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I. INTRODUCTION

The need for new materials with unique or improved properties

or as substitutes for critical materials that are not native

to the United States is a continuing and critical problem

for the Department of Defense, for U.S. industry and for the

U.S. political posture in general. The variety of techniques

for finding such materials has been slowly growing--ranging

* from exploiting nature's creativity to employing a nuclear

explosion to produce transuranic elements unknown in nature.

4 One technique of growing interest is rapid solidification

and the production thereby of metallic glasses. By this

means a number of potentially important new materials are

being fabricated that could have extensive future industrial

*uses. However, the importance of developing new materials

is so great that no avenue should go unexplored.

In this regard, there is one technique that has been almost

entirely neglected, despite the fact that it has been

* . extremely successful in producing valuable new materials

in the few cases where it has been applied--this technique

involves the employment of elevated temperature and pressure.

By this means both diamond and cubic boron nitride have been
synthesized and, in fact, are the only materials so formed

1that are in major commercial production. What is significant

about these materials* is that neither is thermodynamically
'stable under ambient atmospheric conditions--although the

transition probability to the normally stable state is so

Other materials that have been produced by this technique
'. are principally minerals that have been synthesized for geo-

physical research objectives, some simple inorganic compounds
whose properties were not measured, and a few organic
compounds.
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small as to be entirely negligible. Thus, with the applica-

tion of elevated temperature and pressure it is possible to

create important industrial materials that cannot be created

(in significant quantity) under normal atmospheric conditions

and yet are metastable under these latter conditions.

What seems to be completely lacking is a systematic effort

to exploit the temperature/pressure technique--both experi-

mentally and theoretically--for the production of new meta-

stable materials for defense and industrial applications.

The intention of the work reported here is to assist in devel-

oping a methodology for creating such materials. A wide range

of materials are known to undergo transformations to new

phases with new properties upon application of pressure.

However, these new phases change back to the original state

when pressure returns to ambient.

Therefore, the basic problem that must be solved in order

to fabricate useful materials at elevated pressure is to

2 :-develop techniques to preserve the material after pressure-9

is released. The solution of this problem is related inti-

mately to the issue of how to form suitable new metastable

materials in the first place. The reason is that if a new

state is formed through a succession of equilibrium states

by applying pressure, then the process is reversible (except

possibly for minor time effects). Thus, either the forma-

tion or return to ambient conditions, or both, must involve

nonequilibrium states.

In the rapid solidification process, sudden cooling inhibits
the orderly transition through a succession of equilibrium

states. Thus the final state (e.g. a metallic glass) is in

1-2



fact metastable with a negligible probability of transition

to the stable crystalline state. Accordingly with rapid

solidification, it is the return to ambient temperatures

that involves nonequilibrium states.

The direct analog of rapid solidification in the case of ele-

vated pressure is to form a new material at an elevated pres-

sure and then by sudden release of this pressure to attempt

* to maintain the new material under ambient conditions albeit

in a metastable state. Since the rate of some mechanisms

that induce transitions decreases with decreasing pressure,

it is possible that the pressure analog of rapid solidifica-

tion will result in new materials. Even though this approach

looks promising, it has a disadvantage. Sudden changes of

pressure can be deleterious to high-pressure equipment. Thus,

unless special precautions are taken in the original equipment

design, this approach does not appear attractive. Since most

high-pressure equipment was not designed with this type of

operation in mind, this approach should probably not receive

primary emphasis--though it should be explored to an extent

consistent with safe operation of available high-pressure

presses, or equipment specially designed for safe rapid

decompression should be developed.

The primary experimental approach* should be analogous to

that employed in diamond synthesis. This approach is based

on the observation that since the new material to be synthe-

sized must be metastable under ambient atmospheric conditions,

the initial phase of the material will, in general, be meta-

stable in the high-pressure/temperature domain where the new

material is stable. For example, graphite is the stable form

Other approaches have been successfully employed in specific
cases but these do not have general applicability.

1-3
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of carbon for pressures less than about 20 kbars, yet at

5 1 bar the rate of transition of diamond to graphite is so

slow as to be entirely negligible. In fact, only by heating

diamonds to about 800 0 C at one atmosphere pressure does the

transition become observable. Reciprocally, one can antici-

pate (as has also been verified experimentally) that graphite

will not make a transition to diamond simply by applying

pressure in excess of 20 kbars, that is, simply by entering

the diamond-stable region of the carbon-phase diagram. What

S['is required to make the transition is some method for destroy-

ing the graphite structure and allowing the carbon to reform

. as diamond, such as dissolution and reprecipitation or some

form of excitation such as heating--perhaps even melting and

resolidification. Both of the latter techniques have been

used in synthesizing diamond from graphite.

More generally however, both techniques will be necessary

to explore fully the phase diagram of materials at elevated

,pressure. If the new phase is contiguous to the liquidus

domain, heating perhaps to melting followed by cooling and

resolidification can be employed. If the new phase is not
contiguous to the liquidus, then dissolution and reprecipi-

tation will probably be necessary.

In summary, the basic experimental approach should involve

'~ the application of increasing pressure and, at each pressure,

either the melting and resolidification of the specific mate-

rial being studied or finding a solvent for the material and

dissolving and reprecipitating the material.

Initially, it is the choice of materials for experimental

investigation that presents the key uncertainty in exploring

*0 for new metastable phases. One must be able to define the

1-4



region of temperature and pressure where a particular phase

3is stable. Experimentally if one enters this region through

a succession of equilibrum states, the entering phase will

in general transform to the particular stable phase. On the

L [ other hand, if the entering phase is metastable relative to

the stable phase no transition will take place. Experimen-

tally, therefore one would have no indication that one had

entered a region in which another phase was stable and there-

fore that it was worthwhile attempting to convert to this

new phase. Only with a priori knowledge of the phase diagram

could one be aware of the new phase. To obtain this knowl-

edge, the new phase must exist because nature produced it,

as was the case with diamond, or it must be inferred by other

means, such as in the case of cubic boron nitride, or more

generally one must be able to predict theoretically the phase

diagrams of materials. The research described here was an

attempt to develop a theoretical approach for guiding material

choices (as well as exploiting such past experimental data

as may be available). Since the approach was primarily to

provide guidance for experiments rather than to improve pre-

dictive accuracy, emphasis was placed on developing simple,

rapid and inexpensive computational techniques. The present

report describes a partial step in this direction.

Since the primary objective is an approximate prediction of
phase boundaries, the underlying emphasis was placed on com-

' paring crystal structures for stability rather than obtaining

an accurate description of a given structure. Accordingly,

those aspects of a crystal that are insensitive to structural

changes may be neglected or only crudely estimated.

- The results so far obtained apply to zero temperature. It

was not possible within the scope of the present effort to

-.. *1--.1- 5
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include effects of temperature. With this limitation, the

stable crystal structure is that one with minimum total I
energy at a given pressure or density. The total energy

of a crystal is generally expressed as a sum of the ion-ion

interaction energy, the electron band energy, the Coulomb

interaction energy of the band electrons, and the band elec-

tron exchange/correlation energy. The zero-point vibrational

energy of the crystal and the interaction of the crystal zero-

Apoint vibration with the electrons is usually ignored, as is

done here.

* As a first step in an approximate theory, only the ion-ion

I interaction energy and the band energy have been treated

since intuitively the remaining terms which depend only on

the electron density distribution appear less sensitive in

general to crystal structure. Furthermore, these other

terms could add substantially to the computational expense.

Only if this intuitive judgment does not lead to an approxi-

mate theory sufficient for guiding experiment will it be

necessary to develop approximations for the other terms.

The ion-ion interaction energy is well-understood and is sum-
marized in Section II. In Section III, the band energy is

treated using the so-called "muffin-tin" potential. This

potential consists of a spherically symmetric potential

inside spheres centered on the ion sites and a constant

potential outside the spheres. Using the fact that the

potential outside the spheres is a constant and can be set

equal to zero, a secular determinant for calculating the

energy eigenvalues is derived in terms of the electron wave

function and its derivative on the surface of the spheres.

The result that we have obtained has turned out not to be new

but to be closely related to that of Korringa 2 and equivalent

1-6
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to that of Kohn and Rostoker, 3 and has been referred to for

3 sometime as the KKR method. To carry out the KKR method it

has been customary to start with a potential, like the Hartree-

Fock, solve the band problem, recalculate the potential,

spherically average it inside the spheres, and calculate a

new average outside the spheres, re-solve the band problem,

and iterate until self consistency is achieved. In contrast

we propose to use a simple model potential which if suffi-

ciently accurate to yield reasonable total band energies will

avoid the lengthy and costly iteration. The model potential

which we have chosen is that of the finite sized Thomas-Fermi

(TF) atom inside the spheres and constant outside. Using the

TF potential is particularly convenient since codes are avail-

* able for calculating the surface values of the wave function

and its derivative as functions of atomic number, radius of
i . sphere, energy and angular momentum quantum number. In addi-
" :~tion, comparison of energy eigenvalues using the TF atom and

*those derived for Hartree-Fock indicates comparable agreement
4

with experiment.
- I

* -' In the KKR method the most difficult quantities to calculate

are the so-called structure constants. The traditional method

to cilculate these is based on a technique due to Ewald 5 and

is the most time consuming part of the band energy calcula-

. tion. Consequently, we have investigated an alternate tech-
*' nique that might alleviate this difficulty. The details of

the technique are described in Section III. A suggestion for

possible further improvements is considered in Section V.

A computer program that reflects the current theoretical model

has been developed. The program for calculating the ion-ion

interaction energy is discussed in Section II and for the

band energy in Section IV.

Va
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In Section VI, we summarize what remains to be done to

finalize the initial theoretical model. We also discuss

what would be needed to validate the proposed approximate

model or to indicate that a more complex model is required.
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II. ION-ION INTERACTION

The ion-ion energy per unit cell, Ecc, is defined as the

interaction energy of all the ions, treated as point charges,

in the presence of a uniform background of negative charge

density po,

J*. p0 -- ~ Xzi" (1)

The total charge density is then

p(r) = e z 1 a(r - RN - a.) + Po (2)

N,ci

and the interaction energy is (in CGS units)

4 4. -. 4. _ 1 limit 1d'pr)p ) e , (3)~

2 )+.o 'Ir- r I

" -~where the self energy of the individual ions is understood

to be excluded and X is introduced to control the Coulomb

singularity. We easily find

limit ' e-XIRN + a.- aI
Ecc_ NT _1e 2 l limit 8

- t N IRN + a. al

2- 2 z~) 4

QX 2

where the prime on the sum indicates the N = 0, a = 8 terms

are to be omitted.
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It is convenient to remove the prime by considering the

combination

. ' 1 e2 limit limit -e' + a a a N
" =r za z  -'" Ecc e Z a

"0 [N + a8 - a. RNI

S- -2 - (5)
r '-2 a

which can be rewritten using an identity due to Ewald,

' E 1e 2 limit limit Z za z -

Ecc 2 X+Or+ 0

+ "Zi e + -+0" G+A1  ei G' r a a8 - e- (G 2+ X2 )/ n

* *G

+ .+ f d exp R r2 a a/4C2

Nr 1 -N iF
-/

2 22

- z (6)
, " X2 a'

where n is an arbitrary parameter greater than zero. The

sensitive terms here are the G = 0 term in the momentum space

sum and the N = 0, a = 8 terms in the coordinate space sum.

However, the limits of these terms are trivial leading to the

~,. result6

N
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:'.i .. 2 a- G2 nEc'c ez zaT L Cos G aaeeIL~ 1a 2jI2 
-~ G::.!G

P0 NN + Za z8  1 erfc 1j N+aa-a8

..

-n 2 4w 1~C z,)2(7
a n e 1i(7

where again the primes mean the G = 0 term and the N = 0,

a = 1 terms are excluded.

We have developed a computer code that calculates Ecc* It

assumes all quantities are in CGS and requires an input value

for n. There is a library routine that calculates the comple-

mentary error function, erfc(x). Our experience has been
. .that values of n on the order of 1016 cm-2 are reasonable

and that the calculation is rapid, independent of the exact

value of n.
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III. BAND ENERGY

P The present method of calculating the band energy is based on

the "muffin-tin" approximation in which each atom of the crys-

i tal is contained within a sphere and the potential is assumed

constant outside the spheres. The underlying concept for the

. method is to determine the wave functions for the valence and

conduction electrons by expanding these wave functions as a

superposition of atomic states within the spheres and then to

match the resultant to a superposition of eigenstates external

to the spheres where the potential is constant. This matching

is done with the aid of Green's theorem relating the solution
external to the spheres to the boundary values on the spheres.

* This method, while conceptually different, leads to identical
02

results to those of Korringa, 2 which is based on scattering

theory. An equivalent Green's function approach was developed

by Kohn and Rostoker
3 and Ham and Segall.

5

To describe the method explicitly, we assume a general crys-

.tal with direct lattice vectors IRN', reciprocal lattice

vectors {G) and atomic locations within the unit cell {aaj.

Around each atomic location, a sphere of radius pa is circum-

scribed in such a manner that the spheres do not overlap.

Within each sphere the electronic wave function satisfies

aI
:.'" a , (' E a ,P)1(s

where HO is the Hamiltonian of the ath atom and E is the

electron energy. Throughout this Section, we employ natural

units where distances are in units of Bohr radii and energies

are in Rybergs. The quantity k o is defined as

3-1
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.14
" k = (9)

-' The wave function, y () can be expressed as an expansion in

- spherical harmonics,

z

IR+ {i£ ot

a <0jZ,> A t RZ p Y (p,(10)

N where

H(a R a (P E ' (p) (11)

and for positive energies the factor it is introduced for

later convenience. The wave function in Eq. (10) can be con-

"=4.

sidered to be associated with the atom in the Ro= 0 cell;-,.
wave functions in other cells have an additional factor eikRN,

where is the electronic wave number.

" Outside the atomic spheres, where the potential is assumed to

be constant, the electron wave function, E(10), can be

expressed in terms of interior wave functions by means of

Green's theorem. Thus we have
p

1 k -RN  G (r,rN,)

"P (r) -- s e ( )dsI

a4 4.
eikR N  aoG (rrN.) .(12)

This can be written as

~~or) c' 1a F a(r) -a~a (Pa) F ,~'-L4 (13)
a s

3-2
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- ['where

F () = e G(), (14)
NN

V - i-.7 ,

rN a (15)

Green's function satisfies

(q + E)G(r,rN) = -41(r-rNa) (16)

:. , :.,

cosko OIr-'
, E > 0,

Glr,r') = (17)

-k O f -' I
e E < 0.

Ir-r' I

Use has also been made of the equation satisfied by o

* (V2 + E) 0o( ) = 0, (18)

.4 since the outside constant potential has been chosen as the

reference zero for energies.

The complete wave function ,i1) is thus determined by

k (r) = 4( ) inside the a t h sphere, N = 0,

= r(r) outside the spheres. (19)

3-3
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However, 4pi(r) involves the unknown constants Ajm and the

energy E, both of which are functions of the electronic wave

number k. To determine these unknowns, one uses Eq. (13)

and lets r + a 8 + Pa. Thus the requirement

9.4.

,o (r) + a£ 6 (20)

implies
.,

(P a a (P ap ~ +p ) (Pa) F1P
4wa a ___

(21)

From Eq. (10) , it is clear that Eq. (21) constitutes a set of

-t linear equations in the unknowns Acm. For this set to have a

5' nontrivial solution, the determinant of the coefficients of

*the Am 's must vanish. Setting the determinant equal to zero

results in a transcendental equation for E as a function of

k (the so-called secular equation). The solution for E vs k

defines the electronic band structure and, moreover, deter-
mines the values of the A(' s when the requirement of wave

i4.

function normalization is added. Once E vs t and the values
of Am are determined, then Eq. (19) defines the overall

im 4

system wave function for each k-value. The E vs k results

lead to the total band energy by summing to the Fermi energy.

The wave functions allow a calculation of the electronic

.'' charge density which determines the Coulomb and correlation

and exchange contributions to the total energy. The most cri-

0 tical element in carrying out the above procedure is the

evaluation of F0)(P + a-) defined by Eqs. (14) and (17). The

ft reason is that these quantities are defined by infinite

series that are rather slowly convergent and may in fact

require several thousand terms to achieve adequate accuracy.

3-4
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Thus computational efficiency and the choice of form for

F (Pa+%) become crucial. Most of the effort in exploiting

e the present method has focused on just these points.

I d* The explicit form for Fa( ) will now be derived. We will

consider the positive energy case but the corresponding

equations for negative energy are either obvious or will be

treated explicitly. From Eqs. (14) and (17), we have

F. () =I ek (22)

It is clear that within a given unit cell N, the only singu-

larity of F (r) results from the single term

coskoI rr Nl
-V..

which satisfies the inhomogeneous Eq. (16). The remaining

infinite sum satisfies the homogeneous equation

fik .RN cosklr-r I
(V2+E) Fa(r) - e o N ff 0. (23)

Since the above two properties apply for all N, we can choose,
%* *~..for convenience, N = 0, for which

4. 4.Sroa = ao, + a. (24)

We are interested in F,(r) when [cf. Eq. (21)]

r + aB+ P (25)

.A 3-5
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and this quantity can be considered to be a function of ,

-=. (26)

If we define the functions H,(R) and Da (R) as

( cos koR

F. (-+ H s 0  
+ Da (R), (27)

it is clear that for sufficiently small values of R, Da (R)

satisfies [cf. Eq. (23)]

2(7A+E) Da ,,) = 0. (28)

This will be true so long as R is not so large as to encounter

any singularities except the possible one (for a a) at

R - 0. It is sufficient to assume that

R < RN, N ' 0, a -a,

R<Ia$- a.+ 'R 8.a (29)

4.

Since D,(R) satisfies Eq. (28), it must have the general form

4-.c

jL(koR), E > 0
Da (R).= 41r i DLM FAC (L, M) 0 Y LM (R),

L,M FIL(koR), E < 0 (30)

3.-
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whereD are the structurej~i, where YLM(R) are spherical harmonics, DLMarthsruue

constants and the factor

J M > 0 1 L+1 (L- M )! (31)

FAC(L,M) =I< (L+IM)!

has been introduced for later conenience. For positive

energies, jL(x) are the spherical Bessel functions while for

negative energies, IL(X) are the modified spherical Bessel

functions, defined as

iL(x) = (-i) n jL(iX). (32)

Equation (30) combined with Eq. (27) gives the most general

form for Ha(R) for sufficiently small R.

An alternate form for H,(R) can be derived by a straight-

forward Fourier series transformation of Eq. (22) multiplied

Vj by e- it ' since the combination is then periodic in the lat-

tice vectors R. We easily find

H (R) _33)e
- + + 2 (33)

G (k4u) E

which is correct for both positive and negative energies. By

making use of the well-known relationship,

-* ". 
e -R = 4 jL(1Z+GIR ) YLM(k+G) YLM(R), (34)

L,M

we can derive an explicit expression for the structure con-aB
stants, DLM, contained in

3-7
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ct8 "L (koR)' E > 0 (^GIh E :}=)e(aka YL (k+G)

+G )J( R FAC(L,M)k G k G 2 E L

cos k R, E > "'

R LO M (35)
S0 , E <0

Once we have introduced the structure constants, we can
+

derive a convenient expression for H,(R) that separates the

angular dependences of Pa and . This derivation employs

the following well-known results [recall Eq. (26)]:

L ' -...

".L,
L..M 9"m 0 ZMz (36)

(k R) Y (R)

4, (-1) 1, £(koP )I, (k ' * ^ (37)zMO 9, M 1 m,ZmY~m(P8)YZ m , ( c0' (37)

cos koR -*
S-4r k J(koP)n (k P )Y (P )YM(PI)

ocL L 0' LM LM P (38)

-k 0R

R a4 k0 T LM I yLM Y LM P (39)
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LM 7
In Eqs. (36) and (37), the quantity ism,9,m, i

C YLM imem (
- d ) YY'm' (1 )

-- 2L+1 (29.+1/2 C(L,2.,9 ';M,m)C(L, ,y' ;0,0) , (40)

where C(L, 9, 9'; M, m) are Clebsch-Gordan coefficients. In

Eqs. (38) and (39), we have assumed

P > P,. , (41)

which is the case of interest and KL(x) are again certain

modified spherical Bessel functions defined as

L+2 (1)

K (x) = Z i h (ix) (42)
L 2 L

Making use of the above relationships in the expression for
Ha(R), we find

(P 7r[4Tr D Cm, mFAC (L, M Y mP)y m .(P )' ..

1 j£(koP ) j £ ( k o ) ) , E > 0

0 0

I'- JL (o apnIko (), E > 0 E <
k) Hk E > 0 Z:,D.-

a~ a LMm ~

..- I ( (k o))KL(ko0 ,LMk~~n TkT ~ E 0 L

(43)
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If Eqs. (43) and (10) are now substituted into Eq. (21), one

£obtains a system of linear homogeneous equations for the

determination of the coefficients -0. Namely, we have

Aa'm'Q'm'mm Q (44)- a2.'mn'

- where the matrix Q is

4;.

.t [ Jli, E>01 aL

Q.m'Jm D MiL,E D FAC (L,M) Lm,Zm' VZ,

.. j9'(koPa), E > 0

" + 6££Z, 6 mm' 6 a U£ (45)OP a E < 0

,-. The quantities V£and Up are
I ' mm ' (

* a a

k O j (k oD)R -3 (ko p (R") E > 0

... o (kopa)R (Rc) E < 0 (46)

-kon k p R+)R + n(koP (a) E >02. a 0 aa kO
a k 0 2 - 2 ( o ) (R) ' E < 0kOKpg(kopal)RX - 9 (kp ,((R)

)Ra Tr- p (47)

owla'. 7r z oa 2 o

3-1



11Z
I

Here, R£ and (R)' are the wave function and its derivative,

respectively, evaluated at p = pa. In order to express Q in

the form of Eq. (45), it is necessary to use the Wronskian of

the (modified) spherical Bessel functions,

W j (x), n,(x) 1

W I (x), K 2x) = - 1 (48)

In order for the system of equations, Eq. (44), to have a

solution,

det Q= 0. (49)

14.
This secular equation determines E as a function of k and

thereby defines the band structure.

For each E that satisfies Eq. (49), one can determine the

solutions Aam of Eq. (44) up to a common unknown factor.

This latter is determined by the requirement that the wave

function Eq. (19) be normalized. After normalization,

Eq. (10) specifies the interior wave function and Eq. (12),

the exterior. With the band structure and crystalline wave

function specified, the total crystal energy can be found.

With our present initial model, normalization of the wave

-. function is not necessary.

Experience indicates that the determination of the band

energy requires the solution of Eq. (49) for E at several

thousand values of k. However, because of the complex tran-
scendental character of the determinant, it must be evaluated

Pi 3-11
#P.
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at sufficient E values to permit interpolation for that value

of E that satisfies Eq. (49) for a given t vector. Since the

determinant involves all the DLM's, which depend both on E and
- 6 LM
k, it is clear that the DLM s will have to be evaluated at

LM

many tens of thousands of k values. As a consequence the
time to calculate the infinite series DLM can dominate the

time, and therefore the cost, of the overall calculation.

Thus minimizing this time is vital.

Up to now, the literature has emphasized only one approach to

improving the rate of convergence of the DLM s, namely the

application of the Ewald method. While substantial improve-

ment is possible this way, it suffers from the requirement

that for a given accuracy either time-consuming incomplete

gamma functions must be evaluated or a large number of terms

in the infinite series must be calculated.

In the present work, what appears to be an entirely new

approach is being explored. The basis of this approach rests

on the observation that DLM as given in Eq. (35) is independ-

ent of R subject only to the constraint Eq. (29).

Thus we can multiply Eq. (35) by an arbitrary function f(R)

and integrate on R up to some upper limit constrained byaa
Eq. (29). Thus, DLM can be rewritten as

r$ 4r ei(k+G). (a$-aa) YLM(k+G) 4.!

LM HL  2 FAC(L,M) L
G (k+G) -E

-6 6 H (50)
LO 6MO asciH8
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where we have defined the following functions:

j. 0.

F L(x) = dy fL(y) jL(xy), (51)

MP FL(koR), E > 0,

HL

dy f IL(koRy) E < 0, (52)

2,'

-J dy f (y) n (k Ry), E > 0,

0
2 0 dy f (y) K (k Ry), E < 0. (53)

Since, for a given value of k, Eq. (50) must be evaluated for

many values of E, calculation time would be prohibitive even

with improved convergence of the sum. This problem can be

minimized by use of the identity

N-1
1 - 12 E m + (54). -0 2 Z 2) 2 -

+ 1k+GI -E m 7kk+GI = G Ik+GI -E

which allows E to be factored from the sum except for the

last term in Eq. (54). However, even for modest values of

N, the last term can be made to converge extremely fast. The

actual implementation of Eq. (54) will be discussed below inaa
connection with the computer program for calculating DLM.

LM*.

We now turn to the choice of f(y). We require first that f(y)

be such that the integrals over y be analytically evaluable.

*, 3-13
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If numerical integration were required, the time for evalua-

tion would be prohibitive. A second desirable property of

f(y) is that it vanish at y = 0 and y = I. This property

implies that

f dy f(y) j (k+GIRy) 1 (55)
0 LI

for large gi+Gi, where n depends upon the order of the zero

at y = 0 and y = 1.

Although a large number of functions satisfy these conditions,

we have concentrated on the following two:

L+2 2f (y) _1 y (l-y2 ), (56)
1 Ti2
(y) =2__ yL+l (l-y2 ) (57)

2 L!
'o

For these functions, we find for FL(x), Eq. (51),

JL+11 +I Wx
f = f F (x) = (58)

1 L xLu+i

f = f : F x) = (59)
2 LL2 2

The results for HL and H will be discussed below. It is

clear from Eqs. (58) and (59) that R should be chosen as

3-14
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large as possible consistent with Eq. (29). However, which

form provides the greater convergence improvement is more

subtle. To clarify, one observes that for small argument

j (x)- 2r(n+l) x (60)
n F(2n+2)

.% *and for large arguments

W si(x)ar (61)
n x2

Eq. (60) points up the known result that the larger n becomes,

the larger x must be before Eq. (61) starts to apply. Thus,

in Eq. (58) the larger n becomes the more is the number of

G values required before the denominator can speed conver-

gence. On the other hand, in Eq. (59) the order of the

spherical Bessel function is small but the convergence factor

in the denominator is constrained.

Taking account of these conflicting advantages suggests that

Eq. (58) is probably to be preferred for low values of L and

modest values of while Eq. (59) is to be preferred for

larger values of L.

.

.}
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develo Ing:: COMPUTER PROGRAM DEVELOPMENT

In developing the Computer program a number of assumptions

have been made:

0 the maximum 2 of interest for the wave function is

= 3 and, therefore, the maximum L of interest

for the structure constants is L = 6,

- the maximum number of ions per unit cell is 2,

though this restriction may be readily removed,

0 outward recurrence relations are acceptable to

calculate jXjx) and

-, 0 fl(y) with P = 5 is used for L = 0 - 4 and f 2 (y)

is used for L = 5 - 6,

o the parameter N in Eq. (54) is taken to be 10.

S., The last three of these assumptions will be discussed in

Section VI.

Once the lattice has been specified (see Appendix), approxi-

mately 4000 G values are computed and sorted according to

length. A shell structure in G space is defined to test for

convergence of the expansion coefficients. At present, this

shell structure is externally prescribed.

The first step is to calculate expansion coefficients based

on Eq. (54). We define the two quantities BR and BI, for

M >0, by

4-1
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BR (L,M,I) Cos Me

L I P( F (R G k' (62)

.... BI (L,M,I) G sin (-M)o

i where P(L,M) are the usual associated Legendre polynomials

and 0 is the azimuthal angle of the vector G+k. If there are

MNl two ions per unit cell, we also define the four quantities
Bl, B2, B3 and B4, for M > 0, as

UBl(L,M,I) [Cos MO Cos x 1
B2(L,M,I) P(L,M) F (RIG+kI) sin (-M)O cos x (63)

S' B3(LMG +k -- 121 L cos MO sin x
B4(L,M,I Gsin (-MO) sin x

to where

x = a . (64)
'2I1

As each shell is calculated, the fractional change in the

quantity

(BR)2 + (BI) 2

is determined for those values of L, M and I considered in

the shell. If for a given L, M and I, the change is less

than some prescribed amount, that L, M and I is considered
X ' to have converged and will not be calculated for the next

succeeding shell. Consequently, as we go through the shells,

. .,contributions are calculated for fewer and fewer expansion

coefficients until all have converged. At present, no

testing is done on Bl-4.

The program for this part of the calculation has been opti-

mired to a large extent but some improvement cannot be ruled

- out. Most of the testing of this portion of the program

assumed a fcc lattice with a volume of 2v3 , one ion per unit

cell and a k of

4-2



k = (0.3,0.4,0.5). (65)

The maximum value for the parameter R is then

R = 4.4. (66)

The reason for these choices is that published values 8 for

the structure constants at the energy

E = 0.656 (67)

• . hwere available for comparison. We found that with these

choices (particularly R), all the expansion coefficients con-
verged to an accuracy of I0- 3 with about 1000 G points. To

improve the accuracy to 10- 4 required about 2000 G points.

If R is decreased to 2.7, some of the expansion coefficients
did not converge to an accuracy of 10- 3 even with 4000 G

points. This point will be discussed in Section V.

Once the expansion coefficients for a given k value have been

evaluated, the determinant for a predetermined set of energies

can be calculated. To do so a set of coefficients CR(L, M),

CI(L, M) and if appropriate, C1-4(L, M) are calculated. These

are defined, as in Eqs. (62) and (63), respectively, by the

substitution

1 1 1 (68)

Gj+f2l G k~r -E

The calculation is done for the first shell only and no test
of convergence is necessary because of the rapidity of conver-

gence. Based on Eq. (54), the appropriate combinations are

4-3
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DX(L,M) E 4I_ E BX(L,M,I) + E 10 CXs(L, M) (69)

where X = R, I, 1-4. Simple linear combinations of these

quantities, divided by HL, then yield DLM, Eq. (50), except
• -4<for the Hterm. We note that for E < 0, HL is simply (x =koR)

f = fL : = I (x)/x
L L+ +l1

- f = f2  : HL = (70)

., For L = 0, with fl(y) given by Eq. (56) and p = 5, the calcu-

S'$ lation of H, Eq. (53), is trivial.

The portion of the program for calculating the structure

constants has been tested and improved using the standard

lattice defined above. Typically, the structure constants

have the same relative accuracy as the expansion coefficients.

The only exceptions may be structure constants with abnor-

mally small values. In Table 1, we present the structure

constants as given in Ref. 8 and our calculation of them

using error measures of 10- 4 and 10- 3, respectively. Since

the normalization in Ref. 8 is different from ours, Eq. (50),

S,'. we have converted our normalization for ease of comparison.
Notice that for M > 0 (M < 0), the structure function is

related to BR (BI), Eq. (62).

Once the structure constants have been determined, the matrix

elements readily follow. The quantities

4-4
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TABLE 1. STRUCTURE CONSTANTS, fcc, VOLUME = 21 3

k , (0.3, 0.4, 0.5), E - 0.656

L M DLM(DavIs) DLt(10-4 ) DLM(10 "3 )

0 0 0.3637069 0.363707 0.363707

1 -1 0.4729255 0.472924 0.472922

1 0 0.5585931 0.558592 0.558583

1 1 0.3855073 0.385506 0.385504

2 2 -2 0.1383943 0.138390 0.138385

2 -1 0.3854948 0.385489 0.385477

, 2 0 0.2294027 0.229400 0.229400

2 1 0.2425004 0.242496 0.242488

2 2 -0.1231771 -0.123176 -0.123175

3 -3 0.3342447 0.334248 0.334245

3 -2 0.7787625 0.778762 0.778763

3 -1 0.3760202 0.376019 0.376012

3 0 -0.3433054 -0.343305 -0.343308

3 1 0.3140171 0.314016 0.314011

3 2 -0.0644856 -0.064484 -0.064482

3 3 -0.3585324 -0.358534 -0.358529

4 -4 -0.1350521 -0.135051 -0.135050

4 -3 -0.5645986 -0.564611 -0.564689

4 -2 0.0665038 0.066486 0.066451

4 -1 0.4518756 0.451877 0.451905

4 0 -0.2631646 -0.263159 -0.263139

4 1 0.4007033 0.400704 0.400723

4 2 -0.1747519 -0.174749 -0.174753

4 3 0.1291246 0.129140 0.129196

4 4 0.2032239 0.203229 0.203258

5 -5 0.4958597 0.495869 0.495955

5 -4 -0.0768520 -0.076852 -0.076854
5 -3 0.8811268 0.881139 0.881165
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TABLE 1. STRUCTURE CONSTANTS, fcc, VOLUME 2 3

k - (0.3, 0.4, 0.5), E - 0.656 (CONCLUDED)
-.

L M DM (DavIs) DLM(0 .4 ) DLM(I0 "3 )

5 -2 0.2049815 0.204982 0.204986

5 -1 -0.9030668 -0.903089 -0.903093

. 5 0 0.6678767 0.667894 0.668039

5 1 -0.6314083 -0.631422 -0.631417

5 2 -0.4744635 -0.474484 -0.474487

5 3 -0.8026519 -0.802659 -0.802677

5 4 -1.5614385 -1.56146 -1.56226

5 5 0.0352270 0.035233 0.035293

6 -6 4.3426328 4.34269 4.34528

6 -5 -2.2561097 -2.25614 -2.25619

6 -4 -0.3471268 -0.347127 -0.347125

6 -3 4.5963681 4.59643 4.59700

6 -2 -2.3159161 -2.31596 -2.31813

6 -1 3.5271685 3.52722 3.52776

6 0 -1.1349680 -1.13498 -1.13508

6 1 3.0624581 3.06251 3.06295

6 2 0.1585912 0.158593 0.158807

. 6 3 -4.1491049 -4.14916 -4.14964

6 4 0.9372909 0.937309 0.937489

6 5 -1.4263739 -1.42640 -1.42644

. : 6 6 0.3302557 0.330258 0.330567
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CB(2m,t'm',L) = FAC(L,M) CLMt, m'(71)

. are calculated early in the program and stored for use as

necessary. For a prescribed set of energies, the quantities

V , Eq. (46), and U, Eq. (47), are also calculated and

stored. The matrix elements Q, Eq. (45), are computed and

the determinant calculated. This final process has been pro-

grammed but not checked extensively.

Finally, a word about V' and Uis required. An existing
Thomas-Fermi program provides the basic information ior the

wave function and its derivative, namely E(TF), PSI(,a) and
jDPSI/DR(£,a) which are related to the above quantities by

E = -E(TF),

~Ra = pSI (.,a),

(R = DPSI/DR(X,a) - PSI (1,a). (72)~Pa

pThe calculation of VO and UO using the provided quantities

has been programmed but not checked.

~ The complete program was run using carbon wave functions with

pa= 1.26 and a set of energies from -4 to +2 at intervals

-of 0.1. A simple cubic lattice was assumed with a volume of

19.2 and the value of R was taken to be 2.5, near its maximum

value for this lattice. The k vector was chosen to be

k = (0.1,0.2,0.3). (73)

The determinant as a function of energy implied a number of

zeros in this energy range but the actual zeroes were not

evaluated.4-

- h4-7



77

V. IMPROVED STRUCTURE CONSTANT EVALUATION0
The numerical work carried out so far strongly suggests that

the approach using Eq. (50) is adequate for one ion per unit

cell. However, for crystal structures with more than one ion

per unit cell the maximum value of R is in general decreased.

For example, if in our test fcc lattice, we considered the
diamond structure, the maximum value of R is 2.7. Calcula-

tions with this value of R indicated poor convergence prop-
erties for the expansion coefficients. The problem arises,

of course, for small values of I in Eqs. (62) and (63).

A possible solution to this problem as well as an improved

one ion per unit cell calculation is based on a slightly

altered expansion [cf. Eq. (54)],

N-1
1 = (E+A2) 1

k G~I -E m=0G +

-_. (E+X2 ) N 1 (74)+

where X is arbitrary. We define the expansion coefficients

BR, BI and Bl-4 just as in Eqs. (62) and (63), respectively,

with, the substitution

[IG+k G+k2 +2 . (75)

Corresponding changes also occur in the CX coefficients,

~Eq. (68).

For the larger values of m, we use exactly the same techniques

as discussed above since convergence should be reasonably
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rapid as long as is not large compared to tha lowest valuesof G For the first few m values, say m = 0, 1, 2, we pro-

pose to calculate the expansion coefficient in coordinate

space. We observe first that

1 - d 1 (76)

I [ 2 I d I+ I

[1++ 12+X 2 3 8A2 d2 A d I 1(772+X2

Next we equate the two representations for H(R), Eqs. (33)

- J~'and (22) (for negative energy E = X

+ + +. +* +
&' '" 41 S ei(k+G) " (as-ao) ei(k+G)R

+ kG 2+ A2

(78)

e • R e-A I N+a -aa
- RI

N I RN+a-a-RI

and make a YLM(R) decomposition, leading to

S.+ + + +9

ei(k+G)$(a-a) JLk+GIR) YLM (k +G )

I i+++12 + X2 L

41 - I 8 6L0 6M0 (9

';. , ~~2 *i-L eik.RN I(RK(VYM)

*k N
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where the prime on the sum means the N 0 term is deleted

if a = 8 and the vector V is

A. V = RN + a- a8 . (80)

Multiplying by f(R) and integrating on R, we find an alter-
\. [ :[" nate expression for BR(L, M, 1), namely,

BR(L,M,l) =H 6  6  6

4.
where * is the azimuthal angle of the vector V, HL is given
in Eq. (70) with x = V and H is the integral given in

Eq. (53) for E < 0 with ko = X. The expression for BI(L,M,I)Uis obvious, based on Eq. (81). BI-4(L,M,l) are somewhat more

complicated since they require the calculation in coordinate

: '~ space of both a = 1, 8 = 2 and a = 2, B = 1. Once the expres-

sions for I = 1 are derived, the results for I = 2 and I = 3

.follow from Eqs. (76) and (77), respectively. These calcula-

lations are straightforward since the derivatives of IL and KL

can be expressed in terms of modified spherical Bessel

functions.

The advantage of this scheme results from the fact that KL(x)

falls off exponentially for large x. A few calculations for

selected values of L and M have been carried out with very

encouraging results. However, no detailed examination of this
scheme has yet been undertaken.
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VI. CONCLUSIONS

What remains to be done to complete the initial model is

(1) to complete and thoroughly check out the computer program

for computing E vs k; (2) to improve the calculation of jL(x)

and IL(x) for small arguments; (3) to investigate further the

choice for V (Eq. (56)] and the split between f, and f2 as

a function of L; (4) to determine the sensitivity of E vs k

as a function of errors in the structure constants and the

wave functions; (5) to investigate extensively the scheme

.. [. discussed in Section V; and (6) to sum over the bands to

;-4 ".: calculate the total band energy.

Once the initial model is completed, tests of its usefulness

are needed, namely: (1) the calculation for a given volume

and lattice type must have a reasonable cost; (2) for a vari-
JA zety of known substances, the model must correctly predict the

stable crystal structure (note that this does not mean the

total cohesive energy need be calculated accurately, only that

the observed structure has the lowest energy according to our

model); (3) for known phase transitions at elevated pressures,
we should identify the fact that a phase transition occurs.

Note that this does not mean we could accurately predict at

what pressure the transition occurs--but only estimate it

approximately.

In applying these tests, we should be willing to be wrong

in some fraction of the cases, since the model is to serve

only as a guide for experiments. However, if the model

failed most of the tests, it will probably be necessary to

consider some or all of the ignored energy contributions,

and possibly even an improved ion potential.

*.6-1
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APPENDIX

* "A crystal lattice is defined by its three primitive basis

. vectors, a, t and c. The possible relationships between

.-. these vectors fall into 14 categories, called Bravais lat-

tices. As input to the computer program one prescribes the

- lattice type, the volume of a unit cell, a, and any needed

length ratios. From this information, the primitive lattice

vectors are calculated and from these the reciprocal lattice

vectors, a*, b* and c*,

"**a* _2 2 4 ,4. 24 , 2
a -- b xc, b* cx a, - a x b. (Al)

A momentum space vector, G, is then given by

G = nI a* + n2 b* + n3 c, (A2)

while a direct lattice vector, RN, is given by

SRN = N1a+ N 2 b + N 3 C.

%Here, n, n2 , n3 and IN,, N2 , N are sets of three inte-

gers. For each ion in the unit cell, its charge (z.),

radius (p.) and position ( ) are specified. Here, = 1,

.. "N, with N being the total number (<2) of ions in the unit

cell.

F
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