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Preface

The purpose of this study was to explore the feasibility

of using the finite element method in a numerical solution of

the transport equation. For problems in science and engi-

neering, the finite element method can offer significant

advantages over competing numerical techniques, such as the

method of finite difference. In general, it requires that

the differential equation modeling the physical system be

mathematically self-adjoint. The finite element method has

-not been used in the past on the transport equation for pre-

- cisely this reason: it is not, in its current formulation, a

self-adjoint equation. In this study, the transport equation

was recast into a form which, while more complex, is indeed

self-adjoint. The finite element equations were derived for

the one-dimensional case with isotropic scatter. This proved

to be one of the challenges in this study due to the non-

local character of the transport equation. The term "non-

local" means that the solution at a given point is dependent

upon points which, in phase space, are far removed from the

point of interest. Lastly, a numerical solution was written

in FORTRAN and implemented on a VAX 11/780. The results were

compared against a benchmark solution using a recently devel-

oped.solution technique called Ln.
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5- . Notation

Symbol Definition

Constants:

"TT- - pi

- Signed unity constant, negative for labeled cases

Coordinates:

A A .1
ey, ea -  Unit vectors in cartesian coordinates

- Azimuthal angle in spherical coordinates

S - Polar angle in spherical coordinates

IX-axis in the xM-plane

A - A4-axis in the x^ -plane

Y - Y-axis in the yit'-plane

A4 - R-axis in the yu'-plane

Operators:

-Derivative

) - Partial derivative

V - Gradient

- First variation

0 - Operator kernal in transport equation

L - Self-Adjoint Operator

L - Operator kernal in self-adjoint transport equation

t - Adjoint

- Complex conjugate

viii

*'., ''o ?. ,.":.. ...-'<, ..:' -.;



Transpose

1" 1 - Absolute magnitude

- - Square root

- Sine function

40,f - Cosine function

Integrals:

f - Integral sign

I - Extremization integral

To - Streaming term in extremization integral

'9- Absorption term in extremization integral

-, - First scatter term in extremization integral

4. - Second scatter term in extremization integral

Is " - Third scatter term in extremization integral

f - Integration over the entire domain
! 0 - Integration over all the space variables

..- Integration over all the ve variables

- Integration over all the velocity variables

- Integration over the surface bounding some volume

4 - Integration over the X -axis

- Integration over the Ai-axis
.*

Ok. - Integration over the f-axis

- Integration over an entire element

4 -Upper Limit of integration on non-local element

- Lorwer limit of integration on non-local element

- Summation sign

ix
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Vectors:

-Position vector

if - Velocity vector

V - Pre-collision velocity vector

S - Vector of interior nodes

- Vector of boundary nodes

- Vector of the x-coordinates of the nodes of
some element

- Vector of the A-coordinates of the nodes of
some element

-"Vector of the A-coordinates of the nodes of
some element

- Unit vector

S - Vector of triangular coordinates

Matrices:

A - Global matrix

Mmii
- Global matrix, interior nodes to interior nodes

A, - Global matrix, interior nodes to boundary nodes

9.- Global matrix, boundary nodes to indry nodes

- Global matrix, boundary nodes to boundary nodes

- Local matrix

- Local matrix from streaming term

14. - Local matrix from absorption term

-Local matrix from first scatter term

- Local matrix from second scatter term

..M4. - Local matrix from third scatter term

f, - Integer matrix in scatter terms from x

x



- Integer matrix in scatter terms from x&

.-.. - Integer matrix in scatter terms from x,

- Integer matrix in scatter terms equal
- "to sum of above

- Integer matrix in scatter terms from x, and x.

- Integer matrix first scatter term, symmetric cases

-... - Integer matrix first scatter term,
antisymmetric cases

Transport equation:

t - Time

"r Velocity

V/ - Volume

S - Surface area

- Number of particles

kfrt ) - Number density, configuration space

V- t)- Number density, phase space

YnfP - Mean free path

- Macroscopic cross-section

- Macroscopic cross-section, total

- Macroscopic cross-section, scatter

. . L -.- Scattering kernal

"f( )_ Scattering probability function

L( °J) - Mean number of secondary particles emitted
in a collision

- Scalar flux

00(r -t) Phase space scalar flux

__7 .1- Phase space current density
d- V' t)

xi
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S (r-) - Phase space source density

•L - Direction cosine in 3-D, local

.t - Direction cosine in 3-D, non-local

At - Direction cosine in 3-D, local

At - Direction cosine in 1-D, non-local

p - Effective source in the self-adjoint
transport equation

Constant in first scatter term in extremization
integral

Finite elements:.

- X -coordinate of the local elements' nodes

A t-coordinate of the local elements' nodes

- -coordinate of the non-local elements' nodes

- -coordinate of the non-local elements' nodes

(4; - Nodal values

All - Linear interpolating functions, local

LIZ - X -coefficient in linear interpolating functions,
local

6; - At-coefficient in linear interpolating functions,
local

4% - Constant in the linear interpolating functions,
local

- Linear interpolating functions, non-local

4 - Y -coefficient in linear interpolating functions,
non-local

- A'-coefficient in linear inlerpolating functions,
non-local

- Constant in the linear interpolating functions,
non-local
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Ki ......
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-Area of the local element

-A'- Area of the non-local element

- Triangular coordinates, local

-' - Triangular coordinates, non-local

pj'"r - Exponents in the triangular integration formula

..-[ t - Collected A' terms: t2 w-'ua -2sc4

k - Collected A' terms: .; + A' - (a

- Collected A terms: t k)

c - Width of column

- Constant factor in local matrices
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•~ *- Abstract

A self-adjoint form of the transport equation was

derived, and expressed as an extremization integral. The

finite element equations were derived from the extremization

integral for the one-dimensional time independent homogeneous

transport equation with isotropic scatter. These equations

were implemented in FORTRAN on a VAX 11/780 and used to solve

a simple benchmark problem.

The finite element solution, for a small mesh of 32 ele-

ments, was compared to results from a numerical technique

known as Ln. The solutions differed by about 35 percent.

Larger meshes were not run because an automatic mesh refine-

ment routine was not available. The large difference between

the Ln solution and the finite difference solution is attri-

buted to residual errors in the coding of the finite element

equations for the scatter terms.
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FINITE ELEMENT SOLUTION OF A SELF-ADJOINT
TRANSPORT EQUATION IN ONE DIMENSION

I. Introduction

Background

The transport equation is a remarkably successful des-

cription of transport phenomena. It has been used on a wide

range of problems in such diverse fields as nuclear reactors,

astrophysics, charged particle transport, rarefied gas dynam-

.1
ics, and even traffic flow.

A variety of solution techniques have been applied to

the transport equation (4:2), which may be roughly divided

V.•s into four classes: analytic, approximation, numerical, andS.
,%,.'.

simulation. Except for the very simplest problems, the

analytic solutions tend to be specialized to some particular

field, or problem, and therefore lack generality. The stan-

dard approximation schemes are complicated by the non-self-

adjoint nature of the transport equation, and they often

.. require considerable modification. Simulations, such as

Monte Carlo, are capable of very high accuracy, but the cost

is often prohibitive due to the large number of computer

operations required.

Numerical techniques offer a good engineering compro-

mise. They are reasonably accurate at a reasonable cost and

V.
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are generally applicable over a wide range of problems.

S""The finite element method is a relatively recent (7:vii)

numerical technique which has been successfully applied in

many fields. It has been applied to the transport equation,

without notable success, due to the non-self-adjoint nature

of the transport equation (4:479-504).

Objective

The objective of this study was to recast the transport

equation into a form which is self-adjoint, and then apply

the finite element method toward its solution.

Scope

The transport equation was recast into a self-adjoint

form and expressed as an extremization principle. The finite

element equations were derived from this extremization prin-

ciple for the homogeneous transport equation with isotropic

4 scatter. They were then implemented in FORTRAN on a VAX

11/780 for a simple benchmark problem. Two sets of computer

runs were done. In the first set, the results for the trans-

port equation without scatter were compared to an analytic

solution. In the second set, the results for the transport

equation with scatter were compared to the results from

another numerical technique called Ln.

Assumptions

The assumptions in this study are those commonly used

.. -
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in deriving the transport equation, those used in making the

finite element approximation, and those used in defining the

benchmark problem. They are described in the relevant sec-

tions of this thesis.

Sequence of Presentation

The next chapter reviews the transport equation and pre-

sents the derivation of the self-adjoint form. In Chapter

III, the finite element equations are derived. The computer

implementation is described in Chapter IV. Chapter V pre-

sents the results of the computer program and Chapter VI

gives the conclusions and recommendations.

.4N.
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The Self-Adjoint Transport Equation

The Transport Equation

The term "transport theory" is commonly used to refer to

the mathematical description of the motion of particles

through a host medium. It differs from the usual approaches

used in classical physics because it is a particle, rather

than a continuum, theory of matter. The concept of a con-

tinuous field is, however, employed in transport theory in

probability fields for some of the properties of the system

of particles.

. There are several common assumptions in transport

theory. In this development, the following assumptions were

made:

The particles interact only with the host medium.

-.', There is no correlation between particles.

Only the particle's position and velocity are sig-
nificant.

All interactions with the host medium occur at a
.4 point well localized in space with respect to the

mean free path and well localized in time with
respect to the mean time of flight.

Transport theory rests on several key concepts which are

reviewed briefly here. Greater detail can be found in

Transport Theory, by Duderstadt and Martin (4:1-19).

.. The first and most central concept is that of a proba-

bility field which describes the expected density of

4
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particles in configuration space. Specifically, the particle

density is defined by

A(-Pt) a = expected number of particles in
- about i1 at time t.

Similarly, the phase space particle density is defined by

?r V4 m expected number of particles in A rabout Ir with velocity in atw at
time t.

The two are related by

'4 ( - , t, .

The second key concept is the representation of inter-

actions between the transporting particles and the host

medium. Two terms are used in this concept. They are "mean

free path" (mfp) and "macroscopic cross-section." They are

inverses of each other and are defined by

S (1 i)- probability of particle interactionper unit distance traveled by a
particle of velocity V at position

As a further refinement, the collision kernel is defined as

the

probability per unit distance trav-
eled that an incident particle of
velocity I" will collide producing
a secondary particle at velocity t2.

C .", .5

C. ," ."; ' . %' '2 . , ' , , ,.,' ""g- ,""''i, . . . ." -.-.-. "'-." " ''-•:



Mathematically

(2)

where c is the mean number of secondary particles emitted per

collision event and is defined by

r. 7'j mean number of secondary particles

emitted in a collision event experi-
enced by an incident particle with
velocity " at position r.

and where f is the scattering probability function defined by

$ ~r r)o R probability that any secondary par-
ticles induced by an incident parti-
cle with velocitLy v will be emitted
with velocity V in dtr.

Note that

When the macroscopic cross-section is independent of position

- and velocity it is symbolized by ! for total.

In addition to these key concepts, there are a few sup-

porting concepts. The particle scalar flux is defined by

~ ~' (4)

where q (',jvj) is the particle scalar phase space flux and

is defined by

by

-... 6

A.n
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The term "flux" is usually used by itself, with the adjec-

. 0 tives dropped, relying on context to identify the desired

meaning. This use of the term is, except in the nuclear com-

munity, non-standard and should not be confused with the vec-

tor flux. The phase space current density is defined as

(r) . (6)

where

J otar expected number of particles that
cross an area dS per second with
velocity V in at time t.

The last supporting concept is of a unit vector in the

direction of the velocity vector, called the cosine vector.

It is defined by

-L Ca &aq , pe -6 (7)

where & and 99have their usual meanings in spherical coordi-

nates and P, e and 4j are the unit vectors in cartesian

coordinates.

The transport equation can be derived by invoking a

balance condition around the conservation of particles. In

an arbitrarily small, fixed region in space with volume V,

surface area S and number of particles n, the balance condi-

tion is

%time rate) hange due r change
of change f to leakage + due to +fsources

of n ) C thru S ) Lcollisions

7
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Writing the balance condition mathematically gives

"de r] (e 8j, )
* ~~ ~ ~ ~ ~ 0 + ().,d~]' )fs~& 3 b' (8)

The leakage term can be rewritten using Gauss's law and using

the independence between the space and velocity variables as

:<: .(r, g,) ," = [1-7. ,,), (9-)0,'

V"- (10 o)

Thus, the balance condition becomes

Cf,:.. .- .v, - ,,

Since the volume is arbitrary

i -, . d 14 (12)

The collision term can be represented more precisely by

nh f> ( )it ) *- -t) (13)

which, under the assumption of uniform host medium, becomes

-: : ,, Jv . ,,,a,,VLr )(4

Substitution gives

t .. V'- - + S (15)

".*. .. 8
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Rewriting it in terms of flux and cosine vectors, gives

d .. .
-rJ J1 iq~ Lfd,'f A~- Q 4%* (16)

While this form of the transport equation is very explicit,

it is unwieldy for many mathematical manipulations. As a

* .:notational aid, an operator is defined such that the trans-

port equation becomes

/99- = 0 (17)

where, in this instance, the operator is

S+-.A - I- + ()(18)

". .~ As in all differential equations, this statement of the

problem is incomplete until boundary conditions are speci-

fied.

Depending on the application, several additional assump-
A.

tions are commonly applied to simplify the mathematics of the

transport equation. In this study, four additional assump-

'V_ tions were made.

The first assumption was that all sources are mono-

energetic and that collision events result in either absorp-

tion or in elastic scatter. Thus, the transport equation

becomes

VI
__ Orr $ (19)

and is called the one speed model.

A..-,9
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I % The second assumption was to ignore the time dependency,

that is, only the steady state-solution is of interest.

Thus, the transport equation becomes

9t- . OI -,'a
= (20)

The third assumption was that the region of interest had

planar geometry, i.e., that it could be modeled in one dimen-

-: sion. Aligning the coordinate system with the z-axis perpen-

dicular to the plane of symmetry simplifies the divergence to

di a (21)

Therefore

(22)

letting

.. '(23)

and changing the label on the z-axis to x yields

.. rt47 =A )-F (24)

4. Additionally, expanding the collision kernel yields

ilt (25)

so the one-dimensional transport equation becomes

A4~jucjY c~~r(->AJ~rLM)~P4 S(26)

. 9' 10
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The fourth and final assumption was that of isotropic

S""scatter. Recall that

,) i(27)

since

,. -l. ogt cov (28)

This becomes

Since, for isotropic scatter, is a constant

ff l otY f' ,w g (30)

which implies

(31)

Therefore,

=ff aJ, 4, (32)

or

Thus, the one-speed, time independent, one-dimensional

transport equation in a uniform and isotropic medium with

isotropic scatter becomes

A (34)

11
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The operator form is the same for all of these simpli-

fied transport equations

(35)

where, for the one-dimensional case with isotropic scatter,

the integro-differential operator is

--- 2± "- f A (36)

Mathematical Background

Continuum problems often have different, but equivalent,

formulations. In the differential formulation, the problem

is to integrate an integro-differential equation subject to

given boundary conditions. In the classical variational

formulation, the problem is to find an unknown function which

extremizes a functional subject to the same given boundary

conditions. A familiar example of this dual formulation is

the equivalence between Newtonian mechanics, a differential

formulation, and Hamiltonian mechanics, a variational formu-

lation (5:85-105).

There are some standard techniques used to translate a

differential formulation into a variational formulation. One

is to select a quadratic functional derived from the differ-

ential formulation. The usual choice for a quadratic (6:10)

is
/ 'I

(37)

12
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where the differential formulation was

L.P -f= o (38)

\q. and with the definition that

where signifies integration over the entire domain, and

y* is the complex conjugate of y. Since all the variables in

the transport equation are real valued, the complex conjugate

notation will be suppressed. The integral to be extremized

then becomes

f =  Lv , - 2 Y (40)

Another, but seldom used, quadratic is

-c,, v- L -(41)

There is one restriction on the above approach -- the

operator in the resulting variational formulation must be

self-adjoint. Adjointness is defined (8:10) by the property
-4

(42)

where is the adjoint of the operator

A proof of this requirement follows. The transport

equation is

'-.9- S =o (43)
O1

:.;:313
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and the standard quadratic is

so the integral to be extremized is

1, (45)

Taking the variation

di-: Y'2C) ' (46)

and

Jr .4= (47)

using the definition of adjointness

al +f{c91-s t~P(&> (48)

Rearranging and combining terms

JI[V* y-2s 4~ 0(49)

or

2 (50)
-- L-

but since the variation is arbitrary

= 0 (51)

Clearly, this is equal to the transport equation only if

is self-adjoint. But is not self-adjoint for the

14
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transport equation, so something else must be tried.

Operator Formulation

A variational form of the transport equation can be de-

rived by starting with a different quadratic. Specifically,

)(52)

Now the integral to be extremized becomes

and

!/2f (54)

or

(55)

Using the definition of adjointness

~d~1Iez/Jv 1 ( ( 1- ~, (56)

Taking the variation

and

~ Y =0 (58)

again using the definition of adjointness and combining terms

15
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i.-. .. ..

yields

0 (59)

or

. (60)

Since the variation is arbitrary

(61)

Let

Y-=/~-s(62)
then there are clearly two solutions. Either

0 (63)

-. which is the solution to the transport equation or

(64)

a. which is not.

Equation (64) is just the homogeneous adjoint transport

equation, which is equivalent to the transport equation with-

*' out sources and with the velocity vectors reversed. Clearly,

if there is any net absorption, the steady state solution is

identically zero. Thus, this equation, applied to a region

where there is net absorption, is zero because is zero.

Therefore, the only solution to the self-adjoint transport

16
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equation is also the solution to the transport equation.

" As a notational aid, the following definitions are made.

Z V (65)

and

(66)

Then the relation which specifies the extremization of the

functional becomes

0 -(67)

which will henceforth be referred to as the self-adjoint

transport equation.

Integral-Differential Formulation

From the operator form of the self-adjoint transport

equation, it is a straightforward matter to derive the equa-

tion in its differential form. The operator, in the one-

dimensional transport equation for the case of isotropic
9-

scatter is

-1

a...9.,i and its adjoint is

0 (69)

-.- 1
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Then, in the self-adjoint transport equation

/*2 1 /~i =c2(70)

the operator

L P/ (71)

becomes 41

- ± -(72)

Collecting terms yields

'-"' 2 J_,< Q, lt J_,(73)
;-.'..7I

Thus, the one-dimensional, self-adjoint transport equation

for isotropic scatter becomes

t;' 44 vf* --44) X;

W- i

+ (74)

Since the integrals in the double integral term are indepen-

dent

fc , = 2 (75)
-.% .i

Thus

18
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2+f.- C" -- (76 )

and

WA + (77)
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* -III. The Finite Element Equations

Finite Element Fundamentals

k The finite element method is a numerical technique

which divides the entire domain of the problem into simple

polygonal structures called elements. The solution over this

domain is approximated by a set of discrete values, called

the nodal values, which are located at the nodes, or ver-

tices, of the elements. The arrangement of nodes and ele-

ments is called a mesh. A typical mesh for a two-dimensional

* problem might look something like Fig. 1.

'-5

Fig. 1. Typical Finite Element Mesh

The set of nodal values is chosen so as to extremize the

variational statement of the problem. They are computed by

solving the set of simultaneous equtions derived from the

* -i"variational integral.

The solution is approximated within each element by

.5
5. 20
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interpolating functions. If is the dependent variable,, ....,
then over the x-y plane is approximated by

.. Ile (78)

where n is the number of nodes. This is the finite element

approximation. For this element, " are the nodal values at

the vertices of the element and Ai are the interpolating

functions. The interpolating functions are usually linear,

but higher order polynomials are sometimes used.

In the finite element approximation, the variational

formulation has the form

1 (79)

where h comes from the source term. Because the operator

L was self-adjoint, , is symmetric and positive definite.

In the continuum formulation, the variation is taken

with respect to the dependent variable. In the finite ele-

ment method, the variation is taken with respect to the

nodal values. In summation notation, the integrCl to be

extremized is

-c4ici (80)

Taking the variation with respect to the i'th node

= 4 ~[X[L$'1L.K4? j7-,;l ixo (81)

r Since b1j, is symmetric and since the indices are dummy, this

21
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becomes

J, C)

= -~6j ~Jkj9 (82)

• '., thus,

a -" ' -" (83)

or

M Au- (84)

These are the simultaneous equations. The solution to them

yields the nodal values.

As in any differential equation, the solution in the

variational formulation is not unique until boundary condi-

tions are specified. In the variational formulation, the

VV boundary conditions are specified by the requirement that

the variation be zero for any points under boundary condi-

tions. When the problem is posed in finite elements, some

of the nodes are necessarily on the boundary and no variation

is allowed at these points.

Numbering the nodes such that all the interior nodes

come first allows the variational formulation, in the absence

of sources, to be restated as

~ ~JJ~J(85)

where . is the vector of interior nodes and is the vector

22
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of boundary nodes. Thus, the variation becomes

M_ (86)

or, since the matrix is symmetric,

CII 1(87)

and the simultaneous equations become

,, = -, (88)

The variational principle is good over any sub-domain of

the problem domain. Specifically, it is good over any ele-

ment. Thus,

_T I=4 (89)

is still valid, where [ is the number of nodes on the ele-

ment and ^I-" is called the local matrix.

The global matrix is created by assembling the local

matrices from every finite element. The process of assembly

has three steps:
.5

(1) Zero the global matrix.

(2) For each element in the local matrix, trans-
late its local indices into the global
indices, and add it to the proper global
element.

(3) Do step two for every finite element.

Since each node is associated with only a few elements, the

resulting global matrix is sparse.
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One of the strengths of the finite element method is the

ability to place elements, and therefore nodes, where de-

sired. In many numerical techniques, such as finite dif-

ference, the nodes must be in a rectangular grid, and usually

with uniform spacing. In these other techniques, a lot of

computation must be done in regions of low interest just to

get sufficient resolution in the area of high interest.

In the finite element method, new elements can be added

to the mesh arbitrarily. The decision on where to place

them is usually dependent upon how the solution looked with

the original mesh. For instance, areas where the solution

is rapidly varying are likely candidates for a finer mesh.

Since the finite element method came from a variational

formulation, another guide to placing new elements is the

value of the variational integral over each element. This

value is also known as the penalty, and the associated

variational integral is the penalty function. Elements with

the highest value are sub-divided into new elements and the

problem is re-solved. This process can be automated with a

computer routine, refining the mesh until some predetermined

convergence criteria is reached.

The most commonly used shape for an element in the plane

is a triangle. It is the element used in this study, and a

brief review of its properties follows.

The finite element approximation is

3
*'~: *~; ~4)(90)

C. 24
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The linear interpolating function is, over the x-u plane,

(91)

4 Where, with i, j, and k as cyclic indices,

- - . (92)

bl : - 22-(93)

.;,J
Y& VI (94)

VN and

'? 4 t X; xj V. (95)

There is a natural coordinate system for triangles, called

the triangular coordinate system (3:89). It is depicted in

Fig. 2. The plane coordinates are related to the triangular

coordinates by

Yq L =L 40 J; (96)
Note that the relationship

L + L3  (97)

implies that, for linear interpolating functions,

L(98)

The formula for integrating over the entire triangle is

,:.:. , '! r!

3 -(99)
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.4, A(,ILJJ
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8.'. ( 4A .) =o . (o, )

Fig. 2. Natural Triangular Coordinates

Two useful texts are The Finite Element Method for

Engineers, by Kenneth H. Huebner (7), and An Analysis of

the Finite Element Method, by George Fix and Gilbert Strang

.~, (6). The first text concentrates on applications, the second

one on theory.

The Variational Integral

In this study, the finite element equations for triangu-

lar elements were derived for the homogeneous self-adjoint

transport equation without sources. The integral to be ex-

tremized for this equation is

L9 (100)

or

26
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Except for the limits of integration, this is also the inte-

. gral to be extremized over each element. Specifically,
2 2Y + 1+

~

:p'4j .4- OI (102)

where Z specifies integration over the area of the element

and is

d4 = A -em (103)

The next step is to substitute the interpolating func-

tions for V. It is desirable to use linear interpolating

functions for their computational efficiency. However, the

class of admissible interpolating functions is limited by

the highest occurring derivative in the extremization inte-

Q gral (7:79). Because of the second derivative in the first

term, linear interpolating functions will not converge to the

correct answer. An integration by parts nicely resolves this

difficulty.

Taking the term with the second order derivative

'I (104)

and making the following definitions:

-1 )= (105)

thus,

)(106)

2-7



Therefore,

In a variational approach, the variation is restricted

to being zero on the boundary. Thus, the first term in the

integration by parts, called the surface term, is clearly

zero whenever and Xz are on the boundary. Since this

integral is over a single element, and since many elements

are interior to the region, and A,, will not, in general,

lie on the boundary. However, the value of the surface term

has equal magnitude and opposite sign for adjacent elements.

Consequently, when the global matrix is assembled, all the

'.p contributions from this term cancel. Thus,

I (LgWI(108)

It is convenient to split the extremization integral

into five integrals, one for each term. They are

whi/hIwill(b e referre (109)

which will be referred to as the streaming term,

which will be referred to as the absorbing term,

.,= - I/(111)

which will be referred to as the first scatter term,

u -". •28
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1t C (112)

which will be referred to as the second scatter term,

'U V-4(113)

which will be referred to as the third scatter term.

There is an important distinction to be drawn among

the five integrals. The first two, the streaming and absorp-

tion terms, are local, i.e., the integration is over only the

immediate element. In the scatter terms, however, the addi-

tional integration over A4implies involving other elements.

These terms are non-local.
V.

Most problems in which the finite element method is

used have only local terms. The resulting global matrix is

sparse and only one local matrix per element is needed. The

resulting computational efficiency usually more than compen-

sates for the relative complexity of the finite element

approach.

In this problem, the situation is not so favorable, but

since the non-localness is inherent in the tranport equation,

other numerical techniques also face similar difficulties.

In general, this property of the transport equation is a

difficulty in any numerical technique. How it is handled in

this approach will be described in the section on non-local

terms.

.29
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The Local Terms

Starting with the streaming term

-~ 7JWJ4 (114)

and substituting for 7 the finite element approximation

* with linear interpolating functions

A..i(X. .44) (115)

The term becomes

12 WA(116)

or

c14 (117)

and

'z X d "7 (118)

Clearly then,

tK O7j (119)

where Al~j is the contribution to the local matrix from the

streaming term. The interpolating functions are

Substituting and taking the derivative yields

30
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.. This integral can be computed from the triangular integra-

tion formula. Substituting for

I.: L, + ~j +.3 L3(122)

and integrating yields

f4~c14 ~6+-10 3 (Zi.4 1  (123)

Let

*V (AM~4, (124)

thus,

() P
~ (125)

where

ell ~j.e4 (126)

and the i, j, and k are cyclic. Another form, which is opti-

mized for computational efficiency, is

4l-1=4,,V4 ()J2V44 (127)

This is the form used in the computer program. A copy

appears in Appendix B.

Similarly, where the absorption term

I :Y ~(128)
[2
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becomes

- 4/ ii.(129)

but a shortcut can be taken by recognizing the equivalence

between the linear interpolating functions and the natural

triangular coordinates

I . (6( + x X- ) X+ I~ (130)

Substituting the natural triangular coordinates for the

linear interpolating functions

"= Lj clA (131)

From the triangular integration formula

.4 _. . t

JLtLjA L2f (132)

Thus, the local matrix from the absorption term is

L 1(133)

The Non-Local Terms

Before considering the scatter terms in detail, the

issue of their non-locality must be dealt with. In Fig. 3,

a potential mesh over the x-u plane is displayed. The shaded

triangle is the current local element and the region between

the dotted lines is the area of integration specified by

32



The integration over t involves many elements other

than the local one, a decided disadvantage. Now, not only

do distant elements contribute to the value associated with

the local element, but often only a portion of the element

v contributes. To account for this partial contribution would

seem to require the existence of virtual elements (the parts

of the real elements). Their existences would be temporary

and their structure would be different for every local ele-

ment. In addition, there are now many nodes involved (in-

stead of just three), so the sparseness of the global matrix

is greatly reduced.

In order to avoid these difficulties, a restriction on

the structure of the mesh is imposed. If the numbered nodes

from Fig. 3 were moved to line up on the dotted lines as in

Fig. 4, then the integration over .44 involves only complete

non-local elements. This greatly simplifies the derivation

of the finite element equations. In addition, the number of

nodes involved is somewhat less, so the loss of sparseness in

the global matrix is less severe. In this particular exam-

pie, nine additional nodes are involved in the integration

over M before the numbered nodes are moved, but only seven

afterwards.

The proposed restriction on the mesh structure is to

align the elements into columns as in Fig. 5. This will be

referred to as the columnar scheme. While there is some loss

in flexibility of placement of elements, the figure shows

33
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Fig. 3. Un-Restricted Finite Element Mesh

A

Fig. 'I. Modified Finite Element Mesh

F 5. Co lumnar Scheme Finite El emenL Mesh
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that mesh structures are possible which still concentrate the

,. elements in chosen regions.

The integration over the entire range of A is most

conveniently done one non-local element at a time. The three

scatter terms become

13 -'V 0( 4 (134)

2 - d

* ....

_ ~ (136)-x4
where , is the upper edge of the non-local element and A is

the lower edge. Note that both W and 0 are functions of x.

These integrals are then evaluated for every non-local ele-

ment in the column containing the local element.

Since both the local and non-local elements may point

in either direction, there are clearly four cases. The cases

and the relevant coordinate system are summarized in Fig. 6.

The finite element approximation for the three scatter

terms is a combination of the forms used in the streaming and

I absorption terms. For

ti

while for (I,

(138)
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All Cases

Symmetric Cases

Case 1 Case 4

* A - , -, L,
L3 -non-local

element

alocal

3element

4A

Antisymmetric cases

Case 2 Case 3

SI non-local

I element

44" 3

a' ,....,""lo c a l

L xa element

Fig. 6. Local and Non-local Element Cases
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where

+ (139)

with

a = k-9, (140)

Xk (141)

= - (142)

and where A is the area of the non-local element. Thus,

(143)

For the three scatter terms

00

I'.'

T3 u ,Mf Ol 0( ,' (144)

Al 0&4 (146)

The following finite element approximations are made:

" d )= -L d '(147)
&

, c -.(148)
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where

" . ( x + j A ") (149)
SA,

Thus,

.1 (150)

- Therefore, the matrices for each of the three scatter terms

become

(3) I #u ,

A#

2:] (153)

OIntegrating over t4*

(3) = _ -I , ) , , ,.
- --. (154)

CO (155)

or

*" - l , ui ' Z (157)

38
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- -- ,Li k'-)~ j4 ) (159)

The upper and lower limits of integration, al and 4

must be evaluated, depending upon the case. For Cases 1 and

-• 3, the lower limit (-_') is specified by

LZ= (160)

thus,

• tj (161)i

for this to be equal to zero, the determinant must be equal

to zero. Thus,

(162)

which implies

. l - (163)

and

4.4.Sf3, , ,

&1 _± (164)

However, x and y have the same range and sense, and since

k165)
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By symmetry, the upper limit is

F,4 = > '- (166)

For Cases 2 and 4, the lower limit is specified by

L 3  0 (167)

thus,

•., .. I I I

,0A, J4 (168)

which implies

and
<- .

(170)

However, x and y have the same range and sense, so this is

just

AA

+ (171)

So again, by symmetry, the upper limit is

- ' '- , .I

-- A4 -~~ (172)

In the local matrix for the scatter terms, .U and o44

appear in only two combinations

,,4 -. (173)

..
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and
'F-.

,4A + 1-i4 (174)

The first combination becomes, for Cases 1 and 3,

A-/ [j (175)

or

(176)

which can be simplified through

(177)

to
/ 2A'

t- -(178)

For Cases 2 and 4,

4"1' ,>-T -,x-a,x . (179)

as before, this is

C'--4.' - (180)

Therefore,

d~4t /),-7(XY 1 )(181)

where llu is negative one for Cases 1 and 3, and positive one

for Cases 2 and 4.
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The second combination of the integration limits is

+ ._4 (182)

Again, considering Cases 1 and 3 first, this becomes

(8)

or
'S.y

f !- [4 '(44 (184)
_-.€

Let

+ 0,i 4- 2,44) (185)

and

Thus,

a+ -- - (187)

For Cases 2 and 4,

-z =, . , [(;- ,)x -( -,4),X +( , - y,)+1 2, ,-(188)

or

- ~,-#-L~;*;-2x+&4*4;24;~,~ (189)

and making the same substitution

42



+ - ,- ) (190)

Thus,

+ -(1),)

Therefore, the matrices for each of the three scatter

terms become

(VISJ -'i3L (192)

f L W (193)

- .Z ~y' q' c"(' - )d (194)

4 - Note that there is a lot of parallelism among these

three expressions. Later mathematical manipulations can be

reduced by a judicious rearranging of the terms within each

expression. Thus,

(3) =~ - 71 ,,"" i -,)dA
d -i iL (xV,) - c/AX

. c (195)

~'Jd

and

(196)

and
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--~ ~ I 2.2. L " 2- (, + k ) Q1 !4  (197)

Before proceeding to evaluate each scatter term, it is

convenient to build a table of integrals. The five inte-

grals, which are based upon the triangular integration formu-

la, are derived in Appendix A and are listed in Table I.

A note about the notation used in Table I is in order.

The vector of interpolating coefficients is

Th2ra (198)

The area, A is for the local element.

Because of the parallelism in the form of the scatter

terms, it seems most convenient to evaluate the simplest

first. Starting, then, with the second scatter term, its

matrix can be rewritten as

- _LS~ X.44 44 f At 4c4 (199)

which becomes

Q#') '4
= 3 4dt (200)

For the symmetric cases, Cases 1 and 4, where ,

r(201)

or
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Table I

Five Element Integrals

m°F) o 5

-

4

2- 1 2-.=

_,*
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2, ed 7 (XZ(202)

2,

Thus,

Mlt 2 23 C (203)

which is

•t~A -'V" ' a (204)

-. Explicitly,

a41 
(205)

Similarly, for the antisymmetric cases, where Y- X&

?: 2,-- I3O2L~?'u~ (206)

or

a 4- dog. (207)

Thus,

2.i 2- 1 (208)

Explicitly,

'. (209)

*4 46
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Evaluating the third scatter term next, its matrix can

be rewritten as

where

Q ( + k) (211)

Expanding

I / I' I

Cy -. ) ~~ + 'YX) (212)

Substituting for and k, and evaluating the integrals

yields

+ -od 0(g2,

The coefficient of ,is independent of case. Working with

just that term, it becomes, for all cases

2,f'L- (- 4gi +i )X +(A+ )e , -Yaw _ (214)

Rearranging and combining terms

2MIO~4.1f _ - _ (215)

Expanding the matrices, and then contracting them on the

basis of - yields

A N
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e, 3 2 'I X., t(216)
•-3:' 12 2Z 3 1-F

Rearranging around the quadratic terms in x yields

Xz + q X'z

3<~Y Y 4 +~ 3 X

But this is just

P3[ ~(218)

-w

L J.

The coefficients of and A are identical. There-

fore, only one needs to be evaluated. However, they are case

dependent. Thus, for the symmetric cases

L'O F( -+ xz -2v1 , A '" * h,'?a (219)

J.-, Vor

+ Am (IT(220)

.- Expanding the matrices as before

4..1 (221)
f 3 L j 1I

Rearranging around

• '. ,,48



XI-A) Ox, + 42X x j ) (222)

4 s~3 x2-',)(? ;x,. +2x.- ;. ,) k1 (g.-x,3U2:
'4.-A 3A (.

which is

-4 (223)

p.

Similarly, for the antisymmetric cases

V ,yX :2-2 X + (224)

or

4 ( ',-X) , + - (225)

Again, expanding the matrices

Rearranging around -f, yields

, (.(,--) (X, 4 qx, - z)

0 .(',- x4) (z,-+ 3,x - 5.) (227)

G-.) 2 X, + 3X - S'ea)

which is just

(228)

49.
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Therefore, for the symmetric case

Al.- (229)

or

- (230)

where

.3

->-1 (231)

And likewise, for the antisymmetric case

0 3 -4 (232)
3

or

SW

M - -4. (233)

where

4 33
(234)

13

The first scatter term is most easily evaluated one

piece at a time. The first piece

R1 - I . ()(- CM (235)
J
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becomes

For the symmetric cases

-. 10(237)

or

A 0
- /0 (238)

or

-64

'.Ow (239)

For the antisymmetric cases

-44 i' ) 7LAz- 7 (240)

50

or

4 0
IL' (241)

4 ..

or

-4 od (242)

The second piece

-U 51
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by symmetry with the second scatter term is

-0( Od 2-L- X (244)F LtJ
or

Sod "~-(245)

for the symmetric cases, and

"o(- 2 ;q )j (246)

or

4 "
d_ M x (247)

for the antisymmetric cases.

The third piece

-~- L b 2cyX (248)

by symmetry with the third scatter term is

.- "(249)

or

*m e52
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e.. - ,416/ -

(250)

4,s
for the symmetric cases, and

44

~ 1~'(251)
or

4 , /

for the antisymmetric cases.

Putting the three pieces together for the symmetric

%N cases yields

.3 
.4(3)w '4d (253)

.. .ij Expanding the matrices

' ' Since X3, X the lower right four elements in the first ma-

trix can be rearranged. Similarly, all of the elements in

the last matrix can be freely rearranged. Thus,

or
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-" ", .'(.J (256)

The bracketed term can be evaluated by recognizing that the

natural triangular coordinates in the non-local element are

-N%'.'

which, for a point at its corresponding node, is equal to one

- .z xji,,. t,.(258)

but at any other node is equal to zero

.(259)

Thus, the bracketed term is

1- + ~ 24 (260)

and therefore, for the symmetric case, the matrix for the

first scatter term is

A,-A'
) =- 0O( A1 t (261)

Putting the three pieces together for the antisymmetric cases

yields":.91.. yi .i

''i '66(L 'Je-~J (262)

Expanding the matrices
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2 2

'~dad '2i14 3 . JL '0"j~ (263)
2 2-3 ] -4,

V,. While it is still possible to rearrange the terms in the

matrices corresponding to XZz--'3, it does no good because the

Y 1term is no longer equal to the -Z term in the second

matrix as it was in the symmetric cases. Additionally, this

author was unable to simplify this expression to any signifi-

cant degree.

A simple answer was obtained by a different derivation

and it is included in Appendix G. However, it does not build

on the derivation presented here. Nonetheless, it does ob-

tain a useful answer, one which was confirmed independently

by Dr. Shankland, and which is in agreement with the answer

one might anticipate from the results in the symmetric case.

Assuming, for the moment, that this answer is correct, the

matrix for the first scatter term for the antisymmetric case

is 4-il
where

- -I(265)
3
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IV. The Numerical Solution

Benchmark Problem

A picture of the benchmark problem used in this study is

shown in Fig. 7.

ji=+l

O(x=OP>O) = U vacuum

P=O ---- - blanket -r-----

vacuum D (x=3EtP<0)=G

x=O t= 1.0 S 0 x=3 t

: ; -S .5E tS t

Fig. 7. Benchmark Problem

The benchmark problem consisted of a mono-energetic

source of particles which impinged from the left upon a blan-

ket three mean free paths thick. The source was Lambertian,

and constituted the first of two boundary conditions. The

blanket was surrounded on both sides by vacuum and an albedo

of zero was assumed so the returning flux from the right was

also zero. This was the second boundary condition. The

total macroscopic cross-section was chosen as unity so that

it could serve as a scaling factor. The scattering macro-

scopic cross-section was either zero, which eliminated the
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scattering terms, or half the total cross-section. Both

macroscopic cross-sections were constant throughout the

blanket. There were no inbedded sources in the blanket.

Algorithm

The algorithm for the benchmark problem follows the

usual finite element approach, except for the handling of the

scatter terms. Specifically:

(1) Partition the global matrix into four sub-
matrices according to the interior and
boundary nodes.

(2) Zero the global matrix.

(3) Define the mesh.

(4) Compute the contribution to the local matrix

from the streaming term and assemble it into
1A the global matrix.

(5) Compute the contribution to the local matrix
from the absorption term and assemble it into
the global matrix.

(6) Save the contributions from the streaming and
absorption terms.

(7) For each non-local element in the column:
(a) Compute the contribution to the local

matrix from the first scatter term and
assemble it into the global matrix.

(b) Compute the contribution to the local
matrix from the second scatter term and
assemble it into the global matrix.

(c) Compute the contribution to the local
matrix from the third scatter term and
assemble it into the global matrix.

(d) Save the contributions from the three
scatter terms.

(8) Compute the force vector.

(9) Solve the system of simultaneous equations.
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(10) Compute the element penalties and the global
penalty.

(11) Print the results.

Implementation Notes

The computer program was written in FORTRAN 77, under

the UNIX operating system, release number 4.1 by Berkeley,

and should meet the 77 standard (2) in all specifics. While

it was not optimized for computational efficiency, it does

strive for clarity, and its structure should aid attempts at

modification and improvement. All variables are passed in

the call statements; there are no COMMON blocks. All of the

arrays which are dependent upon the mesh are dimensioned via

parameters. This minimizes storage space, but still allows

for easy change in the size of the arrays when a new mesh is

used.

While comments are used liberally throughout the code,

the concentrated documentation is in the subroutine DOCUM.

It consists of three glossaries: a glossary of routines,

one of parameters, and one of variables.

The main program is routine SATE. The first routine it

calls is INITAL. Subroutine INITAL creates the mesh by read-

ing in its definition from a file, computes the areas of the

elements, and zeros the global matrix.

Next, the global matrix is assembled. It is stored in

four, two-dimensional array variables: M11, M12, M21, and

M22. The contributions to the local matrices are computed
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by five subroutines, one for each of the terms in the extrem-

ization integral. The five subroutines are STREAM, ABSORB,

SCAT1, SCAT2, and SCAT3. The routine CASEDT determines the

case of the orientation of the local and non-local elements,

for use by the scatter routines. The contributions to the

local matrices are combined into temporary matrices and saved

in MAT(LOC,I,J) for later use in the calculation of the

penalties. The contributions from the streaming and absorp-

tion terms are combined into one temporary matrix. The con-

tributions from all three scatter terms are also combined

into temporary matrices but there is now one temporary matrix

for each non-local element in the column. This is a memory

intensive approach, but it makes debugging easier and it does

avoid having to recompute these matrices.

When the global matrix is completely assembled, the

foi-ce vector is computed. It is just the negative product of

the M12 matrix and the vector of boundary nodes. The M11

part of the global matrix is copied into the double precision

array MM for two reasons. First, the implementation of IMSL

on the VAX 11/780 is in double precision only. Second, the

matrix sent to the IMSL routine suffers a Gauss-Siedel decom-

position, and is no longer available for use in computing the

global penalty.

The solution is computed by the IMSL routine LEQIF,

which is a virtual memory version of the linear equation

solving routine.
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The penalty is computed in two ways. First, the element

• "-penalties are computed. They are useful as guides in refin-

ing the mesh. The global penalty is also computed, but for

comparison purposes only, since the sum of the element penal-

ties should be equal to the global penalty.

The results are printed on the standard output by the

routine OUTPUT. It offers several options for easy tailoring

of the desired information.

The last routine is DEBUG. It is a low overhead utility

routine which can be used to quickly get diagnostics about
4'Q

the program without cluttering it up with print statements.

It is no substitute for a symbolic debugger, but it is supe-

rior for problems with a lot of intermediate data.

The major variables include the previously mentioned

arrays, the global matrix (M11, M12, M21, M22), and the

record of the contributions to the local matrices. In addi-

tion, there are three arrays which define the mesh in use.

* They are CORDND, PTNODE, and AREAS. CORDND (coordinates of

the nodes) contains the xAt-coordinates of all the nodes.

PTNODE (pointer to the nodes) specifies which nodes are a

part of each element by pointing to CORDND. AREAS is just

the area of each element.
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V. Results

Local Terms

The first use of the finite element equations was to

solve the benchmark problem for a blanket which consisted

of a purely absorbing medium. This tested the streaming and

absorption terms without the added complexity of the scatter-

ing terms. The transport equation, with absorption only, is

(266)

This problem, when solved analytically, is

e- (267)

Evaluating the integration constant, C, from the boundary

condition of a Lambertian source, yields

- to.4 1 > 0(268)

Five computer runs were done, one run for each of the

five meshes. The detailed results of these runs are included

in Appendix D. Some of the notable features are discussed

below.

The analytic solution, for the case of A = 1, is shown

in Table II, along with the nodal values and the global

penalties from the five meshes.

It can be seen from Table II that, as the number of
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elements in the mesh increases, the answer tends to converge

to the analytic solution. The difference between Mesh 2 and

Mesh 3 is not an exception, since these two meshes have the

same number of elements. The only difference between them is

the orientation of two adjacent elements. (Refer to the mesh

maps in Appendix C.) This small change in going from Mesh 2

to Mesh 3 produced a noticeable change in both the answer and

the penalty. The answer is worse in Mesh 3 than in Mesh 2

and the penalty values reflect it.

Table II

Nodal Values from Local Terms for t( = 1.0

Number
Solution Range Penalty of

x=0.00 x=.375 
x=.750 x=1.50 

x=3.00 
Elements

Analytic 1.00 .687 .472 .223 .050 -- --

Mesh 1 1.00 -- .316 .116 .042 .300 9

Mesh 2 1.00 -- .413 .157 .056 .271 13

Mesh 3 1.00 -- .389 .159 .057 .278 13

Mesh 4 1.00 .637 .385 .144 .052 .264 20

Mesh 5 1.00 .657 .423 .131 .028 .247 32

The inclusion of Mesh 3 was to test the sensitivity of

the answer to the orientation of the elements. Additionally,

each mesh had one element with zero area as a test of the

routine's ability to handle extreme cases.
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For Mesh 5, for the nodes near the region where the

elements are concentrated, the finite element solution is

within 10 percent of the analytic solution. For a mesh of

only 32 elements, this is reasonable accuracy.

.' N%.
S.I In Mesh 5, the nodal values at x = 1.50 and x = 3.00 are

both further from the analytic solution than for most of the

earlier meshes. One possible reason for this is that the

style of Mesh 5 is very different from the other meshes. In

Mesh 5, the elements are concentrated in the upper right cor-

ner. This left some very large elements in the opposite cor-

ner. Another factor is that the shape of the elements near

these nodes is elongated. For the finite element method, the

preferred shape is a near equilateral, since this shape is

better at approximating a solution with different curvatures

0 in each direction.

In Table III, the M11 portion of the global matrix from

Mesh 4 is shown. This is the part of the global matrix which

couples the interior nodes to themselves. The symmetry,

bandedness, and sparseness are clearly evident. A little

inspection reveals that it is also positive definite. These

are all the features expected. The banded structure is typi-

cal whenever an orderly numbering of the nodes is done and,

like symmetry, it can be used to speed program execution or

to reduce memory requirements. However, in a program which

uses automatic mesh refinement, the bandedness will be dis-

rupted with the addition of each new element. In order to
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maintain the banded structure, it is necessary to utilize a

€. *re-numbering routine. A well-constructed re-numbering rou-

tine will not only maintain the banded structure, but it will

also minimize its "bandwidth".

Table III

Local Term's M11 Global Matrix from Mesh 4

.73 .00 .00 .03 -.65 .00 .00 .00 .00 .00 .00 .00

.00 .99 .02 .00 .00 -.46 .00 .00 .00 .00 .00 .00

.00 .02 .89 .02 .00 -.17 -. 17 .00 .00 .00 .00 .00

.03 .00 .02 .63 .03 .00 -. 23 .00 .00 .00 .00 .00

-. 65 .00 .00 .03 1.43 .00 .03 -. 65 .00 .00 .00 .00

.00 -. 46 -. 17 .00 .00 1.01 .14 .00 -. 30 .00 .00 .00

0 .00 .00 -. 17 -. 23 .03 .14 .87 .05 .06 -. 16 .00 .00

.00 .00 .00 .00 -.65 .00 .05 1.16 .00 .06 -. 30 .00

.00 .00 .00 .00 .00 -. 30 .06 .00 .88 .09 .00 -.10

.00 .00 .00 .00 .00 .00 -. 16 .06 .09 .77 .09 .00

.00 .00 .00 .00 .00 .00 .00 -. 30 .00 .09 .81 .00

.00 .00 .00 .00 .00 .00 .00 .00 -. 10 .00 .00 .29

From Appendix D, it is clear that in every mesh there

are nodes whose fluxes are negative. The magnitudes are

small, but the values are clearly non-physical. The nodes

where these negative values occur are expected, from the

analytic solution, to be small or zero, so the difference is
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not great. Furthermore, small differences are not unex-

pected in a numerical technique, but in some applications a

*negative flux can be very inconvenient.

One potential solution is to use a technique called

quadratic programing (10). In this technique, constraints

are imposed upon the values of the nodes so they cannot go

negative. Clearly, this will not improve the approximation

to the extremization integral; indeed it can only worsen it,

--. but the effect should be small, and it may be more tolerable

than having negative values.

Non-Local Terms

The second use of the finite element equations was to

solve the benchmark problem where the blanket had a non-zero

scattering cross-section. The response of the scatter terms

was the main interest.

Five computer runs were done, one run for each of the

five meshes. The detailed results of these runs are included

in Appendix E. Some of the notable features are discussed

below.

It can be seen from Table IV that, as the number of ele-

ments in the mesh increases, the global penalty increases.

These results exactly parallel the results for the local

terms, right down to the inversion of Meshes 2 and 3. What

really stands out, however, is the difference in the magni-

tudes of the penalties between the local runs and the scat-

tering runs. In the scatter runs, the penalties are lower by
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a factor of nearly three. The decrease is anticipated since

the inclusion of the scatter terms smoothes the distribution

of the flux. A function with a smooth distribution is better

approximated by finite elements than a function whose distri-

bution is rapidly changing.

Table IV

Penalty Values for Scattering Benchmark Problem

Number
Solution Penalty of

Elements

Mesh 1 .125 9

Mesh 2 .109 13

Mesh 3 .114 13

Mesh 4 .102 20

IDMesh 5 .097 32

The penalty values for the individual elements followed

about the same patterns in the scattering solution as in the

absorption only solution. In particular, the relative fluc-

tuations from element to element were about the same in both

solutions.

The scattering benchmark was solved independently by

another numerical technique called Ln (9). This techniqup

was recently developed at the Air Force Institute of Technol-

ogy by LCDR Kirk Mathews, U. S. Navy, who graciously ran a

solution of the scattering benchmark problem. The Ln results

0
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served as a baseline solution whose accuracy was assumed to

be sufficient for the objectives of this study. The output

from the Ln program is the scalar flux, not the phase space

scalar flux that the routine SATE outputs, so some intermedi-

ate calculations were necessary before a comparison was pos-

sible.

The intermediate calculations were done by hand and were

simple linear interpolations between the grid points of the

Ln scheme and between the nodes in the finite element scheme.

A comparison of the interpolations is shown in Table V. The

comparison is for Mesh 5 only.

Table V

Scalar Flux for Scattering Benchmark Problem

Number
Solution Range Penalty of

%!, Elements
x=O.00 x=.375 x=.750 x=1.50 x=3.00

Ln .296 .191 .129 .064 .016

Mesh 5 .285 .235 .182 .091 .036 .097 32

., ',

The finite element solution disagrees with the Ln solu-

tion by about 35 percent. At x = 0, the value of the flux

is driven by the boundary conditions; therefore, the dif-

ference at this point is a rough measure of the accuracy cf

the intermediate calculations. The apparent uncertainty in

the intermediate calculations is clearly not enough to

67



T 7

explain the larger differences over the mesh as a whole.

The finite element solution is larger at every point,

which indicates a systematic error. It seems that the scat-

ter terms are over-active; that is, their contribution to the

solution is disproportionate to the contribution time from

the local terms.

Before addressing possible causes of the difference, the

global matrix should be inspected. The MII portion of the

-. global matrix from Mesh 4 is shown in Table VI. Mesh 4 is

shown instead of Mesh 5 for several reasons. First and fore-

most, Mesh 4 possesses all of the significant features from

-. .: any of the global matrices from the scattering runs. Addi-

tionally, the global matrix shown in Table III for the local

terms was also taken from Mesh 4, and so a direct comparison

. is possible. Lastly, the global matrix from Mesh 4 is the

largest from the set of five meshes that will conveniently

fit on a page.

The scattering global matrix displays a typical banded

structure and it is positive definite, both expected fea-

tures. Also, it is much less sparse than the global matrix

from the absorption only runs. This is because of the non-

localness of the scattering terms. The decrease in the

sparseness is also an expected feature. The critical fea-

ture, however, is the lack of symmetry. With the two digits

of precision used in outputing the matrix, it is clear that

many of the cross-diagonal terms are not equal. While the
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differences are small, this lack of symmetry is inconsistent

with a self-adjoint equation. Clearly, the local matrices

for the scatter terms are being computed incorrectly.

'." -.

Table VI

Scatter Term's M11 Global Matrix from Mesh 4

.70 -. 02 -. 02 .00 -. 65 .00 .00 .00 .00 .00 .00 .00

-. 02 .98 .00 -. 02 -.00 -. 47 .00 .00 .00 .00 .00 .00

-. 02 .01 .86 -. 03 -. 03 -. 18 -. 18 .01 .00 .00 .00 .00

.01 -.02 -.03 .57 .01 -. 01 -. 24 .00 .00 .00 .00 .00

-. 66 -.00 -.03 .00 1.39 -. 03 -. 01 -. 65 .00 .00 .00 .00

.00 -. 46 -. 18 -. 01 -.03 .98 .07 -. 02 -. 31 -. 00 .00 .00

.00 .00 -. 18 -. 24 -. 01 .08 .69 -. 03 .01 -. 20 .00 .00

.00 .00 .01 .00 -. 66 -.02 -.03 1.10 -. 05 .01 -. 31 .00

.00 .00 .00 .00 .00 -. 31 .01 -. 05 .76 -. 06 -. 10 -. 12

Z .00 .00 .00 .00 .00 .00 -. 20 .01 -. 06 .55 -. 02 -. 02

.00 .00 .00 .00 .00 .00 -.00 -. 31 -. 08 -. 03 .71 -. 03

.4 .00 .00 .00 .00 .00 .00 .00 .00 -. 12 -. 01 -. 03 .27

AN

There are at least three possible sources of the error.

%Oki First, the local matrices may not have been derived correct-

ly, second, the finite element equations may not have been

correctly coded into the computer routines, and third, the

calculation of the self-adjoint operator may be incorrect.

If either of the first two possibilities is the source of

% %
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the error, then correcting them should restore symmetry to

the global matrix.

.: 'The local matrices from the second and third scatter

terms are not symmetric (see the debug output in Appendix F).
a. This was apparent at the time of the derivation and was not

of concern for two reasons. First, the self-adjoint property

the usual terms found in self-adjoint equations. Recall that

the scatter terms in the extremization integral are to be

integrated over the entire range of M In addition, in this

derivation they are evaluated over one non-local element at

a time. For these reasons, the contributions to the local

matrices from the scatter terms are not expected to be sym-

metric.

What should happen, however, is that the combined con-

tributions to the local matrix from all the scatter terms be

symmetric. Obviously, this did not happen since the global

matrix was not symmetric.

The possibility remains of coding errors in the computer

program. Several errors were found in the final days of this

study and there are no guarantees that all the bugs were

eradicated.

In the results for the local terms, the fluxes near the

right boundary did not converge consistently as the mesh was

refined. It was attributed to the relative coarseness of the

meshes in that region. It is possible, however, that another

effect is in operation.
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1'" When the self-adjoint operator was derived, it was com-

" I '~ puted from . If instead, it is derived from the ex-

tremization integral (Equation 53), then a surface term

appears. The surface term does not change the equations of

motion, but it does prescribe that the conventional trans-

port equation be satified on the free boundaries, a proper

result. This term is missing in the derivation done in Chap-

ter II and, therefore, there may be an incorrect boundary

condition in effect. This would put strains on the solution

and would seriously perturb it near the free boundaries. It

would be useful to have a uniform mesh in investigating this

possibility.

In the scattering runs, not a single node was found to

have negative values, not for any of the meshes. This is

reasonable, since the process of scatter tends to smooth and

spread the distribution of the flux.

The real-time run time for the benchmark problem with

scatter, using Mesh 5, was 7 seconds. This was on a VAX 11/

780 with no other major programs running. The FORTRAN com-

piler on this particular machine is very inefficient, how-

ever, since the FORTRAN is translated into the programing

language C before compilation. In addition, this implementa-

tion of the finite element equations was not optimized for

computational efficiency.

-,7

.I ?, 71

is " - -, - -, . -. . ' '. , - . - ,. -. . - . . . - . . . . . , . , - . . . - . , ,



VI. Conclusion and Recommendations

Conclusion

This study accomplished three major tasks toward a gen-

eral solution of the transport equation using finite ele-

ments: the recasting of the transport equation into a self-

adjoint form, the derivation of the finite element equations

S.,i for the one-dimensional case with isotropic scatter, and the

implementation of these equations in a computer code. While

the solution has the expected features, some questions remain

about residual errors in the scatter terms.

Several features of the finite element solution stand

out. The integer nature of the cores of the local matrices

can be used to speed implementation by coding the subroutines

' ~ which utilize them in assembly language. The difficulty in

• deriving the scatter terms may become an insurmountable ob-

stacle when non-isotropic scatter is considered. The usual

approach used for non-isotropic scatter is to expand the flux

in Legendre polynomials. This will raise the order of the

terms in the scatter integrals and significantly increase the

difficulty of evaluating them. Since the local matrices are
needed for the penalty calculation, it is necessary either to

save them or to recompute them. The former is memory-inten-

sive; the latter increases the execution time. The process
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4 .*of making a mesh by hand is time-consuming and error-prone.

The lack of automatic mesh refinement means that large meshes

are not readily attainable. Lastly, the columnar scheme

reduces the flexibility of the finite element method, and

thus increases the required number of numerical computations

needed for a given level of accuracy. It does not seem to be

a severe limitation, but specialized applications might find

it cumbersome.

There are many benefits to be gained from using finite

elements to solve the transport equation: the ability to

concentrate the numerical calculations in regions where the

solution is rapidly changing, the symmetry and sparseness of

the global matrix, and the speed of the calculations involved

in the finite element approximation. This study has charted

a path toward the use of the finite element method that hope-

fully will be of benefit to those who may choose to advance

the technique even further.

Recommendations

The three potential sources of the error in the solution

should be investigated first. Once a working program is

achieved, the way is then clear to improve and expand upon

the technique explored in this study.

The basic technique explored in this study could be

improved in two ways. First, the amount of mathematical
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"- manipulations needed to derive the finite element equations

for the scatter terms should be reduced. This can be done by

giving some consideration to the development of theorems or

formulas, such as the triangular integration formula. For

the Legendre polynomial expansion o. the flux, these formulas

may indeed by a necessity. Additionally, the use of such

theorems should increase the confidence in the results of the

derivation.

Second, alternatives to the columnar scheme should be

considered. This does not seem to be a high priority, but

the current scheme does somewhat reduce the relative advan-

tage of the finite element method because it reduces its

ability to concentrate numerical calculations in selected

0 regions.

There are a few further investigations that can be done

to increase the range of problems which can be handled. Two

immediate needs are the inclusion of the finite element equa-

tions for sources, and the derivation of the finite element

equations for non-isotropic scatter. This method should be

considered incompletely tested until an automatic mesh

refinement scheme is developed. With this addition, this

method could be tested quantitatively for speed and accuracy.

The ultimate goal would be the extension to two dimen-

sions. Occasionally, a numerical technique works well in one

dimension, but, for one reason or another, cannot be
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implemented in two, much less three. The extension to two

'" dimensions would make this technique available for use in the

solving of true engineering problems.
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Appendix A

Evaluation of Five Element Integrals
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This appendix contains the derivations of the five

intervals presented in Table I in Chapter III.

The first integral is

JL 6~4 - (269)3

where A is the area of the local element. Expressing all

the integrals indexed by I as a vector, yields

fkd/= (270)

or, for compatibility with later integrals, as a matrix vec-

tor product, and with different scaling,

f L dA(271)

Defining

ma ,(272)

This becomes

7 Si~'~(273)
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where I is the unit vector.

The second integral becomes

. (4 TLX4ZJL (,,L,+ xL +-4L3 ) (274)

which, in vector form, is

fLi L, LL, I-Y

[ 14LaL, L2 Lz.L (275)

which, from the triangular integration formula with scaling,

is simply

x 4 5- J L (276)

which, from previous definitions, is

fi-.a4 A(277)

where

- 141 (278)

The third integral, by symmetry with the second, is

.40 LA -LMI 49.6 (279)
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where

(280)

The fourth integral becomes

fL~X~cA' fi ()e, t YL2  -~L 3)2~ (281)

or
i3

2 16 L; . Y L i L. (282)

*- and

L;) ZA' JJ'1 ~r~ (283)

from the triangular integration formula

f ifLj L,tA - k (284)

%'4

Li L -A 4 7 J k=jk (285)

*440

-A CI A k(286)
Li 4 Li v - 0

In matrix form, where the matrix indices are over j and k

not over L,

JL~~dA~LS x ~4JL~ 1  LL3Jd/j.(287)
f I LL3L U Q . ,3

or
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1

%- (289)

JL kLtc L3L, L3J(29
for 1, 2, 3, )i becomes

21 1 (290)

; !(291)

4.,I

/2-
LL, 4i I (292)

z "Z-

Note that

+ + -(293)

Including all three matrices, the fourth integral is
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Explicitly bringing out the columnar nature of the integral

2- 1 _
2 °z

,.:.. 2

2z

where the first row corresponds to C = 1, the second row cor-

responds to C = 2, etc. Changing the form of the expression

by multiplying the first vector with the matrix, then re-

arranging and combining terms, yields

f7if21 [ +j Y3[12 21A (296)

but since .= 3,then

JXVdi -0 a 4&Jf* (297)

Define

=43 :t *- (298)
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Thus,

)(O{ I!( YJ2~5 (299)

The fifth term, by symmetry with the fourth, is simply

Xn (300)
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PROGRAM SATE

* SOLUTION OF A SELF-ADJIiONT TRANSPORT EQUATION BY FINITE ELEMENTS

IMPLICIT UNDEFINEB(A-Z)

C **Indexes.
INTEGER I,J,K,TRIANG,NONLOCtLOCMAT

C **Output flagqs.
LOGICAL FMESHFNOL'ESFELEMFMTRXI,FMTRXB,FFORCE

C *~Mesh pa~rameters.
INTEGER MINDi,MIBNOD,MNTRIApMLOCMTSIZE

C **Maximum dimsensions of the global ma3trix and number of elements.
PARAMETER ( MINO' 64
+ 1I8NOD = 16
+ MNTRIA = 64
+ MLOCMT = 512
+ SIZE = MINOD+MBNOD )

C **Size date structures.

INTEGER PTNODE(MNTRIA,4) ,COLUMN(32,2)
REAL CORDNE'(KINOD+MBNOD,2),PSI(MBNOD) 1PHI(MINOI)
REAL AREAS(MNTRIA) ,PENLTY(MNTRIA)
REAL Ml1(MINO',MINOEO,M2(MINO',IBNO')
REAL M21(MBNO',MINOa) ,M2CI2(M.NOi',MBNO')
REAL MAT(MLOCMT,3,3)

C **Mesh variables.
INTEGER INTNOt',ENDNOt,NTRIAN
REAL RANGE,SIGMATvSIGMAS

C **Computations.
INTEGER IER
REAL AREA,?(3,3)
DOUBLE PRECISION MM(MINOr,MINOD),B(MINOE),WK(3*MINOI')
LOGICAL BUG

C $2Initia~lize -the element ch'2roctoriztics,
CALL INITAL(MNTRIA,MINO',MBNOri,NTRIAN, INTNO,4NNO',

* + PTNOr'E,COLUMNCORDN',PHI ,PSI ,AREAS,PENLrY,
+ M1I,M12,M21,M22,rRANGESIGMAT,SIGMAS,B)

C **Setup the output fla~gs,
FMESH = *TRUE,
FNODES = TRUE.
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FELEM = *TRUE.
FMIRXI = #TRUIE.
FMTRXB = *TRUE.
FFOFRCE = TRUE.

C S*Assemble the iiotrix.
LOCMAT = 1
11O 300 TRIANU'=1,NTRIAN

AREA = AREAS(TRIANG)
DO 310 I=1,3

DO 310 J=1,3
MAT(LOCMAT,I,J) = 0,

310 CONTINUE

CALL STREAM(TRIANG,AREA,MNTRIA,SIZE,PTNO'E,CORDND,M)
CALL ASEMEBL(TRIANG,TRIANGMNTRIA,MINOD,MBNOD,INTNOD,BNENODr

+ DO30I13PTNOt'E,M,M11,Ml2di21jM22)

DO 320 =1,3

320 MAT(LOCMAT,I,J) = MAT(LOCIIATlI,J) + M(I,J)

CALL ABSORB(TRIANG,AREAS!GMAT,M)
-: + CALL ASEI1EL(TRIANG,TRIANG.MNTRIAMINOD,MNO,INTNOD,BN'NODi,

+PTNODE,Mp1111,M12,M21 ,t22)
DO0 330 1=1,30 DO 330 J=1,3

330 MAT(LOCMiAT,I,J) = MAT(LOCMAT,I,J) + M(IJ)

LOCMAT = LOCiIAT +1
NONLOC = COLIJMN(PTNODE(TRIANG,4) ,1)
DO 355 K=1,COLUMN(PTNODU(TRIAN3,4),2)

CALL SCAT1(TRIANGNONLOC,MNTRIA,SIZE,PTNODE,COR'NI,AREAS,

+ SIGMAT,SIGMASpM)
CALL ASEMF'L(TRIANG,NONLOCL,MNTRIA,t INOD,MBNOD,INTNODI4NDNOD

+ PTNOE'E,M,I111 ,~12,l21 ,M22)
DO 340 I=1,3
DO 340 J=1,3

-~340 IAT(LOCMAT,I,J) = MAT(LOCMATpI,J) + M(IJ)

CALL SCAT2(TRIANG,NONLOC,lINTRIA,SIZEPTNODE,CORDNDAREAS,
+ SIGMAS,M)

CALL ASEME'L(TRIANGPNONLOC,MNTRIA,MINOD,MBNOD,INTNOD,DNOD,
* ~+ D3*01,3PTNOI'E,M,MII ,M12,M21 ,M22)

DO 350 J=1,3
350 MAT(LOCJIAT,I,J) = MAT(LOCMAT,I,J) + M(IJ)

CALL SCAT3(TRIANG,NONLOC,MNTRIA,SIZE,FPTNODE,CORDND,AREAS,

~ + SIGMAG,11)
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CALL ASEMBL(TRIANG,NONLOC,MNTRIA,MINOI,MBNOD, INTNOE',PNEINOD,
+ FPTNO'E, M, M I , M12, M2 1 ,M22)

DO 360 I=1,3
110l 360 J=lt3

*.360 MAT(LOCiIAT,I,J) MAT(LOCMAT,I,J) + M(I,J)

NONLOC = NONLOC +1
LOCIIAT = LOCMAT +1

355 CONTINUE

C -- Record the assembling of the matrix.
CALL DEBIJG(OSATE ',BUG)
IF(BUG) THEN
PRINT *, 'SATE** TRIANG= ',TRIANG
CALL OUTPUT(MNTRIA,MINEI,MJNo~i,NTRIANINTNOD,BNINOr,PTNODE,

+ CORi'Nt,PHI,PSI,AEREAS,PENLTY,M11,M1,M12IM221,B,
+ .FALSE.,.FALSE.,.FALSE.,FMTIRXI,.FALSE.,.FALSE.)

ENDIF

300 CONTINUE

C ** Compute the force vector.
DO 400 I=1,INTNOD
BM(I= 0.
DO 400 J=1,BNDNOD
TIM = BM(I - 112(I,J)*PSI(J)

400 CONTINUE

C **Record the pre-solution status.
CALL DEEUG(ISATE IpBUG)
IF(BUG) THEN

CALL OUTF'UT(MNTRIA,MINODMBNO',NTRIAN,ITNOD,4NDNOI,FTNODE,
+ CORDaPHIF9IAREAS-,PENLTY,N11,p112,t121,H22,B,
+ FIIESHFNOFES ,FELEM ,FMTRXI ,FMTRXBFFORCE)
ENDIF

C **Convert to double precision for IMSL. Also, advert decomposition.
[D0 500 I=IpINTNOD

['0 500 J=1,INTNOI'
MII(I,J) = t111(TJ)

50 CONTINUE

C ** Solve the SATE matrix equation.
CALL LEOIF(MM,iINOrI,INTNO',INTNO',B,MINO', 1 OWK, IER)
WRITE(*,'(/'LEOIF/IIER= ',17,/)') IER

C ** Convert the LEQIF returned nodal values from B to PHI.
*DO 600 I=1,INTNOD

FHI(I = BMI
600 CONTINUE

*P *'l ~ C S*Compute the penalty of each element.
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CALL PENAL(NTRIANHNTRIAMINODMBNOD.MLOT.TTflTNrItIfINlrFIl F
* .+ COLUMNPPHI,PSI,MAT,Ml,M2,H2,i12,F'-,ENLTY)

C *Output the results.
CALL OUTPUT( MNTRIA ,MI Nor', MNOD ,NTF;IAN, INTNOD , E(NINOI,TNOrE!,

+ CORDNE',FPHI,FPSI,AREAS,PENLTY,Ml,1t2,21,MH22,E,~
+ FMESH,FNOE'ES,FELEM,FMTRXI,FMTRXE,FFORCE)

STOP
END
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.- SUBROUTINE DOCUM

I EDOCUMENTATION

* iLt Allan Gaff

S.*December 31, 1983 *

* This program solves the self-adjoint transport equation in
a finite element scheme.

* SUBROUTINE GLOSSARY *

SATE - The calling program. $
DOCUM - The documentation routine.
INITAL - Initializes data structures and element constants.
STREAM - Computes the contribution from the streaming term.
ABSORB - Computes the contribution from the absorption term# S

* SCATI - Computes the contribution from the 1st scatter term, *
IC SCAT2 - Computes the contribution from the 2nd scatter term. *

-a S SCAT3 - Computes the contribution from the 3rd scatter term. *
* CASEDT - Determines symmetry or assymmetry between elements. *
* ASEMBL - Assembles the global matrix from the local matrices.

p * PENAL - Computes the minimization integral for each element. *
* OUTPUT - Prints selected intermediate and final data. *
S DEBUG - A low over-head debugging routine. *

* PARAMETER GLOSSARY *

$ MNTRIA - Maximum number of elements. *
MINOD - Maximum number of interior nodes.
MBNOD - Maximum number of boundary nodes.

* MLOCMT - Maximum number of local matrices.
P1 - Ratio of diameter of a circle to its circumference.

* VARIABLE GLOSSARY *

S./ * NTRIAN - Number of elements in this mesh. *
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" INTNOD - Number of interior nodes in this mesh.
. BNDNOD - Number of boundary nodes in this mesh.

LOCMAT - Number of local matrices.
* LOC - Number of local matrices.
* SIGMAT - The total macroscropic cross section. *
* SIGMAS - The absorption macroscropic cross section,
* RANGE - Range of the x-a:xis in units of sigmat.
* * I,JK - Indexes for general use.
* II - The row index on the global matrix.,
* JJ - The column inde>: on the global matrix.

TRIANG - Integer specifying the current local triangle.
* NONLOC - Integer specifying the current non-local triangle.
* X(3) - X-coordinate of the ith vertex of the current element. $
* U(3) - Mu-coordinate of the ith vertex of the current elements
* A(3) - X coefficient in the linear finite element approximation.
* B(3) - Mu coefficient in the linear finite element approximation.
* C(3) - Constant coefficient in the linear finite element approx.
* AREA - Area of the current triangle,
- AREASO- Areas of the triangles. 
* PHIC) - Vector of the global interior nodal values.
* PSIC) - Vector of the global boundary nodal values.
* PHILOC(3) - Vector of the local interior nodal values.
* PHIF'RM(3) - Vector of the non-locol interior nodal values, $

k.* ?ll(,) - The global matrix, interior node section.
* M12(,) - The global matrix, boundary node section, off diagonal.
* M21(,) - The global matrix, boundary node section, off diagonal.
* M22(,) - The global matrix, boundary node section, on diagonal.
* MM(,) - The global matrix, interior node section, double-p copy.
* M(3,3) - The local matrix.

* MAT(,,)- Record of local matrices. Used to compute the penalty.
B 0C) - Force vector of the SATE matrix equation. $

* Ml(,) - Integer matrix from scatter terms, X(l)-coefficient.
MAC,) - Integer matrix from scatter terms, X(1)X(2)-coefficient.

* MB(,) - Integer matrix from scatter terms, constant coefficient.
* MC(,) - Integer matrix from first scatter term, symmetric cases.
* MD(,) - Integer matrix from first scatter terms, antisymmetric 3.

* PTNODE(,3)- Pointers to the global nodes from the element vertexes. 
CORDND(,2)- Coordintes of the global nodes,

* COLUMN(,2)- Number of elements in each column, $
* SIZE - The total number of global nodes,
* P - Common foctors in the local matrix*

* PP - Common factors in the local matrix.
* PEN - The penalty va]ue from the working element.
* PENLTY() - The penalty values for ,all the elements.
* WKC) - The 3*PINOD worKing space for the IMSL routine LEGIF.
* CASE - Indicates symmetric or assymetric case between elements,
* [UG - Debugging flag used to select the debugging routine. *
* FMESH - Output option flag for mesh definition.
* FNODES - Output option flag for the nodal vectors. *
* FELEM - Output option flag for element charactoristics.
* FMTRX1 - Output option flag for global matrix, *. '' FMTRXB - Output option f'lag for global matrixt
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* .'.* FFORCE - Output option flog for force vector. *(
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->SUBROUTINE INITAL(MNTRIAMINOE,MNO',NTRININTNO',NNO',
+PTNODE, COLUIMN, CORINEI, PHI, PSI, AREaS,FPELTY,

* INITIAL COMPUTATIONAL DATA*

IMPLICIT UNr'EFINED(A-z)

C **Indexes.
-> ~ INTEGER I,J,K,TRIANG,NOIE

C **Passed variables.
INTEGER MNTRIA,HINO',MBJOD

INTEGER NTRIAN, INTNOD,BNDNOD,IICOL
INTEGER PTNOI'E(MNTRIA,4),COLUMN(32'-,2-)
REAL COREIND(MINOD+'MBNOI,2)
REAL PHI(MINOD),PSI(MBNOI)
REAL AREAS(MNTRIA) ,PENLTY(MNTRIA)
REAL M1I (MINOI',MINOD),M12(MINODphPNOD0
REAL t21(MBNOD,MINOD) ,M22(MBNO',ME4NOD)
REAL RANGE,SIGMAT,SIGMAS
DOUBLE PRECISION B(MINO')

C **Computations.
PREAL AREA,U(3),X(3)

CHARACTER TRASH*I6
LOGICtiL BUG

C **Read in the mesh definition.
OFEN(3,FIL&E'ata/mesh')

REWIND 3

REAI'(3,'(A16)') TRASH
READ(3,'(4(1X,I7))') NTRIAN,INTNOD,BNI'NOD,IJCDL
F4EAE'(3, '(iX)')

READ(3,'(A16)') TRASH
REAE(3'(3(1X,F7.3))'-) RANGE,SIGMAT,SIGMAS

RANGE = RANGE*SIGMAT
REAE'(3,'(1X)')

REAE'(S,'(A16)') TRASH
D'0 50 I=1,NTRIAN

* ~*:'READ(3,'(1X,17,8X,4(1X,17))') TRIANG,(PTNODE(I,J),J=1,4)
50 CONTINUE

REA['(3,'(1X)')
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REAE'(3,'(A16)') TRASH
DO0 60 I=1,NCOL

RiEAE'(3,'(3(1X,17,8X))') TRIANG,(C0LUMN(I,J),J=1,2')
60 CONTINUE

REAEI(3,'(lX)')

READ(3,'(A16)') TRASH
['0 70 I=1PINTNO'+FIM'O'

REAE'(3,' (1X,17,8X,2(1X,F7*.3))') NODE,(CORE'ND(I,J) ,J=1,2')
COR'NL'( 1,) = COJRDNDII,1)*RANGE

70 CONTINUE
REAEI(3,'(1X)')

REAID(3,'(A16)') TRASH
DO 80 I=1,E4NDNOI

80 CONTINUE
REAEI(3,'(lX)')

CLOSEM3

AC **Compute the areQs of each of the tria~ngular elements.
DO 100 TRIANG=1,NTRIAN

UM=CRN(TODiRAG3,1

U(2) = CORDNE'(PTNOEE(TRIANG,2),2)

X(2) = CORI'NE(PTNOEE(TRIANG,2)yl)
X(1) =COREND(PTNODE(TRIANG,1),l)
AREA =ABS( .5*( U(3)-U(2) )(X(2-)-X(1)
IF(AREA .LT. 1.OE-15) AREA =1.01:-15
AREAS(TRIANG) =AREA
PENLTY(TRIANG) =0,

100 CONTINUE

C ** Zero the global matrix and the nodal vector.
110 200 I=1,INTNOD

PHI(I = 0.
£10 210 J=1,INTNOD

*210 M11(IJ) = 0.
DO 220 K=1,BNI'NOI'

M12(I,K) = 0.
220 M21(KI) = 0.

*200 CONTINUE
DlO 230 I=1,BNI'NOD

110 230 J=1,BIqiNOD
t122(IJ) = 0.

* :-.230 CONTINUE

CALL DEBUGC'INITAL',EBUG)
IF(BUG) THEN

* PRINT *, 'INITAL***'
*.* *.,CALL OUTPUT(MNTRIA,MINO',myNo,NRIANINTNOD,N'O',TNO'E,
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~~qJ ~ + .TRUE. ,.TRUE. ,.TRUE. ,.TR~UE.,.TRUE., .TRUE.)
WRT(*'32l,4,XI4)' ((AUN(,)J +-)I=,CL

ENDIF
RETURN
END
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SUBROUTINE ASEtIBL(TRIANG,NONLOC,NTRIA,MINOi,MINOD,INTNOD,4NEN1i,

* Assemble the Glob,21 Matrix*

IMPLICIT UNr'EFINEDz(A-Z)

INTEGER TRIANG,NONLor,MNTRIA,MINOD,MBNODI,INTNOi,BN'NOE'
INTEGER PTNODE(MNTRIfi,4)
REAL Mi(3,3)

REAL M11UIINODMINOD),Ml2(MINO',MNOI)
REAL M21(MBNOD,MINOD) ,M22(MBNODi,HBNOD)

INTEGER I,J,II,JJ
LOGICAL BUG

C **Relocate the -local matrix elc'ients into the global matrix.
DO 100 I=1,3

DO 100 J=1,3
II = PTNODE(TRIAN.,I)
JJ = PTNODE(NONLOC,J)
IF( (II .LE. INTNOI) W (J LE, INTHOD) )THEN

till(II,JJ) = MI1(IIJJ) + M(I,J)
ELBE IF( (II .LE. INTNOD' .ANL'. (JJ *GT. INTNOD) ) THEN
M12(II,JJ-INTNOD) = M12(iLI,JJ-INTNOI) + ?i(IPJ)

ELSE IF( (TI .GT, INTN3D) *AND. (JJ .LE. INTNOD) ) THEN
M21(II-INTNOD,JJ) =M21(II-INTNO',JJ) + M(IPJ)

"S..ELSE IF( (II .GT. INTNOD) .AND, (JJ *GT. INTNOD) ) THEN
j. M22(II-INTNO',JJ-INTt,)'D) = M22.(II-INTNOE',JJ-INTNOD)

+ +M(I ,J)
ELSE
PRINT *, 'Impossible option in ASEMIBL#'

ENDIF
100 CONTINUE

CALL DEBUG('ASEMBVBPUG)
IF(BUG) THEN

F'RINT *, 'ASEMBL***8
DO 8800 11=1, INTNOE'+BNE'NOD

IF(1I *LE, INTNOD) THEN
WRITE(*,6210) (Mll(IIJ) ,J=1,INTNOI), (M12(IlJ) ,J=1,PNDNOD)

6210 FORMAT(1X:',2OuX,F6.3))
a,. WRIrE(*,6220)

6220 FORMAT(lX,':')
*v ~*ELSE

'~ I II -INTNOD



ENDI F
8800 CONTINUE

ENI'IF

RETUR~N
END
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SUBROUTINE STREAM (TR I ANG, AREA,HMNTR IA, S IZE, PTNOIE.OR DI,M)

* STREAMING TERM*

IMPLICIT UNDEFINED(A-Z)

INTEGER TRIANG,M4TRIA,SIZE,PTNODE(MNTRIA,4)
* REAL AREA,COREND(SIZE,2)

INTEGER IJ
REAL I(3),A(3),FpPP,M(3,3)
LOGICAL BLIG

C **Compute the mu-coordinates of eoch vertex.
U(1) = COREND(PTNODE(TRIANG,1),2)
UC2) =CORINPTNODETR1ANG,2),2)
U(3) = CORE'ND(PTNOEE(TRIANG,3),2)

C **Compute the common factors in the local matrix,
V P = U(1)*(U(1)+U(2)) + U(2)*(U(2e_)+UC3)) + U(3)*(U(3)+U(1))
V PP = SGRT(P/(24.*AREA))

C **Compute the x-coordinate coefficient for each vertex.
Adt P(U2-()

A(2) = PP*(U(2)-U(3))
-XIAM2 = PP*(U(3)-U(1))

'NWC **Compute the matrix elements.
I '0 100 1=1,3

110 100 J=1I
MCIJ) =A(I)*A(J)
M(J,I) = ?1(IJ)

100 CONTINUE

CALL DEBUG( 'STREAM' ,BUG)
7::- IFCDUG) THEN
*PRINT *? 'STREAM*** TRIANG=*,TRIANG

DO 8800 j~jp3
WRITE(*,8600) (M(I,J),J=1,3),U(I),A(I),P,PP

8600 FORMAT(1X,3(F7.3,IX),4X,4(F7.3,3X))
8800 CONTINUE

ENDIF
RETURN
END
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SUBROUTINE ABSORB(TRIANSAREA,SIGMAT,M)

* ABSORPTION TERM *

K-.. IMPLICIT UNDEFINED(A-Z)

INTEGER TRIANG

REAL AREA,SIGMAT

REAL M1(3,3)

INTEGER IJ
REAL PP
LOGICAL BUG

* -a.

. C C* Compute the common factors in the local m trix elements.
PP = SIGMAT*SIGMAT*AREA/12.

C *8 Fill in the local matrix,
M(I1) = PP2.
M(1,2) = PPI.

"- M(1,3) = PP*I,

M(2,1) = PP*I.
M(2,2) = PP*2,
M(2,3) = PPM.,

.4'

M 8(3,1) = PP*l.
M(3,2) = PPMI.

. 8(3,3) = PP*2.

CALL DEBUG(UABSORB',BUG)
' " IF (BUG) THEN

PRINT 8, 'ABSORB*** TRIANG=',TRIANG
DO 8800 1=1,3
WRITE(*,8600) (M(IJ),J=1,3),PP

8600 FORMAT(1X,3(F7.3,2X),5X,f7.3)
8800 CONTINUE

ENDIF
RETURN
END
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SUBROUTINE SCAT1(TRIANG,NONLOC,MNTRIA,SIZE, PTNODE,CORDN',AREAS,
+ SIGMAT,SIGMAS,M)

-* First Sc,3tter Tern, *

IMPLICIT UNDEFINED(A-Z)

INTEGER TRIANG,NONLOC,MNTRIA,PTNOE(MNTRIA,4) ,SIZE

REAL AREAS(MNTRIA),CORDNII(SIZE,2),SIGMAT,SIGMAS

REAL M(3,3)

INTEGER I,JCASE
REAL MC(3,3),MD(3,3),ALPHA,AREASQ,X(3),D,P
LOGICAL BUG

DATA (MC(1,J),J=1,3) / 4, 3, 3 /
+ (MC(2,J),J=1,3) / 3, 6, 6 /
+ (MC(3,J),J=1,3) / 3, 6, 6 /

DATA (MD(1,J),J=J,3) / 4, 3, 3 /

*.. + (MD(2,J),J=1,3) / 3, 1, 1 /
+ (MD(3,J),J=1,3) / 3, 1, 1 /

C * Compute the coefficient of the 3rd integral.
ALPHA = SIGMAS*(SIGMAT - SIGMAS/2.)

C ** Compute the product of the areas of the local and nonlocal elements.
AREASO = AREAS(TR'IANG)*AREAS( NONLOC)

C ** Compute the width of the column containing these elements.
""-' X(1) = CORNID(PTtNO[E(TRIANG,I),I)

X(2) = CORDND(PTNODE(TRIANG,2),1)
D = ABS(X(2) - X(l))

C $* Compute the constant factor in the local matrix#
P = -ALF'HA*AREASQ/(30.*D)

C E* Determine the case.
CALL CASEDT(TRIANG,NONLOC,MNTRIA,SIZE,PTNODE,CORDND,CASE)

C -- Symmetric case, fill the local matrix using M.

IF(CASE .EO. 14) THEN
DO 100 1=1,3

* DO 100 J=1,3
N(I,J) P*NC(IJ)

- 1 100 CONTINUE
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C -- Assymmuetric case, fill the 1OC-31 astrix using Mi.
ELSE IF(CASE *EQ. 23) THEN

['0 110 1r3
* DO 110 J=1,3

110 CONTINUE =PMIIJ

* 4 ELSE
PRINT *r 'Impossible case in SCATi.'

ENDIF

CALL DEBUG(8sCArl ',BUG)
IF(BUG) THEN

-PRINT *, 'SCATI*** TRIANG= *,TRIANG,' NONLOC=*,NONLOC
PRINT *, IM(I,JPo

WRITE(*,'(3(2X,F6.3))') (t1(2,J),J=1,3)
WRITE(W,(3(2X,F6.3))) (M32,J),J=1t3)

PRINT -,D P ALPHA AREASQ'
PRINT *,t,P,ALPHAAREASO

ENDIF

RETURN*0 END

4.0



* SUBROUTINE SCAT2(TRIANG,NONLOC,iNTRIA,SZE,PTJDE,CORDN',AREAS,
+ SIGMASM)

* Second Scatter Term

* . IMPLICIT UNE'EFINEL'(A-Z)

INTEGER TRIANGNON4LOC,MNTORIA,PTNOriE(MNTRIA,4) ,SIZE
REAL AREAS(MNTRIA),CJRL'Ni(SIZE,2 "),SIGMAS

REAL 1(3r3)

INTEGER IJ,CASE
REAL MB(3,3),M(3,3),AJP(3),X(3),U(3),UP(3),B(3),t',P
LOGICAL BUG

6DATA (ItB(1,J)YJ=1,3) / 4, 3, 3/
+ (MB(2,J),J=l,3) / 3, 8, 4/
+ (MB(3,J),Jl1,3) / 3, 4, 8/

DATA (M(1,J)rJ=l,3) / 6, 2, 2I
+ (Ml(2pJ),J=1,3) / 2, 2, 1
+ (M1(3,J),J=l,3) / 2, 1, 2 d'

C **Compute the width of the column containing these elements.
X(1) = CORE'ND(PTNOIIE(TRIANG,1),1)
X(2) = CORDND(PTNOt'E(TRIANG,2),1)
D = ABS(X(2) - X(l))

C **Compute the mu coordinates of the local element#
U(1) = CORDND(PTNOEETRIAIIO,1),2)
U(2) = CORE'NE(PTNOtE(TRIiANG,2),2)
U(3) = COREND(PTNOEE(TRIANG3),2)

C **Compute the mu-prime coordinates of the non-local element*
UP(1) = COREINr(PTt1OEE(NOIJLQC,1),2)

UP(3) =CORFDND(PTNODE(HONLOCp3)v2)

C **Compute the x coefficient of the non-local element's linear
C -- interpolating function.

AJP(l) =VP(2) - UF(3)
AJP(2) =UP(3) - UP(1)

AJP(3) = UP(l) - UP(2)

C **Compute the constant factor in the local matrix,
P =(SIGIAS/2.) *(AREAS(TRIANG)/(60.*D))
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- C **Determine the case.
CALL CASEEIT(TRIANG,NONLOC,MNTRIA,SIZE,PTNOEECORINII,CASE)

C -- Symmetric case, fill the local matrix using MBI.
IF(CASE .EQ. 14) THEN

DIO 100 1=1,3
DO0 100 J=1,3

100 BC!) = P*MF'(I,J)*U(J)
['0 110 I=1,3

['0 110 J=1,3
110 M(I,J) = B(I)*AJP(J)

C -- Assymmetric case, fill the local matrix using I.
- ELSE IF(CASE .EQ, 23) THEN

DO 120 I=1,3
[D0 120 J=1,3

120 B(I) = P*M1(IJ)*U(J)
DO 130 I=1,3

13013 J=1,3
130 M(IpJ) = B(I)*AJP(J)

ELSE
-S~f PRINT *, 'Impossible case in SCAT2.'

ENDIF

CALL EEBUG(OSCAT2 3,8U6)
IF(EiUO) THEN

PRINT *, 'SCAT2*** TRIANG= *,TRIANG,l NONLOC=',NONLOC
P'RINT ,*j a M(IJ) U UP AJP;

-~ ~WRITE(*t'(6(d1X,F6.3))') (M(1,J),J=1,3),U(I),UP(1),AJP(1)
WRITE(*,'(6(2XF6.3))') (I(2,J),J=1,3),U(21),UP(2) ,AJP(2)
WRITE(*,'(6(2X,F6*3))') (M(3,J),J=1,3),U(3),UP(3),JP(3)
PRINT *, D Ps

PRINT *,1'P
ENDIF

RETURN
END
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SUBROUTINE SCAT3(TRIA NG,NONLOC,MNTrRIfA,SIZE,PTNODE,COErDND,AREAS,
+ SIGMAS,M)

.9.... *Third Scatter Term*

IMPLICIT UNDiEFINED(A-Z)

INTEGER TRIANG,NONLOC,MNTRIA,PTNOiE(MNTRIA,4) ,SIZE
REAL AREAS(MNTRIA),CORlNII(SIZE,2L),SIGMAS

REAL h(c3,3)

INTEGER IvJ,CASE
R~EAL MC('33),ME'(3,3),X(3),UP(3),AJP(3)I'(3),E',P
LOGICAL BUG

DATA (MC(lJ),J=1,3) / 4, 3, 3 /
+ (MC(2,J),J=1,3) / 3, 6, 6 /
+ (MC(3,J),J=1,3) / 3, 6, 6 /

DATA (MD(1J),J=1,3) / 4, 3, 3 /

+ (MI(2,J),J=1,3) / 3, 1p 1 /
+ (MI(3,J),J=I,3) / 3, 1, 1 /

C **Compute the width of the column containing these elements.
X(1) = CORDND(PTNOE'E(TRIANG.1),1)
X(2) = COREND(PTNODE(TRIANG,*2),l)
D = ABS(X(2) -X(1)

C **Compute the mu-prime coordinates of the non-local element.
UP(1) = COREIND(PTNlo[1E(NONLOCvl),2)

L/.LJP(2) = CORE'ND(PTNOEE(NONL0C,"'),2)
UP(3) = COF~tN(FTUGEE(NONLOC,3),2)

C **Compute the x coefficient of the non-local element's linear
C -- interpolating function.

AJP(1) = UJP(2) - UF(3)
AJP(2) =UP(3) - UP(1)
AJP(3) = UP(l) - UP(2)

C C Compute the constant factor in the local matrix.
P -CSIGMAS/2#) * (AREAS(TRIiN()/U(O,**'))

C **Determine the cases
4, CALL CASEIT(TRIANGNON4LOCMNTRIASIZ&EPTNO'E,CFR[INEI,CASE)

C -- Symmetric case, fill the local matrix using MS.
IN(CASE *EQ* 14) THEN
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110 100 1=1,3
1'0 100 J=1,3

100 B(I) = P*MC(I,J)*UP'(J)
DO 110 I=1,3

['0 110 J=1,3
110 M(I,J) = E(I)*AJFCJ)

C -- Assymnetric case, fill the local matrix using MI.
ELSE IF(CASE .EO. 2-3) THEN

['0 120 1=1,3
DO 120 J=1,3

120 B(I) = P*MD(I,J)*UP(J)
DtO 130 I=1,3

* ['0 1.30 J=1,3
130 M(I,J) = B(I)*AJP(J)

ELSE
PRINT *, .'Impossible case in SCAT3.'

ENDIF

CALL DEBUG('SCAT3 ',BUG)
IF(BUG) THEN

PRINT $,'SCAT3*$* TRIANG= ,TRIANG,' NONLOC=',NONLOC
PRINT *,'I(I,J) UP AJP'
WRITE(*,'(5(2X,FS.3))') (M(1,J),J=1,3),jP(1),AJP(1)0 ~WRITE(*,/(5(2XF6.3))') (M(2,.J) ,J=1,3) ,UP(2) ,AJP(2)
WRITE(*,'(5(2X,F6.3))') (M(3,J),J=1,3),UP(3),AJP(3)

a-)PRINT *, 'D P

PRINT t, DP
ENDIF

RETURN
END
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SUBROUTINE CASEDT(TRIANG,NONLOC,MNTRIA,SITZEPTNO'E,COR[ND,CASE)

* Determine case of the local and non-local elements. *

-5.%; IMPLICIT UNDEFINED(A-Z)

INTEGER TRIANG,NONLOC,MNTRIA,SIZE,FTNO'E(MNTRIA,4)
REAL COREND(SIZE,2)

INTEGER CASE

REAL X(3),Y(3),LOCLNOLOCL
LOGICAL BUG

C-** Compute the coordinates of the columnar ends of the triangles.
X(1) = COREND(PTNO1.E(T RIA NG,1),1)
X(2) = CORDND(PTNODE(TRIANG,2),1)
Y(1) = CORDND(F(TNODE(INONLOC,1),1)
Y(2) = CORIND(PTNOrE(NONLOC,2),I)

C *5 Determine the direction in which the triangles are pointing.
LOCL = X(2) - X(1)
NOLOCL = Y(2) - Y(1)

C *5 Determine the case.

IF(LOCL*NOLOCL .GT. 0.) THEN
CASE = 14

ELSE
CASE = 23

-; ENDIF

CALL DEBUG('CASEDT',BUG)
IF(BUG) THEN
PRINT *, 'CASEDT*** CASE= ',CASE

. PRINT 5, 'LOCL= *,LOCL,' NOLOCL= ',NOLOCL
. ENDIF

RETURN
END
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SUBFROUT INE PENAL ( TRIAN, H'JTRIA, MINOT, MNOE'. MLOCMT, I NTNOI', IurNOEI,
+ PTNODE,COLUMI,FHI ,PSI , mATr,mI ,M12,7t-1,122,'ENLTY)

* FPENALTY FUNCTION*

IMPLICIT UNE'EFINED(A-Z)

* INTEGER NTRIAN,MNTRIA,MINOI,MBNO?,MLOCMT,INTNOD,BN2NOEI

INTEGER F'TNOEE(MNTRIA,4) ,COLUIIN(32:,2-)
REAL PHI(MINOD),PSIMNOD)
REAL MAT(MLOCNT,3,3)
REAL M11I(MI NOD, MI NOD) ,M12(MINOI, MBNOI)
REAL M21(MBNOD,MINO') ,M2;2(MBNOi,M~LO')

REAL PENLTY(MNTRIA)

INTEGER IJ,KTRIANG,IJONLOC,II,JJ,LOC
REAL PHILOC(3),PHIPRM(3),PEN
LOGICAL BUG

CALL EEBUG('PENAL ',BUG)
LOC = 1

C **Compute the cummulative penalty function element by elemenst.,
DO 100 TRIANG=1,NTRIAN

PEN = 0.

C* Compute the local terms penalty
C- Compute this element's phi vector.

II = PTNO['E(TRIANG,I)
IF(II .LE. INTNODa) THEN

* PHILOCMI = F'HI(II)
ELSE

PHILOC(IM PSI(II-INTNOI)
ENDIF

110 CONTINUE

IF(BUG) THEN

PRINT *, ENAL*** TRIANG= *,TRIANGI
PRINT *,' PEN PHILOC(I MAT(LOC,I,J) PHILOC(J)*

END IF

['0 120 I=1,3

DIO 120 J=1,3
PEN = PEN + PIHILOC(I)*MAT(LOCI,J)*PHILOC(J)iFBG THE

WRITE(*,61210) P-ENPH'ILOC(I),I,MAT(LOC,I,J) ,J,PHILOCCJ)
.. *6120 FORtAT(1XF7,3,7X,3(FZ,3,2-X,I13,2 X)) '
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~.''120 CONTINUE

C **Compute the nan-local termis penalty
LOC =LOC+ I
NONLOC = COLUMN(PTNOIE(TRIANG,4) ,l)
DO( 355 K=1, COLUMNF(TNO'E (T:IAN3, 4), 2)

C -- Compute this element's non-local phi vector.
['0 130 J=1,3

JJ = PTNO['E(NONLOC,J)
IF(JJ .LE. INTNOI) THEN

.1~, PHIPRM(J) = PHI(JJ)
ELSE

PHIPR?1(J) = PSI(JJ-INTNO')
ENDIF

130 CONTINUE

V IF(BUG) THEN
PRINT *p 'PENAL*** TRIANG= ',TRIANG
PRINT *, PEN PHILOC(I) ?AT(LOC,I,J) PHIPRNi(JP'

A ENDIF

DO10 pY

0* DO 140 =1,3

PEN = PEN + P'HIL.OC(I)*MAT(LOC,I,J)*PHIPRM(J)
IF(BUO) THEN

WRITE(*,6120) P'ENPHILOC(I),I,MAT(LOCI,J),J,PHIPRr'(J)
- ENDIF

140 CONTINUE

LOC = LOC + 1
NONLOC = NONLOC + 1

A355 CONTINUE

A FENLTY(TRIANG) = .5*PEN
100 CONTINUE

C **Compute the globol penalty.
PEN = 0.
DO 200 II=1,INTNOD+4NINO

DO 200 JJ=1,INTNO'+11NtNOD
IF( (II .LE. INrNOrt) *AND. (JJ *LE. INTNOD) )THEN

PEN = PEN + PHI (II)*Mi1(II,JJ)*FHI(JJ)
ELSE IF( (II *LE, INTNOD) .AND, (JJ *GT. INTNOD) ) THEN

PEN = PEN + PHI (II1)*M12(I I JJ-lNTNO) *PSI (JJ-INTNO')
0 ELSE IF( (II .GT, INTNQD) *AND. WJ *LE. INTNOD) ) THEN

PEN = PEN + PSI(II-INTNOE')*M21(II-INTNOE',JJ)*FPHI(JJ)
ELSE IF( (II .GT, INTNO') *AND. WJ *GT. INTNOD) ) THEN

PEN =PEN + F'SI(II-INTNOE')*M22(JJ-IN4TNOr',II-INTNOri)*
+ PSI (JJ-INTNOD)

" A~ ELSE
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PRINT I, Impossible option in PENAL: global penalty.'
-. " ENDIF

200 CONTINUE
PEN = .5*PEN

Z-: IF(PUG) THEN
PRINT *, 'PENAL global penalty = , PEN

ENIDIF
RETURN

- "END

P.'
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SUB'ROUTINE OUTPUT (MNTRIA ,MINODi MEBNOD ,NTRIfiN, INTHOD, DINrINO~t ,PTNODE r
+ COFRDI1i, PHI , FSI, AREAS, FENLTY,I IM12,M21 vM22E4,
+ FMESH,FNODES,FELEM,FMTRXI,FMTRXB,FFORCE)

* PRINT SELECTED ITEMS

IMPLICIT UNDEFINEDi(A-Z)

INTEGER MNTRIA,MINOl,MBO',NTRIIN,INTNOIi,E{NDNOD,FPTNOIE(MNTR IA,4)
REAL AREAS(MNTRIA) ,PENILTY(MNTRIA),CORDNDhI.OD+MDNOD,2)
REAL PHI(MINOI) ,PsI(MBNori)
REAL MI1(MINOD,MINOD)MI2(MIOD,MNOE:)
DiOUBLE PRECISION B(MINOD)

-elREAL M21(MBNOD,MINOD) ,M22-(MDNODi.MFNOl)
LOGICAL FMESH,FNOE'ES,FELEM,FMTRXIFMTRXBFFORCE

INTEGER I,J,K,TRIANG,II
REAL PEN
LOGICAL B'UG

*There aire six groups of information* Selected by flags.*
All.

*FNODES - Nodal values.
*FELEM - Element charactoristics.
*FMTRXI - Elements of global matrix, (interior Part).*
*FMTRXB - Elements of global matrix, (boundary part).*
*FFORCE - Force vector of SATE matrix equation.*
*FMESH - Mesh definition,

C **Mesh definition,
IF(FMESH) THEN
PRINT *, 'Mesh Definition,*
PRINT.*, ' Triangle Global Nodes#'
DO 50 TRIANG=1,NTRIAN

WRITE(*,6050) TRIANG,(FPTNODE(TRIANG,I),I=1,4)
6050 FORMAT(4X,38X,4(13,3X))

50 CONTINUE
PRINT*
PRINT *,' Node Coordinates (,x,nmu).'
DiO 60 l=1,INrNOfI+BNDNO'

6060 F0RMAT(4X,13r7X,2(F7.3,3X))
60 CONTINUE

PRINT*
ENDIF

>~ .- ~ C **Nodal values.
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IF(FNODES) THEN
-S -i.-PRINT ic, 'Nodal values.'

DO 100 I=1,INTNOD
IaRITE(t,6010) l,FHI(I)

6010 FORMAT(2X,13,3X,F9.4)
100 CONTINUE

DO 110 I=l,BNE'NOD
L4RITE(t,6010) I+INTNOE',PSI(I)

110 CONTINUE
PRINT*

ENDIF

C tic Element charactoristics.
IF(FELEM) THEN
WRITE*, 6100)

6100 FORMAT('Triangle Area Penalty Nodes(x,u)')
N DO 200 TRIANG=1,NTRIAN

+ WRITE(*,6110) TRIANGAREAS(TRIANG) ,PENLTY(TRIANG),
+ ((CORDNDi(PTNOE'E(TRIAtIG,J),K),K=1,2),J=1,3)

-'46110 FORMAT(IX,13,3X,F6.3,3X,F7.4,4X,3(2(F6.3,IX),3X))
PEN = PEN + PENLTY(TRIANG)

200 CONTINUE
A IRITE(t,6120) PEN

6 120 FORMAT(15XF9.5)
ENDIF

C ** Elements of global matrix, (interior part).
IF(FMTRXI) THEN

PRINT*
WRITE(*,6200)

6200 FORMAT(' Global matrix, (interior part)O*)
PRINT *
['0 300 I=1,INTNOD
WRITE(*,6210) (I-11(I,J),J=1,INTNOD)

6210 FORNAT(1X,':',20(1XF6.3fl
WRITE(*,6220)

6 220 FORrATnIX,':')
'I300 CONTINUE

PRINT*
ENDIF

C **Elements of global matrix, (boundary part).
IF(FMTRXB) THEN

PRINT*
PRINT ic, ' Global matrix, (boundary part:$ M12)#'
PRINT*
DO 400 I=1,INTNOI

WRITE(*,62,10) (M12(I,J),J=1,BN'NOD)
WRlTE(*,6220)

Wi400 CONTINUE
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PRINT
PRINT *,*Global Biatrix, (boundary part: M21h
PRINT*
110 410 I=1,BN'NO'

WRITE(*r6210) (M21(IYJ),J=1,INTNO1)
W'RITE(*,62120)

410 CONTINUE

PRINT *
PRINT *,*Global matrix, (boundary part: 1122).'
PRINT*
DtO 420 I=1,BNDNOD

WRITE(*,6210) (Mr2(I,J),J=1,N'NO')
.4." WRITE(*,6220)

420 CONTINUJE
PRINT*

ENDIF

C ** Force vector of the SATE matrix equation.
IF(FFORCE) THEN

WRITE(*,'('Force vector.')')
DO 500 I=1,INrNOD
WRITE(*t6500) BMI

6500 FORMAT(2X,F7.3)
500 CONTINUE

PRINT
ENDIF

CALL t'EBUG(OUTPIJT' ,EUG.)
IF(BUG) THEN

DO 8800 II=1,INTNOE+E4NVNOD
IF(I .LE* INTNOD) THEN
WRITE(*,6210) (M11(IIJ),J=lINTNOD) ,(M12(II,J) ,J=1,PNINODt)
WRITE(*,6220)

ELSE
I = 11 - INTNOD

IRITE(*,6220)
ENDIF

8800 CONTINUE
ENIIIF

RETURN
END



SUBFROUTINE DEBUG(SUBNAM,BUG)o:') C *******S*t********S*******************************S*****
C *5* **

C *55 DOCUMENTATION - DEBUG $*

C*
CS
C * Lt. Allan Goff August 27, 1983 *
C------- ---------------------------------------------------------------------S

C 5--- DEBUGGING AID ---*
C ------------------------------------------------------------------*
CS * ABSTRACT ** *
C*
C This routine scans a list of subroutine notes to be debuggad

C a ond if the calling routine is on the list it returns a true value *
C * via the variable BUG. *
C -------------------------------------------------------------------*
CS *5 BACKGROUND *5 *
C$ ,
C -------------------------------------------------------------------------------------- *

S Cs ** FLOW-CHART 5* *
Cs *
C: ------------- ------------------------------------------------------*
C * 5* IMF'LIMENTATION ** '
CS
C t The list of subroutines to be debugged may be as large as *

C * 100 names. However, DEBUG quits looKing thru the list when it *
C * finds the name QUITS8. *
CS------------------------------------------------------------------*
C S *5 INTERFACE REQUIREMENTS 5* *
CS *
C * The parameters passed are: *
C S SUBNAM - The name of the coiling program. *
C * BUG ^ The flag which indic.2tes if debuggins is to be done. *
C------------------------------------------------------------------S

C S * LOCAL VARIABLES * *
Cs *
C * BUGEM - The list of subroutines to be debugged. 

C S I - Index variable used in scanning the list. *
CS------------------------------------------------------------------
CS * LIMITATIONS PY $
CS '
C ------------------------------------------------------------------- *
C 5* REFERENCES * *
CS *
C ****%**$****%*t*****S******Stttt~ *t**S* S**5**%*5**%*%*****
C **t***S***#S**************S****s***%,****SSS*s*ss**s***5**
C *** t**
CSSS* CODE - DEBUG $*

@1 C $***t**S,%*5**S******* *****S,*****S%*******************S*****
- , C *********%*%***%********* DECLARATIONS *********%******5****.$***S
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C --------- HAVE COMPILER CHECK FOR MISSPELLED VARIABLE NAMES-----------
IMPLICIT UNLIEFINED(A-Z)

C ------------------------------ INDEXES--------------------------------
INTEGER I

C -------------------------- PASSED VARIABLES---------------------------
CHARACTER SUBNAM*6

LOGICAL BUG
C----------------------------LOCAL VARIABLES---------------------------

CHARACTER BUGEM(101)*6
DATA BUGEM(1) /'OUIT88'/
DATA BUGEM(2) /'SATE '/

DATA BLIGEM(3) /'INITAL'/
DATA BUGEM(4) /'ASEMBL'/
DATA BUGEM(5) /'STREAM'/
DATA BUGEI(6) /'ABSORB'/
DATA BUGEM(7) /'SCATI '/
DATA BUGEM(8) /'SCAT2 '1
DATA BUGEM(9) /'SCAT3 '/
DATA BUGEN(10) /'CASEDT'/
DATA BUGEM(11) /'PENAL /

DATA BUGEM(12) /'OUTUT'/
DATA BUGEM(13) /'OUITS'/

C *********************** EXECUTABLES ***********************

BUG = .FALSE.
1 =0

2000 I = I I 1
IF(PUGEM(I) .EO. 'OUJTSB') GOTO 999
IFEBUGEM(I) .EO. SUBNAM ) THEN
PUG = .TRUE.
GOTO 999

ENDIF
GOTO 2000

C *O****** ************ ** DONE *
999 RETURN

END
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MESH 1

NTRIAN INTNOD BNE'NOD NCOL
9 6 4 3

RANGE SIGMAT SIGMAS
3. 1. .,5

Triangle Nodel Node2 Node3 Column
1 2 7 8 1

28 3 21
3 3 8 1124
4 4 2 3

5 3 5 4
6 4 9 6 3
7 9 453
8 5 10 9 3
9 6 4 4 3

Column First Element Number of Elements
1 1 3

" 2 4 2

3 6 4

Node X-'Axis U-,xis
1 .000 -1000
2 .250 1.000
3 .250 -1.000
4 .500 1.000
5 .500 -.1.000
6 1.000 1.000
7 .000 1.000
8 .000 .000
9 1.000 .000
10 1.000 -1.000

Node Psi
7 1.0000
8 .0000
9 .0000

10 ,0000

S ..--. 6

I 116

.. .

'h '- ,'.'.'.',, ,-,' ,, -•. €.-. . , . . .- v -"-",','-" '. v .. . -'-- -' ' , s -, '_. .% -. ,



"- • MESH 2

4o.

1171

.1*,

;H

Vi " . . . .. • * . ° . q . . • . . . . . .•0



4-'.

MESH 2

NTRIAN INTNO BNDNOD NCOL
13 8 4 3

RANGE SIGMAT SIGMAS
3. 1. *5

Tria ngle Nodel Node2 Node3 Column
1 2 9 10 1
2 10 3 2 1
3 10 4 3 i
4 4 10 1 1
5 5 2 3
6 3 6 5 2
7 6 3 4
8 4 7 6 2
9 5 8 8 3

10 5 11 8 3

11 11 5 6 3
12 11 6 7 3

13 7 12 11 3

Column First Element Number of Elements
1 1 4
2 5 4
3 9 5

Node X-axis U-axis
1 .000 -1.000
2 .250 1.000
3 .250 .000
4 .250 -1.000
5 .500 1.000
6 .500 .000
7 .500 -.11000
8 1.000 1,000
9 .000 1.000

10 .000 .000
11 1.000 .000
12 1.000 -1.000

Node Psi
7 1.0000
8 .0000
9 .0000

10 .0000
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MESH 3

NTRIAN INTNOD BNDNOD NCOL
13 8 4 3

RANGE SIGMAT SIGMAS
3. 1. .5

Tricingle Nodel Node2 Node3 Column
1. 2 9 10 1
2 10 3 2 1
3 10 4 3 1
4 4 10 1 1
5 2) 6 52
6 6 2 3 2
7 6 3 4 2
8 4 7 6 2
9 5 8 8 3

10 5 11 8 3
11 11 5 6 3
12 11 6 7 3
13 7 12 11 3

, Column First Element Number of Elements
t 1 1 4

9 5 4

(- ) 3 9 5

Node X-axis U-,ixis
1 .000 -1.000
2 .250 1.000
3 .250 .000
4 .250 -1.000
5 .500 1.000
6 .500 .000
7 .500 -1.000
8 1.000 1.000
9 .000 1.000

10 .000 .000
' 11 1.000 .000

12 1.000 -1.000

Node Psi
7 1.0000
8 .0000
9 .0000

" 10 .0000
1-2.-
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I i MESH 4

NTRIAN INTNOD BNDNOI NCOL
20 12 5 4

RANGE SIGMAT SIGMAS
3, i. .5

Triangle Nodel Node2 Node3 Column
1 13 14 1
2 14 3 2 1
3 3 14 15 1

4 15 4 3 1

5 4 15 1 1
6 1 5 4 1

7 6 2 3 2

8 3 7 6 2
9 7 3 4 2

10 7 4 5 2
11 5 8 7 2
12 9 6 7 3

13 7 10 9 3
14 10 7 8 3
15 8 11 10 3

16 9 12 12 4
17 9 16 12 4
18 16 9 10 4

19 16 10 11 4

20 11 17 16 4

Column First Element Number of Elements
1 1 6
2 7 5

3 12 4
4 16 5

Node X-axis U-Qxis
1 .000 -1.000
2 .125 1,000

3 .125 .500
4 .125 .000
5 125 -1.000

6 .250 1.000

7 .250 .000
8 .250 -1.000

* 9 .500 1.000
10 .500 .000
11 .500 -1.000
12 1.000 1.000

13 .000 1.000
* 14 .000 .500
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" -- - 15 .000 .000
16 1.000 .00017 1,000 -1.000

Node Psi
V" 13 1.0000

14 .5000
-~is .0000

16 .0000
, 17 .0000
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MESH 5

NTRIAN INTNOD BNDNOD NCOL
- 32 i8 6 4

RANGE SIGMAT SIGMAS
3. 1. .5

Triangle Nodel Node2 Node3 Column
go.0 21 1

2 21 3 2 1
3 3 21 22 1

4 2 4 3 1

*5 4 22 23 1
6 23 5 4 1

7 5 23 24 1

8 24 6 5 1
9 6 24 1 1

10 1 7 6 1
11 8 2 3 2

* 12 3 9 8 2

13 9 3 4 2

14 4 10 9 2

15 10 4 5 2

16 5 11 10 2

17 11 5 6 2
18 6 12 11 2

19 12 6 7 2

20 13 8 9 3
21 19 14 13 3

22 14 9 10 3

23 10 15 14 3
24 15 10 11 3

25 11 16 15 3
26 16 11 12 3
27 17 13 14 4

28 14 18 17 4

29 18 14 15 4
30 15 19 18 4

31 19 15 16 4
32 13 17 17 4

Column First Element Number of Elements

1 1 10
2 1 9

3 20 7
4 27 6

Node X-axis U-Qxis
1 .000 -1.000

~, . 2 .125 1.000

_, 125
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. . . 3 .125 .750
4 .125 .500
5 .125 .250
6 .125 .000
7 .125 -1.000
8 .250 1.000
9 .250 .750

10 .250 .500
11 .250 .250
12 .250 -1.000
13 .500 1.000
14 .500 .750

21 15 .500 .500
16 .500 -1.000
17 1.000 1.000
18 1.000 .750
19 1.000 -1.000

- 20 .000 1.000
21 .000 .750
22 .000 .500
23 .000 .250
24 .000 .000

Node Psi
19 o0000
20 1.0000
21 .7500
22 .5000
23 .2500
24 .0000
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Appendix D

Results for Local Terms
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MESH 1

Nodal values.
"1 -.0670
2 .3163
3 -. 0878

4 .1165
5 -. 0515
6 .0416

- 7 1.0000
8 .0000

4, 9 .0000

t10 00000

Triangle Area Penalty
'. 1 .375 .2443

2 .750 .o0129
3 .375 .oo13

4 .750 .0328
5 o750 .0021
6 .750 .0035

7 1.500 .0027
' " 8 o750 .0008

9 .000 .0000
.30029

I 12
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* "- MESH 2

.. Nodal values.
1 ,0087
2 .4131
3 --.0548
4 boi15
5 .1566
6 -,0323
7 .0080
8 .0559
9 1.0000

10 .0000

12 .0000

Triangle Area Penalty
1 .375 .2138
2 .375 .0098
3 .375 .0005
4 .375 .0000

5 .375 .0364
6 .375 .0011
7 .375 .0004
8 -375 .0000
9 000 .0000

10 .750 .0062
11 .750 .0026
12 .750 .0002
13 .750 .0000

.27105
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i . ,MESH 3

Nodil values*
1 .0118
2 .3894
3 -. 0501

4 .0155
5 .1589
6 -. 0593
7 .0126
8 .0567
9 1.0000

10 .0000
11 .0000
12 .0000

Trimangle Area Penialty
1 .375 .2206
2 .375 .0087
3 .375 .0004
4 .375 .0000
5 .375 .0308
6 .375 .0074
7 .375 .0005
8 .375 .0002
9 .000 .0000

10 .750 .0064

11 .750 .0026
12 .750 .0006
13 .750 .0000

.27822

b
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MESH 4

Nodail v:l].ues.

1 .0104
2 .6367
3 .2674
4 -. 0195
. .0107
6 .3850
7 -. 0325
8 .0105
9 .1441

10 -. 0260
11 .0069
12 .0515
13 1.0000
14 .5000
t . 0000
16 .0000
17 .0000

Triangle Area Pen.alty
1 .094 .1109
2 .094 .0376
3 .094 .0116
4 .094 .0011
5 .188 .0001
6 .188 .0000
7 .094 .0478
8 . 188 .0127
9 .094 .0009

10 .188 .0001
11 .188 .0000

-.. 12 .375 .0324
13 .375 .0009
14 .375 .0001
15 .375 .0000
16 .000 .0000
17 .750 .0053
18 .750 .0023
19 .750 .0001
20 .750 .0000

.26395
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MESH 5

Nodal valies.
1 -. 0008
2 .6569
3 .4936
4 .2281
5 .05406 .0001

7 -. 0009
8 ,4 22 B
9 3573

10 .0965

11 .0027
12 -. 0011
13 1313
14 .1036
15 .0051
16 -. 0015
17 .0281

2. 18 .0135
:-. 19 .000020 1.0000

... 21 .7500

224 .5000
23 .2500
24 .0000

Triangle Area Penalty

1 .047 .0635
2 .047 .0342
3 .047 .0258
4 .047 .0164
5 .047 .0095
6 .047 .0030
7 .047 .0010

8 ,047 ,0000
9 ,186 .0000

1 10 .188 .0000

"A11 .047 .0284A
" 12 .047 .0128

"'C 13 .047 .0090

14 .047 .0045
15 .047 .0018
16 ,047 .0002

17 .047 .0001
i g234 .0000

19 188 0000

20 .094 ,0210
21 .188 .0015
22 .094 .0084
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23 .094 .0010
;" 24 * 094 .0004

25 .563 .0000
26 .469 .0000
27 .188 .0023
28 .188 .0010
29 .188 .0007

A 30 1.313 .0001

31 1.125 .0000
32 .000 .0000

.24672

.13
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.
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MESH I

*Nodal values.
1 .0585
2 .4027
3 .0281
4 .1990
5 .0226
6 .0969

7 1.0000
8 .0000
9 .0000

10 .0000

Triangle Area Penalty
1 .375 .0918
2 .750 -0098
3 .375 -. 0004
4 .750 .0167
5 .750 .0002
6 .750 .0037

7 1.500 .0027
8 .750 .0000
9 .000 .0000

#12452

A
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* . *. oMESH 2

Nodal values.

1 .1403
. .4991

3 .0223
4 .1332

5 2464
. 6 .0379

7 .0912
.. 8 .1257
*, 9 1.0000

10 .0000
11 .0000
12 .0000

Triangle Area Penalty
1 .375 .0790
2 .375 .0037
3 .375 --.0004
4 .375 -.0007
5 *375 0188
6 .375 .0008
7 .375 .0000
8 .375 *0003
9 .000 .0000
10 .750 .0053

11 .750 .0021
12 .750 -. 0002
13 .750 .0007

,10942

'14 3

'p
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MESH 3

Nodal values.
1 ,1328
2 .4701
3 .0292
4 .1256
5 .2357
6 .0082
7 .0843
8 .1185
9 1.0000

10 .0000
11 .0000
12 .0000

Triangle Area Penalty

1 .375 .0828
2 375 .0033

3 .375 -. 0003
4 .375 -. 0006
5 .375 .0169
6 .375 .0043
7 .375 -.0003
8 .375 #0006
9 .000 .0000
10 .750 .0050
11 .750 .0019
12 .750 -.0002
13 .750 .0006

.11401
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MESH 4

Nodal vQlues.
1 .1806

2 .6988
3 ,3479
4 .0758
5 .1699
6 .4751
7 .0797
8 .1466
9 .2389

10 .0575
11 .0971
12 .1239
13 1.0000
14 .5000
15 .0000
16 .0000
17 .0000

Triangle Area Penalty
1 .094 .0386
2 .094 .0119
3 .094 .0024
4 .094 -.0001
5 .188 .0003
6 .188 -,0013
7 .094 .0188
8 .188 .0060
9 .094 .0001

10 .188 -. 0003
11 .188 -. 0002
12 .375 .0164
13 .375 .0010
14 .375 .0000
15 .375 .0004
16 .000 .0000
17 .750 .0048
18 o750 .0020
19 *750 -.0001
20 o750 .0008

.10168
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* MESH 5

Nodal values.
1 .1410
2 .7067
3 .5450

N4 .3049
5 .1803

*6 .0953
7 .1282

--. 48 .4924
9 .4275

I

10 .1916
11 .1102

V.12 .1033
13 .2067
14 .1693
15 .0788
16 .0606
17 .0809

41 8 .0613
-1 9 .0000

20 1.0000
21 .7500
22 .5000
23 .2500
24 .0000

Triangle Area Penalty
1 .047 0234
2 .047 .0127
3 047 .0086
4 .047 .0051
5 1 .047 .0025
6 .047 .0004
7 .047 .0000
8 .047 -. 0002
9 .188 .0005

10 .188 -. 0012
11 .047 .0117
12 .047 .0057
13 .047 .0035
14 .047 .0020
15 .047 .0007
16 .047 .0002
17 .047 .0000
18 .234 -.0007
19 .188 .0001
20 .094 .0103
21 .188 .0009

. v. 22 .094 .0044

iF: 139

.S



.23 .094 .0009
- 24 .094 .0003

25 .563 .0001
26 .469 .0010
27 .188 .0019
28 .188 .0010
29 .188 .0007
30 1.313 .0004
31 1*125 .0004
32 .000 .0000

.09727
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Appendix F

Sample Output of Debug Option
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STREAM*** TRIANG= 1
.333 -. 333 .000 1.000 .577 3.000

.577

-. 333 .333 .000 1.000 --.577 3.000
.577
.57 .000 .000 .000 .000 .000 3.000

.. :, .577

ASEMBL***
ABSORB*** TRIANG= 1

.063 .031 .031 .031

.031 .063 .031 .031

.031 .031 .063 .031
ASEMBI_***

SCAT1*** TRIANG= 1 NONLOC= 1
M(IJ)

-. 009 -. 007 -.007
--.007 -. 014 -. 014
-. 007 -. 014 -.014

El ALPHA AREASO
.750000000e+00 -. 234375009e-02 #375000000e+00 .140625000e+00

ASEMBL***
SCAT2*** TRIANG= 1 NONLOC= 1

.0M(I,J) U UP AJF'

-. 009 -. 007 -. 007 1.000 1.000 1.000

-.007 -. 014 -.014 1.000 1,000 -1,000
-. 007 -. 014 -. 014 .000 .000 .0004~ D P
.750000000e+00 #208333344e-02

ASEMBL***
SCAT3*** TRIANG= 1 NONLOC= 1
M(I,J) UP AJP

-. 009 -. 007 -.007 1.000 1.000
-.007 -. 014 -. 014 1.000 -1.000
-.007 -.014 -.014 .000 .000

l" P
.750000000e+00 -#208333344e-02

ASEMBL***
SCAT1*** TRIANG= 1 NONLOC= 2
M(I ,J)

-. 019 -. 014 -. 014
-.014 -.005 -.005
-.014 -. 005 -.005

D P ALPHA AREASO
-. .750000000e+00 -. 468750019e-02 #375000000e+00 .281250000e+00

ASEMBL***
SCAT2*** TRIANG= 1 NONLOC= 2

M(IJ) U UP AJP
'000 0000 .000 1,000 -000 -2.000
.000 .000 .000 1,000 -1.000 1.000
.000 .000 .000 .000 1.000 1.000

D P
* 750000000e+00 .208333344e-02
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ASEKE4L***
SCAT3*** TRIANG= 1 NONLOC= 2
M(IJ) UP AJP

.013 .013 .013 .000 -2.000
-.002 -. 002 -.002 -1.000 1.000
-. 002 -. 002 -.002 1.000 1.000

D P

.750000000e+00 -. 208333344e-02
ASEMBL***
SCAT1*** TRIANG= 1 NONLOC=: 3
M(I,J)

-. 009 -. 007 -. 007
.- 007 -.014 -.014

-. 007 -. 014 -.014

D P ALPHA AREASO
.750000000e+00 -. 234375009e-02 .375000000e+00 .140625000e+00

ASEMBL***
SCAT2*** TRIANG= 1 NONLOC= 3
M(I,J) U UP AJP
-. 009 -. 007 -.007 1.000 -1.000 1.000
-.007 -.014 -.014 1.000 .000 .000
-. 007 -. 014 -.014 .000 -1.000 -1.000

D P
.750000000e+00 .208333344e-02

ASEMBL***
SCAT3*** TRIANG= 1 NONLOC= 3
M(IJ) UP AJP

-. 009 -. 007 -. 007 -1.000 1.000
-. 007 -. 014 -.014 .000 .000
-i-.007 -. 014 -. 014 -1.000 -1,000

D P
.750000000e+00 -. 208333344e-02

ASEMBL***

Global matrix, (interior part).

.00 .00 .00 .00 .00 .00

.00 .33 .00 .00

"'1 too 000 000 Oo000 too* .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00

., 00 .00 .oo 00 000
!.00 .00 .00 .00 .00 .00

Global matrix, (boundary part! M12).

143



.-. 00 .00 .00 .00

-.35 -,01 .00 .00

1I .00 .00 .00 000

.00 too .00 .00

.00 .00 .O0 .00

: .00 .00 .00 .00

Global matrix, (boundary part: M21).

.00 -. 36 t00 t00 .00 .00

.00 -.03 .00 .00 .00 .00

I o00 .00 .00 .00 .00 .00

• .00 ,00 .00 .00 .00 .00

Global matrix, (boundary part* M22).

..30 -.06 ,00 .00

-.06 -.03 .00 .00

.00 .00 .00 .00

.00o 4.0 0 .00
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First Scatter Term - Antisymmetric Cases
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In this appendix, the local matrix for the first scat-

"--" ter term, for the antisymmetric cases (Cases 2 and 3), is

derived.

The starting point for this derivation is the extremi-

zation integral.

4.3 -(301)

Starting with the usual finite element approximation, the

flux at the local element is

{ 1
=~ ~ A,(+hMf.~ (302)

regrouping terms,

4,; A4S0
and defining

O4-4 (304)

(35

-- (306)

the finite element approximation becomes

+ 0(3(307)

146
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Similarly, the finite element approximation for the flux at

the non-local element is//

(308)

where the coefficients are defined as

(309)

. . (310)

3 47, .: . , e j( 3 1 1 )

Thus, the first scattering term extremization integral

becomes

+1 413&{ A~~Jjifj /.A#'+ F,] 4 t (312)

where Z and if are, respectively, the upper and lower edges

of the local element, W'and .dM'are, respectively, the upper

and lower edges of the non-local element, and X.- =O .

Integrating over At and 4*

AR'

I, = -y e+4) + k

(313)
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-. or

(314)

The quadratic terms involving . and U"Mcan be simpli-

fied

b i..
:' A4" ' (316)

QThe difference terms are

- = 24
=i 4A (317)

*24

ci (318)

The sum terms are

.. ' (319)

k (320)
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where the I's and k's are now

.2,A, )-14 -- 44,(321)

A3 j+ 4& 2 Wk= 24 (322)

Thus,

44 
(e-k

J (323)

Later algebraic manipulations can be reduced by a

.

. 0change of variables. Defining kappa as

x (324)

Thus,

cfX~oY(325)

'I..

and the new integration limits are

X f (326)

an teewinegato lm t ar

Making the kappa substitution into the first bracketed term,

it becomes

El~X fjf (327)
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i- +,

(44 ~ *44 -- 1, 44 4 w ,X ( (328)

, -X.) 4- *"A1,).*o (329)

let

S ij (X -,) +'- (330)

and

old -XI + '4+ 1.3 (331)

Making the kappa substitution into the second bracketed term,

0 it becomes

4(P3)-? - (332)

For the ant isymmetric cases, A ,(z. Thus, the parenthe-

sised term becomes

+j214 4, ,(333)

or

T (334)

Thus,

A + ,-A 99p' (335)
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-3-.- 7

Let

pi YJg + J-p. (336)

and

|d= ,,x, +{PlA'.,,*P)3 (337)

Expressing the integral in terms of these constraints

yields

-(× -

-p +
(338)

* Collecting terms

!X Ala

and

3:3 ll l ? (e.C.. ,)× e ,e,,,( - ,,e,.) ,,t,( o-

(X(

kTej+ e (X -el?

(340)
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* 4 '4'

Integrating

+- , - e e,

(341)

The four constants can be expressed in terms of the

" nodal values of the fluxes. The first constant is

1 Y -Y 0( oaaii~ (-Z4f A"24 (342)

or, utilizing the equivalence between 4and 43

"- ± (.iX,  4-oy'*' - 0(3

..,., (a,-Y.-

Thus, from the finite element approximation, it becomes

A- -L( (344)

The second constant becomes

0(.7 (345)
q.

The third constant is
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or, utilizing the equivalence between and

.~ (347)

Thus, from the finite element approximation, it becomes

V P .1.0'*9.' (348)

The fourth constant becomes

ti Pi V +P (349)

o For Case 2

S---(350)

and

) Xj-m 0(351)

Thus, the integral becomes

d&

-d(352)
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or

(353)

Collecting terms, yields4";-

T -YOt tW e 35e .*j.e

For Case 3

'Y (355)

and

;1- (356)
.4

Thus, the integral becomes

+e ele) 34. t(357)

,. or

4/.

(358)
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Collecting terms, yields

Oa fyY,

which is the same as for Case 2.

Substituting for the constants

.1 

+

* 4..':#

-5, .',- ,9':

,.. -I0.,'

(360)

- C Rearranging terms

3l -t. bb)-2,e'

(2- 1 0

(361)

Collecting terms

-- '-
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;. V.V.

,s .

bJ~31J)(362)

in matrix form

(363)

Therefore, the local matrix for the third scatter term, for

the antisymmetric cases, is

(364)

1..6
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