A PARAMETRIC ANALYSIS OF DUELS(U) CENTER FOR NAVAL ANALYSES ALEXANDRIA VA AIR WARFARE DEPT H L HERZ MAR 84 CNA-PP-402 N00014-83-C-0725
A PARAMETRIC ANALYSIS OF DUELS

Henry L. Herz
A PARAMETRIC ANALYSIS
OF DUELS

Henry L. Herz

Air Warfare Department
CENTER FOR NAVAL ANALYSES
2000 North Beazuregard Street, Alexandria, Virginia 22311
INTRODUCTION

The type of game of timing analyzed here is known as a discrete, "noisy" duel. Through the use of "decomposition," such games can be defined recursively (i.e., in terms of successively simpler games). The principle of decomposition is well suited to implementation on a computer. Such a program (listed in the appendix) was developed on a VAX 11/780 computer in BASIC. This program permits parametric analysis by providing nearly instantaneous solutions to discrete, noisy duels.

THE GAME

The discrete, noisy duels considered here can be thought of as a naval engagement between two ships armed with surface-to-surface missiles (SSMs). Each player (ship) begins the game (engagement) with a certain number of bullets (SSM salvos). The distance between the ships is decreased by a set amount until one or both of the ships has been hit by the other's SSMs, or the intership separation has been reduced to zero. Before each decrement in intership separation, both players have the choice of firing one SSM salvo or waiting. The players select their option (shoot or wait) secretly, and then announce their selections simultaneously. The probability of hitting an opponent's ship decreases monotonically with range, and the probability of hit equals 1 at a range of 0. Hence, each player wishes to delay firing as long as possible to increase his chances for success, but not so long as to allow his
opponent to effectively precede him. An optimal strategy provides the proper balance between effectiveness and vulnerability.

The value of the game (payoff) is +1 if player 1 (arbitrarily designated) hits player 2 and is -1 if player 2 hits player 1. The value of the game is 0 if both players hit their opponent (on the same turn) or both players fail to hit their opponent. Because the probability of hit equals 1 at an intership separation of 0, if at some point one player has exhausted his SSMs, the other player can simply hold his fire until the separation decreases to 0, guaranteeing a hit against his opponent. This is possible because it is a "noisy" duel, i.e., each player knows when his opponent has fired.

RATIONALE

The duels described above, while not prohibitively complex problems, are sufficiently time-consuming to make manual attempts at parametric analysis virtually impossible. However, the development of a computer program that can solve very large duels in seconds (i.e., duels involving 10 salvos per player and 20 distance decrements) readily allows such analysis. In fact, a fortunate side benefit of the decomposition algorithm is that not only is the value of the specified duel determined, but also the value of every duel with parameters
(salvos for player 1, salvos for player 2, and initial separation) less than those of the specified duel. The result is a vast reduction in completion time.

OUTLINE

The remainder of this paper is divided into four main sections: Method, Results, Discussion, and Conclusions. The Method section outlines the procedure for solving discrete, noisy duels via decomposition, as well as the implementation of this process within a computer program. The Results section lists the topics that were investigated using the previously discussed methods and graphically displays the results of the parametric analyses. The Discussion section analyzes the results and proposes explanations of unexpected or counterintuitive results. The Conclusions section summarizes the findings of this investigation.
METHOD

This section outlines the method for solving discrete, noisy duels, as well as how such an algorithm is implemented within a computer program. The notation $V(K, J; I)$ refers to the value of the game to player 1 (which is the negative of the value of the game to player 2) when player 1 has K salvos remaining, player 2 has J salvos remaining, and the players are separated by a distance of I units (where I, J, and K are all non-negative integers). $P_1(I)$ and $P_2(I)$ are the probabilities of hitting one's opponent at a separation of I for players 1 and 2, respectively. The expression "value of the game" refers to the payoff to player 1 when both players follow their optimal strategies.

SOLUTION VIA DECOMPOSITION

Decomposition of a duel into simpler duels (i.e., duels with smaller parameter values) is made easier by the fact that before each decrement in separation, each player has only two options, shoot or wait. Thus, the game $V(K, J; I)$ decomposes into the following game:

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Shoot</th>
<th>Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>$P_1(I) \cdot [1 - P_2(I)] \cdot (+1) + P_2(I) \cdot [1 - P_1(I)] \cdot (-1) + [1 - P_1(I)] \cdot [1 - P_2(I)] \cdot V(K - 1, J - 1; I - 1)$</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>$P_1(I) \cdot (+1) + [1 - P_1(I)] \cdot V(K - 1, J; I - 1)$</td>
<td></td>
</tr>
<tr>
<td>Player 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>$P_2(I) \cdot (-1) + [1 - P_2(I)] \cdot V(K, J - 1; I - 1)$</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td></td>
<td>$V(K, J; I - 1)$</td>
</tr>
</tbody>
</table>
The expected values listed above come directly from the probabilities of various events occurring. Since both players have two options (shoot or wait), there are four possible joint outcomes (represented by the four boxes above). The expected values derive from the following reasoning:

Box A. Player 1 shoots, player 2 shoots

The first term in this box refers to the outcome that player 1's shot hits and player 2's shot misses (times resulting game value of +1). The second term in this box refers to the outcome that player 1's shot misses and player 2's shot hits (times resulting game value of -1). The third term in this box refers to the outcome of both players' shots missing (times the value of the resulting game, which is simply a duel starting with one less salvo for each player and with a smaller initial separation). There is no term corresponding to the outcome that both salvos hit, since the resulting game value would be 0.

Box B. Player 1 shoots, player 2 waits

The first term in this box refers to the outcome that player 1's shot hits (times resulting game value of +1). The second term refers to the outcome that player 1's shot misses (times the value of the resulting game, which is simply a duel starting
with one less salvo for player 1 and with a smaller initial separation).

Box C. Player 1 waits, player 2 shoots

The terms in this box are analogous to those in box B, with the exception that the resulting game value of a successful salvo is -1 and the game resulting from a miss has player 2 starting with one less salvo rather than player 1.

Box D. Player 1 waits, player 2 waits

Since both players choose to wait, the resulting game is identical, except that the initial separation is reduced by one.

This process continues until all of the "resulting" duels have zero as one or more of their parameters (i.e., I, J, or K). Such duels are trivial, as shown below:

Example 1. K=0 and J>0

Since player 1 has no more salvos, but player 2 does, the latter can hold his fire until separation (I) becomes zero, guaranteeing a game value of -1 (i.e., V(0,J;I) = -1).
Example 2. \(J=0\) and \(K>0\)

This is the opposite of the previous example (i.e.,
\((V(K,0;I) = +1)\).

Example 3. \(I=0\) (\(J>0\) and \(K>0\))

Since the separation is 0 and both players have salvos remaining, both will hit their opponent, resulting in a game value of 0 (i.e., \(V(K,J;0) = 0\)).

Example 4. \(J>I+1\)

These parameters correspond to a player having more salvos than can be used at the rate of one per decrement (note that players can shoot at \(I=0\), hence the +1 term). This duel has the same value as \(V(K,I+1;I)\).

Example 5. \(K>I+1\)

This is analogous to Example 4, but for the other player. This duel has the same value as \(V(I+1,J;I)\).

Note also that certain games that are impossible in terms of the original game cannot be treated as trivial and ignored. For example, if
the initial problem is to find $V(1,5;2)$, it is obvious, by means of Example 4, that this is equal to $V(1,3;2)$. Even though the game $(1,3;2)$ is impossible in terms of $(1,5;2)$, i.e., player 2 could not have fired two salvos before the game even began, it still must be solved as an intermediate step in the solution of the original game.

Because solutions to the trivial games listed above are known, some of the "matrices" (boxes A through D, which collectively represent the value of a particular duel) can be filled in. That is, values have been determined for every term in the expression (the $P_1(I)$, $P_2(I)$, and $V(K,J;I)$ terms). Letting a, b, c, and d represent the numeric value of the newly filled-in terms within boxes A, B, C, and D for a particular matrix this duel becomes what is called a two-by-two, zero-sum matrix game of the form:

\[
\begin{array}{c|cc}
& \text{Shoot} & \text{Wait} \\
\hline
\text{Shoot} & a & b \\
\text{Wait} & c & d \\
\end{array}
\]

Player 2

-8-
The following discussion, based on Guillermo Owen, *Game Theory*, New York: Academic Press, 1982, is included for the sake of completeness. There are two possibilities for such a game: either the optimal solution occurs for an equilibrium pair of pure strategies (i.e., shoot or wait) or it occurs for a pair of mixed strategies (probability distributions across all players' choices). If an equilibrium pair of strategies exists, then the value of the game will be the number in the box that is defined by that equilibrium pair. Such a pair exists when one (or more) of the numbers a, b, c, or d is both the minimum number in its row and the maximum number in its column. The basis for this is the Minimax Theorem. Because player 1 is trying to maximize the value of the game, and player 2 is trying to minimize the value of the game, such an equilibrium pair of strategies (also known as a saddle point) will be optimal for both players. This is true because neither player, even with knowledge of the other player's choice, will have any incentive to change his strategy.

For example, if \(a = 0.5 \), \(b = 0.7 \), \(c = 0 \), and \(d = -0.4 \), then it is obvious that the value of the game equals \(a (0.5) \), because the optimal strategy for both players is to shoot. Observe that neither player, knowing his opponent will shoot, can improve his payoff by changing his strategy.

If no equilibrium pair of strategies exists (e.g., if \(c \) were \(0.6 \) rather than 0 in the previous example), then a solution would be
obtained by using mixed strategies. A mixed strategy associates a probability with each choice (pure strategy) facing a player. These probabilities must be non-negative and sum to 1. For example, a mixed strategy for player 1 might be: shoot with probability .5 and wait with probability .5. A mixed strategy for player 2 might be: shoot with probability .25 and wait with probability .75. Using game theory, optimal mixed strategies can be calculated. These prevent a player from being outguessed by his opponent through the (proper) randomization of strategy selection. Determination of optimal mixed strategies is discussed here only because it is a means for determining the value of a game (we are not concerned with strategies). The value of a game can be derived from the optimal mixed strategy for either player. Such a process is outlined below.

Given the matrix game just discussed, let x_1 and x_2 be the probabilities that player 1 chooses to shoot and wait, respectively. Let y_1 and y_2 be the analogous probabilities for player 2. If we denote the game matrix as M, and mixed strategy vectors as x and y for players 1 and 2, respectively, then the value of the game $= x^T y$. The optimal value of the game $v^* = x^* y^*$, where x^* and y^* are the optimal mixed strategy vectors for players 1 and 2.
To determine the optimal value of the game, solve the maxi-min problem of player 1, namely:

\[
v^* = \max \left\{ \min \left\{ x \text{My} \right\} \right\}. \]

\[x_1 + x_2 = 1 \quad y_1 + y_2 = 1\]

\[x_1, x_2 > 0 \quad y_1, y_2 > 0\]

Carrying out the matrix multiplication, this becomes:

\[
v^* = \max \left\{ \min \left\{ (ax_1 y_1 + bx_1 y_2 + cx_2 y_1 + dx_2 y_2) \right\} \right\}. \]

\[x_1 + x_2 = 1 \quad y_1 + y_2 = 1\]

\[x_1, x_2 > 0 \quad y_1, y_2 > 0\]

Note that for a fixed value of \(x\), the expanded \(x\text{My}\) is linear in terms of \(y\). This means that the min of \((ax_1 y_1 + bx_1 y_2 + cx_2 y_1 + dx_2 y_2)\) will occur at a vertex (that is, either \(y_1 = 0\) and \(y_2 = 1\) or \(y_1 = 1\) and \(y_2 = 0\)), though this does not mean that player 2's optimal strategy occurs at a vertex. Thus, the expression can be rewritten as:

\[
v^* = \max \left\{ \min \left\{ (bx_1 + dx_2), (ax_1 + cx_2) \right\} \right\}. \]

\[x_1 + x_2 = 1\]

\[x_1, x_2 > 0\]

Since \(x_1 + x_2 = 1\), \(1-x_1\) can be substituted for \(x_2\) above, yielding:
\[v^* = \max_{0 < x_1 < 1} \left\{ \min \{ (b-d)x_1 + d, (a-c)x_1 + c \} \right\} \]

The two inner terms, \((b-d)x_1 + d\) and \((a-c)x_1 + c\), are both linear in terms of \(x_1\). Also, since no equilibrium pair of strategies was found, the two terms will intersect within the interval \([0, 1]\). The solution to the problem occurs at this intersection, i.e., where \((b-d)x_1 + d = (a-c)x_1 + c\). This can be seen graphically below:

To find \(x_1^*\), set the two lines equal to each other and solve:

\[
(b-d)x_1^* + d = (a-c)x_1^* + c
\]

\[
(b-d-a+c)x_1^* = c - d
\]

\[
x_1^* = (c-d)/(b-d-a+c)
\]
To find v^*, simply plug in x_1^* into either of the equations for the lines plotted above, i.e., substitute the equation for x_1^* into $(b-d)x_1^* + d$:

$$(b-d) \frac{(c-d)}{(b-d-a+c)} + d = \frac{(b-d) (c-d) + d (b-d-a+c)}{(b-d-a+c)} = \frac{bc - bd - dc + d^2 + db - d^2 - da + dc}{(b-d-a+c)} = \frac{(bc - ad)}{(b-d-a+c)} = v^*$$

To summarize, if there is a payoff (either a, b, c, or d) which is the minimum of its row and the maximum of its column, then the value of the game is that payoff. If no payoff meets this criterion, there is no equilibrium pair of pure strategies and the value of the game (which results from the use of mixed strategies) equals $(bc - ad)/(b-d-a+c)$.

Although this technique of decomposing the original game into a sequence of games with smaller parameters is straightforward, even obvious, it was not seen in the literature.

IMPLEMENTATION

Implementation of this scheme requires a computer with enough memory to store four arrays totaling slightly over 40 kilobytes. The computer should also be capable of executing, in a reasonable amount of
time, the large number of commands required (on the order of $11(D+1) + 21(D+1)(N1+1)(N2+1)$, where $D =$ initial separation, $N1 =$ salvos for player 1, and $N2 =$ salvos for player 2). For example, to find $V(10,10;20)$, the program executes over 53,000 commands, and this does not include I/O operations. The computer on which the program was run, a Digital Equipment Corporation VAX 11/780, provided nearly instant turnaround, and could handle problems of even larger parameters.

Program execution is a five-step process, summarized by the flow diagram below:

1. **Prompt the user for the duel's parameters**
2. **Calculate $P1$ and $P2$ for each discrete inter-ship separation**
 - Note that the looping is done with indices starting at their maximum value and decreasing to zero.
3. **For each combination of $N1$, $N2$, and separation: if this duel is trivial, then solve it, else store the 18 values that characterize this matrix**
 - Subroutine **trivial**: solves special trivial duels.
4. **For each combination of $N1$, $N2$, and separation: if this duel is unsolved (it was not a trivial duel), then solve it**
 - Subroutine **game**: if the game has a saddle point, then find it, else use the formula for mixed strategies to determine the value of the game.
5. **For the desired combinations of duel parameters: print the value of the game**

The matrix, as you will recall, had four boxes, each filled with an expression of the general form $t_1 + t_2 [V(t_3, t_4, t_5)]$. Since box D has no terms corresponding to t_1 and t_2, an entire matrix (which represents the decomposition of a particular duel) can be stored in an array of length 18 (i.e., $4 \times 5 - 2$).
The program's structure follows the principles of dynamic programming or recursion. First, the duel to be solved is decomposed into duels (matrices) of decreasing complexity, which are themselves decomposed. This continues until all duels with parameters less than those of the original duel have been so defined. Then, working backwards using the initial conditions supplied by the trivial games, increasingly more complex matrices can be filled in with actual values and solved. This continues until the original duel is solved. Because the loop indices increase in the second phase of this algorithm, the process of filling in the values of matrices will occur only after the component duels have already been solved. The program code is in BASIC and is listed in the appendix.
RESULTS

The following table lists eight cases that were felt to be of sufficient interest to warrant investigation. Immediately after this table are the actual results, consisting of plots of the values of the games as a function of some of the games' parameters. The Probability of hit (P_h) function listed for each player, called $P1$ and $P2$, is the probability of hit as a function of the intership separation, "D", previously denoted as "I". $N1$ and $N2$ denote the initial number of salvos for player 1 and player 2 respectively.
TABLE 1
PARAMETERS OF THE EIGHT CASES

<table>
<thead>
<tr>
<th>Case number</th>
<th>Salvos, player 1</th>
<th>Salvos, player 2</th>
<th>P_h for player 1</th>
<th>P_h for player 2</th>
<th>P_h plotted for both players</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1-.05D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment: Game value is plotted as a function of initial separation and salvos.

2

<table>
<thead>
<tr>
<th>Case number</th>
<th>Salvos, player 1</th>
<th>Salvos, player 2</th>
<th>P_h for player 1</th>
<th>P_h for player 2</th>
<th>P_h plotted for both players</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1-.05D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment: Game value is plotted as a function of initial separation and salvos.

3

<table>
<thead>
<tr>
<th>Case number</th>
<th>Salvos, player 1</th>
<th>Salvos, player 2</th>
<th>P_h for player 1</th>
<th>P_h for player 2</th>
<th>P_h plotted for both players</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1.1-.05D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2-.05D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3-.05D</td>
<td>1-.05D</td>
<td></td>
</tr>
</tbody>
</table>

Comment: Game value is plotted as a function of initial separation and P_h for player 1.
<table>
<thead>
<tr>
<th>Case number</th>
<th>Salvos, player 1</th>
<th>Salvos, player 2</th>
<th>P_h for player 1 a</th>
<th>P_h for player 2</th>
<th>P_h plotted for both players</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1.2-.06D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4-.07D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0-.10D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2.0-.10D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1.5-.075D</td>
<td>1-.05D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment: Game value is plotted as a function of initial separation and P_h for player 1.

Comment: Game value is plotted as a function of initial separation and salvos.

Comment: Game value is plotted as a function of initial separation and salvos.
<table>
<thead>
<tr>
<th>Case number</th>
<th>Salvos, player 1</th>
<th>Salvos, player 2</th>
<th>P_h for player 1a</th>
<th>P_h for player 2</th>
<th>P_h plotted for both players</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>$1 - \sqrt{.05D}$</td>
<td>$1 - \sqrt{.05D}$</td>
<td>P_1, P_2 (vary)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 - .05D$</td>
<td>$1 - .05D$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1 - (.05D)^2$</td>
<td>$1 - (.05D)^2$</td>
<td></td>
</tr>
</tbody>
</table>

Comment: Game value is plotted as a function of initial separation and P_h for both players.

<table>
<thead>
<tr>
<th>8</th>
<th>1</th>
<th>5</th>
<th>$1 - .05D$</th>
<th>$1 - .05D$</th>
<th>P_1, P_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment: Game value is plotted as a function of player 1's salvos and initial separation.

a Probability of hit functions are actually equal to the minimum of \(\{1, P_1\}\), i.e., they will never exceed 1.
FIG. 3: EQUAL SALVOS, CONSTANTLY LARGER P_n, VARYING DIFFERENCE
FIG. 4: EQUAL SALVOS, PROPORTIONALLY LARGER P_1, VARYING PROPORTION
FIG. 6: EQUAL SALVOS, PROPORTIONALLY LARGER P_h, VARYING SALVO SIZE
\[P_1 = P_2 = 1 - \frac{D}{20} \]

FIG. 7: TWICE THE SALVOS, EQUAL \(P_h \), VARYING \(P_h \) FUNCTION
FIG. 8: FIXED SALVOS FOR PLAYER 2, EQUAL \(P_b \), VARYING SALVOS FOR PLAYER 1
DISCUSSION

This section discusses the results of the parametric analyses. Each of the eight cases is considered in terms of intuitive appeal. Attempts to explain unexpected results will also be made. Because the value of a game is zero regardless of initial separation when both players have the same P_h functions and the same number of salvos, the cases discussed here explore some asymmetrical properties of duels.

Note that the significance of any findings should not be reduced by the contention that discrete duels are not realistic. The value of a discrete duel appears to rapidly approach the value of the equivalent continuous duel as the number of discrete distance gradations increases. Table 2 compares the value of discrete duels of increasing "granularity" with those of the three corresponding continuous duels.

Thus it appears that if the discrete game has 20 or more gradations, its value will be very close to that of the continuous version. The imprecise term "very close" is used intentionally because the rate at which the value of discrete and continuous games converge is influenced by the choice of P_h functions. Specifically, games where the difference in P_h functions is small converge faster than games with disparate P_h functions. Because only very special continuous games have
been solved, this conclusion is significant in that it suggests a computer program can "solve" such problems by substituting a close approximation to the original problem that can be solved.

TABLE 2
VALUES OF DISCRETE VERSUS CONTINUOUS DUELS

<table>
<thead>
<tr>
<th>Duel parameters<sup>a</sup></th>
<th>N1=1</th>
<th>N1=1</th>
<th>N1=3</th>
<th>N2=1</th>
<th>N2=1</th>
<th>N2=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete gradations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-.250</td>
<td>.000</td>
<td>.000</td>
<td>-.240</td>
<td>.200</td>
<td>.200</td>
</tr>
<tr>
<td>5</td>
<td>-.240</td>
<td>.200</td>
<td>.200</td>
<td>-.250</td>
<td>.250</td>
<td>.211</td>
</tr>
<tr>
<td>8</td>
<td>-.248</td>
<td>.273</td>
<td>.192</td>
<td>-.245</td>
<td>.286</td>
<td>.215</td>
</tr>
<tr>
<td>11</td>
<td>-.242</td>
<td>.294</td>
<td>.206</td>
<td>-.240</td>
<td>.300</td>
<td>.200</td>
</tr>
<tr>
<td>Value of corresponding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continuous duel</td>
<td>-.240</td>
<td>.333</td>
<td>.200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^awhere N1=salvos, player 1
N2=salvos, player 2
P1=probability of hit function, player 1
P2=probability of hit function, player 2
D=inter-ship separation
The following discussion of the eight cases is based on the graphs shown in figures 1 through 8 in the preceding section.

Case 1:

The main point of the graph in figure 1 is to demonstrate that when the ratio of player salvos remains constant, increasing the number of salvos decreases the value of the game to the favored player. This behavior is not intuitive unless the extreme case of player 1 having 40 salvos and player 2 having 20 salvos is considered. In such an engagement, both players can fire at every opportunity and the value of the game will be zero even though player 1 has many more salvos than player 2. Based on this "end point," we might infer that the value of this game decreases as the magnitude of salvos increases because the players are gradually approaching a point where the extra salvos of player 1 will never be used.

This trend (not firing beyond some separation) is also reflected, in a different way, by the "flattening out" of the curves. Such a phenomenon is the result of a change in the players' optimal strategies. In particular, for the case of N1=2 and N2=1, both players' optimal strategy is to fire for any initial separation of 12 or less. At an initial separation of 13, there is no equilibrium pair of pure strategies, and the players use mixed strategies. At initial
separations greater than 13, both players' optimal strategy is to hold their fire ("wait") until their separation equals 13. Thus, the value of the game levels off, but not at its maximum value (see below).

Given \(N_1=2, N_2=1, P_1=P_2=1-.05D \):

<table>
<thead>
<tr>
<th>Initial separation</th>
<th>Optimal strategy (for first stage of duel)</th>
<th>Value of game</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Both players fire</td>
<td>.0025</td>
</tr>
<tr>
<td>2</td>
<td>Both players fire</td>
<td>.01</td>
</tr>
<tr>
<td>:</td>
<td>Both players fire</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>Both players fire</td>
<td>:</td>
</tr>
<tr>
<td>10</td>
<td>Both players fire</td>
<td>.25</td>
</tr>
<tr>
<td>11</td>
<td>Both players fire</td>
<td>.3025</td>
</tr>
<tr>
<td>12</td>
<td>Both players fire</td>
<td>.36</td>
</tr>
<tr>
<td>13</td>
<td>Players use mixed strategies</td>
<td>.35547</td>
</tr>
<tr>
<td>14</td>
<td>Both players wait</td>
<td>.35547</td>
</tr>
<tr>
<td>:</td>
<td>Both players wait</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>Both players wait</td>
<td>:</td>
</tr>
<tr>
<td>20</td>
<td>Both players wait</td>
<td>.35547</td>
</tr>
</tbody>
</table>

Case 2:

Figure 2 shows the advantage of having one more salvo than your opponent. As expected, the value of the additional salvo approaches zero as the number of salvos increases. This is not a surprise, since the "importance" of each salvo increases when there are fewer of them. Said another way, the favored player's optimal strategy will direct him to use his extra salvo at a range shorter than it would be used in an engagement where both players have more salvos available. This results in a higher probability of hit for that additional salvo and, therefore, a higher value of the game.
Case 3:

Figure 3 demonstrates the effect of adding a constant to one player's probability of hit function. The effect is roughly equivalent to adding that constant to the value of the game. Also, the fact that the value of a game increases as the initial separation increases follows intuition in the following way. Whenever one player has an advantage over another player (either in salvos or P_h), increasing the initial separation will improve (or, in the worst case, not affect) the value of the game, because it is providing the favored player with a greater number of alternatives for exploiting his advantage. However, an unexpected trend occurs: the value of the game is linear for small initial separations. This can be explained in terms of the P_h functions. Because player 1's P_h function equals that of player 2's plus some constant, there will be an interval over which player 1's P_h function will exceed 1 (i.e., set equal to 1). Thus, for this interval, $P_1(D)$ will be constant (1), but $P_2(D)$ will be decreasing linearly, hence the linear increase in game value. No explanation for the divergence of the curves (as initial separation increases), however, is readily apparent.
Case 4:

Case 4 (figure 4) demonstrates the effect on the value of the game when one player has a proportionally larger P_h than the other. The value of the game initially increases linearly, as in case 3 (and for the same reason). The point at which the curves change slope is simply the point where the P_h function for player 1 finally becomes less than 1. The unexpected decrease in the value of the game beyond this point is due simply to the shape of the P_h functions (see below). Notice that player 1's advantage (i.e., the difference of the curves, plotted to the left) is 0 at a separation of 0, increases to a maximum at the separation where player 1's P_h first drops below 1, and then decreases to 0 at separation of 20. Hence, the value of the game decreases after some point because player 1's advantage linearly decreases to zero.
Case 5:

This case, shown in figure 5, presents an interesting question. Is it preferable to have twice as many salvos, but half the P_h, or the reverse? The value of the game decreases after a certain point, but this trend is explained in the previous case. As in case 1, the ratio of player salvos was kept at two, but the number of salvos was varied. For all curves, the value of the game is positive over the entire range of initial separations. This will not always be true when P_1 exceeds P_2. For example, if $P_1 > P_2$ but $N_2 > N_1$, the value of the game could conceivably be negative. The fact that the value of the game increases for engagements with more salvos (i.e., is to the advantage of the player with fewer salvos) is in keeping with the trend demonstrated in case 1.

Note that even as simple a term as "twice the accuracy" is difficult to define mathematically because of the upper bound of 1 that exists for probabilities. There are two straightforward ways of defining P_h functions so that one will have twice the probability of hit at any distance, but both have drawbacks. The two methods are illustrated in the plots below. The first method's drawback is that P_2 is discontinuous at $D=0$, i.e., the value of P_2 jumps from 0.5 to 1 as internship separation goes from "near-zero" to zero. The second method, while continuous, has the drawback that once P_1 reaches a value of 1, it levels off.

-34-
Method 2 was used in this analysis, although the computer program is capable of handling either type of P_h function.

Case 6:

Figure 6 shows the effect on the value of a game (where both players have the same number of salvos) of increasing the number of salvos for both players. Such an increase does improve the value of the game for the player with the better P_h function. This follows intuition in a manner analogous to the trend discussed in case 3. That is, by providing the favored player with more options, we will increase the value of the game. The increase is not particularly large in this example, but it exists nonetheless.
Case 7:

Figure 7 shows the effect of degrading both players' P_h functions. Specifically, when both players have identical P_h functions, and one player has an advantage in salvos, the favored player prefers the P_h function that is less "deadly", i.e., that has the smallest P_h associated with each separation. This preference runs counter to the intuitive trend exhibited in cases 3 and 6 (providing an improvement to both players helps the favored player). No rationale for this situation is obvious.

Case 8:

This case, shown in figure 8, differs from the others by plotting salvos for player 1 on the abscissa, rather than initial separation. These curves, along with the results from case 1, support the hypothesis that the value of a game where the players have identical P_h functions is directly proportional to the ratio of their salvos. The curves cross the x-axis where player 1 has five salvos because it is at this point that both players have the same number of salvos (and the same P_h function) and hence a game value of zero.
CONCLUSIONS

The conclusions drawn from these parametric analyses can be grouped into three main areas:

- Discrete versus continuous games
- The use of intuition in predicting game values
- Twice the salvos versus twice the accuracy.

As discussed previously, the development of a program that solves discrete duels, combined with the tendency of discrete duel values to approach those of continuous duels, has important ramifications. Previously only certain continuous duels could be solved. Now many continuous duels can be "solved" by substituting the analogous discrete duel with many small distance gradations.

The second main conclusion that can be drawn from this work is that intuition should not be used for predicting the value of a game based on its parameters. Usually general trends in the value of games can be surmised, but this is not universally true, as shown by case 7. Also, the point at which a game's value changes sign, derivative, sign of second derivative, and so on, cannot be intuited.
The final conclusion has important implications for U.S. weapons appropriations. By proving that it is better (i.e., the value of the game is higher) to have half the salvos with twice the accuracy rather than the reverse, this paper supports established U.S. weapon appropriations policy, which is to buy fewer (more expensive) weapons with greater effectiveness rather than many weapons with lesser capability as the Soviet Union does in general. Note that this is true for ratios other than two (for example, having two-thirds the number of salvos at three-halves the accuracy is better than the reverse).
PROGRAM SOLVE BY HENRY HERZ 1 DEC 83

THIS PROGRAM SOLVES GAMES OF TIMING (DISCRETE, NOISY).

TWO-PLAYER DUELS OF UP TO 10 SHOTS FOR

EACH PLAYER AND UP TO 20 INTER-PLAYER DISTANCES.

NOTE: ALL ARRAYS ARE OPTION BASE 0.

* SYMBOL FOLLOWING VARIABLE NAMES SIGNIFIES INTEGER.

DIM T(10,10,20,18) TABLEAUS STORING DECOMPOSED DUELS
DIM V(10,10,20) VALUE OF DUEL (K,J;I)
DIM FLAKY(10,10,20) 1 IF DUEL (K;J;I) HAS BEEN SOLVED
DIM P1(20),P2(20) PROBABILITY OF HIT AT SEPARATION I

75 PROMPT USER FOR PARAMETERS WHICH DEFINE THE DUEL
200 INPUT "ENTER INITIAL SEPARATION OF SHIPS",IS
210 INPUT "ENTER # OF SALVOES FOR PLAYERS I AND II",N1,N2
220 PRINT "ENTER PK FUNCTION OF FORM: AD+BD+C"
230 INPUT I FOR PLAYER II*,A1,B1,C1
240 INPUT I FOR PLAYER III*,A2,B2,C2
250 CALCULATE P1 AND P2 FOR EVERY INTER-SHIP SEPARATION
260 FOR I=0 TO IS
274 IF P1(I)>1 THEN P1(I)=1
278 IF P1(I)<0 THEN P1(I)=0
284 IF P2(I)>1 THEN P2(I)=1
288 IF P2(I)<0 THEN P2(I)=0
290 NEXT I
300 LOOP ON EVERY (DECREASING) COMBINATION OF N1, N2 AND SEPARATION.
308 IF DUEL IS TRIVIAL, SOLVE IT. IF NOT, STORE DECOMPOSED DUEL IN
309 TABLEAU WHICH WILL BE SOLVED LATER.
310 FOR J=N2 TO 0 STEP -1
320 FOR K=N1 TO 0 STEP -1
330 IF (J<I) OR (K<I) OR (J>IX+1) OR (K>IX+1) OR (IX=0)
340 THEN GOSUB Trivial
350 GOTO Next1
360 END IF

STORE THE DECOMPOSED DUEL AS THE 19 COMPONENTS OF A TABLEAU
410 T(K,J,I,I+1)=P1(I)*P2(I)*(1-P1(I))*(1-P2(I))
420 T(K,J,I,I+2)=P1(I)*P2(I)*P1(I)*P2(I)
430 T(K,J,I,I+3)=KJ-12
440 T(K,J,I,I+5)=KJ-12
450 T(K,J,I,I+5)=KJ-12
460 T(K,J,I,I+6)=P1(I)
470 T(K,J,I,I+7)=P1(I)
480 T(K,J,I,I+8)=KJ-12
490 T(K,J,I,I+9)=KJ
500 T(K,J,I,I+10)=KJ-12
510 T(K,J,I,I+11)=P2(I)
520 T(K,J,I,I+12)=KJ-12
530 T(K,J,I,I+13)=KJ
540 T(K,J,I,I+14)=KJ-12
550 T(K,J,I,I+15)=KJ-12
560 T(K,J,I,I+16)=KJ
570 T(K,J,I,I+17)=KJ
580 T(K,J,I,I+18)=KJ-12
590 NEXT K
600 NEXT J
610 NEXT I
620 IF
625 LOOP ON EACH (INCREASING) COMBINATION OF N1, N2 AND SEPARATION.
627 IF DUEL HAS BEEN SOLVED, SKIP TO NEXT ONE. IF NOT, CALCULATE
628 THE VALUES WITHIN THE FOUR "BOXES" OF THE TABLEAU, AND SOLVE.
630 FOR K1=0% TO N1
640 FOR J=0% TO N2
650 FOR I=0% TO I5
660 IF FLAG(K1,J1,I1)=1% THEN GOTO Next2
670 IF
680 A=V(T(K1,J1,I1,3)), T(K1,J1,I1,4%), T(K1,J1,I1,5%)) &
690 T(K1,J1,I1,2%) + T(K1,J1,I1,1%) &
700 B=V(T(K1,J1,I1,8%), T(K1,J1,I1,9%), T(K1,J1,I1,10%)) &
710 T(K1,J1,I1,7%) + T(K1,J1,I1,6%) &
720 C=V(T(K1,J1,I1,13%), T(K1,J1,I1,14%), T(K1,J1,I1,15%)) &
730 T(K1,J1,I1,12%) + T(K1,J1,I1,11%) &
740 D=V(T(K1,J1,I1,16%), T(K1,J1,I1,17%), T(K1,J1,I1,18%))
750 GOSUB Game
760 NEXT K
770 NEXT J
780 NEXT I
790 PRINT OUT THE VALUE OF THE DUEL AND ALL "LESSER" DUELS
792 PRINT
794 PRINT
796 PRINT
798 PRINT
800 PRINT "SOLUTIONS TO DUELS WITH:
810 PRINT
815 PRINT = PK FCN, PLAYER I =";A1;"D";2 +"";B1;"D";2 +"";C1
820 PRINT = PK FCN, PLAYER II=";A2;"D";2 +"";B2;"D";2 +"";C2
830 PRINT
840 PRINT "INITIAL " INITIAL INITIAL INITIAL
844 PRINT "SALVOES I SALVOES II SEPARATION VALUE"
846 PRINT "GAME"
848 PRINT "INITIAL VALUE"
850 FOR K1=N1% TO 1% STEP -1%
852 FOR J=4% TO 1% STEP -1%
854 FOR I=1% TO I5% STEP -1%
856 FOR K=N1% TO 1% STEP -1%
858 FOR J=N2% TO 1% STEP -1%
860 FOR I=1% TO I5%
862 NEXT K
864 GOTO 1500 1 END
866 I-------------------------------
870 TRAVI; 1 THIS SUB SOLVES "TRIVIAL" GAMES
880 I
882 IF NEITHER PLAYER HAS ANY SALVOES REMAINING, VALUE = 0.
884 IF (J=0%) AND (K=0%)
886 THEN V(K1,J1,I1)=0
888 IF FLAG(K1,J1,I1)=1%
890 RETURN
892 END IF
894 I
896 IF PLAYER 2 HAS NO SALVOES LEFT, BUT PLAYER 1 DOES, VALUE = 1.
898 IF J=0%
900 THEN V(K1,J1,I1)=1
902 IF FLAG(K1,J1,I1)=1%
904 RETURN
906 END IF
908 I
909 I
910 I
912 I
914 I
916 I
918 I
920 I
922 I
924 I
926 I
928 I
930 I
932 I
934 I
936 I
938 I
940 I
942 I
944 I
946 I
948 I
950 I
952 I
954 I
956 I
958 I
960 I
962 I
964 I
966 I
968 I
970 I
972 I
974 I
976 I
978 I
980 I
982 I
984 I
986 I
988 I
990 I
992 I
994 I
996 I
998 I
A-2
900 1
910 1 IF PLAYER 1 HAS NO SALVOES LEFT, BUT PLAYER 2 DOES, VALUE = -1.
930 IF K1=0
940 THEN V(K1,J1,II)=1
950 FLAG(K1,J1,II)=1
960 RETURN
970 END IF
990 1
1000 1 IF SEPARATION IS 0, AND BOTH PLAYERS HAVE SALVOES LEFT, VALUE=0.
1010 IF (II=0)
1020 THEN V(K1,J1,II)=0
1030 FLAG(K1,J1,II)=1
1040 RETURN
1050 END IF
1060 1
1070 1 IF EITHER OR BOTH PLAYERS HAS MORE SALVOES THAN CAN POSSIBLY
1080 1 BE FIRED IN THE REMAINING OPPORTUNITIES, REDUCE THE NUMBER
1090 1 OF SALVOES TO THE NUMBER OF REMAINING OPPORTUNITIES.
1091 IF (J1>II+1) OR (K1>II+1)
1100 THEN KK1=K1
1110 SET KK1 = MIN (I+1 , K)
1120 IF (II+1<KK1) THEN KK1=II+1
1130 END IF
1140 JJ1=J1
1150 SET JJ1 = MIN (I+1 , J)
1160 IF (II+1<KK1) THEN JJ1=II+1
1170 END IF
1180 T(K1,J1,II,16)=KK1
1190 T(K1,J1,II,17)=JJ1
1200 IF (C11=0) OR (CK1>II)
1210 THEN SET FLAG TO SHOW THAT ALTHOUGH SIMPLIFIED, THE DUEL
1220 HAS NOT YET BEEN SOLVED AND REQUIRES SPECIAL HANDLING.
1230 FLAG(K1,J1,II)=II
1240 END IF
1250 RETURN
1260 1--
1270 GAME: THIS SUB SOLVES A 2X2 MATRIX GAME
1280 1
1281 1 IF GAME WAS SIMPLIFIED, BUT NOT SOLVED, USE THIS SPECIAL CODE.
1290 IF FLAG(K1,J1,II)=2
1300 THEN V(K1,J1,II)=0
1310 FLAG(K1,J1,II)=II
1320 RETURN
1330 END IF
1340 1
1350 1 DETERMINE IF GAME HAS A PURE STRATEGY EQUILIBRIUM PAIR
1360 1--
1370 EP=999
1380 IF (A<9) AND (A>9) THEN EP=A
1390 IF (B<9) AND (B>9) THEN EP=B
1400 IF (C<9) AND (C>9) THEN EP=C
1410 IF (D<9) AND (D>9) THEN EP=D
1420 IF EP=9999
1430 THEN V(K1,J1,II)=EP
1440 ELSE V(K1,J1,II)=(A+D-B-C)/(A+D-B-C)
1450 END IF
1460 IF GAME HAS AN EP, THEN STORE THIS VALUE.
1470 ELSE CALCULATE THE VALUE OF THE MIXED
1480 STRATEGY SOLUTION.
1490 1
1500 END

Colle, Russell C., "Biometrics Studies of Scientific Productivity," 17 pp., Mar 78 (Presented at the Annual meeting of the American Society for Information Science held in San Francisco, California, October 1978), AD A054 442

PP 221

"Portions of this work were supported by the Office of Scientific Research, Air Force Office of Scientific Research, U.S. Air Force, under contract AFOSR-75-0110 and by the Office of Naval Research, U.S. Navy, under contract N00014-76-C-0654.

PP 224

"Portions of this work were supported by the Office of Scientific Research, Air Force Office of Scientific Research, U.S. Air Force, under contract AFOSR-75-0110 and by the Office of Naval Research, U.S. Navy, under contract N00014-76-C-0654.

PP 225

"Portions of this work were supported by the Office of Scientific Research, Air Force Office of Scientific Research, U.S. Air Force, under contract AFOSR-75-0110 and by the Office of Naval Research, U.S. Navy, under contract N00014-76-C-0654.

PP 226

Mengel, Marc, "Universe Treatment of Fluctuations at Critical Points," 50 pp., May 1978, AD A058 539

PP 227

PP 228

PP 229

PP 230

PP 231

Wilson, Desmond P., Jr., "Naval Projection Force Squared: The Case for a Responsive NAV," Aug 1978, AD A051 328

PP 232

"Portions of this work were supported by the Office of Scientific Research, Air Force Office of Scientific Research, U.S. Air Force, under contract AFOSR-75-0110 and by the Office of Naval Research, U.S. Navy, under contract N00014-76-C-0654.
PP 233

PP 234 - Revised

PP 235

PP 237

PP 238

PP 239

PP 240
Power, Bruce, "Goals of the Center for Naval Analysts," 13 pp., Dec 1978, AD A063 739

PP 241

PP 242
Stimpson, William R., "The Analysis of Dynamically Interactive Systems (Air Combat by the Numbers)," 160 pp., Dec 1978, AD A063 760

PP 243

PP 244
Schean, Allan and Harmsitz, Stanley A., "Maintenance Costs of Complex Equipment," 20 pp., Dec 1978 (Published by The American Society of Naval Engineers, Naval Engineers Journal, Vol. 91, No. 6, Dec 1979 AD A071 473

PP 245

PP 246

PP 248

PP 249
Glasser, Kenneth S., "A Secretary Problem with a Random Number of Choices," 23 pp., Mar 1979

PP 250
Mangal, Marc, "Modeling Fluctuations in Macroscopic Systems," 22 pp., Jun 1979

PP 251
Trout, Robert P., "The Estimation and Interpretation of Several Selectivity Models," 37 pp., Jun 1979, AD A075 941

PP 252

PP 253
Glasser, Kenneth S., "The d-Choice Secretary Problem," 32 pp., Jun 1979, AD A079 229

PP 254
Mangal, Marc and Quandt, David B., "Integration of a Bivariate Normal Over an Offset Circle," 14 pp., Jun 1979, AD A096 471

PP 255 - Classified, AD A031 441L
PP 256

PP 257
Teller, R., "Discounting and Fiscal Constraints: Why Discounting is Always Right," 10 pp., Aug 1979, AD A075 224

PP 258

PP 259

PP 260
Mangal, Marc S. and Cape, David K., "Detection Rate and Sweep Width in Visual Search," 14 pp., Nov 1979, AD A077 634

PP 261

PP 262

PP 263
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
<th>Volume/Issue/Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>Utzoff, Kathy Ciselen, and Brecking, Frank</td>
<td>"Taxes and Inflation,"</td>
<td>25 pp., Nov 1979</td>
<td>pp 256</td>
</tr>
<tr>
<td>258</td>
<td>Thompson, James R.</td>
<td>"Seaport Dependence and Inter-State Cooperation: The Case of Sub-Saharan Africa,"</td>
<td>141 pp., Jan 1980</td>
<td>pp 258</td>
</tr>
<tr>
<td>265</td>
<td>Goldberg, Lawrence</td>
<td>"Delaying an Overhaul and Ship's Equipment,"</td>
<td>40 pp., May 1980</td>
<td>pp 265</td>
</tr>
<tr>
<td>266</td>
<td>Goldberg, Lawrence</td>
<td>"Small Fluctuations in Systems with Multiple Limit Cycles,"</td>
<td>19 pp., Mar 1980</td>
<td>pp 266</td>
</tr>
<tr>
<td>270</td>
<td>Mizrachi, Maurice M.</td>
<td>"Comment on 'Discretization Problems of Functional Integrals in Phase Space,'"</td>
<td>2 pp., May 1980</td>
<td>pp 270</td>
</tr>
<tr>
<td>275</td>
<td>Goldberg, Lawrence</td>
<td>"Delaying an Overhaul and Ship's Equipment,"</td>
<td>40 pp., May 1980</td>
<td>pp 275</td>
</tr>
<tr>
<td>277</td>
<td>Mizrachi, Maurice M.</td>
<td>"A Targeting Problem: Exact vs. Expected-Value Approaches,"</td>
<td>23 pp., Apr 1980</td>
<td>pp 277</td>
</tr>
<tr>
<td>278</td>
<td>Mizrachi, Maurice M.</td>
<td>"Comment on 'Discretization Problems of Functional Integrals in Phase Space,'"</td>
<td>2 pp., May 1980</td>
<td>pp 278</td>
</tr>
<tr>
<td>281</td>
<td>Mizrachi, Maurice M.</td>
<td>"Comment on 'Discretization Problems of Functional Integrals in Phase Space,'"</td>
<td>2 pp., May 1980</td>
<td>pp 281</td>
</tr>
<tr>
<td>286</td>
<td>Goldberg, Lawrence</td>
<td>"Delaying an Overhaul and Ship's Equipment,"</td>
<td>40 pp., May 1980</td>
<td>pp 286</td>
</tr>
<tr>
<td>289</td>
<td>Goldberg, Lawrence</td>
<td>"Delaying an Overhaul and Ship's Equipment,"</td>
<td>40 pp., May 1980</td>
<td>pp 289</td>
</tr>
</tbody>
</table>