
AD-A141 294 RESEARCH USING A DISCUS BASED NETWORK EMULATOR U ROYAL I
SIGNALS AND RADAR ESTARLISHMENT MALVERN iENGLAND)
0 G ONNELL ET AL MAR984 RSRE-MEMO-3539 DRIC-BR-91 4

UNCLASSIFED 0/ 7/2 N

*mmmmu~m

pr'I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963-A

Nt

DOYAL MZON=E AM RADARETAAI

MID3539

Title: RESEARCH USING A DISCUS BASED NETWORK EMULATOR

Authors: T G Connelly and M P Griffiths

Date: March 1984

SOMARr

This memo describes a proposal to use the DISCUS multi-
microprocessor system developed at RSRE as a tool for
emulating a circuit switched network. The research which
could be undertaken using such an emulator is outlined,
and the advantages of this approach are described. An
analysis is presented to show how the current system may
be used with little or no modification.

Accession For

NTI-S iRAI
DTIC TAB
Unannounced
Justitication

BY
Distribution/

C
Controller r London

1984

'11COTINTS !

1 INTRODUCTION

2 NETWORK RESEARCH AIMS
2.1 Functions of the Network
2.2 Overview of Research Objectives
2.3 Summary of Research Objectives

|I "3 EXPERIMENTAL PROGRAMME
3.1 Characterising the Network
3.2 Data-base Updating
3.3 The Effects of Errors

4 CONSTRUCTION OF A TACTICAL AREA NETWORK
4.1 A Single Processor Simulation
4.2 A Real Multi-computer Network
4.3 A DISCUS Multi-computer Emulation

5 NETWORK EMULATOR IMPLEMENTATION
5.1 Emulation of Switching Nodes
5.2 Emulator Control Software
5.3 Outline Specification

6 CONCLUSIONS

7 REFERENCES

APPENDICES

A Classification of Errors

B Analysis of Global Bus Bandwidth

C Glossary of Abbreviations

I

/i

/I

!IITIODBCTIOI

The main purpose of this paper is to propose a method of emulating a multi-
node communications network using the DISCUS multi-processor system[1,2,3,4],
one or more processors being used to represent each node. The use of such a
network emulator would facilitate the study of the behaviour of networks
containing a large number of nodes, and would provide a simpler and lower cost
alternative to the construction of a "real" network of comparable size.

However, as a basis for a discussion of the emulator and its use, an attempt
will first be made to define a programme of research into communications
networks, to identify the experiments which need to be performed to achieve
the aims of this programme, and to describe (briefly) the apparatus required
to perform the experiments.

The Army has, up to the present time, used circuit switched networks for its
communications. Therefore, for the purposes of this paper, the term "network"
refers to a dynamic, circuit-switched communications network consisting of a
number of (more or less identical) computer-controlled switching nodes, which
are connected to a number of (more or less identical) subscriber terminals.
However, there is no reason why the methods proposed here should not be used
to emulate other types of network, (e.g. packet switched or message switched)
but different performance parameters may have to be used.

2 N3TVORK RESEARCH AIN3

2.1 Functions of the Network

(a) The main function of the network is to set up circuits over which the
user's traffic can be passed, and to clear down such circuits when they
are no longer required.

(b) In addition, because the network is dynamic, there is a subsidiary

requirement to pass from one node to another information concerning the
status of nodes, subscribers, and links, and the connectivity of the
network. (That is, to maintain and update a network data-base for
system management purposes.)

2.2 Overview of Research Objectives

The fundamental aim of the research is to discover how to construct and use a
communications network so as to perform the above functions efficiently,
reliably and cost effectively. The research objectives may be discussed in
under two headings:

(1) Mechanisms for setting up and clearing down calls

(2) Methods of manipulating the data-base, including methods of dealing
with errors in the data, and faults arising from them.

2.2-1 Mechanisms for Setting up and Clearing Down Calls

The mechanisms used to set up and clear down calls are already well known. The
research in this area will therefore largely be confined to deciding on a set
of measurable parameters which describe how "good" any communications network
is (e.g. probability of a call succeeding at the first attempt under given
conditions), and measuring these parameters. Some indication of what para-
meters should be used may be given b the results of the Traffic Loading and
Routing Model (TLRM) experiments [5

, but it should be noted that these are

concerned only with a static network.

The results of this characterisation exercise could then be used as a base-
line from which to measure the effects of, for example, network reconfigura-
tion, changes in the data-base structure and the method of data base updating,
and errors in the data-base.

"2 Network Data-base Manipulation

Static networks require a data-base which associates subscriber numbers with
the communications channels by which they access the network, and which
describes the inter-node connectivity. This data is unchanging, and therefore
does not need to be passed from one node to another.

Dynamic networks, however, present a much more complex problem, since subscri-
bers and nodes are mobile, and the whole system can thus be reconfigured.
This implies that a large amount of data describing the network has to be kept
up to date as reconfiguration occurs, and the relevant updates distributed to
a large number of nodes. In a tactical area military communications system,
the quantity of such data which would have to be transferred between nodes in
the event of one node taking over another's function could be very large. Such
transfers may not be uncommon in a system which may have to reconfigure

rapidly and frequently in response to the changing tactical situation.

2.2.2.1 Data-base Upatag

It will be necessary to devise some means of measuring how far out of date a
node's data-base is, and what effect its being out of date has on the grade of
service provided to the user by the whole of the network. Evidently each node
must have at least one method of determining when its data-base requires
updating, of obtaining updating information from other nodes, and of supplying
other nodes with updating information. Some form of protocol for the exchange
of updating information has to be established. Tests are required to deter-
mine whether the chosen protocol is sufficient, especially under recon-
figuration, fragmentation and link failure conditions.

2.2.2.2 The Effects of Erros

As in all systems, the network is subject to sources of error which, when an
attempt is made to use the erroneous data, will give rise to user-observed
faults. Because data is transferred from one node to another, such errors can
easily propagate (and perhaps multiply), so that an error may be detected in a
node separated by several links from that in which the error first occurred.
Therefore, the design of the network must take this into account, and must
minimise the effects of these errors on the user. This involves developing
techniques which:

(a) Minimise the occurrence of errors in the first place.

(b) Detect an error as soon as possible after it occurred, (and preferably
before it has had a chance to produce a fault)

(c) Isolate the error as far as possible.

(d) Attempt to recover the network to an error free state.

2.2.2.3 Data-base Optimisation

Initially the network to be studied will use a data-base consisting of a
somewhat simplified version of the data-base used in IAS[6 3. It is expected
that possibilities for optimisation, both in terms of the quantity of data
stored and the ease with which it can be accessed, will become apparent in the
course of work on other aspects of network research. Modifications of the
data-base could then be made, and their effect on network performance
measured.

2.2.3 Construction of a Represetation of a Network

Before any of the above work can be undertaken, some apparatus which can be
used to represent a network will have to be devised. The various options for
this are discussed in Section 4, in the light of details of the experiments
which it is envisaged will be performed, and which are outlined in Section 3.

2.3 Summary of Research Objeotives

From the preoceeding discussion the main objectives of the network research can
be summarised as follows:

2.2

(a) The definition of a set of measurable parameters which describe how
"good" a communications network is, and the possible comparison of
networks in terms of these parameters.

(b) The construction of a network, and a means of stimulating it with
traffic and analysing its performance in terms of the chosen set of
parameters.

(c) The development of a means of keeping the data-base up to date and
consistent throughout the network under all conditions, particularly
during reconfiguration or fragmentation.

(d) The optimisation of the network data-base, in terms of the quantity of
data stored and the ease with which it can be accessed.

(e) The minimisation of the occurrence of errors, the development of means
of detecting errors and isolating them, and of recovering the network
to an error-free state.

2.3

3 EXPERINTAL PROGRAMME

Before any experimental work can proceed, it will be necessary to have avail-
able at least one representation of a network with which to work, and to
define the parameters in terms of which the network is to be characterised.
These parameters can be divided into two types; those which are applicable to
virtually all communications networks, and those which apply only to dynamic
networks. Examples of these two parameter types are listed below, but the
list is by no means exhaustive.

(1) Mean time taken to set up a call, for a given traffic loading i . for

a given rate at which call attempts are made).

(2) Percentage of calls failing, for a given traffic loading.

(3) Number of links per route in excess of the shortest path.

(4) Signalling channel and traffic channel occupancy per link.

(5) Network partitionability. i.e. the extent to which service to the user
can be maintained when the network has become fragmented into a number
of smaller networks[8].

(6) Network capacity. This may be different to node capacity since, even if
nodes are non-blocking, the network can still block because the amount
of traffic it can support is limited by the number of links and the
number of nodes [8].

(7) Amount of service and network complexity. As the number of users of a
network is increased, the grade of service to those users tends to stay
constant until a limit is reached, when the grade of service begins to
drop. The grade of service may be restored to its original level by
increasing the complexity of the network (number of links, number of
nodes, etc) and therefore "amount of service" may be defined as some
kind of product of grade of service and the number of users to which
the service is provided. However, the greater the amount of service the
more complex the network becomes and, particularly in the case of a
dynamic network, the more difficult it becomes to manage. Indeed, it
may be that as the network becomes more complex, the amount of manage-
ment traffic increases to such an extent that no further gain in amount
of service provided is achieved. Thus a measure of the complexity of a
network would be a useful parameter, as would a limiting complexity, if
such an effect exists.

(8) Equilibrium update queue length, (i.e. the total amount of data in the
network which needs to be passed to other nodes but has not yet been
fully distributed), for a given rate of generation of new data.

(9) Time taken to reduce a specified back-log of updating information to
the equilibrium level, for a given new data generation rate.

(10) Maximum new data generation rate which the network can tolerate
continuously without the amount of undistributed data growing indefini-
tely.

It is also necessary to appreciate that any experiments performed to investi-
gate the effects of "errors" on network performance will involve both
deliberately introduced errors and "accidental" errors, the exact nature of
which is unknown to the experimenter. These "accidental" errors will, of
course, also be present in experiments where no deliberate errors are intro-
duced, (see Appendix A).

3.1

3.1 Cbaraoterlaing the network

Using whatever network representation(s) is/are adopted, a traffic load is
applied to the network, and the general (static) parameters are measured for a
fixed network connected in some simple configuration. (Initially perhaps just
a 2-node network should be used, even though this implies that several of the
previously listed parameters will be meaningless.) A large number of calls
must be made if the results are to be statistically significant. The measure-
ments should then be repeated for various levels of traffic loading and
various (more complex) network configurations.

Updating information is then by some means injected into the data-base of one
or more nodes, and the corresponding changes (if any) made to the network.
The dynamic network parameters can then be measured. These measurements
should be repeated for various different traffic loads, network configura-
tions, and rates of generation of updating information. A large number of
calls will again be required under each set of circumstances if the results
are to be statistically significant. (In addition, it may be informative to
measure the dynamic parameters in the complete absence of normal user
traffic.)

It should be noted that the network characterised by the above measurements
will contain an unknown number of "design errors". If and when these are
eventually discovered and corrected, the characterisation measurements will
have to be repeated for the "improved" network.

3.2 Data-base Updating

One of the initial aims of the experiments on data-base updating is to
determine whether the chosen protocol used to disseminate system management
information throughout the network is capable of keeping the data-base held in
each node sufficiently up to date and consistent to avoid user-detectable
faults in all circumstances. If this is to any significant extent not so,
then further work on the updating protocol will be necessary.

If the rules governing data-base management are sufficiently comprehensive, we
shall be in a position to estimate which circumstances are most likely to
cause the Network DBM protocol to fail. (The most potentially troublesome
situations are likely to arise out of network fragmentation, reconfiguration,
and errors in the data-base.) Experiments will be required in which these
"worst-case" situations or sequences of events can be set up dynamically and
the exact response of the network noted by a "blow-by-blow" tracing facility.
Re-measurement of certain of the fundamental network parameters under the
estimated "worst-case" conditions would also be useful.

3.3 The Effecta of Errors

As outlined in Appendix A, errors may be considered as being of three types:
design errors, permanent errors, and transient errors. An error of any type
may be accidental or deliberately introduced. In the following discussion we
will not consider permanent errors, since these arise out of hardware break-
down, which can be minimised by good design practices, sound engineering and
the use of redundant hardware where necessary.

3.2

In the experiments outlined in previous sections we have been concerned with
measuring the performance of a network, including all its accidental design
and transient errors, some of which (particularly design errors) may thereby
be discovered. In the experiments described below we are more concerned with
the effects of transient errors, deliberately introduced to simulate problems
of data corruption.

It Is proposed that transient errors be investigated under the following
headings:

(a) Error avoidance

(b) Measurement of network performance degradation due to known errors

(c) Error detection

(d) Isolation of errors

(e) Recovery to an error-free state

3.3.1 Error Avoidance

This is probably more a matter of the use of defensive mechanisms within each
network node to ensure that transient errors do not arise from design
inadequacies, rather than of network phenomena as such.

3.3.2 Performanoe Degradation due to Deliberately Introduoed Errors

These experiments consist of re-measuring the network characterisation para-
meters in the presence of known error patterns.

The main problem is to introduce errors which realistically represent those
which would occur under field conditions, both in terms of error rate and
pattern, and the places in the network at which the errors originate. The
probable causes of transient errors in the data held by a node are not well
known, but are likely to be very dependent on the actual hardware and software
used, so that it may be difficult to establish likely sources of errors in one

network by using any other network, "real" or emulated. However, the effects
of errors which become included in a node's data-base, for whatever reason,
can be measured. These errors can be conveniently introduced by deliberately
corrupting data either on inter-node links or in a node's data-base. The
errors can be introduced at a large number of different rates and in a large

number of different patterns, and the degradation of network performance
monitored.

3.3.3 Error Detection

This again is to some extent a matter of defensive mechanisms in network nodes
rather than of network behaviour as such. Evidently such techniques as BCH

coding and ARQ systems provide protection against data corruption on inter-
node links, but further measures are needed within the data-base management
software to minimise the effects of any errors which become included in the
data-base, either through failure of the BCH and ARQ hardware, or because of
some other problem within the node concerned. Such measures include range
checking values retrieved from the data-base, and cross-checking data-base

entries against each oth4r where possible, which implies a certain amount of
redundancy in the node's sta-base.

L,

However, if the data transmission checks and internal range checking etc. fail
to detect an error, then a user-detectable fault may result. We then have a
situation in which the user knows of a fault, but the system does not, so that
it is important to provide some means for the user to communicate to his
access node: (a) that there is a fault, and (b) possibly, in some circum-
stances, what the correct data should be.

Errors may also be detected by a node receiving two updates for the same data-
base item which have the same edition number, but differ in content, due to
some failure of the data-base updating protocol. In this case evidently at
least one update will be in error.

The effectiveness of all these error detecting mechanisms can be determined by

measuring what percentage of deliberately introduced errors are detected:

(a) before they give rise to user observable faults,

(b) by the user when a fault occurs, and

(c) not at all

Note that some errors may also be corrected in the normal course of system
operation, without being detected.

3.3.4 Isolation of Errors

The objective is to discover methods of preventing errors from being propa-
gated from one node to another. Error isolation is closely related to error
detection, in that isolation requires that data identified as erroneous must
not be passed on to other nodes, which implies that errors in the data-base
should be detected as soon as possible after they occur.

To determine the effectiveness of the network in isolating errors, it will be
necessary to measure how rapidly an error introduced at one point in the
network propagates to other points under various conditions, and to discover
how far (i.e. over how many inter-node links) an error propagates, on average,
before being detected. Again, large numbers of experiments will be required
to ensure statistical significance.

3.3.5 Reoovery to an Error-free Situation

When a node detects an error in its data-base, by whatever means, several
courses of action are available.

(a) Ignore the error, in which case it may be propagated to other nodes,
and will eventually cause user observable faults.

(b) Isolate the error (i.e. not use or pass on the erroneous data), but
make no attempt to recover to the "correct" state. This may degrade
the service provided by the network, which constitutes a form of user-
observable fault. Eventually, perhaps the erroneous data will be
updated correctly in the normal course of operations.

(c) Isolate the error and attempt to recover by re-constructing the correct
state from the rest of the (correct) switch data-base. This implies a
measure of redundancy in the data-base.

(d) Attempt to recover by requesting an update of the erroneous information
from a neighbouring node.

3.4

(e) In addition to attempting to restore the switch data-base to a correct
state to try to determine what other nodes may also hold the erroneous
data, and to inform them of this situation.

Experiments are required to determine the effects of each of these strategies
on network performance, as measured by the characterising parameters.
Alternative (e) alone represents an attempt at "network recovery", rather than
merely "local recovery", and a possible technique for achieving this is
outlined below.

In devising a network recovery strategy, it should be remembered that, because
a node may not use all the information contained in its data-base, erroneous
data may be passed from one node to another without the error being detected
in intermediate nodes. Thus an error originating at one place in the network
may be detected by a node in an entirely different place.

Bearing this in mind, let us suppose that each separately updateable item in
the data-base is tagged, when amended in a node by action originating at that
node, with the node's identity, as well as the current edition number for the
item. When the data item is passed to another node, the receiving node adds
its own identity to the tag. If this were done each time the item was
transferred, a complete history of the path of the item through the network
would always be associated with the item. (Connectivity changes would, of
course, complicate the problem.) Thus if an error were detected in a data
item in a particular node, all previous nodes on its path could be advised of
the potential error. When a node on the path was found which contained the
item without the error, (this condition possibly being defined by the item
having a different value but the same, or a higher, edition number) re-
transmission to the node in which the error was detected could occur along the
original path.

A complete history for every updateable item in the network data-base would
almost certainly imply unacceptably large overheads in both storage space and
transmission time, so that some fraction of the history would have to be used.
This might consist of the identities of just a few nodes through which the
data item passed most recently, together with the original amending node's
identity in case a correct version could not be found along the preserved path
segment, so that re-transmission from source could be requested. (Re-
transmission could then take place by any path which included the preserved
segment of the original one.) The length of the preserved path segment would
depend on how far most errors propagated from their point of insertion to
their point of detection, (i.e. on the results of the error isolation experi-
ments discussed in Section 3.3.4).

If a node on the preserved path segment had performed some processing using
the erroneous data, without detecting the error, secondary errors may have
been produced, which could also have propagated to other nodes. These would
either be corrected when the correction of the primary error caused the
corrected version of the data containing the secondary errors to be flooded
into the network, or might be detected and corrected by the "back-tracking"
method described above.

Considerable care will be required both in devising a workable version of such
a recovery strategy, and in performing experiments to determine its efficien-
cy. As with most such performance optimising methods, there is a possibility
of its doing more harm than good under some circumstances.

3.5

4 COSTRUCTION Of A TACTICAL ARIA NKTVORK

A tactical area network consists of a set of processing elements or nodes
connected together via communication links of known channel capacity in a
constantly varying pattern. Any system upon which research into this type of
network is done should therefore have (ideally) the following characteristics:

(1) A sufficiently large number of nodes to give a network of representa-
tive complexity, so that the interactions over multiple links may be
studied.

(2) Be able to be stressed by passing variable quantities of traffic
through the network in a varying pattern to test for bottlenecks etc.

(3) Have the ability to easily alter network connectivity while it is run-

ning, to simulate the effects which actually occur in the field.

(4) Perform the tests in as close to real time as possible.

(5) Incorporate the characteristics of the communications channels in the
simulation, again to monitor for any bottlenecks.

(6) Take into account the passage of data-base information between nodes as
well as the simulated traffic.

Bearing these points in mind we will now present methods of providing such a
network.

4.1 A Single Processor Simulation

In this method an existing (largel) computer is used to represent the entire
network. Each node is simulated by a process (or processes) which is
scheduled by the machine's operating system, and the links by the use of
certain procedures accessing areas of store simulating the passage of data
between nodes. This network would be driven by some form of traffic generator
and the results logged for later analysis.

The chief advantages of this approach are: (a) it is cheap in terms of

capital cost (assuming the existence of a suitable computer) (b) it is very
easy to create a network of arbitrary complexity, in terms of both nodes and
connectivity, and (c) modification of connectivity is straightforward while
the simulator is running. Indeed, the TLRM uses this approach, although its
programming falls short of the ideals in that modifications to the network are
only possible between runs, not during a simulation, thereby eliminating the
possibility of studying transient effects. Consequently, a more representa-
tive system would have to be written from scratch if this method were adopted,
which would be a lengthy procedure. The other disadvantage of this approach is
that real-time simulation is not possible with Just one processor.

4.2 A Real Multi-computer Network

This would consist of real switches communicating via real hardware over real
cables. This, in theory, provides the most realistic way of studying a
network and as such must be regarded as the best standard which we could have
for comparison with a fielded system.

I.

However, this approach suffers from a number of very significant disadvantages
in experimental terms:

(a) It is expensive to construct, both in terms of equipment and man-power,
and consequently the number of nodes is severely limited.

(b) Dynamic network reconfiguration is very difficult to carry out and
monitor in a controlled fashion as it will involve the physical
movement of cables, plugs etc and the co-operation of large numbers of
staff simultaneously.

(c) Setting up a sequence of stimuli and monitoring the effects without
modifying the system give rise to problems almost as complex as the
network itself.

4.3 A DISCUS Multi-Computer Emulation

This would consist of an array of DISCUS processors with each node being
emulated by one (or more) processors running, as far as possible, the already
existini software which has been written for the Intermediate Access Switch
(IAS)[6 . Inter-node communication would be represented by channels in global
store accessed by procedures which simulate as closely as possible the char-
acteristics of the real links in the emulated system.

This has a number of advantages over the two previous methods:

(a) As the nodes are actually separate computers running asynchronously and
in parallel, as in a "real" network, the simulation can take place in
something very close to real-time.

(b) As the cost of a DISCUS processor is much less than a complete switch,
more nodes could be provided thereby giving a more representative
network.

(c) For the most part, existing software and hardware can be used, with
relatively little modification. However, a lot more data-base manage-
ment software will have to be written in order to carry out useful
experiments.

(d) The use of "global" store, accessible by all processors in the DISCUS
system means that the stimulation and monitoring of the emulated
network would be comparatively straightforward, and could be done by a
separate processor(s) with minimal disturbance to the emulated nodes.

(e) Since the emulation runs in real-time, it would probably be feasible to
connect the emulated network to a "real" network, thereby providing a
larger number of nodes to support network data-base management experi-
ments.

The primary snag with the network emulator is demonstrating the validity of
the emulation when compared with results obtained using a "real" network. The
inter-working of the emulated and any compatible "real" networks may be
helpful in this respect.

4.

5 NETVORK ENULATOR INPLENBETATOU

Having shown in Section 4 that there are considerable advantages to be gained
from the use of a DISCUS-based network emulator, the way in which such an
apparatus might be implemented is examined below.

In order to achieve economy of both effort and capital cost, it is advisable
to use as much as possible of the existing DISCUS hardware and software, and
IAS applications software. For cost reasons it is particularly important to
restrict hardware modifications and extensions to a minimum.

5.1 Emulation of Switching Modes

The existing IAS applications software is functionally divided into a number
of modules, each of which runs on a separate DISCUS processor. In emulating a
network of IAS-like switches, the problem is to map applications functions on
to DISCUS processors in such a way that a reasonably large number of nodes can
be represented, and that a minimum of software modification is required.

The number of nodes which can be emulated is limited by four main factors:

(a) The number of DISCUS processors which can exist in a DISCUS system
because of hardware constraints. This is at present 15, but can easily
be increased to 24.

(b) The number of processors required to emulate each node.

(c) The effective bandwidth of the global store access mechanism, which

limits the rate at which information can be transferred from one
emulated node to another, and hence the number of inter-node links
which can be emulated in real time.

(d) The total quantity of global store which can be provided in a DISCUS
system.

The effects of these limitations are discussed below.

5.1.1 Napping the M*5 Software onto DISCUS Proessors

Given that the DISCUS hardware configuration makes it physically impossible to
build a system containing more than 24 processors, the most obvious choice
seems to be to use a single processor to represent a node, thus maximising the
size of the emulated network. A means of producing a software package
containing all IAS functions, scheduled to run on a single processor, is
provided by the test harness option in the DISCUS system generator. This at
present produces code which runs on the Intel MDS, but only a fairly simple
modification would be required to make it produce code which would run on a
DISCUS processor.

5.1.2 Number of Processors Required to Emulate each Node

The most serious drawback of using a single processor to emulate a node is
that it is doubtful whether the whole of the applications software, plus the
switch data-base and a DISCUS operating system will fit into the 64 K bytes of
local store available to a DISCUS processor. A preliminary estimate of the
store required indicates that the software will fill some 116 K bytes which is
almost double the amount which can be accommodated by a single processor.

5.1

There are a number of options available to overcome this problem:

(a) Use overlays from global store or some other medium (complex and slow).

(b) Use some sort of memory banking technique in local store. (This would
involve considerable hardware effort and cost.)

(c) Modify the applications software to reduce its size. (This would
require extensive modifications to be made, which would be very time-
consuming and error-prone.)

(d) Use more than one DISCUS processor to represent each node. This
involves either:

(1) Using global store to communicate between processors in the same
node, via both DISCUS channels and arrays in the switch data-base.
This may distort the traffic flow between nodes, and would involve
some modifications to the DISCUS operating system to distinguish
between inter-node and intra-node channels,

OR

(2) Using some method of communicating between processors in the same
node which does not involve global store. This may be too slow,
and would involve modifications to the operating system for the
same reason as in (1) above. It will also require more hardware
than alternative (1), thus increasing cost, and may involve some
hardware development.

Of the above alternatives, (d) (1) seems the most promising, provided that
there is sufficient global store access bandwidth to allow real-time emulation
of inter-node links as well as other inter-processor communication.

The number of processors per node is then increased to 2 or 3, depending upon
the level of detail that we wish to emulate. If we were to dispense with loop
signalling entirely and merely emulate at the trunk level, then a considerable
proportion of the software could be removed, and 2 processors will almost
certainly be adequate. However, in order to perform the more interesting DBM
experiments, a lot of DBM software will have to be written, and this may well
exceed the address space of two processors. Therefore, in order to keep the
system as flexible as possible, it is probably best to assume that 3
processors will be required for each emulated node.

Of the 24 processors in the DISCUS-based emulator, three will probably be
required for control, monitoring etc. (see Section 5.2), leaving 21 to be used
for node emulation. If three processors per node are used, this implies a
maximum of seven emulated nodes. Two processors per node implies a maximum of
ten nodes. Assuming that three processors per node are used, space in local
store will not be critical, and the distribution of functions among processors
can be decided almost entirely on the basis of minimising inter-processor

* comunication requirements.

5.1.3 Iffeotlve Dmwdwidth of Global Store Aocess

Since all the information passed from one emulated node to another must be
first "put" into global store and then *got" out again, the rate at which
global store can be accessed determines the maximum rate of information flow
between nodes. This in turn determines the number of bi-directional links, of
any given bandwidth which can be emulated in real-time.

5.2

The average rate at which global store can be accessed by a processor depends
on the number of processors requiring access and their distribution among the
possible positions they can occupy in the DISCUS system. An analysis of this
situation in given in Appendix B. The results of this analysis indicate that,
assuming bi-directional links working at 8 Kb/s in each direction, the DISCUS
global bus will support the information flow required by the links of a fully
connected 7 node network, whilst leaving a similar amount of bandwidth for use
in intra-node communication and monitoring purposes. We expect this to be
perfectly adequate.

5.1.4 Coanstraints Imposed by the Qunmtity of Global Store Available

Up to seven 32 K byte blocks of global store can be provided by the DISCUS
hardware, i.e. a total of 224 K bytes. The maximum length of a channel
provided by the DISCUS operating system is 255 bytes. (Channels will be used
to represent inter-node links). For a fully connected 7-node network, 21 bi-
directional links will be required, which implies 42 channels, taking up a
total of 42 x 255 a 10.7 K bytes of global store. Thus there will be 224 -
10.7 a 213.3 K bytes of global store to be used for shared non-transient data.
It is expected that this will be more than adequate.

5.2 Emulator Control Software

The three main requirements for control software are a traffic generator, a
network configuration controller/emulator supervisor, and a results monitor.

5.2.1 Traffic Generator

This could either be a loop traffic generator, in which all the compelled
signalling for a call was emulated, or a trunk traffic generator which
originates and clears down calls at trunk level without emulating compelled
signalling on local loops. It could probably run as an additional function
within each node, in order to minimise the global store access bandwidth used
for purposes other than inter-node communication. Another program running on
each node would provide a "dummy" loop signalling load so as to give as
realistic an environment as possible.

Alternatively a traffic generator running on a separate DISCUS processor, and
communicating with emulated nodes via global store, could be used, provided
that its use of global store access bandwidth does not become excessive.

A further alternative is to use a separate traffic generator communicating
with emulated nodes by some means not involving global store, but this will
require additional hardware, thereby increasing costs, and may involve some
hardware development. It is therefore not to be recommended, unless other
alternatives prove to have serious disadvantages.

S.22 Comftigatia Caintroller/Boulator pervisor

This would be a software package running on a separate DISCUS processor, which
could dynamically change the emulated system connectivity by altering global
store to simulate the establishment and destruction of inter-node links.
(This requires the development of a new software package, but is essential to
the proposed emulation scheme.) It would also control the volume and pattern
of traffic produced by the traffic generator, and the introduction of
transient errors both on inter-node links and In that part of each node's
data-base which is held in global store.

5.3

It would be convenient to combine the emulator supervisor (i.e. the man-
machine interface) and the configuration control functions, and attach the
emulator console to this processor, so that system parameters could be altered
*manually" as necessary, and subsets of the results could be selected for
immediate display as well as being logged for later off-line analysis (see
below).

Manual alteration of parameters might include the ability to instruct individ-
ual processors representing nodes to trace certain of their operations (e.g.
all messages received, or just a particular type of message, accesses to
specified records, expiry of timeouts, etc.). The tracing specification could
be set up before the start of an emulation, in much the same way as with a
logic analyser.

5.2.3 Results Monitor

This provides the means of obtaining results from the emulator. It could be
provided by each node reporting on its operations, in accordance with the
trace specification described above. Useful information would be, for
example, a log of all calls attempted with each reported event time-indexed,
reasons for call failures, state of inter-node links (i.e. which are working
and which are not). Reporting to a central logging device, which could
transfer reported data to backing store (e.g. a floppy disc) would be con-
venient, and could be achieved using an MDS. Reporting could take place either
via global store, provided the use of access bandwidth does not become
excessive, or via some other external method, (which would involve some
hardware cost and effort). Some results could probably be obtained from the
configuration controller.

5.3 Outline Specification

From the preceding discussions it is now possible to specify, in fairly
general terms, the main hardware and software components of the proposed
network emulator.

Three DISCUS processors per emulated node will be required. This will allow at
least 6 real-time inter-node links per node to be provided. (At least 3 are
essential, since 2 links per node implies that nodes can be connected only in
either a line or a ring.) In this configuration, up to seven nodes could be
emulated, leaving 3 processors to perform the emulator control and monitoring
functions described in Section 5.2. There would be sufficient global store
access bandwidth, over and above that used for the inter-node links, to enable
the control and monitoring processors to communicate between themselves and
with the emulated nodes, and, of course, to allow inter-processor communica-
tion within each node.

The IAS applications software can be used in the emulated nodes with only a
few minor modifications, these mainly concerning device handlers, although
fairly significant amount of additional software for DBM will be needed. In
addition, substantial re-arrangement of the DISCUS operating system and system
generator will be required. It will probably not be necessary to modify the
DISCUS hardware.

5.41

6 CONCLUSIONS

This document has proposed the development of an emulated network based on an
array of DISCUS processors which has significant advantages over a "real"
network both in terms of the range of experiments which are possible and the
ease with which they can be performed, and in terms of cost.

To reiterate the advantages of the emulator therefore:

(1) The investigation of complex networks is possible at greatly reduced
effort and cost compared with the use of a "real" network. This may be
particularly significant in the area of network recovery and the error-
path retracing procedure outlined in section 3.3.5.

(2) The fact that the whole network is centralised in one place means that
the problems of results monitoring and alteration of network parameters
and configuration are greatly simplified.

(3) The possibility exists of connecting real and emulated networks
together, which may provide a more realistic environment for the

emulated nodes.

Given these advantages, we believe that the DISCUS emulated network would
provide a useful and cost-effective base for communications network research.

6.1

T IIVIIUCIS

Ei] H S Field-Riohards,
"The DISCUS Hardware System",
RSRE Report 82010

E2] M P Griffiths,
"The DISCUS Operating System",
RSRE Report 82009

[3) H S Field-Richards,
"The DISCUS Hardware Descriptions and Appendices",
RSRE Memo 3483

[4] H S Field-Richards and M P Griffiths,
*DISCUS Multiprocessor Enhancements",
RSRE Memo 3591

(5] "Introduction to the Traffic Loading and Routing Model",
Project Ptarmigan Document ZLA/157/01, RSRE(C), Jan 1977 (Unclassified)

[6) T G Connelly and M P Griffiths,
"Intermediate Access Switch - A Multiprocessor Application",
RSRE Report 83004

E7) K Jackson and H R Simpson,
"MASCOT",
RRE Tech. Note 778

[8) G Alia and E Martinelli,
"An Assessment of Circuit Switching Network Functionalities",
Annual Conference AICA, Bologna, 1980

7.1

APPEEDIK A

Classification of Errors

It seems convenient to divide the sources of error in any system into three
types. These are described, in the context of communications networks, below.

(a) Transient Errors

These are defined to be those caused by the corruption of some data
items either in transit from one node to another, or within a node.
The occurrence of such errors may be minimised by good design and
engineering practices. Recovery from them is possible, in that, in
principle, the system can be restored to a correct state by "back-
tracking" to a known correct point and trying again, and in the case of
data corrupted in transit, re-transmitting the data concerned.

(b) Permanent Errors

These are errors caused by failure of a particular item of hardware.
Their occurrence can be minimised by careful design and construction of
the system, and by the use of redundant hardware, arranged so that a
standby can automatically take over the function of an item detected as
being defective. Apart from this, such errors can only be corrected by
the manual replacement of the faulty unit.

(c) Design Errors

These are errors caused by mistakes in the implementation of the
original system specification. In general, the system can only be
restored to a correct state by returning it to the factory for re-
design. (Software bugs are included in this category.) Such errors
can be minimised by designing the system within a rigidly defined
scheme which does not allow designers to make the more obvious
mistakes. Software partitioning into conceptually separate co-operating
programs (as in DISCUS and MASCOT [7]) is a good example. Another is
the use of a well-defined protocol for inter-node communications.

It may be useful to treat design errors discovered in fielded equipment as
transient errors, since re-design in the field is not easily possible. Most
design errors which come to light at such a late stage will be the result of a
relatively rare set of circumstances. (If this were not the case the system
would, hopefully, not have passed user trials.) It is therefore possible that
a re-try after the detection of such an error might be successful, as the
state of the system may have changed between the two attempts, so that he
unexpected set of circumstances no longer exists. Consequently it is worth
initially treating all detected errors as transient, although it is important
that such errors be logged in some way to facilitate later investigation.
Error detection, re-try, and error-logging mechanisms should therefore be
included in the original design.

A. 1

APPKNDII B

Analysis of Global Bus Bandwidth

In hardware terms, DISCUS consists of a number of "crates", (at present a
maximum of 8), each of which can (electrically) accommodate four DISCUS
processors, though this number is reduced to three for reasons of physical
space. A crate bus arbitrator polls "request lines" from all the processors
in the crate, and the outputs of these arbitrators are polled by the global
bus arbitrator. (A full description of this mechanism is given in the DISCUS
Hardware Description[I,3]) In very simplified terms, this can be represented
by an arrangement of rotating "stepping" switches, as shown in fig 1. The
global switch steps round at a rate of one port every 1 us and dwells on each
port on which there is an indication from the crate "switch" that a processor
requires access for a further 0.5 us, during which time one access to global
store is made, (i.e. a single byte is either read or written). The "crate"
switch cycles round more rapidly, and dwells on a port on which a processor
requires access for as long as the processor takes to make one access. This
description of course ignores the anomalous behaviour of the arbitrator
circuitry which must inevitably occur occasionally because of the asynchronous
nature of the global access requests and the sampling of the request lines.

Evidently there is a large number of possible configurations of up to 24
processors, which give rise to various levels of utilisation of the available
global store access bandwidth. In order to get some idea of the amount of
data which could be passed through global store by a processor, let us
consider the following "worst case" situation.

Suppose a DISCUS system consists of 24 processors connected so that each crate
contains three processors, as shown in fig 1. We assume that all processors
access global store sufficiently often that there is always at least one
processor waiting on each global arbitrator port. We now consider the
exchange of data between two processors.

The most efficient way to implement a FIFO queue between two processors (which
would be used to emulate an inter-node link, for instance), is by means of a
circular buffer containing a read pointer, write pointer, and data buffer, all
located in global store. The number of global store accesses required to put

a byte into the buffer, or get a byte from it, is four: one to read the read-
pointer, one to read the write-pointer (to check if the buffer is already
full, in the case of a write, or empty, in the case of a read), one to "put"
or get a byte, and one to re-insert the incremented read or write pointer.

Since there are three processors in a crate, each one will only manage to
access global store every third time the global arbitrator points to the
crate. Consequently it will take 3 x 4 = 12 global bus arbitrator cycles to
"put" or "get" each byte.

The time taken for the global bus arbitrator to step from one port to another
is I us, and the dwell time on each port on which a processor requires access
is 0.5 us, so that the cycle time for the arbitrator is:-

8(1 + 0.5) 2 12 us

Hence the time taken for a processor to "get" or "put" a byte is 12 x 12
144 us.

9.1

To complete the transfer of a byte from one processor to another, the
receiving processor will have to do the inverse of the "putting" processor,
taking another 144 Us. However, although it cannot get a byte out of global
store which has not yet been put in, overlap is possibly due to the fact that
the "putting" processor may put a second byte on the same global bus arbitra-
tor cycle on which the "getting" processor gets the first. Consequently the
time required to transfer a byte from one processor to another is 144 us,
implying an I/0 bit rate for each processor of:

1 x 6 = 55.5 kb/s

144 x 10- 6

(This includes information flowing both into and out of a processor)

If each processor represented an emulated node, the number of links it could
have may be calculated as follows. Assume an inter-node link is bi-
directional and works at 8 Kb/s in each direction, so that a link emulated in
real-time will require a bandwidth of 16 Kb/s. Therefore the maximum number
of fully-loaded links which can be allocated to each node in this configura-
tion is:

Integer part of (55.5) = 3 links

(16)

if real-time emulation is to be maintained.

This implies that the maximum number of links in the entire system in this
configuration is:

3 x 24 z 36
2

In fact this figure is slightly less than the number of links which the total
global store access bandwidth in this configuration would support, due to the
fact that each processor has sufficient access bandwidth to support 3 and a
bit links. The difference between the access bandwidth required to support

three links per processor and the total bandwidth which can be provided in
this configuration could be used for emulator control and monitoring purposes.
This "spare capacity" may be calculated as follows:

Total available access bandwidth

1
2(No of accesses per byte put or got)(time for 1 access)

1

2 x 4 x 1.5 x 10
- 6

a 83.3 kbytes/s z 666.6 kb/s

Access bandwidth required to support 36 links

a 36 x 16 z 576 Kb/s

Therefore spare capacity a 666.6 - 576 a 90.6 Kb/s

8.2

This is however, a somewhat unrealistic configuration for a network emulator,
in that it is unlikely that one processor would be sufficient to emulate a
node, and that no allowance has been made for processors to run the
controlling and monitoring software.

Taking the discussion of Section 5.1.1 into account, a more realistic configu-
ration would be to have seven emulated nodes, each of three processors, (i.e.
one orate per node, for convenience), plus a crate of three processors for
monitoring and controlling the emulator. For this configuration, the number
of links per node, (assuming only one processor in each node communicates with
other nodes via the emulated links), can be calculated as follows.

We assume that each node accesses global store sufficiently often that there
is at least one processor waiting on each global bus arbitrator port at all
times. We also assume that the control and monitoring processors also access
global store to this extent. Thus all 8 global bus arbitrator ports are in
use, as shown in fig 1.

Four global store accesses are required to "put" or "get" a byte, which
implies four global bus arbitrator cycles to transfer each byte from one
processor to another.

Therefore time taken to transfer one byte = (8 x 1.5) x 4 us = 48 us

Therefore I/O bit rate per node = 8 167 Kb/s

48 x 10
- 6

This will support:

Integer part of (167/16) = 10 bi-directional links per node

This is more than is required for a fully connected 7-node network (which

would require 6 links/node).

Thus, if we allocate say, 6 links/node, we require a global store access
bandwidth of: 6 x 16000 = 96 Kb/s for each node

This leaves 167 - 96 = 71 Kb/s of global store access bandwidth in each node
for inter-processor communication within a node, and for communication between

a node and the controlling and monitoring processors.

The total global store access bandwidth used to emulate links in a fully

connected 7 node network is:

(No of bi-directional links) x 16 Kb/s a (7 x 6 x 10/2 z 336 Kb/s

Since the total available bandwidth was calculated as 666.6 Kb/a, some

330 Kb/s, (i.e. about half the total), remain to be used for other purposes.

3.3

APPINDIX C

Glossary of Abbreviations

ARQ Automatic Request to repeat
BCH Bose-Chaudhuri-Hoequenghem
DBM Data-Base Management
DISCUS DIStributed Control uprocessor System
FIFO First In, First Out
IAS Intermediate Access Switch
MASCOT Modular Approach to Software Construction, Operation and Test
MDS Microcomputer Development System
TLRM Traffic Loading and Routing Model

Global Bus
~/40~~i:JArbitrator

Sl T
Crate Bus
\ibtrators

QProcessor

FIG 1 SIMPLE REPRESENTATION OF CRATE BUS AND GLOBAL BUS

ARBITRATORS

V

