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%% A COLLECTIVE INTERACTION KLYSTRON
ﬁl The klystron may be regarded as the most developed among conventional

. microwave tubes. It has a wide -zange of aéplications, from communication

g transmission at low power level to high energy particle acceleration where

z tens of megawatts are required. The simplest (though not necessarily the most
i practical) klystron configuration consists of two cavities separated by a
}; linear drift regionl. The input signal is injected into the first cavity to
3 ~ provide a velocity modulation of the electron beam. This velocity modulation,
; v after being carried through the drift region, becomes a density modulation
% near the second cavity. The density modulation results in an rf current which
§§ excites the second (output) cavity. Because of the mutual Coulombic repulsion
gi among the AC space charges, the charge bunching near the output cavity cannot
E', reach the level expected from kinematic (ballistic) considerations. In fact,
; . the efficiency of klystron depends sensitively on the grouping of electroms

i ; - near the output cavityz.
’f f In this paper, we show that by bending the drift tube into a circular
§‘ arc, the grouping of the space charges can be enhanced. This is possible

&_ " because of the negative mass effects in rotating electron beams, in which the
g AC space charges tend to accumulate instead of self—dispersing3. In addition
? to the well-known ballistic effects, a klystron thus constructed makes novel

. use of a powerful dynamical effect. It therefore distinguishes from the

é ‘ conventional klystron in that the collective motions strengthen rather than

f . weaken the density nodulationl. 0f course, for the electron beam to follow a
- circular arc in the drift section, a radial force must be externally

; supplied. This can be acheived via a vertical magnetic field, or preferably
: in the case of low beam energy, via a radial DC electric field. As we shall
-, see delow, the principle outlined here may be applied to electron beam ranging
\ from a few keV to hundreds of keV or higher.

"f mammd February 23, 1984,
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F4 To illustrate the idea, th: simple two cavity klystron suffices. In such
a configuration [Fig.l], the input and the output cavities, and the drift
region may be analyzed separately. Since the novel aspects of the present

N device lie mainly with the drift region, we shall focus at the charge bunching
i processes there. Our elementary analysis is analogous to that used in

standard textbooksl

» but with emphasis on the negative mass mechanism.
However, the result obtained agrees with the classical limit of low current,
in which case the bunching 1is essentially kinematic (ballistic).
In the absence of the rf modulation, the electron beam is assumed to move v
along the circular arc of the drift tube at linear velocity 30 - 5 vo(r)
= 5 rmo(r), where r is the radial distance from the center of curvature of the
circular arc, and © is the angular variable along the drift tube [Fig.l]. For
I the time being, we shall leave unspecified the relative strength of the radial
igg electric fileld Bo and the vertical magnetic field Bo which are needed to

provide the circular motion of the beam. Thus, v, is governed by
2, ..
Yo Vo /T (e/m)) (E+ v, B)) (1)
where ¢ and L is respectively the electron charge and rest mass,

2/c2)-1/2

of light. 1In writing (1), we have for simplicity ignored the DC self fields

Yo " (1 - Yo is the relativistic mass factor with c being the speed

l; of the electrons. The beam is assumed to be monoenergetic, have a small beam
' cross section, and be located at mean radius r=R with number density N per .
unit arc length along the drift tube. }
We shall use a small signal analysis. Associated with the velocity 4

modulation is a longitudinal AC displacement n of an electron from its

unperturbed orbit. Similar to plasma oscillation, this displacement leads to
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a charge perturbation which then generates a self AC electric field E

19° In
response to this AC electric field Ele the angular displacement n of an
]
g electron obeys the following linearized force law 3,4
3
gg; e amo
532 Here a dot denotes the substantial derivative, ¢ is the energy of the electron
) and awolae is the negative mass factor. For an equilibrium governed by Eq.
v 1), auolae is given by
o dw 8 _“"+2h .
R A *
900 1+y°
%{ vhere
-crE°
he—z (4
®Yo Yo

and 8 = v /c = rw /fc.

A few words on the negative mass effect are in order. Recall that the
negative mass behavior arises if the frequency of rotation W is a decreasing
function of energy (awolae < 0). In this case, the angular acceleration is
opposite to the applied force .zle, as if the inertia of the electron is

- nngu:ivna". There would then be an intrinsic tendency of beam bunching. If
Y the rotation of the electron is supported solely by a magnetic
field, !o = () and therefore h = 0 by (4). Equations (2) and (3) then

yield : = -sozenlelvono which clearly shows the negative mass nature of a

rotating electron, under a uniform magnetic field, as a result of the

relativistic mass correction (ctw). A new class of microwave generation
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devices, known as the gyrotron, has been developed5 based on this

principleﬁ. Another limiting case 1s when h = 1/702, i.e., when the rotation
of the electron is supported solely by an outward radial electric field [cf.

(1,4)]). In this case, amo/ae < 0 also. This is precisely the equilibrium

condition in the microwave generation experiment of Alexeff and Dyer7. In

fact, one may easily demonstrate from (3) that amolae is maximized with

0%

353 respect to h when h = 1/702. Thus, among all possible combinations

ey of Eo and Bo’ the negative mass effect is most pronounced when the rotation of

e the electron is supported just by a radial electric field [cf. (3,4)] for a /
i; given beam energy and a given beam radius R. One may compare the negative

3%; mass effects for h = 0 and for h = 1/102 through the relation

o

e v 3w

§§ '3'e_°h-1/7: -_B%.'é—eih-o (3)

which 18 readily deduced from Eq. (3). Equation (5) clearly suggests the

advantage of using only a radial DC electric field (h = 1/702) at low beanm

voltage (low Bo). At a high beam voltage, a vertical magnetic field suffices.
A signal of frequency w impressed upon the rotating electron beam yields

an angular variation proportional to exp (~126) vhere ¢ = m/mo. Note that

‘4 may be regarded as a propagation constant and that it is not necessarily an

ﬁ%ﬁ integer in the present case. Such an angular variation in the displacement
fﬁ§ n produces AC space charges whose number density N1 per unit arc length is
Ry
he -Nan _ ,Nin

.’:‘ﬁ Nl - -E E 1. . (6)

This AC line charge yields a self electric field Ele at the beam:
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where € is the free space permIEtivity (MKS units) and g 18 essentially the

dimensionless impedance experienced by the beam and is given by3’4
i~ 2t 2
g=(1L+2 ln;,-‘-):)/vo (8)

for the dimension specified in Pig. (1).

Upon substituting Eq. (7) into Eq. (2), we obtain

n-Ir'n=20 (9)
where
2 z2c2 v s°2+2h
r - 10
ey (10)

2 being the dimensionless Budker parameter. Note that

with v E.N ezlﬁueonoc
I' is essentially the rate of growth of the negative mass instability in a
rotating rélativistic electron beam. Equation (9) has its counterpart in the
conventional klystron theory in which -rz is replaced by wpz, wp being the
electron plasma frequency.

We may now calculate the fundamental harmonic of the AC current at the
output gapl. Consider an electron leaving the input gap at © = 0 [Fig. (1)]
at time t-tl,vwith a velocity modulation ﬁ(tl) = (av°/2) sin wty, vwhere a is

the modulation depth. Then Eq. (9) gives

n(t) = (av°/2r) sin wt, sinh P(t-tl) (11)
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g% if we assume that n(tl) = 0. Equation (11) may be used to transform from the

}% Lagrangian to the Eulerian variables at 0 = eo’ the angular positic: of the
output cavity [Fig. 1]. From the definition of n, the electron arrives

?f at o = eo at time t=T, where eo and T are related by e(T)seo- wo(T-tl)

+n(T)/R = wo(T-tl) + (awO/ZP) sin wt,-sinh r(T-tl). This relation may be

inverted to yield

>
.,'J*
LA
b4 T=t, +-= -2 sin ut, sinh ES& (12)
2 1 7r “= ®
o o
Y
gf in the small signal theory (small a). The rf curreant Iz(eo,T) at the output
iy
f; gap contains all harmonic frequencies and may be represented in Fourier series
-~ as Iz(eo,T) = Z[an(eo)cos nwT + bn(eo) sin nwT] where the summation extends é
€3 !
TR fromn = - » to ». The Fourier coefficient 1s given by |
'
.
B
- W T/
5 an(eo) 7;-] dT Iz(eo,T) cos T
.
fon o
¥ -'!;2 I"/w dt, cos muT (13)
-r/w
Igz wvhere I° is the DC current carried by the beam at the input gap. In writing
the last expression, we have used the charge conservation relation
R Isz - Iodtl. Upon substituting (12) into (13), we obtain an(eo), [and a
E similar expression for bn(eo) ] The total current 12 at the output gap is
1,(0,,T) = 1+ nzl 21 J (X )cos[nu(T-0 /u )] (14)
Wt vhere X, - (naw/2r) sinh (reolwo) and J 1is the Bessel function of the first
) kind, of order n.
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Equation (14) has a similar st?ucture as the corresponding one for
conventional klystron. As a check, we note that in the limit of zero
density, I'+o by (10) and the collective effect disappears. In this limit,
(14) indeed agrees with the classical result where only ballistic bunching is
present. The negative mass effect may be examined by considering just the
fundamental harmonic ZIoJl(xl) in the output current IZ' The peak value of
this quantity is 1.16I,, occurring at X; = 1.841. Since X, = (aw/2r)sinh
(reolmo), a very small velocity modulation at the input gap may yield the
maximum achievable rf current 1.16I, at the output gap if reolmo is
sufficiently large. This is quite different from the conventional klystrom,
and is due to the enhanced charge bunching resulted from negative mass effect
associated with a bent drift tube. In contrast, a weak modulation at the
input gap of a conventional two cavity klystron is unable to achieve this peak
value of current bunching because of the Coulombic repulsion among the AC

space chargesl.

As a proof-of-principle experiment, take e, = 2x/3, ; = 4 cm, Bo -;6.1389,
corresponding to a beam energy of 5 keV. Then m°/2n = SOQ/ZNR-' 0.1658 GHz.
Let £ = 20, say, so that the tube may operate at 3.32GHz. Then Eq. (10)
yields r/w° = 1.86 for g = 4, h = l/yoz, and a beam current of 0.1 amp. For
these parameters, the nnxinum.achievnble rf current (according to the present
linear théoty) may be attained at the output cavity if the modulation
factor a 18 as low as 0.014. 1In this exgmple, a radial electric field
E, = 2.5 keV/cm 18 used to provide the circular motion in the drift tube.

For high voltage operation, consider, for example, a beam at a voltage of
300 keV and a current of 160 amps. For R = 22.36 cm, 0 = 100°, h = 0,

g = 1.59, “,”o = 20 (i.e., operation at 3.32 GHz), saturation occurs when

a = 0,0174. Here, only a vertical magnetic field Bo = 94 G 18 used to

LSOO ) ey L » CHe S
SOV AN, p%,‘ﬂ,jj 5 ‘ Y
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provide the circular motion in the Arift tube. Examples with other beam
energy and frequency ranges may similarly be constructed.

In this paper, several wellsknown principles are synthesized to yield a
novel kylstron which promises high gain. The device is efficient and
compact .
also uses the very mechanism which makes gyrotrons efficient, as bunching

along the rotational orbits indeed takes place.

I am grateful to David Chernin for many stimulating discussions, and to v

B. Arfin for his interest.

This work is supported by the Office of Naval Research.
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