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1. INTRODUCTION

I. -In recent years, increasing interest has centered on the development

of reliable and computationally inexpensive a posteriori error estimates

for finite element computations. (see for example [1], [2], [3], [4], [5],

1[6], [7]).')Such estimates can provide some, often critically important,
information about the accuracy and reliability of the computed solution as

a model of the behavior of the physical phenomena under study. At the same

time it has become widely accepted that these estimates also constitute a

1. basic tool in the construction of efficient adaptive finite element

1.. processes which are designed to achieve a desired error tolerance at minimal

cost or a best possible solution within an allowable cost range, (see e.g.
i [8]. [9], [1o.], [11]. [12]).

'Up to now most of this work concerned linear problems. Not unexpectedly,

.for non-linear problems the situation is much more difficult and the theory

is by far not as well developed. In part this is due to the many special

features of non-linear problems not present In the linear case. In particular,

I. such problems usually involve a number of intrinsic parameters and -- because

+)This work was supported in part by the Office of Naval Research under
Contract N-O00i 4-80-C-0455.
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of the non-linear nature -- interest centers rarely on the determination

of a few specific solutions for fixed parameter values but instead on a

more general study of these solutions under various changes of the para-

meters. In structural mechanics the parameters may characterize, for

instance, load points and load directions, material properties, geometrical

data, etc., and the set of all solutions depending on these parameters has

been called the equilibrium surface of the structure, [13]. This equili-

brium surface provides considerable insight into the behavior of the

structure and its stability properties, and the computational task is to

analyze its shape and characteristic features. For this the principal

tools are the continuation methods, or incremental methods as they are

often called in the engineering literature. Generally, these processes

allow for the trace of any path on the surface defined by a parameter

combination with one degree of freedom.

In the analysis of a structural problem by the finite element method

we are able to compute only approximate points along a path on the solution

surface of some discretized form of the original problem. Then we are

faced with the need for assessing and controlling the errors along an entire

segment of such a path. In [14], and [15] it has been shown that effective,

a posteriori error estimates and adaptive procedures can be constructed

which meet these aims and which can be successfully incorporated into a

general continuation process for tracing paths on the equilibrium surface.

But these results were essentially restricted to problems in one space

dimension, primarily because the estimates used there were computationally

relatively expensive.

this paper presenta new approach to the construction of

]
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[ a posteriori error estimates for non-linear problems which is highly

effective and at the same time computationally rather inexpensive., In

ji fact, these estimates use a linearized form of the problem and hence their

computation can be accomplished about as rapidly as in the case of linear

. problems. Moreover, the approach allows us to bring to bear most of the

earlier cited results about linear a posteriori error estimates and hence

it applies also to problems in more than one space dimension. Based on

these estimates, a prototype software system for the adaptive finite element

solution of a class of two-dimensional, parametrized non-linear problems is

now under construction at the University of Pittsburgh. It was dubbed

NFEARS, short for Nonlinear Finite Element Adaptive Research Solver, in

analogy to an earlier developed system of the same type for linear problems

called FEARS, (see [8], [9], [11], [16], [17]).

In Section 2 below we present the general principles behind the new

error estimates. Then Section 3 outlines some of the features of the

design of NFEARS. Finally in Section 4 we give some numerical results which

show the effectiveness of the error estimates and of the adaptive approach.

2. A POSTERIDRI ERROR ESTIMATES

As mentioned in the Introduction, the new error estimates for non-

linear problems utilize the earlier developed estimation theory for linear

problems. It would be impossible to present here an account of that theory;

( but it may be useful to illustrate the ideas on a simple example.

Consider the two-point boundary value problem

L[u] a(s) u-+ b(s)u = c(s), 0 < s < 1, (2.1)

Ias as
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u(O) = u() = 0 (2.2)

where the coefficient functions a, da/ds, b, and c are assumed to

be continuous on I = [0,l] and such that

0 < < a(s) < a, < -, 0 <b(s) <a2 <  V s E I. (2.3)

It is well known that the bilinear form

B(u,v) = J [a(s)u'v' + b(s)u,v]ds (2.4)
I

is defined and continuous on Ho () x H (I), where in (2.4) primes denote
0 0

derivatives with respect to s. Then the energy norm is given by

IIvIJE = B(v,v) I/2. (2.5)

The weak solution of our problem is now the unique function

U C H1(I) for which

B(UoV) = F(v) J fvds, V v c H (I). (2.6)0 0
I

Suppose that we use piecewise linear elements on some mesh

A: O=so < sI < s2 < ... Sn+ 1 = 1, n = n(A), (2.7)

with not necessarily uniform steps hk = sk - Sk-l' k = l,...,n+l. In

other words we restrict consideration to the finite dimensional subspace -.

n
s(A) - (u £ H (), u(s) = I xi *i(s); s E I) (2.8)

'i



5

where for each i = 1,...,n, denotes the continuous piecewise linear

"hat function" which is 1 for s = si and zero at all other nodes of

p A. Then the finite element solution U E S(A) is uniquely defined by

the condition

B(5 0,V) = F(v), V v E S(A).

In order to estimate the norm of the finite element error e = u0 - u

let P denote the orthogonal projection of H I)M onto the subspace

{v E H (I); v(s) = 0, V s 4 (sk S

with respect to the scalar product defined by B(u,v). Then with the

error indicators

= IIPkellE k = l,...,n+l (2.9)

we can define the error estimator

n+l 2
£ ~~ 1 X /2

k= 1

for which it can be shown that e < 1lel1E Ce with a constant C <

that depends only on the bounds ao' 04' a2  in (2.3) but not on a,b,c,

and A. The restriction of the function Pke to Ik = [Sk-lSk] is the

unique solution wk of the original problem on Ik for which

wk(sk-l) = wk(sk) = 0.

Obviously, we are interested in simple approximations of the wk.
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For instance, we may use the quadratic finite element approximation

4Wk(S) = Pkzk(s), zk(s) = (S-Sk-1)(Sk-S), s E Ik-
h k

Then we obtain the approximate error indicator

{ I [a(s)uz' + b(S)Uozk - c(s)zk]ds} 2

nk = 11lkll - k (2.10)Ik' [a(s)z1 z + b(S)zkZk~dS

{ I rkz k ds}2
k

k [a(s)zz + b(s)ZkZkIds

where rk(s) = L[Uo0(s) - c(s), s C IkV is the residual f U0 on k .

Evidently, there are various other forms of the error indicators and

hence of the a posteriori error estimate. For more details and proofs we

refer to [l , [31, [41.

In order to summarize the situation in the two-dimensional case,

consider the problem defined by

F [(vv)TM(s,t)Vu - c(s,t)uv]ds dt 0 0, V v E Hl(Q), (2.11)

where M(s,t) is a symmetric, positive definitive, 2x2-matrix for all

(s,t) c - [O,1] x [0.1] and vu - (usutdT is the gradient.

Suppose that we use bilinear elements on a uniform mesh on 5 with

step h > 0. Then the evaluation of the residuals of the finite element

!1
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solution Uo results in a Dirac function with linear distribution on

the sides of each element. More specifically, let P be any interior

node of the mesh and denote its four horizontal and vertical neighbors

by W,N,ES in the sense of the windrose. If the corresponding function

values are uo(P), Uo(W), Uo(N), 5o(E), uo(S), respectively, then the

following jump values may be computed

JH(P) = 1 (o(Q-5o(p)) - L (5o(p)_ o(W)).

JV(P) = 1 (5o(N)-5o(P)) - - (5oM-5o(S)).

At any point P on one of the vertical boundaries but not at a corner

point of the domain, let P' be the immediate horizontal neighbor of P.

Then we set JH(P) = JH(P') and JV(P) = 0. Similarly, for any point P

on a horizontal boundary but not at a corner of the domain we set

JV(P) = JV(P') and JH(P) = 0 where now P' is the immediate vertical

neighbor of P. With these quantities the first part of the error indicator

of any element T of our mesh is given by

n1 (T) = a I [M 1 (s,t)JHVp)2] (2.12)
P

Here Mij denote the elements of the matrix M. the sum extends over all

nodes P of T which are not corners of 5, and the factor a equals

4/3 if T has a node at a corner of n and 1. otherwise.

For the computation of the residual contribution to the error indicator

let R be given by

-. ........
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ET M 2+ 22]t Uo as 11 3t21]-~ 35

+ [M12 + M21)].- Uo c Uo

where the Mij are again the elements of the matrix H. Moreover, let

R. denote the values of R at the four Legendre-Gauss points of the

element T. Then the residual contribution to the error indicator of T

is

h4 4 1 4
(T 7 [(R. - 7.( R.)2  (2.13)

47r j1 l j1 l

The total error indicator for the element T is now

n(T) = nl(T) + n2(T)

and the sum of all the error indicators over the elements of the mesh is the

square of the desired error estimate e. For proofs we refer to [6].

In [14], and [15] the above indicated approach was applied directly

to nonlinear problems. In that case, the auxiliary problems for the wk

become nonlinear and this is the source for the computational expense

mentioned in the Introduction.

In order to reduce this expense we utilize here a basic property of

the derivative of our nonlinear operators. In general. the parameterized

equations under study have the form

F(yx) = 0

where y represents a state variable varying in an appropriate normed

space, and X is a finite dimensional parameter variable. For simplicity

- - - -
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we consider here only the case of a non-singular point (OioX ) where

a.. the derivative D uF(5 ,x ) of F with respect to the state variable has

a continuous inverse. At such a point the linearized operator has the

form

L(uO o )[w] F(5 , X ) + D uF( ,ox )(W-5 ).

Let (u ,OX ) be the exact solution of F(u 0,) = 0 and wo the

solution of the linear equation L(UoXo)[w] = 0. Then under s .dale

conditions for F it follows that

Huo-Wo 01 = o(Huo-Uo 01) as juo-Uo H 0 . (2.14)

In our setting, Uo represents the computed finite element solution and

u the exact solution of the given nonlinear problem. Now (2.14) implies

that

H1wo-5oII = Iluo-U 0 1(l + o(l)) as Iluo-5o11 - 0 (2.15)

and hence, the error 11wo-5oll between the solution of the linearized.

problem and the computed solution is asymptotically equal to the desired

error 1u 0011. For the approximation of 11wo- ol1 we may apply the
earlier developed a posteriori error estimates for linear problems.

In order to illustrate the approach we consider the following non-

linear version of the problem (2.1)-(2.2):

N(u] - - -A( .) + B(s,u) = C(s,A), 0 < s < 1, (2.16)

u(O) = u(l) = 0. (2.17)
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A weak formulation is

j CA(u')v' + B(s,u)v - C(s,A)v]ds 0 0, V v E Hl(I)

where D B denotes the derivative of B with respect to u. Thus, theu

linearized problem has the form

I [A'(u')w'v' + D B(s,u)wv - C(s,X)v]ds = 0, V v e H (I). (2.18)

If we use again piecewise linear elements on the mesh (2.6), then we

have to apply the linear a posteriori estimates to the linearized problem

(2.18). More specifically, we have to use the linear problem (2.4) with

a(s) = A'(u'(s)), b(s) = DuB(s,U ), c(s) = C(sX 0 ).

Hence, if we proceed as in (2.10) then we obtain the error indicators

-[A'()'z' + B(s, o)ioZk - C(s,Xo)]dsIo)5o- -k i

= k [A'(u°)zkzk + B(s'u°)zkzk l2 (2.19)
Ik

where the denominators are assumed to be non-zero. A more complete theory of

this approach will be given elsewhere. The approach is exactly the same

for problems involving more than one space dimension.

3. THE NFEARS DESIGN

As mentioned already in the Introduction a prototype software system,

called NFEARS, is currently under development at the University of Pittsburgh

- i*
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which has the following characteristics:I
(i) The system constitutes an applications-independent finite

element solver for a class of two-dimensional, parametrized
nonlinear boundary value problems defined by a weak variational
formulation.

(ii) Adaptive approaches are employed throughout and the a posteriori
error estimates outlined in Section 2 above are used to control
the process.

(iii) The system's design is analogous to that of the linear adaptive
finite element solver FEARS described in [8], [9), [16] and [17].

Details of the design of NFEARS may be found in [18]. Accordingly we will

outline here only some of the principal features. Moreover, since many

design aspects of NFEARS correspond to those of FEARS we refer also to the

cited references for that system.

The permissible domains are of the same type as in FEARS. In brief,

the domain c R2  is the union

1 2il 2 U ... U ON

of finitely many closed, bounded subsets i. C R2 with disjoint, non-

empty interiors QL. For each j a one-to-one, smooth mapping £p. onto
j* 2

the unit square [0,1] x [0,l of R is given and these mappings satisfy

certain natural compatibility conditions (see e.g. [9], [16] or [17]).

The system will have two modules, namely for the solution of problems

with one and two unknown functions, respectively. In the case of one

unknown function we seek a function u defined on such that

(i) u satisfies prescribed boundary conditions on
The form of these conditions is analogous to those of FEARS
and includes inhomogeneous Dirichlet conditions, Neumann
conditions, as well as mixed boundary conditions.

L:
11
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(ii) u is a stationary point of the functional

J A(Ill12 Xi)dsdt - 2 f f(s,t,X,U)u dsdt (3.1)

where

I] = a1(vu), 12 = a2 (u)

are invariants with respect to rotations of the coordinate
system.

Similarly, in the case of two unknown functions we are seeking a vector

u = (ul,u2 ) of unknown functions on 02 such that again the above

conditions (i) and (ii) hold but with the functional (3.1) replaced by

F A(ll,1 2 ,13,li)dsdt - 2 j [Cl(stA'U)ul (3.2)

- C2(s,t,A,1j)u2 ]dsdt

where now

I= a1(VU1 ,Vu2), 12 = a2(vul vu2 ), 13 = a3(u).

This class of problems is fairly general and includes, in particular,

most of the basic problems of elasticity theory. Two parameters X and

p are incorporated in the formulation and hence the equilibrium surface

of the problems under study is two-dimensional.

The fundamental computational process is a continuation process which

allows for a trace of any path on the surface specified by a given para-

meter combination with one degree of freedom. More specifically, a form
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of the PITCON system described in [19] and [20] is used for this purpose.

1 The designs of the data structure for the meshes and of the corres-

ponding access algorithms follow essentially those of FEARS except that

I in NFEARS a biquadratic element will be used. Some details on this and on

further aspects of the NFEARS design are given in [18].

1. 4. SOME NUMERICAL EXAMPLES

As a first example, consider the nonlinear boundary value problem

(2.16)-(2.17) with

A(t) = t/(l+t), B(s,t) = 0, C(s,X) = (4.1)

in which case the exact solution is

u(s) = -s + 1 In[(ek-l)s + 1], 0 <s <_ 1.
!X

For growing X this solution increases rapidly within a small interval

near s = 0.

A continuation process has been used to compute the solution path

with initial point at the origin for x = 0. The points with parameter

* values X = 1.5 and x = 3.0 were used as target points. At these points,

$* Table 1 gives a comparison of the exact error and the computed a posteriori

error estimates. Uniform meshes with degrees of freedom n - 4,8,16 were

used as well as a nonuniform mesh obtained with the adaptive procedure

t Isketched further below. The table shows that even for comparatively

large relative errors, the effectivity of the estimates is excellent. This

has been our general experience also with a number of other problems

* fconsidered so far.

I
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Uniform Meshes, x -1.5, Ilull = 0.4496

n lell c llell/lull% e/llull% £/llell%

4 0.1657 0.1631 36.86 36.28 98.43

8 0.8760(-1) 0.8710(-l) 19.48 19.37 99.43

16 0.4458(-1) 0.4450(-1) 9.915 9.899 99.84

= 3.0, Ilull = 1.007

4 0.6182 0.5652 61.80 56.50 91.42

8 0.4241 0.3971 42.12 39.43 87.29

16 0.2551 0.2465 25.32 24.47 96.63

Non-unifom Mesh, X = 1.5, Ilull = 0.4496

11 0.4911(-1) 0.4908(-1) 10.98 10.98 99.94

= 3.0, Ilull = 1.007

15 0.1417 0.1406 14.07 13.96 99.22

Table 1
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As a second example we consider the two-dimensional problemI
SJ- AI(Vu) -t A2 (vu) = C(s,t,x), V (s,t) E a = (0,1) x (0,1) (4.2)

subject to the boundary conditions

u =0 on 3. (4.3)

Evidently, in weak form the linearized problem then has the form (2.11)

with

/D1A1(Vu) D2A1(Vu)\
M(s,t) = , C(s~t) = 0.

. DA2(Vu) 02A2(vu) J

Here DiA j, .lj = 1,2, is the derivative of the coefficient function A.

with respect to its Ith-variable. Thus the error indicators and estimates

can be computed exactly as stated in Section 2.

As a model case we use the coefficient functions

1.2 2co 2 2,i 1

A1 - (US+Ut) us, A2  (us-Ut) t - <1, (4.4)

I and choose C in such a way that the exact solution of (4.2)-(4.3) is

I. u = X s(1-s)t(1-t), V st C 5. (4.5)

The continuation process was used to compute the solution path with initial

point at the origin for X - 0. The points with parameter values X = 2,4.8,16

were used as target points. Uniform meshes with m - 4 and m = 16 elements

i were used. Table 2 presents again a comparison of the exact error and the

- II.+
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m lell Ilell/lull% E/llull% e/llell%

A = 2 I lull = 0.2438

16 0.5191(-1) 0.5665(-1) 21.29 23.23 109.1

64 0.2551(-1) 0.2615(-l) 10.46 10.73 102.5

,=4 Ilull = 0.6896

16 0.1468 0.1625 21.29 23.57 110.7

64 0.7216(-1) 0.7449(-1) 10.46 10.80 103.2

A 8 I lul - 1.950

16 0.4153 0.4726 21.30 24.23 113.8

64 0.2041 0.2137 10.47 10.96 104.7

=16 lull =5.517

16 1.175 1.406 21.29 25.49 119.7

64 0.5773 0.6211 10.46 11.26 107.6

Table 2
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computed a posteriori error estimates. As before, the table reflects our

experience that the effectivity of the estimates is excellent also in the

two-dimensional case even when the errors are large.

It is now widely accepted that for realistic problems it is rarely

feasible to construct numerical processes which reliably and effectively

achieve a desired accuracy at reasonable cost and yet which do not utilize

some form of adaptivity. The design of such an adaptive procedure depends

strongly on the goal of the computation (see eg. (7]); but in all cases

the availability of reliable error estimators appears to be central to the

design of effective adaptive processes.

In nonlinear problems the goal of the computation may take many

different forms. For example, it may be required that at each one of the

computed points along the solution path the error estimate does not exceed

a specified tolerance. In other cases, the goal may be to meet the prescriped

error tolerance only at particular target points. In yet other cases,

interest may center on the accurate calculation of certain critical points,

such as buckling points. Alternately, instead of the computation of solution

points with prescribed error behavior we may focus only on the accuracy of

the values of a specified functional of these solutions, such as, some

stress values, etc.

In nonlinear finite element computations, the principal mechanisms for

the control of the adaptive process are the following:

(1) Path Controls

(a) Steplength selection
(b) Local parameter selection
(c) Corrector adjustments (especially in the case of iterative

correctors)
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(2) Approximation Controls

(a) Mesh-refinement
(b) Mesh-modification
(c) Changes of the order of the element

The path controls are usually part of the continuation process; they affect

only the quality of the numerical solution of the current discretized

problem. The errors of these solutions with respect to the exact solution

of the underlying mathematical model can only be influenced by means of

the approximation controls. But there is nevertheless a strong interaction

between the two sets of controls which appears not to have been addressed

as yet.

There have been only relatively few efforts of incorporating one or

several of the approximation controls into nonlinear finite element solvers.

Since each one of these three controls has certain advantages and dis-

advantages, some combination of them may well be desirable. But, even in

the linear case the construction of an effective combination of these controls

is as yet not fully understood. Accordingly, the current design of NFEARS

follows the model of FEARS and utilizes only mesh-refinements for the control

of the approximation errors.

Nevertheless, the design of an effective adaptive mesh refinement

strategy for maintaining a prescribed error tolerance at all points of the

solution path still remains a research problem. We sketch here one such

design which appears to be promising. For simplicity, the discussion will

be restricted to the one-dimensional problem (2.16)-(2.17).

A mesh partition function is any continuous, strictly monotone-

increasing function 0: [0,1] 1 0,l] with *(0) - 0, 0(1) - 1. Then,

for any n > 1. the solutions si of the equations
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( 0,l,...,n (4.4)t.
are unique and define a mesh (2.7) on our domain I = [0,1] which will

1. be denoted by A(n).

-- For linear problems (2.1)-(2.3) it was shown in [3] that

O(s) [ o' s (a(t)uo(t)2)1/3dt, s c I (4.5)
YO To 0

with

To - J(a(t)uo(t)2 1/3dt (4.6)

defines an asymptotically optimal partition and that the corresponding

errors for the meshes An = A(O,n) are

3/2

Ilel I = -o (1 + O(hmax)) , as hmax - 0, (4.7)

where hma x denotes the maximal mesh step h. of An. The asymptotic

optimality means that for any other partition function J and all n for

which the maximal step hmax of A(qi,n) is sufficiently small, the corres-

ponding error is not less thatn (4.7).

Let nl ....,nn+l denote the error indicators (2.9) of the finite

element solution for a given mesh A. Then it turns out that

2 /3 h - I i  0(t)dt](1 + O(h max)), as hmax  0.

~ AT I11

i This can be used to obtain from the computed error indicators t an

[approximation of the optimal partition function(4.5)-(4.6). Evidently, in
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the nonlinear case we may proceed analogously by using again the linearized

problem as we did in the computation of the error indicators.

As mentioned before, our aim is to keep the error estimate at each

computed point below a given error tolerance. As tolerance it is useful

to define the quantity

tol = 6abs + 6 rel 0

where 1150o11 is the norm of the computed solution and 6abs and 6rel

are absolute and relative error constants. For 6abs = 0 this means that

the relative error has to be less than 6rel' while for 6rel = 0 the

absolute error is not permitted to exceed 6abs"

If at any point along the solution path the computed solution uo

has an error estimate below e tol, where e, 0 < 0 < 1, is a given factor,

then the process continues with the same mesh. Otherwise the approximate

optimal mesh partition function ; is computed from the error indicators

of Uo and with it the "ideal" mesh size h as the smallest integer not

0below Yo 2 /(/1'- 8 to1).

This allows us to compute an "ideal" mesh = A(;,n) and to construct

from the current mesh A a refined (or de-refined) mesh A' which approxi-

mates A in some way. There are many ways to accomplish this approximation

and a detailed discussion of such techniques shall be given elsewhere. Here

we present only some typical results with an adaptive mesh-refinement

procedure designed along this line. The sample problem (2.16)-(2.17) with

the coefficients (4.1) was used again. For the run given in Table the

tolerance was computed with 6abs - 0.01, Srel = 0.1, and the tolerance

factor e 0.75.

mm . ... ..... .



21

A N usd N iel error exact tolerance decision
use idal estim error

0 4 -0 0

0.1231 4 4 0.8913(-2) 0.8913(-2) 0.1344(-1) proceed

0.3395 4 7 0.2516(-1) 0.2517(-l) 0.1949(-l) refine

7 7 0.1504(-1) 0.1504(-l) 0.1971(-1) proceed

0.5551 7 9 0.2440(-l) 0.2441(-l) 0.2594(-l) refine

*11 9 0.1553(-l) 0.1554(-l) 0.2604(-l) proceed

0.7655 11 10 0.2133(-l) 0.2134(-l) 0.3323(-l) proceed

1.15841 11 11 0.3393(-l) 0.3394(-l) 0.4406(-l) proceed

2.1161 11 15 0.9654(-1) 0.9701(-1) 0.7504(-1) refine

15 13 0.5532(-l) 0.5532(-l) 0.7570(-l) proceed

3.1192 15 21 0.1603 0.1620 0.1146 refine

18 15 0.9175(-l) 0.9167(-l) 0.1159 proceed

Table 3

I Clearly, as expected, whenever a point is accepted and the process continues

the error estimate is below the prescribed tolerance.
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