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A Note on Average Mutual Information
for Spherically Invariant Processes

1. Introduction

The actual transmission capacity of a given channel is a parameter of
basic importance in any commmication system since it fixes limits to the
rate at which information can be transmitted reliably. There has thus been
an effort which started with Shannon (1948) to compute the capacity of
transmission for different channel and transmission models. In the case of
a continuous channel, most results have been obtained for a Gaussian noise
(Baker[1978]; Hitsuda and Thara[1975]; Kadota, Zakai and Kiv[1971]). Some
attempts to steer away from the Gaussian case have also been made (Gualtierotti
[1980]) and these indicate that new methods may be required. Indeed, in the
Gaussian case, most quantities of interest can be explicitly obtained whereas
these computations are almost always impossible in other instances. Further-
more the computatioﬁ of mutual information requires that the joint law of
the message and the received sig ml be absolutely continuous with respect to
the marginals and that the Radon-Nikodym derivative be computed: though the
Gaussian case is well known (Baker[1973]), this knowledge is again unavailable
for most other models.

Spherically invariant distributions are mixtures of Gaussian ones and
through mixing a number of well known distributions can be obtained, such as
the double exponential and the student distributions (Keilson and Steutel,

[1974]). There is also evidence that some real life noises can be described
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through spherically invariant probabilities, particularly in underwater
acoustics. It is thus natural to investigate the problems of absolute
continuity, of calculation of mutual information and channel capacity for
spherically invariant noises. This is the subject of the present paper.

We obtain a formula for average mutual information when the mixing measure

is discrete with finite support.

2. Preliminaries

We give here the basic definitions and a number of useful lemmas which
can be easily checked from first principles.

H1 and H2 are real and separable Hilbert spaces with respective inner

1.1 2 2 2

products <u1,v1>1, u ,v e€H,, and (uz,v gs ULV eH H is the set H, x H

1’ 2° 1 2

and its elements are denoted A = (ul,uz). If Kl = (ul,uz) and KZ = (vl,vz),
let <.,.>:HxH + R be the map defined by the relation

> o> 1.1 2 2

<h1,h2> = <u ,V )1 + <u sV >2.
<-,*> is an inner product on H and with this inner product it is a real and

separable Hilbert space. Py is the projection with range HIX{O}, pH that
1 2

with range {O}XHZ.
Lemma 1: Let J,:H » H; be defined by J; (u',u®) = ul, i = 1,2. Then

* 1
1) Jlu

1 2
(w',0); 33’ = 0,uh).

* *
2) JIJI = PHI. J2J2 = th.

. . * _ .
1%H,J£2-1${.

2

*

1

3) JlJ
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B[H], B[Hl] and B[HZ] are the Borel sets of respectively H, H, and H2 Then

Lemma 2: B[H] = B[HI] ® B[Hz].

If P is a probability measure on H, pt = PoJil, i=1,2, are probabilities

on B[Hi]’ i=1,2. They are called the marginals of P. The product of these

marginals is denoted either P® or PlaP2 according to convenience. It is

defined on H. A
A Gaussian probability P on any real and separable Hilbert space H is

determined by its characteristic function ¢P or its mean m and covariar.ce R.

m belongs to H and is identified by the relation

iAo 0PI M PRI SR W0 -

(h.m) = { (h,x) P(dx).

R belongs to the nonnegative and self-adjoint operators on H which have

finite trace and is identified by the relation
{hRK) = I (h,x-m)(k,x-m) P(dx).

expli<h,m>-3 <h,Rh>}.

m, R and ¢P(h)

Lemma 3: Let again H=H1><H2 and P be a Gaussian probability on B[H] with

1

+ 2 .
mean m = (m ,m ) and covariance R. Then:

1) P! is Gaussian with mean m' and covariance Ri=JiRJ;, i=1,2.

2) P& is Gaussian with mean ;v and covariance R0 = p, Rp +p, Rp, .
Hy"Hy  THyTH :

! If H is any real and separable Hilbert space and a>0, T_:H*H. defined
by Tah=ah is a homeomorphism of H, so that P"'I‘a'1 is well defined. This

i measure is written Pa or P(a,*) according to convenience.

Lemma 4: Pa is Gaussian with mean am and covariance azR.. P(a,B) = Pa(B)'

BeB[H], is a transition function defined on [0,»[xB{H].
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Let F be a probability measure on BuR+]. A spherically invariant

measure on H is a probability @ of the form

Q(B) = ZP(a,B) F(da) , BeB[H].

T

Lemma 5: Let again H=H1XH2. Then:
i_ i-1
1) Pa =P oTa .

ko T i

1 2 _ ® -1 . ®
2) Pa ® Pa =P °Ta s, Written Pa.
3) The covariance R® . of the measur PlaPZ written P8 i iven b
c i a,b e P ®P a,p 1S given by

the formula

® 2 2
R = ap, Rp,, +bp, Rp, .
a,b H1 H1 H2 H,

 o'® = ] P(a,B) Fda), BeBIH;).
® LR e
5) Q®B) = S/ P®_ (B) FeF(da,db) , BeB[H].
(el a,b

Lemma 6: Let Pl""’Pm and Ql""’Qn be probability measures on (,A)

such that P, 1 Qj’ 1<sis<m, 1sjsn. Then there exists AeA such that
L)

P.(A) = Qj(Ac) = 0, lsism, l<jsn.

proof: For measures A, u, v such that Aiv and piv, A+piv (Ash, p.67). By

recursion, one obtains that
m m
DRARRICE
i=1 i=1
m n c
A is a set such that ( ] PO = ( ) Qj)(A ) = 0.
i=1 j=1
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3. The case of a mixing measure F with finite support

A. Absolute continuity

Lemma 7: Suppose that neither R, nor R2 are zero and that b and ¢

1
are not both equal to a. Then
®
P 1 Pb,c !
]
proof: If a=0, or if a>0 and either b or ¢ is zero, one has in the ' J
first case RO = 0, R° _ = 0 and, in the second, R® = a { RO, + Rp, }
a ? Rb,c ’ > Ta pH1 H1 sz H2
® _ .2 o® 2 . ® _ ® /ﬁg
and Rb,c =b leRpHI, or Rb,c =c pHZRpHZ, or Rb,c = 0. ¢£; and ,c do .
not then have the same range and, since P: and P: o are Gaussian, they must |
, .
be orthogonal (Rao-Varadorajan, 1963). If a, b and c are all positive and if

® ®
Pa and Pb ¢ are not orthogonal, they must be equivalent since they are Gaussian
H

(Rao-Varadarajan, 1963). But then, from the same reference, we have that
® ©® ®
R = RS @ A2,
where T is Hilbert-Schmidt with spectrum o(T)>-1. However T can be identified

as the "diagonal" operator with diagonal elements ([bz/az]-l)idH and
1

([cz/az]-l)idH leading to a contradiction.
2

Lemma 8: Let a, b and ¢ be positive. Then, if P and Pe are orthogonal, i
so are Pa and P:,c. |
proof: Since P, and P:,c are Gaussian, if they are not orthogonal, they
must be equivalent (Rao-Varadarajan, 1963). But
P, ~ N(0, a’R)

®
and pb,c ~ N(O’Rb,c) s

so that (Rao-Varadarajan, 1963),




R Praiy’

——— (SRR e e — —t——r. ot

(1) RS = arM2emprl/?,

T Hilbert-Schmidt, o(T)> -1.

By Lemma 5, 3)

®
P py. = 0,
H, b, cPH,
and, equivalently, using (1),
1/2TR1/2

(2) Py Rey * py R py =0

H)"PH, — Hy H,
Furthermore, by Lemma 3, 2),

®

R -R=-{p, Rp, + p, Rp, },

H)y "H, = "Hy"H)
so that, using (2), one gets
(3) R®-R = p, RY2rY2p 4 p RY/27p1/2p
Hy Hy H Hy

By Lemma 5, 3), and the assumption b>0,
> > 1 ® > >
Rp, h,h) < = (R’ h,h ),
<le le b2 \Rb,c >
and, by (1),
(R B R ) < a?) | (s, T ).
Consequently, if K is an appropriate constant,
> > > >
(&H@Hf,h ) = k(gh, b ).

Thus (Douglas, 1966)

1/2,..1/2

@) py Rey = RYZRY/Z,
1 1

where U is bounded, nonnegative and self-adjoint.

Similarly, one has

- RM2yR1/2

(5) P,, RP,
Hy,"H,

where V is bounded, nonnegative and self-adjoint.
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The polar decomposition (Weidmann, p.197) yields

1/2 1/2
Py = Al Rey )
H, Hy Hy
where A is a partial isometry such that:

AA* =p L) closure of range of RI/ZPH ,

1 1
A*A =p , L closure of range of (P RPH )1/2.
L2 2 H1 1

Similarly, one has
7 U1/2R1/2

(6) R

n

1]

- srY2uY3HV2,

/2

(6) yields a*R'/%p,
1

1

Consequently, one has from (4} that

A*Rl/zﬁ{ - B*Ul/le/z.

1
This can be rewritten as

(8) Py Rl/2 = Rl/zul/zBA*.

1
Similarly, one has
(9 Py RY/Z = RY 2yl 2,
2

Using (8) and (9) in (3), one gets, if T = y!/?

BA*TCD*VI/Z,

(10) R® = RY2(LeTaTryRY/2,
Let us show that
(11) o(f;f;)>—1

or equivalently, that

(12) ¢£3 and /R have the same range.
One has
0 s min(d’,c’) R® s RS s max(b?,c?)

© 40
so that ¢§— and c have the same range (Douglas, 1966). By assumption,

® .
Pa and Pb c are equivalent and Gaussian so, (Rao-Varadarajan, 1963),
»
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/Rb c and va“R have the same range. Then (12) is established.

. ®
From (10), (11) and (Rao-Varadarajan, 1963), one has that P and P
are equivalent, contradicting the assumptions.

Let now 0<a. <a <e..<ay be the support of F and suppose F has mass

172
p.€]0,1[ at a l<i<n. We write P.,P%,P® . for respectively, P p® ,p® .
i L4 i) . 1’ 1: l,J E] ’ ai’ ai, ai:aj

Proposition 1: If P€<P®, Q<<d®

proof: Since P<<P®, pi<<p?, l<isn. So, if Q®(B)=0, pf(s)=o, 1<isn, using

Lemma 5, 5). But then Pi(B)=0’ 1<i<n, that is Q(B)=0.

®
Proposition 2: If P 1 PQ and a1>0, Q.LQQ. If a1=0, Q and Q@ cannot be orthogonal.

® . _ c ®
proof: If a =0, Q({0})>0 and Q°({0})>0. So, if Q(B)=0, B°2{0} and Q"(B)>0.
If ai>0, then, by Lemma 8, PiLPj K’ 1<i,j,k<n. The result then follows by

Lemma 6.

Proposition 3: 1If QLQQ, PLPQ.

® ®, C .
proof: Let Q(B)=Q (B)=0. Then P, (B)=P; (B)=0, lsizn. But, by Lemma 5, 1)

and 2, Pi(B)=P{T;:(B)}and p?(BC) = Po{[T;;(B)]c}.

Proposition 4: If Q<<Q@ and a,>0, p<<p®.
proof: Suppose P is not absolutely continuous with respect to P®. Since P and
p® are Gaussian, P and PG are then orthogonal (Rao-Varadarajan, 1973). But, by
Proposition 2, one has that QQ®. So, if Q(B)=QQ(BC)=0, Q(8%)=0 by assumption
and Q is identically zero and cannot be a probability.
Remark : Q<<Q0 does not imply QEQG.

n . ® n n @
proof: Let Q=Jp.P’. ThenQ = j Jp.p P’ ..

i=1 i=1 j=11 ) 1,)

Use Lemma 7 and 6 to find a Borel set B such that

(] ® C . s .
Pi(B) = Py \(B") =0, 1si,j,ksn, j=k.




Then Q(B)=0, but Q°(B) = [ ) p.p.>0.
i=l j=1
i#j

B. The Radon-Nikodym derivative of Q with respect to QQ

Proposition 5: If a, >0 and Q<<Q®, there exist Borel sets Bi’ 1<i<n, such that
dp

Q—-: Z.l_ -I }_]L
0Q® i=1Pi ®i arf

proof: For each fixed ie{1,...,n} choose, with the help of Lemma 7 and Lemma 6,

a Borel set Bi such that

® . . . .
P.(B,) = pj’k(ag) =0, 1<j,ksn, «;,k) = (i,i).

®
From Proposition 4 and Lemma 5, 1) and 2), v .iso have that Pi<<Pi’ 1<is<n.

z dPi
Set A= — {1- I } —.
i=1Pi i dP?
Then /A dQ®
L1
= P:P- fAdP
i=1 j=1 1 JB 1,y
()
But S A dpP,
B 1.)
n dpP
= Z %- ;o ap® j —X
k=1 ¢ 7 dp
BB,
and (Bk) 0 for (i,j) # (k,k)

Thus, if i#j, fAdPi j = 0, and, if i=j,
B »

fadp®
B

i,i

I

" Sl e
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o 1 )
Consequently, fAdQ = z pipi(B) = Q(B), or A = — &
B i=1 )

C. Calculation of mutual information

If P is any probability measure on H, I(P), the average mutual information
of P, is given by the formula

dP

. I(P) = S log — dP,
H dp
® n
provided P<<P . The entropy of F, H(F), is the quantity H(F) = - Z pilog P, -
E

One has:

Proposition 6: I(Q) = H(F) + I(P)

> . . . . .
proof: Let e, be the eigenvector of R with associated eigenvalue An' Let:

K;+ 2.
?n(ﬁ) = %’_Zlﬂ Aenk* s

1 n

e —— >
y®) = Tim v @)
A = w'l(af), 1<i<n.

Since Wn is measurable, ¥ is, so that the Ai's are Borel sets which are disjoint.
Let Xn = <-,3ﬁ>/ /X;l With respect to Pi, {Xn,n eN } is a family of independent

N(O,af)-random variables. {Xi,neﬂv} is thus a family of independent random
variables with mean ai and variance Zag,still with respect to Pi' By the law of
large numbers:

Pi(Ai) =1, 1<isn,

dP.
We can thus assume that —— is zero outside of Ai
dpP.
aq 1 9P
Consequently, [ log — 4P, = S log-——-—jg dPi.
H ) H Py dp?
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dp

But J log —= dP. = / log S dP = I(P).
H . ' H dp
1
n dP.
Finally, [ log S aq = ) p, / log == —% dp,
H dqQ i=1 ' H Pj ap;

n
=) p; {~log p; + I(PI} = H(F) + I(P).
i=1

4. The case of a general F

Lemma 9: Let B = {XeH: || x-R|} <a} and I = {a20: aXeB}. I is an open interval.

proof: Suppose a,<a<a, and a),a, € I. Let

A= (az-a)/(az-al) and 1-) = (a-al)/(az-al).
Then a= Aal + (l-k)az.
So || aX-R| = |\[Aa1+(1-k)a2]§ - [+ (1-1)]R{| = kllalf-ﬁl|+ (1-2) || a %-K| < a.

Thus ael and I is an interval. Furthermore if ael and B=a-|| ax-R||, then,
for b<g/||X|| ,
l| (asb)X-R|| < || aX-R|} + b] X|| < || aX-R)| +8 = o. I is thus open.
Lemma 10: Suppose

{Fn,ndN'} converges weakly to F. Let, for BeB[H],
-]
Q,(B) = é P, (B)F, (da)

Q(B) = 7 P_(B)F(da).
0
Then {Qn,nelN} converges weakly to Q.

proof: Let g(X) = S IB(aK)F(da). g0 is defined similarly, Fn replacing F.
0 .
Then: Q(B) = / P(dX) g(X)
H

and Q,(B) = }g P(dx) gn(I).
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Let B be open: it is a union of open balls, so that IB(ai), as a function
of a, is an open set of the real line (Lemma 9). Consequently, by weak

7. Y ' .
convergence, g(x) s lim gn(i) and thus, by Fatou's lemma, Q(B) < lim Qn(B).

Proposition 7 Let {Fn,nen(} be a sequence of discrete probabilities with no

mass at the origin which converges weakly to F. Then
. .
I(Q) < lim H(Fn) + I(P)
proof: I is lower semicontinuous for weak convergence.
Remark: Taking F to be the uniform distribution, one sees that the bound
of Proposition 7 will not in general be useful. This seems to indicate that

there is little hope to study the general case of F starting with finite dimen-

sional approximations. This is due to the form taken by I(Q) in Proposition 6:

indeed, in general, H(Fn) does not tend to H(F).
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