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‘:2> ABSTRACT
A procedure for deriving the variance of the forecast error for Winters'
Additive Seasonal Forecasting system is given. Both point and cumulative
T-step ahead forecasts are dealt with, Closed form expressions are yiven in
the cases when the model is (i) trend-free and (ii) non-seasonal. The effects N
of renormalization of the seasonal factors is also discussed. The fact that
the error variance for this system can be infinite is discussed and the rela-
tionship of this property with the stability of the system indicated. Some

recommendations are given about what to do in these circumstances.

Keywords: Winters Additive Seasonal Model; Forecast Error Variance;

Confidence Intervals; System Stability
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A1l forecasts are wrong. As a result it is rarely adequate to yive a
forecast by itself. Some measure of the reliability or accuracy of the fore-
cast is also required. Such a measure is usually provided by a confidence
interval, This is an interval within which the future value we are forecast-
ing will fall with a prescribed probability. The philosophy and construction

of such intervals are well documented in a number of forecasting texts and we

will not consider them further here. See, for example, Brown (1962),
Montgomery and Johnson (1976) and Bowerman and 0'Connell (1979).

We simply note that an essential ingredient in all the expressions and
formulae involved in such intervals is the variance of the forecast error,
Consider the T-step ahead forecast made at time t , i.e, the forecast of xt+T
made at time t , it(T) say. The corresponding error is et(T) = Xt+T - it(T).
We 'shall denote its variance, var[et(T)]. by o$ . It is clear that o$ must
play a central role in any discussion of the usefulness of it(T) in predicting
Xt+T .

"+ The value of o$ can usually be computed on the assumption that the under-
lyiny model is valid. By underlying model we mean the model which the forecast-
ing system assumes is generating the data. The variance can certainly be derived
for the ARMA models of Box and Jenkins, and the interested reader is directed to

their book (1976). It can also be derived for all the Exponential Smoothing

systems discussed by Brown (1962) and others considered more recently by

Sweet (1981).

However, no results are available for Winters' seasonal systems. This is
particularly unfortunate since these systems are amongst the most commonly used
in practice. They are relatively simple to implement and intuitively appealiny,

Both systems are described in detail in most forecasting texts, e.y. Montgomery

and Johnson (1976), Thomopoulos (1980), and Bowerman and O'Connell (1979). In ;;




this last work, approximate confidence intervals are given for Winters' systems.
As we shal}l see, however, these intervals poorly reflect the behaviour of the
error variance.

The Winters' Multiplicative seasonal form is a non-linear system and it is
difficult to see how any useful information about the forecast error can be
obtained directly. Approximation and simulation appear to be the most sensible
tools here. In the case of the additive model, however, we can obtain some
results,

The purpose of this paper is to give a procedure for deriving the variance
of the forecast error for the Winters' Additive Seasonal forecasting system, We
deal with not only point forecasts of future values, Xt+T » but alsp cumulative
forecasts, i.e. forecasts of Yt,T = iél Xt+i , made at time ¢t .

Expressions are yiven for the variances of the individual camponents of the
forecasts, i.e. level, trend yradient and seasonal factors, and for the covari-
ances between them., This allows the construction of the variance of any par-
ticular forecast and hence of the correspondinyg forecast error. It also enables
us to construct confidence intervals for the components themselves, and linear
combinations of them.

Two special cases are considered, viz. when there is no trend, and when
there is no seasonality. This latter is the well-known Holt-Winters non-seasonal
forecasting system, In both cases, closed expressions are obtained for the
variances. In the completely general seasonal case, the expressions derived
involve a number of unknowns which are obtained by solving a set of linear
equations,

Some necessary discussion is also yiven about the stability of these

forecasting systems,
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1. THE RESULTS i
'The underlying model assumed by the Winters’ additive seasonal system'is ;

given by

Xy =m+bt+s +a (1)

t t

where t =rn + k , and n is the length of the season, The values

{s : k =1,2,...,n} are the additive seasonal factors and {at} is a seguence
of 1ndependent identically distributed random variates of zero mean and
variénce 02 . . '

The standard form of the corresponding forecasting system is yiven by

my = ag(Xp=Sp_p) + (1-gy)(my _y + b, )
by = ay(me-my ) + (1-ay)by ) (2)
S = Xgme) + (1-a))S, , -

The T-step ahead forecast is

Xg(T) =my + Tby + S, o (3)

where T =rn + k, (k =1,2,...,n; r >0) ,

The cumulative forecast, i.e. the forecast of

T - T .
Y = X is given by Y, - = X. (1) o
6,77 L s % AR

‘Our derivation of the forecast error variances parallels the development

i . ... given for Exponential Smoothing models by Brown (1962). B8y definition, it(T)

depends on only past values of 'at and so is independent of xt+T « Thus,

: c$ = °2 + var[it(T)] . Further, it(T) can be expressed as a 1inear combination
2 .

of these past values of a, and so its variance is proportional to ¢ . Thus,
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ﬁg.- cz[l + ¥(T)] . When dealiny with cumulative forecasts, the same aryument ;

potisorto e it S g

_:holdsy bR error now is Et 1 Yt,T - Y T and we may show it has variance
of the form ¢ [T + VE(T)] .

In practice, 02 is unknown. It may be estimated from the data, however,

‘using the fact that oz[l + V{1)] = of , the variance of the one step ahead

. forecast. error,, - Thus, we can estimate of directly from the forecast errors,

and khowledgg{of V(1) ylelds an estimate of 02 .

Rl < st K T, % | S b <t

. We derive _V(T) and VE(T) from the variance-covariance matrix of the
estimates of the individual components of the forecast i.e, m, s bt and
St+K-n’ k =,1,2,,7,,n.. These variances are of some interest in their own
right for the construction of confidence intervals for the components, and we

display them below, Details of the derivations are given in Appendix 1.

B o R IO T,

TR

= var(m,) = o (a2Lng + 2 "T (re)d,1 + 2(1-ay) (¢, ) a2
%*~"% 4 i 170 1% ™% 19

~N EN

= Var(b,) = 20803 (dy-d )o

(]

MN o

= Var(Sg,, ) = 205(1-a))2(dg=d;) o, Kk = 1,2,000m

oy = COV(m,b,) = adoy (2- ay) (dg-d d,)o’

ks e b A

oy = COVbesSeyon) = apoyapll-ap)(dy dy * dy ) = dppep)a’s k= LuZoeeosn

. k COV(ﬂlt,st*k ﬂ) = %%(l'uﬂ)[(‘l'ﬁ)(dn-k'dk) + (dk-l-dn~k+1)]°2' kK =1,2,000on .

", N 201 42 2 .
og5 * ogy * CoviSeyy. n-sm-"n)“ apll-ag)™(2dy y = dj j.y = djqe)os 12T < i

Before discusstng the der1vat10n of the values {dO’dl""’d } we note the forms

of vm and vEm .
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2, :
Now, V(T)o var(mt + Tb, + St+k-n) ‘ f

2 22 2
=0, t To + ot 2(0 + Tohb + Tabk) .

Thus,
V(T) = 2u0a1(d0-d )72

+ 2050 Lop (270 (dg-d) + ap(L-ag)(dy_ = dy + dy y - dp iy T

+ 20002(1'00)[(1'01)(dn_k-dk) + (dk-l-dn-kﬂ)]

2 2 2 2 2 nl

+ Zao(l-al)(do-dn) + 2a2(1-ub) (do-dl) + “0“1["d0 + 2 121 (ﬂ'i)dil (4)

In the same way, using the fact that
T

_ 1
= Tmt + 2'T(T+1)bt + kzl St+k-n »

Ye.r

we can show that when T =pn+q,p>0,1<q<n:
- 12,2 2 1 .2 2 24,2
VE(T) {7 o, * T (T+1)o'mb *7 T5(T+1) cb)/o

+ 205(1-a0) L(p#1)2(dg-d ) + pP(dg=dy o) + p(p+1)(d -dy#d, _ -dy)]

At o s e e e

+ agayay(1-ag)[(2p+1)(d=d,) + (d,_c-d )IT(T+1)

+ Zaoaz(l-ao)[p(Z-al)(do-dn) + (d dq d+d _ q)

t o kzl (dk-dn_k)]T (5)

Now the numbers dO’dl""’dn are necessary to evaluate the variances.,

These (n+l) values are derived by means of an algorithm which is given and
discussed in Appendix 2, It is a fairly straiyhtforward alyorithm due to
Wilson (1979). It has the property that it also checks the stability of the

forecastiny system. As we shall see in Section 3 this is most useful for this




forecasting system., Before discussing any of the technical aspects of the

procedure described here, we present some particular cases which have closed-

form solutions.
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2. SPECIAL CASES

2.1. Trend-free additive seasonal model.

In this case the model assumed is a constant level plus addi-
tive seasonals, The fofecasting equations are obtained by removing the second
equation from the oriyinal three (2), and dropping b,_, from the first.

" Here the values dO'dl""’dn can be derived algebraically. The variance-
covariance matrix of the components is now obtained from

oﬁ = nugh ’

o2 = ay(l-gg)l(n-l)ay + ay(l-gg)In ,

Ok ™ qouz(l-qo)h ' 1<k<n,
%5 " %54 " 7 Omk 0 lei<cicn,

whare h = o*/[(2-ay-ag¥agay) (nagtap-agay)] -
Thus, | .

1 - (1-ag)(1-a)
LU s ernsern it | (6)

It i3 interesting to note that for this model V(T) 1is independent of T .
For the cumulative forecast error, we find that for T = pn+ q, (p> 0,

15 qen), Ve(T) = P2 + od(1-a0)?(pT + pa + q)

where P = ao(nay + a,(1-ag)In/o? |

2.2, Non-seasonal Holt-Winters' system,

The appropriate equations are obtained by removing the third equation
from (2) and S, . from the first. This is a well-known non-seasonal fore-
casting system and‘oftqn used for linear trend models. It is a direct compet-
itor of Brown's second order, or double, exponential smoothing which we will
congsider shortly., The undbrlying mode) is assumed to be a simple linear trend
1.0 s is removed from (1),




oAbt

L gk g

We obtain

= (20 ¢ 2"0 - 3“0"1)"1 d

2"10“‘1"1 ’

Q
o
n

ooy (2-ay)hy »

. - o )
where h1 o /(4-2qu-ubu1) .
We can deduce in the usual way that

V(T) = [2ayalT? + 20y (2-a;)T + (2ay+20)-3a50,) Th, /o° (7)
and
VE(T) s [aoasz + 4q0a1T + (4qu+4q1-2q0al-uuaf) ]Tzhl/Zoz

2.3. Brown's Double Exponential Smootning.

It is well-known that this system is equivalent to the Holt-Winters'
non-seasonal form above if we_cnoose aoys‘l-sz and @ = (1-8)/(1+8) where
B=1-a and a is the smoothing constant. Thus, the correspondinyg results

can be obtained by making tnese substitutions in the equations of Section 2.2.

.above, The results for o ' °b’ and V(T) . may be found in Brown (1962)

and VE(T) is ygiven in Bowerman and O'Connell (1979).

2.4. Continuously re-normalized seasonal factors.

In the general additive seasonal model given by (1) it is usuall,
assumed that g S =0 . This 1s done to ensure some measure of independence
between tne lev:l of the data and tne seasonal pattern. It is always recom-

mended tnat when the corresponding forecasting system, as yiven by (2), i

1mp1emented. tne seasonal factors sum to zero 1n1t1a11y. What is to be done




thereafter is not so clear. Because of the revision equation for the seasonal
factors they will no longer sum to zero after the first observation. We can
renormalize the seasonal factors at any time by subtracting from each the
average of the set, i.e. the most recent n . Whether we should do so or not
is not clear. Some authors seem to recommend ayainst it, e,g. Bowerman and
0'Connell (1979); some regard it as an optional modification, e.g. Montgomery
and Johnson (1976); some recommend renormalization once per season, e.g.
Chatfield (1978); and some recommend continuous renormalization, i.e. after
every revision of seasonal factors, e.g. Thomopoulos (1980).

Our only interest here is in how such a procedure affects the forecast
error variance. In the cases of occasional or purely seasonal renormalization
the situation is very complex and we have nothing to say, except that the
effect on the error variance appears to be small. In the case of continuous
renormalization, however, the following result may be applied. An outline of
the proof is given in Appendix 1, Continuous renormalization of the general
forecasting system given by (2) yields exactly the same forecasts (and so
foracast errors) as running the system without renormalization but replaciny
ag sty say DY aG,c; u; respectively, where us = ay - ay(l-a)/n ,

a; = °D°1/°6 , and c; = a)/(1+ay/n) . As a consequence, the appropriate
covariance matrix elements and values of V(T) and VE(T) can be obtained

as in Section 1 ahove by replacing a,,ay,a, by qa,ut,a; respectively. The

same holds true for the trend-free version discussed in Section 2.1,




3. TECHNICAL CONSIDERATIONS

3.1. Infinite Error Variance and Stability.

In smoothing systems in yeneral the variance of the forecast error
increases as the values of the smoothing constants increase. For example, in
the case of the simple exponentially weighted moving average (SEWMA),

-

Xe = aX, + (1-a)xt_1 , the variance of the forecast error is proportional to

t
2/(2-a) which clearly increases with a in (0,1). The need for hiyher values
of a in practice reflects the fact that the underlying level is chanying
rapidly. Consequently, a more responsive forecast is needed. Moreover, the
inherent instability of the underlying model is reflected in the increase in
forecast error variance., This variance is finite while a remains in the
stability reyion of the system, i.e. (0,2) for the SEWMA, MNote that the set
of values from which - a 1is usually chosen is a subset of the stability region
of the system. Thus, 2 stable system always results for the SEWMA. This is
also true for all the General Exponential Smoothing models. However, it is
not true for the seasonal system under consideration here.
It is a somewhat surprising and problematic fact that there are choices
of the smoothing constants ags @5 O lying in the usual range, (0,1), which
yield an infinite variance for the forecast error. The algorithm yiven in
Appendix 2 checks for this possibility which indicates that the forecasting
system is unstable, If such a situation arises clearly no meaningful confi-
dence intervals can be constructed. More importantly, however, we must decide
how to interpret this knowledge of the system's instability. The concept ot .
stability for a systen of difference equations is an important one but rarely
discussed in the context of forecasting systems. Two useful exceptions to

this are the papers by McClain (1974) and Brenner et al, (1968).

10 .
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In'eésence;‘a'?orecksting'systa» such as (2) above is stable if the .
" {nfluence of earlier observations decreases with the passage of time, Thus,
"the forecasts, or' (equivalently) the forecast errors, are influenced more by
recent observations than by those in the past. It is worth noting that this
is also the essent¥al philosophy of exponential smoothing systems, and indeed,
‘most forecasting systems.
The converse of this is that in an unstable system past observations have
a constant or even growing influence on future forecasts. As an illustration,
" ‘consider the SEWMA again. The forecast it can be written as a weighted
averagé of all past observations. At time t , the weiyht given to xt_k is
a(1-0)% . ‘Clearly, if ‘a 1ies outside the stability region (0,2) this weight
increases with ' k so that data in the most remote part have greatest influ-
ence 'upon the forecast. Equally, if « = 2, all observations, however distant
in time, make the same contribution to the forecast.
fhe'1ne5capéble‘éondlu§fdh-1S'that it would be extremely unwise to select
§ﬁOOthing constants which do not Vie in the stability region of the system.
- On the one hand, we can tolerate a high (but finite) forecast error variance
because this represents a trade-off between accuracy and robustness. In an

effort to predict a model whose parameters are changing rapidly in time we

“‘may require a more résporisive system. The cost of this is a correspondingly
highér error variance. On the other hand, we can not tolerate an infinite
error variance because this indicates an unstable forecasting system. Such a

system violates exactly those assumptions which we hold most important to the

generation of our forecasts.

'3.2. Practical tonsequences,

It is ebvious from the forms of V(T) 1in the two special cases (6) and

(7) that the usuat range of values of smoothing constants, i.e. (0,1), lies
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within the stability regions for these systems. The problem arises for only

the yeneral seasonal model. The actual stability reyion s difficult to es-

- tablish in general here for it depends not only on ags & and a but also

on n , the length of the season. However, Gardner (1984) reports that Sweet
has demonstrated numerically that the usual range for the three smoothing
constants lies within the stability region for n wup ta four. For seasons
longer than four periods it is mo longer true: a result of importance for
weekly and monthly data.

The values of the smoothing constants are established in one of two ways
in general. They may be selected intuitively by appealing to the ideas of
required speed of response and constancy of the underlying model. Alterna-
tively, they may be chosen as giving the best fit with respect to some cri-
terion such as least squares. However the values are chosen, we shoyld be
very concerned if they do not lie in the systems's stability reyion,

If we have chosen them for rapid response we may allow their use for a
brief period, perhaps when we initialize the forecasting system. As noted
above, however, if we do not replace them with values in the stability reyion
then the longer we forecast the more influential become the very first
observations. If some best fitting criterion selects 'unstable' smoothiny
constants, i.e. ones leading to an infinite error variance, then a very real
possibility is that the model is wrony, at least for part of the data. In
particular, it may well be that a multiplicative seasonal model is ca)led
for.

We may decide to retain the model but use smoothing constants in the
stability region. These will be obtained by decreasing one or more of
Gys Gps G o In general, if ays @ Oy do not lie in the stability region

it will be because one or more of them is too large.




4. SUMMARY
The purpose of this paper has been to give a procedure for deriving the

variance of the forecast error for Winters' Additive Seasonal System, In

.summary that protedufe is as follows:

7-(1) If tﬁe modél has.no trend or is non-seasonal the results are yiven
in Section 2.1 and 2.2 respectively in closed form.
(i) From the chosen smoothing con;tants ags o and o the
' n+l are derived as in Appendix 1.
values are used to start the algorithm of Appendix 2 and

coefficients Wy, W,,..., W
(11i) The W

o . , 4
'yield 'do,dl,....dn‘. The algorithm simulitaneously checks the

stability of the forecasting system for the chosen values
ags G1s Gy o If n<4 the system will be stable.
" (iv) The values of d1 are substituted into the appropriate expressions

for V(T) and vt(T)'.

Note that at step (iv) we are able to ev#luate-the variance of the errors for
T-step ahead forecasts and T-step aheéd cumulative forecasts. Confidence
intervals for these future values can be derived from these variances.

A discussion of how to calculate the corresponding results when the
seasonal factors are renormalizea after each observation {s given. We have
also discussed the (real) possibility that the error variance may be infinite

and indicated its relationship with the stability of the forecastiny system,

. Some recommendations. are made about the interpretation of system instability.
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APPENDIX 1

The results of this paper are obtained using the fact that the forecast-

ing system given by (2) has an equivalent ARIMA process. The nature of this
equivalence is discussed.in McKenzie (1984) and the equivalent ARIMA for (2)
is given in'MFKenzig (1926). It has the form (l-B)(l-B")xt = H(B)et ;+Yhere

B is the backshift operator defined by kat =X, and W(EB)=1- ] WB
' o k=1

where Hl = 1.- ay - qoal . “n =1 - %Yy - uz(l-uo) , Hn+1 = - (l-qo)(l-az) .
and "k = - a0 for ’k = 2,3,00450-1 .

k )

[
Suppose now that W(B)&(B) = 1 where &(B) = § cksk . Using
' ’ k=0
equations (2), it can be shown that, for the purposes of the variance calcula-
tion, the components of of the forecast can be expressed as infinite moving

averages in {at} . Thus:

mt = GO{I + izl [Ci - (l'ﬁ)‘i-l]"‘}at »

n-1 i i
by = ooyl b 88 ¢ 1 (8;-8; p18 03

S¢ * apl-qg)[1 + T (88, )8'Ia,

min(k,n-1)

¥ 8 .y « Further, the corresponding representation of §
i=0

can be obtained by writing it as B"'kSt s (K= 3,25000eN) &

where g, = t+k-n

Since {a,} are independent random variables the variances and covariances ; ;

can be obtained directly from these moving averaye representations. Defining 2

- v
dk = 120 6161+k., (k = 0,1,...,n), yields the expressions yiven in the paper.
The alyebra is tedious and hardly illuminating and so is omitted. It can be

obtained upon request from the author. »

14
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" regards the renormaligation procedure, recall the equivalent ARIMA for
e k@) gim&hun. 1t ,q‘_intmce continuous renormalization as discussed we
- find, Shere I3 4111 an equivalent ARIMA and .f_.t,' has the same form. Now,
. ' howevar, N(B) has 'o"‘n o replaced by ogr 9)» @ « This ARIMA is equiv-
. 8lgnt to the system (2) with the starred smoothing constants. Hence, the
'. . .;;n;:u]t. . Jnigially, the. rasult is surprising. However, note that we are
really dealing with two different decompositions of the seasonal factor. | One
mfmls “t*%k‘-h)- as ..13,;;;;”@1;; in (2) a_nd: the other is .(“:+S:tk _p) Where
Sgagen - 18 normalized tq sum to zero and mp is the correspondingly adjusted

"’“"' tgaer e SRR O
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APPENDIX 2
To obtain the values {dk} note that, by definition, they are the variance
(d,) and the first n autocovariances (dl,dz,.;..d") of the autoreyressive
process of order (n+l) given by H(B)Zt "€ where {tt}'are independent
random variables of zero mean and unit variance, Thus, the sequence {dk} may

§ . be obtained by solving a suitable set of the Yule-Walker equatipns for tkis

L e L PIL

process. This procedure is discussed in McLeod (1975, 1977)."

Wie ot e ®y

From our point of view, however, a much superior approach is presented by
Wilson (1979). The stability of the forecastfng systen'éorresponds to the K
stationarity of the autoregressive process {Zt} and can be tested routinely !

within the procedure. The alyorithm is as follows:

(i) define “n+l,k =W k=1,2,...,M*1; and tel ” 1.
(it) apply the following equations in the given order for
k = n+l,n,.ee,2

= 2
Dk 1- uk,k

if D, < 0 , the system is unstable; stop now,

K
W1, ™ Uyt * Mok Migke1/00 (= 12heee,kel)

, K-
(111) o, = 1 - "%,1

if D1 < 0, the system is unstable; stop now.
d0 = tI/DI’ and the system is stable, and the error variance finite,

(tv) d, = W

g 1" "0 %
” k' l )
i )

B " M1, Gket Mg B KT 2adeeeenn

Note that if n < 4 the system is stable for the usual choice of parameters

f.0. a5 ¢ (0,1), 1 = 0,1,2, and so we need not test 0 -
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