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PREFACE

This final report c¢ontains the results of an effort to
investigate foaminess and gas retention of turbine-engine lubricants
to obtain a fundamental understanding of the causes of such effects.
The work was performed in the Colloid and Surface Chemistry
Laboratories, Departnent of Chemistry, Renzselaer Polytechnic

Institute, Troy, N.Y. 12181, by Professor Sydney Ross, Dr Yaakov

Suzin, IMr D.F. Townsend, and Mrs Tammar Suzin during the period
September 198C to August 1283, The effort was cponsored Dby the
Aero Propuls=ion Laboratory, Air Force Wright Aeronautical

Laboratories, Ailr Force Systems Command, Wright-Fatterson AFB, Cnio,
under Ccntract F33615-80-C-2017. The work was accomplished wunder
Project 3048, Task 304806, Work Unit 304380614, Foaming and Aeration
Characteristics of Turbine Lubricants, with Mr H.A. Smith and Mr

Phillip W. Centers as Project Engineers.
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SECTION I
INTRODUCTION

In the functioning of a lubricating oil in engines and in
various types of other mechanisms, it is not unusual to come across

the formation of o0il foam. Severe foaming of a turbine-engine
lubricant can lead to breakdown ¢f the normal operation of aircraft
lubricating systems. Difficulties that can arise include

fluctuations of o0il pressure, oil-pump cavitation, decrease 1in
lubrication and cooling efficiencies and, in exXtreme cases, loss of
0oil overboard through the breathers. Therefore, measures to combat
foam are necessary. The problem has proved to be stubborn, as
different +types of o0il respond differently to antifoam additives;
and it i1s further complicated by the presence of proprietary
compounds (additives) used to enhance lubricity, thermal stability,

and extreme-pressure characteristics of the oils. These additives
include oxidation inhibitors, viscosity-index improvers, pour-point
depressants, dispersing agents and oil-soluble detergents. In

addition, in order to neutralize corrosive acids, which are produced
by the burning of petroleum fuels, colloidal dispersions of alkali-
earth carbonates, in which the particles are stabilized by adsorbed
layers of surface-active agents, are sometimes provided in mineral
oils. Furthermore, o0ils can change during use or even during
storage and produce undesirable results: in some cases uszad or
stored oils have lost their antifoam additives; again, the oils may
leach out organic products from sealants and elastomers, or they may

generate oxidized or decomposition products that cause f{oaming. As
the outcome of so many different causes, the problem of foam
presents itself frequently. The basic mechanisms of foam

formation, foam <collapse, and foam inhibition are not sufficiently

well understood to anticipate problems, to diagnose difficulties and )
to develop lubricants with improved foam properties. Unless =uch o
an understanding is reached of the fundamental principles <“hat 54
govern foam formation in a solution, each problem as it arises has

to be tackled de novo. The purpose of this research project {1i o

study the basic mechanisms that affect and control the foaming of
turbine-engine lubricants.

The experimental approach 1is to select a typical syathetic
lubricant and then to discover circumstances that cause it tc foam.
The nature of the foam thus produced is then to be studied as a
function of pertinent variables, such as temperatur=z, or the
presence and amount of contaminants o¢r additives present. The
altered physical properties of the lubricant introduced by these
controlled <conditions are next to be studied, guided by the best
available theories of the stability of liquid £films, to find
possible correlations with, and hence causes for, the formaticn and
stabilization of foam.
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SECTION II
LITERATURE SURVEY

1. Rayleigh-Giblis Theory of Foam

Pure liquids do not form stable foams, but allow entrained air
to escape wWith no delay other than what is inseparable from the
Stokesian rate of rise, which is controlled by the diameter of the
bubble of dispersed air and the viscosity of the bulk ligquid.
Certain solutes are able to stabilize thin sheets (or lamellae) of
liquid: if these solutes are present the escape of entrained bubbles
is more or less retarded, and a head cf foam is produced. Theories
of foam postulate plausible mechanisms to account for this behavior,
with the wultimate objective of understanding the phenomenon so
thoroughly that predictions can be made akout expected behavior of a
given solute prior to actual observation. One may say at the
outset that this final goal is not yet completely attained.

The earliest of these theories, the one usually designated the
Rayleigh-Gibbs theory!. 2 has best withstood <c¢riticism through the
years. This theory refers the stability of foam to an elasticity
or restoration of liquid lamellae, which depends on the existence cf
an adsorbed layer of solute at the liguid surface and the effect of
this adsorbed layer in lowering the surface tension of the solution
below that of the solvent. The two effects, surface segregation,
or adsorption, and the lowering of the surface tension, are
concomitant: a reduction of surface tension due to the addition of a
solute is evidence, admittedly indirect but no 1less <certain than
were 1t given by direct observation, that the solute is segregated
at the surface. The degree of the segregation 1is measured as
excess moles of solute per sguare centimeter of surface, designated
'y , and is proportional to the variation of the surface-tension
lowering with concentration of solute; i.e.,

ILb=dI/RT d 1ln a, (1)
where Il is the lowering of the surface tension caused by a
thermodynamic activity a, of solute in the solution. Equation [1]
is based on thermodynamics, derived for a two-component system. In

this report, the term "surface-active solute" denotes a solute that
reduces the surface tension of a liquid to any appreciable extent,
even by as little as 1 mN/m.

When local areas of a foam lamella are expanded, as would
happen for example when a bubble of air pushes throuch a 1liquid
surface, new areas of surface are created where the instantaneous
surface tension is large, because the adsorbed layer has not had
sufficient time to form. The greater surfacz2 tension in thece new
areas of surface exerts a pull on the adjoining areas of lower
tension, <causing the surface to flow teoward the regicn of greater
tension. The wviscous darag of the moving surface carries an
appreciable volume of underlying liquid along with it, thus
offsetting the effects of both hydrodynamic and capillary drainage
and restoring the thickness of the lamella.® Gibbs elasticity is
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defined as the ratio of the increase in the tension resulting from
an infinitesimal increase in the area and the relative increase of
the area. For a lamella with adsorbed solute on both sides, the
elasticity E is given by:*

E=24do/d ln A [2]

where ¢ 1s the surface tension and A is the area of the liguid
surface. The factor 2 is required because the stretching of the
lamella increases the area on both of its sides.

In general, the elasticity arising from the variation of the
surface tension during deformation of a liguid lamella may be
manifested both in eqguilibrium (when a surface layer under forces
leading to deformation is in equilibrium with its bulk phase) and in

non-equlibrium conditions. The first case refers to the Gibbs
elasticity and the second to the Marangoni elasticity.$ The
Marangoni elasticity is a dynamic, non-equilibrium property,

normally larger in wvalue than the Gibbs elasticity that could be
obtained in the sane system.

Attempts to test equation [2] have been made by measuring the
dynamic (i.e., nor-equilibrium) surface tension as the surface of a
solution is abruptly extended, or pulsated. Some investigators
have found dynamic surface tensions occurring at rather low
frequencies of dilatation-compression cycles, from one per minute to
one every thirty minutes; others® have used frequencies as high as
15 to 135 Hz (cycles/second), although such disturbances are far
from corresponding to the expansion-contraction cycles occurring in
an actual foam. The measurement must be made coincidentally with
the extension of the surface. Quite a different measurement is the
rate of decline of the surface tension of the wundisturbed liquid
surface with time. This property may be less significantly related
to foam stability: the times required for eqguilibrium to be
established at the surface are often 50 long compared to the
lifetime of a bubble, that they can have little relevance to the
phenomenon of foam creation and decay.

The Rayleigh-Gibbs theory depends therefore on a combination of
two physical properties of the solution: the solute should be
capable of 1lowering the surface tension of the medium; but this
alcne is not enough: a rate process is also required, by which a
freshly c¢reated liguid surface retains its initial, high, non-
equilibrium surface tension long enough for surface flow to occur.
Many instances are known in which the mere reduction of surface
tension by the solute does not lead to the stabilization of foam,
Presumably because it is not accompanied by the relatively slow
attainment of equilibrium, after a fresh surface is made, which is
the second requirement for the ability to stabilize bubbles.

The foregoing theory was developed bearing in miad chiefly the
behavior of agueous solutions; but water 1is a peculiar solvent
inasmuch as its high surface tension depends upon hydrogen bonding
between molecules, and so is readily reduced in ‘he presence of
solutes that are not able to take part 1in hydrogen bonding with
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water molecules, and that, as a result, interfere with and disrup<:
the hydrogen bonding between the water molecules. An oil solwvent,
lacking the ability to hydrogen bond, at least to the same degree,
and so unable to produce the same effects, has a lower surface
tension than water: the presence of a solute therefore does not
usually reduce the surface tension of an o011, even though the
solvent molecules may be only partially able to enter into an
heteromolecular interaction with the solvent molecules. 1£ a
change of conditions, either of <¢oncentration or of temperature,
decreases the heteromolecular interaction the solute will approacn
phase separation; and as a portent of its insolubility will becin to
segregate at the surface and to manifest surface activity. (This
behavior is named Lundelius' Rule.) But even then, the overt
manifestation of surface activity, that is, the reduction of the
surface tension, is not as pronounced in oil solutions as in agueous
solutions. Dilatation of the surface ¢f an oil solution would neot,
therefore, create as pronounced a dilution of the surface
concentration of the solute, with its consequent increase of surface
tension, &s is observed in agueous solutions of adscrbed sclutes.
What has been reduced only slightly in the first instance cannot he
expected to increase by much when conditions are reversed. In oil
solutions, however, contraction of a surface in which a solute is
adsorbed does mucl. more to magnify the effect or its presence than
does expansion; for while there is barely any scope for the surface

tension to rise, there 1s less limitation for it to decline.
Liguid 1lamellae of o0il solutions, therefore, typically manifest
elasticity on contraction; whereas with aquecus solutions, the

elaslicity of lamellae is manifest typically on dilatation.

2. Enhanced Viscosity or Rigidity at the Liquid-Gas Interface

A single surface-active species in solution does not usually

confer any increase of the viscosity, much less 1rigidity, in the
surface layer of the solution. Althoudgh foam is capable of being
produced by such a solute, the foam is of Dbrief duration. That

kind of foam is called "evanescent foam,'" but it can nevertheless be
a cause of concern; because if produced rapidly it can reach a large
expansion ratio and so flood any container. Much more stable foam
is created if, in addition to the Rayleigh-Gibbs effect described
above, the surface layer of the solution has an enhanced viscosity
or rigidity.? This phenomenon is known to occur in water with
certain mixtures of solutes or with certain polymers, both natural
and synthetic. The best known examples 1in agueous systems are
solutions of water-soluble proteins, such as casein or albumen.
Common exammles are the stable foams produced with whipping c<¢ream,
egg white, beer, or rubber latex. In many other examples the
highly viscous surface layer is made by having present one or more
additional compeonents in the solution. An example is the increase
in surface viscosity of a mixture of tannin and heptanoic acid in
agqueous solution, compared to the effect of the two constituents
separately. In non~-agqueous liquilds, particularly 1in bunker oils
and crude oils, surface layers of high viscosity have been observed;
porphyrins of high molecular weight have been indicated as a
possible source of this effect. In a hydrocarvon lubricant, the
additive calcium sulfonate, for example, has been identif:ed as
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creating a plastic skin (or two-dimensional Bingham body) at the air
interface; it also acts as a foam stabil.zer.?® These viscous or

rigid layers 1n non-aqueous liquids enhance the stability of foam,
just as they do in aqueous solutions.? 10, 11

Different kinds of surface viscosity are also distinguished:

a. Innate surface viscosity: This viscosity is the resistance to
flow that 1is innately associated with the presence of a liquid
surface, whether or not there are additional sources of
resistance szuch as those descriked below.!'?2

. Surface-shear viscosity: This viscosity is associated with the
rresence of a pellicle or skin, such as an insoluble monolavyer,

bhut not restricted to that example, at the ligquid surface. A

layer of denatured protein that stabilizes the foam of meringue,

or of whipped cream, or of beer, is a common example.

Dilatational or compressicnal viscosity: The surface

that arises from local differences of surface

simultaneously associated with a resistance to surface flow.

The 1local difference of surface tension is caused by dilatation

or compression of the surface of the solution,

to flow thet results from
dilatational

elasticity
tension 1s

so the resistance
Marangoni «counterfliow 1is  known as
{or compressional) surface viscosity.

Mutual Repulsion of Qverlapping pouble Layers

The adsorption of icnic surfactants into the surface laver is
evident in aquecus solutionsz and readily leads to the
chargad surfaces of the lamellae in foams. '3 The
the liquid interlayer of the lamella are the compensating charges.
When the thicrnaess of the lamella is of the order of magnitude of
twenty times the Debye thickness of the electrical double laver, the
counter-ions adjacent to the two opposite surfaces repel each other
more o©r less according to an exponential decline of electric
potential with distance. This repulcion prevents further
of the lamella, and so preserves it from imminent rupture,

formation of
counter-ions in

thinning

The mechanism of charge separation +Lhat

operates in water
cannet occur in non-ionising solvents.

Until relatively recently
the conclusion was maintained, therefore, that electrostatic
repulsion of overlapping electrical double layers could not be a
factor

in the stabilizing of liquid lamallae in oil foams.
now recognize that other mechanisms
possible, and indeed must operate; for zeta potentials of 2% to 125
millivolts have been observed feor various kinds of
dispersed in non-aqueous media of low conductivity.

But we
ot charge separation ar .:

particle

Nevertheless no evidence has yet heen reported Lo suggest that
foam may be stabilized by charged suriaces in non-a-jueous solutions.
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4. ©Effect of Dispersed Particles on Foam Stability

It was found experimentally by Ottewill et al.!* that the
presence of colloidally stable, suspended, solid particles increases
the tendency to form stabie foams over and above that of the matrix
in the absence of such part:icles. The increase in foam stability
is linked to the increased bulk viscosity of the dispersion with
solids content, which is described by a relation o¢f +the following
form:

Ng=" (1 + kK9 + k2 p2....) {3]
where 7o = viscosity of the liquid matrix, 74 = viscosity of the
dispersion, and ¢ = volume fraction of dispersed solidq. The

coefficient k., was larger than predicted by j;urely hydrodynamic
factors, being enhanced by the electrostatic repulsions between the
solid particles, which erfectively enlarges eaxch particle and so
creates a larger wolume fraction of solids than 1.0 calculated {rom
the density of the sclid. In addition, the pr-sence of a minimum
in the pair-interaction energy curve introduces some association
between the part:cles with increase in volume fr:ction, which lecads
to a viscosity enhancement at the low rates of shoar experiernced in
a slowly draining lamella. The effect of bulk-dispersion visco.ity
cn the ripples formed in the lamella surface by trnermal fluctuations
is not Xnown w:3th certainty, but it seems likely that this would
have a damping ef:ect on the magnitude of the riprles and thus lead
to further enhancement of foam stability.

5. Solution Theory of Surface Activity

While accepting the Rayleigh-Gibbs theory as an operative
mechanism underly:ng the stability of 1liguid lamellae, it still
¢'ves no guidance to the claracter of a surface-active solute. To
that end a theory of sclubility is required.!s 16 Scolution occurs
when solute-solvent interaction (or adhesional force) is strong
enough  to overcome the cohesion of the solvent molecules to
themselves ard the cohes:on of s2lute molecules to themselves.
When adhesional forces are markedly larger than c¢ohesional forces,
negative deviations from Raoult’'s law are chserved, and the two
components are found to be miscible in all proportions. Such a
condition 1is not conducive to surface activily, as solute has a
lower potential energy (i.e., more interaction) in the bulk-phaze
solution than 1in the surface-phase solution. But when the
adhesional forces are weaker than cohesicnal forces, the position is
reversed; and the solute does not have its lowest potential encrgy
in the bulk-phase solution. This coundition ofters a possibility
for surface activity, as there 1s now an opportunity for more
adhesional interaction with the solvent in the suriace-phase
sclution than in the bulk-phase sclution. Ve SIS thercztfore,
according to this theory, Lor positive devialtions from waoult's law
as tne first indicator of potential surface astivity 11t the
pocitive deviations  from kKaoult's law are lavge, the oysbLen of
solvent + solute way separa-.: intc Lwo immiszcible  solutions, In
such  systems of partial miscibilicy were found corrolatinmgs el eh
suriace activity, composi-on, L. tewperaturs., The jrartaal
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miscibility by itself is not the cause of the surface activity, but
is merely an indicator of the presence of positive deviations from
Raoult's law, which in turn may also be considered as an indicator
of weak adhesional forces between solvent and solute molecules.

This theory has promising and still unexplored corollaries. A
binary system consisting of a Lewis acid and a Lewis base would have
large adhesional interaction and so would lead to negative
deviations from Raoult's law. This has been observed, for example,
with the systems: <chloroform (Lewis acid) + acetone (Lewis base);
methyl ether (Lewis base) + hydrogen chloride (Lewis acid); pyridine
(Lewis base) + acetic acid (Lewis acid); and water (Lewis base) +
formic, nitric, hydrochloric, or hydrobromic acids (Lewis acids.)
These solutions all show negative deviations from Raocult's law, and
so would not be expected to have any significant surface activity.
On the other hand, the combination of two Lewis acids or two Lewis
bases leads to weak adhesional interaction and so is conducive to
surface activity. The synthetic esters used as lubricants are weak
Lewis bases and we should therefore be on the 1loockout for the
possibility of surface activity (and foamine:zs) when they are
combined with adcditives that are also Lewis bases, A future
activity 1is <the identification of lubricant additives in terms of
Lewis acids or bases.!’
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SECTION IIX
STUDIES INVOLVING POLYDIMETHYLSILOXANE

Most of the studies performed to date have been on the
synthetic 1lubricant ester designated Base Stock 704, which is a
practical grade of trimethylolpropane heptanocate (a more systematic
name would be 2-2-diheptanoyloxynethyl-n-butyl heptancate) and
mixtures of this ester with various additives. This ester is
designated tmp-heptanoate in this report.

1. Physical Properties of Tmp-Heptanocate.

Physical properties of interest to us are: [(a) The variation of
density with temperature, which is reported in Figure 1, along with
a comparison of the same property of water. (b) The wvariation of
the surface tensicn with temperature, which is reported in Figure 2.
(c) The variaticn of the wviscosity with temperature, which is
reported in Figure 3.

2. Sclubiiities of Polydimethylsiloxane in Tmp-Heptanoate

Measurements of solubilities of polydimethyl:ziloxane fractions,
by whatever techniques they are d:termined, are subject t» a
peculiarity of the material, namely, that if the range of molecular
weights in the sample is too wide, the higher members will register
insolubility while the lower members will not yet have reached their

saturation solubility. Consequently at concentrations well above
the apparent solubility 1l:imit, some fraction of the mater:al
continues to be extracted into the solution. We have observed the

effects of this phenomenon 1in the foaminess data, where the
foaminess increases with concentration of added polydimethyl-
siloxane, although the latter is well above its apparent 1limit of
solubility. If this had been a single molecular species the
foaminess would have become constant when maximum solubility was
reached, leaving out of account the possible foam-inhibiting effects
of the insoluble residue.

The determination of solubility is important because it is
normally related fto surface activity and hence to foaminess, As A
solute that interacts only slightly with the solvent approaches its
solubility limit it tends to concentrate in the surface phase in
prreference to the bulk phase; because in the surface region more
interaction with the solvent is possible. The concentrating of
solute in the surface phase is a manifestation of surface activity;
and to a close first approximation it is accompanied by an increase

of foaminess. As soon as nucleation and separation of solute
occurs, the dispersed phase, if it is of lower surface tension than
the medium, may act to inhibit foam. We have yet to find the
proper conditions for this behavior with polydirethylsiloxane in
tmp-heptanoate soluticns; in fact we observe an increase in
foaminess as concentrations are increased e/en beyond the
solubility~-point limit. This Dbehavior may b« explained by two

effects: the increase in concentration in the solution of scluble
polydimethylsiloxane of low molecular weight and the failure of the
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insoluble polydimethylsiloxane to behave as an antifoam because of
its wunsuitable degree of dispersion. Polydimethylsiloxane, or
silicone o0il, is a linear pnlymer that can be obtained commercially
in a number of different viscosities. Each such sample is not of
uniform molecular weight, but represents a distribution of molecular
weights. The number average molecular weight of the mixture 1is
related to the kinematic viscosity by the eguation:

log viscosity (centiStokes at 25°C) = 1.00 + 0.0123 M!'/2 (4]

This equation 1is reported to be reasonably valid for values of M
above 2500.!% Values of M calculated by this equation for some of

the samples of polydimethylsiloxane used in this work are reported
below:

Viscosity in ¢St at 25°C Number average mol. wt.
500 19,000
1000 26,000
10,000 60,000

The solubility in tmp-heptancate of various polydimethyl-
siloxane fractions, distinguished fror each other by the value of
their kinematic viscosity, was determined by means of the Faraday-
Tyndall effect (scattered l:ght) and is reported in Figure 4. The
solubility decreases with increasing molecular weight. Tmp -
heptanocate to which various amounts (volume percent) of toluene have
been added makes a better solvent, as is also shown in Figure 4.

The variation with temperature of the solubilities in tmp-
heptanocate of polydimethylsiloxane fractions of 500, 10093, and 5000
centiStokes viscosity is reported in Figure 5.

3. Foaminess of Polydimethylsiloxane in Tmp-Heptancate

When dissolved in tmp-heptanoate, polydimethylsiloxane of low
molecular weight is a surface-active solute. This fact is
demonstrated in Figure 6, which shows the variation with temperature
of the surface tension of a solution of polydimethylsiloxane (100
centiStokes viscosity) in tmp-heptanoate at a concentration of 30
ppm. The curve for the sclution lies below that of the solvent,
showing a lowering of the surface tension by about 6 mN/m at
temperatures between 35°C and 85°C.

Although polydimethylsiloxane is a foam inhibitor in
hydrocarbon lubricants, it only acts as such when it is present at
concentrations above 1its solubility limit, and even then only when
it i1s suitably dispersed. In the absence of the foam inhibiting
action of the insoluble fraction, which has not shown up yet in our
eXperiments in tmp-heptancate, we find the following:

Sclutions of wvarious c¢oncentrations of polydimethylsilcxane
(1000 centiStokes) in tmp-heptancate, in the range of 53 to 646 ppm
were tested for foam with an apparatus consisting of a 60x3 c¢m
jacketed glass cylinder having a flat chromatographic glass frit of
3.00 cm diameter at the bottom. Foam was generated with nitr-ygen
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gas, with flow rates up to 600 ml/minute and at temperatures of 25

to 95°C. The test results are reported in Yigures 7, 8, and 9. A

summary of results follows:

a. No significant foam is observed at concentrations less than 51
ppm at the temperatures and flow rates studied,.

b. In the range of concentrations of 50 to 324 ppm the foaminnss
increases with concentration of polydimethylsiloxane.

c. In the range of concentrations of 324 to 646 ppm the foaminass
no longer shows an increase with cencentration of
polydimethylsiloxane.

d. In the range of temperatures from 25 to 95°C the foaminess
increases with temperature at all concentrations of solute.

Foaminess 1s vreported in Figure~ 7, 8, and 9 in terms of the
"Foam Height". Other units used in :nig report are "Foam Volum="
and "Volume Ratio" (or “Foam V. uma Ratio'). The latter is tho
most readily obtained and least J uotful of any reading that can bhe
made of the amount of foam in u foam column, as it does not require
an estimate to be made of the position of the solution/foam

interface =-- an interfacc¢ that is often obscure and impossible to
identify with certainty. The foam volume is given by the topmost
reading at the foam/s1r interface; from this vo_.ume subtract the
volume of solution originally present in the vessal, to gel tie

volume of gas retained in the foam; the volume ratic is the ratiz of
gas to liquid volumes in the foam column, at constant temperature,

and at a rate of flow of nitrogen gas of 1000 ml/minute. Volume
ratios are calculated from the measured volume of foam cbtained from
a known volume of liquid. The volume ratio is calculated by the

eguation:
Volume Ratio = |(Foam volume) - (Liquid volume)l/(Liquid volume)

The volume of liquid in every test is 200 ml; w:th this datum othar
units, such as:

Expansion Factor = (Foam volume / Liquid volume)

may be calculated from the numpers for Volume Ratio.

At the higher concentrations reported, the polydimethylsiloxane
is beyond its solubility 1limit and turbidity is evident in the
solution:;. Nevertheless, the advent of insolubility and the
presence o©¢f undissolved spherical droplets of silicone o1l in Lhe
medium is not accompanied by the onset of foam inhipition, as has

been our experience with many other binary systems. The inhibition
of foam 1s well known to occur 1in hydrocarben lubricants with
silicones of viscosity from 1,000 to 60,000 centiStokes. The

observed effect 1in the synthetic Ilubricant, which is a beiter
solvent for polydimethylsiloxane, may be due to silicone polymer of
low molecular weights, which are profoamant, dissolved in the sy temn
to a level at which the antifoamant action of the dispersed
particulate silicone is not effective.




Q
S
N -
~T
Q
<
(== of
~
(e }
<
VT
=
o)
P oy
o
—r
aj
T
o
=]
'g' -
C
"
[ ]
S|
w
B
—a A
8
2 + + + -+ + ~
0.00 ' Y
200.00 . 400,00 600.00
Flow Rate (ml/min) |
fFigure 7 Variati i i :
Hitro;enoncagf (;?3$énz$;?ht Tougn | 20%, fate of

. ) through a Sol i
Polydimethyisiloxane (1000 cS¢) ag a Congex:ngigg

of 89.2 ppm in -
Tompe ra cunon Tmp~Heptanocate at different

A is 85°C; B is 90°C; C Is 94,5°C,

16

ROPCPEFCINY T | DAPLVGPSIGPAPR - ¥ SOV LR LRI 't 3 TR I W S T T 178 PSP NP PR S

s

o b e
PRIV 5P

AU ]
e ol

| g -

. ) Gt T By
! ROEAR UL -

g .
RIS I S

’

1

. . . - 4 t‘ LR
[SIIEIMEITY TP Sl S I )



7

25.00

B
A

D
<
o +
N
e
<]
el
=
e
£
(=]
=y
o
I
@
[ |
[~ +,
LL.sé 4
2
LD. 1 \
o)
< — - + + +
=0.00 200.00 400.00
Flow Rate (ml/min)
Figure 8 Variation of Foam Heignt with Flow Rate of

S Y R TR A A T R NP PR LI P
AN A e Ay P A A N TP LI PR

Nitrogen Gas (ml/minute) through a Soiution of
Polydimethy!siloxane {1000 ¢St) at a Concentration

of 324.3 ppm in Tmp~-Heptanoate at different
Temparatures,

A is 32°C; B is y2°C; C is 52°C; D is 61°C; E is
71°C; F is 82°C,

17

- -

DR RN IR i A WL

600.00

et et

“

_ —




B
A

[owm ]
Q
W -
N
S
o+
N
=
22|
E
=4
[ 7]
T
&
o Q
= ‘_
&
= 3
w )
[
4
- (]
< '
S + — — " .
S v ¥ + —i
0.00 200.00 400.00
Flow Rate (ml/min) 500.00
Figure 9

P T VT Tt m e n N
e T e e A O ey e e e e R e

Variation of Foam Height with Fflow Ra

: te of
Nitrogen Gas (m!/minute) through a Solution of
Polydimethy!siloxane (1000 cSt) at a Concentration

of 646 ppm in Tmp-Heptanoate a if
Temperatures, ¥ ¢ different

i or. : . . .
é :: ;gég'c. B is 43.5°C; C is 53.5°C; 0 is 63°C;

18

(SR R I R VR R U R PN UL PR PRI

ae W v a0

£ 4 ) S ENME e Tar et e A% L% = A A S

-

A o e il e A B B AN A A A A B PR SRR X g U M, X AR __aar R

e e e L P ik = i WL A e

-
Y
I
"
"
i
\
'
v
)



...,.
. L I
oy 'l . “
L
. .

a2

e~ i
TSRy _{.- o
PR Sl O Y W

Although we have not yet observed polydimethylsiloxane act as
an inhibitor for foamable solutions of this synthetic lubricant, we
have found other materials that can inhibit their foaminess. Ot
these the most effective, without evidence of "fatigue" in its
action even after continual bubbling for 24 hours, is G.E. FF-150, a
fluoro-silicone fluid of viscosity = 10,000 c¢St.

4. Foaminess of Different Concentrations of Polydimethylsiloxane
(1000 centisStokes) in Tmp-Heptanocate, Mecasured by ASTM D892 Fcam
Test at 80°C

In Figure 10 we repcrt both the foam volumes and the foam-
collapse times of solutions of pelydimethylsiloxane (1000
centiStokes) 1in tmp~-heptancate in concentrations from 1 to 400 ppm,
measured by ASTM D892 Foam Test (Test Method 3213),1!° at 80°C.
The limit of apparent solubility of this sanple of
polydimethylsiloxane at 80°C by the Tyndall-Faraday effect 1is 60
ppm, but it is clear from Figure 10 that the foaminess continues to
increase at concentrat .ons greater than 60 ppm. The presence of
soluble lower-molecular~weight fractions in the 1000 centistokes
fraction is the most probable cause of this effect.

5. EFcaminess of 1000 ¢St Polydimethylsiloxane in Tmp-E2ptanocate

The foam tests of 1000 ¢St polydimethylsiloxane in tnp-
heptancate reportad above have been extended. The te. ts now
include more concentrated mixtures of the 1000 cSt
polydimethylsiloxane in order to support correlations between
foaminess and other physical properties. The appended rezults
describe the relation between foam height and concentratian of
polydimethylsiloxane at several temperatures in the range of 25 to

75°C, and at flow rates of 30C ml/min and 500 ml/min (Figures 11A
and 11B respectively.)

6. Foaminess of Silicones of various Viscosities in TMP-Heptan-ate

We intend to test the possibility of using silicones, in the
range of wviscosities 10,000 to 600,000 centi3tokes, as ILoan-
inhibiting agents for +tmp-heptancate + additive(s) solutions.
Preliminary tests included measurementis of the foaminess of mixtures
in tmrp-heptancate of the silicones in question, to find an op'imal
molecular weight and suitable concentration range for the silicone.
Tables 1, 2, and 3 report the foam volumes measured for three
silicones (100, 26,000, and 600,000 ¢St respectively) at va:ious
concentrations and temperatures, These tables show that cf the
three polydimethylsilcexanes (pdms) tested, only the one with the
highest viscosity can bhe used as a foam-inhibiting agent ir. the

range of concentrations of 0 to 100 ppm, at all the temperatures
investigated.
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Concentration

Foam Volumes {(cm3®) of 100 ¢St PDMS in Tmp-Heptanoate,

Various Concentrations and Temperatures.

Table 1.
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Table 3. Foam Volumes (cm3®) of 600,000 cSt PDMS in Tmp-Heptanoate,
at Various Concentrations and Temperatures,

[ IR

| Concentration |
I Jr 1 T 1 {
| I I | [ I
| T°C | 10 | 100 | 500 | 1,000 |
l i ppm | ppm | ppm | ppm |
[ I ] | , | H
P H 1 LB | 1
! | | | | I
| 40 | o | o | 20 | 25-30 |
| | ! | I |
1 [\ ! i ol d
| 1 I LB 1 1
I I I I | I
| 60 | o | 0 | 150 | 60-450 |
I [ ! I I I
{ ] 1 5 | |
| T { T T 1
I I I I I [
| 80 | 0o | O | »>200 | 500 |
I ! | ! | |

We have previously reported the results o¢f foam measurements of
solutions of polydimethylsiloxane, 1000 c¢St, 1in tmp-heptancate by
Test Method 3213, at 80°C as per standard requirements. To relzte
feaminess of these solutions tc gas entrainment, to surface
viscosity, and to our projected measurements of dynamic surface
tension, all at 25°C, we require data on foaminess at lower
temperatures, down to ambient temperatures. Other than
temperature, all the parameters and conditions of the test are
according to the standard procedure. All the solutions tested were
heated to 60°C for three hours, cooled to room temperature, and then
blended three times with a hand homogenizer. Figure 12 reports the
results obtained at four temperatures: 25°C, 40°C, 60°C, and 80°C;
with sclutions varying in concentration in the range 0.1 to 500 ppm.
Figure 12 confirms results previously reported with a slightly
different apparatus.

7. Foaminess of Solutions of Polydimethylsiloxane in a White,
Refined Mineral 0il

To extend the base of these studies beyond a particular
solvent, we include data on sclutions in a hydrocarbon o0il. The
present Section is devoted to foam measurements: these are collected
here for comparisons with solutions of polydimethylsiloxane in tmp-~
heptancate, and also will be referred to when correlations between
foaminess and other physico-chemical properties of a solution are
considered. Foaminess was measured, using the Test Method 3213.
Table 4 and Figure 13 show the results obtained at four
temperatures, 25, 40, 60, and 80°C.
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Table 4. The Volume Ratios (Gas/Liguid Volumes) of Foams Obtained
in Polydimethylsiloxane Solutions in Mineral 0il

— T |
| | Volume Ratio |
| Concentration }| I I | —
| (ppm) | 25°C | 40°C | 60°C | 80°C |
| + 'r j : i
| 0.173 | O | 0.15 | 0.825 | 1.65 |
1 i | ! —] |
{ T T T 1
| 0.67 [ O | 0.225 | 0.55 | »1.90 |
| i % ] 4
| 1.69 | 0.05 | 0.10 | 0.30 | >1.90 |
i . 1 | ! i
F 1 ! ~1 T 1
| 2.52 | 0.05 | 0.05 | 0.175 | >1.90 |
i o | 1 | ]
F— T i f T !
| 5.50 | 0.05 ] 0.075 | 0.20 | >1.90 |
{ 1 ! ! 1 ]
I 1 T i T 1
| 10.4 | 0.125 | 0.15 { 0.20 | 1.65 |
1 ] l | SR | ]
. 1 T i { =
! 23.75 | 0.05 | 0.075 | 0.10 | >1.90 |
1 | | X 1 1
— { T } 1 -
| 59.98 | 0.05 | 0.05 | 0.125 | »1.90 |
] I ‘ ] | |
| t ; . T 1
| 88.9 | 0.05 | 0.05 | 0.125 | >1.90 |
L A 1 1 (I ]

The volume ratios given in the table and the diagram refer <to
the ratio of gas to 1liguid in a given foam column at constant
temperature and flow rate of nitrog