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ABSTRACT
N/ >

Several detection statistics are compared in the frequency domain based
Thrue
on the asymptotic probabiiity of detection criterion. -Fhey include,

T™ No. 841057

secong-order, fourth-order, ana two forms of kﬁrtosis estimates. The results
show that for randomly occurring signals or non-Gaussian signals, the
fourth-order and kurtosis estimates can have higher asymptotic probability of
detection levels comparec with second-order estimates. B8ut, only for the
kurtosis estimates do the results seem significant. Moreover, 1t a
second-order estimate of the noise is available to normalize a fourth-order
estimate of signal and noise, the resultant moaifiea kurtosis estimate has
higher asymptotic probability of detection levels even for Gaussian signals.
This result only holas when there is a significant positive covariance between
the numerator and the normalizing noise sample in the denominator. On the
otner hana, if an independent noise sample is used to normalize a second-oraer
or fourth-order estimate the overall performance basea on the asymptotic
probability of detection will be degraaed compared with the unnormalized
second-order or fourth-order estimates, respectively. This result couia

impact current sonar processing methods. e
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I.  INTRODUCTION

In this paper the performance of several detection statistics are
compared based on the asymptotic probability of detection criterion. The
likelihood ratio (LR} is considered a general method for deriving optimum
detection statistics or receiver structures. However, the particular form of
the likelihood ratio may not be practical to implement, or, on the other hand,
the circumstances under which the LR is designed may change. In these cases
it may be of interest to consider detection statistics other than second-order
which may have better performance characteristics for non-Gaussian signals.
The emphasis is on detection here, but, kurtosis estimates can also
distinguish between Gaussian and non-Gaussian signals. In applications this

is an important property.

To motivate our analyses to follow the form of the LR will be derived
under conditions which can be supported by physical evidence. But, as has
been suggested already, the actual LR statistic for any particular condition
will not be analyzed in the paper. Rather, we will be interested in a
statistic which may be applied to a wide range of situations where

non-Gaussian signal may arise.

Let there be available a set of N independent and identically distributed
(i.i.d.) samples, as depicted in figure 1. The joint probability density

function (pdf) for these samples may be written as

f(xl, Xps o o o» xn) = x fl(xi) (1)

ial
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Equation (1) will represent the noise only hypothesis and will be denoted by
HO.

Now, if in the set of N independent samples some belong to another
probability distribution, say Fz(x), representing the signal and noise and

identified by Hl' as depicted in figure (2), then the 1ikel ihood ratio for

the N samples would be given by

LR = g(x3, X5, « « oy xn)lf(xl, Xps o « o3 Xp) (2)
where g(xl, X2s o+ s xn) represents the joint pdf for signal and
noise. Before giving the form of equation (2), consider the case when only

one sample pelongs to F,(x) out of a possible set N.

In tnis case, from the Vaw of total probaoility the joint pdf of signal

and noise is given by for independent samples

N
g(xl, Xos o+ ¢ o xn) = Pl fz(xl) 122 fl(xi)
N

" Py Filx)falxg) m o filxy)
+
Lo K (k) 00) ¥ f0x;)
+P, = f,(x;) f(x r  f,(x,
+
) N-1

* Py fz(xN) i:1 fl(xi) . (3)
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where, P, - 1,2, ..., N, is the probability that the k-th sample

belongs to F,(x, ). By forming the LR between equation (3) and equation

(1) we obtain

LR =Z P Lf,(x )If (x)] - (4)
K<l

Theretore, the LR of equation (4) is formed by averaging the indiviaual
sample likelihooa ratios over all possible sample positions of the signal. If
it 1S known when the signal, belonging to FZ(X)’ occurs, say the k-th, then
Py = 1 ana, therefore, LR = fp(xi)/fi(xc). Thresholaing is
sometimes usea to establish when the sample belonging to Fz(x), i.e., the
signal, occurs. But this method will not be considerea here since it appears
to presuppose the solution before it can be derived from fundamental

principles.

The 1ikelihoog ratio of the more general case of M samples belonging to

Fo(x) can be written as follows:

N-(M-1) N-(M-2) N-1 N

_ MI(N-ML) Z Z Z Z fs(xKl, xKZ, cees xKM.), (5)

K= KZ-K1+1 Kuo1= Kmoz*? Kw=Ku_1*l

where, f (X, 5 Xy 5 sees X, ) = Fo0%, Jto(x, ) ouw Folxy J/F(x, ) folx, ) ooe fofx, )
s K1 K2 KM 2 K1 2 K2 2 KM 1 K1 1 K2 1 KM

and it was assumed that the probability of any particular configuration was

equally likely, i.e., PK K Ko = Mi{(N - M)I/NL. Therefore, the LR
172 "M

of equation (5) is formea for the N sampling positions by averaging over aill

possible combinations of the M samples containing the signal.

s
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If M = 1 equation (5) reduces to equation (4) with Py = 1/N. However,

if M = N then equation (5) reduces to

N
LR = ¥ [fZ(x1)/fl(x1)] ’ (6)

1=

which is the form of the likelihood ratio treated by Marcum [1, p. 209].

These results can also be extended to include dependent samples. For
example, for Markov dependence, equations (4) and (5) will be functions of
conditional probability densities and the LR structure will be, therefore,

more complicated.

From these cases it appears that the form of the LR depends upon what is
known about the occurrence of the signal over the interval in addition to the
usual requirements of knowledge of the pdf's. If we design our receiver based
on equation (6) and the signal occurs only for a percentage of the N samples
then we would expect the performance of the receiver to be degraded over what
could be achieved under the proper likelihood ratio formulation. Therefore,
the LR based on equation (6) may not lead to the optimum detection statistic
for randomly occurring signals. This has been shown to be the case by
Ferguson [2] where skew and Kurtosis estimates were optimum statistics under
suitably chosen conditions. Since in practice the previously derived LR
structures may be too costly to implement this paper will compare various

forms of the kurtosis estimate with a second-order estimate. These statistics

will be simpler to implement but also may lead to improved performance.

NPV 5 10, A ADEPEle < (-
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[I. ASYMPTOTIC PROBABILITY OF DETECTION

The introduction considered signals which could occur randomly over a
sample set N in a one-dimensional space, or only over discrete temporal
locations. Often in applications it is desired to operate on signals in the
frequency domain. Tnis domain would allow signals to occur randomly in
two-dimensions, vis., frequency and temporal locations. An application to the
ice-induced signals was discussed by Dwyer in reference {3]. This idea can
also be extended to three-dimensions by taking into account the spatial
locations. Here we formulate the problem in the frequency domain but the
basic properties would be applicable in any dimension. The higher dimensions,

nowever, would offer more opportunities for the signal to occur randomly.
tet x(i,9) = x{(i*(a-1)MIn} , i=0,1,...,M-1, g = 1,2,...,n,

represent real discrete data with h representing the interval between
consecutive samples. The discrete Fourier transform (DFT) is defined as

follows:

M-1
x(q,Fp) =\[h/M Y wix(l,q) exp(-jFpi), (7)
i=0

where, j =4/-1, Fp = anpn is the p-~th radian frequency component,

p=20,1,...,M-1 and fp = P/Mh Hz. For simplicity, 1et the window weights

equal one, i.e., Ni =1, i«0,1,...,M-1, and h = 1.
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Tne time domain data will be represented as an additive sum of signal and

noise of the form,
x(1,9) = N(i,q) + m(i,q) S(i,q) (8)

where the noise N(i,q) and signal S(i,q) are zero-mean Gaussian process. The
function m{i,q) modulates the signal in such a way that the frequency domain

reprasentation will be a non-Gaussian process {3].

Nuttall [4] considered a signal that was modulated by a random constant
and, therefore, was not a function of time. This kind of modulation as was
found by Nuttall would not lead to a non-Gaussian process based on the model
and, therefore, the LR of equation (6) would be appropiate. In contrast, the
modul ation function of this paper is a random function of time over the
detection interval and leads to non-Gaussian process. This model is supported

by real data measurements as discussed in reference [3].

The power spectrum density (PSD) wnich represents a second-order estimate

is defined as [5,6]

n
P(F,) = (L/n) q‘él x(a,F,)x*(a,F,), (9)

where the asterisk represents complex conjugate. The asymptotic variance of
power spectra and complex cross spectra were discussed in reference [7]. The

parameter n is sometimes called the degrees of freedom of the estimate.
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Let the frequency domain Kurtosis (FDK) estimate (3] be defined for real
and imaginary parts of equation (7) separately. We can therefore discuss the
tneoretical properties of the FDK for its real part only. The imaginery part
has, identical properties. In applications both real and imaginary parts are
estimated, since both contain information. In addition, the real and
imaginary parts of the FOK estimate can be combined to form one statistic,
say, for example, the magnitude. But these considerations are not expected to
change tne conclusions to follow in any significant way. Although, a
performance improvement based on the magnitude of the FDK estimates over the
real or imaginary part separately would be expected compared with the PSD. An

example for the magnitude of the FDK estimates will be given later.

Tne FUK estimate for the real part of equation (7) is defined assuming

tnat x(q,Fp) is a zero-mean process as

n n
2
K(F) = (1/n) 2 [x(a, F )J“/g(un) Y x(a.F )st . (10)
P q=l % q=l p

If x(q,Fp) is not a zero-mean process then the mean would be estimated
from the data and subtracted from x(q,Fp), So, therefore, the mean can be

accounted for in principle and need not concern us further.

The asymptotic probability of detection (APD) introduced in reference [8]

will pe derived for three specific cases of equation (10) and compared with

the APD results of equation (9). In case 1, the numerator and denominator of
equation (10) will contain signal and noise as shown in the data model of

equation (8). Tnis was tne form of the frequency domain kurtosis estimate

11
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used in the real data analysis of reference [9]. For case 2, the denominator
will contain a noise only estimate. The raesults of this case are of
tneoretical interest. However, some comments concerning implementing this
case will be discussed later. In the last case the denominator of equation
(10) will be set equal to one. Thus, case 3 represents a fourth-order moment

estimate.

Since only the real part will be treated theoretically, we shall write

equation (7) as follows:

x(a.F)) = (1M)7°° 3 N(i,a) cos (F i) *m(a) 2 S(i,a) cos (F i), ")
1= 1=

where m{i,q) was assumed to change slowly with i and therefore, could be w

approximated as m(i,q) = m(q).

To simpl ify notation equation {11) will be expressed for a particular

frequency as,
x(q) = N(q) *+ m(a)s(a). (12)

where N(q), m(q), and S(q) are mutually independent. In addition, x(q) will
be assumed a zero-mean process and statistically independent, i.e.,
E[X(ql)x(qz)] = 8(qy-q,) E[x(ql)z]. Where s(q;-qp) is the

Kronecker delta function. The independent assumption is needed in order to
evaluate the variance of equations (9) and (10). However, the time series
x(1,q) with respect to i may be considered dependent. This point will be

discussed more fully later.

12
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! Tne modulating term m(q) will be modeled as a pernoulli time series [3]

f defined as follows:

i

i

g 1 ; Pgm(a) = 1} = L 4
! m(q) = }
§ 0 M Pr{m(q) = 0} =1-~1L. 4
1 Therefore, all moments of m(q) are given by E[m(q)"] = L,

r=1, 2, ... . Thus, m(q) modulates the signal, in the frequency domain at a

{ specific frequency, by turning it on or off over the detection interval. The

probability (L) of the signal peing on will be a parameter of the performance

resul ts.

The asymptotic (n »w) behavior of eguation (9) and (10) can be obtained

from Cramer's convergence proofs [10].

For a function F(xl,xZZ), z =1, 2, 3, of two central moments xp,

X5,, from a one-dimensional sample corresponding to equation (9) and (10)
Cramer has shown tnat as n »w, F > N{E(F),var(F)} , where N{ , } represents a
normal process with mean and variance given by, respectively,

ECF] = FLE(x}),E(x,,)] + 0(1/n),

2 2
VAR(F] = VAR(xl)F1 +,VAR(x22) F2

+ 2F F.COV(x 312y

1'2 ) "'0(lln

1 %21

The parameters Fl and F2 are partial derivatives of F, i.e.,

F;, = (aF/axy) , and, F, = (aF/ax,_)
1 1 Xl = E(xl) 2 2z X2z = E(Xzz)

13
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In tne following analysis we shall replace F by P for the PSD and replace

F by K for the FDK when evaluating their respective means and variances.

Since tne asymptotic process is Gaussian, the asymptotic probability of

detection (APD) can be written as follows:

AP0 = 1 -9487H(1-a) og(F)/oy(F) * [E4(F) - E/(F))/oy(F)} , (13)

where, Ei( ), ai( ) are, respectively, the mean and standard deviation of

the noise only process when i = 0, or the signal and noise process when
i=1. 0{ } is tne standard error function and a represents the desired

false alarm probability.
III. THEORETICAL OETECTION PERFORMANCE RESULTS
A.  Power Spectrum Density

Tne power spectrum density (PSD) estimate for the real part of equation

(9) is given by

n
P(F) = Flxp,l) = (1n) 3 x(@)® . (14)
p &
The required components of the APD are
ECP(F,)] = N1 + L SWR), VAR [P(F))] = (1/n) an? a,

where, N = E(N(Q)%], S = E[S(q)?], SMR = S/N, and

ap =1+ 2L SR+ [3L - L%)/2) SWR?,
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Recall that the variance of the periodogram, as well as equation (14),

does not decrease with increasing transform size M [6]. We shall prove later
that the variance of the FDK is also independent of M and like the PSD both

variances decrease proportional to (1/n) if n ., sufficiently large.

By substituting the above parameters for the PSD into equation (13) we

obtain
APD = 1 -{@(@7(1 - o) - L SRUTAZILE) (15)

Equation (15) will be evaluated for specific values of the parameters and

compared with the results for the FDK of case 1 in the next section.

Another point should be mentioned concerning the PSD before proceeding.

Later we shall discuss the performance of a fourth order estimate normalized !
by a noise only second-order estimate, which is designated as case 2. This
procedure leads to higher APD values compared with all other cases including
the PSD even for Gaussian processes. It is believed the reason for this
depends on the noise only second-order estimate normalizing function. But,
the PSD can also be normalized by a noise only second-order estimate. When I
this is done it appears that the PSD would have a larger APD for Gaussian
| proceses. However, the false alarm probability cannot be controlled at a
satisfactory small level but is fixed at .5. A proof of this is given in :

Appendix A,

-

'3 15
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B. Fregquency Domain Kurtosis, Case 1

From the results of the previous section tne FDK can be expressed as

follows:

where,

n
x; = (1/n) 2 x(a)4 ,
q=1

n

2

Xy, = [(1/n) 2 x(@)°]
g1

Therefore, for z = 1, case 1, the asymptotic expected value of equation

(16) reduces to

Vim €Lk (F )] = ELxp/xp ) = ECx(a) *1/ELx ()]
n>» o0

Since all our results are asymptotic (n » ) we shall not explicitly

indicate the 1imiting process in the following expressions.

Using tne data model of equation (12) the expected value of kl(Fp)

can pe put in the parmeterized form

2
ECk (F )] = 3 ayfa ’,

(e RO T

L. S

Al
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where, a, = 1 + 2L SR * L SNRZ, and ag=1+L SM.

The derivaton of the variance of equation (16) requires evaluating
several components. Some of them are tedious calculations. Therefore, the
main points of the derivation will only be outlined nere. The details of the

derivation will be found in Appendix B.

Based on Cramer's [10] convergence proof tne form of the variance of

Kl(Fp) is given by

VAR(K) (F))] = VAR (x;) Ff * VAR(x;) Fg

+2 F1 F2 cov(x1 x21) .

where,
Fo o= (2 ky(F.)/ax;) erx(@)2)
= (3 X =
1 1\Fp/ /3% |x1 - E(xy) x\q

-4
F,o= (3 ki (F )/3 x,;) = E0x(0)*] e[x(@)?d] .
2 17p?/2 %21 |*21 - E(x,y)

The other components are given by

VAR(x) = (L/n) VAR[x(a)*]
n n 2
VAR () = E)m/n) > x(q)2]4z -’Eitum ) x(q)zlzf‘
q=1 q=1
cov[x1 x21] = E(x1 x21) - E[xl] E[x21]

n n n
= Eg(lln3) :E: :E: }E: x(ql)4 x(qz)2 X(q3)2f

qlzl qzal q3=1

17
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n
-€(x(0)*] Ej[(l/n)}i: x@)?)? f :
q=1

By expanding the components further we obtain,

2]4

AN Nl A e

VAR(K (F )] = (1/n)’ vaR[x(a) *1/ECx (a)

+ 4; Elx(a)*] E0x(a)23% - E0x(a)21% | elx(a)*1%/ECx(q) %18

- 4{ E(x(2)] E0x(a)?] - ECx(9)*] E[x(q)ZJZI/E[x(q)ZJG‘ :

e iy Yt A, 3.

Substituting the data model of equation (12) into the above expressions

the desired parameterized form for the variance of case 1 reduces to the

following. ;
VARCKy (Fy)] = (1/n) @y , (17) :
where,
Qq =96 U] *+ 72D, ~ 144 D3
D) = aylag

ag = 1+ 4L SR + (612 - 36L%)/96] SWRZ + [(420L - 36L%)/96]5MR>
+ [(10SL - 9L2)/96] SNRY

(ag/a3) (1/8) [18 - 10 a3 ag/a,]

~n
[ |

1+ 2L SNR + [4L% + 6L)/10] SNR?

[
(3]
[ ]

v il it "

18
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03 = (a3)ad) (1/12) [15 ag(1 + L SMR)/ag - 3 a3/ay]

ag = 1+ 3L SM + 3L SWRZ + L SN,

Qa7 cma v g -a - = o

Under the noise only case (SNR = 0) or when L equals O or 1 the variance

of case 1 asymptotically approaches,

$50) S TS

VAR[kl(Fp)/HOJ = 24/n (18)

D= 7w

Tnis s the result obtained for a Gaussian process by Pearson [11].

Now we are in a position to express the APD for the FOK of case 1. The

result is given by
APD = 1 -#{v24 #71 (1 - a) *+ 3(1 - ap/ag)/mla}/3. (19)

For L equal to O or 1 the APD of equation (19) equals the false alarm

probabil ity so detection is not possible under these conditions. Detection is

T N RPNV T W [T TP L B en O v I - VI . s e 0P

also not possible for the PSD when L equals zero. But unlike the FDK of case

1 tne probability of detection for the PSD is maximum when L equals one. The

FDK of case 2 will also have this property. This means that kl(Fp) as a

detection statistic is only sensitive to non-Gaussian (0 < L < 1) signals.

An example will demonstrate these results more clearly. Figure 3
represents a comparison of the PSD and FDK of case 1 as a function of the
probabil ity of occurrence (L) of the signal for several SNR values. The

figure snows that the FOK can nave a higher probapility of detection <‘ '

19
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depending on SNR for small values of L only. As L increa§es the probability
of detection for the PSD increases with L and will surpass the probabil ity of
detection for the FUK of case 1. As L approaches one the probability of
detection for the FDK of case 1 decreases and approaches the false alarm

propabil ity (a).

A real data example will put these results in perspective. The following
example has been explained in reference {3]. It is from Arctic under-ice
environmental data. Figure 4 compares the power spectrum density estimate and
the real part of the frequency domain kurtosis estimate for a segment of
Arctic data. Both estimates are averaged over many consecutive FFT
estimates. We shall concentrate on the frequency with the highest kurtosis
estimate and a corresponding small PSD estimate on the figure. From the
theoretical results we know that the signal causing the high kurtosis 1evel
only occurs a small percentage of time and when it occurs it probably has a
nigh SNR 1evel. Tnis conclusion could not be reached from the PSD estimate
alone. Therefore, the FDK estimate of case 1 contributes additional
information. So, the usefulness of the FOK estimate of case 1 cannot be
determined from its probability of detection performance 1evel alone. But
must be evaluated in terms of contributing additional information which the

PSD estimate is insensitive to.

For the next two cases of the FDK we will explore ways of improving its

probabil ity of detection. But, on the other nand, this procedure may

sacrifice the information content of the FDK estimate.

. “.-;ui., R
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C. Frequency Domain Kurtosis, Case 2

For this case tne denominator of equation (10) contains a noise only E
second-order estimate. The FDK estimate of case 2 follows from equation (16)

as

it i

Ka(Fp) = x1/x95, (20)

Tne derivations of the following expressions are similar to the

derivations for the FOK of case 1. Tnherefore, only the main points of the

derivation will be explicitly stated in the following.
For sufficiently large n, the expected value of equation (20) is given by

ECkp(Fy)] = ELx(q)4/Hy 1/ ECx(a)2/Hg] 2 (21)
wWhere we now signify which hypothesis the expected value is conditioned

on. By substituting tne data model of equation (2) into equation (21) we

obtain the parameterized result,

E[kz(Fp)] =3 a, (22)

The variance is given by

, VAR(K,(Fp)] = (lln){ W\R(X(Q)4/H1]/E[X(G)ZIH0]2

+ 4 e0x(a)*/my 32 { erx(a) gl Eix(@)2Hp)? - ECx(@) 2Hg) *HrECx(a) Pk

21
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-Z{E[x(q)4/H1] / E[x(q)ZIHOJG}{

n n
eC(Ln) D Cx(@) 3 L) Y xt)?img1n?

g=l q=1
n n

-EL(Ln) D @t ECm) 3 x(q)zmolzf} : (23)
q:l q=1

The last term of equation (23) represents the covariance of X1 and

X290, i.e, cov[x}xpp]. If the noise only estimate xp, was

statistically independent of x; then the covariance would equal zero. This
may happen if the noise estimate is from an adjacent frequency location or
from another interval of time. This would change the APD performance results

considerably.

Employing the data model we obtain the parameterized resuit

VARCK,(Fy)] = (L/n) Q, (24)
wnere Q) = 96 a4 *+ 72 a% - 144 a5 aj.

If tne covariance is zero tne tnird term of 02 would be zero giving a

higher variance for kz[Kz(Fp)]. Now the role of the normalizing
component, x,,, is clear. If xp, is correlated with the noise component

of X tnen tne effect is to reduce the variance of ka(Fp).

The APD of case 2 also shows this relationship.

APD = 1 -«p{[\fﬁ ol (1L -a)-3 anﬁ]/oyzf , (25)

22
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where a; = 2L SNR + L SNRZ.

Tnerefore, if Qz is minimized the probability of detection can be

improved. Tne APD is maximum for the FDK of case 2. In practice a partially
correlated noise sample might be available to improve the detection
performance of the FDK estimate. An example will be given later to
demonstrate the idea. But before given examples of the results of case 3 will

be given.
0. Frequency Domain Kurtosis, Case 3

Recall, for this case the denominator of equation (10) is set equal to
one. The derivations of the mean and variance of case 3 are similar to the

previous cases so we will only present the results.
The expected value and variance for the FDK of case 3 are given by

2
3N ay;

(1/n)(96 N4 a4)

ECK3(F,)]

VAR[K3(F )]

Tne APD follows as

APD = 1 -@i[é'l(l -a) - 34 \/F/V%]/\/a:i : (26)

At tnis point it is appropriate to consider the performance of a V-th
order power law using tne data model of equation (12). Recall that both N(q)

and S(q) are assumed to be statistical independent and zero-mean Gaussian

23
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processes. Here we shall utilize one degree of freedom, so the results are

not asymptotic.
The V-th order power 1aw is defined as follows ;

y =xY (27)

wnere for v even, v = 2k, kK = 1,2,...,, and for v odd, v = 2k-1, k=1,2,... .

When v equals two the results will apply to equation {14) and when v

aquals four they will apply to equation (16), where X23 = 1.

Case (I) V EVEN

By rewriting equation (27) in the following way

y exp(jn2s) = xV, n=0,+1,+2,..., ]

the solutions for x can be obtained. For y >0

x = yV exp(jn2n/v).

By examining tne possible solutions we find that there are only two real

solutions for x, viz.,
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There are no real solutions for x when y < 0. Therefore, the probability

density function of y is given by

fyly) = LUV e (1Y) e £y )0,y > 0

fy(y) =0 , y<O.

From the characteristic function of equation (12) the input probability

density function can be shown to be given by the following mixture density
folx) = (1-L) fi(x) + Lf,(x), (28)

where, fl(x) is N{é, an}, and fz(x) is N{é, a} , O = Loi + ai]llz.

Tnherefore, since a Gaussian process is symmetric about its mean value we

obtain

fyly) = 2LwylV-i/vyst {(1-L) Lyt + L, (yllv)} Ly >0

and

Fﬂwazﬁhuwu“ﬁ%>-ua+L@u”Ww-1mﬁ,y>o

where, $( ) is the Gaussian error function.

Fapae esver—py
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Since we are interested in the performance properties with one degree of
freedom, we shall let L=1, i.e., the signal occurs with probability one on
this sample. The objective is to find the probability of detecting this
signal at the output of a v-th order power law for a fixed false alarm

probability.
Tne false alarm probability is defined as

a=1- FY(ym/Ho)a y>0

where Yq is the threshold (value of y) where the desired false alarm

probability is maintained. For tnis case we find

vV e @il - a2l
The probability of detection (Pd) is therefore

Pd =1 ~ FY(ya/Hl)
= 2{1 -Q[d>‘1(1-a/2)/(1+SNR)1/2]‘, y >0 (29)

wnere SNR = ag/aﬁ,

Once a is fixed for each v the probability of detection is independent of
v and only depends on SNR. Therefore, tne performance of all even order power
laws will be the same assuming Gaussian processes based on the probability of

detection criterion.

26
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Case (1I) v 0DD

The odd order power law is given by

y =x¥, v = &-1, k=1,2,... .

For y > 0 and x > O the solutions of x are represented by

X = yll" exp(jin2n/v).
But there is only one real solution, viz., x = y“v.

for x < 0 and y < 0, the odd order power law is given by

=y = -Ixl¥, or Yy = x‘i under the conditions

0<y1<oo, 0<xp <o

-—o< ¥y <0, -0<x<?0

So, the probability density function at the output is given by

-1
f vy = [v y vy fx(yllv), y>0

(v—1>/v]‘l Liv,

fyl(yl) = {vy; fxﬁyl s ¥1 >0

Integrating we obtain

y ® y
Fy(Y) =/ fy(Z)dz = [ fyl(Z)dz +/ fy(Z)dz

~® 0 0

27
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l/v

y e -1 2

= 1/2 +[ (27) " exp(~-g“/a) dy, or
0

F () =a(yV/el, y 5 0

If we fix a threshold to tne right (¥, > 0) we find for a,
a=1- Fy(yalHo) and

Y <o st

Under this threshold the probability of detection is

Pd = 1 - F (y /i) = 1 -@[¢ (1) V/IFSR]

wnich is also independent of v. As SNR approaches infinity, for y, finite,

we obtain, 1im Pd » 1/2.
SNR—0

With one threshold this is the best we can do. But for two-sided distributions

even-order power laws are usually employed. However, if we set two thresholds

located at Y, and -y, for y > 0, then
a=2[1- Fy(ya/HO)]’ which gives the threshold value at,

Yy = oy #1(1 - a/2).

a

Tnen

P ———
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Pa = 2{ 1 -7 (1-as2)/ (1esmr) 23} r

which is identical to the results for the even order power laws.

We conclude that for zero mean Gaussian processes there is no essential

difference in performance for the v-th order power laws based on the 1

probability of detection criterion, if two thresholds are set for the odd

- TSI

orders. These results also hold true if L # 1.

P

S

An interesting question presents itself. Can performance improvements be

obtained by summing over a large number of samples (n large) compared with the

i aach ot R

single degree of freedom case? For randomly occurring signals the answer is
not obvious, as would be so for purely Gaussian signals. By comparing

equations (29) and (19) under the same SNR and false alarm probability we find

that the FDK of case 1 can have higher asymptotic probability of detection |
levels compared with the probability of detection for the single degree of
freedom case of equation (19), depending on the probability of occurrence (L) M

of the signal. This conclusion also holds for the FDK of cases 2 and 3. ;

e

The probability of detection cannot be obtained for the FDK of case 2

with one degree of freedom since the joint distribution of the numerator and
denominator is unknown. This is also true for the FDK of case 1 if the
degrees of freedom are greater than two but not large enough to assume
Gaussianity. On the other hand, if cov(xlxzz) equals zero than with only k
a limited number of degrees of freedom the probability of detection can be

obtained. 2%

29 }
o WS At A £ D25 01A Bt i Ny Y
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We will now give several examples comparing the FDK of cases 2 and 3 with
the PSD. Figures 5 through 9 represent a comparison of the PSD with cases 2
and 3 based on the asymptotic probability of detection vs L for fixed SNR or
vs SNR for fixed L. In all the figures the false alarm probability is 10"3
and the sample size (n) is 2000. The results show that the FDK of case 2 has
a higher asymptotic probability of detection in all the figures even for a
Gaussian process, i.e., L = 1. The last section gave reasons for this result
and other comments are given in appendix A. Under some situations the FDK of
case 3 has slightly nigher asymptotic probability of detection compared with
the PSD but only for non-Gaussian processes. Figures 8 and 9 clearly show how
the APD changes for the FDK of case 3 and the PSD as L is varied from .1 to
1.0. For a non-Gaussian process (L = .1) the FDK of case 3 has higher APD
levels vs SNR compared with the PSD. Whereas, the reverse is true for a
Gaussian process (L = 1) as shown in figure 9. These conclusions do not

change with changes in the sample size or false alarm probability.

In practice the asymptotic probability of detection for the FDK will be
closer to the results of case 2 if the correlation between Xy and xp, is
nign. 0On the other nand, if the correlation is zero or low then the FDK of
case 3 snould be utilized instead of normal izing the fourth-order estimate by
an uncorrel ated noise sample. Tnis is true because the uncorrelated noise

sample tends to increase the variance and, therefore, reduce the APD.
IV. SIMULATIONS

Several simulations of the ideas presented in the previous sections will

be given to check the theoretical results. We will utilize equation (12) as
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the data model but here both real and imaginary parts will be included in the
simulations. Therefore, the real and imaginary parts, respectively, are as

follows:

XR(Q) = NR(l) + mR(Q)SR(Q)
(27)
X(a) = N;(a) + m(a)S;{a) .

The SNR is defined as, SN = E[Sp(a)?1/ECN: (a)2] = ECS,(a)21/ECN (a)2,
since both real and imaginery parts will have identical statistics in the

following simulations. The power spectrum density is, therefore,

n
P(F,) = ‘1’"’}E;FXR(“’2 ¢ x(a)] (28)
d=

and the corresponding frequency domain kurtosis estimate will be defined in

the following way,

K, (Fy) = [KE(F)% + k()7 12 (29)

Other estimates could be defined for the FDK depending on the intended
application. But equation (29) will be our basis for comparison with equation
(28) in tnhe simulations.

A. Simulation of Case 1

Tne real data example of figure (4) has already demonstrated the

usefulness of the FSK for case 1. Therefore, only 1imited examples will be

31
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presented. The parameters needed to define a particular simulation will be
denoted in the form (z, L, SNR, n), where z equals 1 or 2 depending on whether
] tne FDK if case 1 or case 2 is being considered. The FDK of case 3 will not

be simulated here.

Consider the simulation (1, .005, 16.0, 200) shown in figure 10. The
data were generated using a 1024 point FFT. The top graph represents the PSD
expressed in equation (28). Tne lower graph is the corresponding FDK estimate
of equation (29). The signal only occurs once for each of 200 frequency
locations starting at frequency 100 during the 200 consecutive FFT data
samples. But the temporal location is random in each frequency and therefore
unknown. The resul tant estimates have a form of a broadband signal. From the
raw data in the figure we see that the FDK estimate identifies the frequency ]

location of the randomly occurring signal but this information is not present

in the PSD estimate. This result was predicted in figure (3). So, the §

simulation corroborates the theoretical results for the FDK of case 1. 3

Another possible application of these results is the identification of
the track of a signal tnat is changing its frequency with time. The
instantaneous frequency location could not be identified from the FDK but it
could possibly pe deduced from the results. The usefulness of the FDK in the
appl ication would nave to be carefully compared with tracking methods. Since
tnis would require a detailed study it has not been treated. But it does
appear that the FDK would be easier to implement. So a study is probably

warranted in the future. These considerations would also apply for spatially

tracked signals.
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B. Simulation of Case 2

In the following simulations we shall perform a detection experiment.
For noise only a threshold will be found for the PSD and FDK by picking the
highest 1evel in each case of the 512 frequency locations. Then for signal
and noise present the number of frequency locations in each case exceeding
their corresponding thresholds will be counted. Starting at location 100
there will be 100 1ocations with a randomly occurring signal present in this
simulation. Since the FDK of case 2 requires a noise-only second-order
estimate to normal ize the fourth-order estimate of signal and noise, these
resul ts may be of theoretical interests rather than having practical value.
On tne other hand, if a noise-only second-order estimate is available which
was nighly correlated with the noise in the fourtn-order estimate of signal
and noise then these results would be of practical value. It should also be
pointed out that only a noise-only second-order estimate is needed anad not

knowl edge of any particular noise sample.

Figures 11, 12, and 13 represent tne results of a simulation of (2, .02,
4,200), (2, .04, 4,200), and (2, .08, 4,200). As before the PSD estimate is’
in the top grapn and its corresponding FOK estimate is in the lower graph.
The number of locations exceeding the threshold are 1, 6, and 34 for the PSD
ang 47,88, and 100 exceeded the thresnold for the FOK in figures 11, 12, and

13, respectively.
The theory also predicts that the FDK of case 2 will have a higher
probability of detection compared with the PSD estimate even for Gaussian

processes. Tnis result was checkxed in the following simulation. The results

33




M No. 841057
of the simulation are shown in figure 14, uncer the conagitions (2, 1, SNR,
200) where SNR equals .1, .16, .25, and .4. The respective detection results
are 6, 13, 45, ano 97 for the PSD estimate, and 52, 69, 99, and 100 for the
FDK estimate. These results obviously support the theoretical predictions for
knowleage of a noise-only second-order estimate. Appendix A points out that
if the PSD estimate is also normalized by a noise-only secona-order estimate
its probability of detection would appear to be better than the FDK's but the

false alarm rate cannot be maintained at a desired low level.

V.  SUMMARY

Since signals often appear to occur ranaomly, especially in unaerwater
acoustic detection problems, ana the corresponding detector based on the
Thkelihooa ratio has a complex structure, fourtn-order anu kurtosis estimates
were considered as alternative processing metnhods. These higher-order methods
were compared witn second-oraer estimates for signals which occur randomly in
time and frequency and which could be described as a non-Gaussian process. It
was initially believea that a secona-order estimate was optimum for Guassian
processes. However, it was shown theoretically, based on the asymptotic
probability of detection that if a noise-only second-order estimate was
available to normalize a fourth-order estimate of signal and noise then the
resultant modified kurtosis estimate hau higher probability of cetection
Jevels even for Gaussian processes. On the other hand, if an independent
noise sample is used to normalize a seconu-oraer or fourth-orger estimate the
overall performance based on the asymptotic probability of aetection will be
vegraced compared with unnormalized secona-orager or fourth-orger estimates,
respectively. Only it there is positive covariance between the normalizing
noise sampie ana the secona-order or fourth-order estimate can pertormance be
improved. This result coula impact current sonar processing methods.

Simuiations were presenteud which support these results.
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APPENDIX A

SECOND-ORDER ESTIMATES

Let the power spectrum density estimate ot equation (14) be normalized by

a noise-only second-order estimate as follows:

$ 2 s 2
PUFp) = xp/%p = {(1/m)Y° [x(a)iHy) }/{u/n)z [x(a)/H 1} (A1)
g=1 Q=1
Asymptoticaily, PLF,) will also converge to a Gaussian process, unager Hy,

according to Cramer's [10) convergence proof.

Employing tne data model of equation (12) we obtain the expected value of

equation (Al) as

ELP(Fp)l = 1 + L SWR.

The components of the variance of equation (Al} are as follows:

VARLX;] = (1/n) [2N° + 4L SN + (3L - %) 2]
VAR(X,] = (1/n) (2N%]

Fl = l/N

Fp = = (1/N)(1 + L SNR)

COVX, X,] = (L/n) 2N

Therefore, tne variance of equation (Al) is given by

VAR[P(FP)] = (l/n) a8 s

A-1

B e
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where, ag = (3L + LZ; SNRZ + 4L SAR.

As SNR approaches zero VARLP(F,,] also approaches zero. This result

makes sense, because when the SNR equals zero P(Fp) equals one, and

therefore its variance woula equal zero.
From equation (13) we obtain the resuit
APD =1 - ®[- L SNR n/ ag]

As SNR approaches zero the APD approaches .5. However, to avoig
complications in the limit we will assume that SNR approaches zero but aces
not exactly reach 1t under Hy. This can be stated more precisely as

tollows: As Hy 5 Hy, SNR » &, for 6 << 1, and APD » .5 + D(s), where

D(s) » 0 as ¢ » 0. This result also establishes the limiting faise alarm
probability of .5 for equation (Al). Therefore, the false alarm probability
cannot be controlled at a desired Tow level. On the other hana, the APD woulg
have higher levels compared with the FDK ot case 2 as a function of SNR. This

may not be of interest, however, due tc the high false alarm probability.

If we now let the PSD estimate of equation (14) be normalized by an

uncorrelated noise-only second-order estimate, say from an adjacent frequency

location, which woula give COV(X) x,) = 0, then the mean ana variance

would be as follows:

VARLP(Fp), = 14/n) Q3,

v
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where, 03 = (1 +2LSNR + (3L + LZ) SNR2/4J. ]

These results give an APD of the form

APD = 1 _¢{[¢'1(1 —a) - L SNR\/n—/?/JE]/Qé/Z} : (A2)

The false alarm probability can now be maintained at a desired level.
But, for small SNR levels, i.e., SNRZ << 1, the APD of equation (AZ) will be

lower than the corresponaing APD levels of equation (15) for the same false

alarm probability. This is true because of the factor y/n/2 in equation (A2).
If L equals one, then the APD of equation (i5) will always be higher i
ingependently of SNR. For hign SNR there may be values of L where the APD of

equation (A2) is higher but the factor/n/2 must be overcome before this is

true.

A-3/A-4

Reverse Blank
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APPENDIX B
VARIANCE OF THE FDK ESTIMATE OF CASE 1

Here we present the major points for the derivation of the variance based

on Cramer's method [10]) for the following equation

K (F,)

o) = X1/%1

n 4 n 2.2
wnere X; = (1/n)qz=:l X(a)", and, Xy [(1/n)q‘z=:1 x(a)*]

From section il the form of the variance is known and it can be expressed 4

as,

F2 COVCXIXZI] . (81)

2 2
VARLK (F )1 = VAR(X))F) + VAR(X,()F; + 2F,

The covariance plays an important role in minimizing the total variance

of equation (B8l). ¥

The partial derivatives Fl and F2 of equation (Bl) are as follows:

SRRSO S 1/’(1/n>[x<q>4 - (M@)®)?1 + (x(a 2>2§
%21 = %21

where the overbar, wnen used, will represent the expected value,

2
Fp = aKj(Fp)/aXy) X =% " ~x(a) lg(lln) x@? - (@2 + x(@?)? f

AT

B-1

'
f
| .
|
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The terms VAR(Xl) and VAR(XZl) can be expressed in the form

VAR(X)) = (1/n) [X(@)® - (x(@h%]

VAR(X,;) = (4/n) [x(a)* - (x(@9)% - (x@D)*

if the terms which converge to zero faster than (1l/n), i.e., 0(1/n2), are

negl ected.
The covariance is defined as

COV[XIXZl] = E(X1X21) - E(Xl) E(XZI) .

If Xl and X,; are independent, i.e., E(X1X21) = E(Xl) E(X21) then

From the definition of Xl and X21 we obtain

n 4 n 2 2
COVOX Ky ) = EHAM 2 K@ LM B K(@)] }
q= q=
) n 4 n 2 2
- e[ xa) ' E{UL/MY x(@) 1}
q=1 q=1

where we have indicated that the denominator contains signal and noise by H

1
in the covariance expression, We do this to distinguish between case 1 and :

case 2 of tne FOK wnicn contains only noise in the denominator. By neglecting

terms of order 0(1/n2) we optain
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COV(X Xy /Hy) = (2’"’3 X@° x(@° - xa)* (x<q)2)2£.

Substituting all the terms into equatin (Bl) we obtain

-4

VARCK, (F))] = (1/n) i[xm)s - (x(@%210x(a)]
sax@?® 0?2 - adHx@hH? x@?H (82)
- aix(@)® x(@)® - x(@)* (x(0)%? x(q>4(x(q)?)'5f

In order to express equation (B2) in the desired parameterized form the
data model of equation (12) is substituted into each term. But instead of
doing tnis for each term, only the general term of equation (B2) will be
evaluated. The other terms will follow in a similar way. Therefore, we shall

express VAR(XI) in parameterized form. Tnhe most general term is

vr(x;) = x(@% - (x(@h? (83)

From equation (7) the first term of equation (B3) is

B ——

x(a)8 = (1) OPS;E(X(il) X(1,) X(i5) (i) X(ig) X(ig) X(i,) X(ia)z

where we have defined tne operator

o

M-1 M-1 M-1 M-1 M-1 M-1 M-1 M-1
oP { ;

P | Z{ JCOS(F,i1) cos(Fyi,)

1-0 j ,=0 13=0 )4=0 i =0 i.=0

577 '6

o

17= 18=0

cos(Fpi3) cos(Fpia) cos(F ) cos(F 16) cos(F 17) cos(FpiB)

B-3

NN 4/ W —
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and wnere eacn X(i) is also a function of q, i.e., X(i,q) = N(i,q) * M(q)S(i,q),

put there is no need to express that fact in the equation.

Since N(1,q) and 5(i,q) are Gaussian OPsz z can be expanded as follows:

(1) °P8§ ELX(T)) X(ip) X(i3) K(14) X(ig) X(ig) X(iy) X(ig)}
=105 N + L4205 03 + 630 L 52 N2 + L a20 NSS4 L 10557

wnich is not a function of the transform size M. By defining 0P4z f for the

second term and proceeding in a similar way equation (B3) reduces to

X@)® = (x()%)2 = 96 8 + 388 L s 3+ (612l - 36L%) s2 N2

+ (4201 - 36L%) 3 sw + (105 - 9.2 st
Tne otner terms are obtained similarly. These results are then

substituted into equation (B2) to obtain equation (17), which is also not a

function of the transform size M.

8-4
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Figure 4, Real Arctic Data: Top - Power Spectrum Density Estimate;

gdottom - Frequency Domain Kurtosis Estimate
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