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APPROXIMATING THE PROBABILITIES OF DETECTING AND OF HITTING TARGETS

AND THE PROBABILITY DISTRIBUTION OF THE NUMBER OF TRIALS ALONG THE

VISIBLE PORTIONS OF CURVES IN THE PLANE SUBJECT TO A POISSON SHADOW-
ING PROCESS*

by

M. Yadin and S. Zacks
Technion, Israel Institute of Technology and -
State University of New York at Binghamton

““ - ABSW. : . . :

A target (deer) is moving alon fé path in the forest. - L :
The path is partly obscured from an observer (hunter) ‘
by trees which are randomly Mispersed. In order to . k
detect the target there shguld be a visible window .
along the path of length or larger. If a target is — -
detected, the hunter starfgashooting at it. Each

shooting t;izl requires a visibility window

of length . The hunter continues with the shooting

trials until the target is hit or disappears in a

shadowed portion of the path. The present paper pro-

vides a methodology for approximating the probability

of detecting a target, and lower and upper bounds for

the probability distribution of the total number of

shooting trials along the visible portions of the path.

Lower and upper bounds for the probability of hitting

the target are provided too. These bounds and approxi-
mations are derived under the assumption that the

obscuring elements constitute a Poisson random field. (f;“\\\\\

Key Words: Poisson Shadowing Process, Bernoulli Trials,
Visibility Probabilities, T-reduccd measure of
Visibility, Detection Probability, Hitting
Probabitity.

*Partially supported by Contract DAAGZ29-83-K-0176 with the U. S.
Army Research Office.
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;ﬁ 0. Introduction

S A hunter is trying to detect and hit a deer in a forest.

f% Suppose that a deer is moving along a path in the forest and

53 the hunter is located among the trees at some distance from the

- path. The path is only partially visible to the hunter; the

»ii invisible (shadowed) portion of the path is obscured by the

i? trees which are dispersed randomly between the hunter and the

;% path. A deer can be detected by the hunter if at least a certain

a part of it is visible. This occurs only if at least one of the

}: visible segments of the path is sufficiently long.

}N After detection of a deer, in a visible segment, the hunter

:Q starts shooting. The deer continues, however, to move along the

% path in the same pace. During each shooting trial the deer crosses

i a length of T of the path. Thus the number of shooting trials in

ﬁ ’ each visible segment depends on the length of the segment. The

i% shooting trials stop when the deer is either hit or enters an
invisible portion of the path. When the deer enters another visible

) segment, it has to be detected agin. For simplicity we assume

g that the shooting trials are Bernoulli, with probability of failure

;f g, 0<g<l.

3: The problem of deer hunting can be treated as a two dimensiocnal

shadowing problem. The hunter is located at a point 0 in the

plane, the deer moves along a curve C in the plane, and the trunks

M‘#. DA sAS

of trees can be described as random disks dispersed between 0 and C.

Two dimensional random shadowing problems were previously studied
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by Chernoff and Daly [l1]. Likhterov and Gurin [2], Yadin and

Zakes [3,4]. The methodology developed in the present paper is
also applicable to three dimensional versions of the above problem.
For example, if a hunter tries to shoot down a bird whose flying
course is partially obscured by crowns of trees. The three dimen-
sional shadowing problem was previously studied by Yadin and
Zacks [5].

In the present study we develop approximations for (a) the
probability of detection; (b) the probability distribution of the
maximal number of shooting trials N; and (c) the probability of
survival of the deer (bird). We also provide numerical examples
to illustrate the goodness of these approximations.

In section 1 we review the notions and definitions concerning
random Poisson shadowing fields in the plane, measures of random
visibility on star shaped curves, and introduce the notion of
T~reduced measures of visibility. This notion enables us to define
detection probabilities in terms of the distribution of the
T-reduced measure of visibility. In addition we can also arrive
at lower bounds to the number of Bernoulli trials, N, along the
visible portion of a curve. The moment generating function (MGF)
of the t-reduced measure of visibility yields lower and upper
bounds to the probabilities of a successful hunt. Section 2 dis-
cusses the moments of the t-reduced visibility measure and intro-
duce an approximation to its distribution. With the aid of this

approximation we obtain bounds for the MGF mentioned above.

.............
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Section 3 and 4 present approximations to the cumulative dis-
tribution functions of the t-reduced visibility measure V(t), and
of the number of trials, N, along the visible portions. Section

5 is devoted to the problem of determining the probability of
simultaneous visibility of n points along the curve C, and the
recursive determination of the moments of V(t). Section 6 provides
some special cases of two-dimensional models. Finally, in Section
7 we provide a numerical example. The methodology presented here
for two-dimensional shadowing problems can be generalized in a
straight forward manner to three-dimensional, by applying similar

modifications to the results of [5].

1. The Model, Measures of Visibility and Failure Probabilities

Suppose that the hunter is located at the origin, 0, and let
C denote the path of the deer. C( is assumed to be a smooth star
shaped curve, defined by a piece-wise differentiable function

r(s), s; < s < s,, representing the distance from 0 to C in

L

orientation s. The polar coordinates of a point P, on C are

(r(s),s). The end-points of C are PS and Ps . The length of C is
“PL “2u
!'su
(1.1) L = j L(s)ds ’
L
where
2,1/2

1s) = (£2(s) + (& x(s) )2

The trees in the forest are presented by random disks dispersed

in a region between 0 and (. Each random disk is characterized

-l SEnae
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}j by coordinates (p,0,y), where (¢,8) are the polar coordinates of
( its center and y is its diameter. The coordinates (p,<,y) belong
‘& to a set § in R3 satisfying conditions which assure that 0 is not
r., ~
ﬁ covered and C is not intersected by random disks. Let B be the
Borel ¢g-field on the sample space S, and let N{B! designate the
-, : :
* number of disks whose coordinates belong to a set B of B. We
'i assume that, for each BeB, N{B} is a random variable having a
; Poisson distribution with mean
2
- (1.2) v{B} = A[ff H(dp,d?)dG(y|e,9),
\ B
> where G(y|p,6) is the conditional CDF of y, given (¢,6), and
15
N H(dg,d0) is a o-finite measure of (p,6). Such a random field
o
( of disks is called a Poisson random field.
O A point P_ on C is said to be visible if the line segment
.; .
j OPs is not intersected by any random disk. A point which is not
visible is in a shadow. The measure of total visibility on C
~
AN is defined as
hY
’\
N
& Su
_, (1.3) v={ ms)itis)as ,
3 s
~
-~ where I(s)=1 if Ps is visible, and I(s)=0 otherwise. Notice that
Y
< V is a random variable representing the total length of the
“? visible portion of C. V is a sum of a random number, M, of
R
Iy visible segmentsof C having random length Xl, Xz, ey XM; i.e.
‘.'
X
!
3
~
\U
v -4~
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(1.4) vV =

A target is detected only if there exists at least one visible
segment of length greater than the minimal path length To required
for identifying the target. 1In order to develop a formula for
the probability of detecting a target, we introduce the notion

of t1-reduced visibility measure, V(1), which is the total length

of visible segments, each one reduced by T units, i.e.,

M
(1.5) vit) = .Z (Xi-'r)+
i=1
where a, = max(a,0). The probability that a target is not detected
is
(1.6) pylt) = Pr{V(To) = 0}.

On the other hand, the probability that C is completely visible is
(1.7) p; = Priv(t) = L-1}, for all 0<t<L.

Indeed, when C is completely visible, M=1 and X1=L. Let N denote
the number of shooting trials, after detecting a target. 1If a
single shooting trial requires a segment of length t to be
completely visible, then

M
(1.8) N= I [(Xi-T°)+/T] '

i=1

where [a] is the maximal integer not exceeding a. Notice that
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(1.9) T iil (Xi-ro—r)+ <N iil (Xi-t)+
Hence, according to (1.5) and (1.9),
(1.10) V(Tl)/T <N < V(To)/T '
where Ty =TT, t T

If the probability of failure in each shooting trial is g, and

the shooting trials are independent (Bernoulli), the number of
shooting trials required until the first success, J, is distributed
geometrically. Accordingly, the probability of failure (not
hitting the deer) is Q = E{qN}. Thus, according to (1.10), lower

and upper bounds for Q are, respectively, Qo and Ql' where

(1.11) 9. = E{qV{Ti)/Ty

Notice that Qi is the value of the MGF of V(Ti) at the point

t = (log q)/T.

2. The Moments and Moment Generating Function of V(t).

For the sake of determing the moments of V(1) we introduce

the following definition of this measure,
su,T
(2.1) vin) = [ I.(s)ils)ds ,

s
L,T
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.\ where IT(s) =1 if a segment of C of length T, centered at
T

(r(s),s) is completely visible, and IT(s) = 0 otherwise. Sy, ¢

4 !
2%
\,.'}' and Sy ¢ are direction coordinates of points within C, of distance
b 14

b
a2 t/2 along C from S, and Sy respectively. More formally, let

." S
2 | (2.2) L(s) = [ uylay.

s SL
: Then, s, _ = L Y(1/2) and s, _ = L (L-1/2)
N " SL,T U, t : |
e \
N - i
N\ The n-th moments of V(1) is thus !
“‘\: i
N s |
g U,1

AL n

() = ELC[ I(s)2(s)ds)™)

LSy n T

N SL, 1

&

s (2.3)
{
P~ o .

- e = ]

- n! ff E{ 7 I (s)} 7 (s;)ds;.

i=1 i=1

an A

S T

' The set A is the simplex

n'T

.:;:
e _ . )

o (2.4) Aot = lsys veer s Sp,¢S81< . -<S <8y L .

i n

oY Furthermore, E{ = Ir(si)} is the probability that the union of

e i=1

.»_'; n segments of (, each one of length 1, centered at n points
e
- ’ having direction coordinates Sy <e..<8 is completely visible. i
N i
o . This probability is designated by p_(s;, ..., s ;7). Thus the ;
::":.:

"., n-th moment of V(1) is

e
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(2.5) nato =at oo f pots .8 o) is;)ds,.
A

n,t

n
m

1

1
-’

The method for determining pn(sl, ceoy Sn;T) and un(r) is based
on a general methodology developed by Yadin and Zacks [3,4] for
the special case of t=0. The main results of those papers, with
the modifications required for t>0, are presented in Sections

4 and 5.

3. An Approximation to the CDF of V(t)

The cumulative distribution function (CDF) of V(1) is a
mixture of a two-point distribution concentrated on {0,L-t} and
a distribution concentrated on the interval (0,L-t). For the
purpose of presenting the approximation discussed below, we
consider a normalized measure of visibility W(t) = v(t)/(L-1),

which is concentrated on [(0,1)}. The CDF of W(T) can be represented

as

0 , 1f w<0
(3.1) FT(W) = po(t)+(l-po(T)-pl) F;(w), 0<w<l

1 ¢ 1w .

If, for example, G(y|p,6) is absolutely continuous then F;(w) is
an absolutely continuous CDF on (0,1). Let'un(r) denote the n-th

moment of W(t). Obviously, nn(r) = (L-T)nun(r) , N=1,2,... .

Furthermore,

-8-

-------------
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1
(3.2) w (1) = py + (L-p_(0)-p)) [ wlaFt(w , n=1,2, ... .
0

Applying the Dominated Convergence Theorem one immediately proves

that lim un(T) =P, for all 1>0.

n->wv
Explicit expressions for po(r) and F?(w) are not available.
We apply here a beta approximation to F;ﬁv) and provide a numerical

approximation to po(r). This type of mixed-beta approximation was
applied also in [3,4,5). As will be shown in Section 6, in some
special cases, the first ten moments of W(t) and of the mixed-beta
approximation are very close. This indicates that in those cases
one has a highly effective approximation. 1In caseswhere the moments

are not in agreement better approximation should be attempted.

The approximating beta-mixture CDF is given by the formula

0 , if w<0
(3.3) F_(w) = ¢B (1) + (1-B_(1)-p{)I (a_,B), O<w<l
1 ’ if lﬁw ’

where Iw(a,B) + 0 <w <1, 0<a,B<», denotes the incomplete beta

function ratio. The probability of complete visibility of C, Py

is determined by the shadowing model, as shown later. The values

of 50(1), a_ and BT are determined by equating the formulae of the

T
first three moments of FT(w) to those of W(t). As shown in [3]

these approximating parameters are given by

LLSTSATREIEILS SRR LEIRL S LGLETRTHTHENE VLS CHA YL GRRRYOG!




T T TN T TR TR 5'1

o 2 (g (1)) 2-ug (1) (3 (1) + ud (1))

(. W (1) ug (1) = (w3 (1)) 2
L

(3.4)
o
L (1 (1) -u3 (1)) (WE (1) -u% (1))

R ut (T)ut (1) - ()2

and
. (3.5) Bo(t) = l-py-uj(t) (0 +8 ) /o .

where

>, =
(3.6) ur (1) by (1) -py ' n=1,2,3 .

ok

R
i

'Jl
[

Notice that uf(t)>0 for all n=1,2,... and that p (o 2ur 4 (1)

AN

s 4

As revealed in formula (3.4) the solutions for oL and BT might

o~

S Ay
ﬁ"- Y

‘|
‘

e,

be sensitive to the numerical accuracy of the moments. §O(To) is

the mixed-beta approximation to the probability of no detection,

0
LS Y

)
o
A

po(To).

i
‘I -

Likhterov and Gurin (2] developed a theory of random coverage

=rre
h 4

v
&

on the real line, according to which po(ro) can be obtained by

S
" solving certain integral equations. Such a solution requires
lﬁéﬂ generally numerical iterative techniques. The method of approxi-
7
j}} mating po(To) from the moments of W(t) requires a numerical
:ﬁ; approximation too, but is simpler to execute.
e
ol
N
bﬁ ' 4. Bounds for the CDF of N and for Q
4.. .-\
e Inequality (1.10) yields lower and upper bounds for the CDF
N of N. Indeed, from (1.10),
2%
I |
-F..-".
23
= -10-
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(4.1) F_ (=) <Pri{N<nl<F_ ( )

o o 1l L-Ti

The CDF's in (4.1) can be approximated by the mixed-beta CDF

(3.3). According to (l1.11), the lower and upper bounds, for

the failure probability Q, are the value of the MGF of W(Ti) i=0,1,
at the point t=%(L—Ti)log<;.Let G.(t) indicate the MGF of W(1).

This function can be expressed in terms of the moments of W(t) as

Coux(T)
n tn’ -0<t<oe

(4.2) G .(t) =1+ pl(et-l) + ni

1
1 B!
Since u;(r) ¥ 0 as n grows the infinite series in (4.2) converges
faster than et, and therefore a small number of terms will often
provide a good approximation. Another method of approximating
Gr(t) is by employing the MGF of the mixed-beta distribution (3.3)

with p(T1), a. and BT.

5. Visibility Probabilities and Moments for Two Dimensional Models

In Section 2 we introduced the probabilities pn(sl,...,sn;T).
In the present section we discuss the methodology for determining
these functions in two dimensional models, and indicate how the
moments can be determined from (2.5) in a recursive fashion. 1In
addition we provide an explicit formula for the determination of
the probability of complete visibility, p;- We start with the
presentation of the various functions required for the determination
of pn(sl,...,sn; 0) and un(O), and continue with the modification

needed for the general case.
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Consider the star-shaped curve C, specified by

P ¢

—

.

(5.1) C={(p,8); o=r(9), sLieisu} '

X
)

4
¢l )
".’. PR

" LA

where r(6) is continuous and piece-wise differentiable on [SL'su]'
We assume that shadows on the curve C are cast by disks, with

L centers which are randomly distributed within a strip S, bounded

) by the curves

3

. (5.2) U= {(e,8); o=u(8), 8 <528 7

N and

b (5.3) W

{(0,8): o=w(8), 6, <86 }

- where 6L<sL<su<eu and u(6)<w(f). For simplicity of the exposition

we consider a standard Poisson shadowing process, according to
, which the centers of random disks are uniformly distributed in S
=2, and their diameters are distributed independently of their location,

<. i.e.
q-

(5.4) H(dp,d08)dG(y|p,8) = pdodedGly).

st (S

h

SPPP S

In addition, u(6), w(8) and G(y) should satisfy conditions

<

which insure that the origin 0 is uncovered and C is not intersected

|

by random disks. In particular, these conditions require that
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N
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7
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G(y) will be concentrated on an interval [a,b] and that the

distance of U from 0 and of W from C would be at least b/2
(see [4]). For the purpose of obtaining the visibility prob-

abilities, we introduce the auxiliary functions

S w(9)
G(y(c,d-8))cdpds , t>0
s-t u(9)
(5.5) K _(s,t) =
0 , t<0
and s+t wi(9)
G(y(c,8=s))cdode , >0
s u(g)
(5.6) K+(s,t) =
0 r’ tio
where
2¢sin|8-s] , if |6-s]|<w/2
(5.7) y(o,6-s8) = y(po,s=-8) =
20 , 1f |8-s|>m/2

Notice that y(p,0-s) is the maximal diameter of a disk centered

at (p,8) which does not intersect the ray with direction s. Thus,
AK_(s,t) and AK, (s,t) are the expected number of disks in the region
S, having centers with direction coordinates in [s-t,s] and [s,s+t],
respectively, which do not intersect the line segment §?s'

Let v{S} denote the expected number of disks in the region

S, i.e.,

-13-
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(5.8) v{S}=x f‘ f pdedf = % ‘[ (w2(6)-u2(6))de.
eL u(d) eL

Accordingly, the expected number of disks which can cast shadows

on C is

(5.9) vy = VISI-A[K_(s;,s; =0 ) +K (s /8 ~s )] .

Thus the probability of complete visibility is pl=e-vl. The
probability pn(sl,...,sn;O) fo simultaneous visibility of n points,

i <8,<...<8_< i
with s, <s, s,3s, 1s

(5.10) PL(syre-.,s,:0) = exp{-v{S}}exp{AK_(sl,sl-eL)
#AK (s_,8 =) + A “El[x (s, 2173, o Bir17%, 0y
+'%n""u"%n jop T2 -'%i4177 2

Finally, we present the recursive equations for the calculation

of the moments un(O). Define the sequence of functions

(5.11) wo(s) exp {AK_(s,s-sL)}
and for each j>1

(5.12) ¥y (s) if L)V (YIexpK_(y, 350 + Ak (v, 25%) day.

St
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Then, for each n>1l, the moments of W(0) are

s
u
(5.13) un(O) = % exp{-v{S}}‘[ Z(s)wn_l(s)exp{kK+(s,6u—s)}ds.
s
L

In order to generalize the above results, one has to adjust the
functions K_(s,t) and K_(s,t) in the following manner. For a

given orientation s, define

(5.15) t_(1,8) = s-L™ 1 (L(s)~1/2)
and
(5.16) £, (1,8) = L7H(L(s)+1/2)-s.

The function pn(sl,...,sn;r) is obtained by substituting in (5.12)
K_(s-t_(t,s),t-t_(1,s)) and K_(s+t_(1,s), t-t_ (1,s)) for K_(s,t)
and K+(s,t), respectively. Similarly, the moments un(r) are
obtained by replacing K_(s,t) and K+(s,t) in formulae (5.12) -
(5.13) by K_(s-t_(1,s),t-t_(1,8)) and K (s+t (71,s),t-t _(7,s)),

respectively; and replacing L by L-T.

6. Some Special Cases of Two Dimensional Models

6.1 Circular Path and Annular Region

The curve ( and the region S are specified by the functions

YOS5

A




.“'q

: u(é) = u, - % < 8. <8 <8 < w2

wi(g) m/2

-l
A A
]

£

]
(ST
IA

D
| A

@
IA

@
A

Pt - and

NN r(s) x, B, < s, < s <s < ¥ .

X Furthermore, we require that

0 < b/2 <u<w¢c<r-b/2

! Due to the symmetry on the circle, one can show (see [4]) that

ys the K-functions in the annular case do not depend on s, and satisfy

2 . (6.1) K+(s,t) = K_(s,t) = K*(t).

'ﬁ& Explicit expressions for K*(t), in the case of a uniform distri-

o
- - bution G(y) on [a,b], was derived in [4]. Let K*(t) Kw(t)—Ku(t).

The functions Kw(t) and Ku(t) can be obtained from

oL -1

N /0 , 1f £ < sin” (5D)

(1) . .. =1 a . b
. Kv(t) = K, (%) , if sin (3g) 2 t < sin (54!

(2) . .. =1 b |
K,”' (v) o if sin “(33) < t < /2 . |

| \ k3 (e) , if t > 1/2

8 where
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2
(F (vi-a?)

1/2

k{1 (e) -2v cos(t)] -

= 1
b-a

2
a

24

a2 ., =1, a 2 .2.1/2
>V [t-sin (E)“ [(4v©-a“) -

a cotan (t)]},

2
(2) (1), .. -1, b v .. ~1 Db
KV (t) KV (sin (53))+ 5— (t-sin (55))

2

_ 2%+ ap+p?

24

[%(4v2-b2)1/2 - cotan (t)1,

and
a2+ab+b2

2
(3) ,(2) @ - Iy _

Due to the simple and symmetric nature of C and S, the adjustment

factors t_(t1,s) and t _(t1,s) satisfy
(6.2) t_(t,8) =t _(1,8) = 1/2r .

Accordingly, formulae (5.8)-(5.10) are replaced by

(6.3) v{sS} = %(wz-uz)(eu-eL) ’
(6.4) vl = y{8} - A[K*(SL-GL)+K*(6u-Su)],
and

P (81s--.s8,i7) = exp{-v{S}lexp{A[K*(s,-0, - %;)

(6.5)
+ K*(0 -5 - ==)] +2) ngl K*(Eiil:fl -
u” 5n 2r . 2 2r '”
i=1
-17-
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@2 For, determining the moments un(r) we compute recursively,

'l
(

s (6.6) Vo (s) = expAK*(s-s; = —= )}

<

-

- and for j>1 ,

. |

N s

X§ = r S= - T_

(6.7) vyts) = B2 f b ) expl2arr (55E - ) ay.
) o SL

o

®

R

% Using these functions we obtain,
> | Su
P d
% _ nrexp{-v{s}} j ol T
» (6.8) up (1) 11 wn-l(y)e"p{m*(eu y Z—r)}dy
G °L
‘\ *
¥, 6.2 Linear Path C and Trapezoidal Region S.

<

3

" We consider here the case where both U, W and C are parallel .

J )

= lines of distance u, w and r from 9. Furthermore, i
kN 3
e )
' b b <
ol - - —

o (6.9) 0 < FSu<w<r 3 3
. !
'§ In this case it is simple to express the formulae in terms of )

Cartesian coordinates. Accordingly, a point Ps on C has the

coordinates (s,r). Thus
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(6.10) C = {(s,r) ; s, <s<s } ’
(6.11) U= (8,u) ; 6 <8 <0, ,
and

(6.12) W={(6,u) ; 6, <86<9861} .

It was shown in (5] that K_(s,t)=K_ (s,t)=K(s,t). A formula for

K(s,t) is given in [5]. We adopt the convention that K(s,t)=0

for all t<0. For the t-reduced case we obtain
(6.13) t_(T,s)=t+(T,s)=t/2 .
Formulae (5.8)-(5.10) assume in the T-reduced case the form:

o 2 2
(6.14) v{s} = 5= (8, -6,) (w'=u®) ,

(6.15) vV, = v{s} - X[K(SL,SL-SL) + K(sn,eu-su)] ’
and
(6.16) pn(sl,...,sn;r) = exp{~-v{S}} .

T T
3) +K(s,0.-s - 3)]+

exp{x[K(sl,sl-eL-
n-1 ~ T - .
A L [R(sy,s;= 3) + K(s; /.8, = 31}
i=1
—19-
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where

S. S.
(6.17) §i=rtan(%(tan-l(?l)+ tan l( l:l)))

For further explanation, see [5]. Finally, determine recursively

the functions

(6.18) ¥ (s) = exp{AK(s,s-0,- %)}

and for j>1,

s

(6.19) vy(s) = gz [ vy wexp(2K(y,s(v)- DY ay,
°L

where

(6.20) §(y)=rtan(%(tan-l(%) + tan-l(¥)))-

The moments of W(t) are given then by

s
u
(6.21) un(r)= E%?exp{-v{s}}_[ wn_l(y)exp{AK(y,eu-y- %) dy.

5L,

7.2 Numerical Example

In the present section we provide an example which demonstrates

numerically the results of the present paper. We consider the

case of an arc C and annular strip S, which was discussed in
Section 6.1. The parameters of this case are:

9 = "11'/2, S = -TT,',3' Su = 1T/3, 9 = TI’/Z, r=l, W=.6, u=.4,)\=5-

L L u
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In addition, the diameters are uniformly distributed over the

interval

(.1, .

5).

In Table 7.1 we present the first 10 moments of W(T),

for

T=0(.1).4, which have been determined according to (6.6)-(6.8).

The corresponding moments of the mixed-beta distribution (3.3)

are also given for comparison.

Pe ST N T3
TR K N e W NN 4 )

T“ 1 2 3 4 5 6 7 8 9 10
0.0 .738 .600 ] .517| .462| .425f .398 .378 .363 .351 | .342
.738 .600 ] .517| .463| .425( .398 .378 .363 .351] .342
0.1 |.704 | .561 | .479{ .427| .393! .369 | .3511{ .338| .329| .321
.704 | .561 ] .479| .427) .393] .369 ] .351 | .338] .329] .321

0.2 .671 ) .526 | .447 .399] .368] .347 (| .332| .321; .313] .307
.671 1 .526 | .447} .399% .369% .347 ) .332) .321) .313) .307

0.3 | .641 ) .497 | .421 | .377| .349 .330} .318 | .308{ .302 . 297
.641 | .497 | .421| .377{ .349] .331 1\ .318| .309( .302 .29%

0.4 .614 | .471| .399| .359] .334; .318 .307! .299| .294| .289
.614 | .471| .399| .359| .334( .318| .307| .300| .294| .290
TABLE 7.1 Moments of W(t) (upper line) and of FT(w) (lower

line) for t = 0(.1).4d and n =1, ..., 10.

As shown in Table 7.1, the first ten moments obtained from the

-~

mixed-beta CDF, Fr(w), differ from those obtained by the recursive

formulae only at the 4th decimal place.

This reveals an

approximation to the CDF of W(t) by FT(w), in the case under

consideration.

In Table 7.2 we provide the parameters of the

mixed-beta distributions associated with Table 7.1.

Bt e el 4t o L
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T o §o(t) p1 %1 Br

N 0 .2353 .0064 .27 3.3905 1.8888

.1 .2559 .0119 .27 3.0675 2.0334

.2 .2747 .0194 .27 2.8000 2.1640
.3 .2917 .0298 .27 2.6076 2.3093

.4 .3069 .0431 .27 2.4814 2.4808

TABLE 7.2. The Parameters of the Mixed-Beta Distribution
- FT(w) for t = 0(.1).4. (0 denotes the standard

deviations.)

The values of po(T) in Table 7.2, provide the mixed-beta

approximations to the probabilities po(To) of not detecting a

a target. This is obviously an increasing function of Ty

- Thus, in the present example, if Ty = .1, ﬁo(ro) = ,012 while if

To = .4, 50(10) = ,043. Py = .27 is the probability of complete

visibility along the path. Since the moments of the mixed-beta

distributions FT(w) fitted so well those of W(t), we replace

by n e o 1n .
FTi(L-Ti) with FTi(L_Ti)' i =0, 1. In Table 7.3 we present

<

4 n _ _
..l T-(L-T-) for Ti - 0(.1).4, T = 01-
4 1
?

4

1

Sn"SL"T i
T

The values of Q£=E{exp{tiW(Ti)}} where t, = log(q)

o with q=.8, are also given in Table 7.3.
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. ~ . T v e T T R W TR T T TR L e e
« e e ’ A R A Rt A S A I P A A A RO . I

f’!!,

¢

=
o — .
g; n 0.0 0.1 0.2 0.3 0.4
‘g 0 0.0064 0.0119 0.0194 0.0298 0.0431
'§ 1 0.0065 0.0122 0.0203 0.0318 0.0466

: 2 0.0075 0.0147 0.0255 0.0411 0.0613

- 3 0.0104 0.0211 0.0375 0.0804 0.0894

& 4 | o.0166 | 0.0332 | 0.0577 | 0.0906 | 0.1307

:: 5 0.0273 0.0520 0.0870 0.1314 0.1836

> 6 0.0435 0.0785 0.1253 0.1819 0.2458
: 7 0.0662 0.1131 0.1723 0.2405 0.3145
}% 8 0.0960 0.1557 0.2269 0.3052 0.3865

» 9 0.1333 0.2059 0.2879 0.3736 0.4585 8
o 10 0.1782 0.2628 0.3532 0.4430 0.5272 F
o 11 0.2303 0.3252 0.4209 0.5106 0.5894 ?
5 12 | 0.2890 | 0.3914 | 0.4884 | 0.5735 | 0.6423 )
& 13 | 0.3531 | 0.4592 | 0.5529 | 0.6288 | 0.6836 3
- 14 | 0.4208 | 0.5261 | 0.6115 | 0.6738 | 0.7117 '
?} 15 0.4902 0.5891 0.6613 0.7063 0.7265

: 16 0.5582 0.6448 0.6992 0.7249 1.0000
‘3 17 0.6213 0.6896 0.7226 1.0000 1.0000

f‘ 18 0.8750 0.7183 1.0000 1.0000 1.0000

o 19 0.7139 1.0000 1.0000 1.0000 1.0000

;{ 20 1.0000 1.0000 1.0000 1.0000 1.0000

;5 Qi 0.0704 0.0967 0.1273 0.1621 0.2000

v TABLE 7.3. The CDF F. (33_) , with t = .1, t.=0(.1).4,

v —_— Ty L-‘L‘i _— b 8

v

'-:i L=su-sL; and the corresponding MGF Qi'
e

"'} As we see in Table 7.3, if t=.1 and Ty = .1 the lower bound

S‘ of Q is .0967 and the upper bound for Q is .1273. If however,

‘ T,=0 then .0704 < Q < .0967.
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The bounds for the CDF of N are read from Table 7.3 in a

«

similar manner. For example, if To=0, Tl=.l+To=.l then for

0,
A

)
DS
s Ny

n=6, .0435 < P{N < 6} < .0785. If, T, = .1 then T, = .1+ T, = .2

(’_ﬂ ".

/n

and .0785 < P{N < 6} < .1253. Thus, from the first two columns

.
a

> of Table 7.3 we obtain that, when To = 0, the expected number

Ll

of trials, E{N}, is between 13.7 and 15.1.
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