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:::'. ; Foreword
{ _ Wilhelm Schelstadt Ericksen earned the Bachelor of Arts in ‘
3¢ Mathematics at St. Olaf College in 1938. He earned the Master of {
5\ Arts in Mathematics at the University of Wisconsin in 1938. He was
ﬂ‘ awarded b Pl be g wiatbisgralins ol Biscapsin iy 1894, wibh ‘
:1 dissertation on, “Asymiptotic Forms of the Solutions of the

. Differential Equation for the Associated Mathieu Functions.”

He began his college teaching career in 1942 at St. Olaf

.-:.1 - College, and he taught at Minot State Teachers' College for the
N academic year 1943-44. He was a Fellow in Mechanics at Brown
. ::- University in 1944-45.
j'_-s:: Dr. Ericksen worked as an aerodynamicist for Bell Aircraft

] in 1946, and in that year he also began a six-year association with
N the United States Forest Products Laboratory in Madison, Wiscon-

sin. He joined the faculty of the United States Air Force Institute
XN of Technology in 1953.
5% Professor Ericksen's long list of publications began with a i
2~': series of Forest Products Laboratory reports on the behavior of ‘
o sandwich panels under loads, and continues with recent articles in
al the Society for Industrial and Applied Mathematics' Journal on Nu- |
- merical Analysis, on inverse pairs of matrices with integer ele- 1
) ..-'f'. ments. |
‘:.}: Withelm Ericksen's teaching is characterized by scholar- |
\’; ship of the highest degree, coupled with a caring and gentle con- !
N cern for his students as human beings. These splendid qualities i

have endeared him to thirty academic generations of AFIT students
and to his colleagues, who present these papers to him as tokens of

- ')‘ . . s o = .
R their affection and esteem on the occasion of his joining the emer-
-;j;; itus faculty.
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THE PCT CONTROL SYSTEM DESIGN FOR SAMPLED-DATA CONTROL SYSTEMS

by

C. H. Houpis*

October 4, 1982

ABSTRACT
The pseudo-continuous-time (PCT) control system approximation of a sampled-
data system permits the use of tried and proven continuous-time domain methods
for designing cascade and/or feedback controllers. When the rules governing
the use of the Pade approximation and the Tustin transformation are satisfied,
the PCT design approach is a valuable technique for the design of sampled-data

control systems.

*Professor of Electrical Engineering, School of Engineering,
Air Force Institute of Technology, Wriqht-Patterson AFB, Ohio 45433
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I. Introduction

Yy s

The analysis and design of sampled-data control systems may be done entirely

<
P

in the z-p]ane,\which is referred to as the direct digital control design (DIR)

(2]

technique or entirely in the s-plane. The latter is referred to as the

Jdigitization (DIG) technique which requires the development of the pseudo-

Te @ - L4
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- continuous-time (PCT) system model. This model requires the use of the Pade

7,

po T I

A

and Tustin transformation approximations. A contro]leg Dc(z) desiqgned by the DIG

‘,""':7_-"
by

-
a.

technique provides a gocd base for exhibiting the effects of the sample time
carameter of the digitized controller on the performance of the system. The
reason for this is that the continuous contraller corresponds to the limiting
case where the sampling time of Dc(z) is zero. A‘disadvantage of this method
is that Dc(z) may not have all the properties of Dc(s). However, this problem
is minimized by the selection of a s to z (to w) transformation algorithm which
maintains the specified properties required of the controller. This paper
develops the PCT control cystem model and the criteria for achieving a good
correlation between the s- and z-plane mapping. If the degree of correlation

is nqt satisfactory, then the DIG technique may permit the desired system

performance characteristics to be achieved by mere gain adjustment in the |
z-domain.

[I. Approximations

Tustin -- The Tustin s to z or z to s transformation is defined as

2 (2-1
R YL ()
or
- 14s7/2 (2)
1-s7/2
and the exact z-transformation is defined as
2 =€-ST {3)
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S By substituting s = J“’sp into (2) and s = j“’sp into (3), where wgp is an
!
@ -~ equivalent s-plane frequency, then equating the two expressiors results in
._.._:
e - .
,\_:j tan(wspT/Z) wspT/Z (4)
When G T/2 < 0.3057 rad (17°) then
=¥ -
\'\-_' -~
P.® . N
N “sp T “sp . (5)
%5 -g
‘“ In a similar manner, substituting the exponentional series for z = ¢ SP and
‘ﬁ-d .
=g i
:}Qj s = sp into (2) results in
o (55,17
¥ o ~ -
Y Veo T+ —5— + .o =1+ [0 /(10 T/2)] (6)
N\ &L -~
;:E,.s If 1 >> [aSpT/ZI and 1 >> | crspT/Zl, then
]
Padp 3 x
i o5pl = logpl << 21T )
)
- With (5) and (7) satisfied, the shaded area in Fig. 1 represents the allowable
!'\
:j: location of the poles and zeros in the s-plane for a good Tustin transformation.
A ' ¢
?.:- Pade -- Using the first-order Pade approximation, the transfer function of |
% WA
. the zero-order-hold (Z-0-H) device is approximated,when the value of T is small 4
.‘ ] ‘
‘2:.:- enough4, as follows: 4
» ..\‘
:\: :: Ts I
=) - e A = ‘
, G0(8) * =5 1wz = Gls) (& |
'&
A . |
Jooa IIt. Pseudo Continuous-Time Control System (PCT) |
_o."’: 4
-:Cj: The DIG method of designing a sampled-data system, in the complex frequency
e s-plane, requires a satisfactory PCT model of the sampled-data system. [n other
'-".\: .
) words, for the sampled-data system of Fig. 2, the sampler and the Z-0-H units
TS
2 are approximated by a linear continuous-time unit, GA(s), as shown in Fig. 3(c).
The DIG method requires that the dominant poles and zeros of the PCT model
)
:,';:j must lie in the shaded area of Fig. 1 for a high level of correlation with
\’\.
e
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-
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the sampled-data system. To determine GA(s) first note that the frequency
component of E*(jw), representing the continuous-time signal E(jw) and all of
its side-bands, is multiplied by 1/T []’2]. Because of the low-pass filtering
characteristics of a sampled-data system, only the primary component needs to
be cansidered in the analysis of the system. Therefore, the PCT approximation
of the sampler and the Z-0-H of Fig. 3(a) is shown in Fiq. 3(b) where the Pade
approximation, Gpa(s), is used to replace Gzo(s). Therefore, the sampler and
Z-0-H units of a sampled-data system are approximated in the PCT system of Fig.
3(c) by the transfer function

GA(S) = :]r Gpa(S) = Tsz—+-2' . (9)

Since #ig [GA(s)] = 1, (9) is an accurate PCT representation of the sampler and
Z-Q-H units, satisfying the requirement that as T + 0 the output of GA(s) must
equal its input. Further note that in the frequency domain, as wg > @ (tr - 0),
the primary strip in the s-plane becomes the entire frequency spectrum domain
which is the representation for the continuous-time system.

Note that in obtaining PCT systems for the sampled-data systems of Fig. 4,

the factor 1/T replaces only the sampler that is sampling the continuous-time

c1gnal. The sampler on the output of the digital controller is replaced by a

factor of one. To illustrate the effect of the value of T on the validity of

the results obtained by the DIG method, consider the sampied-data closed-loop
control system of Fig. 2 where

X s(s*+1)(s+5)

The closed-loop system performance for three values of T and ¢ = 0.45 are
determined in both the s- and z- domains, i.e., the DIG and DIR methods,
respectively. Table 1 presents the required value of Kx and time response

characteristics for each value of T. Mote that for T - 0.1 there i1s a high
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correlation between the DIG and DIR models. For T < 1 there is still a re-
latively good correlation. (The designer needs to specify, for a given

application, what is considered to be "good correlation.") The figures of

(-
.:3_'.-: merit of the corresponding continuous-time control system
b
:::- C(s) . GX(S) ) (10)
e 3 |+les!
N for a unit-step forcing function are: M, = 1.202, tp = 4.12 sec and t, - 9.48 sec.
:.'_2:132 Table 1 Performance Characteristics of a Sampled-data Control
-.:, System using the DIR and DIG Methods
T
. -
. Method T,sec Kx My tpssec ts»sec
N
Y
2254 DIR 0.01 4,147 1.202 . 4.16 9.53
SRy
o DIG 4.215 1.206 4.11 9.478
+
::,."-: DIR 0.1 3.892 1.202 4.25 9.8
o DIG 3.906 | 1.203 4.33" 9.90"
1'\:: +
\:,. DIR 1 2.4393 | 1.2 6 13
4 ‘ D1G 2.4396 1.200 6.18 13.76
N
NN IV. DIG Technique
\‘:- .
ANAY
A Figure 5 represents the trial and error design philosophy in applying the
A DIG technique. I[f path A does not result in the specifications being met by
)
e
-:7',-:: the sampled-data control system of Fig. 4, then path B is used to try to
:_s:,
ot determine a satisfactory value of Ky A similar chart may be drawn for the
—
z‘ design of the feedback controller of Fig. 4(b). The design philosophy involves
' the following considerations:
”E‘. (a) Follow path A if the dominant poles and zeros of C(-)/R(-) lie in the
: xd shaded area of Fig. 1 (Tustin aoproximation is good!).
*-\‘
\::{ (b) Follow path A when the degree of warping is deemed not to negatively
Wl
\ 19' affect the achievement of the desired design results. If the desired results
bt 2 |
‘ are not achievedj try path 8.
1" :
b
ﬁ
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(c) Follow path B when severe warping exists. The DIG design procedure

. is as follows:

-

")

iz: Step 1 Convert the basic sampled-data control system to a PCT control

e system or transform the basic system into the w-plane (use both for design

3 ) purposes).

S

;ja Step 2 By means of a root-locus analysis or by use of the Guilleman-
Truxal method determine Dc(s) = Ksch(S) or Dc(w) = KwsDc(w)'

" Step 3 Obtain the control ratio of the compensated system and the corre-

..\ . . Y . . .

\ spanding time response for the desired forcing function. (This step is not

’ _

necessary if the exact Guillemin-Truxal compensator is used.) [f the desired
performance results are not achieved, repeat Step\Z by selecting a different
value of g, o, wys €tc. or a di fferent desired control ratio.

Step 4 When an acceptable Dc(s) or Dc(w) has been achieved, transform
the compensatar, via the Tusttn transformation, into the z-domain. 1

Step § Qbtain the z-domatn control ratio of the compensated system and
the corresponding time response far the desired forcing function. If the
desired performance results for the sampled-data control system are

achieved via path A or path B, then the design of the compensator is complete.

[f not, return to Step 2 and repeat the steps with a new compensator design

or proceed to the DIR technique.

4 2 % - s a

V. DIR Technique

The simple lead (a < 1) and lag (Q > 1) compensators in the s-domain have

the form
: K(S‘Z) :
. sc¢ s
DC(S) = —_TE_:_B;T— (m

ll. R

where Py * 25/1. The s-plane zero and pole are transformed into the z-domain

el

as follows:
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= ¢ = ¢ (13)

Thus, the corresponding first-order z-domain compensator (digital filter) is

K, (z - 2)) K, {z -2z)

‘ 0 (2) = Bt - I 2 (14)
.(:‘1 b4 b4
>, 4
én; where p, = z,/8.

By taking the natural log of (12) and (13) a relationship between « and 8 is

v obtained as follows:
= - 15
o st In z, (15)
v - (16)
- zST/a In P,
ix: Taking the ratio of these equations and rearranging yields a In n, = In z,.

-":
& Thus .
. a Q¥
% P2 .

": ]

L4 - - -

o 8 =2,/p, = P, (18)
o

. For a lead network, a < 1 and P, is also less than one. Therefore, for a
89 lead digital filter 3 > 1. For a lag digital filter 8 < 1. (Note that the
'-,

- _
5;j condition on 8 is just the opposite for that on «.)
¥ 4
v Because (11) and (14) have the same mathematical form, the z-plane
"
::ﬁ compensator design procedures via the DIR techniques are essentially the same

C4
[,
‘:* as_those for designing a compensator for a continuous-time sx§tem.[3]

>
— VI. Example of DIG Design: Guillaman-Truxal (G-T) Compensation Method
I.)l

MY The figures of merit for the control system of Fig. 2 where

X . 0.4767

3 5(8) = Sty

. . . i - - - -1
'! and T = 0.1 sec are: Mp = 1.043, tp = 6.45 sec, ts = 8.65 sec, and K] = 0.4765 sec .
j: The control ratio for the corresponding PCT system is

s,

I

N C(s) . 9.534

$§ s) [(s+0.4875+30.4883)(s+20.03) (19)
C 7

L
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Consider the case where the fiqures of merit of the basic system are to be improved
as follows: tp and tS are to be cut by one-half and some improvement in Ky is
desired while maintaining Mp < 1.19. Further, assume that the compensator model
of Fig. 4(a) is constrained to increase the order of the.system to four.
Based upon these specifications the following factors are used to derive the
desired control ratio model:
(1) The real part '“1,2’ of the dominant roots is selected to be at least
twice that of (19) based upon TS = fﬂol,Z" (2) the dominant roots are selected such
that ¢ = 0.7071 in order to try to maintain Mp < 1.10, and (3) the s-plane
pole-zero combination of Z; = -1.4 and P3 = -1.1 is added to minimize the
increase in the overshoot which occurs when transforming from the continuous-
time model to the sampled-data model. This selection of values is made in
order to meet the desired performance specifications. Thus)the following
continuous-time control ratio model {s achieved,
C(s 15.714(s + 1.4)

s M’ (s© + 25 + 2)(s + 1.1)(s + 10)

(20)

Although the zero-pole combination, -1.4 and -1.1, of (20) lie just
outside the allowable region of Fig. 1, this aspect is overlooked for a first

trial design. Applying the Tustin transformation ta (20}, for T = 0.1, yields

o(z 1.202 x 1073(z + 1)3(2 - 0.8692) Nz 2
z . + J0. . . z
- - TU
Applying the G-T method yields the following transfer function of the
digital compensator of Fig. 4.
£,(2)
0(2) = N(z) -
[(0(z) - N(2)]G,(z) E,(2)
. 0.5218(z + 1)3(z - 0.9048)(z - 0.3692) (22)
(z - 0.8471 + j0.03753)(z - 1.3422)(z + N.5672)
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;}; Note, that as a consequence of the use of the G-T method and the Tustin approximation,
i." the order of the numerator of Dc(z) is greater than the order of the denominator
%

L:j by one.

S

j-::_' A practical approach to achieving a physically realizable Dc(z) is to

'\? replace one of the (z + 1) factors which appear as a result of the Tustin

v ‘ transformation, by its d-c gain factor (2] of (z +1)],.y =2 in the numerator
) of Dc(z) to yield

) K, (z + 1)%(z - 0.9048)(z - 0.86921)
L D (z) = 2c . (23)
i c (z - 0.8471 + j0.03753)(z - 0.3420)(z + 0.9672)

)

- whare KZC 2(0.5218) = 1.0436. With this controller, the control system's

o5 figures of merit are: M = 1.031, t, = 3.55 sec, tg = 4.25 sec, and K, = 0.77198 sec™ .

K
P The specific value of tp < 6.45/2 can be met by increasing the value of ch
o to 1.14918.
N
( > As tllustrated by this example a physically unrealizable controller may result
‘5:2 when applying the Guillemin-Truxal method to [C(z)/R(i)],u. In order to maintain
f:j: the d-c qain and achieve a physically realizable controller, one approach, as
¢ f applied to this example, is to replace one or more (z + 1) numerator factors
o of D_(z) by the d-c gain factor of 2.
s
G
e VII. Conclusions
P
j;- By the use of the Pade approximation and the Tustin transformation, a
?E sampled-data control system may be transformed into a PCT control system. As
: i the examples illustrate, when the rules gaverning this transformation are
\ “~
(éﬁ satisfied the analysis and design of a PCT system model is a practical approach
;f: for the analysis and design of a sampled-data control system. The standard
N
jgs first-order z-plane compensator, ch(z-zz)/(z—zz/s), corresponds to the standard
™
‘\’ first-order s-plane compensator, Ksc(s-zs)/(S-zs/a). where for a lead compensator
“»
.
M
Y
v
g 9
A
@
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o
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3 <1l and a > 1. A consequence of applying the Tustin transformation to
C(s)/R(s) of the PCT system and then applying the G-T method to [C(z)/R(z)]TU
is that an unrealizable cascade digital compensator Dc(z) results. This paper
illustrates a method by which this Dc(z) may be made realizable by replacing
ore or more (z+1) factor in the numerator, due to the Tustin transformation,

by its d-c gain factor of two.
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DIG Technique

N

s-Plane w-Plane
Design for a given § or . {
desired coutrol ratio, EC(-)/R(-)]

v R, D (8)
Dc(-) [ ] ,
\L KyeDc (W)
Tustin

}
E:,_(:)]m - [xzc mn::(z)

C(2) E:(z)] 6,(2) Dc(z)cL(z)

R(z) 1+ [oc(z)]mc,(z)

For the desired g, via root-
locus, decarmine K,c

Y

G(z) _ Dc(2)Ga(2)
R(z) 1 + D (2)G,(2)

Fiq. 5. DIG design pnilosophy for Fig. 11-1(a).
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ASYMPTOTIC NON-NULL DISTRIBUTION OF A TEST

OF EQUALITY OF EXPONENTIAL POPULATIONS
R. W. Kulp and B, M. Nagarsenker’

Alr Force Institute of Technology

Wright-Patterson Air Force Base, Ohio

Key Words and Phrases: exponential populations; likelihood ratio criterion;

asymptotic non-null distribution; Chi-square distributions.
Abstract

In this paper asymptotic expansions of the non-null distribution of the
likelihood ratio criterion for testing the equality of several one parameter
exponential distributions are obtained under local alternatives. These expan-

sions are in terms of Chi-square distributions.

1. Introduction

Suppose that p samples are available and that the ith sample contains n

observations x,. with mean ;i ({1 =1,2,...,ps §J = 1,2,...,n) and has been drawn

1j
from an exponential distribution with probability density given by

-1
f(x) = o, exp (-x/0.,) x>0,0, >0
i i i (1.1)

=0 otherwise (i=1,2,...,p)

A test of hypothesis H_  that the p samples have been randomly drawn from the

0
same population is equivalent to testing that the p exponential distributions

in (1.1) are identical. In other words, it is desired to test the hypothesis

17
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against the general alternatives. The likelihood ratio criterion for testing

HO is given by

n P — -"°
A=L = | TT (x,/x) (1.2)
i=1 '
where x is the mean of the combined sample. The null distribution of L has been
considered by Jain, Rathie and Shah (1975), Nagarsenker (1980), Nagarsenker
et al. (1982) while the non-null distribution has been discussed by Mathai (1979).
For further references see Johnson and Kotz (1970).
In this paper, we first obtain the non-null moments in terms of zonal

polynomials and then use these to obtain the asymptotic expansion of the dis-

tribution of -2(n-u) ln L where u = (p+l)/6p (see Nagarsenker (1980)), under the

%
'$§' sequence of local alternatives (see Khatri and Srivastava (1974))
]
| %: 1 1
. (i) T -qS " =P/m and (iit) I -q L =Q/m (1.3)
p - = - ~ ol
SN
fEﬂ where L = diag (01,02,...,0p), m=n~-u, 0<gq< *®while 3 and Q are fixed
N -
R ..-
(;A{ matrices as m tends to infinity.
Le"o,
‘-%J 2. Preliminaries
S0
oY
vi N We need the following lemmas in the sequel.
\‘
;i;v Lemma 1. The non-null hth moment of A defined in (1.2) is given by
e
N P o (nh+n) T (pn+k)
oy e™ = [ -r—(“—h*“—)] Phanl) s con (2.1)
= ' T'(n) ol L k!T (pnh+pnt+k) “wv'- -
Lo k=0
.‘...:_:
;‘;: where M = I - qZ_l, 0 < q<®and I = diag (ol,o yeeesT ).
v LTIt « : 2 p
-'".‘.
\ <.',:
JH? Proof. To obtain the hth moment of A, we shall essentially use the method
~ _
':;: given in Wilks (1946) and the fact that x, are independently distributed as
-
\:,:
.
LY
‘Jn:
@
¢ 18
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gammas with parameters n and Ui/n, i=1,2,...,p. For this consider the

function ¢(3) where

9(6)-E“ﬂ;(x ™ 9"].
i=

It can be easily shown that

T(nh+n)
F(n)

-(nh+n)

P
|2/ ™ 1,2 2.2)

where 91 = 8/np. Using the following identity (see Khatri and Srivastava (1971)),

- - -1 - (nh+n) C. (W)
|1-6,2] 70 0 (1op g PIRIFR) |g7lp |~ (ntin) RS

k=0 x (l-elq)

where 0 < q < ® and can be chosen such that the expansion in the series form is

valid, i.e., 8, and q are such that

1
-1
|1-q(chmax§) | < (1-¢3,).

d (9

r
d8
(see Wilks (1946) for the validity of such operation). This gives (2.1).

E(Ah) is then obtained by evaluating at 9 = 0 and then putting r = -nh

Remark. Taking q = 02, ve get the null moments of A given in Nagarsenker (1980).

Lemma 2. Let CK(Z) be a zonal polynomial corresponding to the partition

..,k } with k, + k., + ... + k =kand k, 2 k, 2 ... 2k 2> 0. Let

K = (k kz.. L 1 > > 1 5 0

a (k) = § k (eg=1), a,(k) = E ki(4k12—61k1+3i2).

i=1 i=1

and o, = tr(z"). Then the following equalities hold:

19
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R
Q0N
AN = C(2) o,
AALN (1) - -
RN Ko &G 1 €
o
E:"-":- IS al(<)C<(§) %
e @ 1 L=g 7%
e k=0 x
%o a_ (x)c (2) c
1 K < 1
(3 J ] == = (20,40,0,)e
o1 £ G 27172
(a, (k2 @)
a, (k o
1 K~ 2 2 1
@ 11 = (0,40, +40.40, Ve
oo < k! 1 7273
o a, (x)C (2) J :
2 K~ 2 1 1
(5) ] S = (40,430,430, 740, e 1
o & k! 377927 T
2 !
E ) k al(K)CK(Z) 5 9, !
(6) —————— = (3, "+50,+4)0 e
o & k! 1 71T
(see Pillai and Nagarsenker (1972)).
Lemma 3. With the notation of lemma 1, for large m we have
(mg+a) = mg) <1+ fka + 2 a () + —E— {12a%Kk(k-1)
K mg 21
24 (mg)
. + 12a(k-1)a; () + 32 2(<) = a, () + K + O(m‘3)]
N
w79
}Q (see Pillai and Nagarsenker (1972)).
7
-3

3. Asymptotic Non-Null Distribution of L

In this section we shall obtain the asymptotic expansicn >f the distributic-~

of -2m ln L in terms of m = n - u increasing where u = (p+l)/6p (see Nagarsenker

(1980)), for the sequence of alternatives stated in (1.3).




Case 1. (I-q:-l) = ?/m.

o

Let U = =-2m In L. Then from (2.1) the characteristic function J(t) of U under

5%

this sequence of alternatives is given by

S
POK

T(K)Cx(g/m)

!
=0 K k!

- P
b(oy = | pPmtt TERI T (g p /g (ahe) (3.1)

T (m+u)

8 v _r
2

ki

i

al

2 .“I

(mg+u)Kr(pm+pu+k)

where g = (1-2it) and T(x) =

T (pmg+pu+k)

Yy

a
&y

P A

Now using the expansion

ﬁ"‘

4?
)

gL S

lnlI-E/mI - —ol/m - 02/2m2 - 03/3m3 + O(m-d)

y pu
"l

2

where 0, = tr(Pi), we have

i

g
2

r +
i -0 o o
DA iI-E/mI““"“’ =e 1 [1 + L4 -—%—4— o(m'3)] (3.2)

m m

ug

Dy o o}
NN - 2 _ . _(_1 __2_) 2
where Cl -3 ucy and C2 3 + 3 + C1 /2.

o £
AARK

Again using Stirling's asymptotic formula for the logarithm of a gamma function

and then using lemmas 1-3 and (3.2) in (3.1), we have up to O(m-3),

e b 1 1

o v ~g V1 e s agTh +
£38
- 2pm (2pm)? i=0

f"l
p

}"I

Sigi + 0(m~ 3 (3.3)

[ e 1N

oa where V’P'-—l.b =Oz—p02’ b2a013-p20

1 3

Y
b s . lpy 2,48 2.
, 50, +3 b2 + 2upb, + (p+1)“(p-1)/36

’- ™ - 2 - - -
i 8 by 40,b) - 2b; - 4upb,

::: and 8, = -(2.+F.)
2 0177
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Inverting the characteristic function .(t) in (3.3), we have the following

theorem.

Theorem 3.1. Under the sequence of alternatives I-qi-l = P/m, the non-null
distribution of -2m ln L where L is given in (1.2) can be expanded asymptotically
for large m = n ~ u, u = (p+l)/6p as follows:

b

o pryl oL 2 2,
P(=2m In L £ x) = P(X"p < x) + 30 [POXT, < x) - POXT € 0))
1 § 2 3
+—— I 3« <] +o@™)
(2pm)2 =0 i f+21 2

where f = 2v = p - 1, x2f is the chi~square variable with f degrees of freedom

and the coefficients bl, 8 81 and 32 are given in (3.3).

0’

Case 2. (I—q-lE) = Q/m.

We have I-qZ_1 = —Q(I-Q/m)—l/m. So proceeding as in the case 1 by replacing
- -2
P by -Q(I-Q/m) 1 and retaining terms of the order of m ~ we have the following

theorem.

Theorem 3.2. Under the sequence of alternmatives I - q-lZ = Q/m, the non-null

distribution of -2m ln L can be expanded asymptotically for large m as follows:

a

P(-2m ln L < x) = P(X2f < x) + 5%; [P(Xzf < x) - P(X2f+2 < x)]
1 2 2 -3
+—(;p:)—2 [120 2 P, € X)) +0(m )
where a, = (tr 9)2 -ptr QZ;
a, = (tr 9)3 - p2 tr 03.
22
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2
v = (p+1) (p-1) 1 a 2 _ 4(tr Q)al + 2upa, + 8a,/3

0 36 21 1

- 2 . _ .
3 = -a) + Zal + 8(tr 9)31 dupal + “a,

and o, = -(a0+a1).

Remark. It may be noted that when P = Q = 0, the asymptotic expansion in the
two cases reduces to that of Box's approximation given in (4.2) of Nagarsenker

(1980) for the null hypothesis Ho.
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Irrotational and Solenoidal Waves
in General Coordinates

by
D. A. Lee
Air Force Institute of Technology
Abstract
Tensor analysis and some identities are applied to make tolerably convenient
forms of equations for irrotational and solenoidal components of elastodynamic
displacement flelds, valid in arbitrary admissible curvilinear coordinates.

Introduction

Displacement flelds of elastodynamic waves, i.e. suitably smooth vector
functions 22 (z,t) which are solutions of the Navier-Cauchy equations

aV(V-u)-b2uxVxw= % (1)
ot
can always be written as sums of irrotational and solenoidal vector functions, in
the form
u=Vy(y.z,t)+Vx4 (2)
where the vector function 4(z.t) is solenocidal, i.e.
V-A4=0 (3)
(Reference [1]). The scalar ¢ satisfles the scalar wave equation
2
a?v? =0e 4
=52 (4)
and the vector 4 satisfles the vector wave equation
924
b2vP4= — 5
4 at? (5)
In (5).
VB4 =V(9-4)-UxVx4
=-VxV¥x4
in view of (3) (Reference [2]).
24
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Often it is more convenient to find the scalar ¢ and the vector 4 represent-
ing an elastodynamic displacement fleld, than it is to find directly the fleld itself.
Often, too, one wishes to work in a coordinate system convenient for the prob-
lem at hand, and then, particularly for non-orthogonal curvilinear coordinates, a
blunt evaluation of the spatial differential operators in (4) and (5) may be very
unwieldy. This paper presents a development of the representation (2) valid for
arbitrary curvilinear coordinates, together with convenient means for writing
out generalizations of (4) and (5). In particular, the generalized equations can
be written out explicitly without evaluating Christoffel symbols.

[rrotational and Solenoidal waves in General Coordinates

In general coordinates, an irrotational wave's displacement field can be
written

u'=g%y, (9)
while a solenoidal wave's displacement fleld can be expressed in the form
b —
ul= 7= e* A (10)

where the once-covariant tensor 4, is a function of position and time, as is the
scalar p .

In (9) and (10), g¥ denotes the contravariant metric tensor elements of
the coordinate system. A comma preceeding an index denotes covariant
differentiation, e.g.

24, m

As= 9zl {kj}A"‘

The permutation tensor elements ¢* may be defined as

Gk sgn(r)if (i.j.k) is a permutation nmof (1.2,3)
€7 =10. otherwise =i

These elements are special in that they transform both as three-times contra-
variant relative tensor elernents of weight +1 and as three-times covariant
relative tensor elements of weight -1,

The Navier-Cauchy equations (4) may be written in general coordinates as

a’u* ™ _p b, U™ grr o O (11)
im9 krm P = ata

Seeking an irrotational solution of (11), one finds that
um.’gpk =gwi’.m9"

is symmetric in m and k, so that the second term of the left side of {11) is ident-
ically zero. The remaining terms of (11) require

25




TeT e T e « T a e T aT T

9? .
a%gp - 2] g*=0

2
N ot .
e which will surely be met if !
.\“'- - 2 :
N alq™ =9 12 ‘1
L:_: - 9 " Pmj 3t2 (12)

One may take (12) as the defining equation for irrotational waves.
Turning to solenoidal waves with displacement fields of the form (10), one
sees that

u™ p = \/_L”Em,kAt.jm =0

g

by the symmetry of A ;n with respect to j and m, so that now the first term on
the left side of (11) is identically zero. The remaining terms lead, after some
maanipulation, to

924,
at?

for which it is sufficient that the quantity in square brackets is identically zero.
But that condition leads, after use of the identity

EenmEMT =668 6567

P —bze,mme"‘"g""A,‘,,,-— =0 (13)

to

9%4s

ae?

But the defining tensor 4, of the solenoidal waves is itself solenoidal, so that
g'pA'.p =0 (14)

Then the deflning equations for a solenoidal wave may be written as (14),
together with

B2 A rp =9 Ar =

92
b Ay = (15)

One could, of course, have written (12), (14) and (15) as tensorially con-
sistent generalizations of (4).(3)., and (5), respectively. It is well, however, to
carry through a complete treatment, starting with explicit definitions (9) and
(10), to be certain the work is self-consistent.

»

f_x':r« Moreover, while the forms of tensor equations {12) and (15) are succinct
oy and easy to remember, these forms aren't usually the most convenient ones to
f,\_’:- use for writing out the detailed statements which those equations imply in a
o, given coordinate system. Direct evaluation of (15), for example, usually
ol requires evaluation of Christoffel symbols and derivatives of Christoffel symbols.

Ny Explicit “unfolding” of (12) for a specific coordinate system is made easier

) F A,
HURIRL
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by the well-known identity ?

m = 1 8 Vg Op 18
g ¢m \/5 azn [ azn ( )
by virtue of which (12) is equivalent to
a® 9 dp |_ 622
Vg az" [\F az™ | at? (17)

Explicit writing-out of (15) is probably simplified in most cases by the fol-
lowing considerations: The elements 7%, defined by
i_ L yk
= \/5 € Ak.j

are once-contravariant (oriented) tensor coordinates. Also, they may be
evaluated explicitly without evaluating Christoflel symbols, since

ek Ay =gt %3—;— -t L::]An (18)

and the last term in (18) is identically zero by virtue of the symmetry of the
Christoffel symbol in its lower indices j and k, and the anti-symmetry of ¢* in
those indices. Thus the S,

g1 = Te g 2
Si=gi T" = - e 2
are once covariant, oriented tensor coordinates. Repeating the previous argu-
ments of this paragraph then shows that the R, :

R‘E %;;‘-—EMP S,

g P
=gl"_emnp.a;9L= Jim_  mnp 3 rgE' eIk 34

Vg az" Vg az™ | Vg oz}

are once covariant tensor coordinates, which can be written out without evaluat-
ing Christoffel symbols. In rectangular Cartesian coordinates,
Rg =Exnp Epjr ﬁ——
az’az™
Now, the quantity

= mrs
Vk S€mm € Al.m
appearing in (13) is also a set of once covariant tensor coordinates. In rectangu-
lar cartesian coordinates,

224,
az’az" =

Ve =%inm Zmre
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But then Ry =V, . since coordinates of a given tensor character which are equal
in one coordinate system are equal in all coordinate systems.
Thus a set of equations equivalent to {14), (15) is (14) and

. [ 2
—pedim mnp 8\ Ipr a ]: 74 (19)

vy az" Vg dzi at?

Equation (19) is likely to be more convenient for writing out than equation (15),
since no Christoffel symbols appear in (19). Moreover, the operations on the left
side of (19) can all be accomplished by fairly straightforward matrix multiplica-
tions and differentiations.
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PRIOR INFORMATION IS AVAILABLE

Albert H, Moore
Air Force Institute of Technology
Wright-Patterson Air Force Base

Abstract

In this paper we will consider problems where, without
prior information, the classical best unbiased estimators are
kaown to be admissible. If we assume enough prior information
is available to bound the parameter, but not enough to specify
a prior density we will show that the classical UM.V. .U, estima-
tors are inadmissible by exhibiting alternative biased estimators
with uniformly smaller mean square error. This is possible
because if we examine the mean square error we see that the
uniformly minimum variance unbiased (U.M.V.U.) estimators are
best only at the boundary points in the parameter space. I[f
enough prior information exists fo exclude these boundary points
then the classical estimator should be inadmissible. With this
insight we are able to show that the classical U.M.V.U. esti-
mators are inadmissible in a new way.

In Sections 2-6, we give several examples where the U.M.V.U.

estimator is inadmissible when enough prior information is avail- i
able to bound 8. Throughout this paper we use squared error

loss function.
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1. Introduction

Let x be a random variable taking values in a measure
space (¥, B, u). In standard statistical problems X is an
n-dimensional Euclidean space En and B is a Borel o-field
and 4 is either a counting measure or Lebesgue measure. It
is also assumed that x has a density f(x,0),08eQ = parameter
space, with respect to the appropriate measure.

In estination'problems, we assume f is known but 6 is
unknown., We observe X = x, and want to find a measureable
function of X = x, and use it to estimate 8. The classical
approaches are maximum likelihood estimation (M.L.E.) and
U.M.V.U. estimation. In the decision theory approach Bayes
and minimax estimators are generally used. '

In U.M.V.U. estimation any prior inforn?tion is disre-
garded while on the other hand in many instances the Bayes
approach requires too much prior information. In many cases
we have only partial information.

Robbins [5] proposed an empirical Bayes approach which
makes use of past data to obtain an empirical estimate of
the prior density of the parameter for Bayes estimation.
Katz [3] investigated some properties of point estimators
vhen an upper or lower bound for the parameters is given in

sdvance, He considered the square error loss function and
Aerived admicathlia mindmavy mnatlmabaern nalag Way mod g ~r'«v~1-“

with a suitable prior. Lehmann {4] showed that for N(8,1)

with a € 8 ¢ b’; is not admissible and not minimax. In

30
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( addition he showed that if 6 > a, then x is minimax but not
‘_\.:: admissible. Skibinsky and Cote [6] showed that with cerbtain
prior information about the distribution of 6 for the

;:'.:' binomial X is inadmissible, and in a similar fashion he
'_“\ showed that x is an inadmissible estimator for the mean of
:: the normal density. Kale [2] showed that for truncated
- parameter spaces the M.L.E. is inadmissible by showing it
\: is not a proper Bayes estimator for tl?e exponential family
3:23 of densities with continuous parameter space. Blum and

) Rosenblatt [1] discussed Bayes estimation where it was

:j:;: assumed that the family of distributidns which‘the prior
‘\'§: came from is known.

W 2. The Binomial Distribution. Let X be an observa-
}\; “tion from a binomial distribution with density b(x,n,0) =
“i % 0%(1-6)""%, 05 0 s 1. The statistic X is a complete
:?:CS sufficient statistic for 6. The best unbiased estimator 61
:::‘:_‘ of 8 is x/n. The risk of 61 is given by

\::j

i Ry (8) = {1-20O) m
o 1
j:- Consider an estimator 62 of the form 62 = kal. The
:’,;:?, value of k which minimizes the mean square error is easily
.' seen to be

2 ‘

¢ k.l(l:i;. ef-l_zﬂo.e. @
; n n

b %

3 31

R R R Ay SRRy T N T O SN P e G




g Here the best estimator of the form kal is a function of the
-

- unknown parameter 6. However we can say that
oy
Y- __ri-—- §.,0s2 <1 3
3 1-£ [} 1’ - (3)
n

is the best estimator for 8 of the form kal at the parameter

value 6 = L, It is interesting to see that the U.M.V.U.
estimator is best (in the mean square sense) only at the
parameter value 8 = 1. The estimators 63 are an infinite
family of admissible estimators. Suppose we have prior
information that 6 s L < 1,

. Theoren 1. If it is known that 6 ¢ £ < 1 then
33 = TT;E?L: is an estimator with uniformly smaller mean

square error than 61 and hence 8, is inadmissible.

1
. a ‘A nl
Proof. Consider 8, = k8, where k = RV
2,2 2
a 8(1-9) n"2L°(1-6)-2nk0+nl"0+nbd
m.s.e, of 93 = a 37 33
(1-6)[1-2%2+2n2-2n2°+2%-n“2%]
2 2,2
. 0(1-0) nof1-22+2"1+n"2%(1-8)
n (1-8)[1-22+2%]+2n2(1-8)+n%2%(1-0)
e o B222(1-0)
L 6(1-0) 1-22+1
n 2,2
(1-8) [1 . 2n£(l-;) ., not (1-3)
(1-2) 1-28+2
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ST

R TCET ) R n60n2£2(1-9)41522022 .
n —'ﬁéﬁ-’— o (1-8) + n222(1-08)/1-22+2
Since 8 € £ the fraction 2n2(1-9) , nd. Therefore

1-2

R 0(1-68) . .
“93“’) < _n_J. nel(e)

and hence 8, is inadmissible.

1
3. The Poisson Distribution. Consider the Poisson

density

-A.x

£(x,2) = & x} L x =20, 1, 2, «us . .(8)

Let xl. cees xn be a random sample from a Poisson
n

distribution. Let il = ] xi/n. il is a U.M.V.U., estimator
i=1

of A with risk Ri (A) = A\/n. Consider the estimator iz of
a al
the form Az = kkl. The value of k which minimizes the mean

square error is easily seen to be

2
A
k = —-— . (s)
AT ¢ A/n

Therefore an estimator of the form

Y )

g -—t % 120 (8)
L+ /I/n \
!
O is the best (in the mean square sens?:) estimator of A which

B A N e e A e SRR A OO R NN Y



is a multiple of xl at the paramefer value A = ¥, The
estimators is are an infinite family 5f admissible esti-
mators. It is interesting to see that the U.M.V.U. esti-
mator is best only at the parameter values A = = or A = 0,
Suppose we have prior information that X\ ¢ £.

Theorenm 2., If we have prior information that

for the Poisson density that A € £ then
)5 |
Ay -[z/z iy (7

is an estimator with uniformly smalle: mean square error

that il and therefore il is inadmissible.

Proof.
12 v E%
$ n
m.s.e. of 13 a ) 3/3 3
12 22 L
L J 0.—2.
n n
<A = Ril(X)

if A s 2.

4, The Normal Distribu:ion.

Case 1. 02 Known.

Consider an estimator of the mean u normal distribution
with variance one. The U.M.V.U. estinator Gl of the mean is
X with variance 1/n. The value of k which minimizes the mean

square error among all estimator; of the form kﬁl is
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1/n uz

Therefore an estimator of the form

az = T7E£7_T X where £ 2 0 (9)
is the best estimator which is a multiple 6f ;l at the
parameter values uz = £. It is interesting to note that the
U.M.V.U. estimator is best only at the parameter valuc =,
Every one of the above estimators is admissible.

Suppose we have information that the mean is bounded,

2

that is u® ¢ 2.

Theorem 3. If we have prior information that

u2 < L then o is an estimator with uniformly smaller mean

square error than ﬁl and therefore ﬁl is inadmissible.

Proof.

2
m.s.e. of §_ = £2/n s u /“2

2 22 + 22/n 1/n2
2 2,2
= 1/n > L% + u/n >
£° « 2%8/n + 1/n
' 2
< 1/n = Rﬁ (u) if p~ < 2.

1

Case 2. az Unknown,
With the variance unknown, X = Gl is the U.M.V.U. esti-

mator of i with variance oz/n. The value of k which
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minimizes the mean square error among all estimators of the

form kﬁl is

2 2
k = = L 5 = 1 where S° = H_ . (10)
g%/n + 1 ]

Consider an estimator of u

s 1

I v €Y A IS Ve U (an

The estimator GZ is best among estimators of the form k 1

along the lines Laz = uz in the parameter space.

Theorem 4. Suppose we have prioir information

2 ~
that X_ < L then p_ is an estimator with uniformly smaller

2 2

(>} ~ a
mean square error than ¥, and hence My is inadmissible,
Proof.
2 2 L2, E;.l
-~ 2 2 n
m.s.e. of uy = % 0 + u/n a z g
lz + %& + 1/n2 22 +* %& + 17
n
2
<
n

o &
00

.

2
if Locn.
+]

ros

"5.1. The Bivariate Normal Distribution.

o
.i
." - »
- Case 1. Covariance Matrix I.
1‘.\
N
ot Consider a bivariate normal with variance-covariance
Al )
@rd

matrix I and mean vector unknown. The U.M.V.U. estimator

T T A AT e AT N e
Ay N : n’_‘A'_\ .':"_.f‘q':f:.




S

:; of Ui = (ux, uy) is U, = (X,Y). It has been shown to be

e admissible. The value of k which minimizes the mean square
:i: among all estimators of the form kﬁl is

3

. ,-

+,12
kK = JJV” . (12)
(2/m) + 118112

The estimator

"2 o 7V (13)
is best in the mean square éense among estimators of the form
kﬁl for points on the sphere uxz v uyz = £ in the parameter

space. Again the U.M.V.U, estimator appears best only at

the points in the neighborhood of the point at infinity.

Theorem 5. If ||i}] s ¢, £ > 0 then §, is an
estimator with uniformly smaller mean square error than ¥

and hence "1 is inadmissible.

Proof.
112
2, LEN
m.s.e. of B, = = n <2 « Ra
2 nzz 4% 4 n ¥
¢n 0;7

2
if [1ull° s 2.

Case 2. Covariance matrix I 02, oz Unknown.
The U.M.V.U, estimator for the mean is again

;1'“'“ with variance 202/n. The value of k which minimizes
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the mean square error among all estimators of the form kﬁl

is !

. (14)

The estimator My = ku has smallest mean square error for

->
p?ints in the parameter space ll%%l = .

Theoren 6. If we have prior information that

sZ

< £ with 2 > 0 then ﬁz is an estimator with uniformly
smaller mean square error than ﬁl and therefore ﬁl is
inadmissible.

Proof.

2
2 (nz)2 ¢ 2 llgll_ n
20 gl

n 2
(nk)" + 4%n + 4

m.s.e. of ji_ = < 20
2 n

<>

°2

6. The Negative Exponential Distribution. Let

x be the order statistics of a sample of size

!(1)' seer Xeny

n from
£(x, u, gd) = 1/0 exp - (x-u)/o (x, o > 0) (12)

s 0 elsewhere.
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n :
Fet Z = nx(l) and Y = 1/n igz (xi - ‘(1))' The distri-

bution of Z - nu is I'(1,0) and the distribution of Y is
I(n-1, o). The admissible U.M.V.U, estimator ﬁl for u is

Z/n - ¥/n(n-1). The estinator ﬁ which has the smallest mean

2

3 square error among estimators of the form kﬁl is the one with
2
k = 3 L = 1 where

. : of _, .2 S S |
a8 (A1) s?(n) (a-1)
)‘
y 2

2 .

§" = . (13)

o2

Consider an estimator

; where 0 < £ |
s (14)

The estimator is best in the mean square sense among esti-

mators which are a multiple of 31 along the lines laz = uz 3
a in the parameter space. é
; Theorem 7. Suppose we hive prior information a
L that 5; < £ then ﬁs is an estimator with uniformly smaller é
‘3 mean square error than ﬁl and hence ﬁl is inadmissible. N

nz(n-l)zzz + n(n-l)uzla2
12n-12%2% + 2n(n-1)2 o 1

m.s.e. of ;3 -[azln(n-l)]

= ~ 2 2
er Rul if u¢/0° < 2.
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NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD RATIO
CRITERION FOR THE SPFECTRAL MATRIX OF A
GAUSSTAN MULTIVARIATE TIME SERIES

B. N. Yagarsenker

U, S. Afr Force Institute of Technology

ABSTRACT
Let [(w) be the spectral matrix of a p-dimensional zero-mean stationary
~
Gaussian time series )\("(t).- (X (e), X,(2), ..., xp(:)). In this paper, ve
consider- the test for the null hypothesis H : [(w) = [, (w), where £o(m) is a
0 A, A0

known matrix for all w, against the alternative “1: ’)‘Zl(u) ] Eo(w) and obtain
the nu'l and non-null distributions of the likeltihood ratio criterion as
mixtures of incomplete beta or gamma functions. These representations are

vell-suited for programming on a computer to find the exact powver of the

test.

1. INTRODUCTION
Let 5'(:) - (ll(t). . xp(:))bc a p~dimensional stactionary Gaussian
sultivariate time series with zero mean vector. Let E(u) denote the
spectral matrix of }‘t'(:) so that

g(u) - “"jg""”° 4.k =1,2,...,p)

vhere 0, (w)~_1 .t. R (n)o'“‘-’ denotes the cross spectral denaity
ik In ge-w L

function between XJ(:) and lk(t) and

ljk(') - B[Xj(t) "X (t49) ]

denotes the corresponding cross covariance function. We assume that for each

w the hermitian matrix }‘Z‘(u) is positive definite. Let

- r - r - .
1,,(8,) _zlﬁ[,: X, (0e ue_] [t X () ue,,.] .
tel s=1

J.k=1,2,...,p.

here 8_» 2% 0,1,2
where 8 T oeme 1,000,

Ly
T
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[t is well known that a consistent estimato? of O ts given by (see

JL3
Parzen (1966), Brillinger (1974)
- p L
°jk(“) iy £ tjk(“ + 6') ’
@m=-n
1
where n = an + 1, L5 being the bandwidth parameter. This estimate ajk(u)
can be alternatively wricten as (see Priestly, Rap and Tong (1973))
~ 1 ®
ajk(u) - nfl Ijk(w bel) ,
vhere W' .w - (2r (n1+1)]/T. The spectral matrix i(m) Ls chen
- 3 -l )
S ((cn(u))) s Ay <o (1)

Goodman (196])) showed that Q(u) is distributed as the Complex Wishart

distriducion CV(%; p, n, E) defined by

TGGies a ) = (Bt L @] 14w exp eefTA) L

vhere E{-) is defined in James (1964). It is easy to see from (1.1) that
2(0) 1e distriduted as C"(i v Po O, % £ ). The study of the structures of
the above spectral matrix and especfally testing various hypotheses conceraing
this matrix arise in the analysis of the daca in ougerous areas, such as thae
vibrations of the airframe structures, meteorological forecasts and signal
detection (see Hanpan (1970), Liggecc (1972, 1973), Priestley, Rao and
Toug (1973), Brillinger (1974) and Krishnatah (1976)).

In this paper, we consider the problem of cesting the hypothesis

B: - L(w) = £°(u). vhere Fo(w) 18 a known macrix for all w against
che alternative H‘: 5 (w) ¢ {0(“)- We shall obtain the hth moment of the
likelihood ratio criterion and use these moments to derive some represen-
tations of the non-null distributions of the test statistic. These are
easlly programmable on a computer to obtaln the e¢xact power as well as the

percentage points to any degree of accuracy,
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2. SOME PRELIMINARIES

The following results and definitions are needed in the subsequent
sections. Thae Mellin integral fransform of a function f(x) of a real
variable x, defined only for x > 0 {s

Mt sl = eGPTh o /G T e UE R
where s is any ccaplex variate. Uader suitable restrictions (Titchmarsh (1948))
sacisfied by all density functions considered in this paper, there is an inverse

formula or {nverse Mellin transform

cHim

e X {ME(x)[s}ds .. (2.2)

£(x) = (2m1)71
valid alsosc everywhere. A ﬁi:h of {ncegration is any line parallel to the

imaginary axis and lying within cthe scrip of analyctity of M{E(x)|s}.

Lamms 1. Let

o(c) = fx‘ p(x)dx
be the aoment fuaction of a random variable x.vtth the distribution law
p(x). It )

oe) = 0™ e (2.3)
with real part of ¢t tending to =, then ¢(t) can be expanded as & factortial
secies of the form

0(c) = I__o A, T(c+a)/T(teicemea), pee(2.0)

a being any arbitrary noan-negative constant (see Nair (1940) .

Lemma 2. Let the asympcotic series t;_‘ ajxj converge to cthe function g(x)

in the neighborhood of x = 0 (or be its asymptotic expansion when x = 0).

We thea have

s(x) _ - J
¢ 1+ tj-l Bjx . . ...(2.9)
wvhere the coefficients Bj satisfy the recurrence relation
-1 ¢ - ..o.(2.6
'; 3 zh.1 ka Bj-k’ 8,1 (2.6)

(see Kalinin and Shalaevsktii (1971).
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Vil Consider now the test for the null hypothests Ho.: £(m) = I,(w), where
3 V. -\
\A: X Lo(w) 18 & known macrix against che alternative B, : [(w) ¥ [ _(w). Proceeding

- -] ~ 1 ~ A0

" as in Anderson (1958, p. 264), it can be shown that the likelihood ratio

criterion is
- .
NN -1 |a -1
pn - 20

}_:{: A e (e/n) IQ ,1‘:_0 |7 etr ¢ «A.EP ) . @.n
X% wvhere, for convenience, we have suppressed w and written Q for Q(”)' etc.

4

A,

.: Alternatively ) may be expressed as

A e (/)P A" ece (-a), ... (2.8)
~ ~
here A v CW - -1
v A (én P, 0, El )o ‘El )‘:‘Eo
Lemaa 3. Let 't : pxp be a c‘omplex symmetric matrix whose real parc (s
positive definite and i: PXp be a hermitian matrix. Then
f - s| P
* exp(-te ‘E 2) |~| dz

- T, o 21" ... (2.9)

(see og. 94 of James (1964)).

Lemms 4. The &°" moment of the statiscic A defined fa (2.8) is given by
e\ = (e/0)™M(. BT % Gaeni) (2.10)
'l +hE *h‘v_-L—_— . ese .
~ [ _(n) .
P
h
proot: e(\") « ¢ VCA, p, n, Ip). AP
A.A'>o b P.n.’ﬁl) X.de
YA A
-
« (e/n)PP Iz, | s . Lﬁ' aénh-p a
~ A=d >2 A ou-(-(f.1 *h{)Q). dp
i

- |

Pl A

Using Leoma 3, the result fc'lows .
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\c'._!
,::;. Lesma 5. The following tdentity s true:
\':-.: (o)
- ..‘ 1 ! -
‘-..\‘ |q, + ™ El'
RS
) h,-p(hén) -(h+n h, -1 -1 ~(h+n)
- . =D £y |=(w®) 1-asH ™ a-nhi
AN
Lo -(h+n) v
e b, -p(h+n) - (h+n)  C (M)
by o =+ Y Lo Ix L3 S .o (2.11)
>0, h. k «t
™ 1+ ;)
p " vhere M = % - 51‘1 and '(‘:'K(-) {s the zonal polynomial as defined in James (1964).
h
b i'- This is valid since h can be chosen 30 :hat’l - ch max El-l' <1+ P
-4, )
A
v ..'
z-'.‘ Lemsa 6. The following expansion for the gamma function holds:
L, " - —
\ b log [ (x#h) < 10g (z,,)‘l s (x+h-1/2)1l0g = - x
e -
LY
A =L DTB ) er, (0,
\""q: el - T
y '_-‘3 . e(r+l)x
P
"I‘ vhere l-(x) is the remainder such that ]R-(x)l < _8_, 0 being a constant
' a
|
1‘ ay
:..:: {odependent of x and lt(h) is the Bernculli polynomisl of degree r and order
f‘
:'-;. one.
e, . .
3. NON-NULL DISTRIBUTION OF A AS A MIXTURE OF ;
’ INCOMPLETE BETA FUNCTIONS 1
- .‘ —
.;-;.‘ In this section, we shall derive the non-null distributiocn of L = A%, I\
o'
N-"x\ vhere ) s given in (2.8). Using (2.10), the nth moment of L under the f
Wy .
W alternative hypo't‘hu!.s is
= (L™ « 20
s A
N . (e/n)PR T, (nen) g, | . el [~(h+n) ...(3.1)
N . Xl n  nal ¢
XN ?'p(n)
-.’q
vhere tl't Z;l. Using the inverse Mellin transform (see (2.2)), the density
'L‘“ A N
:' function of L (s given by
50

g

AQvi
St 1
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f(L) = (?P (n)}-l (Zui)'l,

" ol L") h
U et Ty (e G

R T R T e (3.2)
N
chim

)4
"\
We now use the identity (2.1l1) of Lemma 5 and write t = n+h to obtain

t'(t-) - K(P-"-EL- L)

£.0 Iy :_"‘ Ce L) e (3.D)
wvhere
R O
p(L) = (2rt)~ f°:" 7% o(e) de e (3.0
ot
a(e) = (e/0)P" ™ P Tesk e l-0) (39)

and

Ko, , I, 1) = M0, (Ftat1-a)}™d |£y)"® (e/m) P L™t .

By Lemma 6, log 4(t) may be expanded as

)9/2 v -

+ L (q'/er.)

+ log ¢ el

log #(t) = log (2w
vhere the constants q, are given by

q * (-1)"1 ( ;:_l °r+1(ka*1'°) / r(r+l)) ..(3.6)

and Vo 92/27 Thus we have

o) = e T mP (1o I (L /D), e )

vhere the coefficients ‘r can be recursively computed using the relations
(2.6) and (3.6). In other words, tha coefficients Lysatisfy the recurrence
relat‘on

l .t
Lol *o bt toe1l .. (3.8)
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(.,' Now from (3.7) and (3.4) we get
oY - + -t - - r
NN ) = ™ @mP’? ST U Ve T (e e vea(3.9)
S
)
\'h'*. The integral on the right hand side of (3.9) can be easily computed if v is
QY
an 1nteger and its value, by Cauchy's theorem of residues is 2ni times the
':'7- : sum of the restdues of L°C ¢V (1 + lr/tr) at t = 0. This is easily seen to be
by : , /2 = crvel .
«.-_: (2m1) (2v) frag ¢log L) L /T(v+)}, Lyo1
G .
Y| and thus from (1.9)
. oW = P2 57 (108 Y 1 sT(wn) ... (3.10)
-'r'{ Then from (3.3), the probability that L is less than any value "0 {s
"y . k A L
oL PL <L) =K (p, n, I[) £ n_ 0
g Lty =Ko ma Iz o L o7 S M [y p(L) 4, ..(3.11)
wvhere
A
A (0, L)) = wP (T(as1-a)} L |5, ™ (efa)~P"
To, K. 0, A1 a=l e al (e/a) "
:f,\. For computational purposes ve let u=n-1 and
A L
'™ - 0 ,u - wit-1
. Tre1,u (L) = fo L' (-log L) /T(vér) dL . e (3.12)
. Integrating (3.12) by parts, it can be easily shown that the following
::' tecurrence relation holds:
\"... u®l
\ .} ‘o,u("o) =1, /(u+l)
\ L]
v
N-‘ - udl - “t-’, . .
Ay Tore-1,uto Ly "~ (-log Lo)_ ! T(wr) + Im_z.“(t.o))/(“ﬂ) +..(3.13)
- With this notation, (3.11) becomes
) P(L< L) = K ( I o o S
N e = Lo 19.“-,\'1) k-otlk—lcl('\.‘
o ' PR () 14)
yod =0 "r vér-l, u 0" . R D
\‘ It {s to be noted that (3.14) holds only {f v = pz/z is an integer and this
o
‘-’: tepresentacion {s computationally efficient in cthis case. MNowever, if v is
z 4 not an integer, we can appeal to Lerma 2 since in this case ¢(t) sstisfies
i ‘C .
pos Cam™ i . 0(e™) e (3.15)
\l
L]
I\
e 4
'l
N
T
\
)
LAl
J L
, «o
> 47
:‘:c
..\l

c et - .o -
AL s p .i‘.\‘ ~\ ..\! S -\:-\

.

O > n v‘ - - -',. " '(") N '.‘ e LAY, WY \!-,' R



Amd L At ot e Lot AL R ubEREEAR R W SEWEMELERERES -

A SRR SR L CNL UL U TN

-p/2

Then from Lemma L, we can expand (27) ¢(t) in the factorial series as

-p/2 -V - r
(2%) *e) = ¢ (1 + L o (L /D))

- 21_0 Rl T(t+a) /T(t+veady) . ...(3.16)

where a {s any arbitrary positive constant and can be chosen to govern the
tate of convergence of the resulting series. The coefficients R1 can be
explicitly determined as i{s done below.

Applying Lemma 6 to each of the gamma functions in (3.16) we get

log (F(tsa)/M(tvatvtt)} =Lvet) log t + IT ) (A /e
where
Au - (-1)"1[5”1(.:) - ajﬂ(v«uu)l /11(3+1) .. (3.17)
Thus ve have
() - : J
- T(t+a) /T(t+veaty) = {1+ aj_l(cU/: o, ...(3.18)

where by Lemma 2 and (3.17), cu can be recursively computed. Using (3.18) on

the right hand side of (3.16) wve get

D (R A CWTL ) RN »P ek WO NN CRVEES B cea(3.19)

Equating the coefficients of like powers of t on both sides of (3.19), it {s

easy to check the fbllowing explicit relations to determine lt:
1
tj-o li-jct-j; lt (1=1,2,3...) .. (3.20)

vhere lo *«1ladC,. =1,

10
Now using (1.16) tn (3.9) and noting that term by tern integration is
valid since a factorial series 13 uniformly convergent in a half-plane

(see Doetch (1971)), we have

O LA I WE LTV el e (O LU E R 10

We now use the well-known integral (Titchmarch, 1948)
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[ (vey)
and obtain

) = an?/ 215k tta-n ™ ey,

Then from (3.3), we have the following exact noncentral c.d.f of L as a

sixture of incomplete beta functions?

. a nk v
P(L < LO) - KL(P. n, {1) Ek_o £K T CK (2)
L]
21-0 Dl BLO (nba , 1) /T(vet), ...(3.22)

vhere

D‘ = 8(n+a, w1) R1

and

3,(p.q) = (8¢p.)}? {;‘ 1 (1o 4x

is the i{ncomplete beta function.

As a particular caese, putting £ = Lo» 1.;.. 5 - 2 , va get from (3.22) the

~
null distribution of L as the following mixture of incomplete bets functions:

- 14
PO <L) =K n, 1) T 00 B, (e w0, .. (3.23)
wvhere D; is the coefficient D, with k = 0.

4. NON-NULL DISTRIBUTION OF A AS A MIXTURE OF
INCOMPLETE GAMMA FUNCTIONS

Let L, < -2q log A, whers ) 1s as {n eq (2.8) and q 19 sn adjustable
constant vhich can be chosen to govern the rate of convergence of the resulting

series and 0 < q < ®. 1If C(t) s the charactertscic function of L, then
from (2.10) ve have

c(e) = (a/e) ™1 T (a(1-2q18)) (¥, ()7

-n(l-2qtt)

-nqit
121l 1L - 2ate Iy} N TRY

vhich, as {n Section 3, can be written {in the form
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el . -y -1 > C. (M)
e Cler = 1Ty |™ (fp ()7 "y KT (o) ' e (6.2)
LA k!
RN
where
et ~ ao .
A Ko = (e/m P £ (n(1-2ate), K} (1-20t0) k-pa(l-2qte) (4.3
;:'-,.' where
. N
. Fp (a0 = (), (2
Al as defined in Constantine (1966).
A."-‘
‘-:.: Using Lemma 6, we obtain after some s{mplification
.';': log H(t) = % log 27 + k ivg n + pn logla/e)
&, .
- v log (n(1-2qt0)} + T Q (1-2qt0)™" e (l.3)
o vhere ve 92/2 and
.\\i
P o (-1yF-1 T [pP - -1
2! Q = -1 a [Ij_l Beay (ky + 1 3 (ecesyyt . (6.5)
\ORIG
o, "-.
2 80 that
A % ) = P2 a® (/0™ (a(1-2q100)7 (1 « A (-2 (68
:_' wvhere the coefficients Ar can be recursively computed using (4.5) and Lemma 2.
."-‘{.
Yo Noting that (1 - B1t) ™™ 1s the charactertstic function of the gamms denstcy,
A -1
5, (B.0) =0r@d h VB x> 0,d >0, 800
-',,j ve have from (4.2) and (4.6) cthe density of L, = -2qlogh
- k
Y
oY E(L) = Ky n, E) L gL D & @ .
o ki
-‘:‘
LA -
Y Do Ae 0 Brp (200 L)), Ag =1 BRTR R
G vhere
X /2 /2 1
n -
:2: Kp(pe 0 £1) = (2mP'C (n/e)? 1517 P, (T(as1-)) .o (6.8)
Ay

(X7

{

and the noncentral c.d.f of Ll is then the following mixture of incomplete

gamms functions
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s ...(8.9)
,‘t-() Ar n br#v (2q, %)
wvhere

G (8. = (8'T@)™t ST g (By)dy -

Remarks

(1) Taking )\:‘-50. or M = 2 in (4.9), the c.d.f of L - -2q logX (n

the central case is the following mixture of incomplece gamma functions

B(L; 2 %) = K, (p, n, D E:_o A; a’ Gy (2q. @), ... (4.10)

where A; 1s the coefficlent A, with kr - 0.

(2) Teking q=1, we obtain the representation of the c.d.f of !.l in the
central case as s mixture of chi-square distrtbutions.

The representations of the c.d.f's of the 1ikelihood ratio criterion
A obtained in this paper enable one to compute the exact powver of the teste
;uln. oaly the tables of zonal polynomials and tables of either the incomplete
bets or gamms functions and are {n & form vhich can be easily progrummed.
Purther, the iatroduction of the adjustable constsats to govern the rate
of coavergence and the recurrence relations (3.8), (3.13) and (3.20) are’

wvell-suited to computations of pover as well ss perceatage points for tests

of significance.
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o Probability of Destruction of a Point Target in Space
" d. S. Przemieniecki
N Air Force Institute of Technology
I~ Wright-Patterson Air Force Base, Ohio
[
3t
" . Abstract
:-:::-ﬂ This paper presents an analytical method for the calculation of the proba-
:: " bility of destruction of a point target in three-dimensional space for a given
ot aiming offset and a spherically symmetric Gaussian distribution of the pro-
A bability density function. The resuiting probability is presented in terms of
v two non-dimensional parameters expressed in terms of the aiming offset rq,
,:4 the lethal radius R, and the variance ¢%. The resulting spherical error prob-
{q.:,‘ able is compared with the corresponding two- and three-dimensional cases,
- i.e. the circular and linear error probables. The limiting case of zero aim-
A ':I;"‘ ing offset is also discussed.
Ay
o5 Introduction
TN
"‘ When the dimensions of a target are small compared with the effective
\'}": radius of the weapon within which the target can be destroyed, the target
"N itself can be represented by a point in the mathematical model of the
. attack. For example, such a model may represent the case of an anti-
A ballistic missile (ABM) with a nuclear warhead used to destroy an incoming
,os reentry vehicle. Here the size of the target itself is minute in relation to
_-?, the lethal radius of the ABM warhead and consequently the target can be
e treated as a point target. Due to systematic errors which occur in any
A .:J weapon system the actual aiming point {mean point of detonation) will not
) coincide with the target and the usual randomness characteristics of the
Pore weapon will produce the typical scatter around the mean point of detona-
\.‘5-. tion. The systematic error can be accounted fcr by specifying the aiming
?:.r: offset distance from the target while the randomness error can be
) described by the usual standard deviation in the three-dimensional proba-
o bility density function.
This paper presents the analytical method for the calculation of the proba-
~ bility of destruction of such a point target in space for a given aiming offset
:‘; o and specified lethal radius. The probability density function (PDF) describ-
::,_f ing the weapon scatter in space is assumed here to be given by a three- |
o dimensional Gaussian distribution with equal variances. The probability of ;
N target destruction is shown to depend on two non-dimensional parameters \
L expressed in terms of the aiming offset ry, the weapon lethal radius R, and |
the standard deviation ¢ . Furthermore, the paper deflnes the spherical
‘ ) error probable (SEP) as a relationship between the lethal radius parameter
q.;\: R/ o and the aiming offset parameter ry/ 0 and then compares it with the
‘xz. circular error probable (CEP) and the linear error probable (LEP) . The
) “’25 analysis includes also a discussion of the limiting case of zero aiming offset.
ah
o
.:\,'
- ~$
-:.‘-:
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Evaluation of the Probability

The analysis of the probability of destruction of a point target for two-
dimensional cases has been treated extensively in the past by various
authors and tabulated results are available !9 . This paper provides a
natural extension of this analysis to three-dimensional cases which may be
of importance in determining the effectiveness of an ABM system. It will be
assumed that the aiming offset point (i.e. the mean point of detonation) is
at a distance ry from the target placed at the origin of coordinate axes as
shown in Figure 1.

z
\

Mean point of

detonation \(

x ' %1 sin ¥ dO

Figure 1. Target in space

The aiming offset point iz assumed to lie, without any loss of generality, on
the z-axis so that the three-dimensional probability density function based
on equal variances o® can be expressed as

—z2  y? (z-7p)?
202 ¢

plz.y.z)= (\,;ﬁa), exp

- 1 A A
" (VEmoP °"P[ 27| W

where the relations r?=z2+y?+22 and z =rcosy were used.
The probability of destruction of the target is calculated from the integral
Rn2n

P=/ [ [p(z.y.2)risingdrd¢d
000
re R n2n [— r

2 [_ 2
—»rexpl*%i‘”dr

I o
] poe @
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Subsequent integration is possible with the substitution of the following
variables:

p=r/ (Vo] (3)

( The symbol p denotes the quantity R/ [VZ20] when used as an integral
limit or as a parameter.)

po=To/ V20 4
u=p=po (5)
v =p+pg (8

Substitution of the above variables into Eq.(2) leads to

1 Py P+py
= u +pg)exp(-ud)du - v —pgezp(—vdy 7)
T _f“( po)exp(-u?) T pfo( poyezp( (

which can now be integrated. This results in an expression in terms of
exponential and error functions, given by

P=P(R/a,ry/ o) ®
skttt enlo

+Tpafers (p+po)+ers (o=po)]

Equation (B) is plotted in Figure 2 for a series of values of the offset param-
eter ro/ 0 . When ry/ 0=0 (i.e. when py=0) then Equation (8) reduces to a
special case of zero offset. Since p; appears in the denominator of Equation
(8). L'Hopital’s rule can be applied to obtain the limiting value when r4=0.
This leads to

P(R/0.0)=F2-p ezp(~5%) + arf (p) (9)
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Figure 2

Probability of destruction of a point target in
space for a given aiming offset ry/ o and the
lethal radius R/ ¢

Spherical Error Probable

For the case of zero aiming offset r3=0 the Spherical Error Probable (SEP)
is defined as the radius R for which 50.3Z0f all detonation points in space will fall
within the radius and the remaining 50%will fall outside this radius. Thus if R
represents also the lethal radius any detonations within the radius R will destroy
the target. This concept can also be extended to non-zero values of ry. This is
obtained simply by equating P in Equation (8) to 1/2, so that

z—v%g{exp{—(p'rpo)z —exp{-(p-po)zl
+ﬁpo‘er] (p+pg) +erf (p-po)]]=l/ 2 (10)

Equation (10) gives a relationship between R/ 0 and g/ ¢ for the Spherical Error
Probabte. This relationship is plotted in Figure 3, which shows clearly how the
lethal radius R must be increased with an increase in the offset parameter ro/ o
to achieve 0.5 (i.e. 50.2 ) probability of target destruction. For rg/ a>1, R=arg,




i.e. the lethal radius is approximately equal to the aiming offset.
4 [ 7
.

. 3 W/
7

T
| CEP
1}— SEP A
_——/‘/
|
|
0 L i
0 1 2 3 4
o/
Figure 3

Variation of linear, circular, and spherical
ercor probable with the aiming offset ro/ ¢ and
the lethal radius R/ o .

For completeness, it is interesting to compare similar relationships for the
circular and linear errors probable. Thus using results from Reference [1] it can
be shown that

Y gahn=1/2 (11)
n=l
represents the required relationship for the Circular Error Probable (CEP),
where
91=1-exp(—p?) (12)

—p2{n-1)
gn= Errgrenp (-2 (i gan (1)
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with p and pq defined by Equations (3) and (4), except that R and 7, refer now to
the radii in the two-dimensional impact plane containing the target.

It can be demonstrated that the corresponding relationship for the Linear
Error Probable (LEP) for a point target in one-dimensional space (range) is given
by

! 1
. 1 R-—rg —(R+rc)J
er ~er,
sjorr | S err [ 552]
where R refers to the lethal range and rg is the linear aiming offset. Both rela-
tionships for the circular and linear cases are also plotted in Figure 3.

=1/2 (15)
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A NEW VARIATIONAL PRINCIPLE FOR ELASTODYNAMIC

PROBLEMS WITH MIXED BOUNDARY CONDITIONS
by

Peter J. Torvik
Professor and Head
Department of Aeronautics and Astronautics
Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio 45433
Abstract

A new variational principle is presented which enables the use of a direct
approach to obtaining solutions to problems in elastodynamics with mixed boundary
conditions. The principle may be viewed as a modification of Hamilton's prin-
ciple, in which the requirement that virtual displacements do not satisfy the
displacement boundary principle to general elastodynamics. A procedure is given
for using the method to determine the naturél modes and frequencies of membrances

and plates having mixed boundary conditions.
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I. The Variational Principle

;
ey
RS LA

In the application of Hamilton's principle, it is necessary to seek an

%)
o
WA

extremal value of the Lagrangian function over a class of admissible virtual

»
h

displacements which vanish, for all time, over the portion of the boundary
where the displacements are to be prescribedl. For many problems, finding such
functions is not readily done; therefore it is of interest to investigate the
possibility of extending the class of admissible functions to include functioms
which do not satisfy the boundary conditions on those segments of the boundary
where tractions are prescribed, nor on those portions where displacements are
prescribed,

This relaxation of requirements on the trial functions is precisely that
permitted in the use of Reissner's principlez, which is applicable to both the
static response the the simple harmonic motion3’4 of elastic systems. It is
of interest to begin as with Hamilton's principle and to derive a somewhat

more general result.

We begin by writing a Lagrangian function
L=U~-K+A (1)
where the strain energy, U, of an elastic material is written as a func-
tion of strains,

U I W(e, )av (2)
v

the potential energy of conservative external forces is written as

*
A= - I T, ulds - ] Fiutdv 1)
S v

c
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N and the kinetic energy is expressed as
L K - I
w'*-:.

¢ v

S The volume of interest, V, is enclosed by the surface $ = Su + Sc, wvhere

1 . o
7 P uiuldv 4)

Su is the portion of the boundary on which displacements are to be pre-
scribed, and So is the portion on which tractions, Ti*' are given. The
O body force, Fl’ is presumed to be prescribed. The customary requirement
that the displacements satisfy a boundary condition

. '4,- . u, =0 on § ) (4)
N is replaced by a constraint,
c I r,( *)d

1" D S B (5)

S
]

-

-" . ..&‘-
"
Lot

where the I', are Lagrange multipliers. We assume, as in the further

.

.
o
e

i

N ’ generalization of Relssner's principle due to Washizu S’ that the strains
e and displacements may be varied independently. Thus, the requiremeni of
Q94 satisfaction of the strain displacement equations is replaced by a con-

straint

¢
ALy

1
c, = I ltj[.ij_- 3 (“l.j + uj.i)]dv (6)

v

1"‘; & &
L)
r ;\“JS'."';'( *

where the comma denotes partial differentiation. The strains are assumed
N to be symmetric; thus the xij are also.
) The new functional is

'y *
- L =U=-Ke+A- Cl - Cz )

and may be recognized as a time dependent versfon of the functional used
in Washizu's generalization. We now seek to determine conditions under which

the time integral of the modified Lagrangian function assumes a stationary

' value, or
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. etj. ‘13’ r‘)d: =0 (8)

with all 21 arguments of the integrand varied independently. 1f the trial

functions, u ,, and the A _ have sufficient continuity as to permit the

i i}
necessary application of the divergence theorem, and if

Gui(tl) = Gui(tz) =0 (9)

we find the vanishing of the first variation necessitates that

2 W 2 - .
I I {3‘11 - xij)ceijdvdt + I I {-X1j + oy, - F1}6uidvdt
tl v tl v
t2 . €2
- I I {eij -3 (ui'.1 + uj'i)lcxijdvdt + ! I (“3‘13 - Pi)éuidsdt
tl v tl Su
tz . tz R
o+ j I {vjxij - 'I‘1 }6u1dsdt - I J {ui - ui}Gridsdt =0 (10)
tl S° tl Su

We recognize from the first integral that the Lagrange multipliers
Aij have the physjical interpretation of the components of stress in an

elastic body, o,,, and from the last that the fi have the physical inter-

i)
pretation of the components of traction, Tl’ since the vj are the com—
ponents of the normal vector at a point on the surface. Thus, three sets
of Euler equations result

aw

—_— =0 inV (11)
aeij i)
cij,j #F’.:Dui in vV (12)
1
eij =3 (ui,j + uj,i),in v (13)

and the necessary boundary conditions are secen to be
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Ty= V94 o8 S=5 +8, (14)

3 L,
{ T, = T,*on S, (15)

3¢ %
:; ui - u1 on Su (16)
)

M | Since these are the field equations and boundary conditions of
o, elastodynamics, we conclude that the proposed extension is appropriate,
QY whether it be viewed as a relaxation of the class of functions to be used
y with Hamilton's principle, or as an extension of Reissner's principle to
B other than simple harmonic motfions. Equation 10, 4t should be noted,
< is included in the further generalization due to Yus . This dynamic

o 7

variational principle differs from that of Dean and Plass in that

;\3 éu need not vanish on S;.
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I1I. An Approximate Method

Our interest here, of course, is not in deriving once again the
equations of elastodynamics, but rather in developing a procedure whereby
approximate solutions can be obtained for otherwise intractable problems.
To do this, we return to equation 10 and make use of the {dentification
that the Lagrange multipliers are, in fact, stresses and tractions.

We are interested in the class of problems for which a number of
solutions to the field equations are readily obtained, but for which dif-
ficulties in obtaining solutions arise because of mixed boundary conditions
in the form of Equations 15 and 16. We assume that a large number, N, of
systems of stresses, cljn’ and displacements uin,'can be found, and that
each system satisfies Equation 12, and further, that ﬁhese stresses sat-
isfy an elastic constitutive relationship, Equation 11, together with

strains eijn which are derived, through Equation 13, from the displacements,

uin. We then take as trial functions the superpositions of such solutions,

or

N
n
cij(x,t) = nEl .naij (x,t) (17)

and

N
ui(x,F) = nzl anuin(g,t)' (18)

It follows that every such trial function will also satisfy the system
field equations, 11-13. Tractions, Tt' may be constructed from these
stresses so as to satisfy Equation 14 on each point of S.

For such trial functions, all but the last two integrals of Equation
10 are zero identically. The variational principle has thus led to the

requirement that
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(. I I (T1 - 'l‘1 ) 6u1dsdt - I I (ui -y )GTidsdt = 0 (19)
-ft; 6 5 & Su
S
LS
Eﬁ From this condition, we propose to construct an algorithm for determining
B
™ the set of coefficients LN which, for any N selected, leads to the best
kgb ' approximate solutions in the form of equations 17 and 18. The most general
ﬁf}: arbitrary variation within the space spanned by these N solutions may also
N be written as an expansion of these same N solutions, or
;;\i N o
. cou = J ‘.maij (x,t) (20)
\'f\'f m=l
oAl
,E\: N m
. _ Su, = ] 68 u (x,t) (21)
34 m=1
'7:j Substituting these and Equations 17 and 18 into equation 19 leads to a '
O
;}‘J ’ single equation. Since the variation must be arbitrary, however, any con-
A venient choice of coefficients, Can.'may be made. It is particularly con-
Car
7 .\.
’}: venient to make the selection:
‘\".'i
o) 6a_=0 for m #p, m=L,N . (22)
6a_ =1 form=p, p=1,N" (23)
o “
L) .
y s0 as to obtain a system of N equations for the N coefficients 8 or
ﬂ.‘ , t .
’g>' N 2
ktk np - ! n |
I s I {I Vi1 Y4 ds ug vy ds}de
- n=1
| 1 % u (24)
s
o t
> - * Pag - * P
) I (! ‘r1 u, ds [ u, vjcji ds)de
-— t s S
S 1 o v
.':",'- *
fﬁf For any given boundary conditions, Ti and “1*' and for any selected set
as
¢g$ of solutions to the field equations, the a_ may be found and the approximate

solution determined. It has been previously found8 that static problems

with mixed boundary conditions may be successfully treated in a similar




manner.
The procedure may be applied to construct an approximate steady state
response to a prescribed boundary excitation
*
T, = o, (s)cos 8t on S, (25)

*

u = U (s)cos Qt on S (26)
u

We require N solutions to the field equations, of the form

o " n(ﬂ,f)cos Qt (27)

13

54

n

. Uin(n,f)Cos fnt (28)

u

Substituting these into Equation 24 yields 3 system of linear algebraic

equations of the form
N

n£1 ancnp(n) = pp (29)

n.p n P
cC = ! vjsji U tds - I v, vjsji ds 4 (30)
s s

ag ) u

and

P = I o,"u Pas - I Ui*vjsjipds " (31
so su

The time integrals have been eliminated from Equatioﬁ 24, since the equa-

tions must be satisfied at every instant. Postmultiplying by the inverse

of the array, C, completes the algorithm for computing the coefficients,

a . For Su = 0, this procedure reduces to that previously used to deter-

mine the response of an elastic strip to a time harmonic end loadingl6.

In order to construct an approximate solution for the free vibration

*
of an elastic solid with homogeneous boundary conditfons, T

1 =00nso

*
and Ui = 0 on Su. We again require that N solutions
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o, "=s n(w.f)cos wt (32)

13 1)

u," = v, "(w,x)cos ot (33)
be available. Here, the natural frequency, w, {5 to be determined. Equa-

tion 24 now reduces to a set of homogeneous algebraic equations
N
aC(u =0 34
with Cnp given by Equation 30. Estimates of natural frequencies, w, arise

from setting

det(Cnp) =0 (35

and the corresponding mode shapes may be determined by returning the re-
sulting value of w to Equation 34 and computing ratios of coefficients.

We have ncw completed the development of a procedure whereby approx-
imations to the forced response of elastic solids to time harmonic boundary
excitations may be obtained. Approximations to the natural frequencies
and the corresponding mode shapes may also be developed, even for objecis
of complex geometry. If the available get of solutions can be shown to
be complete, convergence to an exact answer is to be expected in both cases.
1f the available set of solutions 1is merely 'large", only an spproxima:ion

can be anticipated.
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ITI. Summary

A new variational principle has been developed and used to develop a
general approach to the problem of determining the frequencies and mode shapes
of freely vibrating elastic systems. Specific results from an application to
the vibration of membranes have been given elsewhereg’lo. These results may,
of course, be immediately transferred to other physical systems having the same
dif{erential equation and boundary conditions, such as the waveguide. More
recently, the method has been applied to the determination of the mode shapes
and natural frequencies of vibrating plates. Specifically, the problem con-
sidered was the circular plate, clamped on a portion of the edge and free on
the remainderll. Even though the solution algorithm requires finding, by
iteration, the values of a parameter which zero the determinant of a large

matrix, the computation time required was found to be substantially less than

that required to obtain similar results by using the method of finite elements.
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THE VALIDITY OF LINEAR VELOCITY CALCULATIONS
OF LOW PRESSURE GAS FLOWS IN A FLOW TUBE

P. J. Wolf and E. A. Dorko

Department of Physics
Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433

and
S. J. Davis

Air Force Weapons Laboratory
Kirtland Air Force Base, New Mexico 87117

ABSTRACT

The linear velocity and velocity profile of argon flowing
in a flow tube were determined experimentally by use of a
luminosity time-of-flight technique. The experiment can serve
as a simple introduction to flow tubes and to velocity prcfile
determinations in a physics or fluid mechanics laboratory. The
experiment allowed the observation of a laminar flow and a can-
parison of linear velocity calculated from plug flow considera-
tions with the linear, centerline velocity determined experimen—
tally. It was found that the linear velocity was 1.62 times the
plug flow (average) velocity at a flow rate of 4576.0 standard
cc/min and 1.77 times the plug flow velocity at 5262.4 standard
cc/min, The velocity results were compared with those predicted
by the Poiseuille flow formula which governs ideal, fully developed
internal flows.

INTRODUCTION

Flow tubes are relatively simple devices which can be used
to determine the rates of fast reactions, to generate excited
chemical species, and to study the rates of decay of the emissions
from excited species. These studies can be accomplished because
in the flowing gas, little mixing occurs between reactants enter-
ing and products leaving the tube. The determinations of the

mechanism and kinetics of a large number of fast reactions at




(1, 2]

temperatures below 1000°K have been done in this mamner
addition, with improvements in flow tube systems, high temperature
reactions occurring in such systems as Fe/O2 ] and Al/Oz["] have
be?rsl sgnlldied. Other applications of flow tubes have been report-
ed”?

In order to perform meaningful experiments, the linear velo-

In

cities of the flowing gases must be determined accurately. Linear
velocities have been reported in many of the published studies[l’ 8].
These velocities were needed to calculate reaction rates and to
provide a basis for a correlation between various physical para--
meters. In general, the velocities were calculated using the plug
[8"10]. Plug flow is defined as an idealized state
of flow such that, over any cross-section perpendicular to the

flow assumption

fluid motion, the mass flow rate and the fluid properties, P, T,
and p, remain constant. Extensive information is lacking concermn-
ing the validity of the plug flow assumption in flow tube applica-
tions where the pressure is low (4 - 10 Torr), but where the flow
is still in the viscous flow regime. Swearengen[u] and Armstrong
and Davis[12] have reported limited results on this problem,
although it was not a main concern of their studies. The current
work was conducted to develop a simple experimental method to de-
tail the validity of the plug flow assumption in the calculation
of the linear velocity of a low pressure gas in a flow tube. The
linear velocity was determined experimentally and compared to cal-
culations based on the plug flow assumption. In addition, the
velocity profile was studied to determine possible deviations from
plug flow. The experimental apparatus which was utilized and the
technique for measuring the velocity profile are simple enough so
that they could be used as a laboratory experiment in a physics
or fluid flow laboratory. The experiment could introduce the stu-
dents to the use of flow tubes and also could serve as a simple
method of obtaining the velocity profile for a gas in laminar
flow. The equipment is inexpensive and simple to operate, yet the

results give a good approximation of the theoretical parabolic
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wad velocity profile to be expected under the experimental conditions.
_ . While standard techniques, such as pitot tubes and hotwire
5'{ anerlar\et:ers[13’ 14] have been used in the past for velocity pro-
:3'::: file measurements, the present experiment utilized a luminosity
TN time-of-flight technique.

. A stream of argon gas was excited in a high voltage discharge

R in the flow tube, near the entrance. The time-of-flight of the
?.‘_; luminous argon was determined at a series of stations downstream
N of the discharge by detection of the visible emission of the
g excited argon. The linear velocity of the flowing gas was calcu-
': lated from these data. The advantage of this technique for a

" laboratory envirorment is the simplicity of the approach. Once
< s the apparatus is assembled, simple movement of the detector along
s 4. an optical bench is the only adjustment which needs to be made.
;\5 ' By traversing the detector perperdicular to the direction of gas
::-Cj: flow at various stations downstream at the flow tube, the develop~
":_-j ment of the profile can be observed.

o EXPERIMENTAL SECTION
-g:?_ : The flow tube arrangement utilized in this experiment was
:_-f‘, based on[;heli}]'stem described by Swearengen, Davis and

e Niemczyk' " . It is shown schematically in Figure 1. The flow
N tube was composed of sections of thick-walled pyrex glass tubing
::':4 5.1 cm I.D. joined together to form a system 162 cm in length.
:.}3 The tube consisted of a gas injection region, a discharge region
ard a test region. It was supported on an aluminum stand.
oA A gas flow system furnished the flow tube with a continuous
\fg supply of high purity argon (99.98%). Since the volumetric flow
-t. ~ rate was required in order to calculate the theoretical linear
"." velocity of the gas, this flow rate was measured using a Hastings
“ Model Al1-10K Linear Mass Flowmeter. The flow rate was controlled
:ii by a Jamesbury ball valve placed downstream from the flowmeter.
': The gas entered the tube in the injection region. This 31 cm
'4 length of the flow tube, located directly upstream of the discharge
oA
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region, was provided in order to obtain a reattached flow of gas
prior to entry into the discharge region. Provision for the gas
flow to become reattached in the flow tube becomes important when
the gas feed line diameter is different from the flow tube dia-
meter. That is, when gas is suddenly expanded as it enters a tube,
a jet stream develops. Therefore, it is necessary to find a dis-
tance downstream from the inlet hole where the flow becomes re-
attached. In the present study, the flow tube diameter was 5.1 cm
and the inlet hole diameter was 1.3 cm. For this configuration,
the recirculation zone length was found to be 15 chS]. A section
of tube approximately twice this length was used to serve as the
injection region.

Once reattached flow was achieved, the gas entered the dis-
charge region. A portion of the argon flowing between copper
electrodes was ionized and excited into metastable electronic
states. These states continued to emit detectable visible radia-
tion for a considerable distance downstream, and this emission
(or afterglow) served as the basis for the velocity determinations.

The discharge region was constructed with a pyrex glass
cross, 20 cm in length. The cross was located directly downstream
of the gas injection region. Copper electrodes, 0.32 cm in dia-
meter, were inserted in the cross amms through 1.3 cm thich plexi-
glass plates. The electrodes were adjusted to provide a 1.0 cm
gap perpendicular to the flow tube centerline. A high voltage arc
was produced between the electrodes with an EGSG Model T™-11 30 kv
trigger module. A repetitive, pulsed discharge was achieved with
a 2 Hz, 20 v peak-to-peak square wave from a Wavetek Model IV
voltage controlled generator.

The observation section of the test region of the flow tube,
61 cm in length, was placed directly downstream of the discharge
region. An optical bench was positioned alongside this portion of
the tube. The bench contained a scale graduated in cm to measure
distances from the electrode to the observation point. A 1P21
photomultiplier tube (PMI), used to detect the radiation from the

LS ST T SEHIR 4, (e

LRI X SR



RN
o

94

o

&%

NN argon afterglow, was mounted on the optical bench. A variable
slit, adjusted to a width of 0.2 cm, was placed in front of the

\ -::_' PMI. An iris, adjusted to give a diameter of 1 cm, was placed in

f«.:: front of the slit. The iris allowed the photomultiplier tube to
L sample the radiation at different heights in the flow.

. ‘ The output of the PMT was fed into a Keithly Model 427 cur-
q-F{‘;': rent amplifier. The signal was then sent into a Princeton Applied
%? Research Model TDH-9 Waveform Eductor (signal averager). Approxi-
e mately 100 signals were averaged. The signal averager was trig-

. gered by the signal from the square wave generator. Therefore,
{:? th(:: signal averager accepted signals only when the discharge was
AR triggered. The averaged signal was then sent into a Hewlett-
::} Packard Model 7045a X-Y Recorder. The recorder produced a curve
s 4 of relative intensity vs time. _

::E: A 20 cm long pyrex glass tee was used in the test section
i-f." following the observation area. This tee housed the pressure
:',;': and vacuum gauges. Hastings DV-4D and DV-6 vacuum gauges were
N used to measure vacuum. Pressure during gas flow measured with
a capacitance manometer device (MKS Baratron Type 77 Pressure

,}_. Meter).

:’: Two Welsh 17.7 CFM mechanical vacuum pumps were used to re-

' duce the pressure in the flow tube. A pressure of 50 microns was
w2 achieved with no gas flow. A ball valve, used to retard the gas
.:;::; flow to provide a higher gas pressure with no change in flow rate,
, S:-', was placed in the line between the pumps and the flow tube.
= RESULTS
:E' A. Linear Velocity
e
;SS: The linear velocity of the flowing argon gas was experimen-
tally determined at various gas pressures and flow rates by de-
:’; tecting the afterglow from the excited argon with the PMI. For
e these measurements, the PMI was positioned at various statiors
\f.': downstream of the electrodes. The height of the PMT system was
adjusted such that a signal was detected from the flow tube center-
Y
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line. The pressures, flow rates and downstream station distances
for which linear velocities were calculated are listed in Table 1.
The centerline signal from the flow tube was determined by travers-
ing the PMT and the iris vertically at each station until the fast-
est time-of-flight of the glowing gas was obtained.

Data gathered during this operation included the distance (X)
of the PMI station downstream of the electrodes and the time (t)
at which the PMI detected the leading edge of the emission of the
argon afterglow. An adjustment was made in the value of X in orxder
to correct for the self-diffusion of the glowing argon. The square
root of the mean square distance diffused, ?F;g, was calculated
using Eq (1)[16’ 17]

T - /I (1)

where D is the diffusion coefficient of argon and t is the time-
of-flight of the gas to each station. The correction amounted to
less than 4% of the total distance traversed.

The linear velocity of argon was calculated by performing a
linear regression analysis on the data. A linear least squares
fit was computed by regressing t on X. Plots of t vs X were con-
structed along with the lines representing the results of the
least squares analyses. This information is shown in Figure 2.
The linear velocities of the gas flows were determined by invert-
ing the slopes of the lines. The results are shown in Table II,
along with the plug flow velocity calculations.

U

bf = 1.43Q P(ATM)/60 P(GAS) A cm/sec (2)

where Q is the volumetric flow rate in standard cc/min of air, 1.43
is the conversion factor for the Hastings Mass Flowmeter to convert
Q into the volumetric flow rate of argon, P(ATM) is the atomspheric
pressure in torr, P(GAS) is the flowing gas pressure in torr, A is
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TABLE I

EXPERIMENTAL PARAMETERS FOR LINEAR VELOCITY DETERMINATIONS

33.9
37.1

42.1
47 'o

52 .o
56.9
57.4

p_(torr)

4.2
6.0
4.2
5.0
6.0
10.1
5.0
10.1
10.1
4.2
5.0
6.0
5.0
4.2
5.0
6.0
5.0
5.0
4.2
6.0

77

v (std cc/min)
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4576.0
4576.0
4576.0
5262.4
4576.0
5262.4
5262.4
5262.4
5262.4
4576.0
5262.4
4576.0
5262.4
4576.0
5262.4
4576.0
5262.4
5262.4
4576.0
4576.0
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A nlot of the data‘point:s for the downstream distance of the PMT station

(X) versus time-of-flight (t) of the glowing argon gas. The experimental
conditions are given in Table I. The data points are designated by the
symbols @, ©, Ao, and + for data taken at 5.0, 4.2, 6.0, and 10.1 torr,

respectively. 79
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the cross-sectional area of the flow tube (20.27 cm?) and 60 is

the comversion factor from minutes to seconds.

B. Velocity Profile

The velocity profile of the gas flow is dependent upon the
type of flow present (i.e., molecular, viscous, or intermediate).
The division between these flow regimes is determined by the value
of the Kmudsen number [18]. In this study, the mean free path of
argon at 5.0 torr was calculated to be 1.04 x 10 ® cm and the
Krudsen rumber was 2.05 x 10 “. Therefore, the flow is in the
viscous flow region[m]. Furthermore, the Reynolds number was
calculated to be 280, which showed that the flow was laminar[ 10]
as well. Therefore, a parabolic velocity profile was predicted
to form in the flow tube.

The instantaneous linear velocity of argon was determined at
various heights above and below the flow tube centerline from time
vs distance data. The data for these calculations were obtained
at stations 28.5 cm and 35.9 cm downstream from the electrodes.
These experimental velocities were then plotted against distance
above and below the flow tube centerline to obtain the profile.
The results are shown giaphically in Figure 3. The solid para-
bolic curve in Figure 3 is a theoretical velocity profile charac-
teristic of a fully developed internal flow. This profile was
determined using the Poiseuille flow formula for a flow in circu-

lar cross—section[ 10] .

u(y) = 2u,y, [1 - y*/R?)] (3)

where y is the radial distance from the centerline and R is the

radius of the tube. Uy is defined in Eq (4)
_ R 2p
Yav = Bn ax (4)

where n is the viscosity and ap is the pressure difference due to

80
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FIGURE 3: Experimental and theoretical velocity profiles at 5.0 torr. The parabolic

profile was calculated using the Poiseuille flow formula.

The experimental

data were taken at PMT stations 28.5 cm (+) and 35.9 cm (O) downstream of

the electrodes.
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viscous forces over a length of tube ax. If the pressure at one
end of the tube is known, then the pressure at the other end can
be calculated from Bq (5)[2!

PZ’ - P]_’ = 16F° Ln ROT/nR" (5)

where F” is the flow rate in moles/sec, L is the length of the
tube, R, is the universal gas constant, and T is the absolute
temperature. For example, using for the viscosity of argon
223.7 x 10°* poise at 296° K, a P; of 10.1 torr and a flow rate
of 3.62 x 10 * mole/sec, the pressure difference due to viscous
forces was calculated to be 1.09 x 10 ? torr.

The experimental velocity profiles in Figure 3 revealed an
approximately parabolic configuration at both stations. While
the profile obtained at 35.9 cm downstream slightly more closely
resembled the theoretical curve than the profile at 28.5 cm, the
difference in the profiles is within experimental scatter. There-
fore, the flow was considered fully developed at both downstream
stations. The characteristic length for an internal flow to be-
come fully developed was calculated using Eq (6)[9]

X = .03 (R) D (6)

where X 1is the characteristic length, R, is the Reynolds mumber
and D is the tube diameter. The laminar development length was
calculated as 42.7 cm from the point where the flow became reat-
tached at the inlet region. Thus, the flow was fully developed
at 16.7 cm downstream from the electrodes. This simple calcula-
tion was strongly supported by a mumerical calculation for the

same system which was performed by Rapagnani and Davisug] .

DISCUSSION

The velocity profiles of the flowing argon gas at various low
pressures were parabolic. This result indicates that a fully
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developed laminar flow was present throughout the experiment.

Based on this conclusion, a comparison can be made between the
experimentally determined values for plug flow (Eq (2)) and the
average velocities calculated by the use of Egqs (4) and (5).

These values are reported in Table II. The correspondence between
values shows that the plug flow velocity can be used as the average
velocity in calculations for flow tubes when low pressure laminar
flow is occurring.

The results of the linear velocity calculation along the
flow tube centerline should be twice the average or plug flow
velocity in the ideal case. This is evident when y is set equal
to O in Eq (3). A comparison between the experimental linear
velocity results at y = O, (ue), and the plug flow values shows
that the factor of 2 is being approached, but experimentally the
linear velocity is somewhat slower than predicted by theory. The
discrepancy can be the result of a number of factors. Plug flow
calculations do not take into account frictional effects, since
this calculation is based on an ideal flow. In this study, the
flow experienced frictional effects due to shearing stresses and
pressure losses which caused the deviation from plug flow. Also,
in the present case the frictional effects were increased when the
gas flowed past the electrodes.

Based on these studies, it is concluded that a calculation of
centerline velocity based on a laminar velocity profile gives a
much better value than a calculation based on plug flow. If
perturbations to the flow are slight, as in the present case, a
correction factor of 1.6 - 1.7 applied to the plug flow value will
give a good estimate of the centerline flow velocity.
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