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ORIENTATION

This is Part II of a six-part report on the results of an
investigation into the problem of determining the scattered field
resulting from the interaction of a given electromagnetic incident
wave with a perfectly conducting body executing specified motion and
deformation in vacuum. Part I presents the principal results of the
study of the case of a general motion, while Part II contains the
specialization and completion of the general reasoning in the situation
in which the scattering body is stationary. Part III is devoted to
the derivation of a boundary-integral-type representation for the
scattered field, in a form involving scalar and vector potentials.
Parts IV, V, and VI are of the nature of appendices, ccntaining the
proofs of numerous auxiliary technical assertions utilized in the
first three parts. Certain of the chapters of Part i are sufficient
preparation for studving each of Parts III through VI. Specifically,
the entire report is organized as follows:

Part I. Formulation and Reformulation of the Scattering

Problem

Chapter 1. Introduction

Chapter 2. Manifolds in Euclidean Spaces.
Regularity Properties of Domains
[Summary of Part VI]

Chapter 3. Motion and Retardation
[Summary of Part V]
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Chapter 4. Formulation of the Scattering Problem.
Theorems of Uniqueness

Chapter 5. Kinematic Single Layer Potentials
[Summary of Part IV]

Chapter 6. Reformulation of the Scattering Problem

Scattering by Stationary Perfect Conductors
[Prerequisites: Part I]

Representations of Sufficiently Smooth Solutions
of Maxwell's Equations and of the Scattering

{Prerequisites: Section [I.l.4], Chapters [I.2
and 3], Sections [I.4.1] and [I.5.1-10]]

Kinematic Single Layer Potentials
[Prerequisites: Section [I.1.4), Chapters [I.2

A Description of Motion and Deformation. Retardation
of Sets and Functions
[Prerequisites: Section [1.1.4], Chapter [I.2]]

Manifolds in Euclidean Spaces. Regularity
Properties of Domains
[Prerequisite: Section [I.1.4]]

The section- and equation-numbering scheme is fairly self-

explanatory. For example, "[I.5.4]" designates the fourth section of

Chapter 5 of Part I, while '"(I.5.4.1)" refers to the equation numbered

(1) in that section; when the reference is wade within Part I,
however, these are shortened to "[5.4]" and '(5.4.1)," respectivelyv,
Note that Parts II-VI contain no chapter-subdivisions. '"[IV.14]"
indicates the fourteenth section of Part IV, '"(IV.14.6)" the equation

numbered (6) within that section; the Roman-numeral designations are
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A more detailed outline of the contents of the entire report
appears in [I.1.2]. An index of notations and the bibliography are
also to be found in Part I. References to the bibliography are made
by citing, for example, "Mikhlin [34]." Finally, it should be
pointed out that notations connected with the more common mathematical

concepts are standarized for all parts of the report in (1.1.4].
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B ) SCATTERING BY STATIONARY BODIES
E-i We consider in this part the (still non-trivial) scattering
:’;:j of electromagnetic waves by a stationary perfectly conducting body.
;: For certain classes of incident waves and fixed scatterers, we intend
;r:i::. to complete the line of reasoning begun in Part I, by producing the
33' solution of the reformulated problem set up in [I.6.1 and 5], and so
' subsequently generating the solution of the scattering problem.

o

::: The first step involves the simplification of the integro-
\ differential equations of [I.6.5)] under the assumption of a null
:;:_g motion.

>
L (11.1] THE REFORMULATED PROBLEM IN THE
:‘_’. CASE OF A STATIONARY BODY. Suppose, as we
:.:E shall throughout Part II, that M is a null motion in M(2): we
shall provide the explicit forms of the systems (I.6.5.4 and 6) in
-:: this case, by appropriately specializing the results of [I.6.6].

E-.: Now, we have B; = BO for each Z €ER (so B = BOXIR). The inclusion
' ; M € M(2) serves merely to ensure that 360 = 8{88} is a

.»*‘; (2,3;2)-manifold (so Bg is a 2-regular domain). To summarize

%; further the simplifications cited in [I.5.13], recall that we have

¢

;.)!‘.:

agreed to employ in this stationary case the reference pair (BO.‘~.°)

o™l
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for M, wherein X°(-,0) is the identity on 3B of course,

L™
-5
!"'

0*

x°(+,2) 1is also the identity on aBO for each 7 €R, as is

LA
]
v

A
LPY LY

XN )y oy for each (X,t) e®®. Thus,
o
RN .
-:::: X?a = 0 on aBoxm,
and .
ve=20 on 3B <R,

0

The field v on BBOXIR is independent of its fourth argument:

v(+,8) = v(-,0) on 2B, for each ¢ €R. Accordingly,

= ,(+,0) on 3B for each (x,t) € ]RA.

Mex, e 0

Let us write v(-) in place of v(+,0). 1t is easy to see that
Ix%(e,z) = Jx°(.,0) := JX(O) =1 for each ¢ €ER.

If f is an R"- or K-valued function on BBOXIR, there is no

o]
distinction between f and f with the present choice of reference
pair. Moreover, the retardation function ° corresponding to

(BO,XO) is given by simply

°(¥;X,t) = % rx(X°(Y,t-T°(Y;X,t))) = % rX(Y)

for each Y€ 3B, and  (X,t) e R%,

whence
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Pt while

(. (£l g oD = £X,e- S £ (D) for Y€ 35, and (X,0) €R’,

) if f 1is defined on BBOﬂR.

Upon taking into account all of these simplifications, and
supposing that {Eli,Bli} is an incident field appropriate to M
o as in [I.4.1], from (I.6.6.18)1 2 we infer that the system (I.6.5.4)
*

[(I.6.5.6)] can be given the explicit form, with X =1 [} = -1],

2N M(Z,0)+ 3=

1 k
2n 2 R () [”(z,c) a5
350 z

0

_-{‘ 1 L . ) |
.::' + 2nc¢ ‘( r rz’kv (Z).[T’A](Z,;) d,\aBO
'.. B

3 Z

(1)

1 k k k
r— {V (Z)-V }'[V,A]

A
, z,2) Yg

‘. .‘ -
.“.I
+
N
)
(2]
R

0

Q
o

[od
= 2%z -e'* (z,0)

‘ = 2.%2)-8'%z,0)1,
s and

K i \
T,k B d“aBO

k k T \
Z,i{v v (2) e [u ](Z,;) d -5
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26, 03 @8 (z,0) -
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(= -2¢. v(2)-E'% (z,0)],

ijk

for each (z,g) € 3BOXIR.

One can also derive the latter equalities by using the

expressions given in (I1.5.13.5 and 6).

It is to be observed that certain of the troublesome
characteristics of the more general equations persist in the systems
(1); the retardations of the unknown functions and their 4-derivatives
must still be dealt with, although the retardation is independent
of the time variable, as are the kernels of the integral operators.

We note also that each of the systems (1) is "partially uncoupled.’
That is, (1)2 involves only the "vector part,” ¢, of the unknown;
once the solution of this (sub)system has been shown to exist, one

can proceed to examine (1)l for the "scalar part’ of the unknown, .

Again with M a null motion in M(2) and {Ell, B} an
incident field appropriate to M, as in [I.4.1), the statements of
[I.6.1 and 5] direct us to seek locally HSlder continuous functions

¥, wi, 'y, and yi on aBoiR such that




Yy = wi =T = Yi =0 on BBOX(-w,O],

. j i j i . .
Di%, Diw , DZF, and Dzy € C(aBOXR) for j = 1 and 2,
and Y and wi satisfy (1) with A =1, while T and 21
are solutions of the system (1) with A = -1. Recall that,

e.g., now
= 9 - c . 2
[W](Z’c)(Y) ¥(Y,z-1, (1)) for ¥,2 € 3B, and cer.

If we succeed in this, it follows from [I.6.1] and [I.6.5] that there

exists a solution of the scattering problem corresponding to M

11 11}

and {(E 7,B , which can easily be displayed explicitly in terms

1 (cf., [11.9], 4ngra). Other

of either ¥ and wi or T and Yy
relations amongst these functions are cited in [I.6.1]. Yow,

the systems (1) are similar in form to the single integro-differential
equation considered by Fulks and Guenther [17] in the course of
carrying out a potential-theoretic investigation of initial-boundary-
value problems for the wave equation in a cylindrical domain in

4

R . We intend to show here that, under additional hypotheses on BO

and {Ell,Bli} (corresponding to conditions imposed in [17]),

their clever implementation of the familiar technique of successive

approximations can be carried over to serve in the examination of

(1.

[I1.2] S PACE S OF FUNCTTIONS. We begin by establish-

ing notations for the various linear spaces of functions within which
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we shall work. We shall have no need to equip these spaces with any

sort of locally convex topological structure. Let M be a null

motion in M(2). For k = 1 or 3, we define

© k . k
C, B RK') = {u: 3By + K" Dl € CBLREKS)
(1)
for each j € N},
& (3B RKX) := {u € cT(B XIR;IKk)I p=0 on 5B x(~=,0];
4,0°°°0 : 40 0 M
for each T > 0, there exist bu T >0,
(3
Cu,T > 0, and du,T (0,1) such that
(2)
lwz, ol < b, 4
(1+3 )j
h| \ u,T
Ipju(z,0)l, < b, 1€y 173
for 2 € 850, 0<Z<T, and j €N,
and
e GB.REKK) ;= (e e, (3BoRES)| u is locally Holder
4,0'°%0 4,0°°°0
(3

continuous}.

We shall write simply C:(BBOHR) in place of C:(EBoﬂRﬂK), cte.
The utility of the estimates imposed on the 4-derivatives of an

element i« of either & (aBOHR) or (3BOﬂRﬂK3) will beccme

4,0 &0
apparent in [II.7]. In [17], it is pointed out that 8& O(}BOJR) is

large enough to be dense in "most standard functions spaces' on




350>[0,w); this can be verified by constructing mollified functions

to approximate a given function, in which the mollifying kernel is

chosen to lie in 84 O(BBOYR). Fulks and Guenther also note that if
one were to allow Gu T™ 0 in the definition (2), then it would
follow that u(Z,-) is analytic for each Z € aBO, so u =0,

since it vanishes on 8BOX(-°,0].

[II.3] OPERATORS. It is also convenient to introduce

concise notations for the operators figuring in the integro-differential
equations which we are tec study. For the null motion M € M(2), we
employ the usual reference pair (BO,XO) and the modified notation

v(*) for v(-,z) (Z€R); ecf., [II.1].

We find it necessary to begin by citing facts concerning
certain auxiliary functions on aBoﬂR, following from the general
considerations of Part IV. Let (Y,Z,z) v+ ¢(Z,;)(Y) be a continuous
function on 380xaBoﬂR. Noting that Bg is a Lyapunov domain. we

can define w;{¢} on aBoxm. according to

* m - | A k,
@@ =5 | e K o

r 0
3By 'z (1)

for eaqh (z,z) € aBOrm;
this is just the specialization of Definition [IV.20] to the present

case of 4 null motion. Next, suppose that (Y,2) TZ(Y) is bounded

and continuous on the set {(Y,Z)| Y € 3By, 2 € 3By, Y ¢z}

then the function w§1{¢} is given on 380XR bv

Dol S e ol o et TR A Bl Bl
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Y * .= 2. .r

e W3 fed(z,2) o= f 2%z, Yy’
’ 0 (2)
I

. for each (z,z) € BBO*TR;

the existence of the integral here follows from the considerations of

Definition [IV.30.i]. Finally, assume that ¢ 1is also such that

whenever K CR 1is compact, there exist ¢, > O,

K

N A, > 0, and aKE (0,1] for which

K

|
j\i ay { (3)
- |¢(Z,r,)(Y)| < fper, (Y) for Z€ 3By, €K, ‘

3
and Y € aBoﬂBA 2).

K

Under this hypothesis, it is easy to see that we can define (U;z{¢}

on aBO’dR by

\1': w;2{¢}(z,C) = J 1_2 .rz.¢(z’c) dxaB ’
B, ‘z

0
,,}), 3 0 (4)

2 for each (z,z) € BBOX]R;

&
e cf., Definition [IV.30.ii].

oy Now, consider the following hypothesis on the function

(¥,z2,z) » %z,0) (Y), continuous on 3B;x3B,R:

f .. I. 'l.
s—b ‘. ""‘5‘

f
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for each compact subset K CR, there can be ]

found kg > 0 and By € (9,1] such that

B |
(Zy,89)=(2 1580 } (5)

K (Y)-¢ (Y] < «,e
(ZZ,CZ) (zl’;l) I - K

whenever Y € 880, Z,,2
4

1 € 38,,

2

and Zy2%9 € K.

If (S) holds, then w;{¢} is locally Holder continuous on BBOﬂR, ‘
{.e., 1is Hdlder continuous on each compact subset of asoxm; this
follows directly from [IV.24]. 1f the bounded and continuous ‘
function (Y,Z) & I‘Z(Y) on {(Y,2)| Y€ 3By, Z € 3B, Y # 2}

satisfies the condition

there exist €y > 0, Ky > 0, AO >0, and |
Bo € (0,1] such that
| | < lzy2 |0 — 2 2z
r, (O-T, (N| < x,*|2,-2, |, + —F55 *12,-2
2,9z, 1712272113 rzl(Y) 272103 | o)
for  2,,Z, € 3B,  with 12,72, 15 < 84>
I 'n t
and Y € asow{zl} {22}

while (5) holds for ¢, then w§1{¢} is locally Holder continuous

*
32‘¢}

locally H&lder continuous on aBOﬂR. These assertions concerning

on aBoﬂR; if, in addition, ¢ fulfills (3), then W is also

W (4} and W* {4} are consequences of conclusions (ii)' and
2

*
31 3
(ii1)' of Theorem [IV.31], respectively.

Again supposing that (Y,Z,3) + o (Y) 1is continuous on

(2,3)




8

.

k) -10-

a0y

‘. 380x330xm and (5) holds, if we now introduce functions (2‘31{:}.
\~ - R
(. a3lij{¢}, and w3li{¢} on asoﬂR according to

.~ - . 1 k, -
28 0

.. 0
e By, (0020 = | o oI-d@iee ar 8
2N 3115 ’ T, Z,i (z,7) aBO’
- %8y

. and
A

e

o~ 0, (632, = | = tuiut@))es dx
w 314 ’ r, (z,z) 5B

. aB

-',,'n 0

‘ (9)
S

W,

. e

:::‘ for (z ’ C) aBoxR,

>3
’?ﬂ it is obvious we can use the cited property of W§1{¢} three times
_ in order to deduce that each of these is locally Holder continuous on
%«

8' ~

= 3ByR. For example, in the case of Wy, {6}, we can take T (Y) J
'0

. as l‘z’k(Y)-vk(Y) and show that (6) is fulfilled thereby, noting

o that

~

o,

- |r (1) - V& () -1 (Y)-vk(Y)] < lgrad r, (Y) -grad r, (Y).

PP 22$k Z ’k - Z z

“ 1l 2 1

2 —2 __ .z _7

= T, M 2572115

- 1

Next, maintaining the hypotheses on 3, let us set

RN | ARG [ $2A SO

" e (Jeny-udzyy. s
02,50 = tIm-J@re, o

for Y,Z € E«BO and > €R,

------------
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and take

I'Z(Y) to be given by r, i(Y) (so that (6) is true).

Observing that v 1is Lipschitz continuous on 350 in the present

setting, whenever K is compact in R we have

. o (0| 1{ max b5 (V) }earr (2)
(2,2) %,% € B, (z,2) Y
€K
for Y,Z € 330 and z €K,

for some z > 0, so that (3) holds when ¢ 1is replaced therein by
é. Further, since ¢ satisfies (5), it is easy to check that 5
also fulfills a condition of the form of (5). In consequence of these

facts, we can define w{ij{ ¢} on aBoxm, as a function of the form

w;2{5} ,» by setting

U030 = | S tsI@re,
'/
(10)

for (Z,g) € BBOXIR,

and assert that W¥, {4} is locally Hélder continuous on 33.<R.
113 %%

Turning next to the definitions of the operators in which we
are primarily interested, we first suppose that u € C(BBO!R) is
such that Wiy, € C(&BOXR), and define the corresponding function
Lu: BBO‘AIR -+ K according to

(z,y)+r (o )z, 2yt e

Lu(Z,3) := -;—n [
5 0

(1D
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wherein

»

I
K "l"‘b/

1 k - r T
LZ(Y) N rz,k(Y)v (2) for zZ € aso. Y € :80‘12} i (12)
rZ(Y) ,

I AR ~— o
[ 4

.
»

)
.

{"- et

a'e a2 s a

clearly,

Lu = -20* {[u]}+2w1kk{[u]} 3lt[u,4]} 31kk'[“’é]f (13)

S

Lo If u € C(BBOxIR;K3) with ﬁ’é € C(SBOXR;I(3), we take the function

-~

Li: aBole -r]K3 to be given by

N -1 s - 1o i3,0~1 cr-J 3
vy ol (z,z) : 57 f LZ {[& ](Z’; +rZ[L’4](Z,;)} d B

e
$~ : 880 (14)

\ for Z€ 350, ; €ER,
N

N wherein

Ca

—— (r, ;I k)

3 e
r, (Y)

ike%em3Tz,m

4

« — (r, W@, moim-da, (15)
r, (Y) ’ ’ : [

for Z € 380, Y € aBO"-{Z}';

G
FUPRPI Y YO Y

one can easily check that

{

il - -zwz{[ 12w aing- 20 {[-:kl}

1kk*

SAAAAANS

-

2t 13- (\

I SRR SRCUN S o
2n¢ u31'[u’4]'+ 27c “3lkk\["“ 2 311k

.

Y./

v e
*,

Finally, with & as in the preceding definition, the function

ER A A A

A 6Bo>~1R - K 1is given by
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- 1 1 k k -k
r g —— — - . \ X- .
M(zZ,3) = 902 J , =@ ey g gy d 5,
8, (17)
for Z € 3B, z €R,
so that
5= = -k
Mu = ais Wy, (w1 (18)

Let us make several observations concerning the operators so defined.

(1) Suppose that u, Hygo and Maus

Let K be a compact subset of R. If Y€ 380, Zl’ 22 € 880,

and 810 & € K, then, supposing without loss that 8y S Gy we

lie in C(SBOXR).

may apply the mean-value theorem to write, for some (Y) 1lying

%12

between ;l—r; (Y) and ;2-r§ (Y) or equal to their common value
1 2

if these numbers are not distinct,

|u(Y,cz-r§2<Y))-u(Y,c1-r§ ()|
1

-|u,4(Y,§12(Y))|'|{cz-rgz(Y)}—{cl-rgl(Y)}l

A

Porl, o T3 1 _
< lu (g () fe (g =g, i+ 12,-2, 14}

| | 1 1/2I

i sup U, (Zs;)‘ {14 =% M (z s G )-(Z ' s ).,-

z € 3B, 4 [ 2 AR IS RS L
\g,- T olam 80 2558,

We can derive a corresponding estimate with My replacing u.
Thus, we have shown that [u] and [u,a} satisfy hypothesis (5),

so that equality (13) and the remarks made concerning the local
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o * ~ N ~

Holder continuity of w1{®}, wIij{¢}’ w31{¢1, and W,,..{2}, for
¢ satisfying (5), allow us to conclude that Lu is locallv Holder
continuous when L possesses the properties required. For example,

if uy € CZ(BBO*R), then Lu is locally Holder continuous on

BBOKR.

Reasoning similarly, we can deduce that Li and .. are
locally Hdlder continuous if 5, ﬁ,a, and 5,44 are elements of
C(BBOXR;K3) (which is true if, say, u € CZ(BBoﬂRﬂKB)); here, of

course, we appeal to (16) and (18).

(ii) Again, let u € C(BBOXR) be such that and .,

sy,

44

are also in C(aBoiR). In view of the definition (11), and keeping

in mind (II.1.2),1it is an easy exercise to show that D, L. exists

4
on 360ﬂR (cf., Lemma {IV.7]), and
DAL“ = LDAu (19)
(and that (DéLu)(Z,') € C(R) for each 2 € BBO). 1f, in addition,
it is known that " € C(BBOﬂR), then (i) and (19) imply that
DALu is locally Holder continuous. Conseguently, it is clear that
o =) . J .
for u € Ca(aBOXR), we also have Ly € CA(aBOxRJ, with DaL_
being locally H&lder continuous and
D;Lu = LD;u,  for each  j EN. (20)

In an analogous fashion, for u € C:(5BOiR;K3), one can
show that Dzlﬁ and Dziﬁ exist and are locally Holder continuous

on aBO-R, with




AR |

B A A

P
% &

<iqr

L)
4§ L 58
X XN

)

S w0 SN,

5 b
pjLz = 10)3, ) (21)
and for each j €EN:

jn.' = j'

D‘.l'.,.l A\.DALI, (22)

in particular, Li € C:(BBoxR;l(3), and Ap € C:(EBO'R)-

(iii) We shall have need of various facts pertaining to the
iterates of the operators L and L. First, since L maps
C:(&BOXR) into itself, it is evident that the sequence of iterated

operators {Ln}:=0 is well-defined in this linear space, wherein

o
Ly =y,

for each  u € C,(3ByR). (23)

Lnu 1= LLn-lu for each n €N,

Suppose that y € C:(SBOXIR): explicitly, from (11) we have

Lzu (Zo,t) i= {L(Lu)}(Zy,t)

1 ¢ . ¢
=- 3= LZO(Zl)-{(l+rzo(Zl)D4)Lu)(Zl,t-rzo(Zl)) d\BB (Zl)
/ 0
3B
0
I S L, (Z,)+{L((1+rS (Z)D )W) }(Z, ,t-rS (Z2)) d .. (Z.)
27 z ‘41’ R S e 1°°7Fz2 4177 ¢ e
N 0 0 0 0
38,

L, (z)L, 2,)
[ ] oo

3 (l+r§1(22)D4) (l+r;0(Zl)D4)u} (zz.c-rgo<zl>-r§l<zz>>

in fact, by induction 1t is not hard to prove that
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for Z0 € BBO, t €R, and n €N,

o
2"
Pl

»~
)
‘

Moreover, using induction on n, we can show that, for each 1 €

a8,

? o

27

]
L %)

P

C:(BBOXR), n€MN, and j €N, Danu exists and is locallv HElder

continuous on 'BBOXR, with

it &

DiLnu = L"pd,. (25)

NS

[J

AN

‘s

i

For, we have already seen this to be so if n =1, in (i) and (ii).

=

If 1 €N and the result is assumed true for n and for each

‘l.l
“

L2 T

j €N, then (i) and (ii) can again be applied, since Lnu €

.‘
L]
A
AT

C,(3B,R), giving, for each j €N,

]
A

s
'y

-, . . .
DZLn 1 . DiLLnu = LDiLnu = LL™D

j o A+l

*

LY,

Sy,

and implying the local Holder continuity of D;anﬂ'u, because of

n+l

Py
-

4’.‘- :

the equality D'ZL

- LpiL?
u LD4L b

l‘. .’

5

L %5
\'t'

1%

Since I takes C:(&SO‘R;I(:;) into itself, the iterates of -

this operator can be defined by
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- L% = u,
for each 4 € c:(asom;ﬁ)‘(:é)

L = ]ULn—lﬁ for each n €N,

Explicitly, for each p € CZ(BBOXR;I<3), we find

i n n-1 i i
n- 0 -1 - 27 2+1
Lo}l Tzp,t) = [Tn] J f {2:0 Lzz (Zz+1)}
3B 3B
0 0

.{[nﬁl c A nsl
5=0 {1+rzj(2j+l)D4}}u }(Zn,t- kzo rzk(2k+l))

29
di ) ... &>, (Z2),
350 n 350 1
for Z0 € BBO, t €R, and n €EN;
note that, by the summation convention, for n > 2,
n-1 i1 3 3 i i i i i i
L7241 071 172 n-1"n
. r = .
Lo L, (Z;,)) .Z . ) L~ S@pLl,™ ..., ).
<, L i, =1 i =] 0 1 a-1
: 1 n-1
Finally, again for 1y € C:(aBOXIR;E(3), if j and n are positive
integers, then DZ]L“G exists and is locally Holder continuous on
:BBOKIR, with
Dzll.nﬁ =]LnDZG. (28)
. (iv) Regarding L as defined on 84 0(5BO*\IR), and L and
A as defined on 81‘ o(aBO*R;K3), let us satisfy ourselves that
y H
Rl . 3 > - & P x
% L: 84,0(.:50 R) &5,0(050 R), (29)

..... - -
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3 |

e L: & (3B sREK ) » &' (38 ~RXK°) (30)
4,070 4,0°°°0 ’
e
.- and

1

~2s 3 H
e . ;
:_' A' &a’o(asoxmx ) g 84,0(aBOXR). (31)
hY)

" Suppose that u € 84,0(330@): by (1) and (ii), Lu € C (38, R)

::::;_f and is locally Holder continuous (along with DgLu, for each j €N).
Since u vanishes on aBOX(-w,Ol, it is obvious from (11) and the
b

A form of [u](Z,C) for Z € BBO and  €R (cf., (II.1.2)) that

Q: L. also vanishes on 8BO><(-°°,O]. Consequently, to secure the

< inclusion Lu € &IZ O(BBOXIR), we must verify that the estimates re-

b

= quired in (11.2.2) are fulfilled by (DJLu)],,. Choose T >0

and jEN; 1f Z € 3B and g € (0,T], then
(. [l 0] = [anju) 0]

- .\

e
) 1 rend e, j+1 }

..;:_} T I L, {[DAU](Z,;)+rZ[D4 ”](z,;)} d'\380

2 %8y |
([ p k 3

_';}’;g: Z7n ] f p) "z,k" @] “DAU](Z,;), 435

. r 0

:.:_:.‘ 380 Z

7

'.-é s

1 1 k rndtl b L

& *e f ol @1 el g 1 g

- aB Z 0‘

‘j. 0 )

N . (15 )3

1l P B v, T, 1 'k Ve
Ty 22 Pl {J J 2Tz (2): d 38,
N 380 Z

:}’;‘ (1+8 ) (5+1)

.'\ : J’T 1 A

) +(3+1) | L

:"..‘ 5B z Po-
N °®0

)

"

7

W)

8

%

@

.\:,"
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since, for o > O,

G+ (95)0 G e ped e sed o pe 00,50

having noted that ju = ¢ in 3. e, It is easy to show that each

of the integrals in (32) can be bounded independently of 2Z € aBO.

For example, if (a,l,d) 1is a set of Lyapunov constants for 88,

1 k
2 |rz’kv 2] dop
Z

0
BBO
1 1 k
< J =3 dx + f = [rz,kv | dkaB
3,00 2 o o3 Tz 0
BquBd(Z) °80ﬂ8d(2)
+ L lv(z)y-v|, dx
2 3 3B
3 Tz 0
BBOan(Z)
1 - 1
< 3 oh.n (3B +(a+a) f Lo
d2 350 0 5 r, 350
BBO"‘Bd(Z)
< 13--l~ (3B )‘*'(él+a)°23/2 rd.
~ 4 aBo 0

satisfyv

Thus, from (32) we see that the partial derivatives {DiL;}§=l

- - s

.. P - . o, . . . . . N N R -
S N UL T S N R TP
N A RO P L 2 R P TR K VR,
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the required inequalities, which completes the preof of (29).

Similarly, one can demonstrate that L. € 8? O(BBOXIR;IK3) and
~ H - H . o3 .
AL € &“’o(oBOXIR) whenever u € &A,O(OBOXR’R ), 4.e., that (30)

and (31) are correct.

[II.4] REMARKS. (a) Using the operators introduced in [II.3],

the systems (II.1.1) can be written concisely in the form

¥=AL¥ = AF +2Ay (l)l
on E)BOXIR,
Y=Ly = Xf/\ (1)2

for A =1 or -1, wherein we have set

F, := zvkﬁ‘kcl 2B,<R, (2)
Fyoi= 288K aB R, (3)
£] = 2€ijkvjs‘k| 28R, (4)
and
£l -2eijkv351kcl 55,"R. (3)

We are then led to examine separately the single equation

y=)LY = F on BBOXIR (6)

and the system

y=xLy = f on 3BO'IR, D]

N
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which we shall do in [II.7], subsequently applving the results to the

system of ultimate interest, (1).

(b) The study of (6) and (7) is greatly expedited with the

imposition of the following global geometric condition on BO (as

usual, we consider a null motion M € M(2)); 1let <(a,l,d) denote a
set of Lyapunov constants for Bg:

( there exists a positive number a, such that

whenever 2Z € BBO and d <p) <o0,,
(6) { (8)
J d*aBO<i ag(c,=0;)-
38.78> (2)rB3 (2)"
‘ 070" 0y

This is essentially the hypothesis employed by Fulks and Guenther
[17], who point out that it is fulfilled by a fairly large family of

domains. Observe that if BO satisfies (G), then no point of aBO

~
>
[

can be the center of a ball whose boundary contains a subset of 0

of positive ABB -measure (if Z € 330 were the center of such a

0
ball of radius 01» then obviously (8) would fail to hold for all
£y > Py with Po=f1 sufficiently small).

Use of condition (G) leads to the following facts, which are

simple variants of a result presented by Fulks and Guenther.

{[IT.5] L EMMA. Let M be a null metion 4n M(2) fox whaeeh

Bo satisyces conddtion

sucn that wheneven

(G). Thexe exd{ats a pesdctive nwmbit a

0

g A4S a neanegative contuiucud quncicn

2 >0,
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r.,'..'
& o
:’,-’: en {0,0], and Z € 830,
% 3 /2 v

i 1

13,274, (

, f { ¥ (L") J gor, di,p < aj g d, (1)

’ a3 =1 0 0

350 Bo (2)

. 0

R f { § g (L;J)Z}l/zogorz d)‘aB -<_QO f g dkl, 2)
1=1 j=1 0 5
3
Vo .“.
X 350 BD(Z)

j::: and
\ 4]
-~ﬂ‘ L ]
:: J3 ILZ| gor, < ag J g d).l. (3)
0
LSt n
\:: BBO Bp(Z)
~
e PROOF. Let (a,l,do) denote Lyapunov constants for 58' and
E" d € (O,do). To prove (1), choose Z € aBo. From (II.3.15), for each
Y
N Y € 38,0z},
{
) 3 .. 3
v ] wdan?-2— 7 o, k@)t
:; j=1 rZ(Y) j=1 ?

o

wir, oF@iHr, o-iom-Ja)

&4 ’ ’l
vf::t
b +Hr, (-0Im-Jan?
N o1
1 K,y 12 K, s .
. =7 {{rz,k(Y)V (2)} +2{r2,k(Y)\' (Z)J'rz’i(i)
: o r,(Y)
N Z

\-
’::" ! i S ) )}2.l Y) (2)121
::: v (Y)-v (Z).+{rz,i(Y V(D) =v(2) 138

\.

1 ! k 12,40 k I, .

N <3 {‘rz,k(Y)" (2)} +2,rz,k(Y)~. (2) [ ~ar, (V)

y rZ(Y)

X

X

: +32r§(Y)}9

9!
B~
-

5
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o

4
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while

Irz’k(Y)vk(z>I

Ia

lrz,k(Y)vk(Y)|+|rz,k(Y)-{vk(Z)-vk(Y)}E

A

lrz,k(Y)vk(Y)|+a-rz(Y),

so that

3 1/2
{ ) (L;j(Y))z} < Uarr,+|r, (VW]

j=1 rZ(Y)
+2a+, (V) -{a-r, (D+|x, LDV e 0312
K (4)
1 T, DV )
-—(—7 2a+ ,r ) .
2™ | z f
This gives
3 1/2
{ ) (L;j(Y))z}
j=1
(1 _ (2a+a) if Y€ 35,"B3(z)M{z}'
rz(Y) ’ 0 d ’ (3)
=9
1 1 1+2ad 3 '
7] {Za+ E} e ) if Y € BBO-’\Bd(Z) .
| Z d :
Now, let p > 0, and suppose g: [0,c] - [0,») 1is continuous.
Consider first the case in which p > d: write
( % i§.2 1/2 _
f 1. (L") } -gor, di o = I,(z,2)41,(2,2), (6)
o3 i=1 0
cBouBo(Z)
wherein

.....................
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: 3 15,2112
, 3
L 3B,"B;(2)

o and

W I,(2) := J {12 (L;9) } "gor, &g . (8)

=1 0
F -3 aBoﬁBg(z)ﬂsg(z)’

DN To estimate Il(Z), we begin by noting that, provided d is

0
\ sufficiently small (and 0 < d < do), there exists a positive aé
e such that

o

e P (.-
N J r, a8, < 230(¢57%y)
N2 3 5. .3 ..

&8 38,8> (2)7B> (%)

2 077 e ®)

oy whenever z € BBO and 0 < gy < < d;

&2

at the end of the proof, we shall verify that this is so. Select
. N . = =
?d a partition, {ok}k=0’ of [0,d): O Pp <Py < -vr < F < p

d. Then, with

Y Mk(g) := sup {g(z)] <t :.ck}. for each k € 71,...,N}, (10) 1

Pr-1

we have, by (5) and (9),

L 1.(2) = f {
‘é& 1 k=1 -
o3

asomsz 283 (@)
"k Pk-1

(L
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1S ' .
- N 3
'\ < (2a+d): ] M (g)- J = 4, '
' - k=1 r, oEO -
.\ v
2 330033 B> (@)
{ . Pk Pr-1 :
- N ;
Y a - '. . -
< (2a+a)-als ] M (2)-(o -0, ;) (11)
» k=0
- d ;
= (2a+a)-a)- J g d\, "
¢ 0 .
3 . y d :
. M L] - - -
) +(2a+a) ao{ Z M.k(g) (c>k Dk-l) J g d>.1}. :
Y k=0 0
\
™~
"J' Thus, -
2. d -
>, 3)ea'e 2 N
X 1,(2) < (2a+a)-a; [ g dry, (12) -
Y
Ll 0
-
:; since the second term on the right in (11) can be made arbitrarily
o+
- small by choosing a partition of sufficiently small norm. 1In
L
~ examining IZ(Z)’ we invoke condition (G) (cf., (II.4.8)): for any
R N
- N ;
) partition, {pk}k-O’ of [d,c], with d =g/ < Py < +ee < By € y
3 N . e .
Cy = P> defining {Mk(g)}ksl as in (10), and again using (5), we 2
. find that : "
n‘ }
% N 2 13,2]1/2 -
- 12(2) = E f { Z (LZ ) } ‘goT, dlaB
k=1 3 3 3=1 0
380’330 (z)"B )’ s
- k k-1 :
. N . .
N 1+2ad .
<5 1 m- ! a5 }
- d k=1 3 0 '
aBO”BC (Z)-”‘BC )"
. k k-1
.‘: N
) 1+2ad
N . =t<3C ., (o -¢
N S5 eyt LM ()G )
v d k=1
*

G S S G S, W, S G S A G H S A R S s YRR



P
1+2ad
=Tz % f g dy
d
o]
4 ix2ad . 1§ (g8)+(py =0, 1)~ dx
2 o'k M K %k-1 L
d

Reasoning as before, this implies that

)
1+2ad
12(2) <=5 g J g dA,. (13)
d
d
From (6), (12), and (13),
3 . 1/2
ij,2 .
f {z (Lz ) } gorz dkaB
3 j=1 0
3By, (2) (14)
p
' - 14+2ad
< max {ao°(2a+a), a, Ta} [ g dAl.
d 0

If 0 <¢ <d, then (14) still holds, for, then we need only effect
an estimate of the type already carried out for Il(Z); for this,

note that we have no need to appeal to hypothesis (G).

Again with Z € 380, a computation of the same sort leading

to (4) and (5) produces the inequalities

3 3 1/2
{ 11 <L;3(Y))2}
1=1 j=1

1 2 o -.4:.2,1/2 3 f
f ove | .
rz(Y) {6a"+Baa+3a”} , if Y GBO Bd(Z) { ,
= (15)
1/2 1/2
1 2, 8 3 1/,.2 8 3 ) 3,
L T, (D {6 ot ;i} <3 {6 +a t dz} , if Y€ 38,7B1(2)",

- v e e e
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i
f:;: while it is easy to see that ‘
, 1 k
L [L(Y))| = e, L (DVE(2)]

Z 2 2,k

2 r_(Y)

Z

’ ' —L_ .(ata) if Y € 3B (B3(z)~{z}' (16)

L " rY(Z) ’ 0 °d : i

<

- B 1+ad 3

- S 1 +a . - .

,-.\.. I—(T [a+ d] 1_2 R if Y € 3301 Bd(Z) .

- Y d

._.. Using (15) and (16), we can construct an argument like that which

j: produced (14) in order to conclude that there exist a; > 0 and

.: a, > 0, depending only upon 30, for which

A 0

LA ¢ 3 3 15.2 1/2

. J E z (L) sgor,, di < a,° g d> , (17)

1 i A Z 3B, — 1 3B

e 3 i=1 j=1 0 0 0

:j ::BO- IBD(Z)
¢ and :
. |
lq p :
'_‘!' LY . !
= J ILZ gor, Az < a, J g diz » (18) !
o 5 33 0 n 0 :

L p(Z) ;

N {
~o !
N for Z € 38 and o > 0, !
'u:: 0 i
-_ whenever g: [0,c] - [0,») 1is continuous. ‘
|
::: In view of (14), (17), and (18), the existence of a positive '
- ‘
;’.; number aq possessing the required properties shall follow once we ]
s,. have shown that there is an a(') > 0 such that (9) is true, provided

::: ) 0 -d-~ d0 and cl0 is sufficiently small. Select 2 € 580 and set :
. :
.:: I
" f
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(19)
for 0 <p <d;
; rz°hzl z 2 0
la)
hz(aBO Bp(Z))
since
1
I(py)-1,(0y) = [ T, ‘“aBo for 0 <0y <0, <dy
3B "‘83 (z)ﬂB3 z)'
0 Py f1

in order to prove (9) it suffices to show that IZ possesses a

derivative on (O,do) which is bounded uniformly in 2Z. Now, for
each p € (O,do), we know that hz(aBoﬂBg(Z)) is starlike with
respect to O E]R2 and coincides as a subset of ]R3 with the pro-

3

jection onto (Y ezm?l Y" = 0} of the intersection of BS(O)

and the graph of a function fz € Cz(hz(aBoﬁBz (2))); the boundary
0

a{hz(aBoﬁBZ(Z))} is also starlike with respect to 0 and can be
identified as the projection of the intersection of 332(0) with

the graph of fz. Thus, there is a 2n-periodic function R(gr,-)

on R such that 3{hZ(SBOFBg(Z))} is described in polar coordinates
with pole at the origin as the set {(R(z,6),8)| 0 < 8 < 27}.
Clearly, if we let ¢ denote the map (s,8) 1+ (s cos &, s sin €)

on (0,=)x(0,27) and define f on the open set c-l(hZ(SBoﬂBg AD))

0
via

f := foo,
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NN we have

2

o R2(3,6)+52(R(o,6),6) = p for 0 <p < d and 0 < 8 < 2-. (20)

0

o Since f 1s of class CZ, it follows from (20) and the implicit

function theorem that RE€E C2((0,d0)x(0,21)). Then (20) also gives
o {R(0,8)+£ (R(0,8),0) *£,, (R(c,2),8) } R, (p,8) = »p,

whence we must also have

]

RO Ral(pse) = - T
":‘: R(D,e)+f(R(D,e),6)'f,l(R(C,e),ﬁ)
2 (21)

for 0 <p < do and 0 <6 < 2,

a L e,
A

CACA A A
LT ATRER

Using ([VI.64.iii.2 and 4], it is easy to see that

-

«

)
AL

|E(RG0,8),0)+F,,(R(2,2),8)| < &-R%(z,0)+ 3 a0

o1, L}
N l’:l'

< % aé~dg-R(D,6) (22)

.

D
L4
-

for 0 <p < do and 0 <8 < 27,

)
[ I Y
e

b}
RPN

since

v
s

4’%

(s« cos A, s+ sin 3)

S8

|f,l(s,e){ = |cos 8 £,

ol

+sin © °f,2(S° cos £, s+ sin &)]

)

}

< |grad f (s+ cos ¢, s+ sin 5)}2.

Supposing now that d0 is so small that, say,

Pl

LN NS

. v
\PJ&%U’!U

AR
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8 - ;2 1 .
7 aa-do 1-2— . (23)

and observing from ([VI.64.iii.6] that

|
|
|
|

O}~

R(p,8) > =0, for 0 <p < do and 0 <8 < 2m,

(21)-(23) give ‘

o < 18
R(0,8)- 3 R(0,8)

0 < R,l(o,e) < 7 i

(24)
|
for 0 <p < d0 and 0 <8 < 2r. 1
|
The starlike nature of each set hZ(BBOﬁBz(Z)), for p € (O,do),
and the properties of R show that
2r R(p,8)
IZ(C) = I f { 1 =) 'Jhgl}oc(s,e)-s ds dse,
r.,oh
0 0 A (25)
for each o € (O,do).
We have
-1.: p=l,-12 =1 20y gt
rZOhZ (2 rz(“z (ﬂi (£))) > rz(ﬂé £)) |s|2
if £ €h, (3.9 (2))
pA 0 d0 i
so

rZChglcc(s,e) >s if g € (0,2m) and s € (0,R(;,2)),

wherein ¢ € (O,do).
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e e,

Therefore, recalling that Jhgl < Y2 on hz(aBoﬁsi (2)), we can
0

conclude that the integrand in (25) is majorized by v2 whenever
Z € 380 and p € (O,do). We may then assert that Ii exists on

(O,do) and compute, using (24) and (25),

R B 2 e Tt o M Al B A Bl B e A

2n
Ii(o) = f R’1(°’e)'{;—l_fi -Jh;l} 0o(R(p,8),8)*R(c,=) d2
0 r,oh,
27
18
1'7— V2 f dse
0
18 /2 .2 '
=3 27, for p € (0,d.) and Z € 850.

e

As we have remarked, the existence of Ié on (O,do) for each

Z € BBO and its uniform boundedness in Z show that the Lipschitz

Bd aa a o o

condition (9) holds, provided that d is chosen as in (23); in

0
fact, we can take
M = ——3611 .
a; /2 .
This completes the proof of the lemma. a.

[II.6] R EM A R K. If, in [II.5], it is not required that BO
satisfy condition (G), then the conclusions of that lemma still hold
for o € [0,d], wherein d 1is chosen as in the proof of the lemma.

This follows from an inspection of the proof presented.

As promised, we proceed to state and prove existence results

for (I1.4.6) and (1I.4.7).
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[IT.7ZJ THEOREM. Llet M be a null meticn 4n M(2) {eu whicn

B, satisfdes conddition (G). Let XN E€XK, i # 0.

0
( b4 b x .'3
(£}  Suppcse that £ € &4’0(080 RIK7).
({.a) There exists a functicn ¢ € &, O(aBOxR;K3)
such that
Y-y = f cn aBOle. (L
In gact, the functicn
v := J AL (2)
n=0

has this preperty, the serdies convetrgding absclute-
Ly on aBOx]R and undformly cn each compact

subset of aBoxm.
(<.b) With ¢ gdven by (2),

x“n.“nzf on 3By R

Hr~18

j
Dy =
4 n=0

(3)

gon each j EN,

each sendes converaing absclutely cn SBO\IR

and und{cumly cn each cempact subset ¢f

3BpR. Fer each j €MUK and T >0,

We employ the convention OO := 1.

SR s,.'-_ﬁ'.*.;.‘."'.’.'.'_'.'.“ L _-'._.'.._~‘ SRR . T
’_&':‘;‘L' o et T gt Tyt et T, -‘c‘.-;;'-.-!'!!.!' e
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o . . (145 )5
. i.i % . b, T . e
% Ry R B Mo S R et 3Byn(0,T1, (4)
( )
- wherein -
(> ® 1+6 n
> K = 1— f’T. st o
- w,T H bf,T nZO {21‘ (1+2 Cf,TT) P A QOCT} .
)
(5) 5
:- 6f,Tn :
. n ..
\ (with oy as in [11.5]), '
o 1+6 "
| £,T . -
: Cw,T := 2 Cf,T' (o) g
& -
and !
: .
Gw,T i= 5f,T' (7 >
) In particwlat, for each 3§ € NV{0},
o -
. . (1+5 )j Ny
Y 1nj, i ~ hj . v )
. D z . ’
: D 2,00 ] <y o
8)
4 gon Z € 3B, z > 0. ’
» Y R
< .
2 (i.c) 15 £e&l (BarK3), then \
- 4,0°°"0 S :
. H a3 .
v € 84’0(380*@(,]1\ ).
.: i ) ! € . . ':‘
3 (¢} Suppese that F &4’0(880 R) >
- ({C.a) These exdsts a function ¢ € aa 0(550~m) suc ._;
. that -
1) ;’
2 ;
d V-)L¥ = F  0n 28 R. (9) ]
0 g
'] )
v g
>, "
o~ .
X

:
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78
l.

A,

v,

-3'_;-

'r}.

I:j'-'. In gact, the functicn

o ‘

- vo= T ATLUF

"\ n=0

X has this prcperty, the serdies convetgAng 1
absclutely cn aBOle and undgcwmly on each F
compact subset of aBoxIR.

(4<.b) With ¢ gdven by (9),

D¢ = ] A"L"DJF  on  3ByR

(10)
fon each j €N,

each serndies converging absofutely on aB R
and unifermly on each cempact subset c¢f aBOxIR.

Fen each 3§ €m{0} and T > O,

o ddncbradad B deeedetotegen snn I o deancbnniunclinh g

(1+8, )j
j ; . j .q W’T 3
D4¥] < by 7€y 773 cn  3B,x[0,T],  (11)
R
wheredn
® 1+5 n
1 F,T : ]
= ——— . 1 g
by p = bp g ) {2n (1+2 CF’TT)] GgeT?
n=0
5 (12)
F,T"
.
n!
(with ay as {n [11.51),
148
F,T
ez 2 L 1 \
C; g =2 Ce 1 (13) ;
L‘Uld _~
§
M
b
;
N L 2 T T A N A T T R T e e e A




In paticulat, gon each j € NUIO},

. (1+&, )j
|D2w(z,c)l g_bw’;ci’c-j ¥a8
(15)

for z€ By, >0,

.. H H
(ii.c) 1§ F € 84’0(360x]R), then v € GA’O(BBOrIR).

PROOTF. (i) We define the sequence (wn)°° (of "successive

n=0

approximations') on aBOrm. according to

e . € .

wn f+ML¢n_l for each n €EN;

by (11.3.30), each L lies in &4 O(SBOﬂRﬂK3). We have
wl = f+ILf,

b, = EHIL(FHLE) = foL e ’s,

and an easy induction gives

n
v_= 7} ke for each n € NVIO},
k=0

just the partial sums of the formal series AHka. Let us then

He- 8

k=0
examine the convergence properties of the latter, beginning bv deriving

an estimate for the modulus of the general term of the series. For

N, ¢
PN &)

N Y

4
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k €N and points Zo,...,Zk chosen from 380, we define, if

t >0,

3By (2y:t) 1= (Y € 3B t-rgo(Y) > 0}, (16)

o . . _.c _.c
3B, (2g,2,3t) 1= {Y € 3By| ¢ 2,2 £, (> 0,

and

k-1

!

j=0

<
Z,
J

3B4(2,, - ) := {Y € 3B,| t- (z,,)-F, (V) >0r. (A7)

R A
k k

j+1

Then, because f vanishes on aBOX(-w,O], from (II.3.27) it is g
clearly permissible to write

i
@) O(Zo,t)

IO Y I

3B (Zg3t) 3By (Zgs. 12

n-1’

in n;l
f }[zn,t- N

[l W N O 1 l‘._J_A'. & s A

c
{1+ij(zj+1)D4}]

for

with which Cauchv's inequality produces
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3B (Z5T) 9By (2 e+ a2 _130)

3 m-1l i,i 2,1/2
'{ ) {220 Ly 2+1(Zz+1)} }
i =1 2
n (18)

S {14 (z, D }]f}[z , t- rs (2 )]‘
| (3=0 z, 34 N AL

dr.. (Z ) ... dx. ., (2Z))
oBO n oBO 1

for Zy € 350, t > 0, and n €N,

Now, let k € N, and suppose that {Bj}§=0 CK. We claim

that the expansion

k k+l 5
0o (484D, = jZO a (8D, (19)

holds, with ag(sl) = 1, and, for j € {1,...,k+l}, a?(el) is a

[RH‘} terms, each term being a product of j of the &'s.

L3
This is obviously the case for k = 1. Suppose n €N and the c..

sum of

is true for k = n. Then

n+l n
N 2 = ° . I 2
j=0 (1+,jD4) (148 400" 420 (1+-j04)
n+l n i
= (142 . D) ¥ ay (20D,
3=0
.\‘si_\-\°\l,-.\-..~\- - RO LU PUPE OO AL S L A e e et e e e e
M L I L O T L NIRRT SO RRLIR RN
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n ntl n n j
= ) . ] T 2
an (8 0+ jzl lag(3 )48 4yl 1 (BID, (20)
’ ’ B e y.nnt2
+Sn+1 an+l("2) D4 :
so
n+l n
N (82) ao(BQ)-l,
o™1(8.) = a8, )48 . -a® (8,)  for § € {1,...,n+1)
j L E R R S B IS R’} peneo ’
and
0‘n+1(B ) = gl .0 8 )
n+2" & n+l %n+1'Fe/
+
Obviously, 03 1(82) and “:I;(Bg) are of the required form (note
n ., n+l| _
that an+l('l has n+l] 1 term), while for j € {1,...,n+l},
n+l
aj (82) has

) - (7

terms, each term comprising a product of j of the B8's. Thus,
our claim is substantiated, (20) being of the required form for

k = n+l.

Returning to the integrand of (18), let n € N with n > 2,
n-1
t>0, and 2,,...,2_ € 3B, with t- | r. (Z
0 n 0 k=0 2k

) > 0. Using

the familiar inequality

m
{a,...a }l/m <1 ¥ a
m -m =

1 k=1 k

i
q
]
z
9
)
!
i
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i:-j relating the geometric and arithmetic means of m nonnegative

. .
numbers aysecesd s if {ik}f@l consists of distinct integers
N chosen from {0,...,n-1} (1 < j < n), we nust have
j ] I (o

“ 1 S (2 ) < {‘1- g s (2 )} < [—t'x . (21)
L' k=1 Zi ik+1 3 kel Zi ik+1 3;
k k

"t Consequently, if T >0 and t € (0,T], recalling the estimates
T
'i‘-" for the 4-derivatives of f € 84 0(3BOXIR;IK3),
} m=1 n-1

.-\ " C ] \ (o4 ]|
1250 {\j80 Hary 2 )00 )] 2,08 Zo I, (Zk+1),i!3

oy b k= k

e

- < 1 "l @ ))‘jfz t nfl ¢ (z )]

- - Q. r s b= T I

v 0 3 Tzt N M S

.;:«.

o n (1+¢ )i

N n-1, ¢ . h f,T
N < be gt z a; (rg (234170 bg 1C5 173
" j=1 L ‘
\ (22)
- n j (146, )]
o Sheqt 1 {n}{i] "b¢ Tcg 1" i

....: ’ jal J J »

o

-

ol fo,Tn n n j

L PR S ) [j (Cg 1T

34 j=0

l~:

S 8 n

¢
B, = n. f,T

?C ’ (1+Cf"r ) " ‘
'
-',::- If n=1, it is easy to check that the final estimate in (22 j
.'. remains valid. Using this with (18), when T > 0 and n €N, we 1
> find
= i n ¢, .n i

% T 0 | Jr \'CE, T T

..::' JALf (ZO’t): < bf,‘r {Zn (1+Cf,TT)J n In (Zo,t)

,':fj (23)
o for ZO € wBO and t € (0,11},

»Y

"I

."l

e

@

O

......

:}.a:'.a_ .l-..},Lm

.




RN having written

i
_ 0
{ 1°(z,0)

028
W'

\J
Ly
[} =
.n);i"n
]
——
[

5“ ~1W
-
—A—
= -

=
o
g
N e
=
[ s
=
+
—
~~
N
o
+
—
S’
——
(28]
S——
—
~
N

aBo(ZO;t) BBO(ZO,...,Zn_l;t)

/

—~
N
F ol
~

“l " ‘i

anBO(Zn) oos dAaBO(Zl) .

..' "..,A
l. [} "l ‘

We must next estimate the integrals given by (24); for this,

e
L N AT S

b A

we shall use the hypothesis that B0 satisfies condition (G), and

Lemma [II.5]. Let T > 0, and choose Z0 € BBO and t € (0,T].

- Directly from (I1I.5.1),

1 3 14 .11/2
1.%z,,¢t) = f { ;o0 1)2} dr,
. 1 0 A 5B
3 1=1 %o 0
‘ 38,78, (2,
t

7 <

ot

.:'.._: < QO J dkl
0

& =,
t o'ct

< ao-cT.

If n>2 and {a;j! i,j=1,2,3; k =0,...,n-1} CR, then

et At A T N _‘.‘_‘-' < -'_. -------- 5
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LAt
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- . , , 5
f :23 (2071 172 aln-lln)Z}l/"
\i =1 0 1 n-1
n

3 13, .\1/2 ;3 3 i3, \1/2

- 2 2

:-:. < { Z (ao0 O) } -{ z Z (all 1). }

- 3ol 121 371 J

‘ 3 3 in-ljn-l 2 1/2

S Z Z (an-l ) H

o i =1 j_ .=1

j:'/ n-1 n-1

s

7 this can be proven by induction, using Cauchy's inequality. Thus,
\

R for n > 2,

o\

N i,

1 In (Zo’t)

L%
o

o’ = [ f

N 3B,(Z43t) 3By (Zgs-esZ _15t)

4~\~

e 3 11 11 1.1 2.1/2
A { I eyt iy, Pe ) |

o ‘i =1 0 1 n-1 .

n

7
o anB (Zn) d)‘aB (Zl) (26)
0 0

"o 3 i3 2y1/2
N < { 1o, %y
o . . . ja=1 0 ]
o 3B, (23 t) 8By (Zgs--sZ _;5t) 0
3 3 1,3, 2,1/2

o -{2 L i tepr .
i 1=1 j 1=l 1

\v..‘

3 3 i .3 2y1/2
. . Ay n-1"n-1 } N - - SR
';.:: {i L =1 . z =l {LG-l (Zn)} | deso(un) o d ;80(‘_1 .
bl n-1 3n-1

N

LS

:}:: Upon appealing to (II.5.2), we see that the innermost integral in (26),
:f

s

L

a7y,

"q
' :E:

3
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.-J

o oy e am w3 ,
= taken over 880(20,...,Zn~1,t) osoﬁB 02 (Zn-l) ]
{ ct- ¥ rz.(Zj+l)

N j=0 J

i: (cf., (17)), is majorized by

._‘_ n-2

T ct- .ZO rzj(2j+1)

. J n-2 1
) ag ( d)\l = ao-{ct- ZO rZ (z +1)f’
, 0 j= J
<
b
= so that, for n = 2, wusing (II.5.1) again,

A
i 3 i.3 1/2
0 00 2)
1,7(2g:t) < ag f {Z- {L,” "z} I
i 3 Jo-l 0]
030 'Bct(zo)

Herry (2)) @p (@)

REMNEAL - YO

0
ct @27
2
< (00) (ct-s) ds
¢ bl
2 0
- 1, .2
% = 7 (apet)
\J
1 2
'_; i 5‘ (GOCT) 3
3
%: while if n > 3, (II1.5.2) is to be reapplied, showing that the inner-
most two integrations in (26) are bounded above by

0
P P

" - K
: ;
. R
1
1 J R
i' 1
b))

[y

N

o

| ¢

?
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1 2 n;3 2
= E-(uo) -{ct- L Ty (Zj+l)} .

j=0 h|
In fact, for n >3 and k € {1,...,n~1}, one can prove by
induction and (II.5.2) that the k innermost integrations in (26)
are majorized by

1 " n-k-1 k
o (ao) -{ct- jzo tzj(2j+l)} .

Finally, then, taking k = n-1 in the latter and using (I1.5.1)

to estimate the remaining integral in (26), we obtain

-1 .
1 (a )" 3 i3 \1/2
0 0 . j T 0-0 2!

In (ZO,C) < (n-1)! J {j;=1 (Lzo (Zl)) f

+r ~R3 0
'BO Bct(zo)
let-r, (zl)}“‘1 @ e (2))
0 °0

-~ - - T e T e T T T - - - - - - -
DI S . S e -

[ i P T T o e T TR P L A R Y L el . L
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t
(mO)n T n-1
—— e - ol
0
1 n
ol (aoct) , for n > 3.
From (25), (27), and (28),
j‘0 1 n
In (2g5t) <7 (ayeT) whenever T >0, Z, € L
(29)
; t € (0,T], and n €N.
o
w7
::.:::-: Coupling (23) and (29), and agreeing to the convention
T~
0° := 1, (30)
o
-
A
n,.:\ we arrive at the inequality
A%
«
7wz, o
/. =
Y n=0
“d
. - n %f,1"
cb. .+ ¥ {4, T)e|a|apeT} + B (31)
- f,T - 2n £,T 0 n! ’ N
n=0
!
- valid for T > O, Z € 3B, and t € [0,T].
’-:: 0
Now, it is routine to verify that
s M" én
> Z —n < = whenever M>20 and £ € (0,1), (32)
nag ™
: whence (31) implies that 2 x“-in."f}l converges absolutely on
Le n=0

) BBOXIR and uniformly on each compact subset of BSO*IR; observe that
.
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1"f vanishes on BBOX(-w,O], for each n. Thus, we may define

n=0

obtaining a function ¢ € C(BBOX]R;K3) which vanishes on EBOX(-G,O],

the continuity of ¢ following from the fact that ]Lnf €

o (ByREK?) € C(3B)RXK) for each n €NU(0} (cf., (I1.3.30))
aﬁd the uniform convergence of the series on each compact subset
of BBOKR. Note that, with (31), (4) certainly holds if j = 0O

therein, in view of the definition (3).

We shall next show that ¢ € &4 O(SBOXR;]KB) and that the

statements of (i.b) are correct (for j €N). Fix p €I§, and

consider the formal series of pth b-derivatives, 2 )\nDi‘ﬂ.nf,
[ n=0

or | ARL"DPE (cf.,(II.3.28)). 1f n €N, z,€ 3B,, and

n=0

t > 0, inequality (18) is valid when f 1is replaced therein by
DEf. If n€N with n>2, T>0, t€ (0,T], and

n-1

Z.,...,2_ € 3B, with t- ) 15 (2
0 n 0 k=0 Zk

reasoning employed in (22), to obtain

k+l) > 0, we may follow the

1.p ” nsl 1

lr[n;l }p
St {1+r (z,,.)D St= )
il{j=0 Z, 41774 %n k=0 K L
! +3 r n-1 1!
(z. . N+ 0P fiz - T 1 (2 ,
R L N AR A

[
[Haeet-]
(=]
[V
”~~
la]
NN
x>

(l+5f’T)p

|
o
-
"
-

(142, ) (p+3)

j"[?J NESA et

R ORI R R N, G LR L G L R e N Y R Gt s N O LN L R R S I



- - -
.............................

'.‘rﬁ"‘
'
F AP A2

X-1%

&

v

*
LA AN

P R .

NN LS S Y,

T

( (1+8

)p
.cP £,T
2 b1, 1P

(145, ) (p+3j)

: AEEPI AT X '
+ jZl [‘j‘][;] « (p+3) -(cmrﬂ} : (33)

One can check that the final inequality in (33) is also valid when
n =1, Thus, replacing f in (18) by DZf, accounting for (33)

and (29), and introducing the notational convenience

0
{l} =1, (34)
we are led to the inequality

n_p i0
[{L7D, £} “(z4,0) |

1\? o n n ij .(1+6f'.r)(p+j) jiO
[ metal ], B M0 e

2% £,T £,T 3
(35)
n 3 (1+§_ ) (p+3) 9 a.cT
.cP n} (1)°, £,T jl.r (Do
be 1 Cf’T{J‘ZO [j} [jJ (p+3) (Cf,TT) Y LZW] s

valid for n,p €N, T > 0, zZ € aBo, and t € [0,T].

0

Now, in Appendix II.A, it is proven that

ra +b a+b b
|2 ] < a% whenever a and b are positive,

whence it follows that, for any a > 0,

a(a+b) 2a(a+b).aaa.bab.

(a+b)

Therefore, if n,p €N, j € {1,...,n}, and & > 0,

...........................................
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IA

j oy (s j . oy L
(1) (ypy (1) (G4) H (¥ (3#p) | (1+5)5 (14+D)p

\3) i

- 2(1+5)(j+p).p(1+5)p_j5j

0y (4 .
< 2(1+»)(J+p)'p(1+o)p,n5n.

Using (36) to continue the estimate begun in (35),
n_p i0
| {L D, £} “(z4,0) |

3 £
<b,.cP {1+ f “\.2(1+6f’T)(p+J). (e, pP ¢
= %11 i i) P

n
1 . raoch

n! { 27

holding for p, n, T, ZO, and t as in (35).

It is evident that (37) is also true when n = 0; recall (30).

Consequently,

-----------

(36)

(37)
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il
N
gy
<
. w .
o I wlez, 0
( n=0
A .
.- (1+$ ) p (1+s )p
"-':: < b {2 £,T Cc . £,T
e - f,T £,T
NS -
N ® 1 (1+6, 1) n néf,l‘n (38)
] ) {2—" (1+2 ’ Ce 7DD Ixla cT}- = >
I n=0
>
)
-
‘: whenever pEN, T>0, Z € 330, and t € [0,T].
<~
1Y
e Taking note of (32), the estimates in (38) allow us to assert that,
-':: © ™
}3 for each p €N, X AnDELnf = Z AnLnsz converges absolutely
,:i.: n=0 n=0
;: on 3BOﬂR and uniformly on each compact subset of aBOKR; in turn,
*; again for each p € N, this implies that DZw exists and is
A
“u
'iz continuous on BBOHR, with
\'
(-]
Dy = 1 A"L“D’Zf. (39)
o n=0
-‘J
o
,}} Thus, ¢ € CZ(BBoﬂRﬂK3). Directly from (38), we obtain (4) for
"
j €N (having already proven (4) for j = 0). Since we have
!
]
Ny
o pointed out that ¢ vanishes on BBOX(-w,OI, inequalities (&)
L. 3
) L g ‘
#t_ show that ¢ 84,0(3504RJK ).
Pl
i:: We have now proven (i.b) ((8) is obvious), and need only
j:: verify (1) in order to complete the proof of (i.a). For this,
15 note that we now know that the sequence of partial sums of the
i o n
;{ series ) }kka, (;n = Z HL f) g* converges uniformly on
’\' k=0 k=0
(24 . =
.$: each compact subset of QBOVR to v, while the sequence (ﬁn,L)n=O
’h

possesses the same convergence characteristics and converges to

" - - -' - - n ( n .~ - -~ ‘. ------
"' "‘_‘.r ' .a_a}.c ' . .L_I}A_L.L LI --_‘.r ‘e, .-}.a_.h\.le'
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Yoy Choose ZGBBO and 7 € R. Then

(v ]

C
iz, ® = ¥ (FL g (¥)

and

Cc
[Wn,4] (z’ C) (Y) = wn’a(ch-rZ (Y))

while (Y,c-tg(Y)) lies in the (compact) set BBOX[c- % diam BO’ z]

€ "
for each Y 350. Therefore, ([y ](Z C) n=0 and ([vn
converge uniformly on 830 to [@](Z,C) and [w’bl(z,;)’

respectively, whence it is clear that

lim (nwn}i(z,;)

n =+ <
- L ij 3
limm 2n f { 2zt [wn Wzt
" 28,
- 1 i, .3 ce
880

= wurtz, o),

so that
n
ALy = lim AIL[Z xkn.kf]
n-+ e k=0
n
= 1im X AHka
n-—- o k=1

=7 31 e sy

Immediately from (40), we produce the desired equality

@x©

) (z,2)7n=0

(40)
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gLy = £+ ] afRe e T oatfe -0 o B R,
k=1 k=0

which is just (1).

Finally, to prove (i.c), suppose that f € 8? O(BBoﬂRﬂK3).
We have already seen that y € 84 O(BBOﬂRﬂK3), so (II.3.30) gives
9,

Ly € 82 O(EBoﬂRJK3), with which (1) shows that
v = 0y € & (3B mx3)
4,070 *

The proof of (i) is now complete.

(ii) The proof of this second half of the theorem parallels
that of the first so closely that we shall but touch upon the major
steps. We begin by defining the successive approximations {?n}

according to

¥y = F,
¥ .= F+ALY for each n €N,
n n-1
discover that
n
y = 3 AKLKF for each n € NV{0},
n
k=0
vk k
and so are motivated to examine the formal series , A L F.
k=0

Starting from (II.3.24) and proceeding essentially as in the deriva-
tion of (23) (of course, Cauchy's inequality is not needed), one

can show that

e e a - R . . e v a N A T P I T T SR IR VL IR S AP SRR S 4 L
N e T T T Lt T e L L et T et e ~ .“. .
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Yy 1

-
3
s'a

"",{ P

n

F,T -
'In(ZO’ t)

#15%

n ¢

n 1
(41)
for T>0, Z

N3

€ BBO, t € (0,T], and n €N,

[

0

L

with

[N Sl g ./

e e
| S WY W

1.(Zy,0)

o ala s

A
i N -
aBo(zo;t) aBO(ZO,...,Zn_l;t)

-

L4
MY

n-1

20
‘.':'h‘bz

n
o lek(zk+1)l dxaso(zn) ... dxaso(zl).

&t

Appealing to Lemma [II.5], in particular (II.5.3), the companion to

.- “- "4

(29) can be easily secured:

.
‘.

) - 1 n -

E In(Zo,t) :_;T-(aocf) whenever T >0, 2, € aEO,

AYN (43)
S t € (0,T], and n €N.

Thus,

LY ® ) n
) n.n . 1 L . n
| D BN} F(zo,c){ < bp 1 ) {2n (1+CF,TT) gA;aocT}
.‘}.‘ n=0 n-O

'41 for T >0, zZ, € aBo, and t € (0,T].

0

PR
Lo

by
i

With (32), we can conclude that the series in question converges

K

absolutely and uniformly on each compact subset of 5Borm, so that

i Jad
AL

we may define

1QFS

YY)
< "'e'l...j ‘: 'n 'I .

»
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. "‘f"ﬂ" e, ALY '.'-". ‘1’-.'- '. ...';..
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RS

o
Y ;= z knLnF, on aBoxR;
n=0

a " s

SN

¥ 1is continuous and vanishes on asox(-m,O]. (44) implies (11)
when j = 0. The inequalities

I IWL"olE(z,0)|
n=0
b . 2(l+6F’T)C p. (1+6F,T)p
= °F,T F,7[ P
(43)
= (145, 1) yn O
. z {3; (1+2 CF,TT)- Alaoch © T ,
n=0

valid for p EN, T>0, Z € 3B, and t € (0,7},

can be deduced by following the arguments which led to (38).

(- -] -]
Consequently, if p €N, z AnDanF = 2 A“LnDzF converges
n=0 n=0

absolutely and uniformly on each compact subset of aBoim. Thus,
¥ € C (3ByR), with

Py = §  A"L"DPF  for each  p EN.
AN 4

From (45), it is now seen that the remaining estimates in (1ll) hold,
whence ¥ € 86’0(380ﬂR). Equality (9) is a result of the uniform
convergence on compact subsets of SBOﬂR of the series for V¢ and
?,A, and can be checked by retracing the proof of (1), mutatdls
mutand(s. Finally, (ii.c) is an obvious consequence of (9), the
inclusion v € 84’0(380~R), and the mapping property of L given

by (II.3.29). a.

alhuf S el

PP A R W B R P

Al e e T T e AR Bal
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(II.8) REMARK. If, in [II.7], BO does not fulfill condition
(G), then the reasoning of the proof can still be used to prove
that there exist solutioﬁs of the equations considered on
3Box(-m,d], if (a,1,d) is a set of Lyapunov constants for BO'
To provide the wherewithal for continuing this solution, we should

return and develop a local existence theorem for solutions of the

equations in [II.7] which satisfy more general initial conditions

on an appropriate set QBOX[y,O], y < 0.

With the aid of Theorem [I1.7], we can show that the reformula-
tion work of Chapter 6 in Part I leads to an existence result for a

certain class of scattering problems in the case of a stationary body.

[II.9]J THEOREM. let M be a null meticn (n M(2), and

assume that BO satisgies condition (G). Let {Eli,Bli} be an

ammtengs. & & &

incident §deld apprepadate to M as 4n [I.4.1], for which 4t 4s alsc

Ny kincws: that F, and F-l ate 4i 4 0(oB *R:R), wiile f1 and

.. .H -3
£, Lie 4n 84,0(380ﬂRJR ), wheredn Fi,» F_;, £, and £,

are given cn aB xR by (II.4.2-5), nespectively. Then there excsis 1

e ama = & A o

a {wilgue) scluticn to the scatteuing problem genctated by M and
(2,8 ). This sclution 4s given by either
1€ 0 Oy
= - v - = { {
(xyt) v \\*1 (x t) %l ya(:\’t)
P N F S .‘
4r |y, [’1](x,c) 4" .5
-7 X’ 0
oSO

c_eim M A A T A L AA MRS LS P L S L Msmma m AR A S S B AL o

KR g A AN N R Py R P N B AT R N e
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L/ -5u-
O
-
o
R . R e
G [ r x Md e sy ()
, 3B
>0
::\:.
.
o o1 ( 11
E\; 2 T [Vl,é](x,t) ‘“as ’
"3 38, X 0
2 0
oi O, k
BN = ey VPl (D)
1 1 K
R f eijk[r ],.'wl](x,c) i
38 X3 0
0 (2)
1 [ 1 Lok
e | r, “13k"X,3 By, 4dx, 0 ‘“530,
BBO
for each X€B), tE€R,
with ¢, € g (38 ﬂRﬂRs)- wd v, € &7 (38 R;R) tc be cbtadline
it l 4’0 0 ¢ 1 4’0 0 ..
Jeem
<
v, 3= 1 LU =2 7 LMux(B'| 9B xR} (3) |
1 1 0
n=0 n=0
and 1
1
03 n AL T n N 1C ~ L 2
v 1 LMEHY = T LM 2ve(E'€ 3By R)+yy b, (%)
n=0 n=0
0T

c

ci 0. k J
:
1 (1) 'k :
an f Siikirn),, oo $ss i
'\B N k J O
9 0 {




[t,

o Sigkx, g Yol e ¢

oi 0, 1,01
(x,6) = -V0ty_j 3, (x,0- 2 00l o0

ol R
0
1 1
" 4rc f ;_'rX,i'[w-l,4](X,t) 435 (6)
«B x 0
°“o

1 1 i
" 4mc J r '[“-1,4](x,t) dr3p -
B X 0
fcs each X € B('), t €R,

wheredn w_les o(aBoxIR;IR3) and vy e&? o(aBOxIR;IR) ate degdned
9

-1

by
g I DM
n=0
o (7)
=2 ] DARMeE'] BymY,
n=0
and
¢ e T D™RNE e )
-1 T L -1
- (8)
= T D™t aB R+
n=0 ot

tic sewdcs appearing 4n (3), (4), (7), and (8) cenvetge absceluted:y

5 - ()
SO

PPN -y W)

. e

Ca’als

PR o= S DR PLIGPLFSRST AN I - |
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and uncgountly on each compact subset ¢f aBox]R. Mowecven,

oi

% and 8%t e c’(séxm;m)nc(sé‘xm;m).

ALE pattial devivatives of E°T and B°' - can be cemputed grom eithe

(1) and (2) on (5) and (6), respectively, by differentiation undet

the integrals appearing; the 4-devivatives of vy and v, c¢"

1
vy and Yy which oceurn thereby can be computed via tewn-by-tewm
difaetentiation o4 the definding series (3) and (4) ¢r (7) and

(8), hespectively each diffetentiated serdics converging absclutefy
and uncgemly en each cempact subset c¢f aByMR. Estimates for

¥ Yy Vg and Y 4 and theirn 4-devivatives, hence alsce for
et and  B™!  and thein pantial denivatives, can be derived by
applying the tesults cf [II.7). Furnthen relations amongst tyo
¥, Yoy, ¥, BT BGR, and B ByR ane centained 4n the

conclusiens ¢f [1.6.1].

Before proving these statements, we point out that if the

restrictions E'| 3ByR  and B'| 3ByR are known to lie in

H

8‘. 0(350>R;]R3), then certainly the conditions required here of

1

fl’ Fl, f-l’ and F-l are fulfilled. For example, if E  and
1 . ©, 123 . b ™
B arein C (32 ;R7), with {DjE | aBOx]R}j=0 and

rpipt Lo
.DABI Z\BO*IR!j‘O

sByR and B' 3ByR are in CZ(SBO*IR;IR:;)'. whence they are

satisfying the estimates of (II.2.2), then

1
E|

locally Lipschitz continuous, and so belong to 82 O(EBO~1R:1R3).

PROOF. According to [I.6.1] and [1.6.5], we can show that the

(9)

»
1S

hA SerTa m W SR e el A i ) S

- wa
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e .
'.-‘:: scattering problem corresponding to M and {}:11’311} possesses
(’_ a solution if we can solve the (modified) reformulated problem:
,: show that there exist locally Holder continuous functions bys
:::: ‘?1, “’-1' and \P_l on_ 3BOX‘R, vanishing on BBOX(-G,O], with
h b R
5] for j=1and 2,
R pjv., Dy € c(3B,<R)
o 4°1 T4'-1 o
.-? while “’1 and ‘Pl are solutions of (I.6.5.4), and ‘”‘}-1 and i’_l
:':i comprise a solution of (I.6.5.6), {.¢., in view of the results of
:"" [II.1] and [II.4], such that
.
R ¥, =ALY, = AeF_<+Xd-\;
e AL AP Ay (203,
}:: on QBOxIR, for A =1 and -1.
:" ) - ] = .
L ¢>‘ )JL\LA A f}‘, (10);2
3
::.;: Once the existence of such functions has been established, a
_::;: solution of the scattering problem can be constructed by using
either (I.6.1.6 and 7) (with wi = wi and ¢ = ¥, therein) or
N,
;‘: (I.6.1.8 and 9) (with Yi = wfl and T = \b'_l therein); in fact,
'd .
3‘:;;’ all conclusions of [I.6.1] will be valid (with the appropriate re-
b placements of symbols).
<.~
o Now, with A =1 [% = -1], since f, € 8% (3B RR)
o ! B ’ A 4,0°7°0 ’
[I1.7.4] asserts that (10), holds when v, is given by (3) [by (73],
that ¥y € 82 O(3BO~]R;IR3), and that the series (3) [(7)] as well
as those giving {Dzw)‘ ;.1 possess the convergence properties

claimed for them. Next, (II.3.31) implies that ’. € «‘32 O(I-BO~IR;R).

2R L0000

7
el

x|
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1.

Ty
P

L &
A a
L A A e}
s

‘

so F+iy, € &? O(QBOﬂRﬂR). Thus, we may apply [II.7.ii] to conclude

that (10) obtains if ?A is defined by (4) [by (8)], that ¢ €
A

4 o(aB xR;JR), and that the series (4) [(8)] as well as those
giving {Dg”x j=1 have the convergence characteristics claimed for

them.

Since we have produced for the reformulated problem a

solution of the required form, we know that the scattering problem

induced by the data M and {Eli Bli}

, is also solvable, a solution

being given by either (from (1.6.1.6 and 7))

cic

0 1,0, 14
ETT = =Un{y, b, - o Vlughs,s (11)

oi "
B j V {wl}, (12)
or (from (I.6.1.8 and 9))

Eoic V { }
= j w (13)

oi

0 1
B Vot 3, -

1 } (14)

Now, explicit expressions for the partial derivatives of V {Vl .
VO {fl}, V0 {w_l}, and V° {?_1} are available from equalities
(I.5.13.2 and 3); using these in (11)-(14), one can easily check that

(1), (2), (5), and (6) are correct.

The inclusions E°*, B%! e cl(s PRB)CERR)  follew
from [I.6.1]. But, since M E M(2:») and Ql’ 1 € Cj(’Bdﬂn) (or
wfl, W-l € C:(?BOJR)), it is clear from [I.5.7] and the representa-

tions (1) and (2) (or (5) and (6)) that E:i and Bci are in

A A AP Gt I AP BN B SN R
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o c (Béim), while the partial derivatives of these functions can be
( ) . computed by differentiation under the integrals in (1) and (2) (or
ii: (5) and (6)). As already noted, all 4-derivatives of Yy ?l,
N

tf{; ¥ -1’ and W_l can be computed by term-by-term differentiation of
. the respective defining series, as [II.7] shows.

Ei: Finally, the uniqueness of this solution of the scattering
--:':J
o problem is an immediate consequence of [I.4.10]. 0.

)

'::- [II.10)REMA RKS. (a) 1If, in [II.9], BO does not satisfy
N

LN condition (G), then we can still construct a solution of the scatter-

‘l

o~

9 ing problem for t < d, wherein (a,l,d) 1is a set of Lyapunov

L

$;{ constants for By: cf., Remark [II.8], In order to prove that this
'u‘.-.l

i:j solution can be continued, we might proceed by either developing an
P
i ; existence theorem for the equations considered in [II.7] without
>,

:ﬁ: imposing condition (G), or solving a Cauchy problem for Maxwell's
s
‘~$: equations and using the result to set up an auxiliary scattering
LAY
‘N

‘ problem with homogeneous initial conditions at t = d, solving

’:i this for t < 24, eftec. For construction purposes, the latter step-
SOL .

£

t:Q wise procedure would obviously be at best cumbersome.

-~
-

;.
) ; j.:

"

o
el

Ay

'

s
::‘

L ~*:

[/

g

- e
X L XA S
5%

-
0

W

Y I » - of-..q‘..(-._‘-'_..'.~(- L e P ) -f-’. - -*- -'_-'_.

&)




59

‘.

W

.

¥
Y

RIS S
LA
alaa’el
rulFaliieh

-

»

-

D0k

-
“x

XXX
'

S

A

L2 .ﬁ h:" ;.’ -‘l ‘.' F

gy 0 0

CARRR R R
[ R .
N ‘];-hﬁﬁdks

a4
»
A

7) ’.u}&
’. ':\'4.';'

AL

- - LR N e e e R AN L M A L Al

-60-

II.A. APPENDIX

AN INEQUALITY

In the proof of Theorem [II.7], use is made of the inequality

verified in the following statement.

LEMMA. Llet a and b be positive numberns. Then

a+b
[a+b] < a%®, (1)

2

equality holding {45 a = b.

PROOF. Clearly, (1) is true iff

(a+b) £n [Egbi < a fn a+b 2n b,

or

(a+b) in (a+b) < a in a +b 2n b +(a+b) in 2: (2)

we shall prove (2). Setting a := a/b, we have

(a+b) in (a+b) = a ina +b fn b +a in [1+ g} +> in {l+ %;

\

1
T
!




B e S N

a &n a +b in b +(a+b)

e f 1 1 + [
{1+x £n ll+ Q] + T in (1 a)j
Thus, we are led to examine the function f given on (0,%) by
X 1 1
f(x) := Tox n [1+ xJ + Tox ¢n (14x)
- {(1+x) &n (1+x) -x n x}, for x>0
1+x
We find
' &n x
f'(x) = - 7 for x > 0,
(1+4x)
whence it is easy to see that f takes on its absolute maximum at
the single point 1, where f(1) = ¢n 2. Since (3) says that

(a+b) £n (a+b) = a n a +b 2n b +(a+b) *f(a),

it follows that (2) is true, with equality holding iff o =
{L.e., iff a =b. This completes the proof. 0.
TObserve that
b] a]
: + b2, tn e:
a in l1+ a) b {n l < a- = +b 5 (a+b) in e:

in view of the first equality in (3), this shows that (2), h
(1), is true with strict inequalitv and 2 replaced by
actually suffices for the requirements of the proof of

<.
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MISSION
of
Rome Avr Development Center

RADC plans and executes reseanch, development, test and
selected acquisition programs in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence
45 provided to ESD Program Offices (POs) and othen ESD
_elements. The principal technical mission areas are
communications, electromagnetic guldance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonosphernic propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility.
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