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A Note on Average Mutual Information
for Spherically Invariant Processes

1. Introduction

The actual transmission capacity of a given channel is a parameter of

basic importance in any communication system since it fixes limits to the

rate at which information can be transmitted reliably. There has thus been

an effort which started with Shannon (1948) to compute the capacity of

transmission for different channel and transmission models. In the case of

a continuous channel, most results have been obtained for a Gaussian noise

(Baker[1978]; Hitsuda and Ihara[1975]; Kadota, Zakai and Kiv[1971]). Some

attempts to steer away from the Gaussian case have also been made (Gualtierotti

[1980]) and these indicate that new methods may be required. Indeed, in the

Gaussian case, most quantities of interest can be explicitly obtained whereas

these computations are almost always impossible in other instances. Further-

more the computation of mutual information requires that the joint law of

the message and the received sig ml be absolutely continuous with respect to

the marginals and that the Radon-Nikodim derivative be computed: though the

Gaussian case is well known (Baker[1973]), this knowledge is again unavailable

for most other models.

Spherically invariant distributions are mixtures of Gaussian ones and

through mixing a number of well known distributions can be obtained, such as

the double exponential and the student distributions (Keilson and Steutel,

[1974]). There is also evidence that some real life noises can be described
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through spherically invariant probabilities, particularly in underwater

acoustics. It is thus natural to investigate the problems of absolute

continuity, of calculation of mutual information and channel capacity for

spherically invariant noises. This is the subject of the present paper.

We obtain a formula for average mutual information when the mixing measure

is discrete with finite support.

2. Preliminaries

We give here the basic definitions and a number of useful lemmas which

can be easily checked from first principles.

HI and H2 are real and separable Hilbert spaces with respective inner

products (u1 ,vl)l, ul,vlE H,, and (u2 ,v2>2, u
2 ,v2EH2. H is the set H1 x H2

and its elements are denoted i = (ul,u 2 ). If 1 = (ulu 2 ) and t2 = (vl'v

let <.,.>:HxH -IR be the map defined by the relation
(hi, 2) = (ul,vl)l + (u 2 ,v 2) 2 .

<.,.> is an inner product on H and with this inner product it is a real and

separable Hilbert space. pH is the projection with range H ×{O}, PH2 that

with range {O}xH 2 .

Lemma 1: Let Ji:H - Hi be defined by Ji (ulu 2) u i  = 1,2. Then

1) Ju - (u ,o); J*u2 (Ou

| 3~) JiJ1 dl J2J d2

4) PH 'H 2 = idH.r

1 2
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B[H], B[H1 ] and B[H2] are the Borel sets of respectively H, H1 and H2. Then

Lemma 2: 8[H] = B[H 1] a B[H2].

i = -1IIf P is a probability measure on H, P = POj1 , i=1,2, are probabilities

on 8[Hi], i=1,2. They are called the marginals of P. The product of these

marginals is denoted either P or PlOp2 according to convenience. It is

defined on H.

A Gaussian probability P on any real and separable Hilbert space H is

determined by its characteristic function *p or its mean m and covariance R.

m belongs to H and is identified by the relation

(h,m) = f H~ P(dx).

R belongs to the nonnegative and self-adjoint operators on H which have

finite trace and is identified by the relation

(h,IRc) = f (h,x-m)(k,x-m) P(dx).
H

m, R and iOp(h) = exp{i<h,m>- <h,Rh>}.

Lemma 3: Let again H=H1xH2 and P be a Gaussian probability on B[H] with

mean m - ( ) and covariance R. Then:

1) pi is Gaussian with mean mi and covariance R =JRJ , i1,2.

V 0 i1 ,2
2) PO is Gaussian with mean I and covariance R H R H + H RpH

If H is any real and separable Hilbert space and a>O, T a:H H defined

by T h=ah is a homeomorphism of H, so that POT -I is well defined. ThisSa a

measure is written P or P(a,) according to convenience.__ a

2Lemma 4: Pa is Gaussian with mean am and covariance a R. P(a,B) = P a(B),

BeB[H], is a transition function defined on [0,co[x8[H].

........
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Let F be a probability measure on BUR+]. A spherically invariant

measure on H is a probability Q of the form

Q(B) = 7P(a,B) F(da) , BEB[H].
0

Lemma 5: Let again H=HIxH2. Then:

I) p i -iOl
a a

1 2 0-I 12) p a pa = P oTa ,written Pa.aa a a
3) Theofothe measure 12

3)Teoara ae b of the measure P 1P written P is given bya ,ib a b a, g

the formula

R!,ba a2 + b2pH Rp
a b H1 1 2 H2

4) Q (B) = P (aB) F(da), BEB[Hi].
0

5) QV(B) = f f (B) FoF(da,db) , BcB[H].
0 0 a b

00 6: m and Q,,. ",Qn be probability measures on (D,A)
: ~~Lemma 6: LetP1...m"

such that P. . Qj' li-5m, lj--n. Then there exists AcA such that

Pi(A) = Q.(Ac) = 0, 1_i:m, lj5n.

proof:. For measures v, , V such that Xiv and p±v, X+pi±v (Ash, p.67). By

recursion, one obtains that

m m
i= l j = Q j

m n
A is a set such that ( " Pi)(A) = jC )Qj(Ac) = 0.

i= j1

" -- I[ I ...m ....................i ......
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3. The case of a mixing measure F with finite support

A. Absolute continuity

Lemma 7: Suppose that neither R1 nor R2 are zero and that b and c

are not both equal to a. Then

P Pb,c

proof: If a=O, or if a>O and either b or c is zero, one has in the

first case R= 0,, 0 and, in the second, R= a2 {P1RPH+ PHRPH}ac a H1 1 2 H2

and R = b 2pHiRPHl, or Rc = c2pH2 RPH2 ,or Rc 0. and Vc do

not then have the same range and, since Pa and P are Gaussian, they musta b,c

be orthogonal (Rao-Varadorajan, 1963). If a, b and c are all positive and if
0 0

Pa and Pb c are not orthogonal, they must be equivalent since they are Gaussian

(Rao-Varadarajan, 1963). But then, from the same reference, we have that

= (I+T)
, a a

where T is Hilbert-Schmidt with spectrum C(T)>-I. However T can be identified

as the "diagonal" operator with diagonal elements ([b 2/a 2]-l)idH1 and

([c 2/a 2]-l)idH2 leading to a contradiction.

Lemma 8: Let a, b and c be positive. Then, if P and Pe are orthogonal,

so are P and P 0
a bc

proof: Since P and P are Gaussian, if they are not orthogonal, they

a b ,c

must be equivalent (Rao-Varadarajan, 1963). But

Pa - N(0, a 2R)

and P - N(ORb)
bsa

so that (Rao-Varadarajan, 1963),
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0 = a 2 R1/2 (TR 1/2
(1) '5',c (I+T) ,

T Hilbert-Schmidt, a(T)>-l.

By Lemma 5, 3)

PH R1b cPH = =

and, equivalently, using (1),

(2) PH RPH2 + PH R1 2TR1 2P = 0.

Furthermore, by Lemma 3, 2),

R - R = PH R PH2 + PH 2RPH 1

so that, using (2), one gets
RR = R1/2TR 1 /2PH + P R/2TR/2P

(3 =H 1  H2 H2 1

By Lemma 5, 3), and the assumption b>0,

H I I b 2  cR hh

and, by (1),

c , h, h a- I + T R < , -h>.
Consequently, if K is an appropriate constant,

(PH H, R h (Rh, h

Thus (Douglas, 1966)

(4) PHIRPHI = RIUR

where U is bounded, nonnegative and self-adjoint.

Similarly, one has
1-R/2vR1/2

(5) PH2RPH2 =R

where V is bounded, nonnegative and self-adjoint.

L
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The polar decomposition (Weidmann, p.197) yields

(6) R1/ 2p = A(p RpH1) 1/2
H1 1

where A is a partial isometry such that:

AA* = PL, L1 = closure of range of R1 1 2PH,

1111
A*A = PL 2 , L2 = closure of range of (PH 1R )l/2

Similarly, one has

(7) U 1/2R1/ 2 = B(R1/ 2UR1/2 1/2

(6) yields A*R / 2  =H RPH 1/2 and (7) yields BU/11 2R1 /2p1 (pI1) 1 n 7 yed

Consequently, one has from (4) that

1/2 1/2 1/2
A*R PH=B*U R

This can be rewritten as

(8) R1/ 2  RI1/ 2UI1/ 2 BA*.PH 1

Similarly, one has

(9) P R1/ 2  R1/2V1/2 DC*.P2

1/2 1/

Using (8) and (9) in (3), one gets, if T = U/2 BA*TCD*VI/2,

(10) Re= R1 2 (I+T+T*)Rl/2.

Let us show that

(I1) o(T+T*) >-I

or equivalently, that

(12) and A have the same range.

One has

0 s min(b 2 ,c2) Re 5 r max(b 2 ,c 2 )I ,

so that and ® have the same range (Douglas, 1966). By assumption,

P band are equivalent and Gaussian so, (Rao-Varadarajan, 1963),
a Pbj



-8-

and have the same range. Then (12) is established.
c0

From (10), (11) and (Rao-Varadarajan, 1963), one has that P and P

are equivalent, contradicting. the assumptions.

Let now 05aI<a 2 <... <an be the support of F and suppose F has mass

0 ®
pic]O,l[ at ai, ]<i_<n. We write Pi,P ,P ,j for, respectively, Pai, "ai, i,aj

Proposition 1: If P<<P , Q<<Q

0 0 a 4Dproof: Since p<<P®, PiP<<p, 1i5n. So, if Q (B)=O, P.(B)=0, 1-<i5n, using

Lemma 5, 5). But then Pi(B)=O, l<i!n, that is Q(B)=0.

Proposition 2: If P i P0 and a1>0, Q±Q ® . If al=0, Q andQ cannot be orthogonal.

proof:. If aI=0, Q({O})>O and Q ({O})>O. So, if Q(B)=O, Bc2{O} and QO(BC)>O.

If ai>O, then, by Lemma 8, P Pk li,j,k!n. The result then follows by

Lemma 6.

Proposition 3: If QLQ , PLP ® .

proof: Let Q(B)=Q (Bc)=o. Then Pi(B)=PO(Bc)=O, ~in. But, by Lemma 5, 1)

and 2, Pi(B)=P{T i (B)}and P.(Bc) = P{[T a (B)]C}.
1 1

Proposition 4: If Q<<Q and a1 >0, P<<P

proof: Suppose P is not absolutely continuous with respect to P®. Since P and

P are Gaussian, P and P are then orthogonal (Rao-Varadarajan, 1973). But, by

Proposition 2, one has that QL Q. So, if Q(B)=Q (Bc)=O, Q(BC)=O by assumption

and Q is identically zero and cannot be a probability.

Remark: QC<<Q does not imply Q-Qn n n

proof: Let Q=1PiP9. Then Q= Xp.P.P

Use Lemma 7 and 6 to find a Borel set B such that

P (B) = Pek(B) = 0, l5i,j,k!n, jxk.

ii ,,
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n n
Then Q(B)=O, but QO(B) = I pip >0.

i=l j=l

i xj

B. The Radon-Nikodm derivative of Q with respect to Q

Proposition 5: If aI>0 and Q<<Q, there exist Borel sets B.,, 15i_<n, such that

n I dPi
dQ®  i~lpi II i } dp.

proof: For each fixed iE{1,... ,n} choose, with the help of Lemma 7 and Lemma 6,

a Borel set B. such that
1c

Pi (B) P ,k(B c ) = 0, 15j,k_<n, ,j,k) (i,i).

From Proposition 4 and Lemma 5, 1) and 2), v' iso have that P.-<<P., 1in.

n dP.
Set A = {IIB}i=l Pi B dP9

idPi

Then f A dQ
B

n n

i=I j=l jB j -
@S

But f A dP.
B

n 1 dPk

k~lfk 0 dP k
BnB k k

and Pij(Bk) = 0 for (i,j) # (k,k).

Thus, if i'j, fdP . = 0, and, if i=j,
B 1,j

B f dP i

i Bci
1 1

- 1 P. (BAB8)

Pi 1

I= 
()

P1 1
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n dQ
Consequently, fAdQe Y piP,(B) = Q(B), or A dQ® .

B i=l dQ

C. Calculation of mutual information

If P is any probability measure on H, I(P), the average mutual information

of P, is given by the formula

I(P) = flog dP dP,
H dP®

n
provided P<<P. The entropy of F, H(F), is the quantity H(F) = - Pilog Pi.

One has:

Proposition 6: I(Q) = H(F) + I(P)

proof: Let e be the eigenvector of R with associated eigenvalue X Let:n n

ln en h)

T n (it ) = n iI%

-1 2
A( =1m An

A. = T- (a.), 1 i-<n.

Since Tn is measurable, Y is, so that the Ai's are Borel sets which are disjoint.

Let X = (.,en// /--. With respect to Pi. {Xn,n EIN } is a family of independent

2 2N(O,a.)-random variables. {X n,nEIN} is thus a family of independent random
2 4

variables with mean a i and variance 2a.1 , still with respect to Pi By the law of

large numbers:

P' -(Ai) = 1, lin.

dP.
1.1We can thus assume that is zero outside of A.

dP.

dQ 1dP.
Consequently, f log dP f log dP.

H d  i  H Pi dP
1
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dP.
But f log dP. = f logddP = 1(P)H dp. 1 H ;P;

n dP.

Finally, f log L- dQ I p f log - dP.
H dQ i=l H Pi dP 11

n
= Pi {-log pi + I(P)} = H(F) + l(P).

i=l1

4. The case of a general F

Lemma 9: Let B = {xEH: 1i X-5jj<a} and I = {a>O: a'EB}. I is an open interval.

proof: Suppose aI<a2 and al,a 2 E I. Let

= (a2-a)/(a 2-a1 ) and 1-X = (a-a1)/(a2-a).

Then a =Xa I + (1-X)a 2 .
So Ilax-hil = 11 [Xal+(l-X)a2] - [!+(1-x)] tt- XIjal'-tiI+ (i-X) 11a2x- l <.

Thus ael and I is an interval. Furthermore if aEl and a=a-I[a'-IHI, then,

for b< /II It,

11 (a+b)-"-I-j 1 al-Itfl + b]1 Il < 11 ax-Itl +a = a. I is thus open.

Lemma 10: Suppose

{F ,ndR } converges weakly to F. Let, for BEB[H],

Qn (B) = P a(B)F n(da)
0

Q(B) = f P a(B)F(da).
0

Then {Qnn EN } converges weakly to Q.

proof: Let g(l) = f IB(ax)F(da). gn is defined similarly, F replacing F.
0 n

Then: Q(B) f P(dx) g(-)
H

and Qn(B) - , P(De) g(").
H
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Let B be open: it is a union of open balls, so that IB(ax), as a function

of a, is an open set of the real line (Lemma 9). Consequently, by weak

convergence, g(l) 5 j gn(3) and thus, by Fatou's lemma, Q(B) < 1 Qn(B).

Proposition 7 Let {FnfnEI} be a sequence of discrete probabilities with no

mass at the origin which converges weakly to F. Then

I1(Q) !5 limn H(F n) + (P)

proof: I is lower semicontinuous for weak convergence.

Remark: Taking F to be the uniform distribution, one sees that the bound

of Proposition 7 will not in general be useful. This seems to indicate that

there is little hope to study the general case of F starting with finite dimen-

sional approximations. This is due to the form taken by I(Q) in Proposition 6:

indeed, in general, H(Fn) does not tend to H(F).

I
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