 1
1 n(Z 0 ,t) < -. (aocT) whenever T > 0, Z0 E ZZ0,

(29)

t E (0,T], and n E I.

Coupling (23) and (29), and agreeing to the convention

S:
0 1, (30)

wwe arrive at the inequality

• I [ lXn.{].nf~i(z' t)
nn=0

.. 4

(n n 6 f,Tn
bf, T "  L {j (I+Cf,TTIl)XlaocT. n (31)

5n.0

valid for T > 0, Z E aSO, and t E (0,T].

Now, it is routine to verify that

6n (0n 1)n

- n~'~ < c whenever M > 0 and G (0,1), (32)
n=O

whence (31) implies that n, n{Lnf} converges absolutely on

90BxR and uniformly on each compact subset of ;B0 ]R; observe that
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Lnf vanishes on aB0 x(--,0], for each n. Thus, we may define

: nLnf,
n-0

obtaining a function O C( 0 xR;K 
3) which vanishes on B0×(--,0],

the continuity of 4; following from the fact that Lnf E

&4,0x(aBX1R 3) C C(ax]R K3) for each n EINBUO (cf., (11.3.30))

and the uniform convergence of the series on each compact subset

of aBoXR. Note that, with (31), (4) certainly holds if j = 0

therein, in view of the definition (5).

We shall next show that W 6 &4, 0 (aB0 x1RX 3 ) and that the

statements of (i.b) are correct (for j EIN). Fix p ED, and

th nDPjnfconsider the formal series of pth 4-derivatives, D 4

n=0

or I XjnDPf (cf., (11.3.28)). If n •]N, Z0 E BO, and
n=O

t > 0, inequality (18) is valid when f is replaced therein by

DPf. If n eI with n > 2, T > 0, t E (0,T], and
n-l

Z09,...,Z E a 0  with t- I r k(Z > 0, we may follow the
O n 0 k=O z k+l my owt

reasoning employed in (22), to obtain

r 1n-l c D n-l

J -z4 J 4 (Z 
n t D r z (Z k+ l) : 3

0 z k=0 k • 3

• '< n' a n;-l(rz ( Z + ) ) " Dp + j f n-l r ck(Zk+
.'s - "i j D i 1 4  f z n ' t -  k 70 zk k ).:

<b 
(+5 f,T ) p

- f,T f,T 
'' "n n) P .j (i+ f,T) (p+j)

% + b C +J(p+j)
j=l [J) ,T f,T

9,,°

• .".."1.?' , .- f [., v < . '" ,".,",V.".< -' ''..",. -f.-"..".
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1n (1+6 )
f, fT

<bf,T.CP,TLp (I 6 '

+ " .(+)(P+J) .(Cf T)} (33)

jfl

One can check that the final inequality in (33) is also valid when

n - 1. Thus, replacing f in (18) by Dpf, accounting for (33)

and (29), and introducing the notational convenience

0?

:= 1, (34)

we are led to the inequality

i°

I{LnDpf} '(00
.bI, .(z 0 ) (Pj [ ~l(o

<' < "fTCfT j=0 " (PJ (Cf,TTJ n (ot

(35)

n r (1+6 )(p+j) acT (5

(b *C f Ti j- fPJ T (C f, T) J7

valid for n,pe 4, T > 0, Z0 E 3B09 and t E [0,T].

Now, in Appendix II.A, it is proven that

.1 < a b  whenever a and b are positive,

whence it follows that, for any a > 0,

(a(a+b) <2(a+b). aa. ab

(a+b) <2 a *b

Therefore, if n,p EIN, j E {1,...,n, and 5 > 0,

']

b . 4

4, - - . _ - .. - _- .. - - q. - . -. ' ., .- . - . - -r .• , .,. . , . . . _ .. - .. - .. - .. -
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ij  (l+ ')(j+p) l]2(l+6)(j+p). "P Z~
Q "(+P) < 2 . pfj i

2 (+5) (J+P) • p (+f 6j (36)

2(1+6)(j+p). (l+3)P.5n

Using (36) to continue the estimate begun in (35),

I {L Dpf} 0 (Zot) I

< bf,T +,T p .n j

i (ThcT)n

In (37)

bfT.{2 (1+8 .2T ",p (f fTp(+f.oT

nn

n f,T

n! 2-.r0

< b 12 (+ f,T) C p p (1+2 f,T CP n n 16fT) C~ T
f,T. fTJ2 1, 0 ff

.5I=

holding for p, n, T, Z0, and ( as in (35).

It is evident that (37) is also true when n ff 0; recall (30).

Cons equen tly,

. . . .. . -.... .. -. . . . . . . °

. ."-?..... . '..'.. ° ... - '.' - .. '' ' . ... '- '..-.-.-.'....', ''''-.-','v .'.°.. ..- %. . ." " " " . ".n.-,;.



n-0

b l+ fC f T }P (l+6 f,T)
_ bf,T" 2 CfT"P '

, ( (l+ 6f Tn f,T n  (38)

n=• - Cf,T 0cT • n!

whenever p •N, T > 0, Z E DB0, and t E [0,T].

Taking noteof (32), the estimates in (38) allow us to assert that,

for each p EIN, XnDPnf = )TniDPf converges absolutely
n0 n-0

on ao0xR and uniformly on each compact subset of aB 0xR; in turn,

gnfor each p I, this implies that D4p exists and is

continuous oii B 0 ]R, with

DP4 = "nnDpf" (39)
n=0

3
Thus, 4 C4 (;B0 0xI). Directly from (38), we obtain (4) for

j E IN (having already proven (4) for j - 0). Since we have

pointed out that ' vanishes on B 0x(-,0], inequalities (4)

show that i E &4,0(OB0×IRX 3).

We have now proven (i.b) ((8) is obvious), and need only

verify (1) in order to complete the proof of (i.a). For this,

note that we now know that the sequence of partial sums of theCOn
series .k; kf, (.n ! )k kf
seris k f nf)n0' converges uniformly on

k=0 k=0

each compact subset of 9B 0R to u,, while the sequence (n,)o ~n, 4 n=

possesses the same convergence characteristics and converges to

.,



* -, . .-
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Choose Z E aS0 and EIR. Then

M Y  (Y, -rz(Y))

and

[,n,4,(Z'; ) nz (

I diam S0, ]
while (Y,C-r(Y)) lies in the (compact) set aBx[- ,

f o r e a c h Y E sO T h e r e f o r e , ( [ W f ] ( Z ,) ) n a n d ( . n ( I

0* n(Z'O n=On,-4 (Z, ) n=0

converge uniformly on s to [ (Z ) and [,4 ](M ,

respectively, whence it is clear that

ilim {L ni (Z, )
n - c

li L ? [So1Z,+cNJ X

1 i ZLVj.{[N 1] +rC 04](Z;

=2-r- fz : zz ,0 d s
a s 0

- {] (zC),

so that

AIL = lim I 0 k

n

n - o k=l

-ko

k=l

Immediately from (40), we produce the desired equality

.............................-.

,,Z: .- 3.. -. ,
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f+aL. " f+ I Xkkf I = ¢ on B 0,]R,
k-i k=0 0

which is just (1).

H ? O]R]3 )
Finally, to prove (i.c), suppose that f E &4,0(

We have already seen that 4, 6 6, 0 ( S0 IRm,3 ), so (11.3.30) gives

LE O40( 0xRK3), with which (1) shows that

f+XL E H (O 80×m 3)
- f+L$ 4,0

The proof of (i) is now complete.

(ii) The proof of this second half of the theorem parallels

that of the first so closely that we shall but touch upon the major

steps. We begin by defining the successive approximations {n n=

according to

T0 := F,

"Tn :n F+LTn_ 1  for each n E N,

discover that

n X kL kF for each n E IN {0},
n k 0

r k kand so are motivated to examine the formal series L X L F.
k=0

Starting from (11.3.24) and proceeding essentially as in the deriva-

tion of (23) (of course, Cauchy's inequality is not needed), one

can show that

P-5 ' - " - ' ' , ' " " - " - ' -'- " " • • • ' . . . " " ' - . - " " " ' " . " - . - . " -' • ' -f% - ' -



-IL n F(Z0 '
)I bT I n6F TnI(Ot

IL.T nt L

wit u . bFT "  (1+CFTT)} .n' .1(Z 0 ,t) (41)

.- for T > 0, Z0 E 9BO, t E (O,T], and n IN,

r with

n (Z 0

"f "'" (42)

9B0 (Z0 ;t)

n-1ri IL ( )I ... ( d S (Zlk 0 LZk (k+ l )  d0 0 ( n )  as0 .

Appealing to Lemma [11.5], in particular (11.5.3), the companion to

(29) can be easily secured:

In(Z 0 ," t) <L (aocT) n whenever T > 0, z0 E s 0 ,

(43)

t C (0,T], and n EI.

Thus,

n
1, Xn'LnF(Z 0 ,t) < bF,T "  (I+C n n!
n 00

(44)

for T > 0, Z0 E BO, and t E [0,T].

With (32), we can conclude that the series in question converges

absolutely and uniformly on each compact subset of ;S0 ", so that

we may define

elk'
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X LnF, on a0x;

n=0

T is continuous and vanishes on as0x(-,0]. (44) implies (11)

when j = 0. The inequalities

nu0

(I+FT) P (+6FT)p
b fT' 2 C FT *p

'A 6 n (45)
~'~FT ~ ~ )n F,T

.[ 1 n Fn
(1+2 CFTT),IXsocT.n-0 rl n !

valid for p EjN, T > 0, Z E aS0 , and t E (0,T],

can be deduced by following the arguments which led to (38).
"Go

Consequently, if p GIN, 3 'DPL nF = n LnLnDPF converges

4 4

,n;O n-0

"absolutely and uniformly on each compact subset of &S0xmR. Thus,

4' E C4 (S0]R), with

AY -b 1 Xn Ln DpF for each p E14N.

From (45), it is now seen that the remaining estimates in (11) hold,

whence Y E &4 ,0 (as0xIR). Equality (9) is a result of the uniform

convergence on compact subsets of aS 0YR of the series for '+ and

4" 49 and can be checked by retracing the proof of (1), nutat'

muthzd.,s. Finally, (ii.c) is an obvious consequence of (9), the

inclusion 4, ( a 0(8 0  R), and the mapping property of L given

by (11.3.29). 0.

1A

4...-.-...-'''--..-.-.'....''''''.>' '.i.3'2. '' "4i,', 4 ' ' € r -
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[11.8] R E M A R K. If, in (11.7], S0 does not fulfill condition

(G), then the reasoning of the proof can still be used to prove

that there exist solutions of the equations considered on

aB0x(--,d], if (a,l,d) is a set of Lyapunov constants for BO .

To provide the wherewithal for continuing this solution, we should

return and develop a local existence theorem for solutions of the

equations in [11.7] which satisfy more general initial conditions

on an appropriate set aBoX[y,O], y < 0.

With the aid of Theorem [11.7], we can show that the reformula-

tion work of Chapter 6 in Part I leads to an existence result for a

certain class of scattering problems in the case of a stationary body.

[11.91 T H E 0 R E M. Let Af be a nu.t mction - In(2), a;:d

a.sme tutt B0 .6at4.iLC- condition (G). Let {E i,B i} be an

incident ielcd app p.iate to M a. in [1.4.1], for% which Zt i-s ac'

ncknow: that F and F_ aYc in &,H (;Bo-m',), whLite f and
1 -1 4,00 ' 1

ate given on aS0x]R by (11.4.2-5), %espcetvcy. Then thvre exLsts

a {n-. quc) 6cu.ticn to the attcting ptcblem 9ge ated by r, ad

i{E ,B i h I,.tLc', . -en by eithn

S(Xt) - O ,(X,t )- 1 vO ,Xt )

dSd

=4-- Tr rx,, i  M ]X t) d S8

00

*-0
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- 4r r X,i 1 l ,4 (X,t) d ()0

asQ 
0

- 4- -7 , x  4 ] x )'

B(X t)-~ 0 T kY 4 X~)3

~0

B M t) E ijk v {'p 1i ,(X, t )

-4 Trijk r , I (,t as 0a80 (2)
+ _ ._ 1 Q[rk d
+ c rcx ijkrX,j 1 (, ) as O

Som' each x t C- t IR,

H'(, ai 4,:I 3 'tand T1 &H (9 80×R R) to bc ' ta"  ''4,0 0 1 4 ,0 0

'i = L mfl 2 n{ (B' 38o-M) 1 (3)
n=O n=O

L :d

. ci

B (x, t) = 2_-k. } B (x, ()

-4. 
" 

(2)

_ 80
, ,.. • t).- "jk ." 1" '. . . -. 1 ) , " '

~~o'( kaI

~~~~~ - IQ3Q]RT3  dud(6x1) tcb bai

4 jkl = ~ 2 Mt t~ ( ' ,B 08%3 3

n0n



rX- - d * (5)

1r r~ 1 k;(B

3B 0

Cis 0

- +~ r xi~.4( d). 9B (6)

77ac r X i -1, M0

Hs 30

whc.e.n 8 4 ( S~~~ an '' e8 (S ~~)a~cde~'Jd.
- -- C f x -1, 4 , 0O ;B

5as

1 4,0 -1 4, 0

SI (7)

-2 (-1),in{v.(Ell aB0dwR)}

n=.2

and

n1'

n-0O

4 *n 0

S.ctiu4C a-aI4Ct~~q~ in (3), (4), (7), aizd (8) coiivete a&S..uitL&
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nd'un ' on each compact sub.set c aoxR. Mo'CCC,

E i and B i E C'(BxRjR)rC(B;-×xR). (9)

Ate paxtiat de.tivatives o' El' and B" can be cenputed from etcthe

(1) and (2) or (5) and (6), rupertivety, by diffetcikation undcn

.the in~teggtat appeaAin9; Vie 4-dett,ative o6 i and T, et

. and y which occur thcreby can be computed via tvj,-by-tetm

difelcntiaton o6 the de6iZnng seAie (3) and (4) cr (7) and

(8), .tspectLvcty, each diffctentiated 5e-Lin conv'e,-Li;i asL.gttC,

and uf d'wiCy on each compact subset o6f 0 xR. Esatet fot

1 'Pip 'I-i and T- and their 4-de.-,vativu, hence aLso fo-

E i and B7 i  and thei& pwxttial de vative., can be dexicd by

appl'ying the resutts c6 [11.7]. Further relations amongst I1'
T ill -i' If-i" Ea'I aBo×R" and Bol ;86OM a.,L. .e.44ai~ned in th~e

conctu.sjots o 1I.6.1].

Before proving these statements, we point out that if the

restrictions Ell aoxR and B aBxJR are known to lie in
H ,(om 3)H a ), then certainly the conditions required here of

f1 9 Fig f-1 9 and F-1  are fulfilled. For example, if E and

B are in C(: I;IR 3), with {DJE'l aBdoR}' and
4-J-

,;, "~Di g D o×R,, satisfying the estimates of (11.2.2) ,then

.44

E I- ;sBo- and Bl 0 ]R are in C2( B0 JR3 ), whence they are

locally Lipschitz continuous, and so belong to & ( 3)BIR;IR3)
4,0

P R 0 0 F. According to [1.6.11 and [1.6.5]. we can show that the

it':

* ~ ~ ... ; .. % % .. % $* *** 4~* % .~
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scattering problem corresponding to Ml and {Ei,B i  possesses

a solution if we can solve the (modified) reformulated problem:

show that there exist locally H6lder continuous functions i

Tit 1-i' and Ti on aB XE, vanishing on 3BoX(--,O], with
0

4 1' 4 -06C%~mR)
D for j = 1 and 2,

'. 1

41 4-1 0'

while i and T i are solutions of (1.6.5.4), and '-I and

comprise a solution of (1.6.5.6), i.e., in view of the results of

[1I.1] and [11.4], such that

T -xLM - XF+X.AWX, (10)1

on aB0xR, for X 1 and -1.

- o aX 0 x (10)2

Once the existence of such functions has been established, a

solution of the scattering problem can be constructed by using

either (1.6.1.6 and 7) (with 4,and T - therein) or

i -M(1.6.1.8 and 9) (with y and r - T_ therein); in fact,
A1

all conclusions of [1.6.1] will be valid (with the appropriate re-

placements of symbols).

Now, with X - 1 [l - -1], since fl E & 4,0

[11.7.1] asserts that (10), holds when ,, is given by (3) [by (7)].

that E&H ( x;M 3), and that the series (3) [(7)] as well
X 4,0

as those giving iDj . 1 possess the convergence properties

claimed for them. Next, (11.3.31) implies that E... & ,0(3B0 R),

N.
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H(aso]R;R) Thus, we may apply [II.7.ii] to conclude
so 4E 4, 0 0

that (10) obtains if 4, is defined by (4) [by (8)], that , E
1- 1 A

a 4,(OBOX;R)' ,and that the series (4) [(8)] as well as those
-r 4% 1

°
O

giving {D4If I have the convergence characteristics claimed for

them.

- Since we have produced for the reformulated problem a

solution of the required form, we know that the scattering problem

induced by the data AM and {E ,B } is also solvable, a solution

being given by either (from (1.6.1.6 and 7))

aiC . 1 O,, 4 '  (11)
E -VO{T'i-

Ci 0 k1B C V (12)

or (from (1.6.1.8 and 9))

E E i c  kVO 0klj (13)

B i .- V 0 {1M'I lpoi }1 *(4

i Bi -O{-l}'i- c vO{-l}'4" (14)

c 1 1

Now, explicit expressions for the partial derivatives of V

.! O{.I} VO{ l}, and V 0{'I} are available from equalities

% (1.5.13.2 and 3); using these in (1l)-(14), one can easily check that

,
(1), (2), (5), and (6) are correct.

The inclusions E i , B i E C (S )x , C(S -xR) follow

from [1.6.1]. But, since Ml EX1(2; ) and l E C (or

' T-' '-i' ( C(; 0 ]R)), it is clear from [1.5.7] and the representa-

i 4i
tions (1) and (2) (or (5) and (6)) that E and B are in

gA , -"-,. % % ', , h '. % V .,"% - "5 ,"" ,-- ,. ,_ _,.., -,.,,'".-.".. . _ . ' . , ' '," . -."..". ' '.--. ,"-."- '. > -. "," -. ."V V . ' ,_
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C (B06R), while the partial derivatives of these functions can be

computed by differentiation under the integrals in (1) and (2) (or

(5) and (6)). As already noted, all 4-derivatives of $1' Tl'

V"- and -i can be computed by term-by-term differentiation of
" .1

the respective defining series, as [11.7] shows.

Finally, the uniqueness of this solution of the scattering

problem is an immediate consequence of [1.4.10]. 0.

[II.10] R E M A R K S. (a) If, in [11.9], B0  does not satisfy

condition (G), then we can still construct a solution of the scatter-

ing problem for t < d, wherein (a,l,d) is a set of Lyapunov

constants for BO • cf., Remark [11.81, In order to prove that this

solution can be continued, we might proceed by either developing an

existence theorem for the equations considered in [11.7] without

imposing condition (G), or solving a Cauchy problem for Maxwell's

equations and using the result to set up an auxiliary scattering

problem with homogeneous initial conditions at t - d, solving

this for t < 2d, etc. For construction purposes, the latter step-

w py~wise procedure would obviously be at best cumbersome.

WI,-',

.%.5

,' p . .,..,• .,,, , ,i # #,., 'i¢ . r,,,L- .. ' ' .. ' - '_' ' .. . ., .• . . - - -. " . .- . .. ' '
4, . . . .. . . . . . . .. .. . . .. .. . . . . . ... .. . .
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II.A. APPENDIX

.- AN INEQUALITY

In the proof of Theorem [11.7], use is made of the inequality
* V

*i verified in the following statement.

L E M M A. Let a and b be positive numbers. Then
4.9

a* a + b < a a b

equatity holding i6' a - b.

P R 0 0 F. Clearly, (1) is true iff

(a+b) 2 < a in a +b in b,

or

(a+b) Zn (a+b) < a Zn a +b Zn b +(a+b) Zn 2: (2)

we shall prove (2). Setting a :- a/b, we have
'h a

• .- (a+b) i.n (a-$b) - a £n a+b n b+a ;n i+ b n i+

'4

%- _
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= a Zn a +b Zn b +(a+b) (3)

in + n (l+a)

Thus, we are led to examine the function f given on (0,-) by

f(x) :=- x in 1+-i + - in (l+x)
l+X xj l+x

1
+= - ((l+x) in (l+x) -x in x}, for x > 0.

We find

£n x
f'(x) 2  for x > 0,

whence it is easy to see that f takes on its absolute maximum at

the single point 1, where f(l) = in 2. Since (3) says that

(a+b) £n (a+b) - a in a +b in b +(a+b)'f(a),

it follows that (2) is true, with equality holding iff a = 1,

a.
-~eiff a - b. This completes the proof. 0.

Observe that

a n 1+b!1 +b Zn (1+ b21 < a- t +b •  a  b ne

Sin view of the first equality in (3), this shows that (2), hence also
~(1), is true with strict inequality and 2 replaced by e. This

actually suffices for the requirements of the proof of [11.7].

-,P . . , , . " . . . ' . " , ' .- , " , " ,. " , . . . . . , , ',"- .', '.". . '. . - .'. . '.'. . -.-, '
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