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L. Introduction.

The discovery of baroclinic instability by Charney (1947)

has dominated research in meteorology for the last thirty

years. The large scale atmospheric flow has been regarded as

a baroclinically unstable circum-polar vortex, the evolution

of which is sought in the presence of transient disturbances.

While it has been recognized that the mean flow of the

atmosphere is asymmetric as a result of the zonal distribution

of orography and heat sources, most of the studies assumed the

mean flow to be zonally homogeneous. General circulation

models took into account the asymmetric nature of the boundary

terms but they were not very successful in improving our basic

understanding of the consequences arising from the asymmetry.

Yet such general circulation models did indicate that topography,

for example, profoundly influences the behavior of the atmosphere

(Manabe and Terpstra, 1974) as already had been known

observationally for many years (Petterssen, 1956).

There are two notable dynamical features which are believed

to be related to the presence of topographic and thermal

asymmetries. They are the phenomenon of blocking and the

observed geographical distribution of cyclone occurrence.

Blocking refers to persistent large scale flow anomolies which

tend to occur in certain geographical locations. Such a

phenomenon is depicted in Figure 1 which shows that the high

index westerly flow is blocked completely over the Atlantic in

favor of large meridional excursions.

Although the blocking phenomenon has been known for many

years (Rex 1950 a,b) bnly recently it has become the focal point

of intense research activity. Tung and Lindzen (1979)

suggested that atmospheric blocking could be explained in terms

of simple linear resonance of planetary scale waves with

raspect to surface forcing s-uch as continental elevation and

*land-sea differential heating. Egger (1978) proposed that
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blocking could be the manifestation of barotropic nonlinear

interaction among forced and slowly moving free waves. Charney

and Devore (1979) suggested, using a highly truncated spectral

model that blocking could be one possible quasi-stable equi-

libritum state of the atmosphere. Kalnay and Merkine (1981)

performed numerical-simulations with quasi-geostrophic barotropic

flows in an open channel. The results revealed that when the

*system was repeatedly excited at some upstream location by

localized disturbances an effectively time independent response

occasionally emerged. The non-linear interaction of this field

with a pre-existing steady asymmetric flow that was generated,

for example, by localized topography or by potential vorticity

sources led to new steady state configurations including block-

ing. Motivated by this work Merkine (1980, 1981) studied

analytically the phenomenon of zero group velocity resonance of

Rossby waves and obtained results in agreement with the work of

Kalnay and Merkine (1981). In particular, he showed that the

resonance phenomenon can generate intense currents which

possessed closed circulations in agreement with the split jet

configuration of some blocking events.

The possible relation between the blocking phenomenon and

synoptic scale transients is implied in the barotropic model of

Kalnay and Merkine (1981). Recently Illari and Marshal (1983)

have also implicated the inhomogeneous eddy fluxes arising from

synoptic scale transients in the maintenance of blocking

patterns. If such connection exists then it is important to

understand what determines the geographical distribution of

cyclone occurence. But there are other and more obvious reasons

for it, namely the improvement of local forecasts in regions of

intense cyclogenetic activity such as the western Mediterranean

and better understanding of the physical factors that determine

the shift in the storm tracks.
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The problem of understanding local instabilities is quite

difficult. The localization of the phenomenon requires dealing

with a spectrum .of waves simultaneously and at the same time

taking into consideration the fact that the basic flow is zonally

varying. HOwever, if we temporarily ignor the zonal variability

of the basic flow but accept the fact that baroclinicity is more

enhanced in certain regions then the concept of absolute insta-

bility (Merkine 1977, Merkine and Shafranek 1980), which is

discussed in more detail later, may be applicable. Indeed,

Pierrehumbert (1983) considered, in the context of the two layer

model, the simplified problem of the evolution of baroclinic

instability with infinite meridional scale in a zonally varying

basic flow and showed that the eigenvalue of the local instability

is determined by the constraint of absolute instability evaluated

at the location of maximum baroclinicity. The stability of the

zonally non-homogeneous atmospheric fields of January and July of

the Northern Hemisphere was investigated numerically by

Fredriksen (1983) and considerable agreement was found between

the observed geographical distribution of the synoptic scale eddy

heat flux and the distribution obtained from his numerical study.

However, basic understanding of the underlying physics is still

lacking. The various theoretical aspects related to

Fredriksen's work are discussed most thoroughly by Pierrehumbert

(1983).

The fundamental difficulty associated with stability

analysis of zonally non homogeneous basic states is the non-

separability of the zonal coordinate in the equations governing

the linear evolution of the perturbation. However, the same

difficulty arises at an earlier stage, namely in the determination
of the basic state. Consequently only a few basic state analyti-

cal solutions of the non-linear equations can be found in the

literature. When the forcing and the velocity field at infinity

are assumed to be independent of the meridional direction the non-

linear terms of the quasi-geostrophic equations vanish identically
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and finite amplitude solutions which are independent of the

meridional direction can be found by solving linear equations.

This property was utilized by Merkine (1982) who studied the

stability of such fields. The results were novel. They showed

the existence of zero group velocity instability whereby an

unstable non-propagating wave packet developed. The unstable

wavepacket pivots about long zero group-velocity waves which

extract energy from the non-homogeneous basic state but are

unable to radiate it to infinity. The mechanism is similar to

resonant triad interactions with one forced component. The

instability is stronger and zonally more localized when the

zonal non-homogeneity is stronger hence demonstrating in a

unique way the subtle influence exerted by zonal non-homogeneous

effects on the dynamics of quasi-geostrophic systems.

Deriving analytically finite amplitude steady state

solutions which vary zonally and meridionally is very difficult.

Nevertheless, when the conditions for zero group velocity

resonance are satisfied simple analytical solutions can be found.

The barotropic rectified currents of Merkine (1980, 1981) is one

such example. The currents resemble typical atmospheric flow

patterns with strong meridional variability and weak zonal

dependence. These currents proved very useful for stability

studies. The investigations of Merkine and Balgovind (1983) and

Merkine (1983) reveal the existence of unstable localized baro-

tropic wavepackets whose spatial structure and eigenfrequencies

depend on two parameters which measure the degree of supercriti-

cality (the strength of the horizontal shear) and the zonal

length-scale of the shear region. The results indicate that the

structure of the instability is determined by conditions that

ensure the decay of the wavepacket at infinity and the transition

from long to short waves across a turning point (critical layer)

region which is controlled by non-parallel effects. The control-

ling influence exerted by the weak non-parallel effects on the

evolution of the instability demonstrated the weakness of the

4



basic state zonal homogeneity assumption which can be used, away

from critical layers, as a diagnostic tool only.

The stability study of Merkine and Balgovind (1983) dealt

with barotropic fields. This is a simplifying assumption. The

atmosphere and oceans are highly baroclinic as a result of the

differential solar heating. The consequence is two-fold: the

basic state is three-dimensional and the energetics of the

instabilities is controlled by baroclinic and barotropic

processes which are of comparable importance. The determination

of three-dimensional basic states is naturally more complicated than

in the corresponding barotropic problem and one approach is to

study the observed mean fields of the atmosphere. This is the

approach taken by Fredriksen (1983) who was able to obtain

realistic results. The difficulty with such an approach is that

the basic state is rather complicated and there is no way to

determine the influence of various dynamical factors on the

evolution of the instability.

The approach described in this report is different. We

extend Merkine's (1980, 1981) resonance studies to two layer

baroclinic systems and derive analytically finite amplitude

three-dimensional fields. The horizontal shear, vertical shear

and zonal variability of these solutions are controlled

independently. This gives us much flexibility in assessing

separately the influence of barotropic and baroclinic processes

on the evolution of trapped instabilities in zonally varying

mean flows. The two-layer model and some of its properties are

described in Section 2. The three-dimensional steady state

solutions are described in Section 3. The general stability

problem is formulated in Section 4, while Section 5 formulates

the linear stability problem. The necessary conditions for

instability based on the parallel flow assumption are stated in

Section 6 and applied to our particular basic state. The numerical

model is described in Section 7 and some preliminary results are

presented. Section 8 outlines the anticipated future progress of

the research.
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2. The model.

We consider the two-layer model for a slightly viscous

quasi-geostrophic flow on a beta plane as described by Pedlosky

(1970). Our particular system consists of two layers of homo-

geneous, immiscible fluid, with equal undisturbed depths confined

vertically (in the z-direction)and meridionally (in the y-

direction) by rigid horizontal boundaries. The system is

unrestricted zonally (in the x-direction). The fluid density

of the upper layer is slightly less than that of the lower layer

so that the Boussinesq approximation can be invoked. The system

rotates about the vertical axis with an angular velocity which

is a linear function of the meridional direction as implied by

the beta-plane approximation. Centrifugal effects are assumed

negligible so that in the absence of relative motion the fluid

interface is approximately level. Consistent with the quasi-

geostrophic formalism viscous effects are confined to thin

boundary layers adjacent to the rigid boundaries. The interface

is assumed inviscid and surface tension effects are ignored.

We denote upper layer fields by the index 1 and lower layer

fields by the index 2 and decompose the total streamfunction n
in the following way:

* * • L2 *
2 - ( + U y + 1 /T)I

(2.1)
* 1 ** 2

'V2 =- (1 - 2 c)U y + (L2/0) 2.

The asterisk denotes dimensional variables. The first term on

the R.H.S of (2.1) describes a vertically sheared uniform flow.

The characteristic velocity is U and E is the non-dimensional

shear parameter. The second term on the R.H.S of (2.1)

describes the contribution to the total streamfunction arising

from the presence of localized potential vorticity sources Sn

such as heat sources, for example, whose characteristic time

scale is T. L is the dimensional distance between the meridional
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walls. In the absence of sources the stationary flow field is
everywhere westerly and 0 < C < 2.

The non-dimensional quasi-geostrophic equations governing

n are

+r2* 1 
= -AJ(*I,V2i 1 +F(p 2 - * I )) + S1  (2.2)

1-)a ( ( - FE a .2

* (.+l-. A)( 2 +( 1- 2 ) + axIJ

+ 2 - AJ(W2 ,V2 P2 +F(p 1 - 2 ) +S 2

where L and U are the reference scales for non-dimensionali-

zation. J is the Jacobian of two function and is defined as
J(fg) = fxgy-fygx. In addition to £ (2.2) contains the

following non-dimensional parameters.

L 2 8 L/U *

r = (vf0) L/DU*

F 2L 2 f /(gD(p 2 -P1 )/2P 2)

A = L/UT

where f0 is the Coriolis parameter and 8' its gradient at the
reference latitude. D is the depth of the system, v is the
kinematic viscosity, g is the gravitational acceleration and
Pn is the density. 8 and F measure the importance of the beta
effect and stratification, respectively. r measures the spin-

down effect arising from the secondary circulation induced by
the top and bottom Ekman layers. The meridional walls serve
to restrict the lateral scale of the domain and it is immateri I
whether they are considered as viscous or inviscid since they
do not induce a secondary interior circulation. (Greenspan,

1968). A is the parameter of non-linearity. It measures the
strength of the potential vorticity sources. When A * 0 the
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potential vorticity sources are very weak and non-linear

effects can be ignored.

It is convenient to separate barotropic and baroclinic

effects. Consequently we write

M m +V(2i 2l - V2 )  (2.3)

where * and p denote the barotropic and baro-

clinic modes,respectively. By adding and subtracting the two

equations of (2.2) and using (2.3) we obtain the following two

equations

a + .x)v 2 *m+ - + rV 2,m + 2 . a V2

- AJ(,V2) - AJ(P,V 21 ) + Sm

(2.4)

( a 2T rV2V + 1 V2

a ,2 ,2
+ F £ .- 1m = -AJ(4m ) - AJ(v IV )

+ 2FAJ(p ,4T ) + S
m T

where

S ( S - S+ (25)
m  2S 1  S2) , S 1(

are the respective barotropic and baroclinic components of the
potential vorticity sources. Equations (2.4) were used by

Merkine (1982) to study the stability of fields induced by

localized potential vorticity sources which vary in the zonal

direction only. Our goal is to study the stability properties

of more general fields.

Inspection of (2.4) reveals that the vertical shear of the

uniform current which is measured by c and the non-linear inter-

action terms which are measured by A are the two physical

entities which couple the dynamics of the barotropic and baro-

clinic modes of motion. When non-linear effects can be ignored

(2.4) reduces to

8



a D 2 a (

&.~...) (V2o-2F\% + rVJ *Cx~ m +'a Fe S

and when the basic uniform current possesses no vertical shear

(2.6) reduces to

(L + 2m+ a*' + rV2 m = s
ax ~ axm

(2.7)

a T

The reason for the nomenclature *m and ip is %lear now. Le

free modes of the first equation of (2.7) are barotropic _ssby

waves while those of the second equation of (2.7) are ba

clinic Rossby waves. Since

41 = *m + OT 2 = *m - *T (2.8)li= m n I = - 2frS=

(2.7) implies that i1= *2 for ST 0 and *1 -2 for S m 0.
When small vertical shear is present V m and iT are coupled:

The barotropic mode is modified by baroclinic effects and the

baroclinic mode is modified by barotropic effects. For baro-

tropic forcing St 0 and (2.6) indicates that T 0( ) and

that the baroclinic modification of *m is 0(c 2). When Sm = 0

m = 0(t) and the barotropic modification of *T is 0(c 2 ). When

e is no longer small the coupling between *m and * T is strong

regardless of the nature of the forcing and the identification

of * and * with separate barotropic and baroclinic dynamical

responses is not meaningful anymore. Nevertheless, we still

find it convenient to refer to * and. ,* as the barotropic and

baroclinic modes of motion since they assume their pure form

when c -* 0. When e = 0 and A 0 0 the:barotropic and baroclinic

modes interact non-linearly (see (2.4)7) but the spectrum can be

separated into pure barotropic and bqpclinic modes. We seek9I



We seek solutions to (2.2) which result from localized forcing and

initial conditions. Consequently we assume that n decays to

zero at infinity implying that the condition of vanishing

meridional velocity on the meridional boundaries can be stated

as

1= =T 0 on y = 0,1. (2.9)

The dynamical nature of the response of the system depends

crucially on the characteristics of the free waves. Hence, we

seek solutions of the form

( 33 ei sin(mry) + c.c.; m 1,2,... (2.10)

where c.c. denotes complex conjugation and substitute (2.10)

into (2.6) with Sm = ST = 0 to obtain the following dispersion

relation and vertical structure of the waves

WK2+F a [ [ 2K 4 (K4 -4F 2 ) + 4F 2 (a+irK2 /k) 2 ]
-- c 1 +r2. + ir) + +2112 k2 2±(2.11)K+2FK 2K (K +2F)

K2 +F B+F+irK2/k (2.12)

F (1 + f C- c)F

where K2 = k2+m2 2 . Equations (2.11) - (2.12) are identical

to the corresponding equations of Pedlosky (1970).

In the atmosphere and oceans the radius of deformation

LR = (gD(P2-Pl)/(2p2)j /f0  is comparable to (U */ ) which is

the typical length of stationary Rossby waves and consequently

we set F = 8. Baroclinic instability sets in whenever the

shear parameter exceeds a certain threshold value. When r = 0

the neutral stability curve is given by

10



and the critical value of the shear is lei 1. When r 9 0

the neutral stability curve is given by

C2 = 4 a S4 +K 2r 2 ](.4
(20-K 2 ) K2K2+)2 + -- (2.14)

which does not reduce to (2.13) when r -o 0. This singular

behavior was observed first by Holopainen (1961) who also

noticed that small r destabilizes the system. The threshold

value of e derived from (2.14) is equal to

IE 0.908333 + O(r2 ) which is less than the above critical

value for the strictly inviscid system. In both cases, however,

the spectrum of the unstable waves is restricted to 0 < K2 < 28.
+

The waves to be destabilized first when r E 0 and r - 0 are

given by K2 = 238 and i(2 = (1+3 )8/2 + O(r 2), respectively.

When the shear is subcritical and the frictional effects

secondary in importance each branch of the dispersion relation

resembles a cubic. Both branches are antisymmetric functions

of k about k = 0. The number of real roots of w = 0 for each

branch depends on the sign of dw/dk (k = 0). When it is posi-

tive we have one real root and when it is negative we have

three real roots. When it vanishes we have the coalescence at

the origin of the three real roots. This latter situaticn is

of particular importance. When it occurs weak stationary

forcing can trigger a large stationary response. dw/dk is the

group velocity of the waves and when it vanishes at the origin

the energy pumped by the sources into the long waves does not

escape to infinity and a strong response builds:.up. This is the

phenomenon of zero group velocity resonance discussed by Merkine

(1980, 1981) when he considered the response of a pure barotropic

system.

11
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3. Steady state solutions.

We return now to (2.4) and zaek steady state solutions

for time independent localized sources. The problem is non-

linear and our approach is to assume that non-linear effects

are small and to expand the field variables in the parameter

of non-linearity A. Consequently we write

1m = *m + A, +...
mm m

+ +..(3.1)
°PT = * + " T " '

substitute (3.1) into (2.4) and equate to zero the coeffic-

ients of the various powers of A. At the lowest order we

recover the linear problem., namely

- (2*,3B~)+ rV2. + 1 LV = Sm
57 m m M 7 Dx T

(3.2)

a V2ToO~)+ rV 2 . O + 1£ ( 2 020* St
2 ax

(Recall that F = 8)

We follow Merkine (1980, 1981) and assume that the sources

have the simplified form

S m.Ox) sinmry ; i = 0, ± 1

(3.3)
S v = 6(x) sinmwy ; V 0, ± 1

where 6(x) is Dirac's delta function. This choice is not as

restrictive as it seems to be. At zero group velocity resonance,

which is the dynamically relevant case, a single meridional

wavenumber dominates the response whose zonal structure consists

of very long waves. Thus, had we considered a general source

function Sn fn(x,y) the end result would have been the same

12
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but the algebra necessarily more complicated (Merkine 1980,

1981). U and v need not be equal.

The meridional structure of the forcing suggests that

(3.2) admits solutions of the form

~*- o m(x)sin(mlry) , (x)sin (m iy). (3.3)

The equations that govern PmX) and T x) are suitable

for the application of the Fourier transform defined as

k(k) =2-I P(x)e-lkXdx
(2w)0-

(3.4)

P(x) =2 1 P(k)e ikxdk

where the caret denotes the transformed variable. It follows

that the solution for $m and $ is

m)k2+m22+) + i(k2+m2w2)]_vk (k2+m2w2)/2}/D

ir (3.5)

i~k) =fW{kE[(k2+m2T2) /k2m272) + ix,(k 2+m221/
C 2w)-( i )/2J-v~k(~ ~ w )/

where

D = (1-c2/4)k6 + (2(1-e 2/4)m22 + C
28/2)k 4

+ ((l-C2/4)m4r4  W-  2m2w2 /2))k 2  (3.6)

(r + 2irk)(k 2 +m2w2 )2 .

The condition for zero group velocity of the long waves, namely

dA/dk (k = 0 ; r = 0) = 0 can be determined from (2.11). It can be shown,

hxiever, that it is equivalent to the condition

(1 - . £2 )m4 4 
- 8(8 - Cm 2 2 /2) 0 (3.7)

13



II

obtained by equating to zero the coefficient of k2 in the

third expression of (3.6). Solving for 8 we obtain that
=  2 + (16 + E4 - 4e2)3]m272/4, (3.8)

which is valid also for super-critical shear since the

long waves are always stable. When e - 0,8 m27r2.

This is the condition for zero group velocity of the long

waves in the pure barotropic problem (Merkine, 1980, 1981).

It follows that (3.8) is the condition for zero group

velocity of the barotropic branch of the dispersion relation

(2.11). Equation (3.7) admits a second solution for 8

corresponding to thd baroclinic mode of the dispersion

relation; In our cas6 it is negative implying that the

long baroclinic waves cannot possess zero group velocity.

This conclusion is restricted, however, to the case 8 = F

treated here. When 8 # F the long baroclinic waves can have

zero group velocity for sufficiently large e (Merkine, 1982).

The implication of (3.8) is that when r = 0 the inverse

Fourier transform of (3.5) does not exist implying unbounded

solutions. This follows from the fact that the inviscid

system operates at resonance. The energy pumped by the

source into the longwaves cannot be radiated to infinity or

dissipated by frictional processes and no stationary solu-"

tions are possible. Stationary solutions exist when friction

is included and we assume that r << 1 which is applicable

for quasi-geostrophic atmospheric and oceanic systems.
The solution for (m and pT is determined by applying

Cauchy's theorem to the inverse Fourier transform of (3.5).

The six poles of the integrandare the zeros of (3.6) subject

to (3.7). They are given by
1I

k = 7ir + or)

k=(m W ) expi( + r 1/3 +o(r1/3 n
k = 2 0,,2 (3.9)*E(2-c2/2)m2ff2+e20/2]

k z IC(2 - c2/2)m2 f2 + Z,/2 1J/(l-e2/4) + o(l).

14



It follows that the solution for (m and (P is

IPM P~i(a + m 2W2) - VEM 2 r2/2

= 6r/3mq.. R(x)

(PT 6r2/3Lr- C(O -M2r2 /2)-V(O-m 27?)

exp(rl/3klX) x < 0

R(x) 2exp(rl/3 kx/2)cos( 3sklrl/3 x+2 , x > 0

(3.10)kl4 :,.244 , 1/3

k ~2m~ 221 L(2_e2/2)m22+C2 0/21

= [C2+(16+c4-4c 2 ) ]m 2 2/4.

For given e and m the resonance condition (3.8), which is also

the last expression of (3.10) determines 0 and the complete

structure of the solution is known.

The dimensionless form of the total streamfunction (2.1)

is

T1 = - (1+c/2)y + A(3.11)

T2 = - (1-c/2)y + A*2

and with the aid of (2.8), (3.1), (3.3) and (3.10) it can be

written as

T 1+c/' X, 1[0(1+C+M 2 T 2(1-6/2)-V[O-mn 2 w (1-0/2)]

T2  1-e/2} r[0(1-)+m2W2(l+C/2)]+v[O-m2W2(l+c/2),

~(3.12)

R(x)sirmmy +'O(r 2/3 +A)}

i L I.



The error estimate in (3.12) consists of two terms. The first

one reflects inaccuracies due to the asymptotic estimate of

the poles of the linear solution, i.e., eq. (3.9) . The second

term estimates the relative error due to nonlinear effects.

The interesting situation occurs when A = O(r2 /3). Then, the

field induced by the sources becomes comparable to the zonal

flow and the relative error estimate is O(r 2/ 3 ) and hence

small in an asymptotic sense. We have reached an important

result. The solution of the linear equation (3.2) is in fact

a very accurate finite amplitude solution of the full non-linear

problem (2.4). This surprising result which rarely happens is

a consequence of the fact that we operate at resonance condi-

tions. In the presence of very weak forcing and dissipation

the resonating solution is almost an eigenfucntion of the linear

equations. In other words, it is a Rossby wave which is main-

tained by weak forcing against weak dissipation. But it is well

known that a single finite amplitude Rossby wave satisfies

exactly the non-linear equation and this explains the small

relative error associated with the contribution of the non-

linear terms to the solution (3.12).

The solution given by (3.12) describes a current possessing

vertical and horizontal shear which varies slowly in the zonal

direction. The length scale of the zonal variation is 0(r
- / 3 )

and this non-parallel effect is accompanied by a small meridional

velocity which is of O(A/r 2 /3 ) or O(r1 /3)when A = O(r2/3). The
varying part of the solution decays to zero at large distances

from the region of the sources. The meridional structure of the

current is very simple and it does not vary in the zonal

Note that then the sources are of general type 0(a) is the

proper estimate of all contributions which are rot cr:tn.1y

* related to resonance.
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direction. When c 0 , 0 m2 r2, the resonance is pure baro-

tropic and regardless of the value of v (3.12) reduces to the

solution derived by Merkine (1980) for the barotropic case.

From (3.12) it follows that 0 is a monotone function of e. It
is equal to m2 7r 1.15 m2ir2 and 2 m21n2 for c = 0, 1 and 2,

respectively. For typical mid-latitude values of U cul0 m/sec,

1 m 1, L - 5.106 m and 0' evaluated at )450 the resonance condi-

tion is satisfied when m = 2. This result is comforting since

the solution (3.12) with m = 2 corresponds to a slowly varying

jet.

The derivation of (3.12) is based on the properties

of the dispersion relation for long waves. Such waves are
always stable according to the linear theory but is the solution

(3.12) meaningful when e is supercritical such that a part of

the spectrum is baroclinically unstable? The answer to this

question is found in the concept of absolute instability intro-

duced first into geophysical fluid dynamics by Merkine (1977).

The way a medium responds to a given forcing depends on whether

the linear instability is convective or absolute. When it is

convective the baroclinically unstable transient set up by the

initial value problem leaves the domain of its excitation and

the long time response at a fixed spatial point attains the time

dependent characteristics of the forcing. If the forcing is

steady the response is steady. However, when the system

supports absolute instability a part of the unstable transient

never leaves the domain of its excitation and the long time

response at any given spatial location is dominated by an

exponentially growing solution. The growth rate is determined

by the imaginary value of w corresponding to the condition

dw/dk = 0 in the complex k-plane. The existence of absolute

instability in a given situation depeiLds on the parameters of

the problem. When we apply the resonance parameter constraint

17
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to the criteria for absolute instability given by Merkine and

Shafranek, (1980) we find that the steady state solution is

physically realizable unless e w 2.

The problem relating to the stability properties of (3.12)

is a different issue. When certain conditions for instability

are satisfied (3.12) may become unstable to perturbations.

Since our steady state solution is three-dimensional there is a

rich interplay between baroclinic and barotropic processes both

influenced by zonal localization effects. The stability analy-

sis of (3.12) under a variety of conditions is the main thrust

of the study. We hope that the results obtained will contribute

to the understanding of the difficult but important problem of

the influence of zonal asymmetric effects such as topography and

heat sources on the dynamics of the atmosphere and oceans.
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4. The formulation of the stability problem.

It is convenient to start the stability analysis by

writing (2.2) with 0 = F in the conservation form

[ _rAl a a' 1 a [21

-rV 
2 A*, + AS,

(4.1)

[-+ --"+ a Ar 2+(AI-Ap 2 )+(1-)y]

- rV2 A 2 + AS 2

which states that the rate of change of the quasi-geostrophic

potential vorticity of each layer following the geostrophic

motion of that layer is determined by the potential vorticity

sources and the spin-down effect of the Ekman layers.

We add now a perturbation to the flow field such that

n n n

whe7:e 6 measures the strength of the perturbation. When the

latter expression is substituted into (4.1), while taking into

account the fact that n satisfies (2.4) to O(r2 / 3  (as

stated earlier the case of interest is when A O(rl),

we obtain the following system of equations that governs the

evolution of the perturbation field (p

[+ (1+1.+l)~V a + 1 311 1 1

+ 6(a 1 q1 ql 1 aq1 qr 2/3)

Tr - - I - (4.2)

a a 1 1 2  37T2 (P 2 an 2

2o 3q2 ax W -
2 q 2  2 O 2q2  /3
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q n n 1,2 is the perturbation's potential vorticity defined
as

2

V + Bt~l -cp1)(4.3)

and v n , n =1, 2 is the potential vorticity of the basic

state (3.12) defined as

W= B(1+FZ)y + 2 + a( + Q(r 2/3.4

7112 = (1-E)y + -Y l- ~ 2/3

The geostrophic velocity induced by the sources is given by

3A* n 3a~nU T- Vn =- xn = 1,2 (4.5)

where U n=0(l) and V n 0 (r 1/3). Using the properties of

the steady state solution (3.12) we can write (4.4) as

I = 0(l+c)y - (mi 2 7T + Or 2 3)(46

712 0(l-e)y - (m2rr2  + ( 2 / 3 )
2 7T +0)"i 2 + a41. O

the gradient of which is given by

V7r1 [ (in22 +O)V 1 +OV2

+ [0(l+c)+(m 2 12 +B)U 1-OU 2 1 + 0(r 2 /3

(4.7)

+ E3(1-c)+(m 2ir2+$)U 2-OU 1] + 0(r 2 /3)
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Equations (3.2) and (3.3) supplemented by the above

definitions of the basic state, the boundary conditions

Pn = 0 on y = 0, ; n = 1,2 (4.8)

and suitable initial conditions constitute a well posed

initial value problem which determines the evolution of the

perturbation correct to O(r )/ 3 in non-parallel effects.
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5. The linear stability problem.

Our prime interest is in the evolution of the perturbation

field under unstable conditions. When the amplitude of the

growing perturbation is still small compared to the basic

state, non-linear-effects are of secondary importance. The

most logical and certainly the most common starting point of

our stability analysis is the linear stability problem. The

linear dynamics is governed by (4.2) with 6 = 0. For the sake

of completeness we summarize now the linear problem ignoring
2/3

0(r / ) effects.

a (+EU.V1 aq a ~ a' a 1 an1T axl ayl_ ayl al

1 a a 2 an 2  ap 2 an 2
[rt+ (I- C-U ) ~V2  a ]q - Tx ax

qn = V2 n + (-l) n (l2(5.1)

(n = 0 on y = 0,1

t = 0 Pn = Pn(xy)

d2 2 A +[(C)M2 2AVw1 = [-(mw72+S)VI+$V2 ]i + [(l )+(m2 ' )- (5.2)

[2(2cA 2 2 A
177 2 = [-(M2w2+B)V2+OVl]1 + [8(l-c)+(m2Tr2+a)U2-aUl]

where Un and Vn are derived in the usual way from the

x-dependent part of (3.12).

Non-parallel effects enter the linear stability problem

through the meridional velocity Vn and the zonal component of

the potential vorticity gradient awn /ax which are of 0(r1 / 3 )
and through the dependence on the zonal direction of the 0(l)

zonal velocity.

In conventional stability studies the basic flow is

assumed parallel and in the zonal direction. This amounts

22
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to ignoring all O(r1 /3) effects in (5.1). The mathematical

advantage of this assumption is that the problem becomes

separable in x and normal mode solutions of the form

f (y)exp i(kx-wt) can be sought. The faith in this approach
n

is based on the notion that non-parallel effects can be

ignored and that the physically realizable solution is the

one with maximum temporal growth rate. Merkine and Balgovind,

(1983) who studied numerically the barotropic analogue of

(5.1), demonstrated the inapplicability of the parallel

theory. They showed the strong controlling influence of the

weak non-parallel effects on the evolution of the instability.

In fact all the quantitative predictions of the parallel

theory were proved to be incorrect. The only virtue of the

parallel theory was in identifying the necessary conditions

for instability. We adopt the same approach here, and in the

next section we discuss the necessary conditions for insta-

bility derived from the parallel theory.
Another important point concerns critical layers. The

linear parallel analysis leads to an eigenvalue problem

determining the eigenvalue and eigenfunction corresponding to

a given wavenumber k. In most circumstances the solutions of

the inviscid parallel problem have a singular behavior at the

critical layer where the phase speed of the instability is

equal to the basic zonal velocity. The singularity is

unacceptable physically and in the past viscous or non-linear

effects were used to remove it. Merkine (1983) demonstrated

that the singularity can be removed through the inclusion of

non-parallel effects. He also showed that for the range of

parameters typical of quasi-geostrophic flows the non-parallel

critical layer is more important than its viscous or non-

linear analogues.
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6. The necessary conditions for instability of the linear

parallel problem.

When the weak non-parallel effects are ignored in (4.1)

and normal mode solutions of the type discussed earlier are

assumed two necessary conditions for instability can be

derived (Pedlosky, 1979). In our notation the two conditions

are:

an
, must be somewhere positive and somewhere

negative in the range of y. (6.1)

1 )nn

( 2 + + Un) y must be somewhere positive

(6.2)
in the range of y.

If none of an /3y vanishes then they must be of opposite

signs. This is the situation for baroclinic instability

with no horizontal shear in a two layer model, On the other

hand, if a 1 /ay = an2 /ay as in the barotropic problem then

both must vanish at some point in order to satisfy the first

condition for instability. In the general case the two

possibilities can occur simultaneously implying equal impor-

tance of the baroclinic and barotropic processes. This is

the situation typical of our model. Condition (6.2) has to

be satisfied at least at one point in one of the layers.

We proceed now to apply conditions (6.1) - (6.2) to our

particular basic state. From (3.11) - (3.12), (4.5) and

(5.2) it follows that

1 7(r+c ) + (m 2 7+ )Ul -

(6.5)
an (1-c) + (m2W2 +)U -

IT U2 - 11
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where

A k1 {f(8(i+c)+m2w2(i/2)]_V[8 _m2w2(1_/2)J]R(x)cosmsy
U 2- 6m3w

(6.4)

Ak, rj0lC+ 2 2 _22(+/) 1~~oaw

r 6m L 
.5

R(x), ka and 8 are defined in (3.10). (6.3) and (6.4) reveal the

richness of the stability problem. The potential vorticity gradients
depend on E and mwhich fix 8 and k and on A/r 2 , and v in

1
addition to the parametric dependence on x. Our earlier

choice of m = 2 does little to simplify the analysis. It
seems reasonable to classify the first necessary condition

for instability according to the sources which can be
barotropic, baroclinic or of mixed type.

6.1 Barotropic sources, v = 0.

From (6.3) and (6.4) it follows, after some tedious

manipulations, that

2 22 2 2 1rl =AI(I+le+uI) ; A1 :m2r
2 2e(8/m r) +(B/m27r2)+l-1C

ay 1 2 (I+e)(8/m 2w2 )+l-2E2 (6.5)

2 22 2 2 13r 2 2 -2E(/m27 2 ) +(8/m2i2)+1+7C2 A2_ +2) ;2 2 m2 2

Dy (i-0 )C/m272)+i+7C

These expressions demonstrate the proportionality of the

potential velocity gradients in each layer to the corres-
ponding basic state's total velocity. The shear parameter
e is restricted to the range 0 < e < 2 for which A1 > 0.
A2 is positive for e < 1 and negative for e > 1. It

follows that when the sources are sufficiently weak such
that the total zonal velocity in each layer is of one sign

the first necessary condition for instability is satisfied
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when e > 1. This is the same condition required for

triggering inviscid baroclinic instability in a zonally

uniform flow (see discussion following (2.13)). We expect,

therefore, that in the case of weak sources in the sense

discussed above, the necessary energy for the developing

instability must come from the available potential energy

of the zonally uniform part of the basic state.

When e < 1, A2 is positive and the first condition for

instability can be satisfied only if the sources are

sufficiently strong such that the zonal velocity reverses

its direction somewhere within the range of y. W'en non-

parallel effects are considered, this flow reversal is

equivalent to the appearance of closed circulatior (Merkine

and Belgovind, 1983). It can be shown that closed circula-

tions appear first in the lower layer. The maximum value

of R(x) in the expressions for U is -3 exp(-n/6.3 ),0.64

and it is attained at 13kr1/3x = n/6. It follows that the

first necessary condition for instability is satisfied

whenever

1 A 0.64_
1 - 1.-L- km [ C1 < 0

rM 6mr L T

which sets the strength of the barotropic potential vorticity

sources for given e and m. The last expression indicates

that stronger shear requires weaker sources for satisfying

the necessary condition for instability.

In the strong-shear weak-source case discusped earlier

the lower layer potential vorticity gradient becomes

negative everywhere when c > 1. In the weak-shear strong-

source case just discussed the potential vorticity gradient

becomes negative in isolated regions which appear first in

the lower layer. This situation for which the sign reversal

occurs within a given layer is typical of two-layer baro-

tropic processes. We expect that in such circumstances the
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enerqy source for the instability will be the available

kinetic energy of the basic state. When c > 1 and the basic

state possesses closed circulations baroclinic and barotropic

processes must be of comparable importance and the developing

instability should be of a mixed type. This is a rather complex

situation the stability properties of which are not very well

understood.

6.2 Baroclinic sources, V = 0.

When the sources are baroclinic the potential vorticity

gradient can be written as

2 22_ 2 2 1
= 2 72 2(8/m r ) -3(0/m ir ) + i- f-(I -BU 1 ;B 1 -:m '1 22

y (/m 2) - 1 +
(6.6)

r2  222(8/m2 2 ) -3(0/m27 2) + 1 +122_
r- ---0(1-e) - B2U 2  B 2 

= m 2"T2  Bm2r2)-1-I

We observe that unlike the barctropic case the potential

vorticity gradients are not proportional to the basic zonal

velocity. When F-= 0, U E0 regardless of the ratio A/r2 /3 .nThis result is not surprising. U n is the resonating part of the

basic state. The zero group velocity resonance is associated

with the barotropic branch of the dispersion relation which in

the absence of shear cannot trigger baroclinic response. The

response triggered by the baroclinic sources when c =0 is

0(A). This is a very weak response and it is not relevant

for our stability study since it modifies the zonally uniform

part of the basic state by an 0(A) only. Such small contribu-

tions are not included in our description of the basic state.

Thus when e= 0, r /y 8 and the basic state is stable. In

the absence of sources e > 1 is necessary for instability.

This is identical to the corresponding barotropic case and

the instability is purely baroclinic. I
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In the case of barotropic sources the criterion e > 1

holds as long as Un is sufficiently weak such that no closed

circulation is induced by the sources. The situation is

different in the present case. A weak Un can alter signifi-

cantly the stability criterion and, in fact, we expect it to

destabilize the flow. This is illustrated most easily for the

case of e= 1 for which ir2 /y : 2mw2U2  (B2(c : ) :-2m2r 2.

We see that no matter how small U2 is, its meridional structure

which is proportional to cos(mwy) ensures the vanishing of the

lower layer potential vorticity gradient at at least one point.

In this case the baroclinic energy criterion is altered but the

energy source of the instability is likely to be the available

kinetic energy of the basic state. However, when e > 1 and U2
is very small the instability should be baroclinic in nature.

In the combined case of e > 1 and strong Un the instability is

expected to be of mixed type.

The one to one correspondence between the closed circula-

tions of the basic state and the closed contours of the

potential vorticity gradients that we observed in Section 6 does

not exist in the case of baroclinic sources. However, in both

cases closed circulations appear first in the lower layer where

the uniform part of the zonal flow is weaker. At the end of

the report we provide a few figures which illustrate typical

flow fields and the associated potential vorticity gradients.

The above discussion has demonstrated the complexity of

the stability problem and there is no point for analyzing now

the stability criteria for the general case when the sources

are of a mixed type. Further advancement in our understanding
of the energetics of the instability can only be achieved by
actually solving the stability problem.

In this section and in the previous one all the information

was extracted by applying the first necessary condition for

instability to our particular basic state. The second necessary

condition for instability can always be trivially satisfied and

hence it is not very informative.

28



7. The numerical model and a few preliminary results.

The stability problem formulated in Section 4 must be

integrated numerically. We describe briefly now the numerical

scheme and present a few preliminary results pertinent to the

linearized version of the stability problem. The numerical

code was developed by Y. Bar-Sever who is a graduate student

participating in the research described in this report. The

numerical method is an extention to the two layer model of the

numerical scheme described by Kalnay and Merkine (1981).

The numerical scheme developed for the initial boundary

value problem stated in Section 4 conserves potential enstrophy.

A spatial staggered grid is used where the prognostic variable

q (the potential vorticity of the perturbation) is defined at

the center of the grid and tn (the streamfunction of the per-

turbation) is defined at the corners of the grid. This allows a

direct implementation of the meridional boundary conditions at

y = 0,1 which require the vanishing of the perturbation stream-

function. The zonal extent of the numerical channel is

-20 < x < 20 and the sources are placed at x = 0. The time

difference scheme is the N-cycle (Lorenz, iR71) with N = 4.

The potential vorticity of the perturbation is updated at the

numerical zonal boundaries of the channal by extrapolating it

linearly outward from the interior, i.e. in the direction of

the group velocity of the waves which are excited at the central

portion of the channel. In order to minimize spurious reflexion

of waves from the zonal boundaries of the domain of integration

we used the sponge layer method (Kalnay and Merkine, 1981)

whereby the time scale for dissipative effects is decreased

gradually toward the zonal boundaries. The perturbation steam-

function at the zonal boundaries is determined by imposing the

condition a2 / 2x2 = 0 (which amounts to linear extrapolatin)n
in the definition of the updated potential vorticity evaluated

at the zonal boundaries. This leads to a pair of ordinary
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differential equations which determine 4p at the zonalin

boundaries. The updated interior perturbation streamfunction

* is obtained from the updated interior potential vorticity using

the Fishpak Algorithm 541 for solving elliptic systems subject

to the boundary conditions imposed on tn as stated above. This

algorithm was developed at NCAR by P. N. Swarztrauber (1979).

The sponge layer device and the procedure for evaluating

qn and 4n at the zonal boundaries of the domain of integration

are successful only if the central portion of the flow domain

is little affected by end effects. The results of Kalnay and

Merkine (1983) demonstrate that this is indeed the case.

However, each numerical integration must be scrutinized

separately.

The consistency of the numerical scheme was checked by

performing several test runs. For example, numerical integra-

tions were performed for the case of super-critical shear, no

sources and periodic zonal boundary conditions. This is the

classical prcblem of two layer baroclinic instability. The

initial perturbation was a localized pulse. Baroclinic insta-

bility developed. The growth rate and phase speed of the most

rapidly growing mode agreed well with the predictions of the

dispersion relation (2.11). In other test runs the results of

Merkine and Balgovind (1983) were reproduced. In all runs the

spatial grid size was uniform and equal to 0.1 which provides

a reasonable rQAeiution for the phenomena under investigation.

This amounts to 4000 grid points for each layer. For the range

of parameters considered so far numerical stability was

ensured by choosing 0.05 as the time increment for every 4

cycles of the Lorenz scheme. In many cases it is necessary to

integrate to about 20 time units. Using the Technion's IBM

3081D computer a typical CPU time for such a run is about

15 minutes. It was impractical to check convergence by decreas-

ing the grid size. We rely on the conclusion of Merkine and

Balgovind (1983) which states that only quantitative but no

qualitative changes were observed when a finer spatial grid

was used.
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We proceed now to describe some preliminary results per-

tinent to the linear phase of the evolution of the instability.

In particular, we consider the influence of e, which is the shear

parameter of the basic state at infinity, on the evolution of

the instability. The results presented here correspond to posi-

tive barotropic sources i.e. p =1 and v =0 with A =0.1 and

r =0.001. Figures 2 and 3 depict the streamfunctions of the

basic state corresponding to e =0.5 and c =1.5, respectively.

The basic state describes a blocking configuration. The sources

induce a closed circulation at the center of the channel. As a

consequence,,the on-coming westerly flow is split into two

intense jets flowing along the meridional boundaries of the

domain. For the parameters chosen the closed circulation appears

in both layers but it is larger in the lower layer which is

characterized by a weaker flow at infinity. The two basic states

depicted in Figures 2 and 3 are broadly similar but with one

difference. In the absence of sources the basic state is baro-

clinically stable for e= 0.5 and unstable for c= 1.5. Based on

the discussion of Section 6.1 closed circulation is necessary

for instability when c= 0.5 but not when e =1.5. Thus the

instability is expected to be basically barotropic when c= 0.5

and of a mixed type where c= 1.5.

The results of the numerical integration reveal the exis-

tence of an unstable localized wave packet characterized by a

single complex eigenfrequency, w. For e =0.5 w =0.84+1.88i

and for £= 1.5 w =1.00+2.54i. It follows that the increase

in the baroclinicity of the basic state enhances the instability.

However, without calculating the energy transfer mechanisms we

cannot be certain whether the enhanced growth rate is due to a

release of the available potential energy of the basic state or

that the incroase in c affects a greater release of the avail-

able kinetic energy of the basic state. The energy calculations

will be reported elsewhere as a part of a detailed examination

of the stability problem. Figures 4-7 suggest, however, that
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the instability is essentially barotropic. In Figures 4 and

5 we see the streamfunction of the instability for c =0.5 and

it is very similar to the barotropic instability of Merkine

and Balgovind (1983). The cells are bowed to the east corres-

ponding to a Reynolds stress distribution which is positively

correlated with the horizontal shear of the basic state. The

absence of phase changes in the vertical (Figure 5) indicates

that the instability is barotropic. The effect of the vertical

shear is more noticeable in Figures 6 and 7 which correspond to

c 1.5. The upper layer streamfunction depicted in Figure 6a

is similar to Figure 4a. It indicates release of the upper layer

available kinetic energy of the basic state. The situation is

different in the lower layer. The cells shown in Figure 6b are

bowed in a way favorable for transfer of kinetic energy from

the lower layer instability to the lower layer basic state. From

Figure 7 it follows that the lower layer field lags slightly

behind the upper layer field and this suggests that potential

energy is transferred from the instability to the basic state.

It must be emphasized that the above considerations are based

on the parallel flow assumption and consequently must be

supported by a more detailed study. However, if these conclu-

sions hold then the increase of baroclinicity can occasionally

enhance instability through barotropic processes.

One other important feature revealed by Figures 4-7 is the

crisis region upstream of the maximum. This region is charac-

terized by a rapid transition from long to short waves. As

stated by Merkine and Balgovind (1983) the dynamics of this

crisis region must necessarily be controlled by non-parallel

effects. This concludes the brief discussion of some of our

preliminary results.
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8. Summary and prognosis

In the previous sections we have reported on our research

efforts during the first year of support by the AFOSR. Briefly

stated, we have developed an analytical three dimensional basic

state whose zonal extent and baroclinic and barotropic charac-

teristics can be varied at will. This basic state can be one

prototype model for studying systematically the evolution of

local quasi-geostrophic instabilities of a general type.

Although the basic state is rather simple the structure is such

that the evolution of the instability must be studied numeric-

ally. Consequently, we have developed a numerical model of

sufficient flexibility for studying all the aspects of the

instability. We have made a few preliminary runs and the results

revealed the existence of a localized instability. During the

second year of research (March 1, 1984 - February 28, 1985) we

shall carry out a systematic study of all aspects of the linear

phase of the instability. In particular, we shall examine the

way the instability is affected by the strength of the sources

and their structure as well as by the zonal length-scale of the

basic state and the vertical shear at infinity. The third year

of research (March 1, 1985 - February 28, 1986) will be devoted

to the non-linear stability problem. The non-linear study deals

with the equilibration of the instability and the distortion of

the basic state. These two related processes are necessarily

accompanied by wave radiation from the region of origin of the

instability.
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Figure captions

Figure 1: A blocking configuration over the Atlantic.

Figure 2: The streamfunction of the basic state induced by a

positive barotropic source, i.e. 4 = i, v = 0.

The shape of the source is given by 6(x)sin2wy.
In this example A = 0.1, r = 0.001 and e = 0.5.

a) upper layer, b) lower layer.

Figure 3: The same as in Figure 2 but for c = 1.5.

Figure 4: The streamfunction of the instability corresponding

to the basic state depicted in Figure 2. a) upper

layer, b) lower layer. The amplitude of the insta-

bility is arbitrary since the problem is homogeneous.

The cells propagate eastward through a stationary

envelope. The eigenfrequency is W = 0.84+1.88i.

The maximum of both fields is rescaled to 100. The

maximum of the lower layer field is 87% of the
maximum of the upper layer field.

Figure 5: Cross sections at y = 1/2 of the fields shown in

Figure 4. Full line corresponds to the upper layer

and dashed line to the lower layer.

Figure 6: The streamfunction of the instability corresponding

to the basic state depicted in Figure 3. a) upper

layer, b) lower layer. The amplitude of the insta-

bility is arbitrary since the problem is homogeneous.

The cells propagate eastward through a stationary

envelope. The eigenfrequency is w = 1.00+2.54i. The

maximum of both fields is rescaled to 100. The

maximum of the lower layer field is 53% of the

maximum of the upper layer field.

Figure 7: Cross sections at y = 1/2 of the fields shown in
Figure 6. Full line corresponds to the upper layer

and dashed line to the lower layer.
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