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ABSTRACT

A procedure for deriving the variance of the forecast error for Winters'

Additive Seasonal Forecasting system is given. Both point and cumulative

T-step ahead forecasts are dealt with. Closed form expressions are yiven in

the cases when the model is (i) trend-free and (ii) non-seasonal. The effects

of renormalization of the seasonal factors is also discussed. The fact that

the error variance for this system can be infinite is discussed and the rela-

tionship of this property with the stability of the system indicated. Some

recommendations are given about what to do in these circumstances.

Keywords: Winters Additive Seasonal Model; Forecast Error Variance;

Confidence Intervals; System Stability
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All forecasts are wrong. As a result it is rarely adequate to give a

forecast by itself. Some measure of the reliability or accuracy of the fore-

cast is also required. Such a measure is usually provided by a confidence

interval. This is an interval within which the future value we are forecast-

ing will fall with a prescribed probability. The philosophy and construction

of such intervals are well documented in a number of forecasting texts and we

will not consider them further here. See, for example, Brown (1962),

Montgomery and Johnson (1976) and Bowerman and O'Connell (1979).

* We simply note that an essential ingredient in all the expressions and

formulae involved in such intervals is the variance of the forecast error.

Consider the T-step ahead forecast made at time t , i.e. the forecast of Xt+

made at time t , X t(T) say. The corresponding error is e t(T) - X t+T - Xt(T).

We'shall denote its variance, var~e (T)]. by aT 2 I is clear that 2T must

play a central role in any discussion of the usefulness of X t(T) in predicting

X t+T *

The value of a 2 can usually be computed on the assumption that the under-

lying model is valid. By underlying model we mean the model which the forecast-

ing system assumes is generating the data. The variance can certainly be derived

for the ARMA models of Box and Jenkins, and the interested reader is directed to

their book (1976). It can also be derived for all the Exponential Smoothing

systems discussed by Brown (1962) and others considered more recently by

Sweet'(1981).

However, no results are available for Winters' seasonal systems. This is

particularly unfortunate since these systems are amongst the most commonly used

in practice. They are relatively simple to implement and intuitively appealing.

Both systems are described in detail in most forecasting texts, e.g. M4ontgomery

and Johnson (1976), Thomopoulos (1980), and Bowerman and O'Connell (1979). In



this last work, approximate confidence intervals are given for Winters' systems.

As we shall see, however, these intervals poorly reflect the behaviour of the

error variance.

The Winters' Multiplicative seasonal form is a non-l inear system and it is

difficult to see how any useful information about the forecast error can be

obtained directly. Approximation and simulation appear to be the most sensible

tools here. In the case of the additive model, however, we can obtain some

results.

The purpose of this paper is to give a procedure for deriving the variance

of the forecast error for the Winters' Additive Seasonal forecasting system. We

deal with not only point forecasts of future values, X t+T 9 but also cumulative
T

forecasts, i.e. forecasts of Y tj . X t~ made at time t

Expressions are given for the variances of the individual components of the

forecasts, i.e. level, trend yradient and seasonal factors, and for the covari-

* ances between them. This allows the construction of the variance of any par-

* ticular forecast and hence of the corresponding forecast error. It also enables

us to construct confidence intervals for the components themselves, and linear

combinations of them.

Two special cases are considered, viz, when there is no trend, and when

there is no seasonality. This latter is the well-known Halt-Winters non-seasonal

forecasting system. In both cases, closed expressions are obtained for the

variances. In the completely general seasonal case, the expressions derived

involve a number of unknowns which are obtained by solving a set of linear.I

equations.

Some necessary discussion is also yiven about the stability of these

forecasting systems.
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1. THE RESULTS'

The underlying model assumed by the Winters' additive seasonal systemis

given by

Xt = m + bt + sk+ (1)

where t = rn + k , and n is the length of the season. The values

{sk k - 1,2,...,nj are the additive seasonal factors and (at) is a sequence

of independent identically distributed random variates of zero mean and
2

variance o 2

The standard form of the corresponding forecasting system is given by

mt = o )(Xt-St-n) + (l-%)(mt.l + bt. I )

bt = p(mt-mt.1) + (1-.)bti1  (2)

St = 02(Xt-mt) + (l-02)Stn

The T-step ahead forecast is

it(T) = mt + Tbt + St+k-n (3)

where T - rn + k, (k a 1,2,...,n; r > 0)

The cumulative forecast, i.e. the forecast of

T TA
YtT xt+ i  is given by Yt,T X(i)

Our derivation of the forecast error variances parallels the development

giyen, for Exponential Smoothing models by Brown (1962). By definition, it(T)

depends on only past values of at and so is independent of Xt+T . Thus,

2 2 AA
" a a + var[Xt(T)] . Further, Xt(T) can be expressed as a linear combination

of these past values of at and so its variance is proportional to a. Thus,

3



21 e [ + V(T)J . When dealing with cumulative forecasts, the same argument

ftlds. fiw error now is Et,T - Yt,T - YtT and we may show it has variance

of the form o2[T + VE(T)J .

In practice, i2 is unknown. It may be estimated from the data, however,

using the fact that 21[ + V(i)J = , the variance of the one step ahead

forecast error, Thus, we can estimate a directly from the forecast errors,

and knowledgeof V(1) yields an estimate of a,

We derive ,V(T) and VE(T) from the variance-covariance matrix of the

estimates of the individual components of the forecast i.e. mt, bt and

St+kn k = 12.,...,,n . These variances are of some interest in their own

right for the construction of confidence intervals for the components, And we

display them below, Details of the derivations are given In Appendix 1.
= n-i

a2  a2 2 2
am Var(mt) = % t([nd0 + 2 X (n-i)d ] + 2(1-c)(do-d

l=1
2 2 d  o2*b = Var(bt) = nalj O" n)

o2 .Var(St+kn) - 2(1-) 2 (d-d)a 2 , k d )a..

amb Cov(mt,t) = 2a(2-a)(d 
2

Obk Cov(bt St+k-n) = al 02(l'%)(dn-kdk + dk-1 dnk+1)0* k n,,

Omk Cov(mt,St+k.n) - )a(l-J)[(-)(dn-k-dk) + (dk-1-dn-k+1)]O2  k

.*f(j -,O6 l;-Cov(St+in,$t+jn)- *~ 2 (1- 0 )2 (2dj.i - djil I - dj~ l), ( _ _ n.

Before discussing the derivation of the values (dood1 ...,dn) we note the form$

of V(T) and VE(T)
...... ,



Now, V(T)o2 a var(mt + Tbt + St+k-n)

2 22 2

=M m + T Ob + as + 2(Omk + Tmb + Tbk)

Thus,

V(T) 2coa_(do-dn

+ 2qaoc[aO(2-*l)(do-dn) + c2(l-qo)(dnk - d + d - dnk+lT

+ 2aoa2 (1-q%)[(-al)(dn-k-dk) + (dk-1-dn-k+l)J

22 n-1
+ 2t(1-G1)(do-d n ) + 2 (1- )2(dO-dj) + c,[ndo + 2 . (n-li I] (4)

In the same way, using the fact that

T
Yt,T = Tmt + 1 T(T+1)bt + S S

k= 1

we can show that when T =pn + q, p >0, 1 <q <n:

22 2
VE(T) [T o +T2(T+1)o I2/22/

En am (+ mb + b aT1 b/

+ 2a (1-ao)2E(p+l)2 (do,_dq) + p2(dodnq) + p(p+l)(dqdn+dn. qdo)n

+ aOaa2(1-o%)[(2p+1)(do-dn) + (dnq-dq))]T(T+l)

+ 2aoa 2(1-%o)[P(2-al)(do-dn) + (do-dq-dn+dn.q)

+ aI ? (dk-dn-k)]T (5)
k1

Now the numbers dosd 1 ,...,dn are necessary to evaluate the variancos.

These (n+1) values are derived by means of an algorithm which is given and

discussed in Appendix 2. It is a fairly straightforward algorithm due to

Wilson (1979). It has the property that it also checks the stability of the

forecasting system. As we shall see in Section 3 this is most useful for this

InI5l _ ., .- .= -- --. ,.,.v .,.,J ,



forecasting system. Before discussing any of the technical aspects of the

procedure described here, we present some particular cases which have closed-

form solutions.

6



2. SPECIAL CASES

2.1. Trend-free additive seasonal model.

In this case the model assumed is a constant level plus addi-

tive seasonals. The forecasting equations are obtained by removing the second

equation from the original three (2), and dropping bt. 1 from the first.

Here the values dodl,...,dn can be derived algebraically. The variance-

covariance matrix of the components is now obtained from

(2 * 2am - na0h

S2a - a (;-ao)[(n-1)a 0 + a2(1-ao)]h

Omk a vOa2(l-*O)h I < k < n

Oi N Oji "tk 1 < i j n

where h •a2/C(2-cO, % )(n% ,a2).

Thus,

V(T) 1 (6)

It is interesting to note that for this model V(T) is independent of T

For- the cumulative forecast error, we find that for T a pn + q, (p > 0,

I : q . n), VE(T) . PT2 + 2(I-) 2 (pT * pq + q)

where P a co[n% + *2(1.a)]h/a2

2.2. Non-seasonal Holt-Winters' system.

The appropriate equations are obtained by removing the third equation

from (2) and Stn from the first. This is a well-known non-seasonal fore-

c4sting system and often used for linear trend models. It is a direct compet-

itor of Brow's second order, or double, exponential smoothing which we will

consider shortly. The underlying model is assumed to be a simple linear trend

i.e. s is removed from (1).

k

E7



We obtain

a2m  (24zl + 29% -3aOh

a 2aoa2h1

0mb 'i

where h1 
= 2/(4_2uoo)

We can deduce in the usual way that

V(T) = 2ao2T2 + 2%ao(2-a)T + (2*O+2a 1 -3ao 1 )]h 1 /o 2  (7)

and

VE(T) [ 2oa2T2 + 4a1T + (4%+4al-2%Oa-al2)IT2h1 /20 2

2.3. Brown's Double Exponential Smoothing.

It is well-known that this system is equivalent to the Holt-Winters'

non-seasonal form above if we choose a0 -1-02 and = (1-0)/(1+0) where

0 = 1-a and a is the smoothing constant. Thus, the corresponding results

can be obtained by making these substitutions in the equations of Section 2.2.

.above. The results for 2  2 Omb and V(T). may be found in Brown (1962)

and VE(T) is given in Bowerman and O'Connell (1979).

2.4. Continuously re-normalized seasonal factors.

In the general additive seasonal model given by (1) it is usually

assumed that k sk £ 0 . This is done to ensure some measure of independence
k1

between the level of the data and the seasonal pattern. It is always recom-

mended that when the corresponding forecasting system, as given by (2), is

Implemented, the seasonal factors sum to zero initially. What is to be done

8



thereafter is not so clear. Because of the revision equation for the seasonal

factors they will no longer sum to zero after the first observation. We can

renormalize the seasonal factors at any time by subtracting from each the

average of the set, i.e. the most recent n . Whether we should do so or not

is not clear. Some authors seem to recommend against it, e.g. Bowerman and

O'Connell (1979); some regard it as an optional modification, e.g. Montgomery

and Johnson (1976); some recommend renormalization once per season, e.g.

Chatfield (1978); and some recommend continuous renormalization, i.e. after

every revision of seasonal factors, e.g. Thomopoulos (1980).

Our only interest here is in how such a procedure affects the forecast

error variance. In the cases of occasional or purely seasonal renormalization

the situation is very complex and we have nothing to say, except that the

effect on the error variance appears to be small. In the case of continuous

renormalization, however, the following result may be applied. An outline of

the proof is given in Appendix 1. Continuous renormalization of the general

forecasting system given by (2) yields exactly the sam forecasts (and so

forecast errors) as running the system without renormalization but replacing

,ala 2  by oso, c respectively, where co - a2 (l-%)/n

a, q / , and *o2/(l+a 2/n) . As a consequence, the appropriate

covariance matrix elements and values of V(T) and VE(T) con be obtained

as in Section 1 above by replacing a0 ,%l*a 2  by * respectively. The

same holds true for the trend-free version discussed in Section 2.1.

9



3. TECHNICAL CONSIDERATIONS

3.1. Infinite Error Variance and Stability.

In smoothing systems in general the variance of the forecast error

increases as the values of 'the smoothing constants increase. For example, in

the case of the simple exponentially weighted moving average (SEWMA),

Xt = aXt + (la)Xt-I , the variance of the forecast error is proportional to

2/(2-a) which clearly increases with a in (0,I). The need for higher values

of a in practice reflects the fact that the underlying level is changing

rapidly. Consequently, a more responsive forecast is needed. Moreover, the

inherent instability of the underlying model is reflected in the increase in

forecast error variance. This variance is finite while a remains in the

stability region of the system, i.e. (0,2) for the SEWMA. Note that the set

of values from which a is usually chosen is a subset of the stability region

of the system. Thus, a stable system always results for the SEWMA. This is

also true for 'all the General Exponential Smoothing models. However, it is

not true for the seasonal system under consideration here.

It is a somewhat surprising and problematic fact that there are choices

of the smoothing constants aO , ai , a2  lying in the usual range, (0,1), which

yield an Infinite variance for the forecast error. The algorithm given in

Appendix 2 checks for this possibility which indicates that the forecasting

system-is unstable. If-such a situation arises clearly no meaningful confi-

dence intervals can be constructed. More importantly, however, we must decide

how to interpret this knowledge of the system's instability. The concept ot

stability for a system of difference equations is an important one but rarely

discussed in the context of forecasting systems. Two useful exceptions to

this are the papers by McClain (1974) and Brenner et al, (1968).

10



In.esence,' a 'forecasting syste. such as (2) above is stable if the

Influence of earlier observations decreases with the passage of time. Thus,

the forecasts, or'(equivalently) the forecast errors, are influenced more. by

recent observations than by those in the past. It is worth noting that this

is also'the esseniti Tphilosophy of exponential smoothing systems, and indeed,

moit forecasting systems.

The donverse of this is that in an unstable system past observations have

a constant or even growing influence on future forecasts. As an illustration,

consider theSEWMA again. The forecast it  can be written as a weighted

average of all past observations. At time t , the weight given to Xt- k  is

a(1-a) . Clearly, if a lies outside the stability region (0,2) this weight

increases with k so that data in the most remote part have greatest influ-

ence upon the forecast. Equally, if a = 2, all observations, however distant

in time,'ake the same contribution to the forecast-

* hThe inescapable conc:lu~idh is that it would be extremely unwise to select

smoothing constants which do not lie in the stability region of the system.

On the one hand, we can tolerate a high (but finite) forecast error variance

because this represents a trade-off-between accuracy and robustness. In an

effort to predict a model whose parameters are changing rapidly in time we
'mayrequire a ,rerespo6imve system. The cost of this is a correspondingly

higher error variance. On the other hand, we can not tolerate an infinite

error variance because this indicates an unstable forecasting system. Such a

system violates exactly those assumptions which we hold most important to the

generation of'our forecasts.

3.2. Practical ionsequences.

It Is obvious frum the forms of V(T) in the two special cases (6) and

(7) that the usual range of values of smoothing constants, i.e. (0,1), lies

11



within the stability regions for these systems. The problem arises for only

the general seasonal model. The actual stability region I* difficult to gs-

tablish in general) here for it depends not only on alo, a, and a2 but also

on n , the length of the season. However, Gardner (1984) reports that Sweet

has demonstrated numerically that the usual range for the three smoothing

constants lies within the stability region for n up to four. For seasons

longer than four periods it is no longer true: a result of importance for

weekly and monthly data.

The values of the smoothing constants are established in one of two ways

in general. They may be selected intuitively by appealing to the ideas of

required speed of response and constancy of the underlying mo~lel. Alterna-

tively, they may be chosen as giving the best fit with respect to some cri-

terion such as least squares. However the values are chosen, we should be

very concerned if they do not lie in the systems's stability region.

If we have chosen them for rapid response we may allow their use for a

brief period, perhaps when we initialize the forecasting system. As noted

above, however, if we do not replace them with values in the stability region

then the longer we forecast the more influential become the very first

observations. If some best fitting criterion selects 'unstable' smoothing

constants, i~e. ones leading to an infinite se'p variance, then a very real

possibility is that the model is wrong, at least for part of the data. In

particular, it may well be that a multiplicative seasonal model is called

for.

We may decide to retain the model but use smoothing constants in the

stability region. These will be obtained by decreasing one or more of

% 1~ al'2 * In general, if aU, a,, a. do npt lie in the stability region

it will be because one or more of them Is too large.

12



4. SUMMARY

The purpose of this paper has been to give a procedure for deriving the

variance of the forecast error for Winters' Additive Seasonal System. in

summary that procedure is as follows:

,(1) If the model has no trend or is non-seasonal the results are given

in Section 2.1 and 2.2 respectively in closed form.

(ii) From the chosen smoothing constants cO, a, and u2 the

coefficients W1 , W2 ,..., W are derived as In Appendix 1.21 n+1

(iiI) The W values are used to start the algorithm of Appendix 2 and

yield d0 ,d1 ,....d n . The algorithm simultaneously checks the

stability of the forecasting system for the chosen values

ao, al, a2 . If n _< 4 the system will be stable.

(iv) The values of d1  are substituted into the appropriate expressions

for V(T) and VE(T)

Note that at step (iv) we are able to evaluate the variance of the errors for

T-step ahead forecasts and T-step ahead cumulative forecasts. Confidence

intervals for these future values can be derived from these variances.

A discussion Qf how to calculate the corresponding results when the

seasonal factors are renoralized after each observation is given. We have

also discussed the (real) possibility that the error variance may be infinite

and indicated its relationship with the stability of the forecasting system.

Some reoommendations.are made about the interpretation of system instability.
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APPENDIX I

The results of this paper are obtained using the fact that the forecast-

ing system given by (2) has an equivalent ARIMA process. The nature of this

equivalence is discussed in McKenzie (1984) and the equivalent ARIPiA for (2)

is given In McKenzie (1976). It has the form (1-B)(I-Bn)Xt . W(B)et , where
n+1

B is the backshift operator defined by Bkxt = Xtk and W(B) 1 - I W Bk
~k=l

where W 1
where ; 1  1 0 - 00a1 , Wn 

= 1 - QOa 1 - G2(1-60) , Wn+1 
= "(1"a)(1"02)

and Wk = " for k = 2,3,...,n-1kkk

Suppose now that W(B)6B) - 1 where 6(B) = k B Using
k-O

equations (2), it can be shown that, for the purposes of the variance calcula,

tion, the components of of the forecast can be expressed as infinite moving

averages in {at) . Thus:

mt - 0 a + i 1 " (l-"i)Cit-1Ji}at
n-1

bt = + 8l[ I)B 1Jat "
1~1[ 6. 1 +in B]

1-0o 1 -n

St . a2 (1-aO)[1 + Y (6a i-.1)Blot

min(k,n-1)
where Ck " 0k-i 0 Further, the corresponding representatton of St+kn1=0

can be obtained by writing it as BnkS , (k t ,

Since {at} are independent random variables the variances and covariances

can be obtained directly from these moving average representations. Definin9

dk = = 6i6i+k , (k a 0,1,...,n), yields the expressions given in the paper.
1t0

The algebra is tedious and hardly illuminating and so is omitted. It can be

obtained upon request from the author.

14



As roerds the renorusaligatto. procedure, recall the, equivalent ARIMA for

(2).g~IteuQV, fw larooice continuous renormalizatlon as discussed we

,f~a,*~q~iIt~lap qiv~entARINA and, it has the same form. Now,

~ ~(R) ~ q03  as replaced by a~ s,4 .This ARIMA is equlv-

aipt ,t ~ sys~ (~) ith W~ starred smoothing constants. Hence, the

wes~t., I~41 '1Y~ jhe.resltis..urprising. However, note that we are

really dealing with %we different decompositions of the seasonalfatr On

fo As(*t,*S.t.,)a it4 eppqrp In (2) and the other is tm+k-n)whr

-. s qrulledtj sup to zero and m* is the correspondingly adjusted
1S l4



APPENDIX 2

To obtain the values {dk} note that, by definition, they are the variance

(du) and the first n autocovariance$ (d id 2 ,.*,*dn) of the autoverefsive

process of order (n+l) given by W('B)Zt - Ct , where ft } are independent

random variables of zero mean and unit variance, :Thus, the sequence (dk) may

be obtained by solving a suitable set of the Yule-Walker equations for th is

process. This procedure is discussed in McLeod (1975, 1977).'

From our point of view, however, a much superior approch is presented by

Wilson (1979). The stability of the forecasting sySte corresponds to the

stationarity of the autoregressive process (Zt ) and can be tested routinely

within the procedure. The algorithm is as follows:

(t) define Wn+l,k ' Wk , k - 1,2,...,n+1; and tn+1 -

(ii) apply the following equations in the given order for

k =n+l,n,...2

O = 1 - W2
k k,k

if Dk _ 0 , the system is unstable; stop now.

Wk-l,1 (W k, + W k,k Wkk-i)/k (I - i,2,,..,k-1)

tki- tk/Ok

(iii) D -  i -

if D< 0 , the system is unstable; stop now.

d t /Di, and the system is stable, and the error variance finite.
(iv) d I - W;, dO 0

k-i
dk Wk.1i dk. i + Wk, k t k , k 2,3,,,,,n

Note that if n < 4 the system is stable for the usual choice of parameters

i.e. SI e (0,1), 1 - U,1,2, and so we need not tes Dk

16
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