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ON WAVES IN NONADIABATIC AND NONEQUILIBRIUM GASES

Kao Zhi
(Institute of Mechanics, Academia Sinica)

Lu Wen-Qiang
(Institute of Engineering Thermophysics, Academia Sinica)

ABSTRACT

This paper deals with the propagation of the waves (including relaxation, pressure,
and density waves) and thermal mod§ in nonadiabatic and nonequilibrium gases. Based
on the mechanism of thermal disturbance feedback, a new governing equation for the
propagation of disturbances and the dispersion relation has been obtained. Some new
conclusions are reached. For example, the disturbance is either purely growing or slow.
damped which presents a reasonable explanation for abnormal absorptive phenomena of
infrasonic sound waves in atmosphere™; nonadiabatic characteristic of gas can cause a
remarkable dispersion phenomena; the propagation of noise can be damped, ete. In ad-
dition, the conclusion that pressure and density waves and thermal mode may be unsta-
ble agrees with the experimental fact about thermal instability in high power laser
discharges™",

I. INTRODUCTION

Much research has been carried out on the absorption and dis-
persion of sound waves in adiabatic and nonequilibrium gases and
liquids [1]-{3]. Analyses of the effect of nonadiabatic effects on
the propagation of disturbances, i.e., thermal disturbances, have
produced published works that agree with the analyses using gasdyna-
mic acoustics. Thermal disturbances are usually treated like acoustic
sources {4], [5], and the wave operators used are still the canonical
acoustic wave operators. However, under many practical conditions,
such as thermal disturbances in gaseous discharges, radiative heating
and turbulent flow heat exchanges, the thermal disturbances are not
only dependent on the state parameters of the gas but are also
affected by the perturbations in these state parameters. For example,
in gaseous discharges, the thermal disturbance is dependent on the
electrical conductivity of the gas (6], [7]. It is, therefore, both
a function of the density of the gas and a function of plasma heat-
ing induced by lasers [8]; the thermal disturbance is dependent on
the electrical conductivity of the plasma, which is a function of
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the density and temperature of the plasma as well as the perturba-

tions in these quantities. 1In other words, perturbations in the
state parameters (such as pressure, density, etc.) give rise to non-
adiabatic thermal disturbances. These thermal disturbances will
have positive or negative feedback effects, and the governing equa-
tion and wave operator for thermal disturbances will, as a result,
be different from the canonical equations and operators. Based on
this fundamental concept, we have derived a governing equation for
the propagation of disturbances in nonadiabatic and nonequilibrium
gases. Using this new equation as a starting point, we have analyzed
dispersion relations, damping and amplification characteristics,
discussed the propagation of the relaxation, density and pressure
waves and thermal wave modes in nonadiabatic and nonequilibrium
gases, and analyzed the interactions among these wave modes.

Some new results have been obtained in this study that differ
from those obtained by treating thermal disturbances as acoustic
sources [4], [5]. The fundamental reason for the difference is:
thermal disturbances treated as acoustic sources are independent of
the perturbations in the state parameters of the gas (such as the
perturbation p' in pressure, the perturbation o in density, etc.),
but thermal disturbances with feedback mechanism are dependent on
the perturbations in the state parameters. Therefore, by analyzing
the mechanism of thermal disturbance feedback, we may obtain a better
understanding of the nonadiabatic process and the interaction among
the different wave modes.

II. FUNDAMENTAL EQUATION

We will not limit ourselves to any specific nonequilibrium pro-
cess, but will, like general treatments of the subject [1], (3], con-
sider a general nonequilibrium process. This could be the excitation
and relaxation of molecular vibrations, the excitation and relaxation
of the rotation of molecules with high rotational inertia, or some
chemical reaction. Individual nonequilibrium processes may be repre-

sented by means of a nonequilibrium variable q and a relaxation




characteristic time 1. The mass conservation, momentum conserva-
tion, energy conservation equations, nonequilibrium rate equation
and state equation for a nonadiabatic and nonequilibrium gas are,

respectively,

1Dny Ae_ o (1)

P Ds Ox;

D: P Or;

Dk _Do_ (3)

[4 Dt Ds [l

Ds _q"—gq, (4) .

D: T :
I‘-I'(P: P> q)’ (5) :‘

in the above %%'-glﬂflfgL,p,p and h are, respectively, pressure
¢ 14 X;

density and enthalpy. us is the velocity component, q* is the equi-
librium value of the nonequilibrium quantity g, 1 is the relaxation
characteristic time of the nonequilibrium process denoted by g, and
g is the nonadiabatic heat source term. For the unperturbed gas,
we have

P=ptpsp=ptp, ui=u,

h=tho+ K, g=q+q q" =g +q%. (6)

Here, the subscript 0 denotes the unperturbed state, and the (')
denotes perturbation. As stated above, the thermal perturbation
g' of the nonadiabatic term g should be assumed to be a function of

.t -.-‘-'r, <L tats”

. s "

the perturbations, p', p' and q'. For instance, in the case of
gaseous discharges, a perturbation in density produces changes in
electrical conductivity, which in turn cause variations in local
heating of the gas, giving rise to nonadiabatic thermal disturbances o
[6]. Hence, in general, nonadiabatic thermal disturbances may be ;
expanded as follows:

T=a—aq=qp' +3,0' +3.4. (7)
Here,;,—(%%l,and the other terms are similarly defined.

f Substituting equations (6) and (7) into equations (1)-(4), and

. making use of equation (5), we obtain, after carrying out appropriate -
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S".: operations and simplififications,
J -
{ f:a—'{:,— Ce” + 0» Z:': + 0, ea’:,] |
<, i :
3 +2 00 +5(g 22 4 g, 20— ) |
3 o Ay ’ axf) ’
R

-

i where

o 1 3 _ A

a Oi=Zias o (9)

2 -12_3
e C. al s Bs’ {(10)
0 8 = — poh,(puhy — 1), (11) 715
%«' a; = — po(h, + g )(pohy — 1 + pohogl)™, (12)
.
- 0) = - (@ + 34D (13)
[
e 1 -, -

2 0, ~ — (3, + 3.4%)> (14)
o A,

N w1 s

. ;E b’ (h' + h'q’)c (15)
o Bk .

v Here h,—(—az)c, , and the other terms are similarly defined. Egqua-
o tion (8) is the governing equation for the propagation of distur-
::j' bances in a nonadiabatic and nonequilibrium gas. * 0 is the canon-
. ical frozen wave operator expressed in terms of a,. r; is on the
jj::; same order of magnitude as Toe It denotes the characteristic relax-
:l:;: ation time of the interaction of the nonequilibrium process and the
e wave motion. ‘l'; + 0 denotes the condition where the waves are pro-
- pagated in a gas in equilibrium, which we refer to as the eguilibrium
P

.;: gas condition. 1.'; + = denotes the frozen gas condition. It can be

“
j: easily shown that ag and a, are the frozen wave sound velocity and

".‘ . equilibrium sound velocity [2], [3] in the ordinary sense. 1In equa-
T tion (8), the four terms besides the canonical frozen wave operator

-

;,i and the canonical equilibrium wave operator are correction terms for
N the wave operator due to the nonadiabatic thermal disturbances.
‘.\ Under adiabatic conditions, i.e., QO;,mQ, = 0. equation (8) reduces

v to the ordinary nonequilibrium acoustic equation [2], [3]. When
‘; 1’; + » and 0, equation (8) reduces, respectively, to the governing

~ *0} is the canonical frozen wave operator expressed in terms of

4

- a¢ while 4




equation for the propagation of disturbances in a nonadiabatic
frozen gas and that in a nonadiabatic equilibrium gas.

III. DISPERSION RELATIONS (ONE-DIMENSIONAL VALVE)

It will not be easy to obtain from eguation (8) a general sol-
ution that is as simple in form as that for the canonical acoustic
equation. For convenience, we first consider the propagation of a
small amplitude simple harmonic motion along the x-direction. Such
a disturbance can be produced by a valve undergoing small amplitude
simple harmonic motion at x = 0 (see Figure 1).

non-adiabatic and
C———] non-equilibrium gas

| -l J

]—* X= (0 )coms

Figure 1. Valve undergoing simple harmonic motion.

Making use of the following one-dimensional flow relation
O’ 8a’

8r o’

we can simplify equation (8) to read

L 818 (18 &), , O 'i'i]

iy [a; Iry ae) O o T2 5o

8 (1 & O\, 1t O
LA+

* o £ 68 Ox’) f.(p' 87

For small oscillations, the fluid at the surface of the valve
should move at the velocity of the valve. Therefore, the boundary
condition at x = 0 for the velocity of the perturbation is

s’(0, £) = W(0)cos . (17)
Equations (16) and (17) have solutions of the form Re{W(s)e~]. Sub-
stituting equation (17) into equation (16), we obtain

w(x, 1) = W(O)ap(— ‘:.'- ﬁxsh.:qa)coo(m - -3- Bxcosp), (18)
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f: where i

1 - -—
P et e
.*_E; g - [(axa, + am, ) + (a0, — aa.)’ * !
XY (3 + a2) (19) X
. o = (wr}) — digprs ¥, :
%o

‘: & = —(wr] )K" + ajQprs )
v & = (wri ) + g,,m : :
)
| 20 = —Ce )1 — Qind). (20)

,3 It can be seen that the interaction between the wave and the non-

3 adiabatic and non-equilibrium process depends on the ratios of the ;
QE characteristic times of the four corresponding processes, viz.,

e the three Damkohler numbers: wT; (ratio of the characteristic

'{ time of the relaxation process to the characteristic time m-l of

Q the oscillation of the valve), 4Q,ri (ratio of the relaxation char-

B acteristic time to the characteristic time (4/0})* of the pressure

N feedback process) and @, (ratio of the relaxation characteristic

ﬁ time and the characteristic time (Q')_1 of the density feedback

3 process). Figures 2-6 show the vargation with wt+ of the phase
e velocity a = ag (B cos ¢Y and the damping or ampllflcatlon length

L=sufsdng)™ , where 40w, Qutd, ai/al and «¢!/r, are used as para-

'3 meters. Our analysis gives the following conclusions. i
e -
& 1) The phase velocity is dependent on the frequency w, i.e., K
1 there is dispersion. Under nonadiabatic feedback conditions, there
fs is a large variation of a with NT;. For gases in the low frequency
; limit or under equilibrium conditions, i.e., when wri—0
A «—[10,1/10}|}* . Therefore, when Qé = 0 and QB % 0, a - », while

. when Q' % 0 and Q' = 0, a - 0. For gases in the high frequency

- R P . +

: limit or frozen gases, i.e., when wro + o, a is always ag. For the
g: variation of a with mt;, see Figures 2 and 3. ‘

It can be seen that the pressure feedback causes a decrease in
the velocity of the low frequency waves, while the density feedback y




&
ot
o)
ﬁ} accelerates the low frequency waves. The phase velocity of the
{ high frequency wave is, however, not affected by nonadiabatic feed-
%: back processes. Under adiabatic conditions, i.e., when 0;=0,=0
53 a increases from its equilibrium sound velocity a, for wT; +> 0 mon-
;% otonically to the frozen wave sound velocity ae for wT: > ®, For
most gases, ag is slightly higher than a, [(1]-[3]. 1In addition, at
?S the low frequency limit of nonadiabatic equilibrium or frozen gases,
$: i.e., when w + 0, a is still equal to [{Q.1/|0)!]¥®* ; at the high ‘
;ﬂ frequency limit, i.e., when w + «®, a is equal to a, (equilibrium con-
. dition) or a, (frozen wave condition).
0N
. 2) For the damping and amplification of the disturbances, the
:5' criteria for stability of disturbance are obtained from solving
rd equations (18) and (19):
\‘.: S = (aa — aza;)(atcg + aq,) >0 stable
B <0 unstable (21)
'::f Under adiabatic conditions, S = (wr?)((a}/a}) — 111 + (wri)].. As ag >
;V‘ a., it is always stable. Under nonadiabatic conditions, the criteria
25 for stability are listed in Table 1.
8
b The experimental results of thermal instability in laser dis-
. charges can be fairly well accounted for using the criteria given
*Eﬁ in Table 1. The conclusions made by Nighan, et al., [6], [7] about
Ei the thermal instability in laser discharges are equivalent to the
:$‘ results in Table 1 corresponding to T; > 0 and Qé = 0. The results
é} given in Table 1 and the present analysis further show that under
$g the nonadiabatic condition where QB and Qé are simultaneously non-
éﬁ zero, the region of stability is dependent on w. When the high
o frequency disturbance is damped, the low fregquency disturbance may
— be amplified, and vice versa.
4
ﬁ% 3) The amplitude varies in the following manner. The amplitude
<) of the high frequency waves (when w + = and the other parameters
o remain unchanged) is damped or amplified exponentially according to
% [ (=D (ei0+ Qxi ] (22)
) g 2am,
o .
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- Figure 2. Variation of phase Figure 3. Variation of phase
I.i velocity a/af with Wt . velocity a/af with W . !

N\ l--low frequency limit or equi- l--low frequency limit or {
librium condition; 2--high freq- equilibrium condition;
uency limit or frozen wave con-~ 2--high frequency limit or
dition; 2--A refers to adiabatic frozen wave condition
condition; B and C refer to non-

adiabatic condition

l‘l
L)

TABLE 1

X w0 WrE—>o0 o-+0; oo

0:0,>0  0; (R 2,)<0 )

i =0 g[S+ o (1 -B)u 0l +aznt [0+ 0wt - 0s0i(E) ]

0,[g + aur(E - 1) >(1-2) rf»:oo

o 02 0, <0 &10) + 0,0 (o0 + 0, X' = 612, 0,)>0

n 0,0,>0 Q) (K 2,)>0 <‘l -0 "

‘ ' .00 =0 d+a0m(1-B)d @ +aon a0+ 0w - 00 (Z)]
<0

o[ +0.2(d-1))e (-3 o0

(410 + 0, X(w* - 6i0} 0,)<0

b i
stable

Al
unstable

Y 0,0y<0 0, +0,<0
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It is clear that under adiabatic conditions, the amplitude is

damped exponentially. Under nonadiabatic and frozen way conditions,
the amplitude of the high frequency waves is damped or amplified,
respectively, as

up(- Qe+ 0bri, )s
ZI’ 1Y

up(_ a0, + 0, x)

24,

(23)

The amplitude of the low frequency waves (when w - « and the other
parameters remain unchanged) is damped or amplified exponentially as

ee{s2=[ iy + o 2] =} (24)

In the special case where Qé = 0 or Qé = 0, the amplitude of the
low frequency waves is damped or amplified, respectively, according
to

”p[i%(r:!fé;t)m'] (=0,

ao[za(100 E)"] (2= 0). (25)

This is obviously very different from the exponential damping [3]
of the amplitude of the low frequency waves under the adiabatic con-

dition Qﬁ = Qé = 0, according to
—w (&N ] .
exp[ Za,(l af) rax]

4) Damping, amplification and slow damping: It can be seen
from equations (18), (19) and (20) that when the feedback parameters
Qé and Qé are appropriately matched, the nonadiabatic and nonequili-
brium characteristics of the gas cause amplification of the perturba-
tion at certain frequencies, and damping or slow damping of the per-
turbation at other frequencies. Figure 4 gives an example of such a
complicated situation. Within the range of 0< (wrf)*<1.], the per-
turbation is amplified; in the region where (wri)>11, the perturba-
tion is damped; in the neighborhood of (wrd)=~ 1.1 , the damping
length and amplification length both tend to infinity, forming, in

B A, - =
.................

..................................
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LIl wr; 2, suam
REEAR AEAAR

20 3.0 ——

Figure 4. Variation with wtt of the amplification-damping length
Llayz} (ar/a, =115 tf/ta= 1.1y ajQprt =1, Q;r} = —1:

+ denotes the region of damping, where L > 0; - denotes the region

of amplification where L < 0; =-°*- is where (wry’=1.1

l--low frequency limit or equilibrium condition;
2--high frequency limit or frozen wave condition

effect, a region of slow damping. This effect of nonadiabatic feed-
back can be used to fairly satisfactorily account for the abnormal
absorptive phenomena of sonic and infrasonic waves in the atmosphere
[9]. Hence, nonadiabatic feedback provides a reasonable mechanism
for explaining these abnormal absorptive phenomena [9]. Figure 5
gives an example in which the perturbation is damped in all fre-
quency ranges. When the case of nonadiabatic feedback is compared
with the adiabatic case, the former has a damping length 10-102
times shorter than that of the latter. Figure 6 gives an exmaple

in which the perturbation is amplified in all frequency ranges.

5) Damping effect of nonadiabatic feedback on the propagation
of noise: The process of noneguilibrium relaxation is a type of
nonuniformity in the gaseous medium, and like other types of non-
uniformity, can have a damping effect on the propagation of gas-
dynamic noises [5]. This is in agreement with the conclusion given
in [5]. It has been further found out here that the nonequilibrium
process has a relatively large damping effect on the high-frequency

719
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l--low frequency limit or equilibrium condition;
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N waves, but its damping effect on the low frequency waves is rather
i small. The nonadiabatic process produces effective damping. For
instance, if the conditions 0;0,<o0, and d!0,+ ¢,>0 are met simul-
Lﬁf taneously, then effective damping can be obtained in all frequency
}2 ranges for a gas in equilibrium. Please refer to curve C in Figure
5.

.\;‘ ’

IV. RELAXATION, PRESSURE AND DENSITY WAVES AND THERMAL MODES

a0 To further illustrate the effect of the nonadiabatic process on
:3. the propagation of perturbation, we carry out a Fourier transforma-
,\§ tion of equation (8) with respect to the space variables, and obtain
N d[HEE+ e+ 0 2F - o 2E]

O i dr’ |
Ak

23 rrwrerri@id-eed)-e. e
$§ In the above, F is the Fourier transform of ,'(s, 1)

W .
."‘ Fm s 5| . P Lol 2 (27)

E‘: o’(?y 1) = ! F(k)e®7dk. (28)

ég Equation (27) is integrated over all physical space, while equation

N (28) is integrated over the entire three-dimensional wave number

$2: space (k;, k,, k3), k = [k|. It is not very hard to obtain the

2?: solution of equation (26) in exponential form, but the process is

Eﬁ tedious. 1In what follows we give, through an analysis of certain

> limiting conditions, the relaxation, pressure and density waves and
R thé thermal modes, and discuss their main characteristics, inter-

relationship and stability.

POXAA

l) Thermal feedback due to pressure perturbation under equil-

b,
4 ibrium conditions ( #f—0, Q,=0) . The complex solution for
”; the wave component corresponding to wave number k, as obtained from
Eﬁ equation (26), is
o oilrs ) ~ diesp {ik -7+ L[ 0%+ (( -,!a - eat) ]}
»,° \
P (29)
"‘ —— | w— M & — . !l —
R +A,up{.lc r+ [ A ((Q, r.) q’d)wl}.
"
'
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where Al and A2 are undetermined constants. We define the heat
wave modes to be the zero-frequency modes corresponding to the con-
dition 2%e.<|0Q)(tf/r, (i.e., for smaller wave numbers k), and call
them thermal modes for short. We can see from equation (29) that
when Qé < 0, the thermal modes grow exponentially with time; when
Qé > 0, these are exponentially damped with time. For higher wave
numbers, i.e., those values of k that satisfy the condition

2ke, > |0yied/ve , waves that are damped with time exponentially (if
Qé > 0) are produced*, Such waves that have arisen because of thermal
feedback due simply to pressure perturbation are called pressure
waves. Under the condition Qé = 0, i.e., adiabatic condition,
equation (29) reduces to that for an undamped canonical sound wave
in equilibrium, with phase velocity ag

2) Thermal feedback due to density perturbation under equil-
ibrium conditions ( #f—0, 0, =0) . In this case, the complex solu-
tion for the wave component corresponding to the wave number k, as
obtained from equation (26), is

ire )~ 3 Ao { ik -+ s [ (2 0258

i=

W@odrege)

v (3og - (o) + o)V,

g==ltivi o _-1-iv3 (31)
2 2

where Aj(j =1, 2, 3) are undetermined constants. The zero frequency
mode of j = 1 in equation (30) is defined as thermal mode as before.
The waves corresponding to j = 2,3 in equation (30) are density

waves due to simple density feedback conditions. 1If 05 > 0 then the
thermal mode grows with time and the density waves are damped with
time; when Qé < 0, then the thermal mode is damped with time, and

the density waves grow with time. Under adiabatic conditions, i.e.,
Qé = 0, equation (30) reduces to that for an undamped canonical sound
wave in equilibrium, with phase velocity ag-. Thus, for a gas in

*or waves that grow exponentially with time (if Q' <0)
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equilibrium, thermal feedback due to density pei‘turbation results
in the simultaneous appearance of the thermal mode and the density
waves. When the thermal mode is stable (Q") < 0), the density waves
diverge; when the density waves are stable (Q") > 0), the thermal
mode diverges. This conclusion agrees completely with that made in
l7] regarding the instability in laser discharge thermal modes.
721

3) Adiabatic and nonequilibrium conditions ( 7’ %0, 0, =0, =9)- |
In this case, the complex solution for the wave component correspond- ;
ing to k, as obtained from equation (26), is |

or(r, ) ~ z Aexp(ik - r + w;t), (32)

imy

G e
t= ey (1= 55) + 5 (2).
p* = (ki — — (?)

In equation (32), the zero-frequency mode corresponding to j =1 is
the thermal mode with infinitely high phase velocity, and the waves
corresponding to j = 2,3 can be called nonequilibrium relaxation
waves, or relaxation waves in short. As ¢**>0, [(¢**/2)+ (p*/3)12>0,
the thermal mode is always damped with time. As the sum of the real
parts of the second and third terms of equation (33) is always less
than the first term, the relaxation waves are also always damped
with time. It is a well known fact that in an adiabatic and non-
equilibrium gas the perturbations are always damped [2].

4) Thermal feedback due to pressure perturbation under non-
equilibrium conditions (s %0, 0, &0, 0, =0) . In this case, the
complex solution for the wave components obtained from equation (26)
is

.................
............................
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3
pu(ry 1) ~ Z A,exp(ik -7+ w,),

=t (34)
0, - — %(;% + 19’) + o {_ % + [(J;)’ + (%’)!]vz}m
o3 - [+ (T (35)

qlfe - (k')":)‘ + = 27 (—’ PHR 24 )’

= 1 (& + sigiet ) Chayei > + i ).

A = (keped Y + ‘19:""—'—' [( ) + :Q"’O]-

Here A.(j % 1,2,3) are undetermined constants. For the case where
Ql.’ X 0, in the range of wave numbers where P(e,0,)7>1/3 , the zero-
frequency mode of j = 1 in equation (34) is the thermal mode, which
is approximately stable. In the range of very large wave numbers,
the thermal mode is stable when Qé > 0, and unstable when Q' < 0.
In the range of smaller wave numbers, where ?<-§ (10} , the
pressure waves are stable when Qé > 0, and unstable when Qé < 0.
It should be noted that under the limiting condition of a frozen
gas, i.e., when T: + o, the wave corresponding to j = 1 in equation
(34) is a pressure wave for k’< (-:Q')’ while under adiabatic condi-
tions, i.e., when Qé + 0, equatlon (34) reduces to equation (32),
and the thermal mode of j = 1 becomes a relaxation wave.

722
V. CONCLUSION

The governing equation for the propagation of disturbances in
nonadiabatic and nonequilibrium gases, equation (8), derived in
this paper on the basis of the mechanism thermal disturbance feed-
back, can be used to accurately describe the characteristics of the
propagation of these disturbances. It can also explain the experi-
mentally observed thermal instability in laser discharges, as well
as the abnormal absorptive phenomena of infrasonic waves in the
atmosphere. 1In contrast, the regular theory in which the thermal
disturbances are treated as acoustic sources cannot reflect the non-
linear characteristics of the above mentioned wave propagation.
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In nonadiabatic and nonequilibrium gases, relaxation waves,
pressure waves, density waves and thermal modes can be formed. These
wave modes interact with one another, and possess instability. The
physical mechanism underlying the instability of these wave modes is )
that of nonadiabatic thermal disturbance feedback due to pressure
perturbation or density perturbation. i
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