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/ ABSTRACT

Several detection statistics are compared in the frequency domain based

on the asymptotic probability of detection criterion. -They include,

secono-order, fourth-order, and two forms of kurtosis estimates. The results

show that for randomly occurring signals or non-Gaussian signals, the

fourth-order and kurtosis estimates can have higher asymptotic probability of

detection levels compared with second-order estimates. But, only for the

kurtosis estimates do the results seem significant. Moreover, it a

second-order estimate of the noise is available to normalize a fourth-order

estimate of signal and noise, the resultant modified kurtosis estimate has

higher asymptotic probability of detection levels even for Gaussian signals.

This result only holds when there is a significant positive covariance between

the numerator and the normalizing noise sample in the denominator. On the

otner hand, if an independent noise sample is used to normalize a second-orcer

or fourth-oraer estimate the overall performance based on the asymptotic

probability ot detection will be degraded compared with the unnormalizea

second-order or fourth-order estimates, respectively. This result coula

impact current sonar processing methods.

ADMINISTRATIVE INFORMATION

This tecnnica) memorandum was prepared unoer NUSL Project No. A75031/2,

Data Adaptive Detection ano Estimation, Principal Investigator Dr. R. F.

Dwyer, (Code 3314j. The Sponsoring Activity is The Office ot Naval Research,

Program Element: 61153N, Research Project: RRO14-05-01, Program Manager

Dr. E. Wegman, ONR (411).

The author of this document is located at the Naval Underwater Systems

Center, New London Laboratory, New London, Connecticut 06320.

3/4
Reverse Blank

i ' , , , , .. . .. :., ... .. . .. , _ , . , . , t :" ' "



TM No. 841057

1. INTRODUCTION

In this paper the performance of several detection statistics are

compared based on the asymptotic probability of detection criterion. The

likelihood ratio (LR) is considered a general method for deriving optimum

detection statistics or receiver structures. However, the particular form of

the likelihood ratio may not be practical to implement, or, on the other hand,

the circumstances under which the LR is designed may change. In these cases

it may be of interest to consider detection statistics other than second-order

which may have better performance characteristics for non-Gaussian signals.

The emphasis is on detection here, but, kurtosis estimates can also

distinguish between Gaussian and non-Gaussian signals. In applications this

is an important property.

To motivate our analyses to follow the form of the LR will be derived

under conditions which can be supported by physical evidence. But, as has

been suggested already, the actual LR statistic for any particular condition

will not be analyzed in the paper. Rather, we will be interested in a

statistic which may be applied to a wide range of situations where

non-Gaussian signal may arise. ,,

Let there be available a set of N independent and identically distributed

(i.i.d.) samples, as depicted in figure 1. The joint probability density

function (pdf) for these samples may be written as

N
f(x1' x2 ' . . . Xn) i f(x)(

des

5 
)r
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Equation (1) will represent the noise only hypothesis and will be denoted by

Ho.

Now, if in the set of N independent samples some belong to another

probability distribution, say F2 (x), representing the signal and noise and

identified by H1, as depicted in figure (2), then the liKelihood ratio for

the N samples would be given by

LR = g(xl, x2, ., xn)If(xl, x2, .. , Xn) (2)

where g(xl, x2, . . ., xn) represents the joint pdf for signal and

noise. Before giving the form of equation (2), consider the case when only

one sample belongs to F2(x) out of a possible set N.

In tnis case, from the law of total probability the joint pdf of signal

and noise is given by for independent samples

N
g(x1' x2, . . . xn) = PI f2(x,) T fl(xi)

i=2

N
+ P 2 f1(x1)f2(x2 )  

7 f1(xi)
i=3

K-i N
+ P K T fp(xi) f2 (xK) w fl(xj)

~ =1 j=k+1

N-1
+ PN f2(xN) w f1 (xi) , (3)

i6i

6
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where, Pk, k = 1, 2, ., N, is the probability that the k-th sample

belongs to F2(xk). By forming the LR between equation (3) and equation

(1) we obtain

N

LR =E" Pk[f 2 (xk)/fl(xk)j (4)

K=l

Theretore, the LR of equation (4) is formed by averaging the indivioual

sample likelihooa ratios over all possible sample positions of the signal. If

it is known when the signal, belonging to F2 (x), occurs, say the k-th, then

Pk = I ana, therefore, LR = f2(xk)/fi(xk). Thresholoing is

sometimes usea to establish when the sample belonging to F2 (x), i.e., the

signal, occurs. But this method will not be considerea here since it appears

to presuppose the solution before it can be deriveo from funaamental

principles.

The likelihooa ratio of the more general case of M samples belonging to

F2(x) can be written as follows:

N-(M-i) N-cM-2) N-i N
ML(N-MRj .. ( , . , ), 5

K1= K2 =K1 +I KM_1 KM2+1 KM=KM_1+1

where, fs XKI, XK ..., XKM) = f2 (xK )t2 (xK ) ... f2 (xK )'fl(xK ) fI(xK ) ... fp(xK)
2 M 1 2 M 1 2 M

and it was assumea that the probability of any particular configuration was

equally likely, i.e., KP = MKM N - M)./N'.. Therefore, the LR

of equation k5) is formeo for the N sampling positions by averaging over all

possible combinations of the M samples containing the signal.

7
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If M - I equation (5) reduces to equation (4) with Pk = 11N. However,

if M = N then equation (5) reduces to

N
LR = v [f2 (xi)/fl(xi)] , (6)

which is the form of the likelihood ratio treated by Marcum [1, p. 209].

These results can also be extended to include dependent samples. For

example, for Markov dependence, equations (4) and (5) will be functions of

conditional probability densities and the LR structure will be, therefore,

more complicated.

From these cases it appears that the form of the LR depends upon what is

known about the occurrence of the signal over the interval in addition to the

usual requirements of knowledge of the pdf's. If we design our receiver based

on equation (6) and the signal occurs only for a percentage of the N samples

then we would expect the performance of the receiver to be degraded over what

could be achieved under the proper likelihood ratio formulation. Therefore,

the LR based on equation (6) may not lead to the optimum detection statistic

for randomly occurring signals. This has been shown to be the case by

Ferguson £2] where skew and kurtosis estimates were optimum statistics under

suitably chosen conditions. Since in practice the previously derived LR

structures may be too costly to implement this paper will compare various

forms of the kurtosis estimate with a second-order estimate. These statistics

will be simpler to implement but also may lead to improved performance.

8
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II. ASYMPTOTIC PROBABILITY OF DETECTION

The introduction considered signals which could occur randomly over a

sample set N in a one-dimensional space, or only over discrete temporal

locations. Often in applications it is desired to operate on signals in the

frequency domain. Tnis domain would allow signals to occur randomly in

two-dimensions, vis., frequency and temporal locations. An application to the

ice-induced signals was discussed by Dwyer in reference [3]. This idea can

also De extended to three-dimensions by taking into account the spatial

locations. Here we formulate the problem in the frequency domain but the

basic properties would be applicable in any dimension. The higher dimensions,

nowever, would offer more opportunities for the signal to occur randomly.

Let x(i,q) = xi[i+(q-l)M]n$ , i=O,1,...,M-, q - 1,2,...,n.

represent real discrete data with h representing the interval between

consecutive samples. The discrete Fourier transform (DFT) is defined as

follows:

M-1xi,, p h _M M WliX(l,q) exp(-jFpi) (7)

i:O

where, j = -i, Fp - 2'fph is the p-th radian frequency component,

p - 0,1,...,M-1 and fp - P/Mh Hz. For simplicity, let the window weights

equal one, i.e., W1 = 1, i-O,1,...,M-1, and h 1.

9
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The time domain data will be represented as an additive sum of signal and

noise of the form,

x(i,q) = N(i,q) + m(i,q) S(i,q) (8)

where the noise N(i,q) and signal S(i,q) are zero-mean Gaussian process. The

function m(i,q) modulates the signal in such a way that the frequency domain

representation will be a non-Gaussian process [3].

Nuttall C4] considered a signal that was modulated by a random constant

and, therefore, was not a function of time. This kind of modulation as was

found by Nuttall would not lead to a non-Gaussian process based on the model

and, therefore, the LR of equation (6) would be appropiate. In contrast, the

modulation function of this paper is a random function of time over the

detection interval and leads to non-Gaussian process. This model is supported

by real data measurements as discussed in reference [3].

The power spectrum density (PSD) which represents a second-order estimate

is defined as [5,6]

n
P(Fp) p (1(n) E x(q,Fp )x*(qF ) (9)

q= p

where the asterisk represents complex conjugate. The asymptotic variance of

power spectra and complex cross spectra were discussed in reference [7]. The

parameter n is sometimes called the degrees of freedom of the estimate.

10
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Let the frequency domain Kurtosis (FDK) estimate [3) be defined for real

and imaginary parts of equation (7) separately. We can therefore discuss the

tneoretical properties of the FDK for its real part only. The imaginery part

has, identical properties. In applications both real and imaginary parts are

estimated, since both contain information. In addition, the real and

imaginary parts of the FOK estimate can be combined to form one statistic,

say, for example, the magnitude. But these considerations are not expected to

change tne conclusions to follow in any significant way. Although, a

performance improvement based on the magnitude of the FDK estimates over the

real or imaginary part separately would be expected compared with the PSD. An

example for the magnitude of the FDK estimates will be given later.

Tne FK estimate for the real part of equation (7) is defined assuming

tnat x(q,Fp) is a zero-mean process as

n n

K(Fp) (I/n) E [x(q, F ) J4 (1/n) E x(q,F )]2 (10)
q-1 q=1

If x(q,Fp) is not a zero-mean process then the mean would be estimated

from the data and subtracted from x(q,Fp). So, therefore, the mean can be

accounted for in principle and need not concern us further.

The asymptotic probability of detection (APD) introduced in reference [8]

will oe derived for three specific cases of equation (10) and compared with

the APO results of equation (9). In case 1, the numerator and denominator of

equation (10) will contain signal and noise as shown in the data model of

equation (8). This was the form of the frequency domain kurtosis estimate

11
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used in the real data analysis of reference [9j. For case 2, the denominator

will contain a noise only estimate. The results of this case are of

tneoretical interest. However, some comments concerning implementing this

case will be discussed later. In the last case the denominator of equation

(10) will be set equal to one. Thus, case 3 represents a fourth-order moment

estimate.

Since only tne real part will be treated theoretically, we shall write

equation (7) as follows:

112 M-1 M-1
x(q,F ) (1/M) E N(i,q) cos (F pi) + m(q) EI S(i,q) cos (F pi)

i=O i=O

where m(i,q) was assumed to change slowly with i and therefore, could be w

approximated as m(i,q) = m(q).

To simplify notation equation (11) will be expressed for a particular

frequency as,

x(q) = N(q) + m(q)S(q). (12)

where N(q), m(q), and S(q) are mutually independent. In addition, x(q) will

be assumed a zero-mean process and statistically independent, i.e.,

E£x(ql)x(q2)] - 6(ql-q 2) EZx(ql) 2]. Where S(ql-q 2) is the

Kronecker delta function. The independent assumption is needed in order to

evaluate the variance of equations (9) and (10). However, the time series

x(i,q) with respect to i may be considered dependent. This point will be

discussed more fully later.

12
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The modulating term m(q) will be modeled as a oernoulli time series [3]

Jefined as follows:

1 Pr$m(q) =1 = L
re(q) 0 Prm(q) = } = 1 - L.

Therefore, all moments of m(q) are given by Elm(q)r] = L,

r = 1, 2 ...... Thus, m(q) modulates the signal, in the frequency domain at a

specific frequency, Dy turning it on or off over the detection interval. The

probability (L) of the signal Deing on will be a parameter of the performance

results.

The asymptotic (n *o) behavior of equation (9) and (10) can be obtained

from Cramer's convergence proofs [10].

For a function F(x1, x2z), z = 1, 2, 3, of two central moments Xl,

X2z, from a one-dimensional sample corresponding to equation (9) and (10)

Cramer has Shown tnat as n *cc, F * N{E(F),var(F)f , where NJ , Irepresents a

normal process with mean and variance given by, respectively,

E[F] = FLE(xl),E(x2 z)] + 0(1/n),

(2z)

VAR[F] = VAR(x )F2 + VAR(x2 ) F 
2

2z

+ 2F F2COV(x1 x21) + 0( 32

The parameters F1 and F2 are partial derivatives of F, i.e.,

F = (aF/aXl)I , and, F2 = (aF/ax2z) I
x E(X1) Z 2 z = E(x2 z) 13



"I
TM No. 841057

In tne following analysis we shall replace F by P for the PSD and replace

F by K for the FDK when evaluating their respective means and variances.

Since tne asymptotic process is Gaussian, the asymptotic probability of

detection (APO) can be written as follows:

AP) 1 -0- (1-a) 0 (F)/a 1 (F) + [Eo(F) - EI(F))/aI(F)} , (13)

where, El( ), ai( ) are, respectively, the mean and standard deviation of

the noise only process when i = 0, or the signal and noise process when

i = 1. o4 I is tne standard error function and a represents the desired

false alarm probability.

III. THEORETICAL DETECTION PERFORMANCE RESULTS

A. Power Spectrum Density

Tne power spectrum density (PSD) estimate for the real part of equation

(9) is given by

n 
2

P(F F(xl,l) - (1/n) , x(q) (14)

The required components of the APD are

E[P(F)] = N(1 + L SNR), VAR CP(Fp)] = (1/n) 2N2 a1,

where, N - E[N(q)21, S = E[S(q) 2], SNR = S/N, and

a1 = + 2L SNR + [3L - L2)/2] SNR2.

14

- - - ~ ~- L'~ r2
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Recall that the variance of the periodogram, as well as equation (14),

does not decrease with increasing transform size M [6]. We shall prove later

that the variance of the FDK is also independent of M and like the PSD both

variances decrease proportional to (1/n) if n .. sufficiently large.

By substituting the above parameters for the PSD into equation (13) we

obtain

APO = 1 -?[-i(i - ) -L SNR. TI%2]/-aI}. (15)

Equation (15) will be evaluated for specific values of the parameters and

compared with the results for the FDK of case 1 in the next section.

Another point should be mentioned concerning the PSD before proceeding.

Later we shall discuss the performance of a fourth order estimate normalized

by a noise only second-order estimate, which is designated as case 2. This

procedure leads to higher AP values compared with all other cases including

the PSD even for Gaussian processes. It is believed the reason for this

depends on the noise only second-order estimate normalizing function. But,

the PS) can also be normalized by a noise only second-order estimate. When

this is done it appears that the PS would have a larger APD for Gaussian

proceses. However, the false alarm probability cannot be controlled at a

satisfactory small level but is fixed at .5. A proof of this is given in

Appendix A.

15
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B. Frequency Domain Kurtosis, Case 1

From the results of the previous section tne FDK can be expressed as

follows:

kz(F p) = xlx2z (16)

where,

n

xI = (1/n) E x(q) 4

q=1

X2z = (l/n) E x(q)]

q=1

Therefore, for z = 1, case 1, the asymptotic expected value of equation

(16) reduces to

lim E[KI(Fp)] = E[xllx21j = E[x(q)4]IE[x(q)2]

n* co

Since all our results are asymptotic (n *o) we shall not explicitly

indicate the limiting process in the following expressions.

Using tne data model of equation (12) the expected value of kl(FP)

can be put in the parmeterized form

E[kl(Fp)] 3 a21a32

16
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where, a2 = 1 + 2L SNR + L SNR2 , and a3 = 1 + L SNR.

The derivaton of the variance of equation (16) requires evaluating

several components. Some of them are tedious calculations. Therefore, the

main points of the derivation will only be outlined nere. The details of the

derivation will be found in Appendix B.

Based on Cramer's L10] convergence proof the form of the variance of

KI(F p ) is given by

VAREK1 (Fp)] = VAR (x) F + VAR(x21)

+ 2 F1 F2 cov(x 1 x21) ,

where,

2 -2
F1 = (a kj(Fp)Iaxl)1  = E(Xl) = E~x(q) ]

F2 =(a k1(F )/a x2 1)I E -E~x(q)4] E~x(q)2]F2 =( k(Fp~ x1x 21 = E(x21)

The other components are given by

VAR(x 1) = (1/n) VAR[x(q)
4]

n x~)1 n 2]12
VAR(x 21) = E)L(I/n) a x(q)2E4 - E (1i/n) E (q)

q.1 q=1

covtx1 x21] = E(xj x2 1) - E[xl] E[ x21 ]

n n n

M EI(1/n3) d a E x(q,)4 xq 2x(q3 )2
q1=1 q2=1 q3 =1

17
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n

q-1

By expanding the components further we obtain,

VAR~k1(F P)] - (1/n)1I VAR~x(q)4)/E[x(q) 2)4

+ 4~ E~x(q)4] Ejx(q)2 12 -E~x(q)2]4 IEx(q)4]2/E~x(q)2]8

-4~ E~x(q)6] E~x(q)2] -E~x(q) 4] E~x(q)2] I E~x(q)2]6j

Substituting the data model of equation (12) into the above expressions

the desired parameterized form for the variance of case 1 reduces to the

following.

VAR~k1(F) p (11n) Q1, (17)

where,

Q- 96 U1 +72 U2 -144 03

2
D,-a4a

a4 . 1 + 4L SNR + (612L - 36L2)/96] SNR2 + U420L -36L
2)/96]SNR3

+ C(10SL - 9L2)/961 SNR4

22  3 4a) (1/8) [18 - 10 a3 a5/a2]

a5 -1 + 2L SNR + (4L2 + 6L)/10] SNR2
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U3 - (a2)a3 )(1/12) [15 a6 (1 + L SNR)/a 2 - 3 a3 /a 2 ]

a6 = 1 + 3L SNR + 3L SNR2 + L SNR3.

Under the noise only case (SNR = 0) or when L equals 0 or 1 the variance

of case 1 asymptotically approaches,

VAR[kl(Fp)/Ho] = 24/n (18)

Tnis is the result obtained for a Gaussian process by Pearson C11].

Now we are in a position to express the APO for the FOK of case 1. The

result is given by

APO 1 - 4V2-I (1 - ) + 3(1 - a2/a3)V/i]/Q1/22 . (19)

For L equal to 0 or 1 the APD of equation (19) equals the false alarm

probability so detection is not possible under these conditions. Detection is

also not possible for the PSO when L equals zero. But unlike the FDK of case

1 the probability of detection for the PSD is maximum when L equals one. The

FOIK of case 2 will also have this property. This means that KI(Fp) as a

detection statistic is only sensitive to non-Gaussian (0 < L < 1) signals.

An example will demonstrate these results more clearly. Figure 3

represents a comparison of the PSD and FDK of case I as a function of the

probability of occurrence (L) of the signal for several SNR values. The

figure snows that the FOK can nave a higher probability of detection

19
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depending on SNR for small values of L only. As L increases the probability

of detection for the PSD increases with L and will surpass the probability of

detection for the FQK of case 1. As L approaches one the probability of

detection for the FDK of case 1 decreases and approaches the false alarm

proDability (i).

A real data example will put these results in perspective. The following

example has been explained in reference [3j. It is from Arctic under-ice

environmental data. Figure 4 compares the power spectrum density estimate and

the real part of the frequency domain Kurtosis estimate for a segment of

Arctic data. Both estimates are averaged over many consecutive FFT

estimates. We shall concentrate on the frequency with the highest kurtosis

estimate and a corresponding small PS0 estimate on the figure. From the

theoretical results we know that the signal causing the high kurtosis level

only occurs a small percentage of time and when it occurs it probably has a

high SNR level. Tnis conclusion could not be reacned from the PS0 estimate

alone. Therefore, the FOK estimate of case 1 contributes additional

information. So, the usefulness of the FDK estimate of case 1 cannot be

determined from its probability of detection performance level alone. But

must be evaluated in terms of contributing additional information which the

PSD estimate is insensitive to.

For tne next two cases of the FDK we will explore ways of improving its

probability of detection. But, on the other nand, this procedure may

sacrifice the information content of the FOK estimate.

20
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C. Frequency Domain Kurtosis, Case 2

For this case the denominator of equation (10) contains a noise only

second-order estimate. The FDK estimate of case 2 follows from equation (16)

as

k2(Fp) - xl/x 22 . (20)

The derivations of the following expressions are similar to the

derivations for the FDK of case 1. Therefore, only the main points of the

derivation will be explicitly stated in the following.

For sufficiently large n, the expected value of equation (20) is given by

E~k2 (Fp)] = E~x(q)4/Hij/ E[x(q)2/Ho] 2 (21)

Where we now signify which hypothesis the expected value is conditioned

on. By substituting the data model of equation (2) into equation (21) we

obtain the parameterized result,

E~k2 (Fp)] P 3 a2  (22)

The variance is given by

VARLK2 (Fp)] / ln){ VAR~x(q) 4/H1]/Ex(q)/Ho]
2

*4 E(x(q)4/H1]
2 ELx(q)4 /Ho] E~x(q) 2/H0]

2 - E~x(q) 2iHo 4 I/E[x(q) 2 1Ho]8

21
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-2JE~x(q) 4/H1] / E~x(q)2/H0 ]61

n n

EL(1/n) Cx(q) 4/H1] ((1/n) 1: x(q)2/H,]]2

q-1 q=1

-E(l nn 411 (/) n xq H12

q.1 q=1

The last term of equation (23) represents the covariance of xI and

x22, i.e, covfxlx 2 2]. If the noise only estimate x22 was

statistically independent of x1 then the covariance would equal zero. This

may happen if the noise estimate is from an adjacent frequency location or

from another interval of time. This would change the APD performance results

considerably.

Employing the data model we obtain the parameterized result

VAR~k2 (Fp)] = (1/n) Q2  (24)

where Q2 - 96 a4 * 72 a2 - 144 a2 a3.

If tne covariance is zero tne third term of Q2 would be zero giving a

higher variance for k2[K2(Fp)J. Now the role of the normalizing

component, x22, is clear. If x2 2 is correlated with the noise component

of x1 then tne effect is to reduce the variance of k2 (Fp).

The APD of case 2 also shows this relationship.

AP . 1 -[o,-4- (1- ) - 3 a7.F]/Q/21 (25)

22
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where a7 = 2L SNR + L SNR
2 .

Therefore, if Q2 is minimized the probability of detection can be

improved. The APD is maximum for the FDK of case 2. In practice a partially

correlated noise sample might be available to improve the detection

performance of the FDK estimate. An example will be given later to

demonstrate the idea. But before given examples of the results of case 3 will

be given.

0. Frequency Domain Kurtosis, Case 3

Recall, for this case the denominator of equation (10) is set equal to

one. Tne derivations of the mean and variance of case 3 are similar to the

previous cases so we will only present the results.

The expected value and variance for the FOK of case 3 are given by

ELK 3(Fp)] = 3 N2 a2

VARCK 3 (Fp)] = (1/n)(96 N4 a4)

Tne APO follows as

APO = 1I - 1-1 (1-c)- 3 a7 v/6J/a4] . (26)

At this point it is appropriate to consider the performance of a V-th

order power law using tne data model of equation (12). Recall that both N(q)

and S(q) are assumed to be statistical independent and zero-mean Gaussian

23
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processes. Here we shall utilize one degree of freedom, so the results are

not asymptotic.

The V-th order power law is defined as follows

y = xv  (27)

wnere for v even, v - 2K, k = 1,2,...,, and for v odd, v = 2k-I, k=1,2,...

When v equals two the results will apply to equation (14) and when v

equals four they will apply to equation (16), where x23  1.

Case (I) V EVEN

By rewriting equation (27) in the following way

y exp(jn2w) = xv , n.0,1,+2,...,

the solutions for x can be obtained. For y > 0

x yI/v exp(jn2w/v).

By examining the possible solutions we find that there are only two real

solutions for x, viz.,

X1 y and x2  -y /v

24
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There are no real solutions for x when y < 0. Therefore, the probability

density function of y is given by

fy(y) = kvy(V-l)/vjl [fx(yl/V) + f x(-yl/V)j, y > 0

fy(y) = 0 ,y < O.

From the characteristic function of equation (12) the input probability

density function can be shown to be given by the following mixture density

fx(x) = (1-L) f1 (x) + Lf2 (x), (28)

2On 2 1/
where, f1(x) is N aO}. and f2(x) is N o a = Lan + s]

fo I

Therefore, since a Gaussian process is symmetric about its mean value we [
obtain

fy(y) 2LvY (VI)IV)-l {(IL) f1(yl/v) + Lf2 (y l/V)} y > 0

and

Fy(y) a 2{(_)LO(y1/v/,:n) - 1/2] + Lf*(yl/v/o) - 1/2i}, y > 0

where, 0( ) is the Gaussian error function.

25



4 No. 841057

Since we are interested in the performance properties with one degree of

freedom, we shall let L-1, i.e., the signal occurs with probability one on

this sample. The objective is to find the probability of detecting this

signal at the output of a v-th order power law for a fixed false alarm

probability.

The false alarm probability is defined as

= 1 - Fy(y,/Ho), y > 0

where Y. is the threshold (value of y) where the desired false alarm

probability is maintained. For tnis case we find

1/v an - i 2].

The probability of detection (Pd) is therefore

Pd = 1 - Fy(y,/Hl)

21 -[€4-1(-a/2)/(1+SNR)1/2], y > 0 (2g)

wnere SNR a2 la .

Once a is fixed for each v the probability of detection is independent of

v and only depends on SNR. Therefore, the performance of all even order power

laws will be the same assuming Gaussian processes based on the probability of

detection criterion.
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Case (II) V OD

The odd order power law is given by

y = xv, v = 2k-i, k=1,2,.

For y > 0 and x > 0 the solutions of x are represented by

x = yINV exp(jn2r/v).

But there is only one real solution, viz., x = yl/v

For x < 0 and y < 0, the odd order power law is given by

-yl = -Ixlv , or Yj x under the conditions

0 < Yl <00, 0 < xI < 00

-00< y < O, -a*< x < 0

So, the probability density function at the output is given by

fy (y) [v y(v-l)/v]-  f (y1 v), y > 0

f Y ) - [ V Y v l / l f X1Y II N Y >

Integrating we obtain

y
F y (y) = fy(Z)dz f f (Z)dz +  fy(Z)dz

- 0 0

27
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- 1/2 + f(2w) - 1 exp(-g 2/) dy, or
"0

F (y) =4yl/V/0], y > 0

If we fix a threshold to tne right (y. > 0) we find for a,

= z 1 - Fy(yc/H 0 ) and

y1/v -

Under this threshold tne probability of detection is

Pd = 1 - Fy(y/H) = 1 -

which is also independent of v. As SNR approaches infinity, for y finite,

we obtain, lim Pd * 1/2.

With one threshold this is the best we can do. But for two-sided distributions

even-order power laws are usually employed. However, if we set two thresholds

located at y and -ya for y& > 0, then

a 2[1 - F y(y/Ho)], which gives the threshold value at,

y= =n 0(1- - a/2).

Tnen
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Pd = 2 1 1 - ,Z[(D-l(l-.12)l(l+SNR)l/2] ,

which is identical to the results for the even order power laws.

We conclude that for zero mean Gaussian processes there is no essential

difference in performance for the v-th order power laws based on the

probability of detection criterion, if two thresholds are set for the odd

orders. These results also hold true if L J 1.

An interesting question presents itself. Can performance improvements be

obtained by summing over a large number of samples (n large) compared with the

single degree of freedom case? For randomly occurring signals the answer is

not obvious, as would be so for purely Gaussian signals. By comparing

equations (29) and (19) under the same SNR and false alarm probability we find

that the FDK of case 1 can have higher asymptotic probability of detection

levels compared with the probability of detection for the single degree of

freedom case of equation (19), depending on the probability of occurrence (L)

of the signal. This conclusion also holds for the FDK of cases 2 and 3.

The probability of detection cannot be obtained for the FDK of case 2

with one degree of freedom since the joint distribution of the numerator and

denominator is unknown. This is also true for the FDK of case I if the

degrees of freedom are greater than two but not large enough to assume

Gaussianity. On the other hand, if cov(x 1x2 2) equals zero than with only

a limited number of degrees of freedom the probability of detection can be

obtained.

29
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We will now give several examples comparing the FOK of cases 2 and 3 with

the PSD. Figures 5 through 9 represent a comparison of the PSD with cases 2

and 3 based on the asymptotic probability of detection vs L for fixed SNR or

vs SNR for fixed L. In all the figures the false alarm probability is 10
- 3

and the sample size (n) is 2000. The results show that the FDK of case 2 has

a nigher asymptotic probability of detection in all the figures even for a

Gaussian process, i.e., L = 1. The last section gave reasons for this result

and other comments are given in appendix A. Under some situations the FDK of

case 3 has slightly nigher asymptotic probability of detection compared with

the PSD but only for non-Gaussian processes. Figures 8 and 9 clearly show how

the APO changes for the FOK of case 3 and the PSD as L is varied from .1 to

1.0. For a non-Gaussian process (L = .1) the FDK of case 3 has higher APO

levels vs SNR compared with the PSD. Whereas, the reverse is true for a

Gaussian process (L = 1) as shown in figure 9. These conclusions do not

change with changes in the sample size or false alarm probability.

In practice the asymptotic probability of detection for the FOK will be

closer to the results of case 2 if the correlation between x, and x22 is

nigh. On the other hand, if the correlation is zero or low then the FDK of

case 3 should be utilized instead of normalizing the fourth-order estimate by

an uncorrelated noise sample. This is true because the uncorrelated noise

sample tends to increase the variance and, therefore, reduce the APD.

IV. SIMULATIONS

Several simulations of the ideas presented in the previous sections will

be given to check the theoretical results. We will utilize equation (12) as
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the data model but here both real and imaginary parts will be included in the

simulations. Therefore, the real and imaginary parts, respectively, are as

follows:

XR(q) = NR(1) + mR(q)SR(q)

(27)
XI(q) - NI(q) + ml(q)Sl(q)

The SNR is defined as, SNR = E£SR(q) 2]IE[NR(q)2] ESI(q)2]/E[NI(q) 2

since both real and imaginery parts will nave identical statistics in the

following simulations. The power spectrum density is, therefore,

n

P(Fp) = (1/n):CXlR(q)2 + XI(q)2] (28)

q=1

and the corresponding frequency domain kurtosis estimate will be defined in

the following way,

Kz(F) = rKR(F) + K(Fp 2 ] 1/2 (29)z p Lz p z

Other estimates could be defined for the FDK depending on the intended

application. But equation (29) will be our basis for comparison with equation

(28) in tne simulations.

A. Simulation of Case 1

Tne real data example of figure (4) has already demonstrated the

usefulness of the FSK for case 1. Therefore, only limited examples will be

31
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presented. The parameters needed to define a particular simulation will be

denoted in the form (z, L, SNR, n), where z equals 1 or 2 depending on whether

tne FOK if case 1 or case 2 is being considered. The FDK of case 3 will not

be simulated here.

Consider the simulation (1, .005, 16.0, 200) shown in figure 10. The

data were generated using a 1024 point FFT. Tne top graph represents the PSD

expressed in equation (28). Tne lower graph is the corresponding FDK estimate

of equation (29). The signal only occurs once for each of 200 frequency

locations starting at frequency 100 during the 200 consecutive FFT data

samples. But the temporal location is random in each frequency and therefore

unknown. The resultant estimates have a form of a broadband signal. From the

raw data in the figure we see that the FDK estimate identifies the frequency

location of the randomly occurring signal but this information is not present

in the PSD estimate. This result was predicted in figure (3). So, the

simulation corroborates the theoretical results for the FDK of case 1.

Another possible application of these results is the identification of

the track of a signal tnat is changing its frequency with time. The

instantaneous frequency location could not be identified from the FDK but it

could possibly be deduced from the results. The usefulness of the FDK in the

application would nave to be carefully compared with tracking methods. Since

tnis would require a detailed study it has not been treated. But it does

appear that the FDK would be easier to implement. So a study is probably

warranted in the future. These considerations would also apply for spatially

tracked signals.
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B. Simulation of Case 2

In the following simulations we shall perform a detection experiment.

For noise only a threshold will be founa for the PSD and FDK by picking the

highest level in each case of the 512 frequency locations. Then for signal

and noise present the number of frequency locations in each case exceeding

their corresponding thresholds will be counted. Starting at location 100

there will be 100 locations with a randomly occurring signal present in this

simulation. Since the FDK of case 2 requires a noise-only second-order

estimate to normalize the fourth-order estimate of signal and noise, these

results may be of theoretical interests rather than having practical value.

On the other hand, if a noise-only second-order estimate is available which

was highly correlated with the noise in the fourth-order estimate of signal

and noise then these results would be of practical value. It should also be

pointed out that only a noise-only second-order estimate is needed ana not

knowledge of any particular noise sample.

Figures 11, 12, and 13 represent the results of a simulation of (2, .02,

4,200), (2, .04, 4,200), and (2, .08, 4,200). As before the PSD estimate is

in the top graph and its corresponding FOK estimate is in the lower graph.

The number of locations exceeding the threshold are 1, 6, and 34 for the PSD

ana 47,88, and 100 exceeded the threshold for the FDK in figures 11, 12, and

13, respectively.

The theory also predicts that the FDK of case 2 will have a higher

probability of detection compared with the PSD estimate even for Gaussian

processes. This result was checKed in the following simulation. The results
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of the simulation are shown in figure 14, unoer the conoitions (2, 1, SNR,

200) where SNR equals .1, .16, .25, and .4. The respective detection results

are 6, 13, 45, ana 97 for the PSD estimate, ana 52, 69, 99, and 100 for the

FDK estimate. These results obviously support the theoretical predictions for

knowledge of a noise-only second-order estimate. Appendix A points out that

if the PSO estimate is also normalized by a noise-only secona-order estimate

its probability of detection would appear to be better than the FDK's but the

false alarm rate cannot be maintained at a desired low level.

V. SUMMARY

Since signals often appear to occur ranoomly, especially in uncerwater

acoustic detection problems, ana the corresponding detector based on the

likelihooa ratio has a complex structure, fourtn-oruer an kurtosis estimates

were considerea as alternative processing metnods. These higher-oraer methods

were comparea witn second-oroer estimates for signals which occur ranaomly in

time and frequency and which could be described as a non-Gaussian process. It

was initially believea that a secono-order estimate was optimum for Guassian

processes. However, it was shown theoretically, based on the asymptotic

probability of detection that if a noise-only second-oroer estimate was

available to normalize a fourth-order estimate of signal and noise then the

resultant modified kurtosis estimate hao higher probability of oetection

levels even for Gaussian processes. On the other hand, if an indepenoent

noise sample is usea to normalize a secona-oraer or fourth-oraer estimate the

overall performance basea on the asymptotic probability of aetection will be

aegrauea comparea with unnormalizea secona-oraer or fourth-oraer estimates,

respectively. Only it there is positive covariance between the normalizing

noise sampie ana tne secona-oraer or fourth-oraer estimate can pertormance be

improved. This result could impact current sonar processing methods.

Simuiations were presentea which support these results.

34



TM No. 841057

REFERENCES

I. J. 1. Marcum, "Studies of larget Detection by Pulsea Raaar," IRE Trans on

Inform. Theory, Vol IT-6, No. 2, (pp 145-267) April, 1960.

2. T. S. Ferguson, "On the Rejection of Outliers," Proceeoings of the Fourth

Berkely Symposium on Mathematical Statistics ana Probability, pp 253-287,

University of California Press, 1961.

3. R. F. Dwyer, "The Use of the Kurtosis Statistic in the Frequency Domain

as an Aid in Detecting Random Signals," IEEE Journ. of Oceanic Eng.,

Vol. OE-9, No. 2, (pp. 85-92) April 1984.

4. A. H. Nuttall, "Optimum Detection of a Randomly Frequency-Mooulatea

Carrier," NUSC TR 6177, 2 October 1979.

5. P. D. Welch, "The Use of Fast Fourier Transform for the Estimation ot

Power Spectrum: A Method Based on Time Averaging over Short, Mooifieo

Perioaograms," IEEE Trans. on Audio ana Electroacoustics, Vol. AU-15, No.

2, pp. 70-73, June 1967.

6. M. J. Hinicn and C. S. Clay, "The Application of the Discrete Fourier

Transform in the Estimation of Power Spectra, Coherence, ana Bispectra of

Geophysical Data," Reviews of Geophysics, Vol. 6, No. 3, (pp 347-363)

Aug. 1968.

35



TM No. 841057

7. K. N. Helland and M. Rosenblatt, "Spectral Variance Estimation and the

Analysis of Turbulence Data," Phys. Fluids 22, pp 89-823 (1979).

8. R. F. Dwyer, "Detection of Non-Gaussian Signals by Frequency Domain

Kurtosis Estimation," IEEE International Conference on Acoutics Speech,

and Signal Processing, IC-ASSP-83, pp 607-610, 1983.

9. R. F. Dwyer, "A Technique for Improving Detection and Estimation of

Signals Contaminated by Under-Ice Noise," J. Acoust. Soc. Am. 74(1), pp

124-130, July 1983.

10. H. Cramer, "Mathematical Methods of Statistics," Princeton Univ. Press

1951, Chapters 27 and 28.

11. E. S. Pearson, "A Further Development of Tests for Normality," Biometrika

16, pp. 237-49-1930.

36



TM No. 841057

APPENDIX A

SELOND-ORDER ESTIMATES

Let the power spectrum density estimate ot equation (14) be normalized by

a noise-only second-order estimate as follows:

n n

PkFp) = Xl = (1in) [x(q)/H 1]
2 /4j(1/n)" [x(q)/Hoj 2}  (Al)

q=1 q=1
Asymptoticaily, P(Fp) will also converge to a Gaussian process, unoer H1 ,

according to Cramer's [10j convergence proof.

Employing the data model of equation (12) we obtain the expectea value of

equation (Al) as

E[P(Fp)j = I + L SNR.

The components of the variance of equation (Al) are as follows:

VARLX I] = (1/n) [2N 2 + 4L SN + (3L - L2) S2 ]

VAR(X 2] = (1/n) L2N 2]

F1 = 1/N

F2 = - (1/N)(1 + L SNR)

COV[X 1 X2] = (1/n) 2N2

Therefore, the variance of equation (Al) is given by

VAR[P(Fp)J = (1/n) a8 ,

A-I
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where, a8 = O3L + L
2) SNR 2 + 4L SNR.

As SNR approaches zero VARLP(Fp)] also approaches zero. This result

makes sense, because when the SNR equals zero P(Fp) equals one, ano

therefore its variance would equal zero.

From equation (13) we obtain the result

APD = 1 - D[- L SNR n/ a8]

As SNR approaches zero the APD approaches .5. However, to avoic

complications in the limit we will assume that SNR approaches zero but coes

not exactly reach it under H0 . This can be stated more precisely as

toilows: As Hl * HO, SNR * 6, for 6 << 1, and APD * .5 + D(6), where

D(6) * 0 as 6 * 0. This result also establishes the limiting false alarm

probability of .5 for equation (Al). Therefore, the false alarm probability

cannot be controlled at a desired low level. On the other hand, the APO woulo

have higher levels comparea with the FDK ot case 2 as a function of SNR. This

may not be of interest, however, due to the high false alarm probability.

If we now let the PSD estimate of equation (14) be normalizea by an

uncorrelatea noise-only second-order estimate, say from an adjacent frequency

location, which woula give COV(X 1,X2) = 0, then the mean aria variance

would be as follows:

ELP(Fpj = I + L SNR

VAR[P(Fp)j - t4/n) Q3,
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where, Q3  Li + 2 L SNR + k3L + L2 ) SNR 2/4j.

These results give an APD of the form

APO =1 L SNR-. -/-- s,T]iQ ' /2 (A2)

The false alarm probability can now be maintained at a desired level.

But, for small SNR levels, i.e., SNR 2 << 1, the APD of equation (A2) will be

lower than the corresponaing APO levels of equation (15) for the same false

alarm probability. This is true because of the factor v/n- in equation (A2).

If L equals one, then the APD of equation (15) will always be higher

inoepenoently of SNR. For high SNR there may be values of L where the APO of

equation (A2) is higher but the factorvJ/ must be overcome before this is

true.

A-3/A-4
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APPENDIX B

VARIANCE OF THE FDK ESTIMATE OF CASE I

Here we present the major points for the derivation of the variance based

on Cramer's method L10J for the following equation

K1 (Fp) = XI/X 2 1

n n q2

wnere X1 = (1/n)qF, X(q) 
4 , and, X2 1 = 1(1/n) l X(q) 2 1

From section fI the form of the variance is known and it can be expressed

as,

VAR[K (F = VAR(XI)F1 2 VAR(X 2 1)F2 + 2F F2 COVXIX21] . (Bi)

Tne covariance plays an important role in minimizing the total variance

of equation (Bi).

The partial derivatives F1 and F2 of equation (BI) are as follows:

F1 = aK,(F p)/aX1  X1 = 1/ 1(1/n)LX(q) - (X(q) )]+ (X q))

X2 1  21

where the overbar, when used, will represent the expected value,

... 2F 2 " KI(F p )/3X21 Xl 1 XI -X(q) /'n) LX(q) (X(q) (x(q)

X21 = 21

B-1
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The terms VAR(X1 ) and VAR(X 2 1) can be expressed in the form

4 2VAR(X 1  (1/n) LX(q) - (Xq) )]

VAR(X2 1) = (4/n) [X(q) - (X(q) (X(q)24

if the terms which converge to zero faster than (1/n), i.e., 0(1/n 2  are

neglected.

The covariance is defined as

COVLX1X2 1] = E(X1X21 ) - E(XI) E(X21)

If X, and X21 are independent, i.e., E(XIX 2 1) = E(X1 ) E(X21) then

COV(XIX21) = 0.

From the definition of X1 and X21 we obtain

n n X)22

COV(XIX 2 1 1HI) = EI(/n) X(q)4 (/n) F X(q) 2

q=1 q=1

n n 212
- E[(1/n)qE1 X(q) 4]ElI(i/n)F- X(q) I

q=1 q=1

where we have indicated that the denominator contains signal and noise by H1

in the covariance expression. We do this to distinguish between case 1 and

case 2 of tne FOK whicn contains only noise in the denominator. By neglecting

terms of order 0(1/n 2) we ootain

L-2
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COV(X 1X2 1/H) (2/n)) X(q)- x(q) - X(q) (X(q)

Substituting all the terms into equatin (Bi) we obtain

I ___ - -4

VARLK1(F~) p (1/n) X(q) _ (X(q) )] ][X(q)7]

+ 4iX(q)4 (X(q)2)2  (X(q)2)4](X(q)4)2 X(q7)-8 (B2)

4 -X(q) X (q)7- X (q) (TX (q) ) 2 q (X(q) -

In order to express equation (B2) in the desired parameterized form the

data model of equation (12) is suostituted into each term. But instead of

doing tnis for each term, only the general term of equation (B2) will be

evaluated. The other terms will follow in a similar way. Therefore, we shall

express VAR(XI) in parameterized form. The most general term is

VAR(X 1) = - (X(q)4)2  (83)

From equation (7) the first term of equation (B3) is

wnere we nave defined the operator

81 M- 1 M-1 M-1 M-1 M-1 M-1 M-1 M-1

i1-0 2-0 i3E0 i4=0 i5=0 i6=0 i7=0 i8=0

cos(Fp1 3) cos(Fpi4) cos(Fpl 5) cos(Fpi 6) cos(Fpi 7) cos(Fpi8 )

B-3
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and wnere eacn X(i) is also a function of q, i.e., X(i,q) = N(i,q) + M(q)S(i,q),

Dut tnere is no need to express tnat fact in the equation.

Since N(i,q) and S(i,q) are Gaussian OP81 1 can be expanded as follows:

(I/M4) OP84 ELX(i) X(i2) X(i3) X(i4) X(i5) X(i6) X(07) X() 1

a105 N4  L 420 S N3  630 L S2 N2 + L 420 N S3 + L 105 S4

wnich is not a function of the transform size M. By defining 0P4 I for the

second term and proceeding in a similar way equation (B3) reduces to

X(q)8 - (X(q)) 96 N4 + 384 L S N
3 + (612L - 36L2) S2 N2

+ (420L - 362) S3 SN + (105L - 912) S4

Tne other terms are obtained similarly. These results are then

substituted into equation (B2) to obtain equation k17), which is also not a

function of the transform size M.

i4

B-4

LOS-.



0
* , .I 

-

* SI -- - - - - -

, . ... "s.iW .... I
I I I I I -1.s " I I H I I

C)
- - - - - - - - - -

* H,= o I 
- - a - I *

* I i II ii i i i I * W
- - - - - - - -... - - - - - - - - - - -... - - - - - - -

cO,~~- - -... .L-
---- -i- - -. I ---i-i

I I I I -- -- I t

* i e.%
, .... II I I.. ,it ..
S i i I i I I I I S

. . . .I o cc
* I i i i* i 9 i I S
S I I I I I I I I I S

I , i , I - - ' - I I I I IP l

r- . . II-..--- - -- - - - - - - - i

* 1 II I I I I I S

- - - - -- - - - - - - - - - - - -

* I I I I 'rI a. I I I S I

I i I

LOw

* I i ii I I i i I

. . . . .- - . . . . . .- -. . . .- - . . . . . .- -- --- - ---- ------- -- - - -- --. . . ., . . . C.. . L. . '

* I I I I -J % .i iI I I

O--- --- , ------ - --------- -- ---

I ,o". I I9.y =I " I I I "

, ... -- .- . --- ------

---------

* I ilI IS%'- . 1_ . - I i i I .S

I~ i . .. '-S.

* I I

5-----------------

nii

- I -

I~C I I m

* ~~S 1 A I I **.q* l- I I



;" .....~~~~~~~ -.. .. - -. . -..... -... -. . -.. .. I .. .. -. .. - " - ....-

-- - - - - - L -- - -- -- -- -- ------ -"- ---- ------.., . . . . .. .. .
JzlJ.

cJ
-~-~0 ~ --

* i i i i i I i I
* I i I ,Q,= I I I I
* I H I I .. . . . .p Ii i S
* I I . I i I I

* I I i I . .e - ,, $ , $

Iiiii i i 6

- - - - - - - - - - - - - - - - -- - - -- - I - - - z

* I I I 9 - I I I S

i i - - --- --- -- -I

* I 9 9 9 .. I I I I I

* I I I -w JC i , ,
* . . . -I . .I . . . . I . . . I _ _ " _ ri _ I i I I

L- - - - - - -- 1 --- ---- -- -- -------

* - . . , . ... -, .. .. 4 -.. =.-= .. . . . . -.. .. .. ..-

I -.=piii I I S l

* I I 9 I I I I I
* I , I - - - I.

I S.

S I I I I 9 I I I I I'

--.----- - -------- .

1 -* T - - - - - , I "

Iii - i. i I

* i I I 9 9 l I 9

- ------ ------- -- --- - - ---- - ...... ---------

* I i I i I . 1 9 I *

* I9 9I

-- - - - - - Vt.:- - - ttt

-O .4 04.M

(S4IOA) 3c]nl'ldYV

-. J-J



N

z~ LL

0 . 0

7-a

10

Nol1~~~±~~a 00 m~lS9~ IONS

*1L



-7 5 ----------------------- --- ---- ------- ,- ----------------3 0 0 -4 0 0 H z B a n d

:, 2 Hz Resolution
5 80April 23

_ -95. - .....- 23:31:00 GMT

2 ~ iis:------------

-1 0 5 ' --------- ---- -- -- --- -- - -- -- ------" ---- ..... . .. .... .. . . ... ...... .... --------- -------

W 0 .125 .25 .375 .5 .625 .75 .875
FREQUENCY (kHz)

11 0 -- ------ ------- -------............. ............. ....................... .... ...
110. ------------------------ --------

1 9 0 } -- ----------- ...------------- .-------- --------------- .------ .. ........................ ............

S 80 ........------------70;,
60. -0 ------------- - - . .........................ft 6 ; ................ . . . .;" ". . " .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 ........... , ...... ...... .. . ... ..I.. .o,°oo~ 6 .............. .........----.....---.....-----........ .......................... ........
5 t- ------- ----- ....... -- -- -- ---- --- -- --- -- -- --- ---

f l eA ' ' - t

............. ............ 
;........ : . . . .i - t. . . .J. . . . . . . . . . .". . ....

2 0 i . .. . ... ... .. ... .. ... .. ... ..

1 0',i ........... ............ .. ... , -" t 1 -.1. '4 "0 . ..... .". . . .. . . . . . . . . . .

0 .125 .25 .375 .5 .625 .75 .875 1
FREQUENCY (kHz)

Figure 4. Real Arctic Data: Top - Power Spectrum Density Estimate;

Bottom- Frequency Domain Kurtosis Estimate
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