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ON THE IDENTIFICATION OF A 

STOCHASTIC RESPONSE MODEL IN ACTIVE SONAR 

Denis de Brucq 

Abstract 

The detection of a marine target with the aid of an active sonar 

necessitates a probabilistic model of the phenomena, and detection improves 

according to how well the model takes account of the various random and 

deterministic physical phenomena.  The signal wave Z(t) received from a 

point source x of the target is described by a deterministic scalar or 

vector function G(t,x).  Random reflection is characterized by a scalar 

multiplying factor C(x), randomly distributed according to a mixture of 

central Gaussian laws.  Also considered is the model consisting of a linear 

process of the type Z(t) = /G(t,x)dL(x] where L is a Levy process 

(possibly non-stationary) which describes the joint distribution of the 

point sources and their intensities.  The problem consists of identifying 

the model most closely compatible with the experimental results. 



Introduction 

The better the model of the reflected sonar wave from a marine target 

the more efficient is its detection.  The model must be true and precise  . 

It is essential to understand the physics of the phenomena in order to 

specify the mathematical model. The parameters of this model must be determined 

from experimental results and this procedure must lead to formulae exploitable 

by computer.  More precisely the statistical law of the observations is 

obtained by means of its characteristic function.    ■ 

This works extends a more theoretical study "Identification of a class of 

filtered Poisson processes" by the author and Antonio Gualtierroti. 

The target consists of points shining under the effect of the incident 

wave from the active sonar; certain points reflect sufficiently in the 

direction of the receivers. 

Paragraph I is devoted to an elementary description of the physical 

phenomena.  A geometrical (ray) approximation is used to calculate the phase 

changes in the emitted wave (supposed sinusoidal).  Thus we find a response 

(I.l)  P(t) = C(x)G(t,x)  received at instant t from the point x of the target. 

The number N of point sources, their positions x in the target, and the 

coefficients C(x) are all random.  A process with distribution ^  C(x.)6  (x) 
i       i 

(a L^vy process) may describe these random phenomena. We suppose that effects 

due to the different sources are additive. This corresponds to the hypothesis 

of small movements in mechanics. 

Paragraph II defines the probability laws of N, X and C.  Three distinct 

situations are described as are the experimental results which determine the 

most realistic and the most tractable model. 

In Paragraph III the variance and the characteristic function of the 

observation are treated case by case.  Finally the identification of the    ' 
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probability laws is presented in the last paragraph.  It seems that the 

function G(;t,x) may not be statistically estimated from the observations 

alone; a knowledge of the physics of the phenomena must furnish the function 

G(t,xJ, otherwise some very restrictive hypotheses on the nature of G would 

have to be imposed. ,    ■ 

The first step of the identification is to specify the deterministic 

function G(t,x) using physical considerations. 

Secondly it must be established from the normalized observations whether 

the law is symmetric.  In the non-symmetric case only the model no. 2 may be 

applied. 

. 2 
If symmetric (the most plausible case) the characteristic function of v=u 

is tested to see if it is the Laplace transform of a probability--if so, models 

1 and 3 may be used (cf. IV.12 or IV.14).  If in the more restricted case the 

2 
second characteristic function of v=u is the Laplace transform of a 

probability (cf. IV.13) then the second model may be used with a symmetric 

Levy process composed of spherically invariants defined by the probability 

X.y   (see formula 111.9). 

Proposition IV.3 gives a criterion for compatibility of a given model with 

the experimental results and to know whether a moment method or a rapid 

Fourier transform method may be used to find X.y. 
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I.  Description of the phenomena 

The submarine (target) is represented by a segment M = [-!i, + !i]  whose 

centre is at a distance R from the active sonar S.  In the plane defined by 

the sonar and the target, the disposition is as in Figure 1. 

Figure 1. 

Active Sonar 

Target 

09 = X e [-£,£] 

The distance R between sonar and target is supposed to be large with 

respect to the dimension I  and if — << 1 the emitted accoustic wave is supposed 

plane.  (An approximation by spherical waves would modify the deterministic 

function G(t,x) but not the probabilistic modelling of the phenomena). 

With this approximation, let us follow the emitted wave until it is 

received again. 

Emission:  P(t) = P cos (cot + (f), 

At point T of the target: 

-Y(R + X sin e) 

where oj = angular velocity 
()) = phase at t=0 

P(t) = P, cos a)(t 
R + X sin 

o  (R + X sin 9) 

Distance SN has been approximated by R + x sin 

Energy losses involve a factor e  per unit length. 

The celerity is denoted -c. 

-)+<), 



Reemission at point T: 

Only a part of the energy is retransmitted in the direction S. We intro- 

duce a random multiplicative factor C(x): thus 

I -Y(R + X sin e) 
P(t) = P CCx) ^ : ^Y- ^  ■' o   ^  -^     (R + X sm 8) 

cos coCt R + X sin 
-) + <P 

Reception at point S: 

The wave emitted from point T returns to points 

-2Y(R + X sin 8) 
P(t) = P C(x) ^ ^ ^T-^- ^  ■' o   ^  -^     (R + X sm 8)2 

cos 
,^  2(R + X sin ),   , 

For simplicity the receivers are at the same point S as the emitters. 

This simplified analysis introduces the function C(t,x) defined by the 

equations 

(I.l]     P(t)   = C(x)GCt,x) 

(1.2)     G(t,x)   =  P 
■2y(R + x sin  6) 

o   (R + X sin 8)^ 
cos    cot  -  2cox sin 8 

2a)R .] 
It is possible to introduce a function G(1-T) which necessitates new approxi- 

i, 
mations (cf. Westcott).  Again for n" « 1 <"^ ^ sin 6 << R, and putting 

2a)R 
  we have 
c 

-2YR 

(j,^ = (j) 

G(t,x) -ru 

°  R2 
cos 

2a)X sin 8   , 
u)t   + <i>^ 

The position x of T may be replaced by a temporal equivalent by putting 

2x sin' 9 t(x) = from which 

G(t,n) = G(t-t(x)) 
■2YR 

° R2 
cos a)(t-tCx)) + ^. 

The sources instead of being situated at points x of the target would be at 

dates T = t(x).  These last approximations do not in fact seem to be 

particularly useful in what follows. 



II.  Probabilistic model 

Certain points T. at positions x. of the target emit in direction T.S. 

We suppose the effects of these different points to be additive and we take 

the model 

(II.1)   Z(t) = I  C(x )G(t,x ) = J G(t,x)dL(x) 

j ■ 

where the process L  is defined on the target (that is for x e M = [-l, + !i]). 

(II.2J   Lix)   ^ I  C(x 3 6^ (X). 

Stationarity of L has not been supposed a priori. 

Case no. 1. 

Each observation at S corresponds to one bright point T at x on the target 

The distribution of x is given by a probability v(dx).  In this case 

(11.3) Z(t) = C(x)G(t,x) . ■   . 

It remains to specify the law of C when x is given. So as not to be 

limited to a simple centred Gaussian law, we may suppose C to be spherically 

invariant with associated probability (x,da). Thus 

(11.4) E(exp iu C(x)) = /R+^"'~^ ^ ^^^y(x,da) . 

More precisely  is a transition probability.  In this way the law of C is 

centred and symmetric but the distribution y(x,-) of the standard deviations 

a of the mixture of centred Gaussian laws depends on the position x of the 

bright point of the target. 

Case no. 2. 

By giving the process with distribution 

(11.5) L = I  C(x ) 6^ 
J        J 

we fix both the laws of the x. and of the C.  Let us take for L  a second-order 
3 
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Levy process (cf. de Brucq, part H). 

We introduce a positive bounded measure  (x,a) on M x ]R+ satisfying 

the inequality     / a p(dx,da) < "o. 
MxR^ 

By hypothesis, for all square integrable functions (j) 

(i.e., / <J)(x) a ij(dx,da) < «>) the second characteristic function of the 
MxR^ 

random variable 

(11.6) <L,(t)> = / Hx3dL(x)  is given by 

(11.7) ^^ = log E(exp i<LA>)   = /(e^^*'^'^^-l-ia(l)(x))dy(x,a). 

The stationary case corresponds to a product measure of the type 

dij(x,a) = dx ® y(da), and in the Poisson case du(x,a) = dx ® A6 (da) . 

Another particular case is to take the bright points x. according to a 

Poisson law of intensity A(dx) on M = [-£,+J2.] and the amplitude C according to 

a spherically invariant law with associated measure Y(x,dc) : the L6vy process 

is here restricted to a spherically invariant mixture. Thus 

L = 1  C(x.)6x. must be a Levy process with 

^^ ^ /(e^^*^^^-l-iaMx)dy(x,a))=/(e-^^ *W )/2_ i)^(dx)y(x,da))  / 

where the last expression results from a direct evaluation of the second 

characteristic function (of de Brucq and Gualtierotti, p.13). Replacing 

(() by u(^   (where udR) and observing that /(e  - 1 - ia6)^— e    d9 

= e"" ^'^  - 1,  it follows that * 

f, -(u^C'^(})(n)'^)/2   -,^ wj ^ r  J ^ J (e *•   -TK.  j   ji     _ -j^-j x(dx)Y(x,dc) 

/A(dx)Y(x,dc) ft  iuc(f)(x)6  ,   .  ^, ,„•)  1  - 
lie  ^^ ^  - 1 - iuc(t)(x)e} -^ e 02/2 de 

= J|,iu(ce)Kx) _ ^ _ i^^,e)Kx)}X(dx) ^e-® /2^eY(x,dc). 

Making the change of variables  (c,e) ->■ a 4 cB, and putting y(x,da) for the 



1  -e2/2 
image of the transition probability -;y= e    deYCx,dc) under the change of 

variables, we have for a test function (|) 

(II.8)  >F^(u) = /(e"" "" ^^'''^   ''^  -   l)ACdx)Y[x,dc) 

= J{ei"^*^^5 - 1 - iua<i)(x)}A(dx)y(x,da). 

This second characteristic function 'i',(u) is remarkable in that it is 

real and depends only on u^.  In this case H* is invariant when u is replaced 

by -u; so also is the characteristic function: 

g^^iu<L,*>^ = exp nu) = exp ^-u) = ECe"^"'^'*") . 

The moments of odd order, where they exist, are therefore zero.  If this last 

fact is the only hypothesis imposed on the process L, we have for all test 

functions (j) and for all ue(E 

> (u) = Jle'-"^*^''^- 1 - iua<t>Cx)}dy(a,x)    . '  . 

= j|g-iuact)Cx)_ ^ ^ iua(f.(x)}dy(a,x) = Y^(-u) 

= J|ei"^-^)*W- 1 - iu(-a)Hx)}dy(a,x) .  . 

In this case the probability y and the image of u when a is replaced by 

-a lead to the same second characteristic function.  Taking the average of 

these two probabilities we can therefore suppose that y is invariant for the 

change of variables a -> -a : the probability y is symmetric in a.  In this 

case we talk of a symmetric L6vy process. 

Case no. 5 

We introduce here a generalization of Gaussian measures which we can 

talk of as Spherically Invariant Measure. , 

Supposing that / |G[t,x3 pa^v(dx)y (da) < °° we give a sense to the expression 

(II.9)  Z(t) =  /  G(t,x)C(dx)  . 



Thus, the points x of the target have a continuous instead of a discrete 

random effect. 

We introduce, for every function (ji of L2(M,M,V3, a random variable C((j)3, 

centred with variance ' 

(11.10)  E(C((J))2) = /4,2v(dx) / a^nCda) 
M       R+ 

and with characteristic function 

CII.ll) E(exp iC(<J>)) = / exp (Zl^^^i^l^i^^(^da)     . 

In the application M = [-Si,+!i]   and M = [-Si,+l] , so that 

(11.12) Z(t) = C[G(t,x)] =   /  G(t,x)C(dx) , 

the process <^  e L^i[-l,+l] ,   [-&,+&], v (dx)) ^ C((j)) is the spherically invariant 

measure;  the various points T of the target reemit in a correlated way 

according to a Gaussian law with random variance a^. 

The various receivers at point S give an observation Z(t) which may be 

a scalar or a vector.  In general the random numerical values are time-averages. 

We may write 

(11.13) <Z,f> = /Z(t)f(t)dt  where f is a weighting function.  The 

observation Z thus becomes a linear process f -> <Z,f> = 1  C(x.)jG(t,x.)f(t)dt; 
i   "" 

the parameter f may be for example a square-integrable function 

(J|f(t)|2dt < °°) .  The Hilbert space of the parameters f will be called 

H,   in what follows. 



III.  Variance and characteristic function of the process Z 

Formally the various cases correspond to the expression 

(111.1) <Z,f> = I  C(X.)/G(X ,t) f(t)dt. 

We will establish the variance (111.2) and the characteristic function 

(III. 3), taking the probabilistic model of paragraph II. 

(111.2) a2(f) = E(<Z,f>2) 

(111.3) $(f) = E(exp i<Z,f>) 

Due to the linearity of the process Z, we have for all ueR: uf e H and 

E(exp iu <Z,f> = E(exp i<Z,uf>) '        ; 

We suppose the function x h^ <G,f> = <G(t,x),f(t)> to be measurable 

in X, and square-integrable with respect to the measures associated with x. 

Case no.   1. 

=  /v(dx)   E[C(X)2|X-x]<G(t,x),f(t)>^ a^(f)   =  E (/C(X)   f(t)dt): 

(111.4) =  /v(dx)   y(x,da)   a2<G,f>2   . 

$(f)   =  Efexp  i  C(X)   / G(t,X)   f(t)dt 

= /v(dx) E 

= /v(dx) y(x,da) exp 

exp i C(X) / G(t,X) f(t)dt|X=x 

-a2<G,f>2/2 

Putting ia(dx,da) = v(dx)y(x,da) and writing uf for f 

,2.,2. G,f>2 
(III.5)  $(f) = / vi(dx,da) exp "" ^^       . 

We have used the hypothesis of a random variable C(X) spherically invariant 

with probability u(x,da) when X=x. 

Case no. 2. 

By hypothesis, the observation Z for the test function f is written 

<Z,f> = /<G(t,x),f(t)>dL(x) and we suppose that /<G(t ,x) ,f (t)>2 a^ dy(x,a) < <». 



10 

It follows that 

(111.6) a2(f) = J<G(t,x),f(t)>^ a^ dy(x,a3, from the second order expansion 

of the second characteristic function 

(111.7) Y(<Z,f>) = /(e^^^^'^^- I - ia<G,f>)dp(x,a). 

This expression (III. 7) is not essentially changed in the special case 

where p is symmetric with respect to the variable a.  Nevertheless, it is 

possible to carry out the integration in a on the interval [0,+'»] instead of 

on [-oo^+oo] . 

A more important special case is the spherically invariant case. According 

to (11.8], the second characteristic function is then 

>V(<Z,f>) = / e^^""^'^^- 1 - ia<G,f> du(x,a) 

■  -   • = /(e"''^^^'^"^- 1] X(dx) T(x,dc), 

from which we obtain, replacing f by uf  . 

^_Ju, . /(e-("'='^'^''''''/2- 1) X(dx)-,(x,dc). 
:Z,f 

Case no. 5. . , 

The calculation is now carried out putting  (x) = <G(t,x),f(t)>  in 

equations (11.10) and (11.11).  We suppose that the function 

x !-♦ <G(t,x) ,f (t)> is square-integrable on [-£, + £].  Hence 

/<G(t,x),f(t)> C(dx) = C[<G(t,x),f(t)>]  is a centred spherically invariant 

random variable with associated probability y(da): 

(III.10)  a2(f) 4 E 

$(f) 

(/<G,f> C(dx))2 

exp i /<G,f> C(dx) 

/ a2<G,f>2 v(dx)y(da) 

and $^(u) = E^exp iu<Z,f>3 = / exp 

/ exp 

r u2a2 

-2?-11  /<G,f>2 v(dx) 

J<G,f>2 v(dx) y(da) 

P-(da) 
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IV.  Identification. 

It is remarkable that the three cases considered lead to the same 

covariance.  For all f,g e H we have 

(IV.1)  r(f,g3 = E(<Z,f><Z,g>) = / y(dx,da) a2<G(t,x),fCt)><G(t,x),g(t)> . 

(for the case no. 3, y(dx,da) = v(dx)y(da).  If for all x e [-!l, + i]   there 

exists a vector feH such that <G(t,x),f(t)> 4 /G(t,x) f(t)dt = 0, then 

<Z,f> = 0 almost surely, for E(<Z,f>2) = 0.  Thus for 

-2y (R +  X sin 6) 
G(t,x)   = P —-    cos 

o ? 
(R +  X sin ef 

2tJJX sin 0       2toR 
ut —-- + 

every function f which satisfies 

.  / cos(a3t) f(t)dt = / sin(a)t) f(t)dt = 0     : . |. 

also satisfies the condition and so <Z,f> =0. 

Hypotheses of a physical origin on the function G(t,x) may thus be 

tested in this way. 

The physical analysis of the phenomena establishes the form of the 

function G(t,x).  This function does not appear to me to be identifiable 

from the covariance [, unless supplementary hypotheses are added. 

The problem is to identify the most precise model compatible with the 

experimental results. 

To fix our ideas, let us start with Case no. 2, for which the odd 

moments are not a priori zero. 

Recall the second characteristic function 

(III.7)  l'(f) = / [exp ia<G,f> - 1 - ia<G,f>]dii (x,a) . 

Considering, for an ueR, the function uf, this leads to 

(IV. 2)  'l'f(u) = log E(exp iu<Z,f>) = /[exp iua<G,f> - 1 - iua<G,f>]dy (a,x) , 

The function u ^- H* (u) can thus be established statistically for a certain 
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number of points u , u , . . . , u . Making the change of variables 

(IV.3) b = a<G(t,x),f(t)>, and writing o^  for the measure image of p, 

/•CO ■     ■      . 

(IV.4)  'i'^(u) = J a^(db)[exp iub - 1 - iub] 

For b = 0, the expression exp iub-1-iub is zero, and so a.({0}) is undefined. 

From a theoretical point of view, for u e ]0,°°[ we have 

+'y''(u) = -J b'^a-(db)exp iub. 
t -co    ^ 

The measure b^a (db) is determined by its Fourier transform '^(u) which 

we suppose known.  Thus the measure is defined except for {0}. 

From a practical point of view, o^(db) may be determined by the method 

of moments from a series expansion in terms of u (of Akheizer, p.22).  Let 

us calculate the moments: 

<»  ,. -.n ■ 

(IV.5) ..(u) = I    ^   fb^fCdb) 
r       „   n 1   _oo   r n= 2 

The estimation of the various moments of <Z,f> permits a limited series 

expansion of l'^(u) in terms of u.  Since f(u) = log $is the second 

characteristic function of <Z,f>, the equation 

(1V.6)  >J" (u) $(u) = $'(u) _ 

gives us a recurrence relation for calculating the terms of the expansion 

of y.  Let 

(IV.7) Hu)   A 1 . - ,! . ifp-'m^ ..... Aif\ . . 
iu  ,   (iu)^ , (iu)' 

In this case the derivatives $' and 1" are easily calculated and the 

equation 'l"(u)$(u) = $' (u) leads to 

oo  .p p-1    oo  . q q      c°  . £ X,-l 
V  1 u^   1^       V     i^u^   _  Y  1 u 
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or indeed to the equation for the coefficients of powers of u 

K mq m^ 
y   .—T^r;—r = T^—rw     from which 
^  .(p-l)!q!   (Ji-1)! p+q=J!, i-^ •' ^   "-  -" 

0  1 n 
m = y c ~ K m„   .    fc  is a binomial coefficient) 
I        ^,  p-1 p J--P       r ■   . p=l t-        t-      r- . . 

We deduce the recurrence relation for the K  ,  1 = 1,2,... . 

p=l 

Thus the moments m ,m ,...,m of <z,f> allow us to calculate the 

coefficients K   ,K.   , . . . ,K    of f (u) .  The series expansion of the two sides 

of equation 

(IV.4) ^y^Cu) = /°°(exp iub - 1 - iub) a (db) 

leads to the equations 

Joo 
ba^(db)     by hypothesis 

J. _ oo    I 

Joo  2 
b a^(db) by normalization 

K=      =  r  b^.(db) . 
* —00       ^ 

Proposition IV.1: Assuming z arises from a L^vy process, the matrix 

m(i,j) = K. . ; i,j=l,2,...,n must necessarily be of positive type. 

Proof:  In fact for all complex numbers c,,C2,...,c , we must have 
_ ^ n    . 

y c.c.m(i,j3 = /  1    c.b  On(b) ^ 0 .  The series expansion may seem 
ij  1 J CO .^^  1     ± 

a  complicated detour: in fact it is possible, starting from the equation 
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^,  iu<2,f>^   (•<» ,exp iub - 1 - iub,, 2 ,.  ^ 
(IV.4)  I- = log E(e      ) = J {-^ 5 ■—)b a (db) 

b 
2       '       V 

to make direct estimates of E(e'^"-' ^' ^   and hence also of '^'fC^J and its 

derivatives 1"(l(u.), j = l,2,...,r.  Since the observation <z,f> is by hypothesis 

normalized (i.e., E(<z,f>) = 0, E(<z,f>^) = 1) we obtain K^=0 from (IV.9) 

and we may seek a probability b a on]R\{0} satisfying /b b a^(db) = K(n+2). ■ ._ 

2 
Wi 

/CO ^ 

exp(iub) b a (db) = -^!p(u) and 
-oo r        I 

2 
the characteristic function of b o^  is known for values u^^ .u^, . . . ,u . 

We have proved ■ 

Proposition IV.2:  Assuming z is due to a Levy process, and for all f, 

the function -YlA(u), ueR must necessarily be a characteristic function. 

2 
In this case b a^(db) plays the role of a spectral measure to be 

identified from the "complex covariance"  -1"i(u) !  If we suppose also that 

a„ is absolutely continuous with respect to Lebesque measure, then 

2 '^^f      1 f- 
^ db^ ^""^   ^ "t L  ®^P ^"^ [-*f(u)] du. ... 

We have to calculate the Fourier inverse transform of the function 

-1"'Cu) known at u ,u ,...,u .  Rapid Fourier transform methods may be applied. 

We return to the general case of a normalized vector observation <z,f >, 

<z,f >,...,<z,f > associated with the n test functions f ,f ,...,f .  The 

second characteristic function, for u ,u ,...,u , '        '  . 

¥(u^,U2,...,u^) = log E[exp i(u^<G,f^>+...+u^<G,f^>)] 

= /{exp ia(u <G,fj^>+. ..+u^<G,f^>) - 1 - ia(u^<G,f ^>+. . .+u^<G,f^>}u (dx,da) 

= /{exp ia(u 0^+...+u^e ) - 1 - ia(u^e^+...+u^e^)}v(d6,da) 

A ' ' 
after the change of variable x -> 6  = <G(t ,x3 ,f. (t)> , 3=1,2...,n and 

writing v for the probability image of p. 
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The probability v is singular relative to the variables 8., j=l,2,...,n, 

and is situated on the curve B:x ^ e.(x); thus only the cone C(0,B) with 

vertex 0 and section B carries the probability 

The cone C(0,B) may not be determined 

from the function fCu,jU^,...,u ); 

on the contrary, the deterministic 

physics of the phenomena must be used 

to define the functions f., j=l,2,...,n, 

and the response G.  Hence the functions 

fx|—> G(t,x),f.(t)  are evaluated and 

we deduce the curve B and the cone (0,B) 

on which the probability v must lie. ■ 

Let us further restrict the measures, in order to arrive at the spheric- 

ally invariant laws. 

Firstly, it is necessary that the distributions be symmetric about 0, 

i.e. the odd moments are zero.  The equation "i'(u) = log$(u)  shows that for 

replacement of u by -u, the invariance of $ is equivalent to that of ^.     By 
2n 2n 2n expanding the formula (III. 8) ^ ^ ^ (u) = J^   (-1)    -■,- 2/a <G,f> dy(x,a) 

n=l 

and by comparing with (IV.8) the moments satisfy Ja <G,f> dy(x,a) = %K 

and proposition IV does not lead to a new condition on the model whereas in 

the spherically invariant case new conditions appear.  Using now formula (III.9) 

,       2n 
"V       f   i^)   =     I   (-1)     -    ^^—r /c     <G,f> "A(dx)Y(x,dc)   and  comparing with   (IV.8) 
<Z,t ^^^ 2"     "• 

we have .; :, 

(IV.10)  /c^"<Z,f>^"x(dx)Y(x,dc) = 4r-^ K 
K 
2n 

(2n)!  2n  (2n-l)(2n-3) . ..3*1 

Proposition IV.5 For a symmetric Levy process to be restricted to the spher- 
K 2n 

ically invariant case, the coefficients -rr——-——————-^ (instead of K^ ) 
(2n-l) (2n-3) . . .3*1 ^ 2n'^ 

must be the even moments of a measure for all neN. 



■16- 

• Restricting again by supposing that the measure y is of product type, 

i.e. in the spherically invariant case Y[x,dc) = Y(dc).  In this case 

/c^^Q,f>^"xCdx)Y(x,dc) = /c%(dc) /<G,£>^"xCdx) = ^^^ K^^  . 

The two measures y  and A are to be identified, and this problem is clearly 

undetermined. 

If we suppose that the function x | >■  <a(tcx) ,f (t)> is known and 

limiting ourselves to a stationary Poisson law, intensity Xdx, it follows that 

?        ^n  ,       "    . 
(IV.11)    X  Jc Y(dc) = ,    "; K   ^-^-— ;  this case is treated in 

Unj.  zn j<c^f>^n^x 

de Brueg § Gualtierotti.        ' 

We return to the three cases considered earlier (sect. III).  In (III.5), 

by changing variables u| ^ v=u     ;   (a,x) |—  > a<G,f> it follows that 

(IV.12)    E(exp in<Z,f>)= /exp(-vb)v(db), where v is the image of y. 

Similarly in (III.9) we put V = u and b = c <G,f> . 

(IV.13)    log E(exp in<Z,f>) = J[exp(-vb)-1] v(db)  with v = measure image 

of X'Y. 
2 

Also in (III. 5) putting v = u and b = — /<G,f> v(dx), 

^ exp(-vb) v(db).   ' .  - ' 

Thus in all cases the problem is to identify v from the Laplace transform 

known for a finite number of points v , v ,...,v 

By a judicious choice of points u , u„,...,u we are returned to the 

problem of moments: 

2 2 
Take u, arbitrary; and u. according to u. = v. = jv = ju  .  Thus 

E(exp in j<Z,f> = /[exp -v b]-' v(db).  The change of variables 

b |———^ c = exp(-v,b) leads to the moment problem for the probability image 

a:  E(exp in j<Z,f> = /c-^a(dc). .     •  ' . 



- f      ■■■!'-;^*w,ir;.'*L-j.^^ ^i?i^.?TK -S^-. -^ ''-'S^.-rk',: 

\j     -      ■■    •■  ■-■.  -^7- 
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