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ON WAVES IN NONADIABATIC AND NONEQUILIBRIUM GASES

Kao Zhi
*. (Institute of Mechanics, Academia Sinica)

Lu Wen-Qiang
(Institute of Engineering Thermophysics, Academia Sinica)

A mAucT

This paper deals with the propagation of the waves (including relaxation, pressure,
and density waves) and thermal mod'in nonadiabatic and nonequilibriam gases. Based
on the meehanimn of thermal disturbance feedback, a new governing equation for the
propagation of disturbances and the dispersion relation has been obtained. Some new
conclusions are reached. For example, the disturbance is either purely growing or slow.
damped which presents a reasonable explanation for abnormal absorptive phenomena of
infrasonic sound waves in atmosphere"'; nonadiabatic characteristic of gas can cause a
remarkable dispersion phenomena; the propagation of noise can be damped, etc. In ad.
dition, the conclusion that pressure and density waves and thermal mode may be unsta-
ble agree with the experimental fact about thermal instability in high power laserdischarges'w .

I. INTRODUCTION

Much research has been carried out on the absorption and dis-
persion of sound waves in adiabatic and nonequilibrium gases and
liquids [1]-[31. Analyses of the effect of nonadiabatic effects on
the propagation of disturbances, i.e., thermal disturbances, have
produced published works that agree with the analyses using gasdyna-
mic acoustics. Thermal disturbances are usually treated like acoustic
sources [4], [5], and the wave operators used are still the canonical
acoustic wave operators. However, under many practical conditions,
such as thermal disturbances in gaseous discharges, radiative heating
and turbulent flow heat exchanges, the thermal disturbances are not

*only dependent on the state parameters of the gas but are also
affected by the perturbations in these state parameters. For example,
in gaseous discharges, the thermal disturbance is dependent on the
electrical conductivity of the gas (6], [7]. It is, therefore, both
a function of the density of the gas and a function of plasma heat-
ing induced by lasers (8]; the thermal disturbance is dependent on
the electrical conductivity of the plasma, which is a function of
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the density and temperature of the plasma as well as the perturba-

tions in these quantities. In other words, perturbations in the

state parameters (such as pressure, density, etc.) give rise to non-

adiabatic thermal disturbances. These thermal disturbances will

have positive or negative feedback effects, and the governing equa-
tion and wave operator for thermal disturbances will, as a result,

be different from the canonical equations and operators. Based on

-Y this fundamental concept, we have derived a governing equation for
the propagation of disturbances in nonadiabatic and nonequilibrium

gases. Using this new equation as a starting point, we have analyzed

dispersion relations, damping and amplification characteristics,

discussed the propagation of the relaxation, density and pressure

waves and thermal wave modes in nonadiabatic and nonequilibrium

gases, and analyzed the interactions among these wave modes.

Some new results have been obtained in this study that differ

from those obtained by treating thermal disturbances as acoustic

sources [4], [5]. The fundamental reason for the difference is:

thermal disturbances treated as acoustic sources are independent of

the perturbations in the state parameters of the gas (such as the

perturbation p' in pressure, the perturbation o' in density, etc.),
but thermal disturbances with feedback mechanism are dependent on

the perturbations in the state parameters. Therefore, by analyzing

the mechanism of thermal disturbance feedback, we may obtain a better

understanding of the nonadiabatic process and the interaction among

the different wave modes.

II. FUNDAMENTAL EQUATION

We will not limit ourselves to any specific nonequilibrium pro-

cess, but will, like general treatments of the subject [1], (31, con-

sider a general nonequilibrium process. This could be the excitation

and relaxation of molecular vibrations, the excitation and relaxation

of the rotation of molecules with high rotational inertia, or some

chemical reaction. Individual nonequilibrium processes may be repre-

sented by means of a nonequilibrium variable q and a relaxation

2
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characteristic time T. The mass conservation, momentum conserva- 714

tion, energy conservation equations, nonequilibrium rate equation

and state equation for a nonadiabatic and nonequilibrium gas are,

respectively,

SD- -- 0, (1)

+ -0, (2)
Dt x

D )o , (3)
D t

Da q - q (4)
Dt r

A- z(PI p? (5)

in the above --- +u,-,pp and h are, respectively, pressure
*

density and enthalpy. u. is the velocity component, q is the equi-

librium value of the nonequilibrium quantity q, T is the relaxation

characteristic time of the nonequilibrium process denoted by q, and

q is the nonadiabatic heat source term. For the unperturbed gas,

we have
P -Pe + , P,+P, U ,%

-+ , q-q+q', q-q:+q". (6)

Here, the subscript 0 denotes the unperturbed state, and the (')

denotes perturbation. As stated above, the thermal perturbation

q of the nonadiabatic term q should be assumed to be a function of
.

the perturbations, p', p' and q'. For instance, in the case of

gaseous discharges, a perturbation in density produces changes in

electrical conductivity, which in turn cause variations in local

heating of the gas, giving rise to nonadiabatic thermal disturbances

[6]. Hence, in general, nonadiabatic thermal disturbances may be

expanded as follows:

- , + '+ q'. (7)

Here, -- ) and the other terms are similarly defined.

Substituting equations (6) and (7) into equations (1)-(4), and

making use of equation (5), we obtain, after carrying out appropriate

3
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operations and simplififications,

1* Jr + Q; 2L, + -;.

.+ P .( +  - o. (8

where
2 a2  

A

Ela--- (9)

a'a
'.l' ,. -- po(, + ,q)(p.A, - 1 + pg,,q)-', (2

(12)

-"( + 44). (13)

Q- + 4.4). (14)
i.P

I_..,: (,h, + h,,:). (ls
4 !i7+--h+ 1  (15)

Here h,- (O-) , and the other terms are similarly defined. Equa-

tion (8) is the governing equation for the propagation of distur-

bances in a nonadiabatic and nonequilibrium gas. * 01 is the canon-

ical frozen wave operator expressed in terms of ac  T+ is on the

same order of magnitude as To" It denotes the characteristic relax-

ation time of the interaction of the nonequilibrium process and the
wave motion. T 0- 0 denotes the condition where the waves are pro-

pagated in a gas in equilibrium, which we refer to as the equilibrium

gas condition. To + denotes the frozen gas condition. It can be
0

easily shown that af and ac are the frozen wave sound velocity and

equilibrium sound velocity [21, [31 in the ordinary sense. In equa-
tion (8), the four terms besides the canonical frozen wave operator

and the canonical equilibrium wave operator are correction terms for

the wave operator due to the nonadiabatic thermal disturbances.
Under adiabatic conditions, i.e., Q0,',- O, equation (8) reduces

to the ordinary nonequilibrium acoustic equation [21, [31. When

T +  and 0, equation (8) reduces, respectively, to the governing

*O is the canonical frozen wave operator expressed in terms of
af while 4

°..•* . *.%-. .
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equation for the propagation of disturbances in a nonadiabatic

frozen gas and that in a nonadiabatic equilibrium gas.

III. DISPERSION RELATIONS (ONE-DIMENSIONAL VALVE)

It will not be easy to obtain from equation (8) a general sol-

ution that is as simple in form as that for the canonical acoustic

equation. For convenience, we first consider the propagation of a

small amplitude simple harmonic motion along the x-direction. Such

a disturbance can be produced by a valve undergoing small amplitude

simple harmonic motion at x = 0 (see Figure 1).

non-adiabatic and
V non-equil ibriun gas

Figure 1. Valve undergoing simple harmonic motion.

Making use of the following one-dimensional flow relation

we can simplify equation (8) to read

+ +

+ , - e,.+.L Q + ..o )-. (16)
a[Os V .' 8,' 8211

V%.

For small oscillations, the fluid at the surface of the valve

should move at the velocity of the valve. Therefore, the boundary

condition at x = 0 for the velocity of the perturbation is

W(9. 8)- W(O)co01. (17)
Equations (16) and (17) have solutions of the form R{W(x)e,-]. Sub-

stituting equation (17) into equation (16), we obtain

5
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where

2 ala, + ae, - (19)

a& (')-
Ve

+

I r +a5 (wY + .4,

-.- Q,4). (20)

It can be seen that the interaction between the wave andthe non-

adiabatic and non-equilibrium process depends on the ratios of the

characteristic times of the four corresponding processes, viz.,

the three Damkohler numbers: w+ (ratio of the characteristic
0

time of the relaxation process to the characteristic time - of

the oscillation of the valve), x'gr, (ratio of the relaxation char-

acteristic time to the characteristic time ('Q;)-' of the pressure

feedback process) and QOr.+ (ratio of the relaxation characteristic

time and the characteristic time (Q,) -l of the density feedbackp

process). Figures 2-6 show the variation with wT + of the phase
0cos

velocity a = af 0 cos TI and the damping or amplification length
- a' wee Qi/' and r, are used as para-

meters. our analysis gives the following conclusions.

1) The phase velocity is dependent on the frequency w, i.e.,

there is dispersion. Under nonadiabatic feedback conditions, there

is a large variation of a with wT+. For gases in the low frequency0

limit or under equilibrium conditions, i.e., when wr4-o

'-'([[ [/IQ;I' . Therefore, when Q' = 0 and Q' N 0, a - , while

when Q; 4 0 and Q; = 0, a -) 0. For gases in the high frequencyp p +
limit or frozen gases, i.e., when Wr 0 , a is always af. For the

variation of a with wTo, see Figures 2 and 3.

It can be seen that the pressure feedback causes a decrease in

the velocity of the low frequency waves, while the density feedback

6



accelerates the low frequency waves. The phase velocity of the

high frequency wave is, however, not affected by nonadiabatic feed-

back processes. Under adiabatic conditions, i.e., when Q'-Q.-0

a increases from its equilibrium sound velocity ac for WT + 0 mon-
S+ 0 Fo

otonically to the frozen wave sound velocity af for WT-0°  For

most gases, af is slightly higher than ac [1]-[3]. In addition, at

the low frequency limit of nonadiabatic equilibrium or frozen gases,

i.e., when w - 0, a is still equal to [1Q'1/1Q;j1 2 ; at the high
* -,frequency limit, i.e., when w , a is equal to ac (equilibrium con-

dition) or af (frozen wave condition).

2) For the damping and amplification of the disturbances, the

criteria for stability of disturbance are obtained from solving

equations (18) and (19):

S - (a - aa,)(aa, + a3a.) > 0 stable

<0 unstable (21)

Under adiabatic conditions, $ (wro)'(A,/.a) - I]I + (ow)]. As af >

a., it is always stable. Under nonadiabatic conditions, the criteria

for stability are listed in Table 1.

The experimental results of thermal instability in laser dis-

charges can be fairly well accounted for using the criteria given

in Table 1. The conclusions made by Nighan, et al., (61, [7) about

the thermal instability in laser discharges are equivalent to the
results in Table 1 corresponding to T- 0 and Q' 0. The results

0 p "
given in Table 1 and the present analysis further show that under

the nonadiabatic condition where ' and ' are simultaneously non-

" zero, the region of stability is dependent on w. When the high
frequency disturbance is damped, the low frequency disturbance may

be amplified, and vice versa.

3) The amplitude varies in the following manner. The amplitude

of the high frequency waves (when w - and the other parameters

remain unchanged) is damped or amplified exponentially according to
S_0 ) + (.09, + Q;" z] " (22)

7
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Figure 2. Variation ?f phase Figure 3. Variation ?f phase
I velocity a/af with wT. velocity a/af with W

1--low frequency limit or equi- 1--low frequency limit or
librium condition; 2--high freq- equilibrium condition;
uency limit or frozen wave con- 2--high frequency limit or
dition; 2--A refers to adiabatic frozen wave condition
condition; B and C refer to non-

- adiabatic condition

TABLE 1

01910>0 V*, t O')<o C-.
(Q,+-,Qo

s 
( T + S-QQ

>0

,o;<oQ,+Q>0 *Q; + ~c~'- a ,>

'-I O ;,- 0 ,,, . + &)OPT:(I-] (V, + -Q,) , (., + Q.4 - .owQ"To

*'':g.o *4..Q *0<* (aOQ , 4 Q;)(m' - .aQ,Q,)<o

8
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It is clear that under adiabatic conditions, the amplitude is

damped exponentially. Under nonadiabatic and frozen way conditions,

the amplitude of the high frequency waves is damped or amplified,

respectively, as
CXP(-a') + Q L.+ X

2a (23) 718

2a,

The amplitude of the low frequency waves (when w and the other

parameters remain unchanged) is damped or amplified exponentially as

exp (S1Q;, + P), T-- (24)

In the special case where ' = 0 or Q 0, the amplitude of the

low frequency waves is damped or amplified, respectively, according

to*-, CD I I 13n (Q;- )
I a, r~iQ, /

(25)

This is obviously very different from the exponential damping [3]

of the amplitude of the low frequency waves under the adiabatic con-

dition Q = Q; = 0, according to

2a_ , _

4) Damping, amplification and slow damping: It can be seen

from equations (18), (19) and (20) that when the feedback parameters

Qp and Q; are appropriately matched, the nonadiabatic and nonequili-

brium characteristics of the gas cause amplification of the perturba-

tion at certain frequencies, and damping or slow damping of the per-

turbation at other frequencies. Figure 4 gives an example of such a
complicated situation. Within the range of 0< (w')'< 1.1, the per-
turbation is amplified; in the region where (or)Y> 1.1 , the perturba-

tion is damped; in the neighborhood of (wi0Y) 1.1 , the damping

length and amplification length both tend to infinity, forming, in

9
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Figure 4. Variation with WT + of the amplification-damping length

+ denotes the region of damping, where L > 0; - denotes the region
of amplification where L < 0; -'- is where Cwr?)'-I.i)

1--low frequency limit or equilibrium condition;
2--high frequency limit or frozen wave condition

effect, a region of slow damping. This effect of nonadiabatic feed-
back can be used to fairly satisfactorily account for the abnormal

absorptive phenomena of sonic and infrasonic waves in the atmosphere
[9]. Hence, nonadiabatic feedback provides a reasonable mechanism

for explaining these abnormal absorptive phenomena [9]. Figure 5

gives an example in which the perturbation is damped in all fre-
quency ranges. When the case of nonadiabatic feedback is compared

with the adiabatic case, the former has a damping length 10-102

times shorter than that of the latter. Figure 6 gives an exmaple 719

in which the perturbation is amplified in all frequency ranges.

5) Damping effect of nonadiabatic feedback on the propagation
of noise: The process of nonequilibrium relaxation is a type of

nonuniformity in the gaseous medium, and like other types of non-

uniformity, can have a damping effect on the propagation of gas-
dynamic noises [5]. This is in agreement with the conclusion given

in [5]. It has been further found out here that the nonequilibrium

process has a relatively large damping effect on the high-frequency

10
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1--low frequency limit or equilibrium condition; 2--high frequency
limit or frozen wave condition; 3--A refers to adiabatic condition;
4--B and C refer to nonadiabatic condition
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Figure 6. Variation with W+ of the amplification length -L/af +

1--low frequency limit or equilibrium condition;
2--high frequency limit or frozen wave condition
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waves, but its damping effect on the low frequency waves is rather

small. The nonadiabatic process produces effective damping. For

instance, if the conditions Q;Q,o and aQ+ Q,>0 are met simul-

taneously, then effective damping can be obtained in all frequency
-V.,

ranges for a gas in equilibrium. Please refer to curve C in Figure

5.

IV. RELAXATION, PRESSURE AND DENSITY WAVES AND THERMAL MODES

To further illustrate the effect of the nonadiabatic process on
the propagation of perturbation, we carry out a Fourier transforma-

tion of equation (8) with respect to the space variables, and obtain

[_ rIF + tF !F IF F]r.J

,.F F ! F 720

A In the above, F is the Fourier transform of p(r, s)

F I '(r, a)'r, (27)
- (2).

'(r, s) jI F~k~ei"k (28)

Equation (27) is integrated over all physical space, while equation

(28) is integrated over the entire three-dimensional wave number

space (kl, k2 , k3), k = Ikl. It is not very hard to obtain the

solution of equation (26) in exponential form, but the process is

tedious. In what follows we give, through an analysis of certain

limiting conditions, the relaxation, pressure and density waves and
V the thermal modes, and discuss their main characteristics, inter-

relationship and stability.

1) Thermal feedback due to pressure perturbation under equil-
.. ibrium conditions ( 4I-O, Q'-o) . The complex solution for

the wave component corresponding to wave number k, as obtained from

equation (26), is

t) - A, Aexp {i r + -L~ Q;t-- +

12
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where A and A are undetermined constants. We define the heat1 2
wave modes to be the zero-frequency modes corresponding to the con-

dition 2ka,<IQ, Ir,/r (i.e., for smaller wave numbers k), and call

them thermal modes for short. We can see from equation (29) that

when Q' < 0, the thermal modes grow exponentially with time; when

Q; > 0, these are exponentially damped with time. For higher wave

numbers, i.e., those values of k that satisfy the condition

2ke.> 2 Qt. [I/r, , waves that are damped with time exponentially (if
Q > 0) are produced*. Such waves that have arisen because of thermal

feedback due simply to pressure perturbation are called pressure
waves. Under the condition Q' = 0, i.e., adiabatic condition,

equation (29) reduces to that for an undamped canonical sound wave

in equilibrium, with phase velocity ae.

2) Thermal feedback due to density perturbation under equil-

ibrium conditions ( rs-O0, Q-0) . In this case, the complex solu-

tion for the wave component corresponding to the wave number k, as

obtained from equation (26), isr +[ka" (1o:
) ~ A,je p [, 2 -' .

+ 1 ; -+_ I \ \)I

M re) 2~ ) (30)

+ L+

I-- + iV - - i'V 3 (31)

2 2

where A (j = 1, 2, 3) are undetermined constants. The zero frequency

mode of j = 1 in equation (30) is defined as thermal mode as before.

The waves corresponding to j = 2,3 in equation (30) are density

waves due to simple density feedback conditions. If Q; > 0 then the

*thermal mode grows with time and the density waves are damped with

time; when < 0, then the thermal mode is damped with time, and

*the density waves grow with time. Under adiabatic conditions, i.e.,

= 0, equation (30) reduces to that for an undamped canonical sound
P

wave in equilibrium, with phase velocity a . Thus, for a gas in

*or waves that grow exponentially with time (if Q0 <0)

13
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equilibrium, thermal feedback due to density perturbation results

in the simultaneous appearance of the thermal mode and the density

waves. When the thermal mode is stable (Q' < 0), the density waves

diverge; when the density waves are stable (Q' > 0), the thermal

mode diverges. This conclusion agrees completely with that made in

L7] regarding the instability in laser discharge thermal modes.

721

3) Adiabatic and nonequilibrium conditions ( r;O0, Q- Q,-o)
In this case, the complex solution for the wave component correspond-

ing to k, as obtained from equation (26), is

Pk(r, , ) Aep(ik • r + ci'), (32)
i-I

- + M + +
Ma 23

.~~ (M .. (33)

,- (ka.4)' - 4- (.
., \a,,

In equation (32), the zero-frequency mode corresponding to j = 1 is

the thermal mode with infinitely high phase velocity, and the waves

corresponding to j = 2,3 can be called nonequilibrium relaxation
J" waves, or relaxation waves in short. As q** > 0. [(q*12Y + (p*13)] > 0,

the thermal mode is always damped with time. As the sum of the real

parts of the second and third terms of equation (33) is always less

than the first term, the relaxation waves are also always damped

with time. It is a well known fact that in an adiabatic and non-

equilibrium gas the perturbations are always damped [2].

4) Thermal feedback due to pressure perturbation under non-

equilibrium conditions (r+ it 0, Q, 0, Q -) . In this case, the

complex solution for the wave components obtained from equation (26)

is

14



O(r, ) - .A,exp(ih. r + ,(),

()-( ((34)

to,,__ + ,20 + a-
- 2 -- /3 2 2 2)

9--1-j (35)
.~~I A2 -~' -- (itY + (L. \ - ] " 'I

,;. , i ( ~+ -1 l~x (Zr' + 3 lTr:

a 1

isproxincymatel stable =1in eang of4 ver lre whrave me,hc

gasqie.,y whden of~h wvorspnigt j = 1 in equation(3)ithteramowic

the thermal mode is stable when Q" > 0, and unstable when Q ' < 0.
In the range of smaller wave numbers, where If - (etP; , the
pressur e waves are stable when Q" > 0, and unstable when Q1 < 0.

. It should be noted that under the limiting condition of a fro zen
i- gas, i.e., when T +  the wave corresponding to j - 1 in equation

(34) is a pressure wave for '<Y(.,Q' , while under adiabatic condi-
tions, i.e., when Q' - 0, equation (34) reduces to equation (32),

and the thermal mode of j = 1 becomes a relaxation wave.

722

V. CONCLUSION

The governing equation for the propagation of disturbances in
nonadiabatic and nonequilibrium gases, equation (8), derived in
this paper on the basis of the mechanism thermal disturbance feed-

back, can be used to accurately describe the characteristics of the
propagation of these disturbances. It can also explain the experi-
mentally observed thermal instability in laser discharges, as well

as the abnormal absorptive phenomena of infrasonic waves in the
atmosphere. In contrast, the regular theory in which the thermal
disturbances are treated as acoustic sources cannot reflect the non-

q.2, linear characteristics of the above mentioned wave propagation.

15



In nonadiabatic and nonequilibrium gases, relaxation waves,

pressure waves, density waves and thermal modes can be formed. These

* wave modes interact with one another, and possess instability. The

* physical mechanism underlying the instability of these wave modes is

that of nonadiabatic thermal disturbance feedback due to pressure

perturbation or density perturbation.

REFERENCES

(11 IL F. Herzfeld and T. A. Litovit,, Absorption and Dirpersion of ttraonie Wav. Ns . Y.,
Academic Press. (1959).

[ 2] W. G. Vineenti and C. H. KruM,, Jr., Introduction to Physieal Gas Dynamie. John Wiley.
(1965).

(31 J. F. Clarke, Rep. Prog. Pkye.. 41(6). (1978). 809.
(4] . 1F. Clarke, J. Flid Meek., 3(1904), '-09.
(51 J. T. C. Lin, J. Plaid Meals., 83 par 3(1977). 775.
(61 G. Bekefi, Prineiples of Laser Plasma, John Wiley. (1976).

(71 V. H. Jacob ad &. A. Mal Appi. Phya. Left., X(2) (1975). M
181 P. K. Kaw and J. M. Dwuon. Phy. PMide, 12(1969). 2586.
[9] E. H. Brown and F. F. Hall, Jr., Rew. GeopkY. 4 PjV., 14(1) (1978). 47.

%16

.%
i.

-.

mwJ

.5

54

...'. . "l b ' ' " ' " ' . - . , : , ¢- *-e .. ';, , L' . .- .'' ". ' "' '. ' ' ' " '



.1 
14

IA It

JAd

4F)

ANN

I~ * - 4%.-
ISA A" 'ta'A',


