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TIE VISIBILITY OF STATIONARY AND MWVfG TARGETS IN TE LAE
SUWJECr TO A POISSON FIELD OF SHADOING ELENTS*
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A methodology for an analytical derivation of visibility
probabilities of n stationary target points in the
plane is developed for the case when shadows are cast
by a Poisson random field of obscuring elements. In
addition formulae for the moments of a measure of the
total proportional visibility along a star-shaped curve
are given. be general ethodolog is illustrated by

.. sm examples of visibility along the circumference of
half a circle, when the obscuring elements are
centered within a concentric annular region. The
distribution of the measure of proportional visibility
is approximated by a mixed-beta distribution.

Words: VZi..bitty p,,obabiJ.tty, 6t ona uy and moving ta,.get,;
mea.ue o6 p'wopoxtionat vi.zbitt; PoiAon Aandorn AhodowLng

*Partially supported by Contract DAZ983KO176 with the U. S. Arm
Ruearch Office.

'r4
'.'_

4..

' .4 , " ." , " " q " q " . . . , " ,' . "", ' . . .' . ," , . '" . . '""" . ' . '" . '. - . . , . "•" , . . ,



*W -. -J- V'' -

0. Introduction

.Me present paper is the first one in a series of articles

dealing with problems of visibility of targets through random

, fields of obscuring elements (trees, bushes, clouds, etc.) and

similar problems of detection and hitting of targets. he

probl ms dealt with are of stochastic nature. The exact number,

location and dimensions of the obscuring elements are unknown. A

probability model is formulated concerning these variables. Given

such a probability model it is required to determine

,. probbilities of certain events and distributions of certain

random variables. To illustrate some of the problems that can be

solved by the methodology developed, consider the following

examWles:

Example 1: Visibility of Stationary Targets

. hn observer is placed at a given location in a forest, in

order to detect specified targets (vehicles, animals, etc.). Due

to the random location of the trees it is important to determine

the probabilities that individual targets are observed and the

distribution of the number of targets observed. For this purpose

one has to detemine the probabilities that any specified r

points out of n, 1 < r < n, are simultaneously visible. The

locations of the targets may be specified or random.

Euxple 2: Visibility of Moving Targets
A target is moving along a specified path C. An observer is



located at a point 0. Trees or other obscuring elements are
distributed between 0 and C. It is often required to determine

the distribution function of the total visible portion of C.

Exammple 3: Detecting and Hitting Mbvinc Targets

A hunter is located at a point 9 in the forest and a target

is moving along a path C, which is partially obscured by the

random elements. In order to detect a target the hunter should

observe it uninterruptedly for to  units of time. It is

interesting to determine the probability of detecting a target at

a specified location or anywhere on C. In addition, after

detecting a target the hunter could attempt to hit it. Each such

.,. attempt requires t units of time in which the target is visible.

A hitting attempt may be sucoessful with probability p. If an

.-_ :' attempt fails the hunter can attempt again, as long as the target

is visivle. Once the target disappears, it has to be detected

again. '/he total number of possible trials, N, depends on the

length of the visible portions of C. N is a random variable, and

it is interesting to determine the distribution of N, and the

probability of hitting a target.

Eample 4: Energy Penetration Through Random Fields

A light beam from the origin 0 is focused in a specified

direction. If there are no obscuring elements, a given sector of

the plane i in the light. On the other hand, a portion of the

sector may be in the shadw of random elements. In such a case

-2-
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p jart f the energy in a beam does not penetrate the field. The

objective is to determine the distribution function of the amount

of penetrating energy.

In the above examples we restricted attention to visibility

problems in the plane. These problems can be readily generalized

to visibility in three dimensional spaces, where the obscuring

elements are crowns of trees, clous, sattelites, stars, etc.

Problem of similar nature can be found in various areas of

applied science and technology and in military applications.

The literature dealing with theme kinds of iiadwing pob-

lea contains a m nuber of papers. Chernoff and Daly (2]

discussed the problem of determnn the distribution of the

length of shadowed and of visible uemnts on a straigt line in

the plane. Likhterov and Gurin [6] studied the proIbbility of

detecting a moving target on a straight line. The shadowing

problem can be reduced to a coverage problem. This reduction is

achieved by specifying the shadows cast by random elements on a

1 target curve. In a previous paper, Yadin and Zacks [12] applied

mthods of coverage probabilities to study visibility problems on

a circle. The literature on coverage problems is very rich (see

Eckler [3]). The papers of Ailam [1], Greenberg [5], Robbins

[8,9] and Siegel [10,11] provide methods which are relevant to

the study of hadowing problem. In particular the methods

developed in the present paper and those of [12] are based on the

theory given by Robbins [9, 10). The geometry of the problem my

be complicated, and a reduction to a coverage problem my be

inconvenient. In such cases it is often easier to study the

.9.' :, '" ¢''-.* €;. ,•.:.,." .; ,:..'..-.'.''?" .. '' " ... ;'.:'. ,. 4';'.,-''' .;'" .''''.



geometry of the shadowing elements rather than that of the

shadows. For this reason, the present paper deals with the

shadowing problems directly.

7he fact that the nmber of papers on shadowing problems

published is small does not reflect a lack of interest in these

problems in various areas of application. One can find a large

number of technical reports which treat shadowing problems by

siulations or by fitting simple statistical models to empirical

data. Such "solution do not shed light on the intrinsic

-. structure of the stochastic phenomenon. The methodology

developed in the present paper analyzes the stochastic structure

and provides methods for numerical approximations which are more

accurate and require less computing time than sinulation

procedures. For developing the general methodology we construct

in Section 1 a probability model of random shadowing elements.

Sections 2 and 3 deal with visibility probabilities of single and

several stationary targets (Example 1). Section 4 deals with a

visibility measure for moving targets (Example 2). The

methodology for solving problems discussed in Example 3 and 4

will be presented in forthcoming papers. 7he methods of the

present paper are extended in [13] to solve three dimensional

. ->..visibility problem.
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1. Random Fields of Shadowing Objects
In general, a shadowing object is characterized by parameters

of location, shape and size. In the present paper we restrict

attention to disks in the plane. An extension to spheres in

*three dimensional spaces is given in [13]. A disk in the plane

is characterized by a vector (p, e ,y), where (p,e) are the polar

coordinates of its center and y is its diameter. he

specification of disks location by polar coordinates is a vatter

of convenience and could be replaced in sm application by

Cartesian coordinates. Let S={(p,E,y) ; O<p<-, -a<<7r, 0<a<y<b}

* denote the sample space of all possible shadowing disks. Let 8

denote the Borel a field on S. A set B in B represents
.5,

geometrical conditions on the location and the size of disks. We

consider a countable collection of disks. Let N{B), for any B

e , denote the number of disks having coordinates in B, i.e.,

satisfying geometrical conditions specified by B. N{ "} is a

-finite measure on B. We consider stochastic structures in which

N{-} are random measures. In these cases, for each BeB, N{B} is

a random variable. In the case that N{B} has, for each BeB, a

Poisson distribution, the spetial stochastic process is called a

Poisson random field of shadowing disks. In a Poission random

field, the conditional distribution of (N{B 1} , ... , N{B }), givenm
N{S)-n, is uiltinamial, for every finite partition {B1, ... , Bd

of S. Accordingly, if the number N{S I in a Poisson random field

of disks is knom, we speak of multinanial fields. In the

present study we discuss Poisscn random fields.

. ,
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The Poisson random field model is obviously an idealization
-. of natural Phenomena. For example, on a planar cut of a forest,

trunks of trees are represented by random disks rather than by

their actual random shape. Additional parameters could represent

, other shapes of shadowing objects, like ellipses, triangles, etc.

* Furthermore, the Poisson random field models assumes that, given

N{S1 - n, the centers of random disks are independently

distributed in the plane. Accordingly, with certain (usually

negligible) probabilities disks my overlap. Clearly, in

practical applications the fit of the Poisson model to the

eamirical data should be verified. In Poisson random fields N{B}

has a Poisson distribution with mean

m

(1.1) = Xffd(yjp,6)H(dp,d6),

where XH(dprde) is the expected number of centers located in the

rectangle [p, p +dp) x [e, e+ . G(yI p,e) is the conditional

c.d.f. of the diameter Y, given the location of the center ( p,e).

If Y is independent of (pA), and if the centers are uniformly

distributed, i.e., H(dpde) - pdpde, we say that the random field

is standard. In this case

.4 .4 b

(1.2) v {BI -= H{B (y) }dG (Y)

a

where H{B(y)) is the area of the subset of B containing disks

with a given diameter y. Standard Poisson and multinanial

fields are not the only interesting ones. In many applications,

-6-



scattering of centers of disks follc~ other distributions than
-, uniform. In izrticular, clusters of disks, each one follwing a

different bivariate norual distribution are of interest in various
Iapplications (ecological probl~ns, etc.).
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*' 5 2. Visibility of Individual Targets

*. A target is represented in the present paper by a point P in

the plane whose location is specified by the polar coordinates

(rs). 7he observer is located at the origin 0. The point P is

visible from 0 if the line segment bP is not intersected by any

random disk. A random disk interacts the line segment T if its

coordinates belong to the set

(2.1) B(rs) - {p,8,y); (pe) e B(r,s,y), a < y < b),

.where B(r,s,v) is the set of points having distances fram OP smaller

than y/2 (see Figure 1). A disk which intersects -P is said to

cast shadow on P. A natural requirement for shadowing processes

" -is that the source of light 0 is uncovered. We therefore

introduce the structural condition

(2.2) , C 0 - {(proy); (pse) F C (y), a<y.b},
0 0

where

(2.3) CO(y) -{( ,e); <P<- < 6 < .

Figure 1 provides a graphical illustration of the set

B(rs,y)%Co(y). A point P = (rs) is visible if N{B(rs)lCj =0 .

7he probability that P is visible is, therefore,

* (2.4) *l(rs) - exp, {-v((r,s)f C,}}.

-8-

, ' ;,, _,:. ,> . .:j.-.; ..- ... - ,..-" :,-..-,.-." :.;..:9 -- -::- , .- . ":'.. .. .. .-



I,, Xv

0
0

4.L
0

0
i... z

>
'aT



In the standard case, the area of B(rsy)0Co(y) is yr. Hence,
b

v.B(rs)CICo) = ArC, where = f yd(y) is the expected diameter
0 -a

of a shadowing disk. In this case, the probability that P is

visible is Yi (r,s) - exp (-Xr) irrespectively of the

orientation parameters. A line of sight, L , is the set of all
s

points, in direction s, which are visible fram 0. The length of

L , JI 11, ha a c.d.f.

•(2.5) Prf1 Ij.Ir= _ 1 -ipcrs).

Ini the standard case, the distribution of IL is negative exoetial

with parameter p=A (see also Feller [4,p.10]). One can generalize the

above results to cases where the target P is randanly located. For

For example, in the standard case, if FR (r) is the c.d.f. of the distance

of P from 0, the probability that P is visible is

(2.6) 1 e-rpdFR(r) .

-A10
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3. Simultaneous Visibility of Several Targets

_Let P, °°", Pn' n>2, be arbitrary points in the plane and

let 0 designate the origin. The polar coordinates of Pjare

(rj, sj), j = , ... , n° These n points are simultaneously

visible if and only if no one of the line segments P., j=l,

... , n , is intersected by a random disk. Let r - (r1 , ... , r ),

s s "" sn) and consider the set B(r,s,y) of points having

distances not exceeding y/2 from any one of the line segments OP.,

j - 1, ... , n (see Figure 2). Let

(3.1) %(r,s) - {(p,ey); (p,e)CB(r,ospy), ay<b}.

The expected number of disks which cast shadows on one or more of

the specified points is v{B (r,s)nCO 1. Accordingly, the

proability that P, ... , are simultaneously visible is

(3.2) n(r,s) = exp{-v{B (r,s)n -c

We provide general formulae for the determination of v{B (r,s)ln Co
for the case where the n points P. , j - 1, ... , n, satisfy the

condition

(Z , 3.3) -1 < s I 
<  S 2  c ... <  sn  

<  ?

Condition (3.3) means that no two points are on the sam ray. In

addition we require that all disks satisfy sae condition C,

where CC Co , and v{C} <-. Disks which belong to the set C may

0*0

a.::,- l
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Or nay not cast shadows on the specified points. In order to

I'compute the expected number of disks which cast shadows on at

least one point we subtract fromu the total expected number of

disks, v{C}, the expected number of disks which do not cast

shadows on any one of the n specified points. For this purpose

we define 2n disjoint sets B (ri 5. it. fC and B...r.o ,st i-)fc,
i=1, ... lp n, where

to nh 2

(3.4) and s -

- 2 ,i= i1,.. n-i.

ti

B(r. ' si Ot. ) rl C is the - set of disks .havingr orientation

coordinate eclIs ,si+t i) which do not intersect the line segment

* OP. he t. values were chosen as bisectors of two adjacent

directions in order to avoid the possibility that a disk

belonging to B + (r1 , asi , t )f) C will intersect any other line

segment OP, rJAiL The sets B (ri, s Ct )lhave similar

interpretation, for disks in C with orientation coordinates

ee [s i-t i I s1 ) 7h~e sets B ±(r,sit) of disks parazieters(p,O9,y) are

described in terms of sets of center ponits (p, 8) of disks having

a,., a given diameter y. Thee sets are denoted by B rsty) In

Figure 2 we illustrate a partition of the (p,8) plane in terms of

such sets for a given y. +Accordingly

(3.) :,(~st)((rejy) (,,eeB(rst~), <yb±

* -13-



10

% .4

0 
c

"of4t* hi

sf-. 

v ' V

o.



n - . -, . - . t ,. . -. . . . , , . . _ . . . ..o

Figure 3 provides geomtrical details for the definition of

B.(r,s,t,y) .For a formal definition, let t(r,y) = min(t,tan -(y/2r))

and let

r + y/2. , if 0 = 0

(3.6) P(r,O,y) r ~cos 0 + ((yl2r)2-sin 2  1/2, 0<<t(r,y)

y/(2sinO) , t(r,y)<<t.

(3.7) B+(rsty) n {(,e); p(r,-sjy)<p- and 0 <e-s<t}.

Similarly,

(3.8) EL (r,s,t,y) - (p,e), p(r,s-e,y) < p<-, and 0<9-0<t}.

.he expected numer of disks in Bt(rst)nl C. is da ed by

"- X K. (r,s,t). WI formally define Kt (r,s,t) - 0 for all tWO.

Generally, for t>O,

(3.9) Kt(rst) - ff1 d(yl ,e)nlA
'.; -' .B: (r, s,t} n c

In abova K-fuations can be used to express the probabilities

. (r,z) re explicitly. The expected number of disks in C, which

-a-k m at a on e or awe of the n specified points, is

n_-.' -"- (3.10o) v%, 1 ,,s)lr C}-Y{,: -x .h I[_ (y ,,t_ + 1+ Cri,s. ,t)

-iN"titution of (3.10) in (3.2) yield nore explicit formula for

• •(
Vn

-15-
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4. Visibility of a Moving Target

Consider a target moving at a constant speed along a curve C

in the plane. We are interested in determining the distribution

function of the proportion of time in which the target is not

shadowed by random obscurring elements while moving between

points L a u on C. his proportion of time is equivalent to

the proportion of the length of the visible segments of C between

PL and !u. We assume that C is a star-shaped curve. Such a curve

intersects any ray from the origin at most once. The curve C is

specified by a function r(e), s <su, which yields the distance

-y of C from 0 in direction e. We further assume that r(s) is

piecevise continuously differentiable. Let sL and s6 be the

Sorientation coordinates of a u, respectively. The length

of C, between these two points is

su(

,(4.1) L t (s)ds

where

(4.2) t(s) = (r2 (s) + d r(s2

The proportion of the visible segments of C, between and P,~U

is

( (4.3) V = P (s)t(s)ds,

L-16-
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where I(s) 1 if the point (r(s),s) on C is visible, and I(s) =0

otherwise. V is a random variable assuming values in [0 1].

The distribution of V is a mixture of a two-point distribution

concentrated on {0,11 and a distribution F *(v) on (0,1). Under
v

some general conditions the distribution concentrated on (0,1) is

absolutely continuous. It sufficies, for example, that G(yip e)

is absolutely continuous, or that H(d4d6) =h(p, d pd e,

h(P, 6)>0. Let Po - Pr{V-0} and Pl - Pr{V-l}. he c.d.f V of

can be generally represented by the formula.

0 ,v<0

(4.4) Fv (V) - po + (1-po-pl) F (v , 0 < v < 1

1 ,l<v.

"he probability that the section of C, between P L and P u is

cmpletely visible is given by

(: 4.5) pI=exp{-[v{C}-X[K+(r(su), st)+K(r(sL),sL,t)]]
,...

4.
where t = r-(su-L)/ 2 and C is the set of shadowing disks.

X K+ (r (v) su ,t) is the expected number of random disks having

orientation coordinate es L ,sv+t), which do not cast shadows on

the segment of C under consideration. Similarly, XK-(r(sL),SL,t)

is the expected number of random disks with orientation

coordinate esL-ts L ) , which do not cast shadows on the

intersecting segment of C. Explicit expressions for the

probability of complete invisibility po and of the c.d.f. Fv(v)

are not available. An approximation to Fv (v) by a beta

-. 1
. -17-

.4.'' '''... .; ,,:.;-... , '.'..".'--.'.--..: . .. T-. .. .'.:-' .'.' " ,'. .:-'"..-.:-'-.- - -.....-..-...



distribution will be discussed in Section 4.2. A discrete

approximation will be studied elsewhere.

4.1 mnts of V

., he n-th mxlnt of V is, according to (4.3),

SU

(4.6) n n  E { (sllslds) n }

I~ S L
nn

= S A'" s  E{r I(si)}i7r t(si)dsi .

SL sL

f A(7S Pn(S "'' 7nir _ t (si) ds i
-L A ~ i-1 i7-1

n

6."7.) pn(sl, .. , a -n 's) - E{ " I(Si)}.
n i-I

Applying the K-functions, which are defined in (3.7), one can

xpress the probability of simultaneous visibility in(s sn)

in the form

(4.8) PnlSl, On) - exp{-v{C}}.

n.exp{X E [K_(rls i ) , si Iti-l) + K+l(r (si ) , s i , t i ) ]

n-i
= exp{-v{C}IAo(si,sn) TT A(si,si+ ),

1 i--1

where

... -18-
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(4.9) A (x,y)=exp{X[K (r(x),x,Tr- Yx)+K+(r(y),y,w - ) ]0. 2_
.0

for -n < x <-y < n, and

(4.10) A(x,y)=exp{X[K+(r(x),x,yx) + K_(r(y),y,yx)]I, - x < y <_.

*Substitution of (4.8) and (4.6) yields a recursive formula for

the momnts of V. Let t*(s) = t (s)/L and define recursively,

Q1 (xy) - A(x,y),

i Qi+I%'Y) = (i+l t*(z)A(z,y)Qi(x,z)dz i=i,2...

Finally, the momnts of V are.. su
Sl=ep{-{C}1 ft*(x)AO (x,x)d x

(4.12) and for n>2
s u8 U

Ip n= n exp{-v{C}} J f *W(x) J *(Y)A(x'y)9_1(x,y)dy dx.

Notice that if ou -sL< Tr then Ao(x,y) - A1 (x)A2 (y) and expression

(4.12) assms a simpler form. Formulae (4.11) and (4.12) are

covenient for the recursive determination of the momnts.

Finally we remark that the sequence { u n>l is monotonically

dicreasing and lim - p. Indeed, according to the dominatedn

convergence theorem,

1

(4.13) lir -n riz(l-Po-p) = M undF*(u)+pl]

- (1-po-p I ) f (lir un)dF (U)+Pl
0

M -l 19-
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4.2 A Beta-Mixture Approximation to the CDF of N.

o5'

.-. In order to approximate the c.d.f Fv (v) we consider a

mixture of a two-point distribution and a beta-distribution.
"-7hi s approximtion is given b

0 v< 0

i (4.14) Fv(V)=l Po + (,-po I) lv(a'a)  0 < v<1

% A 1 ,1<v

x
where Ix (a,b) ( 1 f ua1(-u)b-ldu is the incomplete betaB (ab)

0

function ratio, O<a, b< . 7he parameters PO' a and 8 are.

determined by equating the first three iments of V to those of

P (V). 7he moment equations yield the formulae

Po = 1-p1 - (pI-Pl) (a+8)/a 0

(4.15) =(2(u)2-*(U*+U*))/D

.-:- = 2 2 3

where Un Pn-pl and D ee .-

1,"..
This appoximation was previously applied by Yadin and Zacks [121

'in a related shadowing problem. In Section 6 we provide a

"p inumerical example which illustrates this approximtion in a

special case.

-20-
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5. The Evaluation of the K-Functions Under a Special Field

1I Structure

The evaluation of the K-functions depends on the particular

structure of the field of random disks. In the present section we

consider a class of field structures, which is prevalent in nany

applications, and which yields relative simple formulae. This

class is characterized by the condition that centers of disks are

scattered within aregionS which is situated between 0 and the

observed points P ... , Pr, or the curve C.

The regions in which centers of disks are scattered are

specified by two star-shaped curves U and W between the origin and.1*

the target curve (or points). These curves are specified by two

>2 star-shaped functions u(O) ,w(e) ,ru eL ,OU ], respectively, and the

region S is given by

(5.1) S = {(P,6); u(e)<p<w(e), eL< <_ e

The requirement that disks having centers in the region S and

diameter in [a,b], would not cover the origin or intersect target

points implies the following conditions on u(e) and w(e):

(52 < U(e) , ec[eL,Su]"(5.2) 2 - _e6Lu

and

-21-
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(5.3) w(e) coslS-s) + b2 -2-21sin2(O-sl<rls),

for all e[eL,u],

where (r(s),s) is any target point. Condition (5.3) insures that

the distance r(s) between 0 and (r(s),s) is greater than the

distance (s) between 0 and P = (C (s),s), where P is a point on a

circumference of a disk of the maximal diameter, b, whose center

(w(e) ,e) is on W (see Figure 4). The structural condition iqposed

on the field of random disk is C = S x [a,b]. In the follwing

develop nt we assume, for the sake of sizplifying notation that

the centers of disks are distributed within S according to an

absolutely continuous measure, i.e.,

1 h(p,G)dpde , if (P, )CS

(5.4) H (dp,d6) =

0otherwise.

A disk centered at (pe) does not intersect a ray from 0 having

orientation s, if its diameter y is amller than 2psinle-sI, or if

le -sl> n/2. Let G*(p,e,s) denote the probability of this event,

i.e.

(55 G s {G(psinle-s~p,e) if e-s<sin (f-)
".'-[, (5.5) G* ( P,,s)

otherwise

Let

W(e)
(5.6) k(s,e) f G*(p,e,s) h(p,e)dp

u(e)

-23-
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-Men,

min( t,e)

K +(r,s,t) = k(s,e)de

(5.7) and
S

Kr,s,t) = f k(s,e)de.

max (s-t, 6L)

Notice that, due to conditions C, K (rs,t) is independent of r.

-2-.-
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6. An Example

,, In the present example we develop all the previous formulae

explicitly and provide numerical illustrations for the following

simple case.

(1) 7he Poisson field is standard, with intensity X;

(ii) 7he diameters of disks are uniformly distributed in

[a,b], O<a<b;

(iii) 7he target curve C- is an arc on a circle of radius

r, specified by
C = {(P,e); P=r , L -_ < su} .

(iv) 7he region S is an annular region bounded

between two concentric arcs, U* and W of radii u

and w, respectively, which satisfy the condition

b < u < w < r-b/2.2
That is

S - {(,e); u< P< w; e << u

2 L- - u

and [(sL, su]C[eLeu] C - 2, 2]"

The expeced nunrbe of disks in S oban the siuple expression

euw( .)~~ i Pd{c} - P4 O~ o w-u ) (o.eu6).

6L U

-25-



To develop the K-functions we substitute in (5.6) the function

* 0 , if ie-sI<si- 1 ( 2

(6.2) G*(p,s,e) = 2psinle-sl-a if si (n-1 <e-s1<s b-)
b-a p 2p

1ifsin 1 (b

,hus n obtains

(6.3) k(s,e) -kw(Is-eI)-ku(I,-eI)

Awhere, for t>O

(6.4) k t) =

0 ,if t sin (a1

23 a 2+ a3  1 a b
V sin, -f Vt- 2 ]/(b-a) if sin ()<t<sin ()

12 2 24sin t

62 _,.-+a. 12 sin 2 t

12 2 si 2 if sin t <.

.;[v 2 - (a2+ab+b2 /12 1  if /2 < t.

For positive t valus not exceeding min(eu-s, s-e L), the

K-functions satisfy

-26-
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(6.5) K +(rs,t) - K (r,s,t) - K*(t) K*(t) - K*(t)

W U

where

t
(6.6) K (t) kr d-

0 ,ift < sin- 1 ( a

-in- K( a (tb <sn
.,- t < sin-

Kv M(t . sin-l(g - ) < t < iT/2

AV(3 Mt , 7r/2 < t

2v 2

(6.8) K~1 () b -1 b 4 2 a)" 2v o~)

2L 2 2/

, T I
a2+ab+ 2  (124 (4)v2-b)1/2-otant(t))
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(6.9) 1) T V2  a2+K()b2
- K 2 -24

If P1, Pn are points on C such that s1,fs 1<s2< ... < ,ns u-1 ' .

then, the probability of simultaneous visibility is given by the

formula

(6.10) ... sn) . e (w2-U 2)(eu-eL)}, Pn '" 2
i r~~n- a il-s.

n1 si+1 -si
.' .exp{X[K*(Sl-e L ) + K*(eu-sn) + 2 Z K*( 2 M}

i-1

• Furthermore, the pcodbility that C is completely visible is

(611 p1  exp{- -2(w-u)(%76L)l.

exp{X[K* (sL-eL) + K*(eu-s u ) ]

a In Tebe 6.1 we provide mnrical values of the probabilities

-V Pn (S1"'" sn) and p 1 for the following case. The region S is

located in an anmlar region, with eL - - Tr/2, eu = n/2, u - .5,

w - .75. The distributions of Y is uniform on the interval (.1,

.3). 7be intensity of the Poisson field is A - 1(2)9. n target

points are placed on a half-circle with radius r l 1, and

-28-
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orientation pramneters, si U 2 and

n - 1, ... , 4. In this special case, the functions Pn(sl, .0,,s n )

is given by the formula

(6.12) PnlSl, ... , sn ) = exp{-.15625kT}exp{X2nK*(j)}

" (S(1)) P2(s.12 () p ( 3) , ... s3 (3 ) )  (4 ) .,s(4))

1 .95096 .90432 .85998 .81780

3 .85998 .73956 .63600 .54695

5 .77770 .60481 .47036 .36580

7 .70329 .49462 .34786 .24465

9 .63600 .40450 .25726 .16362

Table 6.1. Probabilities of Simultaneous Visibility of n Points

Unifomly Placed on a Half Circle; u - .5, w - .75, r .1, b - .3.

For the cmnputation of mments of V, we consider a target curve C,

on the half-crcle of radius r - i with sL-7/3 and su - i/3. In
this case, t*(z) - for -!<z </3. Ao(xy) - AI(x)A2(y),

w-here Al() - exp fX*(x 1)a}, A. m(y) exp( -XK* "Y)},

a.F

Six < y </3 * Simlarly, A(x,y) - exp2XK* }+,

- < x y w/3. Since Ao(x,y) is factored to the product of

-29-



A A(y),the recursive integration needed for the mments

obtains the folliing fonn.

Let Q0 x)= A, x)

and for j > 1, let

x

(6.13) Q2(x) f Qj- (y ) A(y,xdy
)

!he iaunts of V are determined by the formula

.5" S

(6.14) un=exp{-.15625X} 4 (y)A(y, s)dy.

.52,,

Tbe pCObability that C is ompletely visible is given by

(6.15) P1=exp{- . 156251}exp{2AK*(r/6))•

he integrations in (6.13) and (6.14) were performd numerically.

In Table 6.2 we present the valuesof for n - 1(1)10 and the
value of u.- p1 for the same parameters as in Table 6.1.
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1 2 3 4 5 6 7 8 9 10

- 1 .951 .912 .880 .854 .832 .814 .799 .787 .776 .767 .686

3 .860 .758 .682 .623 .577 .541 .511 .487 .467 .451 .322

5 .778 .631 .529 .456 .402 .360 .328 .303 .282 .266 .152

7 .703 .526 .412 .335 .280 .241 .212 .189 .171 .157 .071

9 .636 .438 .321 .246 .196 .162 .137 .118 .104 .094 .033

Table 6.2 Moments of V for X=1(2)9 and sL = - 1/3, Su = 7/3, eL - 71/2,

6u =/2, u = .5, w=.75; r = 1.0, a = .1, b = .3

In Table 6.3 w present the rrments of V and the corresponding mtaents

of the mixed-beta approximation, for a slightly different case, in

'hich C is an arc on a circle of radius r = 1, between

.- = -su/18 to su.,-s L.

Intensity Order of Moments
X 1 2 3 4 5 6 7 8 9 10

1. 0.951 0.934 0.926 0.921 0.918 0.917 0.917 0.919 0.921 0.925 .901
0.951 0.934 0.926 0.921 0.917 0.915 0.913 0.912 0.910 0.910

3. 0.860 0.816 0.794 0.781 0.773 0.768 0.765 0.763 0.763 0.765 .730
0.860 0.816 0.794 0.780 0.772 0.765 0.761 0.757 0.754 0.752

5. 0.778 0.713 0.681 0.662 0.650 0.643 0.638 0.634 0.633 0.633 .592
0.778 0.713 0.681 0.662 0.649 0.640 0.634 0.629 0.625 0.621

7. 0.703 0.623 0.584 0.562 0.548 0.538 0.532 0.527 0.525 0.524 .480
0.703 0.623 0.584 0.562 0.547 0.536 0.528 0.522 0.518 0.514

9. 0.636 0.545 0.502 0.477 0.461 0.451 0.444 0.439 0.435 0.434 .389
0.636 0.545 0.502 0.477 0.460 0.449 0.440 0.434 0.429 0.425

Table 6.3 Mments of V (upper) and the correswndinM moments of the mixed-beta
_appraimat'on (lower) for the case of L= - /18, su = -s,

u - .5, w = 75, r = 1.0, a = .1, b = .3

-1
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SNotice that P is the same in tables 6.2 and 6.3, for all A
'U

"'U values. The moments of the mixed-beta approximation are generally
0

close to those of V. this shows an adequate approximation. The

values of in, n > 1 should be monotonically decreasing. The

slight deviation for high order moments and small X is due to

numerical errors in the integration. In Table 6.4 we present the

parameters of the mixed-beta approximating distribution

corresponding to Tble 6.3.

Intensity ~
. a PO Plp 8

1 .1733 .0020 .9005 1.1161 1.0398

3 .2765 .0152 .7302 1.1405 1.0967

5 .3290 .0326 .5921 1.0956 1.1194

7 .3590 .0536 .4801 1.0450 1.1386

9 .3754 .0768 .3893 0.9937 1.0967

Table 6.4 Parameters of the Mixed--Beta Distributions

Corr to Table 6.3. a Denotes the Standard Deviation.

.3 4-
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