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THE VISIBILITY OF STATIONARY AND MOVING TARGETS IN THE PLANE
SUBJECT TO A FOISSON FIELD OF SHADOWING ELEMENTS*

by

M. Yadin and S. Zacks
Technion, Israel Institute of Technology and
‘State University of New York at Binghamton

ABSTRACT

A methodology for an analytical derivation of visibility
probabilities of n stationary target points in the
plane is developed for the case when shadows are cast
by a Poisson random field of cbscuring elements. In
addition formulae for the moments of a measure of the
total proportional visibility along a star-shaped curve
are given. The general methodology is illustrated by
same examples of visibility along the circumference of
half a circle, when the obscuring elements are
centered within a concentric annular region. The
distribution of the measure of proportional visibility
is approximated by a mixed-beta distribution. ~

N

Key Words: V.isibility probability, stationary and moving targets;
measure of proportional visibility; Poisson random shadowing
process.

*Partially supported by Contract DAAGZ983K0176 with the U. S. Army

Research Office.




The present paper is the first one in a series of articles
dealing with problems of visibility of targets through random
fields of obscuring elements (trees, bushes, clouds, etc.) and
similar problems of detection and hitting of targets. The
problems dealt with are of stochastic nature. The exact number,
location and dimensions of the obécuring elements are unknown. A
probability model is fornulated concerning these variables. Given
such a probability model it is required to determine
probabilities of certain events and distributions of certain
random variables. To illustrate some of the p:éblems that can be
solved by the methodology developed, consider the following

examples:

Example 1:  Visibility of Stationary Targets
An cbserver is placed at a given location in a forest, in

order to detect specified targets (vehicles, animals, etc.). Due
to the random location of the trees it is important to determine
the probabilities that individual targets are cbserved and the
distribution of the number of targets observed. _For this purpose
one has to determine the probabilities that any specified r
points out of n, 1 <r < n, are simltanecusly visible. The
locations of the targets may be specified or randam.

Example 2: Visibility of Moving Targets
A target is moving along a specified path C. An observer is
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located at a point 9. Trees or other abscuring elements are

248
:;':j_ distributed between 0 and C. It is often required to determine
.}' the distribution function of the total visible portion of C.
o
o
o - Example 3: Detecting and Hitting Moving Targets
;\1 A hunter is located at a point 0 in the forest and a target
28 is moving along a path C, which is partially obscured by the
X random elements. In order to detect a target the hunter ghould
;:i:; cbserve it uninterruptedly for t units of time. It is
E\.- interesting to determine the probability of detecting a target at
N a specified location or amywhere on C. In addition, after
:LJ-.,
,z"}_; detecting a target the hunter could attempt to hit it. Each such
I{t attempt requires t units of time in which the target is visible.
DY
A hitting attempt may be successful with probability p. If an
1':_ _ attempt fails the hunter can attempt again, as long as the target
W]
‘:‘*'}3 is visivle. Once the target disappears, it has to be detected
el again, The total number of possible trials, N, depends on the
WL ’
oy length of the visible portions of C. N is a random variable, and
gf‘
:3‘2 it is interesting to determine the distribution of N, and the
h Y
’ ) probability of hitting a target.
g
o
o
e Example 4: Energy Penetration Through Random Fields
NN
o A light beam from the origin 9 is focused in a specified
: direction. If there are no obscuring elements, a given sector of
ES¢Y
e 2 the plane is in the light. On the other hand, a portion of the
:. .':
o sector may be in the shadow of random elements. In such a case
5




,, part of the energy in a beam does not penetrate the field. The
S.;q dbjective is to determine the distribution function of the amount
N

\5“ of penetrating energy.

In the above examples we restricted attention to visibility

%:-1 problems in the plane. These problems can be readily generalized
N to visibility in three dimensional spaces, where the abscuring
elements are crowns of trees, clouds, sattelites, stars, etc.

N
:‘{'5 Problems of similar nature can be found in various areas of

“:i applied science and technology and in military applications.
s The literature dealing with these kinds of shadowing prob-
_ | lems contains a small number of papers. Chernoff and Daly (2]
s 4
T discussed the problem of determining the distribution of the
34 length of shadowed and of visible segments on a straight line in
f: the plane. Likhterov and Gurin [6] studied the probability of
N7 detecting a moving target ona straight line. The shadowing F
_ ‘ problem can be reduced to a coverage problem. This reduction is
% achieved by specifying the shadows cast by random elements on a
i target curve. In a previous paper, Yadin and 3Zacks [12] applied I
':11 methods of coverage probabilities to study visibility problems on
X

g‘é a circle. The literature on coverage problems is very rich (see
N Eckler (3]). The papers of Ailam [1], Greenberg [5], Robbins
(8,9] and Siegel [10,11] provide methods which are relevant to
}{: the study of shadowing problems. In particular the methods
developed in the present paper and those of [12] are based on the
theory given by Robbins [9, 10]. The gecmetry of the problem may
:?'.ﬂ be complicated, and a reduction to a coverage problem may be

B

inconvenient. In such cases it is often easier to study the
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geametry of the shadowing elements rather than that of the
shadows. For this reason, the present paper deals with the
shadowing problems directly.

The fact that the number of papers on shadowing problems
published is small does not reflect a lack of interest in these
problems in various areas of application. One can find a large
number of technical reports which treat shadowing problems by
simulations or by fitting simple statistical models to empirical
data. Such "solutions® do not shed light on the intrinsic
structure of the stochastic phenamenan. The methodology
developed in the Present paper analyzes the stochastic structure
and provides methods for numerical approximations which are more
accurate and require less computing time than simulation
procedures. ?or developing the general methodology we construct
in Section 1 a probability model of random shadowing elements.
Sections 2 and 3 deal with visibility probabilities of single and
several stationary targets (Example 1). Section 4 deals with a
visibility measure for moving targets (Example 2). The
methodology for solving problems discussed in Example 3 and 4
will be presented in forthcoming papers. The methods of the
present paper are extended in [13] to solve three dimensional
visibility problems.




3 /_i'f. -'t ""'."

s

b \-‘,S"

Y XN

S

[y
LA 4

N

g
P

"~ C

Pyt "
‘-"r' DA h

»r

At

%

S

Attt
Tt .
L'_....l.

,k‘

X Y

0,
»
)

<
- K

n’."?{

;=

1. Random Fields of Shadowing Objects

In general, a shadowing object is characterized by parameters
of location, shape and size. In the present paper we restrict
attention to disks in the plane. An extension to spheres in
three dimensional spaces is given in f13] . A disk in the plane
is characterized by a wvector (o, 6,y)r, where (0,6) are the polar
coordinates of its center and y is its diameter. The
specification of disks location by polar coordinates is a matter
of convenience and could be replaced in some application by
Cartesian coordinates. Let S={(ps8,¥); 0< p<ep =7<e<me 0<Xy<D}
denote the sample space of all possible shadowing disks. LetB
denote the Borel o field on S. A set B in B represents

geametrical conditions on the location and the size of disks. We

consider a countable collection of disks. Let N{B}, for any B
€ B, denote the nuber of disks having coordinates in B, i.e.,

satisfying geametrical conditions specified by B. N{°} is a
O-finite measure on B. We consider stochastic structures in which
N{°} are random measures. In these cases, for each BcB, N{B} is
a random variable. In the case that N{B} has, for each BeB, a
Poisson distribution, the spatial stochastic process is called a
Poisson random field of shadowing disks. In a Poission random
field, the conditional distribution of (N{Bl}, cans N{Bm}) ¢ given
N{S}=n, is miltinamial, for every finite partition {Bl' cosr Bm}
of S. Accordingly, if the number N{S} in a Poisson random field
of disks is known, we speak of multinamial fields. 1In the
present study we discuss Poisson random fields.

-5-
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The Poisson random field model is obviously an idealization

of natural phenamena. For example, on a planar cut of a forést,
trunks of trees are represented by random disks rather than by
their actual random shape. Additional parameters could represent
other shapes of shadowing objects, like ellipses, triangles, etc.
Furthermore, the Poisson random field models assumes that, given
N{S} = n, the «centers of random disks are independently
distributed in the plane. Accordingly, with certain (usually
negligible) probabilities disks may owverlap. Clearly, in
practical applications the fit of the Poisson model to the
empirical data should be verified. In Poisson random fields N{B}
has a Poisson distribution with mean

(1.1) v(B} = Afjf aG(y|e,0)H(dp,ao),

where \H(dp,d8') is the expec!:ed number of centers located in the
rectangle [p, p +d0) x [9, 6+d. G(y| o,08) is the conditional
c.d.f. of the diameter Y, given the location of the center ( p,0).
If Y is independent of (p,9), and if the centers are uniformly
distributed, i.e., H(dp,d6) = pdpde, we say that the random field
is standard. In this case

b
(1.2) v{B} = A f H{B(y) }4G(y),
a
wvhere H{B(y)} is the area of the subset of B containing disks
with a given diameter y. Standard Poisson and multinamial
fields are not the only interesting ones. In many applications,

-6-
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scattering of centers of disks follow other distributions than
uniform. In particular, clusters of disks, each one following a
different bivariate normal distribution are of interest in various

applications (ecological problems, etc.).

"""""""" SAOSNAN Y . R S RO
;LMA._!-A_L_&.L ._L ._E_LBA_. _kA_‘AAL‘

FEALAT SN U SN 4 A

bt N

s P

P AN L ARV IRV N . LRI U

1 e

Pl s



XX
.*' ‘."

s

..

2. Visibility of Individual Targets

.“_- A target is represented in the present paper by a point P in
L: the plane whose location is specified by the polar coordinates
-':::: (r,s). The observer is located at the origin 0. The point P is
o visible from 0 if the line segment OP is not intersected by any
random disk. A random disk interacts the line segment OB if its
coordinates belong to the set
L
o (2.1)  B(r,s) = {o,6%); (0,0 ¢ BlL,8y), a<y<bl,
-:} " where B(r,s,vy) is the set of points having distances from g_g smaller
;" than y/2 (see Figure 1). A disk which intersects OP is said to
;f; cast shadow on P. A natural requirement for shadowing processes
; is that the source of light 0 is uncovered. We therefore
*\ . introduce the structural condition

(2.2) . Co= {(pr6s¥)s (ps8) € %(y),_a<y§b},

where

(2.3 Cy) = {(pr0); Loty = m <0 <1}

'E}f Figure 1 provides a graphical illustration of the set
. B(r,B'Y)ﬂﬁo(y) . Apoint P= (r,s) is visible if N{B(r,s)ﬁco} =0 .

The probability that P is visible is, therefore,

e

Y

(2.4) ¥y(zs8) = exp {~v{B(zx,8)N C }}.

QN4

*
h

-
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In the standard case, the area obe(r,s,y)ﬂco(y) is yr. Hence,

v{B(r,8)NC_} = ArE, where ¢ = a{ ydG(y) is the expected diameter
of a shadowing disk. In this case, the probability that P is
visible is wl(r,s) = exp (-Arg) ~  irrespectively of the
orientation parameters. A line of sight, Ls, is the set of all

points, in direction s, which are visible from 0. The length of
L;, |IL.S| | » bas a c.d.£.

(2.5) Pri||L ||} = -y,(x,8) .

In the standard case, the distribution of IILSH is negative exponential
with parameter p=){ (see also Feller [4,p.10]). One can generalize the
above results to cases where the target P is randamly located. For

~

For example, in the standard case, if (r) is the c.d.f. of the distance

Fr
of P fram O, the probability that P is visible is

of e P (r) .

(2.6) L2Y
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3. Simultaneous Visibility of Several Targets

Let Pyy <oy Py n>2, be arbitrary points in the plane and
let 0 designate the origin. The polar coordinates of P.are
(tj, sj), j =1, ..., n. These n points are simultaneously
visible if and only if no one of the line segments 5133. r j=1,
«eer N, is intersected by a random disk. Letr = (£yr eeer £ )y
8= (s 17 eeer sn) and consider the set B(f,g,y)' of points having

distances not exceeding y/2 from any one of the line segments Ej,

j=1, «e.r N (see Figure 2). Let

(3.1) B, (£,8) = {(prey)s (@B (r,87), ayshl.

The expected number &Mdi“skswhidx daststndowsmcneormoreof
the specified points is v{B , (r,8)NC o }. Accordingly, the
probability that P, ..., P are similtaneously visible is

(3.2) an(§'1§) = exp{-\){Bn (E,g)ﬂ Aco}}

We provide general formulae for the determination of V{B, (x,s) c,}

forthecasemerethenpointsgj ;' j=1, ..., n, satisfy the
condition

(3.3) T <8 <8 <..<s <7
Condition (3.3) means that no two points are on the same ray. In
addition we require that all disks satisfy same condition C,
where CC Co, and v{C} <=, Disks which belong to the set C may

.................. «”
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or my not cast shadows on the specified points. In order to

compute the expected number of disks which cast shadows on at
least one point we subtract from the total expected number of
disks, v{C}, the expected number of disks which do not cast
shadows on any one of the n specified points., For this purpose
we define 2n disjoint sets B_(r,,s,,t,)C and B (r_,s,,t,_,)NC,

i=1' eeey Ny where

%h 51
ST T,
(3.4) and
S, .-S
ti= 1+% i [ 4 i=1' se ey n-ln

B+(ri,si,ti)-ﬂ C is the set of disks. havine orientation

coordinate 6c([s, ,s;+t,;) which do not intersect the line segment
oP. . The t, values were chosen as bisectors of two adjacent

~

directions in order to avoid the possibility that a disk
belonging to B +(ri, si,ti )N C will intersect any other line
segment §'gj, j#. The sets B_(r;, s; ,t; ;) C have similar
interpretation, for disks in C with orientation coordinates
bels;-t,
described in terms of sets of center ponits (o, 6) of disks having

a given diameter y. These sets are denoted by Bt (r,8,t,y). In

' si). The sets Bt(r,s,t) of disks parameters(p,9,y) are

Pigure 2 we illustrate a partition of the (p,6) plane in terms of
such sets for a given y. Accordingly

(3.5) Bt (x,s,t)={(pr0,¥): (ps6) ﬁt (r'sltIY) r a<Y<_b} .
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Figure 3 provides geametrical details for the definition of .
Bt (r,s,t,y) .For a formal definition, let t(r,y) = min(t:,t:an~1 (y/2r))
and let

rr+y/2. , if =0

(3.6)  olr,0p) = { rioos ¢ + ((y/20)%-sin® )1/?), o<o<tiz,y)

y/ (2sin¢) , tlr,y)<é<t.
Ih‘n' .

(3.7) B, (£,8,t,y) = {(0,0); p(r,6~8,y) << and 0 <o-s¢t}.
Similarly,

(3.8) B_(r,s,t,y) = {(p,0)s o(r,80,y) < p<», and 0<s-6 <t}.
The expected number of disks in Bt(:,s,t)ﬂ C is denoted by
A xt (z,s,t). We formally define Kt (c,s,t) = O for all t<0.
Generally, for t>0,

(3.9) K, (r,s,t) = [f aG(y|p, HH@pdBY .

Bt(f,s,t)ﬂc ’

The above K-functions can be used to express the probabilities
¥, (£,8) more explicitly. The expected number of disks in C, which
cast shadows on one or more of the n specified points, is

n
(3.100  v{B_(r,mNC}=v{C}- ‘A (R (c.,8,,t )+ K (r,8,,t )1.
Substitution of (3.10) in (3.2) yields more explicit formula for

Wn(sv!)-
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4. Visibility of a Moving Target
~._s ) Consider a target moving at a constant speed along a curve C
:1 in the plane. We are interested in determining the distribution
':;:‘: _ function of the proportion of time in which the target is not
o shadowed by random obscurring elements while moving between
:7-, ' points P and P, on C. ‘This proportion of time is equivalent to
COny
= the proportion of the length of the visible segments of C between
i:: _ P and P We assume that C is a star-shaped curve. Such a curve
-f‘ intersects any ray from the origin at most once. The curve C is
.Y
3‘::‘ specified by a function r(9), sbgegsu, which yields the distance
N of C from 0 in direction 6. We further assume that r(s) is
f:_t: plecewise continuously differentiable. Let g and s be the
RO orientation coordinates of P and P, respectively. The length
. ~ s
o of C, between these two points is
YA
3 b
N -(4.1) L= f Lis)as ,
. SL
n';:.;:
Ly where
0as
R (4.2) &) = [P (s) + 2 r(eF2
2
.-.::‘
s The proportion of the visible segments of C, between PL and Pu,
: .} i _
o
S'.'
o 1 u
> 4.3) vez fI(s)I;(s)ds '
f; 8L
ol
o
:::' . ~16-
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vwhere I(s) = 1 if the point (r(s),s) on C is visible, and I(s) =0

otherwise. V is a random variable assuming values in [0 1].
The distribution of V is a mixture of a two-point distribution
concentrated on {0,1} and a distribution FV*(v) on (0,1). Under
same general conditions the distribution concentrated on (0,1) is
absolutely continuous. It sufficies, for example, that G(y|r,8)
is abseolutely continuous, or that H(dnd®) =h(p, 0)dande,
h(p, 620. Let p, = Pr{V=0} and p = Pr{V=l}. The c.d.f V of
can be generally represented by the formula.

0 s, Vv<O0
(4.4) FV(V) = Pyt (l-po-pl) F:‘r (v) P 0<v<l
1 r 1<V

The probability that the section of C, beuueeng andgu, is
completely visible is g:f.ven by

(4.5) .py=exp{=[V{C}-A[K (r(s ), s B)HK_(r(s ), s ,t)1]}

where t = n-(su-sL)/z and C is the set of shadowing disks.

AK+(r(§V ) su,t) is the expected number of random disks having

orientation coordinate edsL 8 tt), which do not cast shadows on
the segment of C under consideration. Similarly, AK_(r(sL) ,sL,t)
is the expected number of random disks with orientation

coordinate 6e(s, -t,s; ), which do not cast shadows on the
intersecting segment of C. ©Explicit expressions for the
probability of complete invisibility p_ and of the c.d.f. F (v)
are not available. An approximation to FV (v) by a beta
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distribution will be discussed in Section 4.2. A discrete
approximation will be studied elsewhere.

4.1 Moments of V

The n—th moment of V is, according to (4.3),

Su .
e u =1 ke[ eerean

L SL

=l j E{ﬂ I(s)}n L(s;)ds;
L i=1

S, S, n

n!

=== E{'n I(s )} o t’.(s )ds .
Ln f i=1 =]
n! n

= — cee p (S ) ceey S ) L L(S )ds ’
nj f 1 T | i

where A = {s; <'s; <... <s, <s;}and

. . n
(4.7)  p (8,5 eeer 8 ) =y (r,8) = Ef iglr(si)}-

Applying the R-functions, which are defined in (3.7), one can

express the probability of simultaneous visibility 31(8 17 seer sn)
in the form

(4.8) pn(81, (XX Y4 Sn) = QXP{'\){C}}O
n
exp{d £ [K_(r(s, 1) 8yt q) + K (X(s)),s, it )1}
i=1 -1

= exp{-v{CHA_(s;,s ) TT Alsy,

i=1 1+1) ’

where

o«
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(4.9) A, b, y)=exp(A K_ (2 (x) %, 7= LEpK, (x(y),y,m - LE)])
for -T<x<y<m, and
(4100 Aky)=x(A K (0 ,x5E + K @),y 591} -1 < x <y <.

Substitution of (4.8) and (4.6) yields a recursive formula for
the moments of V. Let £*(s) = £(s8)/L and define recursively,
Q, &x,y) = Alx,y),
(4.11)
y
Q,,, 6,y) = (i+1}J L (2)AYQ; x,2)dz  , i-1,2,...

Finally, the moments of V are
' s

u
umexp(-vich [ £ ax
o
(4.12) and for n>2
s S
u u
by =0 epl-vich [ e [ rpa o xydy ax.
sy X
l_loti.ce that if 8, 8T then Ao(x,y) = Al (x)Az(y) and expression
(4.12) assumes a simpler form. Formulae (4.11) and (4.12) are
convenient for the recursive determination of the moments.
timlly we remark that the sequence { My ;n>l} is monotonically
decreasing and lim W, = Pp. Indeed, according to the dominated
nrce

oconvergence theorem,

1
. = n
(4.13) Lin u, rr13[(1-90—;:11) ,! u"aF® () 4p, |
n
= (p,py) | (Lim u?)aF} () 4py

o
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in a related shadowing problem. In Section 6 we provide a

4.2 A Beta-Mixture Approximation to the CDF of N.

In order to approximate the c.d.f. FV(v) we consider a
mixture of a two-point distribution and a beta-distribution.
This approximation is given by

0 r V<0
(4.14) - Fv(v)= Py + (l-po-pl) Iv(a,B) » 0 <v<l
1l r 1 <v ’
x

1 -1 b-1 .
where Ix(a,b) = Blab) f ¥ (1-u)°ldu is the incomplete beta
o

function ratio, 0<a, b< =, The parameters bo a and B are.
determined by equating the first three moments of V to those of
E‘v (V). The moment equations yield the formulae

-~

(4.15) o = (20$)2-u§ (u3+ug)) /D
B = (u-n3) (u3-u3)/D,

where WA= u,-p) and D = uf uf - (up)?,

This approximation was previously applied by Yadin and Zacks [12]

numerical example which illustrates this approximation in a
special case.

=20~




- 5. The Evaluation of the K-Functions Under a Special Field

. Structure |
:_1;: The evaluation of the K-functions depends on the particular ‘

structure of the field of random diskg. In the present section we |
consider a class of field structures, which is prevalent in many
applications, and which yields relative simple formulae. This
class is characterized by the condition that centers of disks are
scattered within aregion S which is situated between 0 and the
cbserved points P, ..., gn, or the curve C.

The regions in which centers of disks are scattered are
specified by two star-shaped curves U and W between the origin and
7;1 the target curve (or points). These curves are specified by two
star-shaped functions u(e),w(8) ,0¢ [eL,eu] » respectively, and the
region § is given by

-

>

3

N (5.1) s = {(p,0) 7 u(8)<p<w(e), 6, 282 Gu} .

ZS- The requirement that disks having centers in the region S and
s'

diameter in [a,b], would not cover the origin or intersect target
points implies the following conditions on u(e) and w(o):

(5.2)

b
2

<ul@) , eeley,6.]
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(5.3) w(e) cos(8-s) + ()2 - WP (e)sin’ (6-5) % (s),

for all 6c(8;,6,],

where (r(s),s) is any target point. Condition (5.3) insures that
the distance r(s) between 0 and (r(s),s) is greater than the
distance £(s) between 0 and P = (£ (s) ,8) s where f is a point on a
circumference of\ a disk of the maximal diameter, b, whose center
(w(6),6) is on W (see Figure 4). The structural condition imposed
on the field of random disk is C = S x [a,b]. In the following
development we assume, for the sake of simplifying notation that
the centers of disks are distributed within S according to an

absolutely continuous measure, i.e.,

h(p,8)dpdé , if (p,0)esS
(5.4) H(dp,de) =
0 , otherwise.

A disk centered at (p,8) does not intersect a ray from 0 having
orientation s, if its diameter y is smaller than 2o0sin|6-s|, or if
|6 -s|> /2. Let G*(0,9,8) denote the prabability of this event,

i.e.
. . ..=1, b
G(2psin|6-s|p,8) , if |6~-s|<sin (557
(5.5) G*(p, 9,8) =
1 , otherwise
Let
w(9)
(5.6) k(s,8) = fc*(p,e,s) h(p,8)dpo .

u(9)
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rrd.n(s‘t,eu)
K+(r,s,t) = fk(s,e)de '
(5.7) and S ,
S
K_(£,5,t) = [ kis,0)de.
nax(s-t,eL)

Notice that, due to conditions C, K, (r,s,t) is independent of r.
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N In the present example we develop all the previous formulae

explicitly and provide numerical illustrations for the following

simple case.

) (1) The Poisson field is standard, with intensity ;

Al (ii) ‘The diameters of disks are uniformly distributed in
ta;b], 0<a<b;

(iii) The target curve C is an arc on a circle of radius
r, specified by

- C=1{(p,0); p=r , 8 <6<5s.}.

0 (iv) The region S is an annular region bounded

g ]
'..-‘."l‘l

.
-

YNV

between two concentric arcs, U andW of radii u
N ' and w, respectively, which satisfy the condition

NN b <u<wc<r-p/2.
s 2
S=1{(,8); u<op<w 6 <06<8}

o and [s;,8,]C16.,6,1 C [-% ' -g-] .

N The expected number of disks in S cbtains the simple expression

6. w
2 4 (6.1) v{C} = A f f pdpd6 = %(wz-uz) (6,-6;) -
oy 6, u |
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To develop the K-functions we substitute in (5.6) the function

( . . =1, a
0 , if |6-s|<sin (2—p
(6.2) G*(0,s,6) = J ZQSiglg'sl‘a, if sint 52 <|6-s|<sin”
. .=-1, b
\ 1 , if sin “G3) < |6-s].
Thus one obtains
(6.3) k(s,8) =k (|s-6])%k_(|g-0))
where, for t>0
(6.4) kv(t) =
0 if t sin-'1 (52
! 2v

3

24sin“t

]
.
N
N

1,2 _ a’tabtb . .-1,b
v ] if sin ") < t <
2 12 sin’t ' V=" 2
\
v (a%sabip?) /12] , if 1/2 < t.

For positive t values not exceeding min(eu-s, s-eL). the
K-functions satisfy

[§ v'sint- 5 v+ —l_-—z— 1/®-a) , if sint (2—3-) <t<sin”

I ¥ '~.‘-:.-‘ WL

1 b
52

r
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(6.5) K+(t,8,t) = R_(rlslt) = K*(t) = K*(t) - K*(t),
w u
where
t
(6.6) Kv(t) =[ kv(‘t)d‘t
()
(0 . if t < sin" R
(1) - -
iy ) () ,sin Tt @) <t < sin D)
K, @ ,sinh D) <t <12
\ Kvm (t) P T/2 <t '
in' which
2
1
(6.7) K0 =g 5 v*-ad) 2 - v cosit)] -
) 2
$ v tt-sin" D] + & (0v2-a2)V/2 - & cotan(e)1},
. (2) 1), -1 2 i
(6.8) Rt =K D sineR) + I (e-sinl D))
a2vab? 1, 2.2.1/2
-1 (B(4V =-b") -cotan(t)) ;
and
......... ot
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(6.9) K~ (8) =K, <) + (t-3) 51 ).

If Py ...s B are points on C such that g <8.,<8,< o0 < 8,CS
then, the probability of simultaneous visibility is given by the
formula

(6.10) P (81 «oes 8) = @ (- F(wP-u’) (8,-6,))

n-1 S;:,1"S;
A K* (5y-0y) + K*(08) +2 I ke 2231},

Furthermore, the probability that C is completely visible is

A, 2 2
(6.11) P, = exp{- 3 (w"-u") (eu-eL)}.

exp{ A [K* (s;-6p) + K*(8,-5,)]

In Table 6.1 we provide nimerical values of the probabilities
pn(sl,..., sn) and P, for the following case. The region S is
located in an annular region, with eL = - 7/2, eu =n/2, u -~ .5
ws= ,75, The distributions of Y is uniform on the interval (.1,
.3). The intensity of the Poisson field is A = 1(2)9. n target

points are placed on a half-circle with radius r = 1, and




(n) n+l, T

orientation parameters, s; = (i- =3 i=l,...n and

n=1, ..., 4. In this special case, the functions pn(sl, ...,sn)
e is given by the. formula

(6.12) P (s, --s S) = exp{-.15625km}exp{\2nk* () }

29 x Jogte, ™) & ) o6, @5, @) @ @,

p,z(sl P4(Sl ,.--,54

.95096 .90432 .85998 .81780
.85998 . 73956 .63600 .54695
77770 .60481 .47036 .36580
.70329 .49462 .34786 .24465
.63600 .40450 .25726 .16362

Y
A
O N 0 W =

T ~ Table 6.1. Probabilities of Simultaneous Visibility of n Points
S Uniformly Placed on a Balf Circle; u = .5, w= .75, £ = .1, b = .3.

' For the computation of moments of V, we consider a target curve C,
on the half-circle of radius r = 1 with g = -7/3 and 8, = /3. In
.,J_:j this case, £*(z) -%“ for -§<_z <n/3. Ao(x,y) = Al(x)Az(y),

e vhere A,(x) = exp {AK*(x -%)}, and &, (y) = exp {J\K*(%-y)},
e’ w

L -3<x <y <n/3 . Similarly, A(x/y) = e:t'p[ﬂk*(}%’-c)'};

-3<x <y <n/3. since A (x,y) is factored to the product of

~29-
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Al(x)Az(y) » the recursive integration needed for the moments
obtains the following form.

Let Qyx) = A, (x)
and for j > 1, let

(6.13) Q; (x) =3 J_l(Y)A(y,x)dY .
L

The moments of V are determined by the formula

(6.14) u =exp{-.156251} —32 f 6n_1 (YIA(y,s,)dy.
)
%L

The probability that C is completely visible is given by

* (6.15) Pl=exp{-.1562s>\1r}exp{2)\1(* (n/6)}.

The integrations in (6.13) and (6.14) were performed numerically.
In Table 6.2 we present the values of My for n = 1(1)10 and the

value of u, = p; for the same parameters as in Table 6.l.




.951 .912 .880 .854 .832 .814 .799 .787 .776 .767 .686
.860 .758 .682 .623 .577 .541 .511 .487 .467 .451 .322
.778 .631 .529 .456 .402 .360 .328 .303 .282 .266 .152
.703 .526 .412 .335 .280 .241 .212 .189 .171 .157 .07l
636 .438 .321 .246 .196 .162 .137 .118 .104 .094 .033

W 3 0 W = T

Table 6.2 Moments of V for A=1(2)9 and s =-7/3, 5 _=1/3, 6
Bu =m/2, u= .5 w=.75,r=1.0,a=.1, b =.3

L /2,

In Table 6.3 we present the maments of V and the corresponding mements
of the mixed-beta approximation, for a slightly different case, in
which C is an arc on a circle of radius r = 1, between

8, = -n/18 to S,= ~S

Intensity Order of Maments
A 1 2 3 4 5 6 7 8 9 10 L

1. 0.951 0.934 0.926 0.921 0.918 0.917 0.917 0.919 0.921 0.925 .901
0.951 0.934 0.926 0.921 0.917 0.915 0.913 0.912 0.910 0.910

3. 0.860 0.816 0.794 0.781 0.773 0.768 0.765 0.763 0.763 0.765 .730
0.860 0.816 0.794 0.780 0.772 0.765 0.761 0.757 0.754 0.752

5. 0.778 0.713 0.681 0.662 0.650 0.643 0.638 0.634 0.633 0.633 .592
0.778 0.713 0.681 0.662 0.649 0.640 0.634 0.629 0.625 0.621

7. 0.703 0.623 0.584 0.562 0.548 0.538 0.532 0.527 0.525 0.524 .480
0.703 0.623 0.584 0.562 0.547 0.536 0.528 0.522 0.518 0.514

9. 0.636 0.545 0.502 0.477 0.461 0.451 0.444 0.439 0.435 0.434 .389
0.636 0.545 0.502 0.477 0.460 0.449 0.440 0.434 0.429 0.425

Table 6.3 Moments of V (upper) and the corresponding maments of the mixed-beta
\ approximation (lower) for the case of s, = - /18, Su = -5/

u= .5, w=75, r=1.0,a=.1, b=.3

.............
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U Notice that u, is the same in tables 6.2 and 6.3, for all )
\‘.‘ :
A values. The moments of the mixed-beta approximation are generally
: close to those of V. this shows an adequate approximation. The
J'\‘..'
if values of W, n > 1 should be monotonically decreasing. The
- slight deviation for high order moments and small \ is due to
0 : ' numerical errors in the integration. In Table 6.4 we present the
*- ' parameters of the mixed-beta approximating distribution
i corresponding to Table 6.3.
\
LAY : s
TN Intensity >
SN A g Po Py o B
2 1 .1733  .0020 .9005 1.1161 1.0398
3 .2765 .0152 .7302 1.1405 1.0967
":-:Y
:;-:.j 5 .3290 .0326 .5921 1.0956 1.1194
¥ 7 .3590 .0536 .4801 1.0450 1.1386
(X
{ 9 ‘.3754 .0768 .3893 0.9937 1.0967
\'-
X Table 6.4 Parameters of the Mixed-Beta Distributions
:5:3 Corresponding to Table 6.3. o Denotes the Standard Deviation.
&
R
.
o
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