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I.  THE PAJIABOLIC WAVE EQUATION 

The wave equation for the complex acoustic pressure field p away from 

acoustic sources is 

C  8t . .! 

where C is the speed of sound. 
2    2    7   ■ ■ ■ 

2      ri        Pi        ^ 
Here p = p(x,y,z,t), C = C(x,y,z), and V .:_ + — + _. 

8x  3y  3z 

We use the coordinate system shown below, in which z is the horizontal (range) 

coordinate and x is the vertical coordinate: 

Since p is assumed complex, the observed signal is Re(p), the actual pressure. 

Following Dashen [1] and others, we assume that 

r ^\ , ,■ ^ ifkZ-tOt) P(x,y,z,t) = ip(z,x,y)e ^    ^ C2) 

where if' is a complex envelope, to is the frequency, and k = 1/A is the wave 

number, X  being wavelength. 

Letting Ato = oj/k = C„, a reference sound speed, we define the index of 

refraction n by       , 

Then (1) becomes 

n(x,y,z) = CQ/C(x,y,z) 

V^p + k^n^p =0, (3) 

the reduced wave equation. 
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2    2 
0 0 

Putting A = —2 ^ —2 ^""^ using (2) , we see that (3) may be written 
3x   9y 

^^ + 1_| + 2ik|| + k^n^-1)^ = 0 

Suppose we make the following assumptions: 

2      2 ri   I 
A) The term 3 \jj/9z may be neglected in comparison with 2ik -^^ , i. 

_3j 

8z 
« 2ik 3z 

and 

i.„2 
B)  i(n -1) £ n-1 ,   i.e., n £ 1. 

Thus, we have 

i If +2"k^"J^ ^ kCn-l)4;=0 , 

or, defining y by 

y(x,y,z) = l-n(x,y,z), 

we get 

(4) 

^ If ^ 2-k ^*  -  ^ ^  '^  =  °       ' ^ 

32       g2 
^ - ^(z,x,y),     A =     2 +     2    ' 

8x       3y 
y = y(x,y,z). 

(5) 

Equation (5) is called the parabolic wave equation. As we have seen, approxi- 

mating the reduced wave equation (3) by the parabolic wave equation (5) rests 

on the assumptions A) and B) above. Assumption B) says just that the sound 

speed varies little throughout the medium, i.e. the approximation C £ C^ 

introduces a small percentage error everywhere in the medium. This assumption 

is surely valid in underwater acoustics.  For example, if one considers the 

representative speed of sound profile on p.400 of [2], one easily estimates 

that the approximation 
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C s c .  s 1475 m/sec, mm ' 

introduces an error of less than 5% down to a depth of 6 km. 

The validity of the parabolic approximation, and of assumption A) in 

particular, has been carefully considered by Tappert in the survey article 

[3], and by Flatte et al [4].  In the latter reference, pp. 76-77, it is 

stated that, for typical conditions for sound propagation in the ocean. 

^2 

:. 2 dZ 
/ k 9i 

dZ 
10-^ 

so that assumption A) seems quite safe in underwater acoustics. Tappert 

observes that the parabolic approximation applies essentially to long-range 

(R = range » A, typically R > 50-60 km.) propagation in the ocean sound 

channel, which acts like a vertically thin, horizontally elongated waveguide; 

consequently if we think in terms of rays, the angle 9 between the ray 

direction and the horizontal is small (9   < 16°) for rays which are not max ■' 
attenuated to zero intensity over the long-range propagation. The envelope 

4J varies more slowly with the range coordinate z than with depth x. The 

parabolic approximation retains diffraction effects, unlike geometric acoustics, 

which assumes that wavelengths are small enough that diffraction can be ignored 

(see below). The parabolic approximation is therefore valid to significantly 

lower frequencies than geometric acoustics.  Finally, the parabolic approxi- 

mation is not limited to stratified media, as are normal mode expansions. 

II.  GEOMETRIC ACOUSTICS APPROXIMATION TO THE PARABOLIC WAVE EQUATION 

Since the parabolic wave equation retains the diffraction effects whose 

neglect is the essence of the geometric acoustics approximation (at least 

in the presence of gentle refraction, n s i, as we have assumed - see [2], 

p.118), we should be able to derive geometric acoustics from the parabolic 

wave equation (5) via a suitable neglect of diffractive terms. We proceed 

?. 
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to do so, following Tappert [3, p.234 ff.]. 

Let us write 

i|;(z,x,y) = ACz,x,y)e^^^'''''>'^ , (6) 

where A is a real amplitude and 6 is a real phase.  For simplicity, here and in 

the sequel we ignore the (azirauthal) dependence of i(j,A,(j), etc. on y: we assume 

^ =  ipCz,x) = A(z,x)e , A, 0 real (7) 

Now substitute (7) into (5), and divide by e , the real partdf the resulting 

equation yields . ' 

^ 3z  2k ^ 2 ^^dx^ 
3x 

- ykA = 0  , 

and the imaginary part yields 

(8) 

dA      1 9A 
+ — . A M = 0 

9z  k 3x 9x  2k „ 2 dx 
C93 

Now define 6 by 

i(z,x) = 
k 9x. ' 

(10) 

Then (9) becomes 

9A „ 9A  A 89  „ 
dZ dX   2 dX 

Multiplying this by 2A, we obtain 

9-z f^') ^ 9-x f^^'^ = 0 • (11) 

Also, in terms of 9, (8) is 

dX ■  ■ 

If we differentiate this with respect to x, divide by (-kA), and use (8) 

again, we obtain 

1^ + e — - "^ + — - 
9z    8x ~ Sx  ^,2   dx 

1 9^A 
A . 2 

dX 

(12) 
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Now the geometric acoustics approximation is that k » 1, and so the second, 

diffractive term on the right-hand side of (12) may be dropped: 

V:    ^■■|i.e|i =-|H .       .' .C12GE) 
dZ dx 8x ^     ■' 

Consider the curves x = x(z) defined by 

■g - e(z,x) . -   ■ (13) 

Along these curves (12GE) says 

: ,     ^e(^>xCz)) = -|^, 

or by (13) again, 

Aji = -^ (14) 
dz 

which is the differential equation for the rays of geometrical acoustics in a 

horizontally stratified ocean (i.e., n=n(x)) for which n = 1 and 9 « 1, as 

we assume for the parabolic approximation.  Before verifying this claim, we 

notice that the geometrical acoustics assumption k » 1 in (10) implies that 

0 « 1, so that tan 6 s 6; hence (13) says that 9 is just the angle between 

a ray and the horizontal. 

In general, the ray equations are (see, e.g., [5], p.79) 

d ^ dx,   1 8 , 2. ,-ir-A 
.■  "d-a^"d^^ = ^9x(" ^' . ^1^^ 

2    2    2 
assuming n = n(x), where a  is arclength along a ray.  Since (da) =(dz) +(dx) , 

and -j— =  tan 9, we have 
dz 

da 
dz 

2 
= 1+ 

dxl^ , ' 2„ 2, -r- = 1 + tan 6 = sec t 
dz 

dz so -j— =  cos 9, and therefore 
da      ' 

dx  dx dz  dx    Q 
. -T— = -j— T—• = ^— cos 6 . 

da  dz da  dz 
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Thus, (15) becomes 

d 
n cos 

dx 
dz 

1 3 , 2, 
^ die ^" ^ 

But Snell's law is 

s s n cos 0 = constant, 

so the above is simply 

or 

d 
da 

dx 
_dz_ =  ^ 3-x ^"  ^   '   . 

2 d^x       1   3   , 2- 
=    ,  2  =  ^ 3x t" ^   • 

dz 

.^ 1 ^r       c       ~       -^              „^A        1   f 2 
But n = 1 and 6 « 1 imply s = 1, and 2(n -1) = n-1 = -y, and so the above 

equation reduces to (14), as claimed above. ' 

Before leaving the geometric acoustics approximation temporarily, notice 

2 
that (11) is just a transport equation for the acoustic power A along the 

rays. 

III.  RANDOM RAY MECHANICS 

We are going to propose a theory of rays z ^ x(z) in which x(z) is a 

random process indexed by the range coordinate z. This theory is Nelson's 

stochastic mechanics [e.g., 6-9], and the presentation initially follows 

Nelson [8]. Our goal is to recapture diffractive effects for geometric 

acoustics by regarding x(z), for fixed z, as spread out vertically according 

to a probability density p(x,z). We shall see mathematically that such a 

picture is equivalent to the parabolic wave equation (5). Of course. Nelson's 

theory is a stochastic version of the Schrodinger equation of quantum 

mechanics, but this equation is formally identical to (5), provided we replace 

the time coordinate by the range coordinate z. We shall omit most proofs in 

this section, referring the interested reader to [6-9]. 
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Consider a random path, or ray, governed by the Ito stochastic differential 

equation [10-12] 

dx(z) = b(x,z)dz + /2vdw(z), (16) 

where b is called the drift, v is a constant called the diffusion coefficient 

(we retain these terms from the standard literature where z is replaced by t, 

although calling b the "spread" and v the "diffraction coefficient" would 

perhaps be more appropriate here), and w(z) is standard Brownian motion. 

Let p(x,z) be the probability density for x(z).  Then p satisfies the equation 

dX ., ■ 

which physicists call the Fokker-Planck equation and mathematicians call 

Kolmogorov's forward equation (see, e.g. [13], p.275). 

We may also describe the process x(z) with the direction of z reversed 

(analogous to time-reversal when z  is replaced by t); since the reversed 

process is again of the same type (cf. [13], p.83), we have 

dx = b^(x,z)dz + v^ dw^ ,   , (18) 

for a suitable backward drift b^ and a (possibly different) Brownian motion 

w^, where we understand dx = x(z) - x(z-dz), dz > 0. We then have the backward 

Fokker-Planck equation 

If = - 7f - s t^.p) •       . .      (") 
dx 

Let V, the current velocity, be defined by 

V = (b+bJ/2 . ' (20) 

Then (17) and (19) yield the equation of continuity, 

|£=-l,(vrt.   ; (215 

Let the osmotic velocity u be defined by 

u - (b-b^)/2  . (22) 
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Then [7, p.105] we have 

^ - p^ • ^^^^ . 

The formula (23) for Brownian motion was in essence derived by Einstein 

([14], p.9 ffOi the terra "osmotic velocity" is used because, in the case of 

Brownian motion of particles suspended in a liquid, u is the velocity particles 

must acquire to overcome osmotic effects ([7], p.21). • 

We now assume that there exists a function V(x,z) such that 

^J^Ciu^+iv^ + V)p(x,z)dx = 0 . (24) 
-00 

In the diffusion case (z -^ t), V is the potential energy, and (24) expresses 

energy conservation: the average total energy is constant in time. We shall 

see that in our case we may take V = y, the variation y = 1-n of the index 

of refraction from its typical value 1  (recall that n s i in the parabolic 

approximation). From (24) it follows ([8], p.174) that 

2 '     ' 3 u    du^        ,8v    3v^   3V  „ ^^[--, 

dX 

If we differentiate (23) with respect to z and then use (21) , we find that 

2 3u     3v9,. ^^f-^ 
■ IF= -^TT -3-x^^^^ • ■ . ^'^^ 

3x 

Assuming that p never vanishes, let R be given by 

'   .   R = i log p, : •    ■   (^2^^ 
,'■'■, ' ■ •      ■ . '^      I- .   . 

so that   (23)  becomes 

.    u = 2v||. , (28) 

Also write v as a gradient:  choose a functions such that 

v = 2v||. (29) 

(Note:  the analogues of (28) and (29) in [8] are unfortunately in error.) 

Now define ij; by . 

'   ^ ijj = e^"^^^ (30) 
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^-k- ^''^ 
Then a simple calculation shows that ^  satisfies the parabolic wave equation 

(5):   . 

...  ■    ■ 3x ■ ■ .        ,  '  .   ., 

provided we take V to be 

■  V = y . '■ ' (32) 

(Actually, since we must integrate (25) and (26) with respect to x to derive 

(5), a seemingly arbitrary complex constant of integration a = a(z) is 

introduced, so that we get 

(*) i|f+21 ^" ^^^ "''^"^ ^= ° 

But, because p = # is a probability density, J p(z,x)dx = 1, for all z. 
— oo 

Since  (*) multiplied by \j7 and its complex conjuate multiplied by 4^ imply 

^ 9z ~ ~2lc 9x 

-| 

^  3x  ^3x 
+ (a-a)p , 

we have 

3  i-OO —     »co   
0 = i ^ J p dx = (a-a)J p dx = (a-a) , 

so a must be real. But S in (29) is determined only up to an arbitrary additive 

function of z. Choosing S appropriately, we may insure a = 0. This argument is 

due to Nelson [7, p.131].) 

Conversely, suppose ip satisfies (5), and define R, S, u, v, by (28), (29), 

and (30).  Then u and v satisfy (25) and (26), with V = y.  Thus, each solution 

x(t) of (16) gives rise to a solution ^  of the parabolic wave equation (5), 

and conversely: knowing I|J., we know u and v, and hence b.  In this sense, (5) 

is strictly equivalent to a theory of random rays governed by (16). From 

the point of view of random ray theory, solving (5) for ^  is merely a 

convenient method of determining the drift b, and hence what stochastic 
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differential equation the rays obey.  Solving the linear equation (5) is 

simpler than solving directly the coupled, non-linear system (25), (26) of 

partial differential equations. 

It will be convenient to have an alternative account of the dynamics 

embodied in (25).  IF f(x,z) is a smooth function, define the mean forward 

derivative Df(x(z),z) of f(x(z),z) by .    • ■ 

•   Df(x(z),z) =  limE>f^^^^""^^^>""^"^-^^^^^^'") P I ,       .    (33) 
Az4-0   '^ Az . ^-^ 

and the mean backward derivative D^f(x(z),z) of f(x(z),z) by 

D,f(x(z),z)=  lim I fCx(z),z) - f(x(z-Az),z-Az)  pi (34) 

where P = a{ x(s) 10<5</} is the a-field generated by x(s) for s <_ z, F = 
z 

a{x(0)|s>z} is the a-field generated by x(s) for s >. z, and E{X|F} is the 

conditional expectation of the random variable X with respect to the a-field F. 

Now, by Ito's lemma (e.g., [11], p.33), we have 

2 
Df(x(z),z) = ||(x(z),z) + b(x(z),z) ||(x(z),z) + V —|(x(z),z),   (35) 

and similarly, 

2 
D^f(x(z),z)= ||(x(z),z) +bjx(z),z) |i(x(z),z) -v-^(x(z),z).   (36) 

9x 

In particular, if f(x(z),z) = x(z), then 

Dx(z) = b(x(z),z) (37) 

and 

...      D^x(z) = bjx(z),z) .  ■ (38) 

Now, define the stochastic acceleration a by 
.     .        -        j 

.      ; a = 2{DD^+D^D}(x(t)). (39) 
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Then by (37) and (38), 

;   a = HDb^ + D^b} , 

or, by (35) and (36), 

2    2 In terms of u = (b-b^)/2 and v = (b+b^)/2, bb^ = v -u , so this is 

2 
3v    9v    3u    8 u ,,«^ a. = -r^ + V T: u -^ V —T" .                .        (40) 9z    dz    9x    ^ 2 .                    ^    ■' 

oX 

Hence, (25) is simply 

a = -1^ , ' (41) 9x ' 

or, defining the force F by F = -3V/3x , 

F = a , (42) 

which is just Newton's second law for a particle of unit mass. Thus, with 

the stochastic acceleration defined by (39), the dynamical equation (25) is 

simply Newton's second law, rather than energy conservation (eq. (24)). 

We also have an important formula relating the ordinary z-derivative 

of average quantities to averages of their mean forward and mean backward 

derivatives([7], p.98; [9], p.204):  if f(x,z) and g(x,z) are smooth func- 

tions, and E denotes averaging in the probability space of the process x(z), 

then  ' , , ,    '   '  ; 

^^E(f(x(z),z)g(x(z),z)) = E[(Df(x(z),z))(g(x(z),z)) + (f(x(z),z))(D^g(x(z),z))]. (43) 

In particular, with g = 1 this yields 

^^E(f(x(z),z)) = E(Df(x(z),z)) , (44) 

and, interchanging f and g and putting g =  1, we find 

£E(f(x(z),z)) = E(D^f(x(z),z)). (45) 

Simple consequences of (44) and (45) are 
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^^E(f(x(z),z)) = E(UD+Djf(x(z),z)) (46) 

and 

E((D-Djf(x(z),z)) =0. (47) 

In particular, for £(x(z),z) = x(z), (46) and (47) imply, by (37) and (38), 

.  ^^E(x(z)) = E(v(x(z),z)) (48) 

and   " . >' , I ■ ■ 

E(u(x(z),z)) = 0. (49) 

Differentiating (48) with respect to z, and using (46), we obtain 

^^Eixiz))   = E(i(D+DJv(x(z),z)) , 
■ dz 

or, by (35) and (36), 

2 
—2E(x(z)) =  E(|^(x(z),z) + v(x(z),z) |^(x(z),z)). (50) 
dz 

Now, let us take expectations in (40) to get 

E(a(z)) = E(|^(x(z),z) + v(x(z),z) |l(x(z),z))- E(u(x(z) ,z)|^(x(z) ,z) 

3^u 
+ V —^ (x(z),z)) . 

... 3x 

We shall show that the average in the second term is zero.  Indeed, by (47) 

with f = u, 

0 = E(i(D-Dju(x(z),z)), 

and by (35) and (36), this is 

9n 3^u '       ■  ■ 
0 = E(u(x(z),z) -^\x(z),z) + V —^ (x(z),z)),     .: 

"^^ 3x 

as claimed. Hence 

E(a(z)) = E(|^(x(z),z) + v(x(z),z)|^(x(z),z)). (51) 

Comparing (50) and (51), we have 

.2 
^E(x(z)) = E(a(z)) , 
dz 
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or, recalling (41), 

2 
—2 E(x(z)) = -E(|^(x(z),z)) . . (52) 
dz ."'     .     ' .' 

This equation says that the average ray z ->• E(x(z)) feels the average force, 

- 8V 
and not -^(E(x(z)) ,z), the force along the average ray. 

IV,  RANDOM RAYS AND THE GEOMETRIC ACOUSTICS APPROXIMATION 

Suppose we have a solution ip  of the parabolic wave equation (5).  Thus, 

we have vector fields u and v, defined by (28)-(30), so we may define three 

different kinds of paths, or rays: 

G      G 
A. geometric acoustics rays x : z -> x (z) : 

These are defined as solutions to the ray equation (14): 

^(z) = "|^(x^(z)). ■ (53) 
dz 

P      P B. parabolic rays x : z -> x (z): 

These are defined by (13), so that 

^ = v(x^z),z) (54) 

(note that 0 of section II is the same as v of section III:  cf. (6) and 

(10) with (29)-(31)), and thus, by (12), satisfy 

2 P dx,. 3u,P,,,   1 d -^(z) = -^(x (z)) .-2 3- 
dz 2k 

2 ■ 1 3 A 
A . 2 

dX 

P 
(x (z),z) , 

or, 

2 P 2       ' 
 2^^)   =  -   g^Cx (z)) +^   —2^^ (z),z) + u(x (z),z)-g^(x (z),z) ,   (55) 
dz 8x 

1 3R   1 "A 
where the last equation follows from u = 17 "3~ = T: 3" (log A), by direct compu- 

tation, or by comparing (12) and (25). 
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C.  random rays x: z -> x(z):  defined as a random process as in section III; 

in particular the average random ray E(xCz)) satisfies (52): 

2 
.   , ^ECx(z)) = -E(|^(x(z),z)) .   ;    ■ (56) 

dz 

All three objects x^, x^, and E(x(z)) are in general distinct, since they 

satisfy the different equations (53), (55), and (56). 

Since the parabolic wave equation is just the Schrodinger equation of 

quantum mechanics, and since we expect ray theory to be meaningful when k »1, 

i.e., when 1/k « 1, where (1/k) is playing the role of-R = Planck's constant 

divided by 2IT in (5), we can interpret some approximate relationships among 

x'', x(z), and x*^ in terms of approximating quantum mechanics by classical 

mechanics when 1i « 1.  For example, the approximation 

• -:-■ -   p .   G 
■. X = X ,, ■ • . 

achieved as in section II by dropping the last two terms on the right side 

of (55) has been well studied in the quantum-mechanical context.  It can be 

understood as ignoring a "quantum-mechanical potential," thereby converting 

a non-linear fluid-mechanical system (the "Madelung fluid") into a linear 

fluid-mechanical system (the "Hamilton-Jacobi fluid") whose dynamics consti- 

tute a well-known version of classical mechanics (see, e.g., [15] and 

references therein). 

G Id ■ The approximation x(z) = x (z) amounts to replacing ^(DD^ +D^D) by —j , 
■ '^'^ 

i.e., replacing stochastic acceleration by the usual second time derivative. 

Studying the semiclassical limit of quantum mechanics in its stochastic 

mechanical version is a relatively untouched field of research (however, see 

the interesting paper [16]). 
n 

One might hope that E x(z) = x for appropriate initial conditions, but 

this is false in general:  the average random ray is not a geometric acoustics 
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ray, since they satisfy different differential equations, (53) and (56). The 

failure of E(x(z)) to be a geometric acoustics ray is measured by 

E(|H (x(z),z)) -|H(E(x(z),z)) , 

the error made in approximating the mean force by the force on the mean ray. 

Estimation of the size of this error seems worth further investigation, as do 

P   r G the approximation x £ x and x(z) s x , understood as semiclassical 

quantiim-mechanical limits. 

A related question is the estimation of 

E(x(z)) - x^(z), 

p 
which might well proceed from the formula (recall that x (z) is non-random) 

Z n 
E(x(z)-x^(z)) = J E[v(x(s),s)-v(x (s),s)]ds , 

, 5=0 

together with the assumption that v is Lipschitz. 
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V.     THE FEYNMAN-KAC FORMULA AND SOLUTIONS TO THE  PARABOLIC WAVE EQUATION 

Invented in  1948,  Feynman's path integral   [17,   18] has  long since 

established itself as  a powerful alternative formulation of quantum dynamics, 

embodying direct heuristic  appeal  and achieving success  in an  impressively 

broad range of applications   [see,  e.g.,   19].     Indeed,  Dashen's pioneering 

application of Feynman's path integral to wave propagation in random media  [1] 

is the primary stimulus  of the present work.     As Dashen has  shown,  the 

Feynman integral representation of the solution ^ of the Parabolic Wave 

Equation with random fluctuation y allows  one to calculate moments,   corre- 

lation functions,   and various  other important characteristics  of the random 

field H). 

From a mathematical point of view, however,  Feynman's path integral has 

proved profoundly problematical.     It was soon realized   [20]  that  Feynman's 

integral  cannot be understood as  an ordinary integral,  since it arises  from 

no measure.     Various  attempts  at rigorous  formulations  of Feynman integrals 

via generalizations  of the concept of measure have proved fertile fields  for 

mathematical research.     But the most significant development for our purposes 

is  Kac's  discovery   [21;  22,  pp.   165-172]  that, provided we begin with the non- 

homogenous heat equation instead of the parabolic wave equation,  Feynman's 

procedure does   lead to a well-defined integral,  the Wiener integral,   arising 

from a well-defined measure,  Wiener measure.     The resulting formula for the 

solution of the heat equation is  called the Feynman-Kac formula  (equation   (FK) 

below).     This history is  summarized succinctly in the Introduction to Barry 

Simon's  admirable book   [23], where many additional references  are provided. 

Since the passage  from the parabolic wave equation to the heat equation 

formally amounts to replacing z by -iz   (i.e.,   in the quantum-mechanical 

setting,  replacing t by -it),  methods  relying on the Feynman-Kac formula 

are  often  called imaginary-time methods.     A currently  flourishing school  of 



•17- 

research in quantum field theory is based on this imaginary-time approach 

([24]; see also Nelson's book review [25]). A maneuver frequently used by 

those who think of their work as involving imaginary time is analytic continua- 

tion from an imaginary half-axis to a real half-axis. We make no use of 

imaginary time per se or of analytic continuation below.  Instead, we begin 

with the Feynman-Kac formula for the heat equation and, via a trick of Donsker 

and Varadhan [26], proceed along lines which, as far as we know, are new in 

the context of mathematical physics. 

Wiener integral approaches, some of them merely formal manipulations 

assuming imaginary time, have been used previously in the theory of wave 

propagation in random media; see the survey article of Frisch [27] for appli- 

cations up to 1968. The use of rigorous Wiener integral techniques, rather 

than Feynman integral methods, affords certain advantages: all of the results 

of the mathematical theory of measure and integration are automatically at 

one's disposal.  For example, as Chow [28] has pointed out, one may justify 

the interchange of Wiener integration and expectation in the probability 

space on which the random fluctuation y is defined by appealing to Fubini's 

theorem.  In any case, the use of rigorous Wiener integrals holds promise 

for avoiding the "balancing act, . . . that is, our attempts to draw firm 

conclusions from not so firm a theory" [19, p.63], which inevitably, it seems, 

accompanies the use of Feynman integrals.  In this spirit, the discussion 

that follows aims to be rigorous, modulo regularity assumptions (or theorems) 

about the functions involved. 

Consider the inhomogenous heat equation 

^. 13!l. V(x z)Y f^^) 
9z  2 _ 2  V>-^'^J^ 

dx 



where the unknown function Y = Y(x,z)   is  subject to the initial condition 

that Y(x,o)   is  a prescribed function.     Then the Feynman-Kac formula for the 

solution to   (57)   is 

YCx,z)   =  E expj-/^VCw(s) ,s)ds|Y(w(z) ,0} (FK) 

where w(s) is Brownian motion starting at x, and "E " denotes integration 

(or expectation) in the probability space on which {w(s)} is defined, with 

respect to the corresponding Wiener measure.  The right-hand side of (FK) 

is thus a Wiener integral (or "functional integral", or "path-space integral") 

(We note that V is usually assumed to be independent of z; the more general 

case V = V(x,z) was considered by Paris [29].) 

Now suppose that u = u(x,z) is an "arbitrary" function (modulo smoothness 

assumptions). Then, as Donsker and Varadhan have observed [26, p. 19], if 

we put 

^2u(x,z) , V(x,z) 
d U 

3x 
2 ^ 

2    3z 
(58) 

then the solution to   (57)   is just Y(x,z)   = u(x,z).    Hence, by  (FK), we have 

u(x,z)   = E 
z    f 

^^Pl-Zo 3 u/8x -2Su/3z 
^ 

(. 2u 
(w(s),s)   dsV u(w(z),0 ) (59) 

Now,  suppose  also that u(x,z)   = IJJ(X,Z),   a solution to the Parabolic Wave 

Equation   (we take k=l here for convenience,   and continue to neglect 

y-dependence): 

yip  =  0,    y = y(x,z). (60) 
.   3ip_      1  9> 
^   3z ■" 2   . 2 

Then a short  computation shows  that 

3^ 

3x 2 3z / 
2^ t^^i^st log(^e^^) + ly  , (61) 
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where 

so that 

M(x,z) = /^y(x,s) ds, 

m 
dZ 

Substituting (61) into (59) , we find 

ijj(x,z) = E 

(62) 

(63) 

expj/^   (1+i)  ^ (logfii'e^^))-  iy  (w(s),s)ds| '{'(w(z) ,0) (64) 

In particular,  for y = 0, the solution  ip„(x,z)   of 

■ .   ^'^o      1  3^^      , 

9X ; 

is just 

:■   Ip   (X,z)    =   E exp{  ll   [(l+i)|^(log i|;^)](w(s),s)ds}i|^^(w(z),0) (65) 

The case of y a Gaussian random field,  independent of x: 

In this  case we can use the above approach to derive "the usual  formula 

obtained in the Markov approximation"   [1,  p. 898]   for the  first moment  <tj;>  of 

ijj.    Here and in what  follows  "< >" denotes expectation in the probability space 

on which y is  defined. 

Since we assume here that y=y(z),   a short  calculation shows that 

iM(z) i|j^(x,z)   = i^(x,z)e 

(provided that \l)  (x,0) = tjj(x,0) ).  Thus (64) becomes 

i|j(x,z) = E^ exp| -i/^y(s)ds}exp{/^[(l+i)^(logi|J^)](w(s),s)ds}i|j^(w(z),0) 

(66) 

, (67) 

or 

i(;(x,z) = exp{-i/^y(s)ds}E^ exp{/^{;(l+i)-g|(logij;^)] (w(s) .s)ds}4;^(w(z) ,0) 
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because the  factor involving y is  independent of the path w(s).     Using  (65), 

we obtain simply '        ' 

Tp   (x,z)   = exp{-i/ y(s)ds}  ^  (x,z) (68) 

We assume that <y> = 0 (so that by (4),<ri> = 1, the index of refraction of a 

homogenous medium).  Therefore, / y(s)ds is Gaussian with mean 0.  But, if Z is 

a Gaussian random variable with zero mean, then 

■.■.'■     / -iZ\  -r<z^>        ■ ; 
.. ' :      \"    / = ^ •   . 

Therefore, if we define the function 0 by 

Hz)   E <(^^(s)ds]2)l/2 , 

.z 
take "<>" of both sides of (68), and use (69) for Z = j y(s)ds, we obtain 

o 

(69) 

(70) 

^i(;(x,z)) = ip^(x,z)e -i$^z) (71) 

the "usual formula" mentioned above for the first moment of the field ip from the 

theory of wave propagation in a random medium.  <l> is called the rms phase fluc- 

tuation (as computed in first-order geometric optics) and serves as a measure of 

the strength of the fluctuation y. 

The case of more general y: 

To derive the formula (71) for more general y = y(x,z), it has become 

customary to make use of a "Markov approximation." According to Dashen 

[1, p.896], if 

a(((x-x')^ + (z-z-)^)^/^) = (]i(x,z)   y(x',z'))   (72) • 

is the correlation function of y, then the Markov approximation is the replacement 

a(((x-x')^ + (z-z-)^)^/^) ^ 6(z-z') a  (|x-x'|),    (73) 
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where 

d(|x|)   = fa   ((|x|^+z^)^/^]dz  . (74) 
■  '■■''''.-' -CO 

In particular,   for a Brownian path w(s)   in  this   approximation, 

/y(w(s),s)   li  (w(s'),s')) = 6(s-s')   8  (|w(s)-w(s') |)   =  5(s-s')   8  (0), (75) 

i.e.,  y's  at  different points  of the same path are uncorrelated  (hence indepen- 

dent,  if Gaussian),   and the above expression is independent of w(s)   andw(s'). 

Thus,  for the path integral representation  (64)   of y,  equation   (75)   should amount 

to ignoring the x-dependence of y,  so that effectively y=y(z)   as  above.     We 

shall examine this  idea,  and the Markov approximation in general,   in detail in 

the sequel. 

Important Paths: '     ■ 

Elsewhere   [1, p.898],  Dashen introduces the Markov approximation as  follows: 

"The parabolic wave equation assumes that the normals  to the wave fronts point 

in directions  that  are close to the z-axis.     In terms of the path integral this 

means that for the important paths.   .   . 

(w(z)-w(z'))^  +   (z-z')^^ (z-z')^ (76) 

[in our notation for paths]."    It is not hard to see that   (76)   and  (73)   are 

essentially equivalent.    However, here the approximation is  explicitly made only 

for "important paths."    It is clear from Dashen's quoted explanation that he has 

in mind the physically important rays in situations where the small-angle 

approximation  leading to the Parabolic Wave Equation is valid.     But there seems 

to be no clear mathematical basis  for neglecting paths that wander away from the 

z-axis  in Dashen's   Feynman integrals:   the  "measure"  in path space  corresponding 

to Feynman integrals,   if we could construct one, would be infinite-dimensional 

Lebesque measure,  and therefore translation invariant.     Much the same criticism 
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would seem to apply to the Brownian paths in our Wiener integral formula (64). 

In order to make the Markov approximation for "important paths" more nearly 

exact, we should use a measure in path space such that paths which wander far 

from the z-axis are truly negligible, i.e. constitute a set of negligibly small 

measure.  An ideal candidate for such a measure would seem to be the measure 

corresponding to the random ray process of section III.  Assuming that the 

parabolic approximation is self-consistent, the quantity |ipCx,z)|^, which is 

proportional to the acoustic intensity, should be concentrated near the z-axis. 

But |i|j(x,z) I  = p(x,z), the probability density of the position x(z) of the 

random ray at range z. Thus, in the sequel we shall use the Cameron-Martin- 

Girsanov formula ([12]; see also [30, chapter 7], where this name is not used) 

to change variables in the path integral of equation (64) from the Brownian path 

w(s) to the random ray x(s). 
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