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J PREFACE

This paper addresses the inherent difficulties of
large-scale software development projects with respect to
producing valid specifications and rigorous acceptance test
data. The techniques presented here use the information
provided by Data Flow Diagrams (DFDs) to develop aI mathematically precise model which identifies and
quantifies the complexity of the processes within a system.

- This in turn will provide an accurate validation of the
* specifications against user requirements as well as the
* information from which acceptance tests can be derived.

The existing state-of-the-art does not currently provide

I for such rigorous, early validation.
A graphic overview of this paper appears on the next

page as a suggested reading guide, since the order of the
-!ifferent sections is not necessarily a sequential one.
This overview shows at a glance how the sections are

Thee first six sections develop the scenario concept
from the identification of scenarios using DFDs to the
quantification of scenarios using complexity measurement.I Section VII explains the application of the scenario
concept for testing while Section VIII shows the

* mathematical relationship of the scenario and the DFD.

Section IX identifies another aspect of the information
provided by DFDs, called the component, and Section X looks
at the relationship between functional processes and
components. Section XI is the mathematical proof of the
component-DFD relationship. Section XII explains the

* quantification of components, again using complexity
measurement, while Section XIII gives an example. Section
XIV relates the component concept to the testing
environment.

The next three sections contain some how-to information
4 -- Section XV describes a specific technique for
V identifying the set of scanarios within a DFD, called the

"Baseline method"; Section XVI describes the Specifications
Complexity Analysis Tool (SCAT) which is used for DFD
complexity analysis; and Section XVII shifts the focus a
bit from testing to specifications by discussing the
relationship of test scenarios with "cause-effect"
specifications.

Finally, Section XVIII is an overall example tying all
~the concepts presented in this paper together, showing the

I operational steps that have resulted from this research.

IJJo
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INTRODUCTION

I -The Problem

Current trends in Department of Defense systems
* development efforts clearly indicate that an ever growing
U percentage of the development effort must address software.

As a result, the DOD acutely experiences the same
difficulties the commercial world experiences in largeI software development undertakings. Two of the most
critical problems are the development of valid
specifications and rigorous acceptance test data. Thisj report aims itself at these problems.

-A major difficulty in the development of valid
specifications is that designers often do not have a clear1 and precise notion of what they are designing; consequently
many systems are discarded or redone. For example, in two
large command and control systems, 67% and 95% of their
respective codes had to be re-written because of a mismatch
with user requirements 1. There are many examples of total
cancellation of projects due to poor requirements - for
example the $56 million UNIVAC-UNITED Airlines Reservation
System, and the $217 million Advanced Logistic System? .
Similarly, this lack of valid specifications evidences

T itself during the acceptance phase. A rigorous set of
specification-derived test data is required, but often not
present to validate functionality prior to operational

- release.

The approach presented in this paper is intended to
improve the quality of specifications and test data. We
will utilize the aspects of data flow diagrams to create a

- graph theoretic model, and apply a vector space notion to
fundamentally characterize its inherent complexity. This

- will sensitize specifiers to the size and complexity of the
specification they are creating and make explicit the
testable user senarios. When successfully applied this
will result in a more clear and rigorous definition of user
specifications; accompanied by explicit user scenarios to

-. walkthrough and validate the specification prior to the
design stage. These same scenarios can later be applied as
acceptance tests to validate the end-product before its

operational use.

The two problems of involved specifications and poor
test data presented here are strongly intertwined - it is
impossible to derive quality test data without a valid
specification, and likewise it is impossible to validate a
specification without having a notion of the different user
scenarios it contains. This paper attempts to solve the

g problem by objectively and mathematically quantifying the
inherent complexity of a specification. This wii allow
developers to proportion their review and analysis times to
the inherent complexity of a specification. The

specification complexity measure will also quantify the
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number of user scenarios present in the specification and 2

*feed the user scenario forward to the development cycle for
validation. As the cost of errors in a specification
cascades through the life cycle, application of this
research will reduce cost of a software project by
producing more accurate specifications, as well as
increasing the effectiveness of systems acceptance testing.

- Data Flow Diagrams

Our technique is based on data flow diagrams (DFDs), a
graphic form of specification which is receiving wide
spread application because of its facility in communicating
specs to designers. DFDs, which illustrate flow of data
through a system, are a product of a technique called
Strucured Analysis, and typically are accompanied by a datadictionary which defines the data, and logic for each of
the processes.

A DFD is an a priori network model of software behavior
which shows the interrelationships among data flows,
processes, data stores, and external entities. Data flows,
represented by labeled arrows, are pipelines of information
which flow through a system. Processes, represented by
rounded rectangles, transform incoming data flows into
outgoing data flows. Data stores, represented by open
rectangles, serve as repositories for data. External
entities, represented by squares, include all components of
the environment which drive the system 3. An example
follows.
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Data Flow Diagrams have gained increasing popularity as
an analysis and specification tool because of their
advantages over verbal forms of specifications. One
advantage is that DFDs provide traceability of inputs,
processes, and outputs in a form that is highly visual and

i easy to understand. Secondly, they provide a useful means
of partitioning a system into functional components.
Finally, by focusing attention on what is to be
accomplished rather than how, they foster deferral of
implementation details until detailed design. This enables
greater understanding of the functional and process
environment, and promotes better structure in the design.

I - Previous Program Complexity Results

As a background, a brief review of previous complexity
research will help. In 1976 McCabe published a
graph-theoretic measure that quantifies a program's
complexity 4. Called the cyclomatic complexity measure,
this metric is applied during the coding and unit test
stage. The cyclomatic complexity measure limits the number
of independent paths in a program; the result is to assure
that the complexity limited programs are thoroughly unit
tested and maintainable.

The McCabe metric is currently being used in the
software industry to limit the complexity and guide the
testing process. While this program metric has been found
to be practical to apply and effective in detecting program

errors, software projects would greatly benefit from the
incorporation of such a metric earlier in the life cyclewhere the errors are higher level and more costly.

I - The Challenge

With mechanisms to identify and quantify the total
number of admissible flows through a system, the foundation
will exist for a rigorous validation of the specifications

against the user requirements. Each admissible flow can be
presented in the form of a user scenario which will define
an explicit interaction between the users and the system.
Thus, the validation process will be driven by the
complexity of the DFD. Two important benefits will be an
increased user confidence in the specifications and the
avoidance of misunderstandings between the users and the
developers. The existing state-of-the-art does not
currently provide for such a rigorous, early validation.
The set of all admissible flows will also be used to form
an acceptance test bed that will be fed forward to the

3 design, coding, and integration stages to verify that the
systems development conforms to its specifications.

I

I || ...|. .
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1. SCENARIOSI
INTRODUCTION

When designing, analyzing, and testing a system we are
invariably interested in user interactions with the system. A
user interaction will invoke a set of flows through the system.
We call such a set of flows a scenario.

In general, a very large number of scenarios might exist
through a system. As it would be unwieldy to test all of these,
we must find a method to determine how many and which scenarios
to test. We will approach this problem by showing a relationship
between DFDs and graphs, and then use graph and matrix theory to
define a complexity metric and system for choosing scenarios.

The distinct scenarios through a DFD are the highest level
of testing. When two scenarios differ there is a major flow one
has that the other doesn't - this can typically involve a global
system function such as opening a major file or establishing
conrnunication with a terminal. For this reason, identifying,
quantifying, and testing the distinct data flow scenarios is
critical to high level functional testing.

We can identify scenarios from a white box (inside out) or
black box (outside in) approach. Each of these will be discussed
shortly.

A FORMAL DEFINITION OF SCENARIO

As we now have an intuitive understanding of a scenario, let
-_us present two technical definitions which will become useful for

our later discussion.

Definition: A scenario is a physically realizable set of
7 traversed data flows which is initiated by an

external stimulus and terminated by external
entities or data stores.

Definition: A scenario is an (set of) external stimulus with the
"t data flows it induces.

r
I.

, .
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To help make the idea of a scenario more clear, an example

follows.
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II. INTERNAL PROCESS COMPLEXITY

A complexity measure will be used to limit the number
of independent paths in a process so the testing will be
manageable during later stages. One of the reasons for
limiting independent paths, instead of a limitation based
on the length of a process, is the following dilemma: a
relatively short process can have an overwhelming number ofI -paths. For example, a 50-line process consisting of 25 IF
statements in sequence, will have 33.5 million potential
control paths. The approach taken here is to limit theI number of basis (or independent) paths that will generate
all paths when taken in combination.

One definition and one theorem from graph theory areI needed to develop these concepts. In this section we will
treat graphs with only one connected component. For graph
theory concepts and a more formal treatment of connected

components, see Reference 5.

Definition 1. The cyclomatic number v(G) of a graph G with
n vertices, e edges, and 1 connected component is:

v(G) = e - n + 1

Theorem 1. In a strongly connected graph G, the cyclomatic
number is equal to the maximum number of linearly
independent paths.

The application to processes will be made as follows:
given a program module, associate with it a graph that has
unique entry and exit nodes; each node in the graph
corresponds to a block of statements where the flow is
sequential and the edges represent the program's branches
taken between blocks. This graph is classically known as
the control graph6 ; and it is assumed that each node can be
reached by the entry node and each node can reach the exit.

For example, the control graph in Figure II-1 has twelve
blocks ((a) through (1)), entry and exit nodes (a) and (1),

- and fifteen edges.

To apply Theorem 1, the graph must be strongly
connected which means that given two nodes (a) and (b),
there exists a path from (a) to (b) and a path from (b) to
(a). To satisfy this, we associate an additional edge with
the graph which branches from the exit node (1) to the
entry node (a) as shown in Figure 11-2.

29
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I

I 0

Ih k

f Figure II-I Control graph G

I a

e f

h k

Figure 11-2 Control Graph GI

ITheorem I now applies, and it states that the maximal number
of independent paths in G is 16 - 12 + 1. (G has only one
connected component so we set p = 1.) The implication,
therefore, is that there is a basis set of five independent paths
that when taken in combination, will generate all paths. For
example, the set of five paths shown below form a basis.
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bl: abcegheikl
b2 : abdfikl
b3 : abceikl
b4: abeeghl
b5 : abdfjkl

If any arbitrary path is chosen, it should be equal to a
linear combination of the basis path b through b5 . For
example, the path abc(egh) 2 1 is equal tA b + bA - b. To see
this, it is necessary to number the edges In G CFiguPe 11-3) and
show the basis as edge vectors (Figure 11-4).

a

2 3

IC
l 4 15

12

Figure 11-3 Control Graph G with Numbered Paths

l The path abc(egh)2 1 is represented as the edge vector shown in
Figure 11-4, and it is equal to b1 + b4 - b3 where the addition
and subtraction are done component-wi se.

Basis

"I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I!bi :11 I01I01 11 10 00 101:
b2 : 1 010 100 0 01 0 01 01:

il b3 : 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1:< ib4 : 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0:
b5 : 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1:

~abc(egh) 2 1 : 1 1 0 1 0 1 2 2 0 0 0 0 0 1 0:
Figure 11-4 Basis for Control GraphG

h k

I

Fig u....... and it. s eio n_ .
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It is important to notice that Theorem 1 states that G has a

basis set of size five but it does not tell us which particular
set of five paths to choose. For example, the following set will
also form a basis.

abdfjkl
abceikl
abdfikl
abc(egh)3eikl
abc(egh4l1

I Note: The notation (egh)3 means iterate the (egh) loop three
times.

I When this is applied to testing, the actual set of five
paths used will be dictated by the data conditions at the various
decisions in the process. The Theorem, however, guarantees that
we will always be able to find a set of five that form a basis.

It should be emphasized that the process of adding the extra
edge to G was performed only to make the graph strongly connected
so Theorem 1 would apply. When calculating the complexity of a
process or testing the process, the extra edge is not an issue,
but rather it is reflected by adding 1 to the number of edges.
The program complexity v, therefore, is defined as:

v = (e + 1) - n + 1
or more simply

v =e -n +2.

I
I
I

Il

'1
!.
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III. EXTERNAL PROCESS COMPLEXITY

IThe preceding section dealt with the complexity inside a
process. This section will address a process' external
complexity - the complexity of a process' external interface
to external entities, data stores, and other processes. That
is, we'll look directly at the data flows that are connected
to a process and deal with such issues as the number of
distinct scenarios, basis scenarios, and redundant scenarios.

In order to view this we'll focus on a single process in
a DFD and label its interfaces (data flows). For example the
process P shown below is stimulated by the external entity A.
It has data flows to'the stores (files) C and I and from the
store D. It also has flows to the process J and the external

I entity G.

IA
IA
ID

I

IThe external entity (usually a coptrterminal) AIinvokes the process P. The other flows are conditional. An
~example process scenario is (A,D,J); A is invoked from theI terminal A, it reads data from a file D, and then invokes the
i process J. Notice the item (A,D,J) describes a scenario as

I [  opposed to a path. We are describing the external

~interface's behavior of a process rather than its internal

' paths.
i • Let the convention (A,D,J) denote the scenario that

i includes the data flows A,D, and J associated with the<ii process P. We can describe P's external interface behavior

by listing all such process scenarios. Let's assume with P[that the following process scenarios can be realized.
i (A,C,G, I,J)(AD,I,J)

(A, C, I,J)

, (A,C,G,J)(A, D,J)
e J(A,C,G,G,J)

To further analyze P's behavior let's express P's scenarios
in a matrix cl theata flows AC,D,G,J as follows.

prcs .W a eciePs xenlitraebhvo
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M:

(A,C,G,I,J) 1 1 1 0 1 1
(A,D,I,J) 1 0 0 1 1 1
(AC,I,J) 1 1 0 0 1 1
(A,C,G,J) 1 1 1 0 0 1
(A,D,J) 1 0 0 1 0 1
(A,C,G,G,J) 1 1 2 0 0 1

FIGURE 4

Notice that, r(M), the rank of the matrix is 5 - there
are 5 linearly independent process scenarios. The 6th
scenario is a linear combination : (A,C,G,I,J) - (A,C,I,J)j + (A,C,G,J).

This orientation to the outside flows of a process
illustrates the application of mathematical complexity
concepts to the external flows instead of internal paths.
The total number of process scenarios is 6; a basis set has
5 members; the 6th scenario is formed as a linear
combination of the basis set. The external complexity of
the process P is defined to be the rank r of its interface
matrix M - in this case 5.

I Now that we can determine process scenarios, we need a
method to quantify and identify which scenarios to test, so
that the testing process will become less time consuming

I and unwieldy.

From matrix theory we know that vector spaces are
T spanned by a linearly independent basis set. Thus, we are

not really concerned with finding distinct scenarios, but
with finding linearly independent scenarios. Adding

* distinct scenarios can yield an enormous test set that is
largely redundant - the matrix from Figure 4 is created by
linear combinations of 5 basis rows. In later sections we
will see 4 or 5 times as many test scenarios as in the
basis set. With more complex systems, the ratio of
redundant scenarios to independent scenarios can become
incredibly large. Because the rank of a matrix is equal to
the order of its basis set, we can quantify the dependency
of a set of scenario vectors represented in matrix form.
Similar to cyclomatic path complexity, the scenario
complexity of a process indicates the number of basis
scenarios required to span the process' test set.

S I

'U
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IV. INTERNAL PROCESS CO)MPLEXITY VS EXTERNAL PROCESS CXMPLEXITY:
THE RELATIONSHIPS.

For a process P we've examined its internal path complexity
v(G) and its external interface complexity r(M). What's the
relationship between the inside and the outside? How are v(G)
and r(M) related?

The flows that come into or emanate from a process must be
associated with statements (nodes) within a process that are
performing interface functions: reading files, sending messages
to a terminal, involving another process, etc. To highlight
these statements we shade the nodes in a control graph and refer
to them as black dots.

It's clear that every flow external to a process P must be
connected with a black dot within P's control graph.

The diagram below shows how P's interface flows are
connected to P's internal control flows. Notice the 'black dots'
a,c,d,g,i, and j that connect P to the outside world.

~D

H-, D

I

h k

I

I Process P
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I Notice the interesting duality between the internal and
external complexity. Independent external process scenarios
imply independent internal paths. The independent internal paths
yield independent external scenarios. In fact, we have that
v(G)=r(M)=5; 5 independent paths and 5 independent scenarios.

This example is over simplified; the relationship between

v(G) and r(M) will be examined in depth in later sections. The
point is, however, that there is an intimate relationship between
a process' internal path behavior and its external interface
behavior.

I
*1
I

IL

I
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I V. THE SCENARIOS THROUGH AN ENTIRE DFD - FUNCTIONAL TESTING

Up to this point we have focussed on single processes.
Now we turn our attention to an entire DFD.

As mentioned previously, identifying, quantifying, and
testing the distinct data flow scenarios is critical to high
level functional testing.

When performing high-level functional testing, there are
- several questions to deal with:

1. how to identify and represent distinct scenarios?

2. how to determine how "good" is a set of scenarios for
validation? "Good" means how complete and
non-redundant is the set.

A small example will help to illustrate. We extend the
example in the previous section to a complete DFD so we can
talk about scenarios.

I DFD P

C PROCESS

PROESS

2P ,I

£j
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I We can represent each scenario as a vector spanning
the data flows a, c, d, i, J, g, d', i, and e where the
entries represent the number of times the scenario
traversed the respective data flow. For example the vector

a c d i j,9 d' i' e

I 1001100 1 2

represents the scenario aijl'ee through the DFD P.

I The vector notation accurately captures the notion of
a scenario. Clearly, each scenario can be represented as
such a vector. Some DFDs have concurrent data flows which
can flow simultaneously. This can be difficult to model.
Our vector convention, however, has entries which represent
the number of times a flow is traversed; this is not sequence

I dependent and so our vector notion can model concurrency.

Let's assume that in DFD P process P2 either gets d'
or i' and that the flow e from P, can repeat any number of
times - e can flow 0, 1, ..., a limes. The number of
distinct scenarios through P is infinitel this often is the
case. From a.testing viewpoint a dilemma exists - we
cannot test all the scenarios, we have to choose a finite
number. But how many and which scenarios?

Consider the following set of scenarios, shown withIits vectors in the form of a scenario test matrix, K.
Recall the process P1 has the six flows discussed in the

I previous section.

N:

1 a c g d i J d' i e

acgijd'e 1 1 1 0 1 1 1 0 1

I adijd'e 1 0 0 1 1 1 1 0 1

I acijd'e 1 1 0 0 1 1 1 0 1

acgjd'e 1 1 1 0 0 1 1 0 1

adji'e 1 0 0 1 0 1 0 1 1

acggjd'e 1 1 2 0 0 1 1 0 1

Notice the first 5 scenarios are linearly independent. No
member of the first 5 is a linear combination of the
others.

Notice, however, that when a sixth scenario is added,
such as acggjd'e, it is a linear combination of the first

Iacggjdle - acgijd'e 4 acgjd'e - acijde

st• - - - . ...... . . . . . .. .
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The goal, therefore, is not to find distinct
scenarios, but to add linearly independent scenarios.
Adding distinct scenarios can yield an enormous test set
that is largely redundant - a test set could have 100,000I scenarios, of which 99,995 are just linear combinations of
a five member basis set.

I An approach is to add a distinct scenario as a row in
the test matrix. If adding the scenario does not increase
the rank of the matrix, discard the scenario - it's ag linear combination of the existing set.

A result of matrix theory is that the rank r of a
matrix M is equal to the number of linearly independentI rows in M. Therefore, the rank of a scenario test matrix Mis equal to the number of independent scenarios.

Given a DFD, a specific walk-through, validation, orI acceptance test of the DFD defines a test data set of
scenarios - TSi. The quality of a particular test set TSj
depends on the rigor of the testing procedure and
sophistication of the testing group; these factors are
difficult to measure objectively.

I A measurable attribute, however, is that every TSj hasa basis set of test scenarios, Bi, that will generate all
of TSj.

I Our research and practical experiences show that the
size of the TSjs varies dramatically dependent on the
testing group and their procedures. The following pictures

and comments illustrate real-world experience.

II TS

Large Test Bed .Small Test Bed . Tests largely
Testing largely .Almost all tests independent
redundant independent . Better basis

.Bi doesn't include .BJ doesn't include set
Iall the all the

independent independent
scenarios scenarios
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With the black box or external view there's good news
and bad news. The good news is that every test set TSiwill have a basis set Bi. The number of tests in Bi can be
computed by the rank r of the matrix M. The bad news: the
quality and size of a TS. and Bi depends on the group -it's subjective. That U, with the external view one
cannot tell if the sets TSi and Bi adequately cover theg inherent complexity of the DFD.

As our goal is to define an objective complexity
measure and test scenarios of a DFD, we take the following
approach:

Let Up denote the universe of test data for a DFD P.

I tUp can be thought of as the union of all possible test
sets:

I Up U(TSi)

Represent Up in a matrix M ; we use the following
definition of complexity oV P.

The external complexity of p is the rank r of MP.

I Notice that r is not dependent on an individual test
set - r is solely a function of the DFD P and is therefore
objective. The quantity r represents the maximum number of
independent scenarios in P. We will show in subsequent
sections the relationship of the external complexity r and
the DFD's internal process logic complexity.

I!
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I VI. DFD CXIPLEXITY - RELATING INTERNAL TO EXTERNAL

In this section we will relate the DFD's internal
complexity, as determined by the previous chapter, to the number
of scenarios and number of basis scenarios, as evidenced
externally. We will also illustrate a testing tool used in
support of this research.

I Three DFDs will be presented below which essentially make
the points themselves. However, we need the following
conventions in order to discuss them:

Let TS = the set of scenarios /TS/ = no. of distinct
scenarios

B = the basis set of TS /B/ = no. of basis
scenarios

r = the external complexity of the DFDI
I
I

~~DFi
-I[
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IIn DFDI, since the internal process logic is not shown, TS,
B, ITS/, ana /B/ must all be arrived at from the outside in.
Functional Test data is generated and run or walked-thru on the
system - its distribution on the system results in a set of
scenarios. The only way of determining the number of scenarios
is empirical ... generate the test data and see what happens.

If we are given an empirically generated TS then B and /B/
can be determined objectively by comput'ng the rank of the test
set matrix. There is no way of knowing, however, if /B/ is even
close to r - the external complexity of the DFD.I

DFD2 includes the graph of the internal process. A TS for

DFD 2 follows.

I3
1

2

- v(DFD 23

'E
VW r- ----
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I Originl tri-a tis is a wtput h t Kne s rin the vkr wipsally umtwd.

Data Flows

I; 2 1440 1

3 1 1
t 4 1 011 14 1 1

I
External Complexity - 3

Linearly Independent Test Scenarios: 2, 3, 1,

IWe have /TS/ = 5, however TS could be extended indefinitely
since an infinite number of possible scenarios can be generated
from the basis set of scenarios 1, 2, and 3. An additional
output of the tool is the matrix shown below.

In the matrix, basis vectors will have a 1 in one column;
all other columns will be zero. For Instance, the first row
indicates that scenario 2 is a basis scenario. To find the
composition of the scenarios, follow the column entries up to a
basis scenario with a I in that column. For example, the fourth
row shows that scenario 5 is formed by 5 scenario 39 minus 4

- scenario 2s.

kentrio Caesitim - his wtri i dicatt sthel Coositioo of scetaries witk res# t to a basis ut hic spins it.

ata Flm
1 23 4 5 6 7 1 9

T2 0 111 10 0
9- .3 ,

. 4 -2 3 100001101

a,
[1
17

ri
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The third picture is-the same DFD - but the logic within the
processes is more complex. With the test scenarios shown below
we have /TS/ = 11 and /B/ = 6. The tool's output below
identifies a basis set B.

I
I

| 2 5
I

I9
I7

I
I

DFD 
3

v(<DFD)-6
3

-

* I

' 1i
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I
or.iginal Istria - tis it Wm output of the KPv&Wv Is tW eo viv igally ent~eO.

gkta flows

I 123451671091

to7 £0 11000021

a 1 01 1 0 60 31

6 24 0 1 110

3 17

I1 1I 1 6660)31A1 I

IS

I wer tohisexity - 6

l inearly Independent Test Scenarion: .i 2, 6. . 7a 5.

henear csotm ofts utrle Ledicetas the cswlim i scmvsmilt rbl se tt te a bass sit un spas Itb

- at Fleses.. .1 3$

.- I 0 0 0 0

1. t 0- 0 0 0

ae O0-1- 00

ilr 0I -4- 5100

I
L Notice with this tst set that only 1ix of the scenarios are

; linearly Independent, /Bo ID $ . Once again, r(M) •v(DFD).

' The linear combinations of the basis set that generate non-bais

scenarios are shown in their eorreiponding rows.

,' ... ,I•i. , . - .,-,,,
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These DFDs suggest the following:

I . Functionally testing a DFD involves identifying
scenarios without looking at the internal process
logic. In this case /TS/ and /B/ measure the sizeI and quality of the externally derived test data.

*The complexity of the logic within the set of
* processes inside a DFD determine what ITSI and /B/

should be! That is, the internal process logic7
complexity determines the DFD's external complexity.

I * The same DFD with different sets of process logic
yields dramatically different test sets.
Furthermore, changing the internal process logic

comlextychanges the external DFD complexity.

*Modification of process logic may affect r.
Therefore a test group should, as a result,
re-evaluate TS and B when changing process logic.

In a later section we will show that r is a function of the
complexity of process logic. The point made here is that

-. /TS/ and /B/ should be determined from the process logic
and not the DFD itself. The three examples in this section
were all the same DFD (they differed only by their internal
process logic) - but the test data required and external
complexity varied dramatically. This is why the previousV
computation of /B/ as the rank of a test matrix M based on
empirical test data is so unsatisfactory -there is no way
to know if the test data is complete.[
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VII. INTERNAL PROCESS LOGIC

Now we will explore in detail methods of determining data
flow test scenarios and complexity by examining the logic within
processes.

In previous work the notion of algorithm complexity andf number of independent tests has been developed by McCabe. In
I short, this work quantifies the process complexity of an

algorithm and has an heuristic for identifying independent paths.
In several papers (e.g. the 1982 National Bureau of StandardsI publication), it is shown that the number of independent paths in
an algorithm is equal to pi + 1, where pi is the number of
decision statements. For example, the graph shown below has

T complexity equal to 3; the nodes 1 & 2 are predicates - so the
complexity is equal to 2 + 1. Notice the three independent paths
through this graph that the structured testing methodology
requires be tested.

We will now explore applying the Structured Testing concepts
at a higher level - that of the specification written as a data
flow diagram. The first difference is that the algorithm of
interest in the case of data flow specification is in high level
Structured English, as opposed to a lower level compiler
language. This presents no difficulties in that the complexity
notions and structured testing ideas pertain to any algorithm.
Even a very high level specification algorithm has a directed
graph, and as such has an internal complexity and number of basis
paths, even though the test data that it uses is high level
functional data.

A second issue, however, requires some attention. While
test ing high level process logic, we must restrict our attention

- to only the statements and paths through a process that affect
flows external to the process. There may be sections of an
algorithm that represent detail that doesn't affect data flow.II Our problem is to remove from the process logic the statements
that don't affect flow, and concern ourselves with testing only
process logic paths that affect external flow.
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I We will deal with this problem by adopting the following
conventions. We will indicate statements which affect data flow
by a black dot. All other statements will be indicated by white
dots. To make this more concrete, an example is provided below.

Get customer-file
Add 1 to number-of-files

I Select the case which applies:
Case 1 (bill unpaid for more than 90 days)

If quantity-owed greater than $2000,

TeOutput lawsuit threat
Otherwi se,

Output nasty bill
If quantity-owed less than $100,

Then,
Add 10% interest toI quantity-owed

Otherwise,
Add 20% interest toI quantity-owed

Case 2 (bill unpaid for more than 30 days, but less than
90 days)

If quantity owed less than $100,
Then,

Add 5% interest to quantity owed
Otherwi se,

If customer-credit good,
Then,

Add 8% interest to
quantity-owed

Otherwise,
Add 10% interest to

quantity-owed
Output bill

4 Case 3 (bill unpaid for less than 30 days)
-- Add 1% interest to quantity-owed

The flow graph of the example algorithm specification is shown
below.

~ 1.
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Note that all statements such as "gets" and "outputs" are
indicated by black dots, while decisions and variableI manipulators are indicated by white dots. Furthermore, realize
that the nature of processes is such that all process graphs
start with a black dot - a data flow, and have a common terminal
node, which is not necessarily a black dot.

A process graph, such as the one shown in G , is too
cluttered to readily pick out test paths, and iti complexity isI much higher than what we want to measure. Remember that we are
only interested in scenarios which affect external flows - paths
containing black dots. We will now explore a methodology for
reducing the process graph to indicate only these flows. First,II we will inspect some conmmon subgraphs in process graphs, then
show how to reduce them, generalize, and examine the results.

I Notice the following section in Gi

to2
The white dot has no affect on the flow of the black dot, that
is, it has no affect on external flow. We remove it, reducing
G 2 to

Here is another common subgraph, again taken fromG

This decision block contains no black dots. As it does not
affect data flow, we reduce it to an unbroken line:

i
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To restate this type of a decision block doesn't affect
flow - we iterefore remove it.

Another common decision block also appears in Gl, andj is reproduced below.

IC
Note that this is reduced from

Such a decision affects black dot flow -an external flow
may be triggered. Therefore, we are unable to reduce the} block. However, we do remove the white dot in the branch,
generating G 3.

What would happen if it were

6 4\.
instead? Now there are two paths through the decision (a
case statement) which don't produce an external flow. Wer are unconcerned with which path is taken, and realize that
this decision block can be reduced to G3 Since case
statements are equivalent to groups of Ifstatements, we
can redraw G4as
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I

G

05

I Now, it is readily apparent that this reduces to G3.

Following the steps discussed above, G, reduces to!
l

G6., o 6

Now compare the complexities of G1 and Go. We find that
v(G) = 7, while v(G6 ) = 4. Three decisions in G, were removed.
As A result, G only contains decisions that affect flow. That
is, it containg the minimum number of decisions necessary for all
scenarios to be realizable.

We have examined the most connon subgraphs which compose
1 . -process graphs and indicated how to reduce them. We will call

such graphs Case 1 graphs. Sometimes, however, this is not
t enough to reduce a process logic graph. We will now examine how

to find and reduce these cases.

[If a graph contains a white dot region - that is, an area in
the graph completely bordered by white dots, further reduction is
required. These white dot regions can be of two types - ones
caused by decisions and ones caused by loops (while a loop is a
decision, we distinguish between the two). Examples of graphs
with white dot regions appear below:I

I'
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I
I

I

First let us consider a graph with a white dot area
caused by decisions, such as G We will call such a graph
a Case 2 graph. Note that two paths exist through the
graph which generate the same flow vectors. Also, pi + 1 =
6, but there are only 5 flows - the external complexity
can't be bigger than 51 In this case, we sequentialize the
decisions - generating GR. As a result of sequentializing
decisions, there are no longer paths which are
distinguishable internally, but not externally, and our
reduction is complete.

Consider G0 , however. It has a white dot region
. caused by a lop - now we are no longer able to

sequentialize the decisions to reduce the graph. We will
call such a graph a Case 3 graph. But, the loop need not
be traversed to generate a set of basis scenarios!
Therefore, if we simply remove it, the determination of
basis scenarios will not be affected. Note that again, pi
+ 1 is greater than the number of flows. G1 is a
r t0
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Now let's reduce .1.. First we will apply the

reducing steps first discussed - generating G12 . A white
dot region exists due to the decision structure, so wesequentialize the decisions, generating G,33. Nonetheless,
a white dot region still remains - this time due to a loop.
We remove this loop, and generate the reduced graph - G4.I

Gl

II

II

I

SGG 
14

G11

*: c
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To summarize, perform the following steps when
reducing a graph:
1) Reduce conventionally. (Case 1)
2) If a white dot region exists which is due to decision

structure, sequentialize the decisions. (Case 2)
3) If a white dot region exists which is due to a loop,

Asaresult, we have a graph without white dot regions.
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VIII THE PATH - SCENARIO ISOMORPHISM

Now that we have examined DFDs, scenarios, and internalI process logic, we will formally prove that not only does the
complexity of the reduced process logic equal the complexity
of the scenarios - as determined by the rank of the scenario
matrix - but that the two spaces are isomorphic. We willI start by reviewing some concepts, then prove isomorphism. In
the process, the reasons for the reducing steps described in
"Internal Process Logic" will become clear.

Viewed externally, a software system, depicted as a DFD,
exhibits the effects of user interaction by flows. As shown
before, we can represent the set of flows produced during an
interaction as a vector. These vectors, which we call
scenarios, have a basis set B. Let us suppose B contains b

I el1emnen ts.
These vectors must be caused by something - that is,

some property of the DFD. Intuitively, this is the internal
process logic. Most likely, the internal process logic does
more than just determine flows, so we can view the production

- of these flows as a subset of the actions taken by the
internal logic.

F We can represent each statement of the internal process
logic as a node. Certain nodes must cause external flows -
we will depict these as solid nodes -black dots. An example

-- appears below.
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The fact that the scenarios are generated from a graph
suggests that there exists a graph, G, that only generates these
scenarios. Furthermore, there should be some way to derive G
from the graph of the internal process logic. We call the
transformation from the internal process logic to G black dot
reduction.

By showing that the method of black dot reduction creates a
graph which is one-to-one and onto with the scenarios, we prove
that the spaces are essentially the same - that is, that they are
isomorphic. Consequently, the internal complexity, determined byI pi + 1, equals the external complexity, r(M). This is a very
powerful result - it establishes a fundamental link between the
internal logic of a program and its external file interface.
This connection between the internal structured testing of a
program and its external functional testing allows us to derive
external test data from the specification, evaluate its quality
by r(M), and assure its rigor against the yet-to-be developed
internal code.

Beoewe bgnthe proof, however, there are some
mathematical notions we should reviews$

Definition - A transform T is linear if and only if T(ap,
bP2) = aT(pl) + b,(P)

Definition - a linear transformation T is one-to-one if and
only if TVal) = T(a2) implies a, = a2.

Definition - a linear transformation T from A to B is onto if
and only if for every b element of B there exists an a,
element of A, such that T(a) = b.

Definition - two spaces A and B are is'rnorphic if and only if
there exists a one-to-one linear transformation from A onto
B.

For purposes of the proof we will need the following conventions:

Let S be the set of all realizable scenarios. Define S to be
the sit of all linear combinations of the vectors of S 1*

As the number of flows in a DFD is finite, each scenario vector
is finite. Clearly, S is a space tnd can be formed by a finite
basis set. We will call S the scenario space.

Similarly let P be the set of basis paths of a graph. Let P be
the set of all linear combinations of P1 Clearly, F is a vector
space with basis P1P

This chapter is designed to establish the path-scenario
isomorphism theorem. It is organized in three parts: the proof
of linearity, the one-to-one proof, and the onto proof. We state

the theorem and proceed with the three proofs.
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Fundamental Isomorphism Theorem: the space of scenarios 8 is

I isomorphic to the space P of paths.

To make the transform specific we use the following conventions.
For an edge e that flows into a black dot and a number c of traversals
we associate with it c times the black dots flow f; i.e., Te(c)=cf.

For each p( ,p . Pn)f P define T: P-->S by T(p) =<Ti(pi>
where each ei is the Teading edge of a black dot.

Linearity Proof

I Before proving T's linearity we establish this property for a simple case:

For a single edge e and its associated flow f Te's linearity is obvious.
For any two traversals c1 and c2 of e we have Te(cI + c2) = (cl + c2)f=
clf + c2f = Te(cI) + Te(c 2). Xf e

Now the general proof follows.

Theorem - T is a linear transformation.

I Proof:

Let p= (pl. .",Pm) and q = (q1 ,. . .,qm) represent path vectors

and u = (u1,. .. ,u') and v = (vl,... v) be their associated
scenario vectors. By definition, T(p) = , T(q) = v.

I We must show T(ap + bq) = aT(p) + bT(q).

By definition, T(ap + bq) = T(a(p 1 ,. . .,Pm) + b(q1 ,. .,qm))
= T(apl + bq1 ,. .,apm + bqm )

Since T is defined on black dot edges we distribute T across the
m-wide path vector. This gives:

(T1(ap1 + bql),. . .,T(aP n + bqn))

Since we have already shown Ti's are linear on single edges, we have

the following:

(auI + bv1 ,. . .,au n + bvn)

Factoring out a and b yields:

a(u1 ,. . .,un) + b(v1,. . ,Vn)

-. which by definition is au + bv, which equals aT(p) + bT(q).

One-to-one Proof

1. We will now state some definitions relating to process logic
graphs and scenarios.

EDefinition - a process logic graph is one-to-one with the space
of scenarios if and only if every different path through the

-- im-
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graph results in a distinct combination of black dots
I(flows).

Definition - a white dot region is a cycle bounded by white
Idots.

Each of the graphs below contains a white dot region.

I

IG

I
Definition - different paths span each other if they have the

same initial and terminal nodes.

The two paths shown below are spanning paths.

I

_ /

I" Property -two different spanning paths are different by at
least two edges.

* The two paths below are spanning paths with minimal differences.
They differ by two edges.

ii Property - if two spanning paths differ then the graph has a

decision.

Property -any edges intersected by but not common to

A . -.
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two spanning paths bound a decision block.

The property above is obvious - as the spanning paths are
different, the graph must have a decision. As the edges
are not common to both paths, they must occur within a
decision block. As edges define a decision block, these
edges form its boundary.

I Property - decision blocks in a process logic graph start
and end with white dots

Theorem - Given a directed graph G, composed of black
and white dots, with a unique terminal node, and a set
of scenarios sj, 62, .... resulting from the black dots3 intersected by a set of paths p1 , p ,.... The paths
are one-to-one with the scenarios 3 and only if the
graph contains no white dot regions.

I Proof:

Suppose the space of scenarios is not one-to-one with
the space of paths. This implies there exists two
paths, p. and p2 , such that p1 not equal to p. but 
equal to a. s and p2 paths of G implies thAt they
have the sime t4rminal nodes. As all process logic
graphs start with a flow from an external entity, a,
= 82 implies p1 and p2 have the same initial node.
Therefore p and p2 are spanning paths. This means

differsptrom p, by at least two edges, and these
eges define a deision block bounded by p, and
8, equal to 8, implies that none of the ed es witin
this decisior block intersect black dots. This
implies there exists two different paths which
intersect no black dots. This implies there exists a
cycle without black dots. Therefore a white dot
region exists.

Suppose there exists a white lot region. This
implies that within the region there exists two
different paths not intersecting black dots with the
same terminal, ne , and initial, ni , nodes. This
implies that there exists two distinct paths from theT graph's initial node to ni and from ne to the graph's
terminal node. Therefore there exists two different
paths. 1 and 2 bounding the region such that the
scenarios al and 82 are the same.

Therefore, a graph is one-to-one with the scenario
space if and only if no white dot regions exist.

As black dot reduction removes all white dot regions, the
Freduced process logic graph is one-to-one with the scenario

space.

r Onto Proof

In order to show isomorphism, we still must show T maps
r the space of paths onto the space of scenarios. We realize
. that all scenarios can be determined by the intersection of

paths of the process logic graph with black dots. Now, we
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must satisfy ourselves that every vector of the scenarioI space can be generated by a vector from the path space. We
need to show that every scenario induced by a path in the
non-reduced process logic graph is a member of the space of
scenarios from the reduced graph. We will now show this to
be true for each of the three reduction steps - it will
then follow that the spaces are onto.I
Theorem - Suppose we are given a process logic graph G

with white dot regions caused only by white dot
decision blocks (Case 1), and the black dot reduced
graph of G, GR. The space of scenarios generated by G
can be generated by GR.

I Proof:

G G differs from G only by white dots and decisions
without black dots. Neither of these affects flows,
so every scenario from G can be generated from GR.

I An example follows with two such graphs, and scenarios

taken from both. Note that all scenarios from G are linearIcombinations of the basis scenarios from GR.

2 3

4 2 4

2G

U Oiginal Natrax - This is an output of the scearios in the order originally entered.

Data Flos
1 234

.2 1 100 FROMGN

.3 1010Iit4 D 0

I 1 0 FR 1
6l ISt

External Complexity 4

Linearly Independent Test Scenarios: 1, 3, 4, 2,

"4t Q' *-'4_ = 7
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INow we must prove the onto result for the nastier Case 2 from the
section on Internal Process Logic.

Theorem - Suppose we are given a process logic graph G with a
white dot region caused by the decision structure (Case 2),
and the black dot reduced graph of G, GR. The space of
scenarios induced by the space of paths for G can be induced

I by the space of paths of GR

Proof:

i We will show this to be true for an atomic case by generating a
basis set of paths from G and GR transforming these into
scenarios, and then showing the scenarios from G to be linear
combinations of those from GR. Two graphs, G and GR follow.I

I 1
a

!C

I) b m b C2
C d3 n 0 e a

1 2 3

2 e f P q 3f 4

Ihi s t
45k

J k U V 3Ww G

1 0
5
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A set of basis paths for G is p, (a,b,c,e,g,h,j,l)I p
P2 = (a,b,c,e,g,i,k,l)
P3  (a,b,d,f,g,i,k,l)
P4  = (a,mn,p,r,t,v,w)
P5  (a,m,o,q,r,s,u,w)
P6; (a,m,o,q,r,t,v,w)

A set of basis paths for GR is q= (a,b,e,f,i,j,m,n)
I q2= (a,c,d,e,f,i,j,mn)

q3= (a,b,e,g,h,i,j,m,n)
q = (a,b,e,f,ik,l,m,n)

I q5  = (a,b,e,f,i,j,m,o,p)

The scenarios, i.e. the transform, of these paths appear in the
tool output which follows. The list of indepenedent scenarios
shows that the basis scenarios from G are linear combinations of
the basis scenarios from GR.

I Original Witrix - 7:s is an output of the scenario in the order originally ontered.

Data Flows

12345

0 2 1 10 0 0 FROM GI s3 10 10 0

t4 1001010001J

c7 1(000I)
0 0 1 100 FROMG
9 10100atO 0010)

rll 0 0 11

i12 10 0 0 1I

I External Complexity - 5

Linearly Independent Test Scenarios: 1, 3, 4, 5, 2,

Any graph with a Case 2 white dot region will be similar to the
one above. The reader should readily see that T remains onto for
all reductions of a Case 2 type graph.

I

S .. .0 ... .... . . . .. .
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Now we must do the same for Case 3 graphs.

Theorem - Suppose we are given a process logic graph G with a
white dot region caused by a loop, 1 and the black dot
reduced graph of G, GR. The space o scenarios induced by
the space of paths of G can be induced by the space of paths
of GR

Proof:I
We will conduct this proof in a similar fashion to the previous
one. An atomic graph and its reduction appears below.

fbe C 2~ a GC

A set of basis paths for G is p, = (a,b,e)

P2 = (a,c,d,e)
P3  = (a,c,de,f,c,d,e)

A set of basis paths for GR is q, = (a,b)

T(p 1 ) = (1,0) 
q2  (acd)

T(P 2 ) = (1,1)
T(P 3 ) = (1,2)T(q1 ) = (1,0)
T( q2 ) = (1,1)

As 2T(q T(q - 2,2) - (1,0) = (1,2) = T(p3) it is clear
tthbasis Gis dependent upon the basis o GR

As before, it is clear that any graph with a Case 3 white dot
region is functionally similar to the one above, so T remains
onto for the reduction of a Case 3 graph.

.Ad&
'"UI

I
'I
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As we have shown, all vectors from the space of
scenarios from G are present in the space of scenarios from
GR, and every scenario in is induced by a path in the

space of paths from GR , we ave shown that T is an onto
mapping.

As T is a one-to-one mapping from the space of paths
to the space of scenarios, both spaces are isomorphic!
Consequently, r(M) pi + 1.

!
I
!
I
I

fT

'| m

:1!

I 4 € ,l
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I
IX. AN EXAMINATION OF COMPONENTS

I When examining DFDs we find a particularly important
sub-structure to be quite recurrent. We will now formally
examine this sub-structure of the DFD - the component. FirstIwe will state a definition of a component, then gain an
intuitive notion of what a component is, relate it to what we
know from graph theory, and examine consequences resulting
from our definition.

The idea of a component is that of an isolated set of
processes- a set that can independently operate with stimuli
from only external entities and data stores. This is an
important concept, as will be illustrated later.

I Definition 1. A component is a set of processes and
their related data flows which are surrounded 

by
non-processes.

I Again, this points out a component's isolation - its
independence - from other processes within a DFD.

T Enough for definitions - now we will examine several
DFDs , and try to identify components within them. First
look at the DFD shown below.I.

T Figurel1
T 2

ir

I Process a, by itself, is not a component. While it is fed by
an external entity and a data store, it also invokes process
b - therefore it is not surrounded by non-processes.
However, the set of processes (a,b) and their related data
flows (1,2,3,4) is completely surrounded by non-processes and
is therefore a component. The DFD in Figure 1 is composed of

i [one component.

Now we will make some changes to Figure 1, and examine
their effects component-wise.

E
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2

I

I

I
I 6

7

IE
II d

Figure 2

14 f

Our first question is, do (a,b,1,2,3,4) still compose a

component? Immediately, we notice that a invokes e with data
flow 5, and b invokes d with data flow 6. Now that we have
ascertained that (a,b,1,2,3,4) is no longer a component, we
search for new components. Following the data flows, we find
no isolated sets of processes, so again we conclude that the
DFD contains one component -
(a,b,e,d,e, fl, 2,3,4,5,6,7,8,9,10, 11, 12,13,14).

!~

I-
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We proceed to make changes on Figure 2, and examine the
associated consequences.

IC

I

I"
I 6

I

9 1.010

14 Figrure 3
I I G

3 Now we notice radical changes - all the processes are no
• longer connected. First pick process a, and follow all the

data flows associated with it. We find that all data flows
I end in non-processes except for 5, which invokes process c.

However, c is connected with no processes other than a. Thus
(a,c,l,2,3,5,7,9) forms a component. Repeating this
procedure, we find components formed by (b,d,15,4,6,8,10) and
(e,f,16,11,13,14,12). Thereiore, the DFD in Figure 3 has
three components.

From these exercises we notice three things: components
are not difficult to identify, components can be formed by a
large set of processes, and a few changes to a DFD can

i radically change the quantity and structure of components.

I~R .- I
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Now that we have an understanding of what components are
and how to find them, we will examine an analogy between DFDs
and graph theory, where the concept of a component is also
used. In graph theory we define a component as the maximal
set of connected nodes and edges. An important result of
this definition is that two components within a graph can
share no edge.

We immediately notice striking similarities between the
two definitions. Processes are like nodes, data flows like
edges, and data stores and external entities serve as
discontinuities between flows connected to them - that is,
they break a chain of connections. From this we see that
another definition for a process component is the maximal set
of connected processes and data flows. Furthermore, our
intuitive and structural notion that no two components within
a DFD can share a data flow is backed up mathematically. It
follows that components are independent of each other from
both a graph theory perspective and a DFD viewpoint.

Several important results follow from this examination
of components. One is that components can run asynchronously
within a program. Examine Fig 2 (book publishing operation,

i pg. 58) to see what this means in a real world situation. As
an example, the preparation of vendor statements (G) can
carry on independently of order verification and requisition
assembly (A,B). Furthermore, these two components, (1,24,25)
and (C,D,E,F,H,9,10,11,12,13,14,15,16,17,18,21,22,23) can
operate simultaneously and at different rates. For machines
that allow parallel operations, the independence of
components becomes particularly important during transla-tion
of the DFD into a design.

Not only can components run asynchronously, but they can
be tested independently as well. This is an important
realization in order to optimize the testing process.

Instead of developing scenarios crossing the whole DFD, only
I determine scenarios from a component level. Likewise,

components can be programmed independently - they are an
optimal unit for multiprogramming allocation.

I These ideas apply in reverse also; when examining a DFD
we should not fird components where there is no logical
concurrency. That is, a validation of a DFD can be performed
by assuring the independence of identified components. ThisIis accomplished by checking that every pair of components
allows simultaneous independent execution. Even though this
simultaneous execution of components may not be taken
advantage of (on a simple CPU machine) the validation of at
least the logical possibility of independent execution[validates the component's integrity.

[
'U
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X. THE RELATIONSHIP BETWEEN THE COMPLEXITY OF A COMPONENT AND
THE COMPLEXITY OF ITS INTERNAL PROCESSES

Now that we understand what components are, we need to
establish the relationship between them and the processes
which compose them. We will approach this problem from
several perspectives.

First, recall the process of creating a DFD. We start
3 with a high level view of a system, composed of a few

generalized processes, and then expand these further and
, further. A quick example is shown below.'

USER orders Poes po sed O er Sh:IpDlng D

orer older$ lr request

l processed
bill orde

Doshipping

9..

FIGUR E 1

.... i Format" "

order process e

Cutod r datak

USER . . . or e

";" I. ' -,'" Formar.

. ." Customer .. . . . . . . . . . f or oer

• . . . .+ +. .. . . ... . bank..

daescrt
dat

Chc
ores fr odr hc o c I euiy vrfe

aciv

completed_ acon*res cek -re
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I Figure 1 shows a highly generalized overview of an order
receiving - shipping process. Figure 2 shows a more detailed

g view of the order processing section. Figure 3 shows an even
I more specific set of processes, all of which are encompassed by

Order Verification in Figure 2. We see that such a hierarchy of
DFDs extends as far as the project requires. This also
illustrates the notion of lumpability - a set of connected

* processes can be "lumped" into one or more generalized
processes.

I Lumpability is an important concept to extend to components
-which, by definition, are connected sets of processes. It

then follows that a component can be represented as a single
process - the lump of all its processes. In an earlier section
we proved that the complexity of a process - pi +1. Thinking
of a component as a single process, we suppose hat its
complexity is pir + 1. This backs up our intuitive notion thatI the complexity ol a component is somehow related to the
complexity of its processes. A reasonable guess would be that
either a) the complexity of a component is equal to the sum ofI the complexities of the processes which compose it, or b) the
complexity of a component is equal to one plus the sum of all
the pi's of each process.

I Let's explore this further, examining two simple DFDS.
Figure 4, shown below, is composed of one component. The

1 internal logic of the processes, a and b, is diagrammed.

1 C

t. FIGURE 4

Let's compute the complexity of the component. First compute
the complexity of both processes. Process a has no decisionii nodes, so its complexity is pi + I a 1. Process b, likewise,
has no decision nodes, and its complexity is also one. From our

f previous supposition, the complexity of the component is either
a) 2, or b) 1. Now, using the notion of lumpability, we

a generalize the component, generating Figure 5.
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II

I
FIGURE 5

IIt is readily apparent that there are no decision nodes, and
this processes' complexity is pi + 1 = 1. 1t seems that
supposition b is correct. Let's examine another DFD, to see
if the pattern holds.

I

I
FIGURE 6I

I Process a has pi = 1, complexity = 2; process b has pi = 2,
complexity - 3; c has pi = 0, complexity = 1. Lumping the
processes together, we generate Figure 7.

\ /
°C

I AB

IGFIGURE 7

A

I,

:1
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Process d has pi = 3, complexity m 4. Once again, this is
what we would expect from supposition b.

It should now be apparent that the complexity of a
component is equal to ( pi) + 1 where each pi is a decision
in a process within the component. Let's reach an intuitive
understanding of this consequence - if there are no decisions
in a process, there is only one possible flow; if there is

I one decision, there are two possible flows, and so on. The
addition of one to pi indicates that a flow always exists
through the process - the flow when a decision doesn't

I branch. We see that pi + 1 only applies to procedures in
isolation. When we look at the complexity of a component in
terms of its processes, we add one to account for a flow
existing through the component as a whole. We don't add one
to pi for every process, as all processes in a component are

connected.
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XI. PROOF: THE COMPLEXITY OF A DFD IS EQUAL TO THE SUM OF

COMPLEXITIES OF ITS COMPONENTS

I We have shown that v(component) = ip + 1. We will now
prove that v(DFD) = 2v(components) = 2(pic + I). We will

I use one definition and two classical vector space theorems,
shown below 9

Definition. Let M and N be subspaces of V. We define
the sum of M and N to be a subspace of V defined by
M + N = (u + v( uE M, vE N)
If W = M + N and in addition MA N =0, then we write W

I = M + N and say that W is the direct sum of M and N.

Theorem 1. V = a direct sum of M and N if and only if
we can form a basis for V by joining together a basis
for M and a basis for N.

Theorem 2. V = a direct sum of M and N if and only if
dim(V) = dim(M) + dim(N)

We are given a DFD composed of n components. Remember that
earlier we showed that all components are isolated from each
other, and thus all flows within a component are isolated
from flows existing outside it. Therefore, the component as a
whole is linearly independent from all other components.

Now let us define V-- as the set of all test scenarios
possibly occurring Vithin a component i. V i is composed of
a basis set of linearly independent test scinarios, of rank
pi + 1 (proven previously). Let V- be the set of all linear
combinations of the basis scenarioV. Clearly V . is closed
under addition and scalar multiplication, and t erefore is a
subspace of VFD - the space generated by the linear

j combination o? the scenarios within the entire DFD.

As all the subspaces - V-- - are isolated from each other,
their intersection is the null set. Therefore the sum of all
Vi is a direct sum, which eguals VDFD. So we haveSv.. = v & (vc2( & . Dv,

BY ieore412 we have that dim(VDFD  dim(Vcl + dim(V c2)++ dim(Vcn) d

For each Vrj we know that dim(Vci) Epij + 1
Therefore dim(V ) (pic + 1)
This is the desPfnd result.

[i Theorem 1 was not needed for the proof, it was only cited to
aid our intuition. It states that we can form a basis set of
scenarios for the entire DFD by joining the basis scenarios
from the components.

11 Notice that it also follows that r(M) - .(pi + 1), where M
is the universal test matrix. C
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XII. A SIMPLE EXAMPLE OF COMPUTING COMPLEXITY OF A DFD WITH
COMPONENTS

Let's examine a DFD with several components, and see ifour metric v(DFD) y £(pj + 1) makes sense. In addition, weshould see, as proven in ROOF FOR COMPLEXITY OF A DFD EQUALTO SUM OF COMPLEXITIES OF ITS COMPONENTS, v(DFD) = r(M)
(Section XI).

I 1 3 -46

Simply using v(DFD) =Fpi + 1 we get complexity to be 4.

Examining a test set and PIs reduced matrix, shown on thenext page, however, we find r(M), and thus v(DFD), - 61I
Now measure complexity by v(DFD) - (pi + I). We findcomplexity to be 6, which matches r(M). Thus, our metric
v(DFD) - J(piC + 1) works - it matches the absolute measurer(M).

I
I

- ._ _ _ _
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Original Watris - This is an output of the sCenarios in the order originally 
entered.

Data Flaws
1 2 3 4 5 6 7 8 9 1011

I I 1 0 1 O0 0 0 0 00

e 2 1110 00000
s 3 0 0 0 1 0 1 0 0 0 0 0

t 4 000 1 1 1 00000
5 0 0 0 0 0 0 1 1 0 1 1

S 6 0000001 10 2 I

c 7 1 0 I1 0 1 0 0 0 0 0

I 1010001 I111
9 1 I 1 1 0 i 1 1 1 1 1

a10 22211 1 1 1 1 1 1I

I External Complex-ity = 6

Linearly Independent Test Scenarios: 1, 3, 2. 4, 5, 6,

Scenario Composition - This eatrix indicates the composition of scenarios with respect to a basis set wich spans it.

Data Flows
I 2 3 4 5 & 73 91 It

T I 1 0 0 0 0 0 0 0 0 0 0
3 0 1000000 0 0 0

. 2 0 00100000000
t 4 000 1 0000000

. 5 0000 000000
7 11000000000

C 000000 100000e.3t0000100000

0 1 1 0 0 1 0 0 0 0 0

al 10 0 2 1 0 1 0 0 0 0 0

Ii

il

/1

i g _ __ _ _ _ _ __ _ _ _ __ _-- -- .14 Pl
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XIII. COMPONENT EXAMPLE

I
To make our discussion of components more concrete,

let's examine a DFD with real processes and data flows filled
in.

I
PAY ET PROCESS BI LL 

II
PROCESS VAID 3 CSERII
ORDERS OeERM - DAJ ORDER

DATE/DATA

E1IPLOY E MEPLOYEE IDATA LOCK...... -- DATE DO

DATA'- UPDATED SAM AAPAYRL
CHAHGE EIMPL61!

DATA

T

First identify the components. Process 1 is induced by
Customer. It can read and write to the Bill File data store,

- and can send a receipt to Customer. Since process 1 is
completely surrounded by external entities and data stores,
i.e. it does not send or receive flows from other other
processes, it is a component by itself. Now lets look at
process 2. It is invoked by the customer as well, but it
also can invoke process 3. Thus, it cannot be a component by
itself. Rut lets examine process 2 and 3 together - they
interact with no other processes. Clearly, processes 2 and 3
form a component. Now find the other two components.

To illustrate the relationship between the number of
components and complexity, assume each component has
complexity one. Then, as v(DFD) = j v(C), we get v(DFD1 )=S"4.

Now let's make the system more involved.

-.s a~
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CAAO BILL FOR VIRIFIED C-iP TElt
I~RQUS QJTN DA AmfREUS $Z

REUS CATALOG CAT.AO 10 TAKES

I

RE TTD rPASNI

CATALOGPLYE DATALO AAO

REITA UPDATED DL IEDT

DATA

Visually the DFD appears much more comple - ltssee
if the quantification supports our intuitio. Count the

number of components. There are six - two more have been
~added. If we again assume unit complexity, the DFD's
. complexity is six. Thus, the numbers reinforce our intuition

- - adding components increases complexity.

"" We have shown v(DFD) = v(C) = (pi + 1). Suppose pi
"!:: = 0. Then, v(DFD) = n(C). As pi isn't always 0, the number

* - of components forms a lower bound for the complexity of a
L DFD. Furthermore, the complexity of a DFD increases by at
-- least one for every component added.

i Let's examine the nature of the added processes to see

i how they affect the DFD. Again, we'll assume unit complexity
I; - that is pi = 0 - for each process. Look at process 11 - it
'- will always execute after process 6, so adding it does not

I|  create a new linearly independent scenario - it won'tI rincrease complexity. Process 7, however, is different. It[ I forms a component and thus can operate independently of the
I other components. For example, a customer can make a
I U complaint and request a catalog while management makes an
I employee change. Process 7 is clearly independent of the
I "" other components, and any scenario (as we assumed p1 = 0, the
I rscenario) through it adds to complexity. Therefore, It addsI to complexity. ,

ORDER 2
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To further emphasize that adding components increases

complexity, consider the DFDs below. Process logic is filled
in.

- l8 2
I

DI

IC
CI DFD~

!3

DFD has four components. Each has unit complexity -
therefori the DFDs complexity is 4. By their nature, each
component can operate independently of the others. For
example, external entity A can send flow a, which will induce
flows a, through a3 at the same time that flows c1 through
C are stimulated. Note that all components start, as allmust, with a flow from an external entity.

B4

Aa

".
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I Now let's look at DFD a modification of DFD3. Rome
new data stores and processel have been added. Let's see how
these affect the complexity of the DFD. If A sends data flow
a, then it will also send a through a,. More data stores
are accessed, but the complex ty has not changed. Likewise,
while the other components also access more stores, their
complexity has not increased. We see that all components
have complexity 1. As there are 4 components, the complexity
of this DFD is also 4.I

A E -2
1 2 b

I 
4

bI

DDFD 5

DFD 5  is another modification of DFD The only change
is that an external entity has been addd which spl its the
upper component. Let's see how this affects complexity. As

Sbefore, if flow a goes then a also flows but now the flow
is stopped by an external entity, E. This external entity
can send flow e, which will induce e1 ade- this forms a
new component. As with DFD2  externa entities B,C, and D
all invoke their own compohints. Count the components
there are 5. We see that each has unit complexity, so the
DFIs complexity is 5. While DFD 4 is busier than DFD5 and has

1*more symbols, it is not as complex - DFD has more
~ 3 independent scenarios. The increase in complexiti was caused

by the addition of another independent component.

* .* *
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XIV. INTEGRATION OF COMPONENTS

Up to this point our testing approach has concentrated
upon the number of scenarios within a component. We will now
look at the issue of integrating components. It isI interesting that our ideas will be related to the classical
notation of top-down integration of a design structure. The
top-down design integration ideas have value because of two
poi1nts5:

(a) the nature of the integration avoids using drivers
with artificial test data

(b) the integration strategy allows the unit test data
to be real system test data.

The component integration approach we will describe also
fits both of these points. It's unrealistic to insist that
our approach be completely done on every system, but when
it's violated artificial test data will be introduced that
will typically lead to integration problems where two
components work individually but don't work together.

Integration testing involves, as the name suggests,
testing the way components integrate. The technique is best
illustrated with an example. We will revisit our book
ordering DFD shown below. The components a, b & e are
circled. The order of components suggests testing the
scenarios within the order verification component first. For
example, its complexity could be 3, resulting in 3 distinct
sets of data being deposited in the pending orders data
store. Next we will test component b using the data already
placed in the pending orders data store. Suppose that the
complexity of component b is greater than that of component
a, say 4. Now we are not supplied with enough data in the
data store, so we execute component a once more so that

*enough test data Ls present. In this manner, we are not
producing an artificial test; all the data run through
component b Is that which is produced in a normal execution.

-* Now we have a set of data produced by component b in the
publisher orders data store. We proceed to test component c.
Note that again we are using realizable data sets. If the
complexity of component e is greater than that of component b
and component a, In this case 5 or more, we will again have
to fill the data stores by executing components a & b. Ry
testing in this manner, all the tests conducted use realistic

* data that was produced by valid user realizable scenarios.

It makes little sense for a component of very high
complexity to feed a component of low complexity which
doesn't utilize all the data fed to it. Considering the
relationship between data generated and used, and that offl data used and generated leads us to an intuitively pleasing

U law:
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IThe Law of Conservation of Data:
1) All data drawn from a data store must have been

generated by execution of a scenario. (what goes out
must have come in)12) All data placed in a data store must be used in
execution of a test scenario. (what goes in must goj out)

Following this law leads to testing only valid user

I realizable scenarios.

Now let us see how applying the Law of Conservation of
Data affects the testing situation. We will discuss some
examples and surnarize the results.

Once again let us look at the book publishing DFD.
Let's say that the first component will not allow an invalid

- order, such as one for a nonexistent book, to be placed in
the pending orders data store. It therefore makes little
sense to place such an order in the pending orders data store
when testing the second component. How the system handles
the error is insignificant, as such an error will not occur

* in natural operation of the system. Rather, the error is not
a user realizable error. Nevertheless, if the Law of
Conservation of Data is not followed this type of error may
occur - either the tester may be unaware of the restriction
(especially if different groups test different components),

-. or data could be improperly entered into the data store.

We see that it makes sense to only test situations which
will occur in natural operation of a system. Using
artificial test data within a component will introduce errors

'4 when integrating components. Following the Law of
Conservation of Data, which enforces our idea of integration,

~ ! I.prevents such data from entering a system. One might ask,
"What if a process stores data in a data store, and it's not
read again - then how can the Law of Conservation of Data be

1 followed?" Such a question, however, is meaningless for real
situations. A system should never create data It will not
ultimately use. Such a function is extraneous andr unnecessary. A system must ultimately use all the data it

I. creates -if not, why create it?

Notice, on the other hand, that in the book publishing
DFD data is drawn from a books file, while none is put in.4 Once again, one can ask about the Law of Conservation of

I! Data, as this clearly violates the second clause. The answer
~ is that the data was placed in that file in a different

section of the system. The Law of Conservation of Data
-applies at a global, not local level. Once again, the Law of
U Conservation of Data applies to any proper system.
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XV. IDENTIFYING SCENARIOS: THE BASELINE METHOD

IThe technique described here gives a specific
methodology to identify a set of scenarios. When applied,
this results in a set of scenarios equal in number to the
complexity of the DFD as defined by pi + 1. The technique
is called the baseline method, and requires black dot
reduced process logic. This method is called the baseline
method due to its similarity to a method for finding basis
paths through a program, as detailed in McCabe's Structured
Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric l1.

The first step is to pick a functional "baseline"
scenario through the DFD which represents a legitimate
function and not just an error scenario. The selection of
this baseline scenario is somewhat arbitrary. Realize that
this baseline scenario represents a sequence of decisions

taken in a particular way.

The next step is to identify the second scenario by
locating the first decision in the baseline scenario and
flipping its result while simultaneously holding the
maximum number of the original baseline decisions the same
as on the baseline scenario. This is likely to produce a
second scenario which is minimally different from the
baseline scenario.

The third step is to set back the first decision to
the value it had for the baseline scenario and identify and
flip the second decision in the baseline scenario while
holding all other decisions to their baseline values.
This, likewise, should produce a third scenario which is
minimally different from the baseline scenario.

This procedure continues until one has gone through
every decision and has flipped it from the baseline value
while holding the other decisions to their original
baseline values.

Since v(DFD) - pi + 1, if, for example, v a 7, there
are 6 such decisions which are flipped - resulting in 6

rscenarios that differ from the baseline scenario. These
plus the baseline make up a set of 7 basis scenarios.

'I

,--.-
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I Since the selection of the baseline scenario is somewhat

arbitrary there is not necessarily "the" right set of
scenarios for a DFD. The application of this baseline method
will, nonetheless, generate a set of scenarios such that:

1) v(DFD) distinct independent scenarios will be
I generated

2) every flow in the DFD will be traversed

I For example:

IC

I 7Process 3

I8

Process 1 2 Process 2 Procss 5

-3
.. B

Suppose we are given a component such as the one

Idepicted above. Note that a black dot reduced graph of the
process logic is included, and each flow is labelled.

I Its complexity is pi + 1 = 6 + 1 = 7.

Now let's follow the steps detailed above to generate
scenarios.

1) Choose a baseline. Keep in mind that this ideally
performs the major full function provided in the DFD. If

I possible, choose a scenario that intersects a maximal
number of decisions. Let's choose 1,5,6,8,10,11.



62

2) Now flip the first decision along the baseline. In this
case, we again somewhat arbitrarily choose a scenario, as
there is more than one scenario equally different from
the baseline after flipping the first decision. Let's
choose 1,2,3,4,11.

3) Now we'll need to flip the decision in process 2. We get
1,2,4,11.

4) Now return the first decision to the baseline and flip
the second decision along the baseline - 1,5,7,8,10,11.

5) We have one more scenario to generate with the second
decision different from the baseline - 1,5,8,10,11.

6) Now we flip the th:rd decision along the baseline,
I generating 1,5,6,8,9.

7) We have one more decision to flip along the baseline. We
I get 1,5,6,8,10.

Since we have completely flipped every decision, theprocedure is completed. Notice that every flow has beentraversed, and we have generated 7 independent scenarios,

I which matches the data flow complexity v(DFD).

BASELINE FOR LOGIC WITH PARALLEL FLOWS

Upon occasion we find DFDs with parallel flows. We will
now examine how to apply the baseline method to process logic
with such flows. The method is quite similar to that for
sequential flows.I

Suppose we are given the graph below:

2 3

I

- ,_ _.. . . _.. . . . .. --.. . .. _ ... . .; ,S I* 1
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Note that flows a and b can operate in parallel. Let's
determine complexity - there are two decisions, pi = 2, so
v(G) = 3. First pick a baseline - 1,2,4. Note that flows
along both sides of the graph are traversed due to the
parallel structure. Now we'll flip one of the decisions -

11,3,4. We return to the baseline and flip the other decision
1,2,5. We have generated 3 linearly independent scenarios

which span the set of all scenarios.

Let's look at a sl.ightly more complicated graph -

I
I

II

!
I
I

.1_

'I
4 .

I
v(G)= 3 + 1 = 4

Let's choose 1,2,4,6 as a baseline. Flip a decision -

1,3,4,6. Now return to the baseline and flip a decision
along another a parallel branch - 1,2,5,6. Flip the next
decision down this branch - 1,2,4,7. Now we have exercised
each decision along every branch once. Furthermore, we haveg a set of v(G) linearly independent scenarios.
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XVI. AN ANALYSIS TOOL

I We have developed a Specifications Complexity Analysis
Tool (SCAT) which performs several useful functions to help
us in our analysis of DFDs. Scenarios are input as matrix
rows; each column represents a data flow. After the test set
is analyzed, other scenarios and data flows can be added -
the user can then check for changes in complexity, basis
scenarios, etc. Editing features, allowing scenarios to be
modified, rows and columns to be added, and old files to be
changed are included. The matrices can be saved and
retrieved from disk. The last time accessed and number of
updates are recorded.

Several outputs are available; the user can choose which
are required. The DFD below will be used to illustrate the
tool. Scenarios, generated from the process logic, are input

into the tool. Sample outputs with explanatory notes follow.

Jo iePRINTER*- fees Bill file

bill
state CP r ULM inf

idpu- a Cmte a obill

bil

.4ST

S I

! I

/ 1
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Begin Bill Computation

Receive Job Name
Load Job Details
Compute labor/materials costs
Pass Job Data to Compute State Tax

Compute State Tax
If job in-state then,

Compute state taxes
Output State Tax amount to PRINTER

Pass Job Data to Compute Additional Charges

-, Compute Additional Charges
If job in-house then,

Compute overhead
Output Overhead to PRINTER

If job on-site then,
Compute per-diem
Output Per-Diem to PRINTER

If job subcontracted then,
Compute subcontracting fees
Output Subcontracting Fees to PRINTER

Pass Billing Info to Compute Bill

Compute Bill

Compute bill
Send Bill to Bill File
Send Bill to CUST.

Job file PRINTER fes Bill file

job sae e bill
detals ove10

bil
*'4t

.,.-1 ...'Fl. 4



le7r-t Sut: Nvej Efrplvcye- Update: 66
Ubr: PkcCabv 1, ASFcVCJt4PL Dote: l/7/8".

i Last Accested:

Original jtris

Data Flos1 2 3 4 5 6 7 1 910 I

' T I I I I I Original Matrix - This is an
v 2 1 1 1 1 1 0 1 1 1 1 1 output of the scenarios in the
a 3 1 1 1 1 1 0 0 1 1I I order originally entered.
t 4 1 1 1 1 1 0 0 0 1 1 I Optionally the complexity and
5 1 1 1 1 I 1 0 1 1 1 basis scenarios are listed. For

1 1 1 1 1 1 1 0 1 1 1 I example, the 15th scenario is
c 7 1 1 1 1 1 1 0 0 1 1 1 composed of flows 1,2,3,5,6,8,9,10
SI 1 1 1and 11. The complexity of the
S91 I I matrix is 5, and the basis
al0 i 1 i scenarios are 13,14,16,4, and 12.

i 12 111 0 00 11
a13 1 1 1 0 1 0 0 0 I I I
.14 I 1 0 1 0 1 0 1 1 1

15 o I I
- 6I lI t ~Il

17 1 1 1 1 I I I 1 1 1
II I1111,1I

Ex:ternal Complexity - 5

Linearly Independent Test Scenarios: 13, 14, 16, 4, 12,

'.L

i "

Ii

-- _ _ _ _ _ __ _ _ _ _ _ ___ __ ,_- - ll
I
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Tet Set: New Enpmoyev Upriat: C'6

User: McCabe 8, Assocaetef Date: 1/7/es;
I Lett Accwised:

I
Ordered atris

I Data Flos
1 2 3 4 5 6 7 1 9 1011

7 I3 1 ! 0 0 111 Ordered Matrix - This matrix shows
14 1I I0 0 I0 1 the scenarios ordered so that more
16 I 1 0 1 1 * 0 1 1 1 basic scenarios are listed first.

t 4 1 i 1 z 0 * 0 1 1 Scenarios are first ordered by
12 1 0 0 0 1 1 number of dimensions spanned, then

S 3 1 1 I 1 1 0 0 3 1 1 1 by magnitude. As an example, theC 7 1 1 1 0 111 tool placed scenario 13 first. It

, 5 I 1 1 1 covers only seven flows, whereas
.17 1 I 1 0 1 1 0 1 1 1 all the other scenarios cover
al 1 1 1 0 0 1 1 1 more. If a scenario with one flow
r I 0 1 0 1 across three data flows and more
9 11 1 1 1 0 1 1 than one flow across one other
II 1 1 1 0 1 1 were added, this would appear

- 6 I I I I between scenario 13 and scenario
10 1 1 1 0 14.

"2 1 1 1 1 1 0 1 1 1 11
I. 10 0 1 1 1

I I i111111

[

t/1
IIU

.4.-.
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lent Set: Now Employer, Lpdate: CI

User: McCa.be &4 Associateu Dotes: 1/7/0
I LoLt Accesed:

Srmnario Cosition

Data Flo"
1 2 3 4 5 6 7 1 9 10 13

I 13 1 0 0 0 0 0 0 * 0 0 * Scenario Compositon - This matrix
el4 0 1 0 0 0 0 0 0 0 * 0 Indicates the composition of
a16 0 0 1 0 0 0 0 0 0 0 0 scenarios with respect to a basis
t 4 0 0 0 1 0 0 0 0 0 0 0 set which spans it. Rasis vectors

I 12 0 0 0 0 0 0 0 * 0 0 will have a 1 in one column; all
S 3 -1 0 0 t 1 0 0 0 0 0 0 other columns will be zero. For

9 7 -1 0 1 1 0 0 0 * 0 0 * example, scenario 4 is a basis

T 5 -1 t 0 1 0 0 0 0 0 0 0 scenario. The composition of
a*? -! 1 1 0 8 0 0 0 @ O 0 other scenarios is found by
a35 -I 0 I 0 3 0 0 0 0 0 0 tracing column entries up to a
r 1 -1 1 0 0 1 0 0 0 0 0 0 basis scenario with one in thati 9 -2 1 1 1 0 0 0 0 0 0 1 column. For example, scenario 3

9 0 -2 1 1 1 0 0 0 0 0 0 0 is the same as negative scenario

5 6 -2 0 I I 1 0 * 0 0 0 * 13 plus scenario 4 plus scenario
10 -2 1 1 0 1 0 0 0 0 0 0 12. Scenario 10 is the same as
2 -2 1 0 1 1 0 0 0 0 0 6 negative two times scenario 13

if -2 0 1 1 1 0 0 0 e0 plus scenario 14 plus scenario 16
1 -3 1 1 1 1 0 0 0 0 1 0 plus scenario 12.

-7,.1

-. 4.



lest Set: New~ Emplcyec Upd~te: 0 
6

Userr: MLCgtti- I. Aswacoate'b Date: 1/7/S7
Los~t Accezzwd:

Flo Cw Frequ~enrc y Ccrit

IIitf$ its$ 1
2 19

* 3 M t1 1811MflloeltssIsilIIM IIIl fi sfillss$111118 itM 311 18 3 I
I 4 stilla filul littl e Isit gtllt Iss $ feeta, feeta I aaae,,,asg 10

5 36111111 8 11131 118111 81121111 1111 t 113 11 111 fil1111

*3.18

* Flow Frequency Count - This chart shows the number of times
each flow was traversed. It is useful in pointing out how
the system was stressed, and readily indicates any flows
which haven't been covered. For example, flow 1 has been
traversed eighteen times, flow 4 ten times. In this example,
all of the flows have been traversed.

A-I



1 t t !:oi : N , Lr v,p ] c niy e e. U p d t .V : C 
7 0

U.r.€r,: Mr-cLabI A soci,,tc-t. bate: 1 /7/87.

L&Lt AcrLebed:

Sulgsted Drder

Data Flows
1 2 3 4 5 6 7 i 9lOl Suggested Order - This list

separates tests into groups of
0 13 1 1 1 0 0 0 1 1 1 equal quality. Scenarios of high

@14 1 1 1 0 1 0i 0 1 1 1 quality, which will appear in an6 16 1 1 1 0 3 1 0 0 1 1 ! upper group, should be tested
1t 4 0 1 1 l O 0 0 1 1 1 before those of lower quality -

12 1 1 1 01 0 0 1 1 1 1 those at the lower end of the
list. Scenarios of highest

S I I I I I I I I I I I quality are basis scenarios,
followed by scenarios which

C A Icombine several basis scenarios,92 1 1 0 1 1 acording to the chart below:

I I I 1 0 1 1 1
r I I 1 0111

i I I I I I I I 1 0 1 1 1 "Goodness" of Test Scenario

o l 1 1 1 0 1 0 1 1 1 1 1 (ranked in descending order)
si5 i 1 0 1 1 1

17 1 1 1 0 1 I 1 0 1 1 1 Linearly independent test scenario
5 1 1 1 1 1 0 1 0 1 1 1 Multiple of v(G) basis scenarios
7 1 1 1 1 1 1 0 0 1 1 1 Multiple of v(G)-I basis scenarios
3 1 0 0 1 1 1 1

Multiple of two basis scenarios
Multiple of one basis scenario
Repetition of a basis scenario

For example, the upper block, scenarios 13,14,16,4, and 12,
is composed of the basis scenarios. These should be tested
first. Scenario 1 is composed of 5 basis scenarios. If more
than 5 ( i.e. v(G) ) scenarios are to be tested, scenario I

*should be tested next.

if.

.o/
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This tool is helpful in the following several ways:

- When a new scenario is added to the test bed, its
I relative independency is computed.

- The external complexity of a test matrix (made up of
scenario rows) is quickly computed; this external
complexity can then be checked against a DFD's
internal complexity (2pi + 1) to see if there are
independent scenarios yet untested that should be

I added to the matrix.

- The frequency count analysis is useful to highlight
T a flow that has not been tested. This analysis is

also typically used to drive stress testing.

- The suggested order output (page 70) helps to
identify the sets of tests to be run first. It then
ranks the remaining tests into groups of equal
priority of testing, to be run as the testing budget
and schedule permit.

A -

[
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XVII. RELATIONSHIP OF TEST SCENARIOS WITH CAUSE-EFFECT FORM
OF SPECIFICATIONS

While data flow diagrams provide an easily understood
visual approach to specifications, they have a weakness as
a specification document. The DFD is only a picture, and
thus doesn't show an explicit list of exactly what the
system provides to the user. Such a list form of
specifications is sometimes called a cause and effect pair
list 12. The cause and effect list is an explicit, numbered
list of external stimuli to the system and their associated
effects. It provides a more explicit mechanism to assure
that the implementation is a full one meeting all the cause
and effect relationships.

Our emphasis up to this point has been to identify and
quantify the scenarios within a DFD for purposes of
testing. Our orientation is to quantify the inherent
complexity within a DFD and have the quantification provide
a method to derive the distinct and independent scenarios -
once again from a testing perspective. We would like,
however, to change the perspective for a moment to
specification instead of testing.

The troublesome issue in turning a DFD into a cause
and effect list is the unknown number and identity of the
cause and effect pairs existing within a DFD. What we have
been calling test scenarios are indeed cause and effect
pairs. By definition each is stimulated by an external
entity and terminated in a non-process; the external entity
is the cause, the non-process termination is the effect.
One can thus apply our testing reasoning to the often error

* prone process of turning a DFD picture into a specific list
of cause and effect pairs.

The DFD complexity, in terms of rank of the test
matrix or pi+l, quantifies the number of independent cause
and effect pairs. This therefore gives a lower bound to
the number of cause and effect pairs that must be listed;
the analysis we describe with the DFD tool will likewise
indicate when the cause and effect pairs are redundant in
the sense of being linear combinations of basis p airs. Our
ideas of basis test scenarios may be translated into the
concept of basis capabilities in terms of cause and effect
pairs. A notion of redundancy of test data is directly
interpretable to redundancy of cause and effect

F specifications.

All of this is not surprising. A rigorous set of test
data for a system can be thought of as a specification for
its behavior. There is an intimate relationship between
the test data for a system and the specifications. If a
capability is specified there should be test data that
demonstrates it; any set of test data must in turn
demonstrate a specified capability. This intrinsic
relationship between a system's specification and its test



data is intuitively obvious, the difficulty is putting it 73
into practice in a rigorous way. While our focus has been
on rigorizing the formulation of test data for a system,
the same mathematical quantification can indeed rigorize
specifications.

Every idea and procedure described in this book for a
testing application can be interpreted within a
specifications framework. If one is interested in
specifications and not testing, all he need do is read thebook and substitute "specification" for "test", and "cause
and effect pair" for "scenario".

I Now let's look at the situation from the reverse point
of view - we are given a listing of all the input pairs to
a system and the outputs they invoke. This listing is
obviously a system specification. Drawing upon the analogy
between scenarios and cause and effect pairs, we see that a
cause and effect pair specification implies that certain
scenarios exist within a system. In fact, these are the
only scenarios which must exist in a system which
corresponds to the specification. Thus, we can say that
the complexity of any system satisfying the specification
should be equal to the complexity of the cause and effect
pair specification! Furthermore, a system with complexity
greater than the specification complexity is cluttered and
repetitive; one with a lesser complexity cannot satisfy the
specification.

I

I

I
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XVIII. OVERALL EXAMPLE

IAn example will be walked through to illustrate the
operational steps described in the various chapters. The
chapters referred to in each step are listed at the end ofI each step.

Figure 1 shows a high level specification in DFD form.
DFDs are leveled documents - each one can be broken down and
shown at a lower level. For example, 

Figure 2 shows

breakdown of process 1 and the associated process logic.

j The operational steps follow:

1) Identify the components. Note that Figure 1 is composed
of four components.

1) process received payments (process 1)
2) process and ship orders (processes 2 and 3)
3) process employee changes (process 4)
4) handle payroll and accounting (processes 5 and 6)
(Chapter IX : Examination of Components)

2) Process logic should be associated with each DFD. Figure3 shows the DFD from Figure 2 with its process logicfilled in. (Chapter VII : Internal Process Logic)

3) Now perform a black dot reduction. Figure 3 generates
Figure 4. (Chapter VII : Internal Process Logic)

4) Number the flows on the reduced graph, as shown in Figure
4.

5) Compute the complexity. Since the DFD in Figure 4
-i [ contains just one component, the complexity of the DFD =

pi + 1 = 5 + 1 = 6. Therefore there are five scenarios
plus the baseline to be generated. (Chapter X : The
Relationship Between the Complexity of a Component and
the Complexity of its Internal Processes)

6) Generate scenarios. (Chapter XV : Identifying Scenarios
- The Baseline Method)

6.1) Choose a baseline. Let's choose
1,2,4,5,9,10,15.

6.2) Flip the decision in process 1.1, giving the* iscenario 1,2,3,11.
6.3) Now return to the baseline and flip the

decision in process 1.2. We get 1,2,4,5,6,7,8.
6.4) Once again, return to the baseline. Flip the

first decision in process 1.4 to give us
1,2,4,5,9,10,13.

6.5) Using the scenario we just generated, flip the
last decision resulting in 1,2,4,5,9,10,14.

I . . .. . .. . . . . .
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6.6) Return to the baseline, this time flipping the
second decision in process 1.4 which gives us

I 1,2,4,5,9,10,12.

* j7) Process these scenarios with the Specifications
Complexity Analysis Tool, which produces the outputs like
those of Figure 5. (Chapter XVI : An Analysis Tool)

This discussion has focussed on just one component.
1 When executing the scenarios within the other components, the

Law of Conservation of Data should be applied (Chapter XIV
Integration of Components). The effect will be to use "live"
test data that spans the four components. This will result
in high level integration across components.

An additional example, using steps two and three, is
shown in Figures 6-8.

[

I

I
I
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1 4 5 6 B 1  14 15

I 4 e I I I I| I I 1

i 6 111 11111

SE.ternal Cornple::Ity = 6

L3nerrl v Irdeperdent lest Scenarios: 2, 1, 3, 4, 5, 6,

I
Scenario Cospo$hon - This tris )ndicates the cogposition of scenarios with respect to a basis set which spans it.

Data Flows
1 2 3 4 5 6 7 0 9 If 11121314 15

I 12 111S1 1111111I1

s3 111111611111111
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Process 1.1 READ BILL DATA

Get payment from customer
Read bill data from bill file
If no bill data

Then,
Send dunmny data to bill fileI Send "possible error" message to management

Otherwise
Pass verified bill data to Compute Amount Owed

Process 1.2 COMPUTE AMOKUNT OW.~ED

Compute elapsed time
Select the case which applies:

Elapsed time , 30 days
Subtract payment from amount owed

Elapsed time t 30 days, , 90 days
Subtract payment from amount owed
Add 5% interest to new amount owed

Elapsed time t 90 days
Add 5% interest to amount owed
Subtract payment from amount owed
If amount owed t $1000,

Then,
Increase amount owed by $200

Send bill update data to bill file
If new amount owed = $0,

Then
Pass receipt data to send receipt

Otherwise
Pass amount owed to send reminder

Process 1.3 SEND RECEIPT

Read address data from customer data
Send receipt to customer

Process 1.4 SEND REMINDER

Read address data from customer data
If amount owed t $1000

Then,
If elapsed time t 90 days

Then,
If elapsed time ,120 days

Send payment reminder I to
customer

Otherwi se,
Send "possible payment

* default" message toIt management
Otherwi se,

If elapsed time 0120 days,
Then,

Send payment reminder 2 to customer
Otherwi se,

Send request for payment to customer
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JI

I *2IFIGURE 6

Process 2. 1 DETERMINE IF PRODUCT IS IN STOC.'

Get order from customer
Read stoc[ level from stoc -file

4 -. 1* stoc level = 0

ThrSend Mlt-of-Stoc. message to customer
Otherwi se,

Send order to Prepare Bill

P r r cF REPA~RE B~ILL

For- ea~ch item in~ order
kea'd price from price 4ile

ftoital f4MOLnt : 100

A~dd 10%. rhirppinq cdrcle
cnc r.I bill toi ctistnfi':'

Frctd ~'~~1orrir to Ship Order

~ 4I
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