
UDU-CRi2S BO DEN MEOD NDTR NITC NDSOHTC i/OPTIKZZRTION(U) WASHINGTON UNIV SEATTLE DEPT OF
MATHEMATICS R T ROCKAFELLAP 27 FEB 04 RFOSR-TR-84-0356

UNCLASSIFIED F49620-82-K-09i2 F/6 12/1 NL



is

1111

li 1.1 Uki

In1'

V.3 • 1 L.
,= lI il" I I

1-25 11114 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU-Of STANDARDS-1I963-A

Zt

IlL, ... . . .. ..... -. * ,.. ;.. . . . . . .. ..

; , , ... , , . ' ..,.. , .,- . . .. .. . ; .. . .: .. . . : .. -.. . . .'.U. . . " ." ' . .. , .. , . , ' " .



V

MOSRhTR- 84 -03 5

to
SUBGRADIENT METHODS IN DETERINISTIC AND

SSTOCHASTIC OPTIMIZATION

Final Scientific Report
Grant F4960-B2-K-0012

Air Force Office of Scientific Research

R. 7. Rockafellar, Principal Investigator .

Department of Mathematics
University of Washington

Seattle, WA 98195 7
February 27. 1984

Introduction.

Research supported by this two-year grant in the period from January, 1982,

through December, 1984, has resulted in a total of 11 technical articles and two doc-

toral theses. These range over several areas of mathematical optimization theory

but share the common theme of the development and application of subgradient

methods and duality to problems in mathematical programming. Fundamental

advances in concept have been made, and in the case of stochastic problems, new
techniques of solution have been initiated that may revolutionize the subject.

The publications are grouped under the following headings, which will be dis-

cussed individually:

1. Stochastic programming (4 papers).

2. Subgradient theory (3 papers, 1 thesis).

3. Nonlinear programming (4 papers).

4. Optimal control (1 thesis).
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1. Stochastic Programming

Many problems of optimization require that decisions be taken before the
values of certain random variables are revealed. For example, goods must be stock
piled and parts must be procured before the exact demand for them is known. Lit-
tle can be said in the face of total uncertainty, but in many cases there is statistical
information available about the random variables in question. These are the cases
to which the subject of stochastic programming is addressed.

The practice all too commonly followed of simply putting expected values in
place of the random variables in a problem, and then solving the problem as it it
were deterministic, has been shown to lead to poor decisions due to a lack of safety
margins. The same goes for "scenario analysis" in its popular form, where several
versions of what might happen are explored, but no scientific principles are invoked
that take these eventualities into account in making the best compromise choices
here-and-now. Stochastic programming is a relatively new discipline that helps to
identify the right way to hedge against uncertainty in such situations. The theory
has been under development for a number of years, but it is only now that we are
reaching the stage of actually being able to solve stochastic programming problems
numerically. This is chiefly due to the fact that such problems are intrinsically of
very large scale (infinite-dimensional if the random variables are viewed as continu-
ously distributed), and they can involve multiple stages in time as well. Technical
progress in the design of computers has been needed in order to bring them within
range of solution, but new ideas of representation and decomposition have been
essential too. Some of the research under this grant has been in the forefront of
these conceptual mathematical developments.

Paper [2]. "Deterministic and stochastic optimization problems of Bolya type in
discrete time," deals with multistage problems in stochastic programming. In such
problems there is a discrete time variable t = 0 1 ... , 7. At time f. the values of
certain of the random variables are revealed or at least narrowed down, and a deci-
sion vector x, is chosen subject to certain constraints and costs that may depend in
part on the preceding decisions zx,....xz.-i. The choice of xt in turn may affect
future constraints and costs. Altogether the situation may be very complicated.
The problem is to make the decisions in such a way that total expected cost is
minimized.

Paper [2] seeks to identify structure of a special nature that lends hope in
being able to solve such a difficult problem. The emphasis here is on being able to
understand what goes on when there is significant number of time periods. Unifor-
mity of some sort from one time period to the next is needed to keep the situation
in hand. Convexity assumptions are needed to simplify matters further. This paper
develops a discrete-time analogue of the Hamiltonian differential equation in the cal-
culus of variations that serves to characterize optimality in this problem. The dual
variables in this characterization are certain conditional expectations of prices.
These prices serve to decompose the problem into a separate convex programming
problem at each time 1. The results that are obtained constitute a fundamental
advance in the way that multistage problems have been handled. There is little
doubt that these results will have an important role in the design of computational
methods eventually, but problems with more than two time periods are still some
stages away from numerical feasibility.

Paper [3], "On the interchange of subdifferentiation and conditional expectation
for convex functionals," pins down a technical point that enters into the develop-
ments in [2].

In paper [7]. "A dual solution procedure for quadratic stochastic programs with
simple recourse," the aim is to provide a viable method of computation for a class of
problems that is much narrower but nonetheless of considerable importance in
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applications. The problems have only two stages ("here-and-now" and "recourse")
and are linear-quadratic in structure. Furthermore, the first stage decisions, while
they do affect the costs and constraints in the second stage, do not have the power
to make the second stage infeasible. The second stage decision process is of a par-
ticularly simple character.

The approach to such problems in [7] is to introduce an appropriate dual prob-
lem involving Lagrange multipliers that are random variables with unknown distribu-
tions. The interesting thing about this dual problem is that although it is very large
in dimension it can nevertheless be used effectively as a means of solving the primal
problem.

The secret is the following. The dual problem consists of maximizing a certain
quadratic functional over a convex set. This cannot be tackled directly, because the
quadratic functional has an inconveniently complicated expression, and the convex
set is described by too many constraints. What we do is to solve a sequence of sub-
problems in which we maximize the functional not over the whole set, but over a
polytope generated as the convex hull of a relatively small number of elements of
the set. i.e. dual feasible solutions. This is possible because of the quadratic form of
the functional: each subproblem can be expressed in terms of the parameters used
in the convex hull representation, and the coefficients that one gets in this way are
certain expectations that are readily computed! The solution to the construction of
the polytope used in the next subproblem in the sequence.

This method has been programmed and has already led to solutions to prob-
lems that no one previously has been able to handle.

The ideas are developed much further in article [13], "A Lagrangian finite gen-
eration technique for solving linear-quadratic problems in stochastic programming."
This paper, which is not yet finished, extends the method to a vastly larger class of
problems and investigates properties of convergence. The main result is surpris-
ingly powerful. It says that for strictly quadratic problems, the number of dual
feasible solutions used in generating the polytopal representation does not have to
escalate - it oan be kept fixed and one will still achieve a linear rate of convergence
to the optimal solutions to the primal and dual problems. This is important because
the number in question determines the dimension of the quadratic programming
subproblem that must be solved in each iteration. If this number were to increase
without bound, as happens in typical cutting-plane algorithms, for instance, we
would soon be unable to continue.

For problems that are not already strictly quadratic, [13] provides a technique
for introducing the strictly quadratic terms iteratively and still maintaining a linear
rate of convergence.

Id. .

frA



-4-

Z. Subgmradient Theory

Applications of optimization in many areas lead to the consideration of func-
tions which are not everywhere smooth (continuously differentiable). This is not
because the data and parameters in the problems in such areas behave
nonsmoothly in some pathological way. Rather it is a consequence of the very
nature of optimization and the techniques that can be used in decomposing large-
scale problems into smaller ones.

The basic difficulty is this. The property of smoothness is preserved under clas-
sical operations like addition, multiplication and composition of functions, but it is
not preserved under operations like taking the pointwise maximum or minimum of a
collection of functions, or optimizing the value of a function with respect to some of
its arguments while the other arguments are still treated as variables. Additional
insight into the difficulty is obtained from the geometry of constraints. In classical
problems of physics and engineering, the constraints are typically in the form of
systems of equations. These serve to focus our attention on a certain curve, sur-
face, or higher dimensional smooth manifold embedded in the state space at large.
If inequality constraints are present at all they are few in number and interact in
simple ways. For example, one may have a ball, cube, or some other region whose
boundary is easily describable as composed of smooth pieces that joint together in
regular ways. In most of the modern applications of optimization, however, the
number of inequality constraints can be enormous. The characterization of the
boundary of the feasible region may be very complicated. There may be no imnmedi-
ate way to identify just which constraints are active or inactive at a given point. It
may be easier then to think of the boundary as a nonsmooth "surface", perhaps
represented by the graphs of one or more nonsmooth functions.

For such reasons, the development of tools of mathematical analysis that
replace classical differential calculus in certain situations has long played an impor-
tant part in optimization theory. Thus even in linear programming, it has been
necessary to introduce concepts of one-sided directional derivatives and subgra-
dients of piecewise linear functions in order to understand the shadow price
interpretation of dual optimal solution vectors and its implications for sensitivity
analysis. Subgradients and subderivatives were first introduced by this writer. The
original domain of research was convex programming and its applications and
extensions in optimal control and mathematical economics. In the mid 1970's, the
writer's student F.H. Clarke found the right way to extend the subgradient concept
from convex functions to a far larger class of functions. This opened up all of non-
linear programming and variational theory to new methods of analysis, and today
efforts are being made far and wide in using these methods to achieve a better
understanding of optimization problems and their modes of representation.

Article [6], "Generalized subgradients in mathematical programming," is a sur-
vey of the theory and its main results. It was put together for a special "state-of-
the-art" volume that was published in connection with the 1962 mathematical pro-
gramming symposium in Bonn. This was the eleventh in the series of international
meetings in mathematical programming, held every third year. At this meeting the
writer was awarded the George Dantzig Prize for the contributions he has made to
mathematical programming through his work on subgradients and duality.

J.S. Treiman, a Ph.D. student supported by this grant as a research assistant,
has made further contributions in this area. His paper (8], "Characterization of
Clarke's tangent and normal cones in finite and infinite dimensions," provides new
theoretical insights. His thesis [11], "A new characterization of Clarke's tangent
cone and its applications to subgradient analysis and optimization," is a very sub-
stantial piece of work indeed. It fills a major gap that has been an obstacle to pro-
gress with infinite-dimensional problems like those in optimal control and stochastic



programming.

For finite-dimensional problems we have for some time been able to take advan-
tage of two complementary approaches to the notion of "subgradient". There has
been a direct approach in terms of convex hulls of limits of gradients or special
sorts of subgradients taken at neighboring points, as well as in indirect approach in
terms of certain directional derivatives and duality. For infinite-dimensional prob-
lems, however, only the second approach has been available. Treiman's thesis [I I]
provides the remedy by developing the correct extension of the first approach for a
large class of infinite-dimensional spaces. This was no easy achievement and
required deep understanding of Banach space geometry. Some time will be required
in digesting such a fundamental theoretical advance, but it should have many long-
range effects.

In the recently completed paper [12]. "Extensions of subgradient calculus with
applications to optimization." the writer has made numerous sharp improvements to
one of the principal branches of subgradient theory, namely the formulas that can
be used for calculating the subgradients of a given function from the known subgra-
dients of other functions out of which it has been constructed. Such formulas are
essential, for instance, in deriving necessary conditions for optimality in optimiza-
tion problems of practically every kind. Even problems that are stated in terms of
smooth functions benefit from the results, which lead ot expressions of marginal
values and characterizations of stability under perturbation.

This long paper [12] was several years in the making and is the culmination of
much research. Although it deals with finite-dimensional situations only, the results
of Treiman mentioned earlier hold the promise of supporting a number of extensions
to infinite dimensions. Preliminary work of Treiman and the writer in this direction
is well under way.

...... ...... ....- '
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3. Nonlinear Programming
One of the areas of nonlinear programming that has been improved radically by

the new subgradient methods is the study of "marginal values" and perturbations.
Suppose that the objective and constraint functions in a typical nonlinear program-
ming problem depend on various parameters. Lump these together into a parame-
ter vector v and then think of the optimal value in the problem as depending on v.
Even if the objective and constraint functions are smoothly behaved, this optimal
value function may be far from smooth. Here indeed lies one of the major motiva-
tions of subgradient theory- the desire to understand better how the optimal value
does change with the parameter vector v and in particular to derive bounds or esti-
mates for generalized rates of change, or so-called marginal values.

In paper [9], "Directional differentiability of the optimal value function in a
mathematical programming problem." definitive results are obtained in identifying
the circumstances under which directional derivatives exist in the ordinary sense.
The results go far beyond what was known previously, which applied only to special
perturbations in convex programming or cases in nonlinear programming that are
so ideal that the optimal value function turns out to be smooth. It is interesting
that to meet the challenge even of problems whose constraint and objective func-
tions are twice continuously differentiable, all the tools of nonsmooth analysis must
be brought to bear. Furthermore, a new and more complete form of second-order
optimality conditions is required.

Such conditions have been developed in paper [1], "Marginal values and
second-order conditions for optimality." The latter was completed under this grant,
but much of the research that went into it was performed under the predecessor
grant. AF-AFOSR-77-3204.

Other marginal value results are presented in paper [9], "Differentiability pro-
perties of the minimum value in an optimization problem depending on parame-
ters." These too are based on subgradient analysis.

Quite a different area of nonlinear programming is the topic of [5]' "Automatic
step sizes for the descent algorithms in monotropic programming." The problems in
question are linearly constrained but have objective functions that can be expressed
as a sum of linear functions composed with convex functions of a single real vari-
able. Piecewise linear or quadratic programming meets this prescription for
instance. For problems of such type there are primal and dual methods of solution
in which a direction of descent is determined by some pivoting routine and a line
search is then carried out. In the case of the dual methods there is the complica-
tion that we would like to be able to follow the procedure in terms of the data as it is
represented in primal form, but this is hard to do for the line search because of the
number of function evaluations that may be involved. This article demonstrates
that a certain automatic step size rule can be used in such cases to avoid line
search entirely.

1L
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4. Optimal Control
Problems of optimal control have long been of interest to the writer, and they

have provided much motivation for theoretical developments. They have also been
the beneficiaries of those developments. The work on optimal control has not, how-
ever, conformed to the standard framework of the subject, which was put together

-i. with problems of mechanical engineering in mind. Rather this work has been aimed
at problems of an economic character such as inventory control or the exploitation
of natural resources.

A notable characteristic of such problems is the dependence of the control set
at any given time on the state of the system at that time. The celebrated maximum
principle of Pontriagin makes no allowance for such a possibility at all! Methods of
convex analysis have previously been used by the writer to get around this lack, at
least for problems of convex type, and F.H. Clarke has made progress with noncon-
vex problems.

An important question which arises in this context is that of properly extending
the formulation of optimal control problems to allow for impulse controls. This is a
question of merit on its own, but it also derives much weight from the duality
between impulse controls and constraints on the states of a system. The multipliers
for state constraints in the primal problem correspond to impulse controls in the
dual problem, and vice versa.

In J. Murray's thesis [10], "On the proper extension of optimal control problems
to admit impulses," the challenge is taken up in the light of existence theory. The
point of view is the following. Impulse controls should make sense as idealized limits
of ordinary controls. As such they should be obtainable from techniques of
compactification that are designed to supply "solutions" to classes of problems that
do not enjoy growth properties adequate to secure the existence of solutions
(optimal trojectories) in the ordinary sense.

Murray succeeds in finding by a limit process the natural extension of an
optimal control problem to the larger control space in which impulses can occur.
He uncovers at the same time the fact that impulses can be not only in the simple
form of jumps but also "distributed continuously in singular time." The possibility of
the latter phenomena seems to have been overlooked by all those who worked previ-
ously on impulse controls, an observation which calls much of the existing literature
into question.

It is hoped that the understanding provided by Murray's results will eventually
make possible the incorporation of stochastic elements into control problems with
state-dependent controls.

--
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