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SECTION I

INTRODUCTION

Future spacecraft missfons under current consideration have fntroduced
challenging technology needs for spacecraft thermal management systems,
The thermal control, heat storage, heat transport, and heat rejection of
the envisioned missions represent a set of major problems when the design
constraints of spacecraft payload weight and volume are included. One of
the challenging requirements of the thermal management system is the
capabfifty to handle large, peak-to-average ratio of the heat transfer
rates [1]. Although current spacecrafts handle peak-to-average ratios of
10 to 1 by sensible heat storage, louvered radiators and variable
conductance heat pipes, these techniques can not be employed for higher
peak-to-average ratfos without suffering significant weight penalties and
imposing component temperature 1imitations.

The design of a thermal management system requires the measurement and
determination of a large number of factors and their interdependence [2-3].
The integration of mission requirements and payload requirements might be
considered as the first step in the overall design process. The second
step before arriving at a preliminary design step 1s the system tradeoff
[4] of the configuration, thermal structures and subsystems. The goal at
this second step 1n the overall thermal design process i{s to meet all the
payload and mission requirements.

This report primarily addresses spacecraft thermal management systems and
components to provide a rational basis for the development of future
technologies and to 1dentify areas of basic research that are related to
the needs of future systems. Results of the analysis are presented and
recommendations are made regarding the necessary advancements needed to
meet future requirements.

A numerical analysis model1ing the transient heat flow through the thermal
management system was performed. The time-averaged specific weights, i.e.
the rate of heat transfer per mass of the subsystem, were obtained by
numerical integration and the weights of the components were calculated.
The sensitivity of the weights to the performance requirements was studied.
The performance parameters included the peak thermal load and the
peak-to-average thermal load ratfo. In addition the sensitivity of the
weights to the choice of phase change material for heat storage was
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determined via a heat of fusfon parametric analysis. A final parameter
which was analyzed was the length of time for the peak thermal load.
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o’ SECTION II '
Y :
':: SELECTION OF THE BASELINE CONCEPT j
( 1. INTRODUCTION ‘
=X The task of this project was organfzed tnittally to develop a set of system

}i level requirements for a large, pulsed-power loaded, thermal management

u}: system for future military spacecraft applications. Used as fnput to the

o development of preliminary design concepts, the system level requirements

i were defined parametrically. Six baseline design concepts are presented

:; for comparison. The particular choice of design concepts was based solely

~

on the need to have a range of thermal performance capabilities and not on
f? potential comprehensive thermal management systems capable of handling all
= requirements. These design concepts are divided 1nto two general classes:
> hybrid and passive systems. The hybrid systems involve some type of pumps
- fluids, whereas the passive systems have no external pumping.

- 2., THERMAL MANAGEMENT SYSTEM CONCEPTS
Viable baseline concepts were generated by uti11zing both variable
5 conductance heat pipes and diode heat pipes, radiators, fixed body~mounted

}3 radfators, deployable radiators, and phase change material subsystems.

1 Each concept has been synthesized by combining these components into a

X system to absorb the internally generated thermal energy and to transport

. the thermal energy to an external radiator and/or to an expendable materifal
li- for rejection to space. Figures 1-6 {1lustrate the six concepts

»ﬁf consfdered. The first concept shown 1n figure 1 is a simple system without
fﬁ phase change material for thermal buffering of the rejection heat load.

D This system is characterized by minimum thermal storage, variable

conductance heat pipes for control of temperature, diode heat pipes for

{: protection of the source and the radfator sized on the peak heat rejection
N load. Figure 2 shows a second passive control system with phase change
:5; materfal for thermal storage such that the radiator can be sized on an
ph o averaged heat rejection load. Figure 3 shows a system with the phase

% change materfal incorporated into the varfable conductance heat pfipe for
f: thermal storage. The concept of micro-encapsulated phase change material
&; allows for a maximized surface-to-volume ratio for the system. This

N characteristic of enhanced heat transfer along with the potentfal of the

micro-encapsulated phase change materfal acting as a wicking material makes

) this third concept very promising, Figure 4 shows a system with the phase
3 change material located at the radfator base. This system might combine

the sensible heat storage of the radfator with the phase change material
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for optimized performance of the radfator. Figure 5 shows a schematic of a
hybrid thermal control concept with a deployable radfator and "blowdown"
bellows chamber for recycling collectables. This system is 11lustrated
with a parallel passive option., Figure 6 shows a second hybrid system
characterized by a rejection of expendables and a potentfally minimized
radiator size. Again, a parallel passive option {is shown.

3. THERMAL MANAGEMENT SYSTEM REQUIREMENTS

In the overall scheme of a thermal management system for a future military
spacecraft missfon, several types of requirements are encountered. They
include performance, physical characteristics, operational characteristics,
environmental and trade penalties., Table 1 gives a sample of these
requirements,

TABLE 1
Thermal Management System Requirements

PERFORMANCE Very large peak-to-average thermal loads [100/1 to

10,000/1]

Isothermal character [temperature of bus = 50 C]

Large heat fluxes [10 to 100 W/cm2]

Large capacity heat pipes [10 to 1000 kW m]

High performance [specific weight - 10 to 20 W/1b]

Large overall thermal conductance [small temperature
difference across the thermal management system]

Minimum weight and volume

Maximized surface area-to-volume of the latent heat
thermal storage system

Modular design concept

|
PHYSICAL CHARACTERISTICS }
|
|

OPERATIONAL CHARACTERISTICS
Maximized relfability [nomfnal orbit 11fe - 10yrl
Autonomous [maintenance freel
Autonomous [self-controlling]
Autonomous [99% design reliability for 10 yr]
Minimized redundancy [minimized wefght]
Minimized moving parts [mechanfcal relfability and

stab11ityl
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SR

N

S;‘.- ENVIRONMENTAL

}i- Pressurized/unpressurized compartment rated

{ Minimum containment threat to payloads

N No toxic or flammable flufds in pressurfzed compartment

Space radiation environment compatable
TRADE PENALTIES
Wefight, volume and area drivers in thermal management

o~y system

:}3 Matching thermal {nterface of other thermal management
1;: subsystems

N 4, BASELINE CONCEPT

:; The baseline concept fnvestigated in this project was one having three

':; components: the heat transport heat pipes, the thermal storage system using
ﬁ:f a phase change material and the space radiators. This system was then used
¥; in a transient thermal analysis to determine the response for pulsed

e thermal loads. The transient thermal analysis used was the so-called

;S lumped-system analysis and will be discussed in detail in the next

§; section,

2

. The baseline concept can be {l1lustrated by a schematfc dfagram as seen in
“h Figure 7. The thermal load orfginates at the thermal bus and 1s carried by
N, the heat pipes to the thermal storage subsystem containing the phase change
:f materfial. Next the heat load is rejected by the space radiators into the !
N effective space sink,
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SECTION ITI
ANALYTICAL MODELS

1. INTRODUCTION

This fnvestigation used a simplistic approach to the modelling of the
spacecraft thermal management system. The basic concept was to divide the
system into the generic components for the thermal modelling. Three
components were selected. They are the heat transport heat pipes, the
thermal storage system using a phase change material and the space
radfators. A transient thermal analysis was conducted to determine the
response for pulsed thermal loads from the thermal bus. The transient
thermal analysis was the so-called lumped-system analysis [5] where the
spatial varfation of temperature is neglected and the variation of the
temperature of the component with respect to time is studied. In this
method the geometry of the component is immaterial since the temperature is
considered to be a function of time only; hence the analysis becomes very
simple. A three-lump system was used to extend the study of the transtients
in a composite system consisting of the three different components.

2. TRANSIENT THERMAL ANALYSIS
The transient thermal analysis of the spacecraft thermal management system
was the three-lump analysis. The mathematical formulatfon of the probiem
depends on the nummber of lumps considered for the system analysis and on
the type of boundary conditions for the heat transfer. In this analysis
convective boundaries conditions were used at all of the boundaries. It is
assumed for the lumped-system analysis that the temperature distribution
within the component at any instant is sufficiently uniform so that the
temperature of the component can be considered to be a function of time
only, When the temperature distribution within the component 1s assumed to
be uniform, the varfatfon of temperature takes place with time. The energy
equation for a component may be stated as the following:
The net rate of heat flow into a component through the boundaries
is equal to the rate of increase of the internal energy of the
component .
For the three-lump system, the energy balances for the three components
respectively are as follows:

10




My Hy dX/dt = Q- Q" 2]

My C3 dTg/dt = Q'' - Q' (3]

Here M 1s the mass of the component, C is the specific heat of the
component, T is the temperature of the component, X is the melt fraction of
the phase change materfal, t {s the time varfable, H i{s the latent heat of
fusion of the phase change material, and the Q's are the heat flow rates of
. the three components. These three heat flow rates are defined as follows:

Qree(e) = U3 A3 ( T3(t) - Ts ) [6]

Here the "U" parameters are the overall heat transfer coefficients for the
three components, and the "A"™ parameters are the associfated areas of heat
transfer of the three system components. Substituting Equatfons [4-6] into
Equations [1-3] results in three 1inear, first order, ordinary differential
equations for the transifent variations of the temperature of the heat
pipes, the melt fractfon of the phase change material and the temperature
of the radiators. The heat flow from the thermal bus is assumed to be a
periodic function of time. For simplicity, a square wave function was
selected as the periodic function, It can be shown that for the square
wave of the heat flow that the ratio of the "peak-to-~average" heat flows {s
equal to one plus the ratio of the "off-to~on™ time perfods. For example,
the "peak-to-average" heat flow ratfo for the specfal case of equal time
"on™ and “off" 1s equal to two.

The reference masses of the three components of the thermal management
system for the spacecraft are defined by the following expressions:

11
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Here the parameter "t" {s the time of the peak heat 1oad, the parameter "N"
is the number of peak time intervals, and the parameters "G" are the
specific weights of the components.

3. THERMAL MANAGEMENT SUBSYSTEMS! MODELS

The specific weights of the heat pipes and the radiators are evaluated at a
peak~-to-average heat flow of one, 1.e. constant heat flow for the reference
values. The effective, time-averaged, specific weights of the heat pipes
and radfators can be calculated once the actual heat flows are obtained
from the solutions of Equations [1-3]. The time-averaged specific weight
of a heat pipe can be defined as the time-averaged heat flow divided by the
mass of the heat pipe, and hence can be defined by the following
expression:

Similarly, the time-averaged specific weight of a radfator can be defined
as the time-averaged heat flow divided by the mass of the radiator, hence
can be defined by the following expression:

GB= Q”'A/ M3= ( Q”'A/ QA) 63 [11]

The time-averaging is simply the time integral of the function divided by
the time interval. The total mass of the thermal management system {s the
sum of the three components: the heat pipes, the phase change material and
the radiators.
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> SECTION IV

;? WEIGHT SENSITIVITY STUDIES

L 1. INTRODUCTION

o The sensitivity of the thermal management system weight of both

bf evolutionary and revolutfonary military spacecraft missions has been

:3 studied in this preliminary investigation. A numerical analysis modelling
foo the transient heat flow through the thermal management system was

performed. The performance parameters included the peak thermal load and

:ﬁ the peak-to-average thermal load ratfo. In additfon, the sensitivity of

:j the system weight to the choice of phase change material used for thermal
;; buffering was determined via a parametric analysis,

o

v 2. PARAMETRIC STUDIES

fi One of the main objectives of this preliminary investigation on the

{j characteristics of the mass of future spacecraft thermal management systems
;j is to provide the rational basis for the development of future

= technologies. In 11ght of this objective, the results of a parametric

tf study are presented in this section., The sensitivity of the masses will be
j% f1lustrated graphically. In particular the sensitivity of the mass of the
3 baseline concept for the thermal management system is examined as a

.j; function of four parameters. These parameters are the heat of fusion of
\ the phase change material of the thermal storage subsystem, the total time
- of the peak heat load needed to be rejected, the peak-to-average heat load
fi ratfo and the peak heat load. Table 2 gives the values of the various

%: operational and thermophysical properties relevant to the modelling for the
" baseline case.

_;' TABLE 2

o

ig Baseline Yalues of Parameters

- PEAK HEAT LOAD [WATTS] 10,000.

j§ SPECIFIC WEIGHT OF RADIATOR [WATTS/KG] 50.
jj: SPECIFIC WEIGHT OF HEAT PIPE [WATTS/KG] 50.
*Jﬁ HEAT OF FUSION OF PHASE CHANGE MATERIAL [KJ/KG] 250.

= SPECIFIC HEAT OF RADIATOR [J/KG K] 875.

e SPECIFIC HEAT OF HEAT PIPE [J/KG K] 875.

}: TEMPERATURE OF SPACE (K] 200.

_?: TEMPERATURE OF RADIATOR INITIALLY (K] 290.
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{‘_ TEMPERATURE OF PHASE CHANGE MATERIAL (K] 300.
N TEMPERATURE OF HEAT PIPE INITIALLY [K] 310,
0 TIME OF PEAK HEAT LOAD INTERVAL [MIN] 1.
ﬁ NUMBER OF HEAT LOAD CYCLES 2
o COEFFICIENT OF HEAT TRANSFER @ RADIATOR [W/M2 K] 10.

COEFFICIENT OF HEAT TRANSFER @ PCM [W/M2 K] 5.

COEFFICIENT OF HEAT TRANSFER @ HEAT PIPE [W/M2 K] 1000.

The values given in Table Z were used as baseline values of the parameters
in the numerical analysis. Selected results of the parametric study will
be presented in graphical form. Figure 8 shows the trend of spacecraft
thermal management system mass and phase change material mass as a functfon
of the latent heat of fusion of the phase change material used as a thermal
buffer of the pulsed reject heat. As the heat of fusion {ncreases the
total mass decreases until there is negligible change. Current candidate
matertals, such as high density polyethylene and calcfum chloride
hexahydrate, have sufficient values of latent heat of fusfon such that the
selection of the phase change material might not be based on maximizing the
value of latent heat, but rather on other constderations ({.e. 1ife,
weight, heat flux tolerance and cost). Figure 9 shows the trend of the
total mass of the thermal management system as well as the phase change
materfal mass as functions of the time duration of the peak heat load.
Examinat{ion of Equatfon (8) confirms the 1{near nature of the thermal
management system mass as a function of the peak heat load time. Figure 10
{1lustrates the important characteristic of the thermal management system
mass for a spacecraft with respect to the peak-to-average ratio of heat
Joads. Since the peak l1oad is held constant for a particular case the
varfation of the peak-to-average heat 1oad {s obtained by decreasing the
average heat load by varying the "on™ and "off" times. Hence, the masses
of the total system and the radiator decrease with respect to increases in
the peak-to-average ratio of the heat load. Figure 11 shows the trends of
the mass of the system and the mass of the radiator as functions of the l
peak heat load. The peak-to-average ratio of the heat load is held

constant for this figure, thus the varfations of the masses are 1fnear with ;
respect to the peak heat load. As the peak load increases, the thermal i
management system wefght increases to handle the extra load.

To examine the effect of the selected values used in the base case,
numerous other cases were considered. One set of parameters of partfcular
interest is the specific weights of the radiator and the heat pipes., For
{1lustration, Figures 12-15 graphically give varfations of the masses as

14
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L functions of the four parameters used in the base case. With the exception
i:j: of the specific weights, the values of the parameters gfven in Table 2

j%} remained the same for Figures 12-15. The radiator and heat pipe specific
Ji' weights were calculated to be 11.1 and 11.8 watts/kg respectively for these

figures. Again, the general dependence of the masses to the four selected
parameters can be seen in these figures., This is further exemplified by

a comparison with figures 8-11 as to how the radfator and the heat pipe
specific weights affect the overall thermal management sytem.

Another parameter of interest in the investigation is the number of heat
load cycles. To illustrate the effect of this parameter, Figures 16-19
graphically give the varfations of the masses as functions of the four
parameters used in the base case. With the exception of the number of heat
load cycles, the values of the parameter given in Table 2 remained the same
for Figures 16-19, The number of heat load cycles was selected to be ten.
Again, the general dependence of the masses to the four selected parameters

can be seen 1n these figures,

The solutions of the transient energy balances given by Equations (1-3)
give the variations of the temperature of the heat pipes, the melt fraction
of the phase change material and the temperature of the radiator with
respect to time. Figure 20 {1lustrates the transient nature of these
temperatures. The heat pipe temperature can be seen to be an oscillating
function of time while the radiator temperature undergoes a continuous
decrease approaching the space temperature. Substitution of the results of
the Equations (1-3) into Equations (4-6) yields the transient heat flow
rates. Figure 21 shows the transient nature of these heat flow rates
Again, the heat pipes undergo rapid pulses while both the phase change
materfal and the radiators undergo continuous changes in their values of
heat flow rates. The results shown in Figures 20-21 were obtained for the
base case as defined by the values given in Table 2.

19
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Sn SECTION V
o CONCLUSIONS
P
i_f The results of this investigation of the weight characteristics of future
N spacecraft thermal management systems have been presented to identify the
QS effect of the thermal response to four specific parameters: PCM heat of

:;: fusion, peak time, peak/average load, and peak load. The selective results
:i: presented illustrate many of the thermal problems which may be encountered

in developing future systems of thermal control. It is difficult to

}? compare the various operational parameters discussed without giving

:%I consfderable attention to the total system in which a particular parameter
22f is evaluated [6-8]. However, Table 2 gives a set of values for the

L important parameters that characterize the power conditioning thermal

) response of a pulsed heat rejection load. The solutions of the governing
-:; equations for the heat flow through the thermal management system were used
:i in calculating time-averaged component specific weights which differ from
f3§ the values given in Table 2. An attempt was made to examine only special
- cases where the values of the parameters were self-consistent.

ek

Al

i;j The application of phase change materials for thermal buffering of

jﬁ temperature sensitive equipment from pulsed heat loads of future spacecraft
$E: thermal management systems appears to satisfy the objectives. The
‘ selection of the candidate materials might be based on high latent heat of
A fusion, however, the final selection probably will not be based solely on
:j an optimized latent heat of fusion. The specific weights of the radiators
-i: and the heat pipes are operational dependent on numerous parameters.

- Actual values of the specific weights should be obtained after the thermal
‘ response of the systems have been determined. Novel heat pipe and radiator
:j designs will be required to achieve the desired performance.

:& It 1s felt that the procedure presented in this report represents an

ﬂ\’ important step towards addressing the 1ssues of future mil{tary spacecraft
=y thermal control and management systems. The capability of treating

:3 multiple component responses to the pulsed heat rejection loads along with
'}n the simplicity of the method of analysis are additfonal attributes of

2: significance.
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