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ABSTRACT 

Effects of a model for random bottom structure on acoustic intensity in 

isospeed shallow water are studied.  The randomness is due to stochastic 

variations in the bottom density and sound speed in the horizontal direc- 

tion beneath a plane water-bottom interface.  Ray geometry, spreading 

loss, and bottom loss and phase shift are examined in order to derive 

formulas for mean intensity and the variance of intensity.  The expres- 

sions obtained are sufficiently general to permit their use with different 

bottom-acoustic models of sound reflection.  In this paper, for illustra- 

tive and comparative purposes two such models, one developed by MacKenzie 

and the other by Rayleigh, are considered.  The distinctive acoustic 

consequences of bottoms of different density mean, variance, and horizontal 

correlation are discussed, as are comparisons of results for the two bottom- 

reflection models.  Intensity moments are obtained also for differing source- 

receiver range and water depth. 



INTRODUCTION 

The acoustical effects of random interface topography between the water 

and bottom has been and is the object of much research.  In contrast, the 

influence of random variations in bottom structure has received relatively 

less attention.  One recent perspective on the influence of these two general 

types of bottom effects on acoustic propagation is found in Ref. 1.  Both 

types of bottom variations are particularly important in shallow water.^ 

Indeed, ocean regions may be regarded, for acoustic propagation studies, as 

shallow whenever sound transmission is significantly influenced by the bottom 

(see for instance Ref. 3).  However, there is such an overabundance of bottom 

input parameters for intensity calculations and predictions that one model, or 

even several, seem inadequate to account for them all.  For example, Rogers^ 

lists twenty-four separate inputs to a propagation loss model for shallow- 

water acoustics.  Furthermore, some of these parameters are so poorly known 

that it would not be feasible to model their acoustical effects.  Therefore, 

it has been suggested (for example, see Ref. 4) that a statistical approach 

could possibly give reasonably accurate predictions for propagation loss.  In 

this paper, we use such an approach to study how horizontal random variations 

in bottom density and sound speed affect sound transmission. 

The specific problem we address assumes an ocean of shallow depth, so 

that the water can be assumed to have constant sound speed and density.  A 

horizontal water-bottom interface is also assumed, and the bottom is taken to 

have small random variations in sound speed and density in the horizontal 

direction.  Associated with these random quantities are correlations which 

depend upon the horizontal distance separating t^o locations.  The ray theory 

of propagation is used in the water, and more than one reflection theory at 

the water-bottom interface is studied.  Since shallow-water propagation is 



dominated by repeated bottom interactions, we are necessarily considering 

ocean areas such as the continental terrace region where depths are less than 

about 200 m.   Our primary objective is to determine statistics of intensity 

at a fixed receiver, in terms of statistics of the bottom structure. 

In Sec. I we derive expressions for per-ray travel time, geometrical 

spreading loss, bottom loss, and bottom phase shift.  Rather general expres- 

sions for the mean intensity and its variance are developed in Sec. II, while 

Sec. Ill contains a specialization of the results when MacKenzie and Rayleigh 

bottom-loss models are used.  The method by which bottom acoustic attenuation 

is incorporated, and the assumed type of horizontal bottom correlation func- 

tion, are also discussed.  Section IV presents and discusses numerical results 

obtained from the expressions we derived for the case of MacKenzie theory.  In 

Sec. V, we compare those results obtained previously using MacKenzie theory 

with those employing Rayleigh theory.  Finally, Sec. VI is a summary of the 

paper. 

I.  FORMULATION 

We consider an isospeed ocean channel of constant depth, H, as suggested 

in Fig. 1(a).  A point sound source S is located at a depth hg and a point 

receiver R at depth hj^.  The horizontal separation between 5 and R is denoted 

by R.    ■ -i  ■.    ■ 

As stated in the introduction, ray theory is used here, and specular 

reflection at both surface and bottom is assumed.  Rays are distinguished from 

each other by describing each by the ordered pair (n,j).  Thus, a ray is 

denoted by rj^-; , where n > 0 indicates the total number of bottom reflections 

between S and R.  The symbol j specifies the type of ray, of which for n >  1 

there are four, as illustrated in Fig. 1(b).  For a ray that leaves S in a 

downward (or upward) direction and arrives at R from below, j is taken to be 



one (or two).  Similarly, j = 3 and j = 4 correspond to the other ray-direction 

pairs at S and R,   as shown in the figure.  For the special case n = 0, when 

hg < hj^, j takes on the values 3 and 4 but not 1 and 2; when hg > h-^,   j can be 

2 and 4 but not 1 and 3 [see Fig. 1(b)] .  Each bottom reflection of the ray rj^-j 

can be labeled by the unique triple (i,j,n), where i numbers each bounce 

sequentially from one to n.  These three indices will be essential in describ- 

ing two bottom parameters in our model.  In particular, we let p^"' and c^"^ 
ij       ij 

denote the bottom density and sound speed at bottom bounce i of ray r^^ .     The 

water density Pi and the sound speed Ci are taken constant. Returning to Fig. 

1(a), the angle that ray r^^j makes with the horizontal as it leaves the source 

is denoted by 6^j.  Of course, this is also the magnitude of the inclination 

angle everywhere along r . .  We define the inclination angle - JL <   Q       < J[ to 
nj 2   ^j   2 

be measured from the horizontal, and to be positive counterclockwise, as 

indicated in the figure. 

The sound source S is taken to emit a unity-amplitude omnidirectional cw 

signal sin wt, where o) is circular frequency and t is time.  Then, ray r„-i 

arrives at the receiver after a time of travel Tj^j in the form Anj sin( cot-9^^-; ) . 

The relative per-ray amplitude A^^   differs from unity largely because of 

spreading loss and bottom loss, with other losses being neglected here.  The 

per-ray travel time and phase shifts at surface and bottom reflections cause 

the phase <j)j^j at the receiver to differ from that at the source.  We may write 

Anj   =   ^j        B^j ■ (1) 

and 

n       ,   . 
*   .    =  WT   .   -   [n  + J_  fX+vlir]   -     y     s."      . (2) 
nj n]        '^ 2 •_       11 
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In Eq. (1), A^j is spreading loss, given by 

2 . ■' '    ^ 
A . = P . ' . (3) 
n]    n] ^   ' 

where Pj^j is the length of r^^j .  The quantity B^^j represents the decrease in 

amplitude due to all the bottom reflections of ray r„-: , and may be written 

where 8  ' is the coefficient of reflection of rj^-; at its ith bottom bounce, 
ij 

In Eq. (2),     . 

Trij = Pnj/Ci (5) 

is travel time, while s'"^ represents the phase shift at the ith bottom reflec- 
ij 

tion of rj^-j .  The symbol X and v are parameters defined by 

A = (2.5-j)/|2.5-jI (6) 

and 

V = (-1 )3 , (7) 

which account for surface reflections in the family of rays with n bottom 

bounces.  From geometric considerations, a formula for path length of Z^A   can 

be shown to be 

^nj = h^  + (2nH + Xh^ + vhs)2]V2 .      •  , '     '"^ (8) 

Thus, Aj^j is given through Eqs. (1), (3), (4), and (8), and (p^^   by Ecs. (2) and 

(5)-(8).  Note that, if the source and receiver are located on the surface 

(i.e., h^ = hg = 0), then Eq. (8) reduces to 

P^i = [R2 + [2nH]2]V2 ^ (9) 

so that, in this particular case, the parameters X and v are not required. 
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Since the amplitudes of successive ray arrivals converge to zero with 

reasonable rapidity, because of increasing bottom and spreading losses, we need 

consider in total-field calculations only rays that experience some maximum 

number N or fewer bottom reflections.  A typical condition to determine N, 

which we have used in our numerical examples, is to neglect rays which have 

amplitude less than one percent of the ray with largest amplitude.  Consequent- 

ly, the total acoustic field at R, of amplitude A and phase $, may be written 

in the form 

N   4 
A sin (a)t-$) =     I        I     Anj sin( a)t-9jjj ) . .     ' (lO) 

n=0 j=l _   . 

It  follows   from  Eq.   (10)   that  A can  be  written  in   terras   of   the  per-ray  ampli- 

tudes   and  phases   as 

N        4 N        4 
A^   =   (   I        1     Anj   sin   <p„j)2 +   (^   ^        Y     Anj   cos   ^^j)^   ■ ^D 

n=0   j=l n=0  j=l 

We shall employ Eq. (11) in Sec. II. 

We turn now to expressions for B'"^ and S^'^^, where bottom properties at 
ij       ij 

the location of each ray reflection are taken to vary in a small random fashion 

about fixed "average" values.  In our model we consider variations both in the 

density p^n) ^f   ^he bottom at the ith bounce of r  and in the sound speed c^^^ 
ij nj ij 

of the bottom at that point.  Thus, we write 

P. . /P  = IPp/pJU + e.. J / (12) 
ij -^ 

where p  is the constant horizontally-averaged density of the bottom, and e^"^ 
2 ij 

is a small random quantity (|e(n)| <<^ ij^  In a similar manner, we let 
ij 
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where c  is the constant mean sound speed in the bottom and | 6'"^| << 1 .  In 
2 ij 

the next section, we will discuss the first and second moments of the random 

quantities e^"' and 6^"', including their correlation at pairs of points along 
ij       ij 

the water-bottom interface. - 

We now expand the bottom loss B^"' in a Maclaurin series with respect to 
ij 

e^^'   and 6'"^, keeping only second and lower degree terms.  It follows that 
ij      ij 

i:     nj    nj ij nj xj n^ ^ i;] ^ 

+ E .[c.^"^ 6.^"'] + F .{6^^^f  , (14) 
nj  11   13      ni  ID 

where the coefficients A^^^ through Fj^j depend on the reflection theory and mean 

bottom values that are selected.  In Sec. IV we show explicit results for the 

reflection theories of MacKenzie and Rayleigh.  Of course, other theories for 

which these equations are valid could also be utilized if desired.  The per-ray 

bottom phase shift S^'^' m.ay be expanded similarly to give: 
ij 

s(n) = G   + H   e(n) + j   ^{n)   +  j  (e(n)]2 
ij    nj    nj  ij     nj  ij    nj  ij 

c{n).(n)i   ^  |',(n)i2 ,' 
nj ^ 13   1] "^   nj ^ 1] ^ 

Again, the coefficients Gj^j through L^A   in Eq. (15) are prescribed by the 

chosen reflection theory and unperturbed bottom density and sound speed. 

II.  INTENSITY MOMENTS 

We turn now to a consideration of the mean and variance of the relative 

intensity I at R.  In view of our definition of A, I = A^ where A^ is given in 

Eq. (11).  Since the per-ray quantities A^j and 4>j^j in Eq. (11) depend on the 

random variables z^^'   and 6^"^ in Eqs. (12) and (13), I is necessarily a random 
ij       ij 

variable.  Our first objective is to express I in terms of these random variables- 



We begin by expressing (jij^j from Eq. (2) in terms of quanitities <I>fj-; and 

Y  , where O   does not depend upon the small stochastic perturbations z^^^ 
nj         nj ij 

and 6^^',   while Y  does: 
ij, nj .-^^ ■-■-/:■■ 

*nj   =   *^nj   +  ^nj                          '      '          • (16) 

To   second-degree   terms,   Eqs.   (2),    (5),    (8),   and   (15)   give ,      -• ' 

*^.   =  '^P„./<=i   -   [n +1  (A+v)]Tr  - n G       . - ,; , (17a) 
nj nj      I 2 "j j^      , - 

and 

1=1        "^     ^3 "^3     ^3 n^ ^  xj   -* n: *- 13       ij    -* 

Next,   we  write  A^-i   as 

Ajij   = Anj   Tj^j (18) 

where similarly A  is independent of e("^ and 6(") and T       is one when the 
nj ij      ij      nj 

small perturbations are zero.  From Eqs. (1), (3), (4), and (14), we find 

A . = A"./P . 
n:    nj     n: (19a) 

and 

(n) . r^ ,.      w(n) r . = n [l + [B ./A .]e.^"' + (C ./A .)6.^" 
"3   j_^, ^    ^ n:' n: '' 13    '^ nj' n: -* ij 

+ (D  /A  )(t("))2 ^ ^^  /^  -(^^(n) ^(n). 

nj  nj   ij       nj  nj   ij   ij 

Mr,./.„,)(.{J>)^] . ■ ;. -  ,„M 
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Substituting Eqs. (16) and (18) into Eq. (11), carrying out the squares, 

and combining terms, we obtain: 

N   N   4   4 _  _ _ 
I=y   y   I       I     A   .   A       T   .    T ^    COS   U 

n=0 m=0 j=1 k=1  n:  mk  n]  mk 
• * , +T . -T  1 n^  mk  n]  mk ^ 

(20) 

With an expression of the cosine that retains all terms to second order in the 

density and sound-speed perturbations, it follows from Eq. (20) that 

N   N   4   4 _  _ 

n4o m=0 j=1 k=1  "3  mk ^^    2  "D 'mk^ ^ n:  mk 

X cos ('I' .-$,) + (Y --T , )r . r , sinf* .-$ , 1} 
nj     mk -^     nj  mk -^ nj  mk    ^ nj  mk '^ ^ 

(21) 

Thus, the intensity is known from Eqs. (8), (17), (19), and (21), correct to 

second-order terms in e^'^' and 6^"^'. 
ij       ij I     , 

We are now in a position to determine the mean and variance of the 

intensity. 

M(I) = E(I) 

and 

a2(i) = E(l2) - E2(I) , 

(22) 

(23; 

where E denotes stochastic expectation.  In doing so, we will take 

.(n) (n) 

a2(e(n)) = a^  , 
ij     e 

= 0 , 

and 

ij      0 

(24) 

(25a) 

{25b) 



Equations (25) mean that all e^^'   and all 6^^'   are assumed to have the same 
ij ij 

variance.  Other second-order moments will be written as 

and 

E[e(n) 5(m)j =a     a      C[e(n)^ (,{m) )   , (26c) 
ij   £k     e  6    ij    £k 

In Eqs. (26) a     and a  are the standard deviations of E^^'   and 6^'^', intro- 
e     <5 "   ij      ij 

duced in Eqs. (25), and C(a,b) represents the correlation coefficient of the 

random quantities a and b. 

In calculating moments involving the 6^"', we employ for convenience an 
ij 

approximate relationship between bottom sound-speed and density perturbations. 

For small enough perturbations, it may be anticipated that t^^'   and 6^^'   are 
ij       ij 

approximately proportional, which is confirmed by examination of data.  In 

particular, from the extensive data in Table I of Ref. 6 and linear regression, 

or using appropriate equations from that reference, we found that to a good 

approximation. 

This result can be used to write Eqs. (26b) and (26c) as 

2 Pi'x(ri)  x(n>)l   1  2 p(    (n)   {m} \ 
^5 ^^'ij ' ^Zk ^ =i°e ^^=i: ' =£k ^ (28a) 

and \   ' ■ 

°s^6 Cl^ij , 6^^ ] = -1 0^ C[£.. ,   e,^)   , (28b) 
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so that only the single correlation function C[e'"', e'ln' j enters our calcula- 
ij    ik 

tions. 

We can now perform the stochastic averaging and write expressions for p(I) 

and a2(i) from Eqs. (22) and (23), by use of Eqs. (17b), (19b), (21), (24)- 

(26), and (28).  These formulas, while important to our analysis, are quite 

lengthy, and thus will not be presented here.  Instead, we next further simplify 

the mean and variance of the intensity, which after the stochastic averaging 

still contain the functions cos ($j^j-i|)j^) and sin( $J^J-'JJJJ3^) .  We do this by per- 

forming an average over those phase contributions which are independent of our 

stochastic bottom variations.  This procedure is essentially equivalent to the 

process of obtaining incoherent total-field intensity.  Specifically, we assume 

that the ^^^A,   and differences between them, are random and uniformly distributed 

over a 2Tr-radian interval.  Performing such phase averages and denoting them by 

angular brackets, we obtain 

N   4  _ 

<P(I)> =     I        I     A^, ■" '-' (29) 
n=0 j = 1  i^i 

and 

■7 N   N   4   4    , -, -, 
<o^(I)> -     I        I       I        I     2a ■ AT .   A , X ' 

n=0 m=0 3 = 1 k=l       "^ 

{[A-2(B , -IC .]2 ^ (H . -ll .]2j \       \     c(,(n)   (n)^ 

+ [3A"^. A~VB . - 1 C . )(B ^ - 1 C  1 - (H . - 1 I . 1 X 
"■  n]  mk ^ n]   2  "j '^ ^ mk   2     ^^ '^D   2  '^J 

n   m 

(«    -1^ J]    ^     I    c(^^^^  .;™^)} . (30) 

It should be recalled that in Eqs. (29) and (30), n or m equal to zero is a 

special case '.■n.th only trfo possible j values (see discussion at start of Sec. I) . 
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Equations (29) and (30) represent the principal results of this section 

and will be analyzed in subsequent sections.  At this point we content our- 

selves with two important observations.  First, the mean intensity <IJ(I)> 

depends on mean per-ray amplitudes only, and does not vary with any of the 

bottom coefficients Bj^j , . . . , F^^j , H^^j , . , . ,Ljjj from Eqs . (14) and (15).  Second, 

the variance <o2(i)> depends only on the coefficients B^-; , C^-] ,   i^-[\i'   ^^^  -'■ni ^^ 

linear terms in e^"^' and 6^^^^ in Eqs. (14) and (15).  That is, even though the 
ij       ij 

variance is a second-order quantity in the density and sound-speed perturba- 

tions, and even though six coefficients of second-order terms (i.e., D_-: , E,^-: , 

F^j , Jnj r ^nj ' ^'^^ -"^nj ^ ^^® retained in calculating Eqs. (29) and (30), our 

final results are independent of these coefficients.  This is a significant 

simplification, since these six coefficients represent certain higher-order 

information about the acoustic response of the bottom, which is thus not 

required for our intensity results. ' ,  ■, 

III.  BOTTOM MODELING 

Having derived formulas for the mean intensity <y(I)> and variance 

<0^{1)>,   stochastically averaged over random bottom variations and incoherently 

averaged over per-ray phase, we wish to use them with two models of bottom 

reflection. 

We consider first MacKenzie's model,' in which bottom loss is 

B{J' = [ih^ - a sin e^.]2 + h2jV2[(^^ ^ , ^,^   g^, j^ ^ ^2J-^/2   ^ ^^^^^ 

and bottom phase shift is 

S^"^ = tan"'' {2ah  sin 8 . [a^ sin - . - fh^ + h^ 1 1 M . (31b) 

In Eas. (31) 



and 
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h±= {± g+ [(a/3]' + g']^/'}^/^ (32a) 

g =1 [l - (v /cJcos 8  - (a/e) ] , (32b) 

cos e^  = R/P   , (32c) 

(n) 
O  = p..  v^/P^c^ . (32d) 

The quantity V2 is the phase speed of acoustic waves in the bottom and, to an 

excellent approximation,"^ v  = c^^^ .     The term a/B is a factor that accounts 
2    ij 

for attenuation in the bottom, and in fact, a is often referred to as the 

attenuation coefficient-  This quantity provides a dissipative mechanism for 

sound which enters the bottom and is typically a function of bottom density. 

However, since the values of a/B 'are usually extremely small^ compared to other 

quantities in our formulas for <p(l)> and <a^{l)>,   we may reasonably express 

a/3 in terms of the mean density p2/ rather than in terms of p^"^.  That is, 
ij 

the perturbation factor z'^^'   in p'^' is negligible in a/3. We now turn to a 
ij     ij 

model for the dependence of this quantity on 02- 

Hamilton" gives an expression kpOJ/2TT for a in terms of a quantity k^, 

which characterizes natural saturated surface sediments, and the circular 

acoustic frequency u.  His findings are presented in the form of scatter 

diagrams and regression curves for kp versus porosity.  Since porosity can be 

expressed fairly accurately in terms of bottom density,° we can obtain 

expressions for kp in terms of P2-  We found from Hamilton's results that: 

k  = 1.1095 - 0.3058 p2 , ■•      (33a) 

for coarse, medium, and fine sand; 

kp = 5.9990 - 2.845 P2 , (33b) 



13 

for very fine sand and lower porosity mixed-size sand; 

kp = -4.4240 + 2.837 P2 , {33c) 

for mixed-size sand; and . .,"■ 

k  = 0.3622 - 0.5712 p  + 0.2626 p^ ' ■ (33d) 
p 2 "^2 

for silt-clay bottoms.  The quantity B is given by^ (u/c^^^, and consistent with 
ij 

our earlier approximation, we may write 

ct/e = k c^"V2Tr = k c /2Tr . (34) 

Note that a/g from Eqs. (33) and (34) is independent of frequency.  Other 

investigators have proposed different models for attenuation, ^'-''^ ^ and they 

could also be used if desired. 

From our bottom model, we must obtain the coefficients Aj^-: , B_-: - Cr,-;/2, 

and Hjjj - Inj/2 for use in Eq. (30).  It follows from Eqs. (31) and (32) and 

our assumption on a/3 [see Eqs. (33) and (34)] that the variations e(^^ and 
ij 

5(n) JLn p^'^^ and c(") only enter Eqs. (31) and (32) through the quantities 
ij      ij       ij 

c'^^Vc  in Eq. (32b) and the a in Eq. (32d).  This latter parameter is some- 
ij   1 

times referred to as the impedance ratio, i.e. the ratio of acoustic impedance 

of the bottom to that of the water.  Thus, we write c /c(^) and p('^Vp as in 
1  ij      ij   1 

Eqs. (12) and (13), and with Eq. (27), we can exoress c^^Vc  and a in terms 
ij   1 

of &^^'   and the mean sound-speed and impedance ratios 
ij 

c = C;^/c, (35a) 

and 

a  =   P2C2/P1C1 . (35b) 

In addition we relate the bottom sound speed C2 (in m/s)' in our model to p2 (in 

g/cm^) by the relation^ 
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'^2^^2^ = 2270.9 - 1194.4 p^ + 474.6 p^ • (35c) 

We then expand Eqs. (31a), (32a), and (32b) in a Maclaurin series in 6^"'. 
ij 

With the notation of Eq. (14), we find 

A . = M~./M . ' (36a) 
n:    nj' n: 

and 

C   .   -   2B   .   =   [O!"./(M".M^.)   -  Q'.   M"./(M^.)^]/2   , (36b) 
n3 nj        '•T13    ^   n]   n] ^ nj     n]    ^   n] "^   ■* 

where 

M~. = [2T . ± 2a R"^. sin 6 . + a^ sin^ 6 . l^^^ (36c) 
nj   ■-  nj       nj      nj nj ■' ' 

Q~.   =   (c    cos  6 .Ifs ./T .1-60 sin  6 . 
nj nj ^ ^ nj  nj ^ nj 

+ a" R . sin e . f (c cos 8 . l/T . ± el , (36d) 
n]      n] "-^       n] -^  n;]    ■'     . 

+ 1/2 
R . = [T . ± S ./2] ^  ,                                            (36e) n j '■. nj    nj  -' 

T . = [fa/Bl^ + S^/4]^/^ ,                                         (36f) 
n] '- ^   ^     n]  ■' 

and 

S . = 1 - c cosQ . - (a/el  .                                     (36g) 
nj n]   ^   '^                              - ,^...       ^ 

These coefficients, though lengthy, present no difficulty for numerical evalua- 

tions.  In a similar way, we find from Eqs. (31b), (32a), and (32b) that 

I . - 2H . = [f-X .U .+V .W . l/fU^.W.)l ,                          (37a) 
nj n^   "^ ^  n^ n:)  nj nj "^  nj  n^ -' 

U . = a^sin^e . - 2T . ,                         ■   '           (37b) 
n: n:    n3 

V       = c2cos2e     (s     /T     )   +  6a2sin2e        ,                                                                      (37c) 
nj nj     nj     nj                              nj 

and 

W   .   =   20  R   .sine   .    , (37d) 
nj n] n] 

X   .   =  a R  .sine   .["(ccos   e   .1/T   .   +  6]   . (37e) 
n] n] n] '■^ n] -^     n^ ■" 
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A second and simpler bottom-reflection model is that obtained from the 

classical theory of Rayleigh.^^  indeed, Rayleigh bottom loss and phase shift 

can be found from the corresponding MacKenzie results, Eqs. (31) and (32), by 

setting a/3 = 0.  In this case, the bottom loss can be written as 

{I p. . /p J - I (c,/c. . J  - cos 6 . J   |l - cos e .     I 

^.    if    (n) ,      1 re       ,   (n)^2 2.       ll/Sr, 2„       rVSl-l 
ilPij /PiJ + '•f^'^i/'^ij  -t   ~ '^"^ 9^j J    .Li - cos  e^j J       J     ' 

e^   <   e   <   T7/2   , (38a) 

and 

B!"^=1, 0<8<6. (38b) 
1] c . . ■   ^ 

For the bottom phase shift, we may write 

S^"' = 2tan ^ {[p cos^e . 

and 

r  , (n ^,2i1/2r f 1.      -,1/21-1/21       r.        r. 
- l^T/^ij J J     Lp2li-c°s e^^J ^  J   '  \,   0 < e < e^. (39a) 

s:"  = 0 ,     6  < e <; TT/2 . ■  (39b) 
1] c , ' 

In Eqs. (38) and (39), the critical angle is defined by^^ 

cose    = c /c!"^   ,       •" *      ■      (40) 

and 6j^- is given by Eq. (32c) . .... 

Once again, by writing c /c'"^^ and p^'^VP  as in Eqs. (12) and (13) and 
1  ij       ij   1 

using Eq. (27), we can expand Eqs. (38)-(40) in a Maclaurin series in 6('^) as 
ij 

done for the MacKenzie model.  This procedure determines the quantities 

(Bnj-Cnj/2]/Anj and Hj^j-I^j/2 which appear in Eq. (30).  We do not display 

these results because they can be obtained from the case a/8 = 0 of Eqs. (36) 

and (37). 
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For evaluation of the intensity variance <a2(i)> in Eq. (30), we also need 

the correlation coefficient in Eq. (28).  For convenience we will use the 

Gaussian form^ ^ 

„(   (n)  (m)-)      r  [■/ (n)    (m)'|^-|2i 
C^^ij '\, J =-^P1- tl-ij  - \^   )A] } , (41) 

where (x'"^' - x^^'J is the horizontal distance between the ith bottom reflec- 

tion of ray rj^-; and the kth bottom bounce of ray rj[^£.  The parameter L is 

called the correlation length, which is the value of |x'^' - x^™'| where C 

takes the value of 1/e.  Of course, correlation functions other than that in 

Eq. (41) could be used, if desired or if suggested by bottom data. 

IV.  MACKENZIE-BOTTOM RESULTS .     ; 

We now discuss some results obtained using our expressions, Eqs. (29) and 

(30), for mean intensity, <p(I)>, and intensity variance, <a^{l)y.     Equations 

(33) and (34) were used to determine values for a/3, Eqs. (35) and (37) for 

coefficients in Eq. (30), and the correlation coefficient in Eq. (41) was 

employed.  For convenience, our numerical results were determined with the 

source and receiver located on the surface.  Of course, other configurations 

could have been used.  In all our computations, we found that all rays were 

included up to a maximum number N of 5 or 7 bottom bounces, according to the 

criterion stated in Sec. I.  Rays with more bottom interactions were shown to 

negligibly affect our results. 

Graphs of the function " 

MR = 10 log-iQ <p(I)>/<a(l)> (42) 

appear in Figs. 2 and 3 and will be discussed shortly.  In addition, graphs of 

intensity ratios Ij^, where this symbol is used to denote both 

Ij^ = 10 log^o <U(I)>/<Uo(^'> (43a) 
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and 

IR = 10 logTo(<M(l)> ± <0{1)>]/<MQ{1)>   , (43b) 

are considered in Figs. 4-7.  The moment ratio Mj^ is the ratio in dB of mean 

intensity to the standard deviation of intensity.  It can be thought of as a 

signal-to-noise ratio, in the sense that a small (i.e., a large negative) value 

of Mr^ means that the fluctuation in intensity is large relative to the mean; a 

large value corresponds to the standard deviation being small compared to the 

mean.  Equation (43a) is a normalized dB-measure of intensity, in which the 

term <yo(I)> is taken to be the mean intensity for a bottom density with the 

particular value P2 = l.SOg/cm-'.  This value corresponds to a typical silty- 

sand bottom.  In Eq. (43b), <yo(^)> has the same interpretation as in Eq. 

(43a); Eq. (43b) itself is a normalized dB-measure of intensity spread.  That 

is, the two expressions in Eq. (43b) describe the amount of intensity varia- 

tion within one standard deviation of the mean, where the mean is given by Eq. 

(43a).  A small difference in the values of the two quantities in Eq. (43b) 

indicates that the fluctuations in intensity are small, while a large differ- 

ence suggests a significant fluctuation. 

Figure 2 is a plot of the moment ratio, Eq. (42), versus mean bottom 

density Pj.  The values used for P2 are typical of a bottom on the continental 

shelf.  Density and sound-speed values in the water were taken to be p-,   = 

1.025 g/cm3 and c^ = 1523 m/s.  In this figure, as in all our graphs except 

Fig. 7, we have chosen o^ = 0.1.  This relation was made from an examination of 

Table I of Ref. 6.  However, it should be pointed out that, due to the manner 

in which a2 appears in Eq. (30), graphs of Mj^ would merely be shifted verti- 

cally if Oj. were assigned a different value.  Thus, the shapes and relative 

values of the curves would not be altered.  In Fig. 2, we have taken L/H = 1, 

so that the bottom correlation length has been selected to be equal to the 
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water depth.  Other numerical calculations, some of which are discussed in 

connection with a later figure, have explored the relatively small influence of 

different values for L/H. 

Figure 2, then, illustrates the behavior of mean intensity as a function 

of mean bottom density, for four values of range-to-depth ratio R/H.  We 

observe that Mj^ does not appear to exhibit a well-defined behavior as R/H 

changes.  However, values of the moment ratio can be substantially different 

for different aspect ratios R/H.  For example, when P2 = 1 .S/crn-^, the Mj^ value 

for R/H = 10 exceeds that for R/H = 5 by about 8 dB.  All Mf^ versus P2 curves 

exhibit a general upward trend, indicating that the mean intensity tends to 

increase as mean bottom density increases.  As asi  illustration, Mj^ increases by 

nearly 20 dB as P2 increases from 1.55 to 2.10 g/cm-^.  As described earlier, 

this behavior suggests a much greater fluctuation in received intensity for a 

low-density bottom, such as one composed of silty clay.  Rogers'^ obtained the 

same anomalous type of conclusion using an algebraic model for propagation 

loss.  Specifically, his loss model is based on a combination of information 

from Weston,'''* Urick,^^ and McPherson and Daintith.''^  However, Ref. 4 utilizes 

a combination of ray and mode theories of propagation over a deterministic 

bottom, while we employ ray propagation over a horizontally random bottom. 

Returning to Fig. 2, one way to explain the increase in Mj^ with p2 is to con- 

sider properties of MacKenzie reflection theory."^  In particular, the change in 

bottom loss 8'"^' and bottom phase shift S^'^' with increasing grazing angle is 
ij , ij 

much greater for slow (low density) bottoms than for fast (high density) 

bottoms.  This is particularly true for small ray angles, which are dominant in 

isospeed channels with large aspect ratios.  Thus, these greater changes would 

account for larger values of <a(I)> relative to values of <u(I)> when P2 is 

small. 
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In Fig. 3 we have kept the aspect ratio constant (R/H = 20) and varied 

L/H, in graphs of moment ratio versus mean bottom density.  It is readily 

observed that as p2 increases, Mj^ exhibits an overall increasing trend.  When 

the normalized correlation length is taken as L/H = ", for example, Mp is 

observed to increase by about 14 dB as P2 increases from 1.42 to 2.10 g/cm^. 

We also find little dependence of Mj^ on L/H, although the moment ratio 

tends to be larger for smaller L/H values when P2 is large.  However, Mj^ does 

not behave monotonically with L/H.  As L becomes progressively larger, the 

correlation coefficient, Eq. (41), increases.  Thus, for a small value of L, 

the correlation between random bottom properties at two points is small, and 

the fluctuations e^"^ in the densities at these points tend to cancel.  Conse- 

quently, <a(l)> decreases, causing M^   to increase with L when L is small, as 

suggested by the L/H = 0 and 1 curves in Fig. 3.  On the other hand, for larger 

L, there is more of a density relationship at two bottom points.  The reduc- 

tion in fluctuations will not occur to as great an extent as for small L, so 

that the value of <a(I)> tends to be larger for larger L.  This results in a 

decrease in Mj^ with increasing L, as observed in the L/H = 10 and °° curves of 

Fig. 3.  Indeed, in our model, L/H = <=° corresponds to a horizontally-uniform 

bottom of density which is unknown but is close to P2.  Finally, we note that 

calculations with R/H values other than 20 were found to have little gross 

effect on the behavior of Mj^ with P2 for the selected L/H values. 

Figures 4 through 7 are graphs of intensity ratios, as given in Eqs. (43). 

As we discussed just following that equation, these ratios illustrate the 

amount of spread in intensity predicted by our model for different values of 

P2/ R/^' si^d L/H.  The quantity <Uo(I)> is the mean intensity for mean bottom 

density P2 = 1.80g/cm-^, and is used as the reference value in the dB plots. 
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In Figs. 4 and 5, the normalized bottom correlation length is unity, but 

the aspect ratio R/H is 5 in the former figure and 20 in the latter.  The 

dashed curves describe mean intensity, and the vertical separation between 

solid curves represents the amount of intensity fluctuation within one standard 

deviation about the mean.  In both figures, the dashed intensity curves show a 

general upward trend as P2 increases, indicating that mean intensity increases 

as the bottom becomes increasingly fast.  Both figures show that intensity 

variation is much greater for lower density bottoms than for higher density 

ones.  This is consistent with our previous discussion of Fig. 2.  In Fig. 4, 

for example, the spread between the <y(I)> ± <o(I)> curves is nearly 10 dB when 

P2 = 1.70.  The spread in values of intensity (solid curves) tends to be great- 

er in Fig. 5 than in Fig. 4, so that intensity variation appears to increase 

with R/H. ' 

Figure 6 displays the effect on intensity ratios of the normalized corre- 

lation length L/H.  Increasing the length is seen to widen the dB interval in 

which intensity is within one standard deviation of its mean.  Again, we 

attribute this to the cancelling of fluctuations in bottom density, as dis- 

cussed in conjunction with Fig. 3.  For example, when P2 = 1.90, the spread is 

3.5 dB as L/H approaches zero, but is about 6.0 dB as L/H becomes very large. 

Changing the value of L appears to have a slightly greater effect for trans- 

mission over higher density bottoms.  In slow bottoms the effects of large 

changes in bottom loss 5^^' and phase shift S^"' with grazing angle, discussed 
ij ij 

previously, causes the large interval between the <u> - <0>  curves. 

The effect on intensity variation of changing Og., the standard deviation 

of bottom-density variations in Eq. (25a), is illustrated in Fig. 7.  Here, L/H 

and R/H are held constant, and Oj- is assigned four different values.  Increasing 

Oj. is observed to cause widening of the spread of the intensity distribution. 
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This is reasonable since <a> increases with a^-, causing a greater variance of 

the signal intensity.  As an example, the one-standard-deviation spread 

increases from 0 dB when o^. = 0 to about 13 dB when a^  = 0.20, for p-, = 

1.80g/cm3.  The zero intensity value corresponding to o^=  0  results, of course, 

from the fact that there is no intensity fluctuation when the bottom has con- 

stant density.  Finally, we note that the effect of increased a^  is greatest 

when dealing with low density bottoms. 

V.  RAYLEIGH-BOTTOM RESULTS 

Up to this point, we have used MacKenzie reflection theory in examining the 

effects of bottom-structure variations on received acoustic intensity.  In Figs. 

8 and 9, however, we compare intensity results using both MacKenzie and Rayleigh 

bottom models.  The former employs our expansions Eqs. (36) and (37) of Eqs. 

(31) and (32), while the latter uses analogous expansions of Eqs. (38) and (39). 

In Fig. 8 we plot the moment ratio Mj^, Eq. (42), versus P2 for R/H = 5 (solid 

curves) and 20 (dashed curves), while fixing L/H at the value one.  The heavy 

curves, which appeared previously in Fig. 2, are the results for the MacKenzie 

bottom model.  The light curves correspond to the Rayleigh-theory bottom.  In 

Fig. 9 we plot Mj^ versus p2 for L/H = 0 (solid) and L/H -^ « (dashed), when R/H 

is fixed. 

We observe that the light-dashed curves in Figs. 8 and 9, and the light- 

solid curve in Fig. 9, approach vertical asymptotes at several values of p-,. 

The light-solid curve in Fig. 8 has a single vertical asymptote.  In contrast, 

moment-ratio curves for a MacKenzie bottom do not exhibit this behavior.  A 

brief explanation of these asymptotes is appropriate here.  It is known that for 

C2 > c^ and P2 > Pi, the Rayleigh bottom reflection coefficient increases to a 

value of unity as the angle of incidence varies from normal to the critical 

angle 9^.  At angles more grazing than 9^,, the relative amplitude of the 
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reflected wave remains one, but there is a phase change between the reflected 

and incident waves, given by Eqs. {40)J2  It follows from Eqs. (32c) and (40) 

that 

[(R/Pnj)- - (ci/c2]2] = 0 - (44a) 

when the critical angle Q^  is attained.  Equation (44a) is equivalent to 

C2 = cjl + (2nH/R]2]l/2 ^ (^^j^j 

where we have used the path-length formula, Eq. (9).  In our expansions of 

B^"^ and S^"), Eqs. (38) and (39), the left side of Eq. (44a) occurs in the • 
ij       ij 

denominators of the terms Cj^^ and Ij^-j •  Thus, for given number n of bottom 

reflections and given range R, a value of C2 (and hence of P2, since they are 

related by Eq. (35c)) can occur for which C^A   and Ij^^ become infinite.  This 

feature is also apparent in the graphs of B'"' and S^"', where it is manifested 
ij      ij 

as the infinite slopes at the critical angle.^^  Therefore, asymptotes of the 

M2 versus P2 curves in Figs. 8 and 9 result from our expansions in c^^'^   and 
ij 

6^^', which are not valid at the critical angle.  Because C  and I  become 
ij nj      nj 

infinite, so does <a>, so that Mj^ expressed in dB approaches negative infinity. 

If the exact (and more complicated) dependence on e^"^ and S^^>,   rather than 
ij      ij 

our linear approximations, were in some asymptotic manner retained in S^^' 
ij 

and S^"', then the moment-ratio results would not be expected to possess dis- 
ij 

continuities in values and slopes.  Instead, it would be anticipated that Mo in 

dB would still exhibit sharp decreases at certain P2 values, but these 

decreases would not become infinite.  We remark also that as R/H increases, 

more asymptotes (corresponding to different n values) appear in the Mo versus 

P2 curve, as implied by Eq. (44b). 

Many of the same features pointed out in the discussion of Fig. 2 can be 

seen in Fig. 8.  For instance, we observe that Mj^ exhibits a rather complicated 
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behavior as R/H changes, for either MacKenzie or Rayleigh theory.  However, the 

values of the moment ratio can be quite different for different R/H values. 

For example, when P2 = 1.85, the Rayleigh Mj^ value for R/H = 5 exceeds that for 

R/H = 20 by about 8 dB.  The difference at the same P2 value using the 

MacKenzie curves is about 5 dB.  Apart from the previously-noted discontinui- 

ties in the Rayleigh curves, there are some general qualitative similarities in 

the curves for the two bottom theories.  One illustration is the overall shapes 

of the two solid curves for R/H = 5.  Also, we see that except for low-density 

bottoms, Mj^ tends to increase as P2 increases.  This same trend holds for the 

MacKenzie curves.  For R/H = 5, the peak Rayleigh value in Fig. 8 is about 

14 dB higher at P2 = 2.10 than at pj = 1.75, indicating again the generally 

larger fluctuation in received intensity for low-density bottoms. 

In Fig. 9, we have taken R/H = 20 and have graphed the limiting cases when 

L/H approaches zero and infinity.  Of course, the MacKenzie curves are the same 

as two of those appearing in Fig. 3.  There is a substantial difference between 

bottoms with P2 less than about 1.55 and those above this value.  For P2 > 

1 .55, MacKenzie results are always greater than those with Rayleigh, for both 

L/H values; below this value, the opposite is true.  For example, if L/H = 0 

and P2 = 1.45, the moment ratio for a Rayleigh bottom is about 4 dB greater 

than that for the MacKenzie model.  However, at P2 = 2.05 and L/H = 0, the 

MacKenzie Mj^ is about 2 dB more than the corresponding Rayleigh value.  In all 

four curves, a small correlation length L corresponds to less variance in 

intensity, as discussed in conjunction with Fig. 3.  Some bottom-model consis- 

tency appears in Fig. 9, in the sense that dB-difference between the two solid 

curves (L/H=0) are approximately equal to dB-differences between the two dashed 

curves (L/H=°°) at the peaks of the Rayleigh graphs.  For example, at P2 = 1.87, 

there is nearly a 2 dB difference between both the L/H = 0 and the L/H = «> 

curves. 
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The MacKenzie results in both Figs. 8 and 9 show vestiges of the discon- 

tinuities that appear in the approximate Rayleigh curves.  These appear as 

local minima at values of p2 where Rayleigh asymptotes occur.  Indeed, if a/3 

were allowed to approach zero, the MacKenzie minima would progressively deepen. 

Thus, our intensity results reflect the proper relationship between the two 

bottom models.  The MacKenzie model is commonly regarded as the more sophisti- 

cated of the two since it incorporates an additional physical effect (attenua- 

tion) .  Although certain relationships between the intensity results for these 

two bottom models have been described and illustrated, it is also true that the 

levels of corresponding curves show some definite differences.  For example, 

the solid curves in Fig. 9 (corresponding to L/H = 0) demonstrate that, when 

comparing peak values of the Rayleigh curves with their MacKenzie equivalents, 

there may be up to 2 dB differences between the two.  Thus, the physical 

features which are properly incorporated into the bottom model can be important 

in determining the values of the intensity moments. 

VI.  SUMMARY 

In this paper we study the ramifications of horizontal random fluctuations 

in bottom structure on the intensity of a received acoustic signal.  A shallow- 

water sound channel, having constant sound speed and density, is assumed and 

ray theory is used.  The water-bottom interface is taken to be a plane horizon- 

tal surface, and the ocean bottom has random density and sound-speed fluctua- 

tions in the horizontal direction with a degree of relationship which varies 

with distance.  For this stochastic bottom, we derive expressions for ray path 

length, spreading loss, travel time, and bottom loss and phase shift.  Expres- 

sions for the latter two quantities are developed exploiting perturbation 

expansions, assuming small fluctuations in bottom density and sound speed. 
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Using these results, we find the mean acoustic intensity and variance of 

the intensity for a cw signal propagating in the shallow ocean channel. 

Stochastic averaging over bottom randomness and incoherent averaging over 

per-ray phases are performed to obtain the intensity moments.  The results are 

sufficiently general that a variety of bottom-acoustic models can be employed 

with them.  Also, the intensity moments are modeled to contain an arbitrary 

horizontal bottom correlation coefficient. 

To illustrate our results, we chose bottom-reflection models of MacKenzie 

and Rayleigh.  In order to use MacKenzie theory, a procedure was devised to 

specify values for the attenuation coefficient.  Also, our numerical results 

assume a bottom coefficient of correlation of Gaussian form. 

A number of conclusions are drawn from our calculations.  For example, we 

find that the standard deviation of received intensity is less for sound trans- 

mission over fast (high density) bottoms than over slow (low density) bottoms. 

Also, when dealing with fast bottoms, i.e. mean densities over 1.76 g/cm-^, the 

ratio of mean intensity to standard deviation in dB (moment ratio) increases as 

source-receiver range R decreases.  The same conclusion cannot be drawn for 

slow bottoms, where no distinctive pattern exists.  In general, we find that 

the moment ratio increases as mean bottom density increases. 

It is shown that, due to a cancelling of bottom density fluctuations, the 

standard deviation of intensity increases as the correlation length L increases. 

This effect is a consequence of the features of our model.  We find also that 

varying L/H (H is water depth) does not have as great an effect on the moment 

ratio as does varying the channel aspect ratio R/H. 

We examine two quantities, normalized d3-neasures of intensity and inten- 

sity spread, in order to determine when received intensity is within one 

standard deviation of its mean value.  We find that a greater spread of intensity 
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values can be expected over a low-density bottom than over a high-density 

bottom.  Also, the spread in expected intensity values about the mean increases 

with R/H. 

We observe that, for a given water depth H, shortening the correlation 

length L narrows the interval in which the intensity is within one standard 

deviation of its mean.  It is also shown that increasing the standard deviation 

of bottom density fluctuations causes a widening of the spread of intensity 

values. 

t 
Statistics of intensity using the Rayleigh model are compared with those 

found using MacKenzie theory.  The two bottom-reflectivity models give results 

that are sometimes similar.  However, one of the sharpest differences is the 

presence of deep fades in moment ratio, for some mean bottom densities, when 

calculations are performed for the Rayleigh bottom.  These occur when the 

inclination angle of an acoustic-ray arrival in the total field approaches the 

critical angle, in which case the variance of intensity becomes very large. 

Such a behavior, with comparable magnitude, is not observed when a MacKenzie 

bottom model is used. 
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FIGURE LEGENDS 

Fig. 1  (a)  A horizontal isospeed channel and the geometry of a ray. 

(b)  Four possible ray configurations for n = 1 bottom reflections. 

Fig. 2  Moment ratio Mj^ versus mean bottom density P2 for four R/H ratios: 

L/H =1, Og = 0.1, c^ = 1523 ra/s, p^ = 1.025 g/cm^.  Surfaced source 

and receiver. 

Fig. 3  Moment ratio Mj^ versus mean bottom density Pj for four L/H ratios: 

R/H = 20.  Other parameters as in Fig. 2. 

Fig. 4  Intensity ratio Ij^ versus mean bottom density P2:  L/H = 1, R/H = 5. 

Other parameters as in Fig. 2.      \. 

Fig. 5  Intensity ratio Ij^ versus mean bottom density P2:  L/H = 1, R/H = 20. 

Other parameters as in Fig. 2. 

Fig. 6  Intensity ratio Ij^ versus P2 for two L/H ratios:  R/H = 20.  Other 

parameters as in Fig. 2. . , 

Fig. 7  Intensity ratio Ij^ versus P2 for four o^  values:  L/H = 1, R/H = 20. 

Other parameters as in Fig. 2. 

Fig. 8  Moment ratio H^  versus mean bottom density P2 using MacKenzie theory 

(heavy curves) and Rayleigh theory (light curves) for R/H = 5 (solid) 

and 20 (dashed):  L/H = 1.  Other parameters as in Fig. 2. 

Fig. 9  Moment ratio H^  versus P2 using MacKenzie theory (heavy curves) and 

Rayleigh theory (light curves) for L/H = 0 (solid) and °° (dashed): 

R/H = 20.  Other parameters as in Fig. 2. 
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