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3$Q CHAPTER 1
NM
(. Introduction
o
S 1.1 Statement of the Problem

= When the first satellite images of the earth appeared
-%& in the early 1960's, it was apparent that cloud patterns

o

>

:}; associated with extratropical wave cyclones have remarkable
2%

) similarities during comparable stages of development.
L)
:;j Proper interpretation of these cloud patterns allow the
ASRY
N location of frontal zones and vorticity centers, as well as,
',
= the stage of storm development to be determined.
}33 Furthermore these patterns agreed extremely well with the
o ,‘
éf classical models of clouds and weather associated with wave
i cyclone life cycles.
\
59 Although synoptic scale cloud patterns over the entire
.-. {.‘_
- globe have been monitored daily by meteorological
N4 satellites, their use in numerical weather analysis has been
e, limited by the difficult task of making quantitative

od
;ﬁf inference about the mass structure of the atmosphere from
-:",\'
N cloud field data (Broderick, 1969). Prerequisite to the use
ltk of satellite observed cloud field data in numerical weather
h\.:.

QR analysis is the establishment of consistent relationships
-:% ‘.'. R
a¥a between cloud patterns and parameters which are readily
o transformable into data suitable for a numerical analysis
1\4’,
i;‘ scheme.
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1.2 Objective

The primary purpose of the present study is to
formulate an objective statistical téchnique to derive 300
mb geopotential heights and 1000/300 mb thicknesses from a
combination of satellite observed extratropical spiral cloud
patterns and parameters computed from the initial height and

thickness fields.

1.3 Approach

An investigation was undertaken to establish the
statistical relationship between the negative geopotential
extrema associated with short (synoptic scale) wave
disturbances and parameters derived from satellite observed
spiral cloud patterns and the planetary scale long wave
(smoothed) geopotential field.

The approach to the problem consisted of the following
steps:

i) a detailed review of previous studies to aid in
developing methodology,

ii) development of methodology and satellite analysis
scheme based upon past studies and present technology and,

iii) development and verification of the multiple

linear regression equations for estimating the magnitude of

the negative extrema in the height and thickness fields.
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A
e Results of items (i)-(iii) will then be used in

(: designing the practical details for applying these
techniques in an operational mode utilizing a man-machine

AN interactive computer display system.
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oo : Background
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2.1 Satellite Data for Numerical Weather Prediction
f;? During the first decade of satellite meteorology {1960-
}i 70), the operational value of satellite imagery in synoptic
hE analysis was demonstrated. In the same period, weatter
3o . . . . L
SN forecasting was moving into the age of numerical prediction
N
un where the impact of satellite imagery was limited due to the
AOAS '
LAY

- difficulty of converting imagery into information useful to
T numerical analysis (Bizzari, 1982). Thus, the use of
TN
2&. satellite imagery has been limited primarily to short range
JI.fl
20 forecasting.

4
:;ﬁ The second and third decades of satellite meteorology

’ v
P
KEEC have seen considerable efforts in the development of
2
g oty

f- technologies and techniques for providing quantitative
| % % N N . . .

- satellite~derived data for numerical weather prediction
LS

:jj{ models. For example, the input of satellite-derived
S

.\ n.' . . . "

Za vertical temperature profiles and cloud tracked winds in
*}ﬁ numerical prediction models have had a positive impact on
A
{?‘ numerical forecasts (Halem, et al, 1977; Seaman and Hayden,

Ty Ve
r‘.

’I .

. 52

1979; and Tracton, 1977). One of the problems of this -

+ 9

quantification is that the satellite data tend to reduce the

1. I“ l‘

WS
l'l ‘l ‘. .

amplitudes of the synoptic systems (i.e. versus those

.

a4
L
A4

depicted by radiosonde data alone, Miller and Hayden, 1978;.
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2.2 Previous Studies Using 500 mb Fields

The input of satellite data into numerical analysis of
the mass field based upon qualitative information from the
cloud field has been limited to date by the dirficulty in
establishing consistent relationships between the mass and
cloud fields. Previous studies relevant to this problem
have dealt predominantly with the 500 mb level. This was
the primary level for upper level analyses during the early
years of satellite meteorology and provided the most
complete upper level analysis to establish consistent
relationships with the satellite observed cloud field.

Early approaches to this problem (McClain, Broderick
and Ruzecki, 1965; and Bradley, Hayden and Wiin-Nielsen,
1966) made use of the approximate relationship between the
vorticity advection term in the quasi-geostrophic "omega
equation" and vertical motions at the 500 mb level
associated with the satellite observed cloud features. When
a given synoptic situation was reanalyzed, the Laplacian of
the stream function field was then altered in the region
influenced by the satellite observed cloud system and then
melded into the initial Laplacian field neighboring the
region. The result of modifying the Laplacians of the
stream function field at 500 mb based upon satellite imagery
is not known until the actual stream function field is
retrieved by solving a Poisson equation. A problem with

this method is that the final stream function field can show
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modifications outside the region of influence defined by <*he

cloud features. These modifications are a computational
result of the scheme used to numerically integrate tne
Poisson equation.

Nagle and Hayden (1971) developed 2 quasi-obi=:4ive
technique to modify the 500 mb short wavelength componens
field as opposed to modifying the Laplacian of the sirean
function field. The short wavelength component field is
derived via a scials separation process in which *he
geopotential field is separated into additive short and
wavelength component fields, i.e. 2 spatial mean flow and
superimposed disturbances (Holl, 1963). The scale
separation method does not require the numerical integration
of the Poisson equation and avoids the problems associated
with the region of influence because of the additive
properties of the long and short wavelength fields.

Nagle and Hayden developed regression equations from

which the magnitude of the negative extrema in the 500 ab

Rl

short wavelength component field can be computed as

function of parameters derived from satellite obsarved

[

spiral cloud g=20m=2try and %the long wavelangtin 2:mponant o
the 500 mb geopotential field. A critical assumption in the
technique is *that %the long wavelength componan* of %h=

500 mb geopotential £i2141 2an be accurately resoslved by -n=2

current observational network.

. oy : . o e :
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extrema in the short wavelength component field can he
specified with a proper interpretation of the spiral cloud
features. Furthermore, the resulting modified 500 mb height
field can improve the numerical analysis in data sparse

regions.

2.3 Extension to 300 mb and 1000/300 mb Fields

Recently, increased emphasis is being placed upon the
300 mb level as the primary level for upper 2ir analysis.
This is a result of the numerous commercial and military
aircraft which routinely report wind data at flight level

(near 300 mb) with the aid of onboard inertial guidance

I:ﬁ systems. These data often provide a large proportion of the

real data over the oceanic basins for use in the numerical

analysis.

Well developed extratropical cyclones viewed by
satellites are depicted as broad scale spiral shaped cloud
patterns in which there are cirriform clouds that are
fg closely linked to the flow pattern near the jet stream, 1i.e.
near 300 mb. Therefore, the extension of the previous work
to the 300 mb level is physically sound.

55-' One of the problems with inserting bogus height data at

a single level of a multi-level numerical forecast model is

T that of maintaining vertical consistency among the various
50y

‘. '\' . v »

};5 levels. It is well known that the typically deep, large
St scale vertical motions associated with major ex®ratropical
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cyclones can be partitioned between two major forcing
functions: The vertical variation of vorticity advection
and the Laplacian of thickness advection {(Barr, Lawrence and
Sanders, 1966; and Krishnamurti, 1966). Therefore, the
satellite viewed extratropical cyclone is reflective of the
flow pattern within a deep layer of the atmosphere. It is
for these reasons that the extension of the previous work to

the 1000/300 mb layer was attempted.

2.4 The Scale Separation Technique

The scale separation technique developed by Holl
(1963), as an objective version of Fjortoft's (1952) manual
technique, provides a fundamental representation of the
subject fields by a superposition of specific elemental
fields which represent indigenous patterns. Holl defined a
new representation of the spectrum of a field and developed
a technique for decomposing the field into additive
component fields.

The technique successively applies a smoothing operator
to the subject field until the amplitude of a specified
wavelength component is reduced to some percentage of its
initial value, say five percent. Appendix A contains a
detailed discussion of the smoothing process. Since the
smoothing operator is linear, all subsequent additions and
subtractions yielding components of the original field are

commutative.
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.ﬂi The smoothing filter as defined by Holl is given by:
i ol
s 2 1)
R . 2 y=2,+¢ vz do = 2, - 2., (
o~
ftj:"_'- where 2 v is the long wavelength field, Zo is the original
')' field, Z\ is the short wavelength field, C is a constant,
-.‘J‘_
N and o is the smoothing parameter.
3
”}? Holl originally developed this technique for use with
( the Northern Hemisphere Polar Stereographic grid
-j;f configuration. There are 63 x 63 grid points for a total of
-‘...
o o
AN 3969 points. The grid distance is 381 km, true at 60 N. The
e map factor for the grid is:
._-"'.'“-T ‘ o
e 1 + sin 60
s mp; = —— ' (2)
N + i .
T 1 sin ¢;J
( iy where @ij is the latitude at grid point i, j. This grid
?ﬁf; configuration was used for the present study. The degree of
QQ“ smooihing used for this study was o = 5.0.
‘.-P < Y
NN
' The amplitude reduction factor as a function of
N
e wavelength (in grid lengths) is given in Figure 1. The
R
;ﬁ? response curve is that for first order smoothing. Since it
s
ATy . . i
O 1s desirable to have a much steeper response curve, third
.i:: order smoothing, as explained in Appendix A, was used for
-;;f this study.
ik% ' Examples of the scale separation technique applied to a
\..'
oo 300 mb height field are shown in Figures 2, 3 and 4. Figure
Gty
o 2 is the initial height field; Figure 3 is the long
‘_1"\-
ta)
;;, wavelength field resulting from the smoothing process. The
5
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short wavelength field is constructed by subtracting the

long wavelength field from the initial field and is shown

in Figure 4.

2.5 Significance of the Short Wavelength Component

The short wavelength component field is significant
because it closely resembles the relative vorticity field
(Nagle, et al., 1966). The spiral cloud systems are related
to the short wave systems moving through larger scale
patterns (Whitney and Herman, 1968). Thus, satellite
observed spiral cloud pattern geometry can be used to modify
the short wavelength component field. The adjusted short
wavelength field is then added to the long wavelength field
to yield the modified total height field.

The short wavelength component defined in (1) is given

by:
A

Zow = -C L VZZ da. (3)

From the calculus, the mean value theorem for integrals
states that, if sz is continuous over the interval [o, 2],

then there exists a value a*, where 0 < a* <a , such that

2
st = -C Qv Z(O.') ’ (4)

where Z(a*) represents the partially smoothed field at the




T TR TN et G e ',11\*".1

L

»
Ny

S
l' -.

‘
F

degree of smoothing, a*.

—

The geostrophic relative vorticity, [ is given by

g ’

- 2
Ty = gt~ ! vz (5)

N2

tf where g is gravity and f the coriolis parameter. Therefore,

" .

&,

o the relationship between the geostrophic relative vorticity

3 and the short wavelength component depends upon the

. 2
latitude and the equality of V"2 (a*) and szo. A direct

e proportionality between the magnitudes of these fields can-

o not be expected because of the wavelength dependence of the
B

Q; Laplacian operator, although the patterns of the sz(a*)
\, ;
’ and Cg fields should be remarkably similar. The locations |

‘ |
AR of the field extrema and/or zero values should also be ‘
{Y similar (see Figures 4 and 5).
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Chapter 3

Data and Analysis

3.1 300 mb and 1000/300 mb Field Data

The field data were provided by the U.S. Navy's Fleet
Numerical Oceanography Center (FNOC). The height and
thickness values were available on the polar stereographic
(63 x 63) grid points. The scale separation technique was
applied, with a = 5, to generate the short wavelength (SD)
field and the residual (SR) field. The planetary vortex
(SV) field is obtained by applying the scale separation
technique with o = 16.5 which acts as an extreme low pass
filter. The long wavelength (SL) field is then determined

using the following relationship with the original field Z,

2 = SR + SD = S8V + SL + SD. (6)

The SR field is usually considered the long wave field (see
Figure 3) but is actually the sum of the SV and SL fields
computed by the scale separation technique. The 300 mb SV
field corresponding to Figure 2, 3 and 4 is shown in Figure
6.

The following parameters were computed at the centers
of the significant SD field extrema: The latitude and

longitude, the height value, the u and v geostrophic

17
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velocity components and the Laplacian using a five-point

finite difference stencil. These parameters ware computed
for the SR, SV and SL component fields of the original 30C
mb height and 1000/300 mb thickness fields. The data set
consists of the above parameters computed for both the 1200
GMT analysis and the 12 hour forecast from the previous 0000
GMT forecast. The data was collected on a daily basis for
the time period 29 August, 1981, tc 19 Jeptember, 1982.
Plots of both the 300 mb height and 1000/300 mb thickness SD

fields for the 1200 GMT analysis were also collected.

3.2 The Satellite Data

The satellite data used for this study was acquired by
the NOAA-7, which was the second operational satellite in
the TIROS-N series. Launched on 23 June, 1981, the NOAA-7
satellite is a sun-synchronous (polar-orbiting)
meteorological satellite with an orbital altitude of 850 kpm
and a travel speed of about 6.6 km/sec. The NOAA-7 Advanced
Very High Resolution Radiometer (AVHRR) is a five channel
instrument: two channels in the visible and near infrared
(IR), 0.58 - 0.68 um and 0.725 - 1.10 um; one in %the IR
window regionat 4 um, 3.55 - 3.93 um and two in the thermal
IR window at 11 uam, 10.5 - 11.3 um and 11.5 - 12.% um. The
imagery used for this study was from the visible, near IR,

and thermal IR. The images used were lNor*hern Hemisphere

Polar 3Stereographic mosaics composed of successive satellite
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passes over the North Atlantic ranging in time from 1300 -
2000 GMT. The satellite imagery was available for the same
period as the field data collection period with the
exception of the entire month of March 1982. The images for
March were not available and thus.not included in this

study.

3.3 Satellite Analysis Scheme

The well documented correspondence between specific
satellite cbserved spiral cloud features and synoptic
features associated with upper-tropospheric relative
vorticity fields was summarized by Nagle and Hayden as
follows:

1) The boundaries of cellular convective cloud areas and
the trailing edges of frontal cloud bands correspond to the
zero line in the relative vorticity field.

2) The locations of extratropical spiral cloud centers
agsociated with cold-core systems correspond to positive
vorticity maxima.

3) The leading edges of frontal cloud bands correspond to
axes of maximum of negative relative vorticity.

4) The apex of the anticyclonic curvature of the leading
edges of frontal cloud bands correspond to the negative
relative vorticity maxima.

These relationships permit a rather complete

specification of the pattern of the short wavelength

20
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component field provided a proper interpretation of the
spiral cloud pattern is made. The magnitude of the negative
extrema in the short wavelength component (SD) field remains
to be specified.

The spiral cloud patterns were analyzed as follows. A
quarter hemisphere polar stereographic NOAA-7 mosaic
({preferahly IR) of the North Atlantic covering from lO° E to
eo°w longitude was selected corresponding to the date of the
field data. The 300 mb and 1000/300 mb SD field plots were
compared with the satellite image to identify the spiral
cloud systems with significant and distinct negative extrema
in the SD field. If a spiral system was evident without the
presence of a distinct SD feature, the SD field was
considered in error and the analysis was discontinued for
that date. This was an effective gross error checking
procedure which prevents spurious parameters from entering
the statistical analysis.

The latitude and longitude of the center of a spiral
cloud pattern was recorded as SLAT and SLON to the nearest
whole degree. The latitude and longitude of the center of
the SD extrema as computed by the scale separation technigue

program was recorded as FLAT and FLON. These would later be

!

used as identifiers in searching the field data file to
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extract the other computed parameters for that SD feature.
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Since the satellite images are mosaics composed of successive
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NOAA-7 orbits ranging from 1300 to 2000 GMT, a systematic
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spatial and temporal error is evident. The difference
betweeﬁ SLAT, SLON and FLAT, FLON are summarized in Tables
1 and 2 for the 300 mb and 1000/300 mb SD fields
respectively. These errors are also partially attributed to
errors in the original analysis.

The location of the upper-tropospheric trough (i.e.,
where the high clouds abruptly end or have a distinguishable
gap along the major frontal cloud band) is then determined.
A line is then drawn from the spiral center to the point
where the upper-tropospheric trough intersects the outer
edge of the frontal band. This distance is defined as the
amplitude (AMP) of the satellite observed cloud system.

A line is now drawn perpendicular to the line defining
the amplitude and passing through the spiral center. The
intersections of this line with the westernmost and
easternmost edges of the spiral cloud band define the
wavelength (RL) of the satellite observed cloud system. 1In
actuality this is a half-wavelength when considering the
ridge-trough system as the full wavelength.

All distances are defined in terms of gridlengths (381
km at 60°N). The schematic representation of the above
analysis procedure for an idealized spiral cloud system is
shown in Figure 7.

The final subjective assessment about the spiral cloud
system is the stage of development parameter (IST). A

modified version of McClain and Broderick's (1967) stage of

22
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Figure 7. Idealized spiral cloud system,
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development classification system was used. Figure 8 shows
the various stages of development used £o5r <he szudy. The
stage of development parameter along with SLAT, SLON, AMP
and RL were obtained for each spiral cloud system that could
be associated with a specific minimum in the SD field. The
total number of cases analyzed in the above manner is 421
for the 300 mb height field cases and 420 1000/300 mb

-

thickness field cases.

3.4 Statistical Methodology

A regression equation of the form

o

’

y = b,x1 + bzx2 + ... +bnxn

[}
e
[
b
—
~

is used to apply the previously discussed parameters to the
problem of specifying the negative SD field extrema. The
special case for which X, is identically one, 1is specified,

which means that b, now plays the role of the regression

constant or y-intercept. Symbols are defined as follows:

Il

1 4 L&

negative SD field extrema,

Y

3y

b, = regression constant,
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regression coefficients, and
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potential predictors to be screened
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(3=2,3,...,n).
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The stepwise multiple linear regression procedure used
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series program P2R developed at the Health Science Computing
Facility of the University of California at Los Angeles. A
detailed discussicn of the multiple regression technique and
program P2R are given in Appendix C.

The data set compiled during the satellite analysis
procedure had to be matched with the 300 mb and 1000/300 mb
SD data sets containing the various long wave parameters.
The latitude and longitude of the SD extrema (FLAT, FLON)
was used to search the SD data file which also contained
FLAT, FLON. To avoid minor differences due to FLAT, FLON
being listed as accurate only to 1/10 of a degree, a one
degree by one degree latitude and longitude box was used to
provide some leeway in the searching routine.

The 300 mb and 1000/300 mb data sets were now complete.
The 300 mb data set contained 413 cases while the 1000/300
mb data set contained 373 cases, each with the date time
group, the observed SD value, satellite parameters and the
long wave parameters. The data sets were now randomly split
into dependent and independent sets. The 300 mb and
1000/300 mb dependent data sets contained 290 and 263 cases,
respectively while the independent data sets contained 123
and 115 cases, respectively.

When analyzing the spiral cloud systems it became
apparent that the relationship between the wavelength (RL)
and the SD value behaved in a non-linear fashion. Based

upon heuristic reasoning, the following variables with non-

28
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‘;' linear characteristics were added: RL * SIN(SLAT),
\}; SQRT(RL), RL/COS(SLAT) and RL * SIN (SLAT). Ratios of the
AL
oo
hﬁ' amplitude and wavelength were also added as suggested by
-._\:
';' Lowe (1983). A complete list of the variables used is given
o in Table 3.
;ﬁz The program P2R was then used to process the dependent
- data sets. The variables were entered or removed from the
\ ;
-j{ regression model based upon the F method (see Appendix B).
_*.:;:.
N The F-to-enter and F-to-remove limits used for this study
.
N
gy are 4.0 and 3.9, respectively with a tolerance of 0.05.
ffﬁ Regression runs were also performed for 300 mb and
o 1000/300 mb data sets without the inclusion of the satellite
T i
CA observed spiral cloud parameters. This was an effective
{
PN check to see if there was adequate information contained in
o the computed long wave parameters to accurately specify the
oS
"y magnitude of the negative SD extrema.
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3. POTENTIAL PREDICTORS

FLAT LATITUDE OF THE SO EXTREMA

FLON LONGITUDE OF THE SO EXTREMA

SLAT LATITUDE OF THE CENTER OF TME SATELLITE OBSERVED CLOUD SYSTEM
SLOM LONGITUDE OF THE CENTER OF THE SATELLITE OBSERVED CLOUD SYSTEM

AMP AMPLITUDE OF THE SATELLITE QBSERVED CLOUD SYSTEM

RL WAVELENGTH OF THE SATELLITE OBSERVED CLOUD SYSTEM

IST STAGE OF OEVELOPMENTY : | - FORMATIVE, 2 - MATURE, 3 - OCCLUDED

SRU U-COMPONENT OF THE GEOSTROPNIC WIND DERIVED FORM THE SR FIELD
AT FLAT FLON

SRy V-COMPONENT OF THE GEOSTROPHIC WIND OERIVED FROM THE SR FIELD
AT FLAT,.FLON

SLH GECPOTENTIAL NEIGHT OF THE SL FIELO AT FLAT.FLON

SLu U-COMPONENT OF THE GEOSTROPNIC WIND DERIVED FROM THE SL FIELD
AT FLAT,FLON

SLv V-COMPONENT OF THE GEOSTROPNIGC WIND DERIVED FROM THE SL FIELD
AT FLAT, FLON

St FIVE-POINT FINITE OIFFERENCE APPROXIMATION FOR THE LAPLACLIAN
OF THE SL FIELDO AT FLAT,.FLON

SVH GEQPOTENTIAL MEIGWHT OF THE SV FIELC AT FLAT . FLON

svu U-COMPOMNENT GF THE GEOSTROPHIC wIND DERIVED FROM THE SV FIELD

AT FLAT.FLON

Svv V-COMPONENT OF THE GEOSTROPHIC WIND ODERIVED FROM THE SV FIELD
AT FLAT FLON

SvL FIVE-POINT FINITE DIFFERENCE APPROXIMATION FOR THE LAPLACIAN
OF THE SV FIELD AT FLAT.FLON

RLS RL*SIN(SLAT:

RLS SQRTI(RL)

RLMA RL*AMP

AMOR AMP /RL

RLOA RL/AM®

RLOC RL/COS(SLAT)

RLS2 RLESINISLAT) *SINISLAT)
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Chapter 4

Results

4.1 300 mb Dependent Data Set

The basic statistical properties of the variables
included in the 290 cases comprising the 300 mb dependent
data set are shown in Table 4.

The following predictors were selected for use in the
regression model: The square root of the system wavelength
(RLS); the Laplacian of the SL field (SLL); the height of
the SL field (SLH); the Laplacian of the SV field (SVL) and
the U~components of the SV and SR fields (SVU and SRU), The
coefficients and statistics for each independent variable in
the equation as well as the multiple correlation
coefficient, the squared multiple correlation coefficient,
and the adjusted squared multiple correlation coefficient
are shown in Table 5. The root-mean-squared (RMS) error for
the observed versus predicted SD values was 30.94 meters. A
plot of the residuals (observed-predicted) for this
regression model is given in Figure 9. Upon examining the
residual plot, it appears that the residuals fall in a
horizontal band centered about the abscissa without any
apparent trends, which suggests that the model may be judged
as adequate (Afifi and Azen, 1979). The probable error of

the correlation coefficient given by
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N . Table 4. 390 MB : DEPENDENT DATA SET
N
DA
'ﬂ:j: VAR[ABLE MEAN STANDARD SKEWNESS KURTZSIS
N DEVIATION
2y
- FLAT .82848 15277 - . 44665 62471
fiii FLON 78417 .35623 17232 -1.82394
o SLAT .84159 .15953 -. 47547 .31218
ﬁ“,J SLON . 69622 .33498 . 18481 -.92232
i%ii AMP 3.39138 1.27269 1.81112 1.54712
SN RL 2.83716 .88588 . 65806 94054
:%": (st 2.35172 .48468 .52996 -1.47698
v SO -217.96558 53.35474 -.13833 -. 94568
e sy 18.74138 8.36484 27811 42935
:iif SRV -.88276 6.18397 -.37683 .12827
&:2: SvL 31.821089 4.36399 -.87648 1.21658
‘. SLH -80.231083 91.74687 -.58833 . 44344
‘i;i sLu 5.76287 7.31718 -.38065 1.65773
A sLv -.85517 5.71722 -.42538 .36289
?;:j SLL 27.098623 18.67461 .25438 .38237
'ﬁ : SVH 85.83192 189.75948 -. 41856 -.43799
B SVU 13.18621 3.28316 . 43648 -.68756
‘isis SVV .23448 78488 22568 1.94812
LIy RLS 2.98982 .72181 .55338 -.18229
e RLS 1.66437 .25885 31283 - 40974
RLMA 19.52327 7.18188 1.88518 4.77913
AMOR 1.28176 27743 1.94864 1.78518
RLDA .87356 19884 51539 1.92752
RLOC 4.43993 1.56943 .84857 ..95848
RLS2 1.57811 .63935 430846 -.18958
298 TOTAL OBSERVATIONS
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TABLE 5

5. 300 mb Jdependent data set regression results.

Variables in Equation

STD. ERROR STD. REG. F-TO-

VARIABLE COEFFICIENT QF COEFF. ZOEFF. REMOVE
RL3 -121.63845 8.2886 -0.590 213.37
SLL -2.84518 0.3077 -0.996 85.59
SLH -0.58965 0.075Q -1.014 61.82
SVL -7.42866 0.9643 -0.607 59.35
sVuU 4.73323 Q.7821 0.291 36.62
SRU -0.82807 0.3259 -0.139 6.46

INTERCEPT = -10.42469

MULTIPLE R = 0.8146
MULTIPLE R-SQUARED = 0.6637
ADJUSTED R-SQUARED = 0.6565
33
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where R is the correlation coefficient and N the number of
cases (Landsburg, 1964), is 0.013.

The following predictors were selected for the no-
satellite-parameters regression model: The Laplacian of the
SL field (SLL); the height of the SL field (SLH):; the U-
component of the SL field (SLU); the latitude of the SD
extrema (FLAT) and the Laplacian of the SV field (SVL).
Table 6 summarizes the regression results in the same format
as Table 5. The RMS error for the observed versus predicted
was 40.93 meters. A plot of the residuals for this
regression model is given in Figure 10. There are no
apparent trends in the residuals, but the scatter about the
zero line is large enough to consider the model inadequate.

The probable error of the regression coefficient 1is 0.023.

4.2 1000/300 mb Dependent Data Set

The basic statistical properties of the variables
included in the 263 cases comprising the 1000/300 mb
dependent data set are given in Table 7.

The following predictors were selected for use in the
regression model: The product of the system wavelength and
sine of the system latitude (RLS): the Laplacian of the SL

field (SLL): the stage of development parameter (.ST): ¢he

35
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- ) 6. 300 mb dependent data set regression results (no
L. parameters)

o Variables in Egquation

e STD. ERROR STD. REG. F-TO-
VARIABLE COEFFICIENT OF COEFF. COEFF. REMOVE

2y SLL -4.32998 0.3684 -1.515 128.14

S SLH -0.82326

O

.0940 -1.416 76.64
O SLU -1.81360 0.4362 -0.249 17.28

n;f FLAT -142.29917 35.5345 -0.407 16.04

v
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SVL -5.10234 1.6776 -0.417 9.25
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Table 7. 1998/388 MB : DEPENDENT DATA SET
VAR [ABLE MEAN STANDARD SKEWNESS KURTCSIS
DEVIATICN

FLAT 81348 . 14645 -.13985 54163

FLON 73611 .39217 .88333 -1.34219

SLAT .83976 .15368 -.22732 .32353

SLON 61395 .35139 . 19798 -.74965

AMP 3.55163 1.32945 .86974 81578

RL 2.93498 .94653 74317 14648

1sT 2.31939 . 47433 . 66749 -1.26487

) -176.23958 55.38478 -.22924 .85936

SRU 17.23193 6.58968 66252 .38982

SRV -.97719 5.83891 -.91658 1.18238

sVt 3.13865 3.78742 -.59761 67441

SLH -59.23193 78.36852 -.68658 1.87628

SLU 4.85323 5.35694 .33188 .89981

SLV -.82898 5.23563 -.80441 1.810886

Ij;j SLL 19.76711 17.28308 .26988 1.22785
e SVH 64.71863 184.98938 - 42864 - .s8718
RO SVU 13.36882 3.19887 .#6318 -. 49276
-:i:’ Svv .16358 .77998 -.19728 1.82237
b RLS 2.15556 .75189 71728 16832
'3%; RLS 1.69166 .27848 .37551 -.27238
S RLMA 11.46225 7.92125 1.59687 2.99686
-j:j": AMDR 1.21578 .263648 . 82531 1.33291
f;.g RLDA 86841 . 18481 .76758 1.68361
e RLDC 4.57993 1.64756 .988989 .96888
RLS2 1.61331 . 65678 61915 12318

263 TOTAL QBSERVATIONS

38




height of the SL field (SLH): the Laplacian of the SV field

(SVL) and the U-components of the SV and SL fields (SVU and
SLU). Table 8 summarizes the regression results in the same
format as Table 5, the RMS error for the observed versus
predicted was 36.02 meters. A plot of the residuals for
this regression model is given in Figure 11. There are no
apparent trends in the residuals, and the scatter appears
acceptable, which suggests the model is adequate. The
probable error of the correlation coefficient is 0.018.

The following predictors were selected for the no-
satellite-parameters regression model: The heights of the
SL and SV fields (SLH and SVH), and the U-component of the
SR field. Table 9 summarizes the redression results in the
same format as Table 5. The RMS error for the observed

versus predicted was 48.51 meters. A plot of the residuals

for this regression model is given in Figure 12. There are
no apparent trends in the residuals, but the scatter about
the zero line is large enough to consider the model
inadequate. The probable error of the regression

coefficient is 0.032.
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1000/300

TABLE 8

mb dependent dat set regression resalcs

Variables in Equation

Tl VARIABLE

STD. ERROR
OF COEFF.

STD. REG.

COEFFICIENT COEFF.

F-TO-
REMOVE

.I .I

b
A S

N . N
AN
‘l L]

LR M

SLL
e IST
( SLH
S swU
sLU

SVL

el
NN

INTLRCEPT =

.
¢
.5‘ -

;.Ji

-33.62609 3.8860 -0.457

.22387 0.4249 -1.003

38.99478 5.6850 0.334

.51486 0.1019 -0.729

4.07143 0.8280 0.235

.16366 0.5317 -0.210

.38556

1.1721

-194.5239

74.

57

47,

24.

16.

88

.57

.52

18

65

.14
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cdearls

oS
492

MULTIPLE R
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MULTIPLE
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TABLE 9

satellite parameters)

9. 1000/300 mb dependent data set regression results (no

INTERCEPT = -130.64511

o Variables in Equation
STD. ERROR STD. REG. F-TO-
VARIABLE COEFFICIENT OF COEFF. COEFF. REMOVE
SLH 0.29457 0.0432 0.417 46.52
SVH -0.06843 0.0177 ~0.229 14.96
SRU -1.53023 0.5198 -0.180 8.67

MULTIPLE R = 0.4802
MULTIPLE R-SQUARED = 0.2306

ADJUSTED R-SQUARED = 0.2217
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5.1 300 mb Independent Data Set

The basic statistical properties of the variables
included in the 123 cases comprising the 300 mb independent
data set are shown in Table 10 for comparison with the \
statistics computed for the 300 mb dependent data set in |
Table 4.

The 300 mb SD regression equation, including the \
satellite derived parameters, was used to compute estimates !
of the magnitudes of the SD extrema of the independent data ‘
set. The RMS error of the observed versus predicted SD
values for the independent data set was 33.27 meteré. A
plot of the residuals for the independent data set is given
in Figure 13. The residuals for the independent data set
appear to have no trends. Therefore, the 300 mb regression
model appears to be adequate and stable with no apparent

systematic error.

5.2 1000/300 mb Independent Data Set

The basic statistical properties of the variables
included in the 115 cases comprising the 1000/300 mb
independent data set are shown in Table 11 for comparison
with the statistics computed for the 1000/300 mb dependent

data set in Table 7.
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Table 10. 389 MB : INDEPENDENT DATA SET

VAR [ABLE MEAN STANDARD SKEWNESS KURTOSIS
DEVIATION
FLAT .85865 . 14973 -.18516 -.47763
FLON .78892 .36895 21312 -.79268
SLAT .87734 .15327 -.89858 -.46271
SLON .61989 .36222 .19886 -.58399
AMP 3.59483 1.39591 .74888 -.24675
RL 2.88451 1.83516 .77824 -.87641
IsT 2.34146 .47428 .66864 -1.55293
k] sD -220.398489 $5.34015 -.88378 .27868
'f SRUY 18.21138 7.44219 .60484 .38371
- SRV -.65854 6.13378 -.41914 24612
-3 svL 3.55631 3.91528 -.78241 -.21135
SLH -75.28942 91.21181 -.31323 1.38044
SLU 5.52846 6.191186 B1592 .35482
SLV -.53659 5.78895 -.357%3 .39845
SLL 24.97237 28.31718 .23392 1.19163
SVH 71.13829 179.50188 -.73296 -.86124
Svu 12.89431 3.37811! .19871 -.38882
Svv .21138 .6533% 1.32785 4.19123
RLS 2.17879 .76418 .7687 " .32208
RLS 1.67234 .29627 .444648 -.47865
RLMA 11.39112 8.56890 1.33488 1.18512
AMDR 1.21838 .23798 .77885 1.54168
RLDA .85162 . 16587 .63477 . 65415
. RLDC 4.65501 1.64813 62742 . 15582
RLS2 1.66892 .63788 .66818 .42988

123 TOTAL OBSERVATIONS
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Table 11. 1288/399 MB : [NDEPENDENT DATA SET

VAR [ABLE MEAN STANDARD SKEWNESS KURTCS IS
DEVIATICN
o FLAT .79698 15323 -.28789 39914
;iﬁ FLON .71623 .35677 23777 -.97346
" SLAT .83593 16644 -.23297 -.97636
SLON .59932 .34206 . 18889 -.99180
AMP 3.32952 1.31369 .95556 .85699
RL 2.88178 .92536 48727 -.61874
IsT 2.36522 48149 .55985 -1.68658 |
2 $D -163.73918 51.28595 -.84125 -.51925%
i: SRU 16.198434 6.25736 .55837 12241
gb SRV -.26957 6.11193 -.44373 . 48937
< svt 2.44384 3.93296 -.52798 18786
. SLH -34.73912 63.53854 -.28783 28828
0 LY 3.18261 4.91419 .36437 #3167
_%Z SLv -.24348 5.51148 -.38617 .26461
Xy sLL 16.94548 15.26734 -. 89495 -.95878
W, SVH 143.304389 157.83598 -.445989 -.36999
. SVU 13.28008 3.65837 16673 -.53047
o SVv 33913 .74468 1.098293 1.83189
Z;f RLS 2.94516 72214 34224 -.74938
- aLs 1.65122 27413 .21961 -.85488
. RLMA 19.33154 7.33653 1.51171 2.66721
;{ AMOR 1.19598 .28186 1.28466 2.42618
- RLDA .87831 18548 17222 -.84934
Z; RLDC 4.34616 1.49327 31197 -.83532
o RLS2 1.52489 .62887 28735 -.69818
-&E 115 TOTAL OBSERVATIONS
o
oy
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The 1000/300 mb SD regression equation, including the

fﬁ‘ ) satellite derived parameters, was used to compute estimates
:g; of the magnitudes of the SD extrema of the independent data
N

i set. The RMS error of the observed versus predicted was

32.7 meters. A plot of the residuals for the independent

;zii data set is given in Figure l14. The residuals for the

ih¢' independent data set appear to have no trends. Therefore,
;;f the 1000/300 mb regression model appears to be adequate and
;;z stable with no apparent systematic error.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The primary objective of the present study was to
formulate a quasi-objective technique to derive the
magnitudes of the negative extrema of the 300 mb and
1000/300 mb height and thickness short wavelength component
fields based upon satellite observed spiral cloud pattern
geometry and various long wavelength fi=ld parameters. It
was shown that quantitative use of satellite observed spiral
cloud patterns and parameters derived from the long
wavelength fields can be made in modifying the 300 mb and
1000/300 mb height and thickness fields. Proper
interpretation of the satellite imagery permits the
identification and location of the short wavelength systems
in the 300 mb and 1000/300 mb fields. The regression
equations, including the satellite parameters as predictors,
permit quantitative estimates of the magnitudes of the
negative extrema in the short wavelength 300 mb and 1000/300
mb fields.

The multiple regression correlation coefficient for the
200 mb data shows little appreciable difference compared to

iagle and Hayden's correla+tion zoefficient for the 500 mb

field (0.31 versus 2.80 respectively). The root mean

N squar=s4 fRMI, =rror of 30.9 meta2rs for tne 33 mb
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independent data set is appreciably lower than the RMS error

of 41 meters for Nagle and Hayden's 500 mb independent data
gset. The 300 mb height analysis using surface, radiosonde
height and satellite vertical temperature profiles has a RMS
error of 10.6 meters when computed for the relatively dense
data network of Northern Europe (Murphy and Williamson,
1976). This can be considered as the inherent error in

the current "perfect" analysis. The RMS error value of the
predicted (the "first guess”) 300 mb heights as given by
Rutherford (1976) is 32.7 meters computed for the entire
northern hemisphere. This implies that the RMS height error
over data sparse areas can exceed 40 meters. Therefore, the
technique developed in the present study can significantly
improve the accuracy of the 300 mb geopotential height field
in data sparse regions.

Upon examining the 1000/300 mb thickness field RMS
height error of 32.7 meters in light of the above
discussion, it appears that the present technique can also
gsignificantly aid the analysis in data sparse areas.

Equally important is that the 1000/300 mb thicknesses
estimated by this technique can insure vertical consistency
of the mass field which is an essential requirement for
initializing a multi-level primative equation model.

The regression equations developed excluding thne
satellite parameters can be used when specification of <th=2

~

cloud parame®2rs is ambigucus. The estimates of tne G0
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values computed with these regression models are
conservative estimates with larger RMS errors than
associated with the regression models including the
satellite parameters. These equations could be used for
systems in the formative stage of development when the
interpretation of the satellite image is difficult, and
requires considerable subjectivity.

Therefore, provided tne satellite images are properly

interpreted and that the long wavelength component I.elds

provided by the 12-hr numerical forecasts can be accepted as
a reasonable base, the technique developed in the present
Study can significantly improve the accuracy of the 300 mb
and 1000/300 mb geopotential height and thickness fields in
data sparse regions. Appendix C provides the details for

adapting these techniques for operational usage.

6.2 Recommendations for Future Study

Verification of the zero line positioning and testing
of the techniques to define the spatial characteristics of
the 300 mb and 1000/300 mb SD fields should be further
explored. This will require satellite imagery .preferably
from a geostationary satellite, in order to avoid problems
assocliated with mosaics) valid at analysis %times. The

spatial errors between the satellite image and the fi=21d

analysis would then be at 2 minimumn.

The impact of this technigue on 1 r2gional or global

52
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numerical model, and the ability of the objective analysis
and initialization schemes to retain the adjustments to the
fields should be pursued. However, if the impact is neutral
or negative, an explanation may be that the additional
gsatellite information provided by this technique are not
being exploited fully by the existing system. This is quite
probable if th: existing system has been designed primarily
for assimilating synoptic rawinsonde data. Finally,
assessments of the impact should be qualitative as well as
statistical, should discriminate according to geographical
area and space time scales, and should give emphasis to

synoptically active test situations.
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A APPENDIX A
'u;' 1. Properties of Scale Separation
o The smoothing filter is defined by
N ot
2 =2
- ¢ = 94 ¢ 8 f 77¢ da (Al)
::.:"-_.
\l.-i
A . -
A where ¢ 1is the smoothed field, :0 1s the original
L field, § 1is a constant, 72 the two-dimensional
:;.'::'I Laplacian operator, and o 1is the degree of smoothing

Lo |
)\1:, |
o (Holl, 1963). Equation {(Al) may be expressed in a more
( .
general operator notation as
i
e olal = ¢[0] - 2[0,a] (A2)
)
o
A . <
;:-: where ¢$[a] 1is the field ; smoothed to Jdegree of
-"h’
‘; smoothing a , and ¢[0,a] is the residual field
gt , . . .
resulting from the smoothing operating on the : £field
\_. from its initial state a = 0 to the final state
n.':\"
DY a = Q
T‘:‘-‘ The properties of the smoother can be examined by
-""'
w8 . .
~:“'r_. assuming the ¢ field can be represented by a one-
f“a:
R dimensional Fourier component with wave-number k and ‘
o ‘
s

54
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whose amplitude Ak will be a function of the degree

of smoothing. Equation (Al) can be written in differen-

tial form as

Q)
©

]
O

]
<J

(8]

©

(A3)

Q
Q

The one-dimensional Fourier component is expressed by

s(0] = A (0] k™ (Ad)

where i = /=1 . Substituting (A4) into (A3) and

solving yields

-kz'za
pl2] = 3[0] e ’ (AS)
-k2‘21
Ak[a] = Ak[OJ e ’ (A6)

The amplitude reduction factor which is a function

of the degree of smoothing and wave-number is given by

i
o
[N}
"
N

>

o
O

The larger the degree of smoothing {(large <« ) the more
the amplitude will be reduced. It 1s readily seen that
for a given degree of smoothing the shorter waves'

(large k) amplitudes are greatly reduced.

DO )
e
e
* - o
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2. Analysis of the Numerical Analogue

Computationally Equation (Al) 1s integrated by
repeated applications of the Laplacian operator with
varying increments in 1(&1,12,...,an) . Using
Equation (A5) one can show that the resultant smoothing
is cumulative in 1 , since

2.2
$(01lay) 7% 0

olay] (a,]

-kzéz(al+a )

= (0] e 2

= ¢[al +a2] . (A8

The explicit finite difference analogue of Equation (A8)

is:

AR

SOAONON
P

,\: szl = o[0] + F7:(0]y

oy

NN 22

Dy sla +a,]l = ¢[Jl] * T lag 0y, P (A9)

or 1n general for the nth degree of smoothing:
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f“i where *2 1s the five-point finite difference approxi-
j;: mation of the Laplacian operator on a lattice with
F%é gridlength 3 . For reasons of numerical stability the
Vi} ai's lncrease with successive steps.
i:é ) The smoothing of degree 1 1is complete when the
f; sum of the ai's reaches the predetermined value.
t“; ¢(a] 1is the long-wave component field and [0] - 7[z]
%’i is the short-wave component field.
Eﬁ Equation (A7) can be used to construct a filter
E$ (smoother) response curve where the wave-number is
j& replaced by wavelengths in grid increments, i.e.
k-
k = 2n(nd) T . (AL1)
éfg The amplitude reduction factor becomes
)
”iﬂ R = e—‘Mz)‘/nz (Al2)
o
&i Using Equation (Al2) a family of curves corresponding
- ; to different 2 for the reduction factor as a function
igﬁ of n can be constructed. However, a single more
2;: general curve can be derived by introducing a new
".g variable x which is a function of both .1 and n
;- 2 2 2

rx = 47 u/n (Al3)
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where r is an arbitrary positive constant used to

scale x . Equation (Al2) can be rewritten as

R = e . (Al4)

For plotting purposes the constant r was chosen by
requiring that R = 0.5 when x = 1.0 , which leads
to the numerical value for r of 0.693147 . The
filter curve for this scheme is shown by the solid line
in Figure 15

An ideal filter would be a vertical line at x = 1.0
The filtering technique described above is known as
first-order smoothing and is not as sharp as the ideal
filter. The resulting long-wavelength field contains
some short-wavelength components and vice versa. The
application of higher order filters can compensate this
undesirable feature at the expense of computation time.

The concept of higher order smoothing is demonstrated
with the following example. Suppose that after applying
first-order smoothing, the short-wavelength field
contains 95 percent of the amplitude of a given short

wave and erroneously contains 15 percent of the amplitude

of a given long wave, due to the imperfect first order

filter.

XA
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AMPLITUDE REDUCTION FACTOR (ARF)

] .ﬁg'* :-TJ' —t
\-\
N
.99 {4 \ ARF = EXP (-R#X%X) 1
3
.89 | \L —— 15T ORDER SMOOTHING T
\ R = 8.693147
.7H T 1'.
\ —-= 3RD ORDER SMOOTHING
-6.@’ 'F -L
1.578426
o sz - +
L] 43 T T
. 3.8. T
.25 T
18 1
.58 1.98 1.58 2.98 2.58
Figure 15. Normalized filter curves for 1lst and 3rd

order smoothing.
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I1f the filtering process is now applied to the short-

wavelength field, to yield large and small scale componen<s,
the amplitude of the long wave will be reduced 1n the second
short-wavelength component field to 0.15 x 0.15 or 2.25
percent of its original amplitude. The short wave amplitude
will be reduced in the second short-wavelength component
field to 0.95 x 0.95 or 90.25 percent of its original
amplitude. This second-order smoothing is much sharper than
the first order because the longer wavelengths are filtered

more rapidly than the shorter wavelengths.

3. Second Order Smoothing

Equation (A2) for first-order smoothing can be

rewritten as:

3[0,2] = o0} - »[x] . (Al5)

Second-order smoothing involves smoothing the residual

field a second time:

2(0,2](0,2) = «2{0] = :(x): [0,x]

(C)] [=x) = [xJ[0) + ;[a)({xl.

2(0] (0]

t

(Al6)
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From Equation (AS8)
300,21 (0,3] = o[(0] = 28(a] + 3[2a]. (AL7)
Adopting the convention
2
slalla) = o¢(2a) = (2], (Al8)
Equation (Al7) can be written as:
$(0,2)2 = #(1 - [al)2 (A19)
or in general
¢{o,aln = o1 - {a))n (A20)
The resulting long-wavelength component field after nth
degree of smoothing is:
¢pw = 001 - ¢[0,a]n
= $(1 - (1 - Zal)ny, (a2l)

The smoothing process used for this study was third-

order smoothing. The long-wavelength field 1s given by

Siw = Isfa)l - 33f{2a) + 3(3a)

(A22)
61
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Equation (A22) shows that in practice the field 1is
smoothed to 31 rather than by repeated smocthini,
which computaticonally is more efficient.

The amplitude reduction factor for third-orcer

smoothing 1is

2
R = 3e F¥ e 2rx + e 3rx

By requiring that R 0.5 when x = 1.0 the numerical
value of the constant r 1s 1.5784264 . Figure 15
shows that third order smoothing is indeed sharper than
first order. Using Equation (A23) and the definition

of r , the corresponding degree of smocothing 1s

x = 8.52 .

Equation (Al) defines the procedure for explicit

smoothing. However, implicit smoothing is Zound to be

more efficient and is used 1n practice. OCne smoothing
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cycle 1s represented by

&

L
g

1
“e

o
s

|
. (o 2 2 i
R R B - N R S N -
. O DU - v o3 /L] + . - i het a4 -t !
.« * 2 v
r'."".'-
b, -
AL Eguation (a24) 1s solved by standard overreiaxaticn. .
L."f‘_
ot
E!;: The optimum relaxation factor (Holl, 19%67) . .5
b
l'_ '_
g:; glven Dby
s
p

o e . . -'.—-'_'. Tt o, R e '-.- ..'..... _._“'.-\.._‘,._.\- -"\. .'..
R FRRPONY Y R B TS PP JEC o WA NPRE WSE I B NCSE ]

l.‘ . -".-’ .-.'. '..- c. .'. q-. . .’— - . . - -.- - -.‘.. -
o - L R AU .
' % . ..\i'! e AN gt a e et eha et e T

2 A e el e e 8 e I B e




5 Y

-
i
-

|
SRR
--.§. .n.l.l .
FRERERRCRENOINL

-
L]

a,
)

AN XA

2 .
“w = 1 <+ ( ] (A23)
1+ (1_52)1/2
where
q = 253/(23a+1) . (A26)

The number of iterations required for adequate accuracy
is

Zn 0.02

N2 w1y -

(A27)
The d&a for each smoothing cycle is defined such that
after 15 cycles the fields will be smoothed to a , 2z,
and 3a . A normalized table for IJa is given 1in

*
Table 12 . The actual a2 used for each cycle is

found by multiplication ¢of the normalized value and

the desired degree of smoothing.
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TABLE 12

Normalized smoothing increments

(after Holl,

1267

Cycle No.

oa

o
OYWMIOULL WN

=
oW~
QO DOV DO DOOOO O«

—
w

.006
.009
.N14
.020
.030
.045
. 068
.102
154
.230
.322
.500
.500
.500
.500

2D

b)

-

WNONHFH—~ O D000 O

.15
.029
.049
.079
.124
. 192
.294
. 448
.678
elals
.500
.000
.509
. 000
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¥ _ , _
SCSI The linear regression of y on the variable x can be

.
[

. «
P
: " o
. . .
Adan

extended to the multiple regression

(B1)

Wy
mw
[GN
~
4

y = Bixp + Baxz2 + ... + fnxn =
=1

where x‘,xzp.wxn are the n different variables and 81,

v '..‘ .‘ fe e .

PR U e

ﬁj Ba ,eees B, are the model parameters of the regression line.

The special case in which X{ is identically one, would

s

mean that B, had now assumed the role of the regression

constant or y-intercept. Suppose that M experimental
observations are made and that Xij is the value of the ‘
variable Xj at the ith observation. Letting Y; be the i
ith observed value of y , the formulation of the multiple

regression procedure requires one to minimize the sum of

i,

squares

M N 1
. i=1 j=1 !
L. ]
;Q; Set+ting 35/ 98k =0 for x=1,2,...,n , and replacing l
2L 1
ﬂf the Bj, with their least-squares estimates b , we have ;
@ [
:"_-. M n 1
Rik (vi - Z biXij) = 9 \
r‘_'i i=1 =1
' @ i
2 ]
25 ]
e 65 ]
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That 1s,

()
"
—
o
1]
—
b
[l
—

.= 1,2,...,n .

Now define X as the Mxn matrix containing Xij 1in

i1ts ith row and jth column:

M, 1 XM, n

The foliowing column vectors are alse defined:
— R
Y [Yl ae) v 1= {B85)
b = by ©p> ... bpil- L BO )
Whero =he sipersoripe 2 ernres e CTranspogsee v s
vactor., The sys<tem of normal equations (B3) 21n ba »~xpressed
1St
NN o o= KRy 37
.':’-i
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u..‘-..
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which has the solution

~

b o= (Xt x)7' xty

The Mxn symmetrical variance-covariance matrix V 1is

defined by

<
1]

Vij) = (xt ®)-1 52, (B9)

where 02 is estimated from

S2 = M- o : (B10)

The diagonal and off-diagonal elements of V give,

respectively, the variances and covariances of the bj ;

that is,

var(bj) = vij , and covibi,bj) = vij .
The system of normal equations (B3) can be solved by any
number of conventional methods such as Gaussian elimination
or matrix inversion.

In the present study, the Biomedical Computer Programs
P-Series (BMDP-79) library developed at the Health Sciences

Computing Facility at the University of California at
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Los Angeles was used (Dixon and Brown, 1979). The stepwis=2
multiple regression program P2R was employed £for =he
regression analysis..

P2R computes estimates of the parameters of a multiple
linear regression equation in a stepwise manner. The
variables are entered (forward stepping) or removed
(backward stepping) from the equation one at a time
according +to any of four possible criteria. Univariate
statistics computed for each variable are: mean, standard
deviation, coefficient of variation, skewness, Xurtosis,
maximum, and minimum values. Results are printed at each
step along with the multiple correlation coefficient R

~

(i.e. the correlation of the dependent variable y with the

predicted value y ) as well as the multiple R2 , the
adjusted Ra2 dilven by
Ra2 = R%Z - n(l - R2)/(M - n) (B11)

(Thiel, 1971), and the standard error estimate given by:

The analysis of variince table contiining “he regression

8
.
i1
v
7
A
W
T
ru
0]

sums of squares, residual sums of squares an
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inclusion in the equation in a manner that maximizes the F

ratio, the level of significance of the F ratio cannot be
obtained from an F distribution.

Any one of four methods can be used for enteringor

removing variables from the equation at each step. The

methods are:

F The variable with the smallest F-to-Remove,
given by:
SS (residuals if variable is removed) - SS (residuals)

SS (residuals) / (M - n)

Where 5SS 1is the sum of squares, is removed it
its F-to-remove is lower than the specified PF-
to-remove 1limit. If no variable meets this

criterion, the variable with the largest F-to-

enter defined by

SS (residuals) - SS (residuals after next step) ,
SS (residuals after next step)/(M-n-1)

is entered if the F-to-enter value exceeds the

specified F-to-enter limit.

SWAP Same as method F above, except when no variable

meets the F-to-remove criterion, a variable in

o the equation is exchanged with a variable not
p.- .

h - . . . .

A yet in the equation if the exchange increases
Ew

Y

o8 69
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the multiple regression correlation coefficient
R. If no variable can be exchanged, a variaktl=2

is entered as in F.

The variable with the smallest F-to-remove is
removed if its removal results in a larger
multiple R than was previously obtained for
the same number of variables. If no variable
meets this criterion, 2 variable is entered as

in F.

Same as method R, except when no variable neets
this criterion, a2 variable in the equation is
exchanged with a variable not yet in the
equation if the exchange increases the multiple
correlation coefficient R. If no variable can

be exchanged, a variable is entered as in F.

The method F requires the fewest computations.

ince 21l four methods begin with no variadbles in *he

(@D]

they appear to describe 2 forward stepping

equation,

W

Lgoritnm.

be assigned

bt

4

Tne Feto-enter and F-to-remnve limi%s can e

two values. The firs% pair is used until all

that meet the ~2riteria have been en*tereqd; <he

variables

. b
'l'l

LR AN}

second pair of Limifts is tneonasged w0 ramyve tne yvariable

% 4 Aty Y
n‘t‘.f‘l
e

(backwarAd

- ; ) : [ BN R I
ztepping . 2y as3ligning very 1aw vailues *to 3

. f.
e
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first pair of limits, all (aor nearly all) variables can be

entered into the equation. By assigning high values to the
second pair, the variables in the equation can be removed.

A possible danger involved in this method is that, as
the number of predictors n increases, the further increase
in the model's explained variance may be due not to physical
relationships but rather due to chance relationships in the
data sample that may not exist in other samples. Panofsky
and Brier (1968) refer to this as "overfitting". To prevent
this the data were randomly divided into two groups: two-
thirds of the observations were used as the dependent data
set, while the remaining one-third became the independent:
set. The various regression models were applied to the
independent set, with the model yielding the largest
reduction in variance selected as the best regression
equation. An example of the P2R program control information

ugsed for this study is shown in Figure 16.
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/PROBLEM
/INPUT

/VARTABLE

/TRAN

/REGRESS

/PRINT
/END.

PROGRAM CONTROL INFORMATION

TITLE IS 300 MB SD SINAP REGRESSION
VARTABLES = 19.
FORMAT = (6X,6E14.6,2X,11,/,12F10.3)
UNIT = 20.
NAMES ARE FLAT,FLON,SLAT,SLON,AMP,RL,IST,SD,SRY,
SRV, SVL,SLH,SLU,SLV,SLL,SVH,SVU,SVV,SVL,RLS,RLS,
RLMA, AMDR,RLDA,RLDC,RLS?.

7

ADD = 7.
RLS = RL*SIN(SLAT).

RL5 = SORT(PL).

RLMA = RL*AMP.

AMDR = AMP/RL.

RLDA = RL/AMP.

RLDC = RL/COS(SLAT).

RLS2 = RL*SIN{SLAT)*SIN(SLAT).

DEPEND = SD.

INDEP = SLAT,SLON,AMP,RL,SRU,SRV,SVL,SLH,SLU,SLV,
SLL,SVH,SVU,SVV,SVL,RLS,RLS,FLMA, AMDR,RLDA,RLDC,
RLS2.

TITLE = FORWARD STEPPING MULTIPLE REGRESSION
METHOD = F.

ENTER = 4.0.
REMOVE = 3.9.
TOL = 0.05.
DATA.

CORR.

BMDP UNIT NO.

20 SPECIFIED IN THE INPUT PARAGRAPH WILL REFER TO

LOCAL FILE NAME TAPE20 FOR THIS PROBLEM.

16. P2R program control language.
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APPENDIX C

The operational application of the technique developed
in the present study and described herein, is designed to
utilize the Naval Environmental Prediction Research
Facility's Satellite-Data Processing and Display System's
(SPADS) unique capabilities of allowing interactive digital
imagevprocessing (Schramm, Zeleny, Nagle, and Weinstein,
1982). Graphic overlays of the meteorological fields
superimposed upon the satellite image make this system ideal
for the application of the present technique.

Since parameters derived from the long wavelength field
are required for the regression models for estimating the
magnitudes of the negative extrema of the SD field, it must
be assumed that the long wavelength field is accurately
specified. In a realtime application the current long
wavelength analysis is not availiable, but rather the 12-hr
numerical forecast of the fields are to be used. The
assumption being that the 12-hr forecast .(the "first guess")
contains sufficient information for accurate specification
of the long wavelength fields. Nagle and Hayden tested this
assumption by comparing the differences between the 12-hr
first guess field and subsequent analysis for 500 mb height
fields. They also compared tne differences of the
Laplacians of the fields and found in both cases the errors

were acceptably low for use in the current context.
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The primary satellite data used will be digital
satellite imagery obtained from the geostationary satellites

of the GOES series. The 12-hr numerical 300 mb =and 10CC0/220

mb forecast fields are computer processed “o proiuce the ZV,
SR, SL and 5D fields. Selection of %the 37ES image =3e2tor
within the hour preceeding the analysis time (i.e. 1200 or

000 GMT) is then made and *the image displayed. Tne analys*
then interprets the spiral cloud system hy defining the
parameters required by the regression equatioson. Tnce the

analyst is satisfied with the defined spiral parameters, the

n

value of the 35D extrema is then computed.

The zero line defining the region of influence of the
computed 3D feature is then defined along the amplitude and
wavelength axes designated by graphical means on the color
monitor. The zero line intersects these lines a* the inner
edge of the major frontal cloud band. This defines the
major and minor axes of an ellipse tha* 2an be used %9
approximate the 3D feature. Another possibility, would b=

tno simply define the positicon of the zaro line with the

'

inal ty

graph pen and pad. The 3D feature rcoull “han be de

4

“ne following r=la%innship

e d ~o ~ . e
= amin 202 (Tr2R) '

el
b

whnere Z i3 thz2 value at the grid voint 4d2fin23l ty r, wharz -

is the diztan~» from the zentar %o *the pridl pains = -
distance frem tne canter Yo <he zero line pussing *nrcualy
“ne grid point and Do i sae T value -t .
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regression equation. Figure 17 is a schematic

representation of the above.

Once the region of influence is defined, the SD values
at the grid points within the region of influence when added
to the SR field compose an array of bogus height or
thicknéss values to be blended with the rawinsonde and
aircraft data used for the analysis. This procedure can
also be used for the 6-hr update cycles when an explosive
case of cyclogeﬁesis is apparent in the satellite imagery
but not reflected in the twice daily analysis times. A

schematic of this SINAP! process is shown in figure 18.

1 SINAP: Satellite Input to Numerical Analysis and Prediction




..
st
]
s

a‘."f“
)
LA
[

U
ot
’-l'..l(:l‘.

2 = IMIN " COS[rr/2R]

Figure 17. Schemnaric representation of o SD foature
approximating function.
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