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0. Introduction

A hunter is trying to detect and hit a deer in a forest.

Suppose that a deer is moving along a path in the forest and

the hunter is located among the trees at some distance from the

path. The path is only partially visible to the hunter; the

invisible (shadowed) portion of the path is obscured by the

trees which are dispersed randomly between the hunter and the

path. A deer can be detected by the hunter if at least a certain

part of it is visible. This occurs only if at least one of the

visible segments of the path is sufficiently long.

After detection of a deer, in a visible segment, the hunter

starts shooting. The deer continues, however, to move along the

path in the same pace. During each shooting trial the deer crosses

a length of T of the path. Thus the number of shooting trials in

each visible segment depends on the length of the segment. The

shooting trials stop when the deer is either hit or enters an

invisible portion of the path. When the deer enters another visible

segment, it has to be detected agin. For simplicity we assume

that the shooting trials are Bernoulli, with probability of failure

q, O<q<l.

The problem of deer hunting can be treated as a two dimensional

shadowing problem. The hunter is located at a point 0 in the

plane, the deer moves along a curve C in the plane, and the trunks

of trees can be described as random disks dispersed between 0 and C.

Two dimensional random shadowing problems were previously studied
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by Chernoff and Daly [1]. Likhterov and Gurin [2], Yadin and

Zakcs [3,4]. The methodology developed in the present paper is

also applicable to three dimensional versions of the above problem.

-' ~ For example, if a hunter tries to shoot down a bird whose flying

course is partially obscured by crowns of trees. The three dimen-

sional shadowing problem was previously studied by Yadin and

Zacks (5]

In the present study we develop approximations for (a) the

probability of detection; (b) the probability distribution of the

maximal number of shooting trials N; and (c) the probability of

survival of the deer (bird). We also provide numerical examples

to illustrate the goodness of these approximations.

In section 1 we review the notions and definitions concerning

random Poisson shadowing fields in the plane, measures of random

visibility on star shaped curves, and introduce the notion of

T-reduced measures of visibility. This notion enables us to define

detection probabilities in terms of the distribution of the

T-reduced measure of visibility. In addition we can also arrive

at lower bounds to the number of Bernoulli trials, N, along the

visible portion of a curve. The moment generating function (MGF)

of the T-reduced measure of visibility yields lower and upper

bounds to the probabilities of a successful hunt. Section 2 dis-

cusses the moments of the T-reduced visibility measure and intro-

duce an approximation to its distribution. With the aid of this

approximation we obtain bounds for the MGF mentioned above.

-2-



Section 3 and 4 present approximations to the cumulative dis-

tribution functions of the T-reduced visibility measure V(T), and

of the number of trials, N, along the visible portions. Section

5 is devoted to the problem of determining the probability of

simultaneous visibility of n points along the curve C, and the

recursive determination of the moments of V(T). Section 6 provides

some special cases of two-dimensional models. Finally, in Section

7 we provide a numerical example. The methodology presented here

for two-dimensional shadowing problems can be generalized in a

straight forward manner to three-dimensional, by applying similar

modifications to the results of [5].

1. The Model, Measures of Visibility and Failure Probabilities

Suppose that the hunter is located at the origin, 0, and let

C denote the path of the deer. C is assumed to be a smooth star

shaped curve, defined by a piece-wise differentiable function

r(s), sL  s _ su , representing the distance from 0 to C in

orientation s. The polar coordinates of a point P s on C are

(r(s),s). The end-points of C are P and P s The length of C is

S
NU

(1.1) L= t(s)ds

S L
=4

where

.'-[ 2  d )2]1/2
((s) = [r2(s) + r(s)

The trees in the forest are presented by random disks dispersed

in a region between 0 and C. Each random disk is characterized

-3-
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by coordinates (p,e,y), where (p,8) are the polar coordinates of

its center and y is its diameter. The coordinates (p, 1,y) belong

to a set S in R3 satisfying conditions which assure that 0 is not

covered and C is not intersected by random disks. Let B be the

Borel a-field on the sample space S, and let N{B}' designate the

number of disks whose coordinates belong to a set B of B. We

assume that, for each BEB, N{'B} is a random variable having a

Poisson distribution with mean

(1.2) v{B} = X HS H(dp,de)dG (y pe) ,

B
where G(ylp,6) is the conditional CDF of y, given (p,e), and

H(dp,dO) is a a-finite measure of (P,e). Such a random field

of disks is called a Poisson random field.

A point P s on C is said to be visible. if the line segment

9sis not intersected by any random disk. A point which is not

visible is in a shadow. The measure of total visibility on C

is defined as

s
(1.3) V f I(s)£(s)ds

s L

'where I(s)=l if P sis visible, and I(s)=0 otherwise. Notice that

V is a random variable representing the total length of the

~visible portion of C. V is a sum of a random number, M, of

visible segments of C having random length X I , X 2 , .. XM; i.e.

-4-.-... ....................... "



M
(1.4) V E X.i=1 1

A target is detected only if there exists at least one visible

segment of length greater than the minimal path length To required

for identifying the target. In order to develop a formula for

the probability of detecting a target, we introduce the notion

of r-reduced visibility measure, V(T), which is the total length

of visible segments, each one reduced by T units, i.e.,

... M
M

(1.5) V(T) = (Xi-T) +
i=l 1

where a+ = max(a,O). The probability that a target is not detected

'p. is
(1.6) oor) = Pr{V(To ) = 0}.

(16 O0 0

On the other hand, the probability that C is completely visible is

(1.7) pl = Pr{V(T) = L-T}, for all O<T<L.

Indeed, when C is completely visible, M=l and X1=L. Let N denote

the number of shooting trials, after detecting a target. If a

single shooting trial requires a segment of length T to be
completely visible, then

M
(1.8) N = Z [(X i-To)+/]

i-l

where [a] is the maximal integer not exceeding a. Notice that

5-
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; 4 ", M M

(1.9) E (Xi-r -1 < N < - E (Xi-t)p.1:"0 i=l 0 + +- - i=+

Hence, according to (1.5) and (1.9),

(1.10) VIr 1)/z < N < V(o )/r
0

wherer = TO + T.

If the probability of failure in each shooting trial is q, and

the shooting trials are independent (Bernoulli), the number of

shooting trials required until the first success, J, is distributed

geometrically. Accordingly, the probability of failure (not

Nhitting the deer) is Q = E{qN}. Thus, according to (1.10), lower

and upper bounds for Q are, respectively, Q0 and Q11 where

~%121 = V(T.)/
(1.11) Qi E{qli i = 0,1

Notice that Qi is the value of the MGF of V(T ) at the point

t = (log q)/T.

2. The Moments and Moment Generating Function of V(T).

For the sake of determing the moments of V(T) we introduce

the following definition of this measure,

Su, T

(2.1) V(M) f I (s) Z(s)ds

U" SL, t

L -6-
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where I (s) = 1 if a segment of C of length T, centered at

(r(s),s) is completely visible, and I (s) = 0 otherwise. s LT

and s u, are direction coordinates of points within C, of distance

T/2 along C from s and s U respectively. More formally, let

", S

" (2.2) L(s) = f £(y)dy.

sL

Then, s = L (T/2) and s = L (L-T/2).

The n-th moments of V(T) is thus

"n (T) = E{( I (s)9(s)ds)n }

sLT

q (2.3)

n J n n
= n! ... E{ i I (s i )} t Z(si)ds.i=l T i=l i. "

A
n,-

The set A is the simplex

n,T
(2.4) A n,.r = ((S , ... Sn) s L  <Sl< ... <Sn<S U }

n
Furthermore, E{ it I (s) } is the probability that the union of

i=l

n segments of C, each one of length T, centered at n points

having direction coordinates s l<... <Sn, is completely visible.

This probability is designated by pn(Sl' ., n;T). Thus the

n-th moment of V(T) is

-7-

o. % -



n
(2.5) nn(T) = n! f...J Pn(sl,...,s ; Tr 4(si)dsi.

A 
i=1

n, T

The method for determining pn(sl, ... , s n;T) and pn(T) is based

on a general methodology developed by Yadin and Zacks (3,41 for

the special case of T=0. The main results of those papers, with

the modifications required for T>0, are presented in Sections

4 and 5.

3. An Approximation to the CDF of V(T)

The cumulative distribution function (CDF) of V(T) is a

mixture of a two-point distribution concentrated on {0,L-T} and

a distribution concentrated on the interval (0,L-T). For the

purpose of presenting the approximation discussed below, we

consider a normalized measure of visibility W(T) = V(T)/(L-T),

which is concentrated on [0,1]. The CDF of W(T) can be represented

as
a (0 ,if W<0

(3.1) F(w) = p(T)+(l-po (-)-pl) F*lw), 0<w<l

1. , l<w

If, for example, G(yjp,O) is absolutely continuous then F*(w) is
T

an absolutely continuous CDF on (0,1). Let.jn (T) denote the n-th

moment of W(T). Obviously, nn (T) = (L-T) nn(T) , n=l,2,...

Furthermore,

-8
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(3.2) n (T ) = P + (l-po(r)-p I ) f w ndF*(w) , n = , ...

0

Applying the Dominated Convergence Theorem one immediately proves

nthat lim pn (T ) = P1 for all T>0.

Nr nr

Explicit expressions for p (T) and F*(w) are not available.

We apply here a beta approximation to F*(w) and provide a numerical

approximation to p0 (T). This type of mixed-beta approximation was

d'e- applied also in [3,4,5]. As will be shown in Section 6, in some

special cases, the first ten moments of W(T) and of the mixed-beta

approximation are very close. This indicates that in those cases

one has a highly effective approximation. In cases where the moments

are not in agreement better approximation should be attempted.

The approximating beta-mixture CDF is given by the formula

- 0 ,if w<O

(3.3) F (w) = PO(T) + (I-P (rI-P)Iw(a ,81 0<w<l

1~l , if l<w

where I ((X,$) , 0 < w < 1, 0<a,$<-, denotes the incomplete beta
w

function ratio. The probability of complete visibility of C, pI,

is determined by the shadowing model, as shown later. The values
J"

of (T), CL and a are determined by equating the formulae of the
0

first three moments of F (w) to those of W(T). As shown in [31

these approximating parameters are given by

.'9
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2 *ji 2_--T + 1--.- T

2"';';'2(vijr())2-iJ (t) (i j(r) + vi (r))

11* (T1 -1* ( (T )

Cv*. (3.4)
;: 1* ( 1 1*P ( T 1 -P* (r

T  
2

and

(3.5) (l -) -l-l- (r)1c +l(a )/a

where

(3.6) 1[ = nl- n=l,2,3

Notice that 1*()>0 for all n=l,2,... and that "1*()> i* (T." . , Noice hat n -- ''' n )-n+l "

As revealed in formula (3.4) the solutions for a and B might

be sensitive to the numerical accuracy of the moments. 0 ( 0 ) is

the mixed-beta approximation to the probability of no detection,

p0 (-r 0)

Likhterov and Gurin (2] developed a theory of random coverage

on the real line, according to which p0 (r 0 ) can be obtained by

solving certain integral equations. Such a solution requires

generally numerical iterative techniques. The method of approxi-

mating p (ro) from the moments of W(T) requires a numerical

approximation too, but is simpler to execute.

V 4. Bounds for the CDF of N and for Q

Inequality (1.10) yields lower and upper bounds for the CDF

of N. Indeed, from (1.10),

Jm9' -""10-



Tn .Tn
(4.1) F (_-O)<PrN<n}<F_ (-

The CDF's in (4.1) can be approximated by the mixed-beta CDF

(3.3). According to (1.11), the lower and upper bounds, for

the failure probability Q, are the value of the MGF of W(ri) i=Oi,

at the point t= (L-T.)log q.Let G (t) indicate the MGF of W(T).
Tr 1T

This function can be expressed in terms of the moments of W(T) as

%A. Un tn

r j (4.2) G (t) = 1 + pl(et -l) + E n 1 n -0<t<o
1nl N-

Since V*(T) 0 as n grows the infinite series in (4.2) converges

faster than et, and therefore a small number of terms will often

provide a good approximation. Another method of approximating

G (t) is by employing the MGF of the mixed-beta distribution (3.3)

with (T), a and a .

5. Visibility Probabilities and Moments for Two Dimensional Models

. In Section 2 we introduced the probabilities p n(Sl,..,Sn;T).

In the present section we discuss the methodology for determining

these functions in two dimensional models, and indicate how the

moments can be determined from (2.5) in a recursive fashion. In

addition we provide an explicit formula for the determination of

the probability of complete visibility, p1 . We start with the

Se presentation of the various functions required for the determination

of Pn(Sl,..Sn; 0) and Pn(0), and continue with the modification

needed for the general case.

~-11-
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Consider the star-shaped curve C, specified by

(5.1) C={(p,e); p=r(e), sL<e<sU}

where r(e) is continuous and piece-wise differentiable on [sLS .

We assume that shadows on the curve C are cast by disks, with

centers which are randomly distributed within a strip S, bounded

by the curves

(5.2) U - {(P,e); p=ule), eL<<ef

and

(5.3) W = {(P,e); 0--w(), eL<e<e u}

where eL<SL<Su< u and u(l)<w(e). For simplicity of the exposition

we consider a standard Poisson shadowing process, according to

which the centers of random disks are uniformly distributed in S

and their diameters are distributed independently of their location,

i.e.

(5.4) H(dp,de)dG(y p,e) = pdpdedG(y).

In addition, u(e), w(e) and G(y) should satisfy conditions

which insure that the origin 0 is uncovered and C is not intersected

by random disks. In particular, these conditions require that

.a

AL .
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G(y) will be concentrated on an interval [a,b] and that the

distance of U from 0 and of W from C would be at least b/2

(see [4]). For the purpose of obtaining the visibility prob-

abilities, we introduce the auxiliary functions

s w(O)

f f G(y(p,d-6))rdpd8 I>

-- "f
s-t u(e)

(5.5) K_ (s,t) =

0 ,t<O

and s+t w(e)

f f G (y (r,,-s))pc~de t>0

(5.6) K (s,t) ='I- I t<o
0 _<

where

2psinIe-sl , if Ie-sl<r/2

* (5.7) y(p,-s) = y(p,s- )

2 , if je-s>7T/2

Notice that y(p,e-s) is the maximal diameter of a disk centered

at (p,e) which does not intersect the ray with direction s. Thus,

XK_(st) and XK+ (st) are the expected number of disks in the* region

S, having centers with direction coordinates in [s-t,s] and [s,s+t],

respectively, which do not intersect the line segment OPs

*..."Let v{S} denote the expected number of disks in the region

S, i.e.,

-13-
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6 w (e) e

(5.8) v{S}=X f f pdpd6 = 1w2() lu2(e))de.

L 6L

Accordingly, the expected number of disks which can cast shadows

on C is

(5.9) V = v{S}-X[K(sL'SL - LI)+K+ (su'u-Su1 ]

Thus the probability of complete visibility is pl=e 1. The

probability pn(Sl ... s ;0) fo simultaneous visibility of n points,

with SL.Sl < ... <s 5u is

(5.10) Pn sl,"'Sn;0) = exp{-v{S}}exp(XK_(sl,sl-eL)

n- S i+l-Si) Si+l-Si

4XK + (S+ n lK uln' ) + A Z [K +(s i  2 )+K-(s i+ l 2 M
i=l

Finally, we present the recursive equations for the calculation

of the moments pn(0). Define the sequence of functions

(5.11) 0 (s) = exp {XK_(s,s-sLl}

and for each j>l

% s

(5.12) ~p(S) = 2 +)dy

LJ (yV- 1(y)exp{XK(y, 2 ) + yXy

-14-



Then, for each n>l, the moments of W(O) are

.'i,"s L(5.1) n = L ep- J{} Z(S) n~l(s)exp{XK+ (s, u-S)}ds.

In order to generalize the above results, one has to adjust the

functions K(s,t) and K+ (s,t) in the following manner. For a

given orientation s, define

(5.15) t(T,s) = s-L (L(s)-T/2)

-, and

(5.16) t+ (t,s) = L-(L(s)+T/2)-s.

I The function pnlSl...Sn;T) is obtained by substituting in (5.12)

K-(s-t_(T,s),t-t_(T,S)) and K+(s+t+(T,s), t-t+(T,s)) for K(s,t)

and K+ (s,t), respectively. Similarly, the moments Un (T) are

obtained by replacing K_(s,t) and K+ (s,t) in formulae (5.12) -

(5.13) by K_(s-t_(t ,s),t-t_(T,s)) and K +(s+t+(T,s),t-t +(Ts)),

respectively; and replacing L by L-T.

6. Some Special Cases of Two Dimensional Models

6.1 Circular Path and Annular Region

The curve C and the region S are specified by the functions

-15-
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= .....

-.. u~e =U, - .. < < eu < iT/2

, wle M w -I< eL < e < en < 7/2
w 2 -~ L n ~

and
% 'S.

r (s) = r, 0L < s L < s < s U < eu

Furthermore, we require that

0 < b/2 < u < w < r-b/2

Due to the symmetry on the circle, one can show (see [4]) that

* ~the K-functions in the annular case do not depend on s, and satisfy

( (6.1) K+ (s,t) = K_(s,t) = K*(t).

,4. Explicit expressions for K*(t), in the case of a uniform distri-

bution G(y) on [a,b], was derived in [4]. Let K*(t) = K (t)-K (t).

The functions K w(t) and K (t) can be obtained from

:-1 a
0 , if t < sin-)

2v

KKv) if sin- () < t < sin-lK t)W v '2v - 2v~

K ( 2 (t) if sin-( < t < 7/2

K 13 1 (t) , if t > r/2v --

where
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2
K( I ) (t) 2 1/2

K (t)[ (4v2-a 2  -2v cos (t)]

a t 2 i-1 a a 2 221/2
v [t n (-) ]2- [ (4"v2-a 2

a cotan (t)] },

K(2) (t) _-K(1) (sin-l 2) - (t_-sin-l( )
Kv v2vv

+ab+b 2  1 2b2)1/2_ oa(t]- 24 b

and2

(3) ()= " ( 2 ) a +(- v a+ab+b2

Kv v 2 ) 2(2 24 )

Due to the simple and symmetric nature of C and S, the adjustment

factors t_(T,s) and t +(T,s) satisfy

(6.2) t_(ts) = t+ (T,s) = T/2r .

Accordingly, formulae (5.8)-(5.10) are replaced by

(6.3) v{S} -= I(w2_u 2 ) (u -1

2 2

(6.4) i 2[S} - bK*(S - e )+K*(c-a s

and

Pn (s 1 ... ,tSn ;T) exp-vfS}2exp{[K*(S- -

(6.5)

n-1 * Si+l -S i T).
+K*(BuS - ) +2X Z K( 22

Ii.l

= n 2r 2 r

4-17-
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For, determining the moments P(T) we compute recursively,

(6.6) (s) = exp{XK*(s-sL 2r

and for j>l ,

s
(6.7) ~ P(S) - 2-j) dy

1 7fs r (Y) exp{2AK*(S- X" L j-1 2 r)  y

sL

Using these functions we obtain,

S u
nrexp{-J{S} }(p(6.8) 1n(T) = V ly)exp{XK*( -y- n)idy

s L

6.2 Linear Path C and Trapezoidal Region S.

We consider here the case where both U, W and C are parallel

lines of distance u, w and r from 0. Furthermore,

2 22

In this case it is simple to express the formulae in terms of

Cartesian coordinates. Accordingly, a point P on C has the

_ . coordinates (s,r). Thus

1I

-18- .
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(6.10) C {(s,r) ; s < s < s

(6.11) U = (O,u) ; eL< *< eu

and

(6.12) W = {(e,u) ; a <8 u }

It was shown in [5] that K_(s,t)=K+ (s,t)=K(s,t). A formula for

K(s,t) is given in [5]. We adopt the convention that K(s,t)=0

for all t<O. For the T-reduced case we obtain

(6.13) t (T,s)=t+ (t,s)=T,2

Formulae (5.8)-(5.10) assume in the T-reduced case the form:

2_2
(6.14) v{S} -e ( 0u-6L) (w -u 2 )

(6.15) V1 = v{S} - X[K(sL,SL-SL) + K(snu-s u)]

and

(6.16) Pn(sl,...,sn;r) = exp{-v{S}}

exp{X[K(slS 1 -9 L- 2) +K(sn,6n -n )]+

n-1 [K(si,s 2 ) + K(si+ls i -s )]}

i=1

*. " *V , * ', ' :. .S'.i ... ... ?,# , ,. , .... ,. . . . . . -,.. ...* . .* .~ .. . . . . - . .... , . ,. .
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where

(71 1 Si+l

-.(6.17) si=rtan(!(tan 1 (-)+ tan - '(
o'2r

For further explanation, see [5]. Finally, determine recursively

the functions

mT

(6.18) o(s) = exp{XK(s,s-eL- )

and for j>l,

5

(6.19) ip.(s) - I *p-l(y)exp{2XK(ys(y)- -!} dy,
'V..~~ T f- .'j-l2

where

(6.20) 9(y)rtan(l(tanl(s) + tan-l(r-))).
2 r r

4" The moments of W(T) are given then by

(6.21) n (T)= nexp {-v{s} Ju f (y)exp{XK(yO Y- T dy.

SL

7.2 Numerical Example

In the present section we provide an example which demonstrates

,3.- numerically the results of the present paper. We consider the

case of an arc C and annular strip S, which was discussed in

Section 6.1. The parameters of this case are:

eL =-T/2, s L = -7.13, s u = v/3, w = r/2, r=l, w=.6, u=.4,X-5.

-20-
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In addition, the diameters are uniformly distributed over the

interval (.1, .5).

In Table 7.1 we present the first 10 moments of W(T), for

T=0(.I).4, which have been determined according to (6.6)-(6.8).

The corresponding moments of the mixed-beta distribution (3.3)

are also given for comparison.

1 2 3 4 5 6 7 8 9 10

0.0 .738 .600 .517 .462 .425 .398 .378 .363 .351 .342
.738 .600 .517 .463 .425 .398 .378 .363 .351 .342

0.1 .704 .561 .479 .427 .393 .369 .351 .338 .329 .321
.704 .561 .479 .427 .393 .369 .351 .338 .329 .321

0.2 .671 .526 .447 .399 .368 .347 .332 .321 .313 .307
.671 .526 .447 .399 .369 .347 .332 .321 .313 .307

0.3 .641 .497 .421 .377 .349 .330 .318 .308 .302 .297
.641 .497 .421 .377 .349 .331 .318 .309 .302 .297

0.4 .614 .471 .399 .359 .334 .318 .307 .299 .294 .289
.614 .471 .399 .359 .334 .318 .307 .300 .294 .29

TABLE 7.1 Moments of W(T) (upper line) and of F (w) (lower
line) for T = 0(.1).4 and n = 1, ... , 10.

As shown in Table 7.1, the first ten moments obtained from the

mixed-beta CDF, F (w), differ from those obtained by the recursive

formulae only at the 4th decimal place. This reveals an excellent
approximation to the CDF of W(t) by F (w), in the case under

consideration. In Table 7.2 we provide the parameters of the

mixed-beta distributions associated with Table 7.1.

-21-
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Po(t) pl T

0 .2353 .0064 .27 3.3905 1.8888

.1 .2559 .0119 .27 3.0675 2.0334

.2 .2747 .0194 .27 2.8000 2.1640

.3 .2917 .0298 .27 2.6076 2.3093

.4 .3069 .0431 .27 2.4814 2.4808

TABLE 7.2. The Parameters of the Mixed-Beta Distribution

F T(w) for T = 0(.1).4. (a denotes the standard

deviations.)

The values of p (T) in Table 7.2, provide the mixed-beta
'00

approximations to the probabilities p0 (t 0) of not detecting a

a target. This is obviously an increasing function of T

Thus, in the present example, if To = .A, O (T) .012 while if

To = .4, o(To) = .043. p1 = .27 is the probability of complete

visibility along the path. Since the moments of the mixed-beta

distributions F (w) fitted so well those of W(T), we replaceT

F Ti Li with F.(L), i =0,i. In Table 7.3 we present

F Tn for Ti = 0(.1).4, T = .1.

SnTL L-T

The values of Qi=E{exp{tiW(ti)}} where t fn Lt log(q)

with q=.8, are also given in Table 7.3.
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n 0.0 0.1 0.2 0.3 0.4

0 0.0064 0.0119 0.0194 0.0298 0.0431

1 0.0065 0.0122 0.0203 0.0318 0.0466

2 0.0075 0.0147 0.0255 0.0411 0.0613

3 0.0104 0.0211 0.0375 0.0804 0.0894
4 0.0166 0.0332 0.0577 0.0906 0.1307

5 0.0273 0.0520 0.0870 0.1314 0.1836

6 0.0435 0.0785 0.1253 0.1819 0.2458

7 0.0662 0.1131 0.1723 0.2405 0.3145

8 0.0960 0.1557 0.2269 0.3052 0.3865

9 0.1333 0.2059 0.2879 0.3736 0.4585

10 0.1782 0.2628 0.3532 0.4430 0.5272

11 0.2303 0.3252 0.4209 0.5106 0.5894

12 0.2890 0.3914 0.4884 0.5735 0.6423

13 0.3531 0.4592 0.5529 0.6288 0.6836

14 0.4208 0.5261 0.6115 0.6738 0.7117

15 0.4902 0.5891 0.6613 0.7063 0.7265

16 0.5582 0.6448 0.6992 0.7249 1.0000
17 0.6213 0.6896 0.7226 1.0000 1.0000

18 0.8750 0.7183 1.0000 1.0000 1.0000

19 0.7139 1.0000 1.0000 1.0000 1.0000

20 1.0000 1.0000 1.0000 1.0000 1.0000

Qi 0.0704 0.0967 0.1273 0.1621 0.2000

TABLE 7.3. The CDF F T with Tr .1,

L=su-sL; and the corresponding MGF Qi"

As we see in Table 7.3, if T=.I and T = .1 the lower bound

of Q is .0967 and the upper bound for Q is .1273. If however,

To=O then .0704 < Q < .0967.

-23-
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The bounds for the CDF of N are read from Table 7.3 in a

similar manner. For example, if To=0, T 1=.l+ro=.l then for

n=6, .0435 < P{N < 6} < .0785. If, To = .1 then = .1 + To = .2

" and .0785 < P{N < 6} < .1253. Thus, from the first two columns

of Table 7.3 we obtain that, when To = 0, the expected number

of trials, E{N}, is between 13.7 and 15.1.

2.

..
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