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Abstract

Development and use of new materials and technologies for use in

high temperature environments are dependent on the availability of a

material model appropriate for such applications. The Bodner-Partom

constitutive model shows promising flexibility in modeling materials

under such conditions. Evaluation of the model's adequacy and range of

application has thus far been hampered by a lack of physical understand-

S-ing of the model's coefficients and the lack of a systematic method for

evaluating them. >I ,rLJ pA'

This study uses experimental data for IN'718 at 1200°F to establish

a systematic approach to the evaluation of the Bodner coefficients.

Parametric studies were used to develop a comprehensive description of

each coefficient and its impact on the material model. A simple exten-

sion of the Bodner constitutive equations to model cyclic loading situ-

- ations was carried out.

Results show that systematic evaluation of the Bodner coefficients

from experimental data is achievable although somewhat subjective in

nature. Cyclic load studies revealed that the Bodner model is capable

of modeling isotropJ, and directional strain hardening as well as strain

softening.
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I. Introduction

The continued and growing use of high performance gas turbine

engines on military aircraft has placed the United States Air Force in

a position where more information is needed on material behavior under

the conditions of these applications [I]. High temperature engine oper-

ation is typified by complex material behavior where time dependence

and temperature effects interact with a varying load spectra [2,3]• An

analytical technique to model material behavior under these conditions

is required to allow further development and use of materials and

technology.

Development of an appropriate analytical model has been a slow

process. A model is proposed; then it must be evaluated, compared to

- -. experimental data, and revised. As technology advances, new materials

,K- and new applications require changes in the models. Today's constitu-

tive models have evolved from classical plasticity over a period of

many years.

Early material models were based on the assumptions of classical

plasticity. These models are time independent. They are thus unable

to adequately describe high temperature material behavior where time

and rate dependence are significant.

The classical elasto-viscoplastic models followed. They corrected

some, but not all, of the deficiencies of the classical plasticity

models. Classical elasto-viscoplastic theories allow for strain rate

S.' . dependent plastic flow, but rely on a strain rate independent yield

criterion [21) (e.g. von Mises). Thus, they too inadequately describe

..
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high temperature material behavior.

*Several non-classical elasto-viscoplastic constitutive models have

been proposed to allow analysis of the behavior of rate sensitive

materials. Each attempts to model the mechanism of rate dependence,

temperature dependence, creep and relaxation behavior, and each predicts

a slightly different material response because the mechanisms are

modeled differently. A brief look at some of the models serves to point

out some of the differences between them. This is by no means a com-

prehensive overview. It is merely intended to provide a rudimentary

understanding of some of the model types in use today.

Cernocky and Krempl [24] proposed a constitutive model that relies

on an overstress mechanism (a variation on that proposed by Malvern in

V 1951 [27]) and an equilibrium material stress-strain responsi. The

difference between the flow stress and the equilibrium stress is called

the overstress. The model is non-linear in stress and strain and linear

in stress and strain rates. It does not use a yield surface. This

model incorporates stress-rate history effects but not strain-rate

history effects [17], and is thus unable to model observed material

behavior.

Lin and Wu [23] developed constitutive equations based on the endo-

chronic theory attributed by Valanis. In the endochronic theories of

viscoplasticity, a transformation is used to move from the absolute time

measured by a clock to a subjective time scale that is essentially a

material property. Thus the current value of stress is determined by

"the memory of the material with respect to the endochronic time" [23).

Endochronic theories are most often used in the study of brittle

* 2
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materials, such as concrete. This model does not rely on a yield sur-

face. It models creep behavior, but does not predict relaxation be-

havior [17]; thus it is unable to model observed material response.

The model proposed by Wu and Yip [25] is also an endochronic theory.

Unlike that of Lin and Wu, this model predicts both creep and relaxation

behavior. However, where most endochronic theories do not require use

of a yield surface, this one does; the internal measure of time depends

on the plastic strain rate. Thus, use of this model requires that a

yield criterion be established.

The Bodner-Partom model for plastic flow [22] does not depend on a

yield surface. It predicts creep and relaxation behavior; it incorpor-

ates time, rate and temperature effects. Both stress and strain rate

* history effects are modeled. And it can be used to model material

behavior during application of cyclic loads as well as monotonic loading

- - conditions.

Because the Bodner-Partom flow law appears to incorporate mechan-

isms for modeling these important parameters of material behavior, it

has a great potential as an analytical tool. At this time, however,

there is no established method for determining the eight material co-

efficients used in t1is model. tfforts to evaluate the adequacy and

flexibility of the model and to use it effectively have been hampered

by the non-availability of the required material parameters.

D. C. Stouffer [9] evaluated the coefficients used in the Bodner

flow, law to model Inconel 100. The data base he used for this work con-

sisted of twenty experiments, including both tensile and creep tests.

Although he did develop appropriate values for the coefficients, he did

3



- .- .- s

so without developing much physical understanding of them. It was not

known how sensitive the model may be to small variations in the values

of the various coefficients. There was little guidance as to what data

should be used to evaluate which coefficients, and no guidance as to

how sensitive the model is to small deviations from the "best fit"

values at any given point.

This thesis provides a systematic method for evaluating the coeffi-

cients of the Bodner model from experimental data. The work done by

Stouffer [9] is used as a starting point; some guidance is given regard-

ing what constitutes an adequate data base for the evaluation process.

A comprehensive discussion of the coefficients and their characteristic

- . effects on the Bodner model provides additional insight into the model.

A study of the Bodner model under conditions of cyclic loading esta-

blishes the validity of such uses of this model and suggests additional

characteristics that must be incorporated into the cyclic formulation
i-.

*. to allow adequate representation of material behavior under such condi-

tions.

4
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II. Theory

General Theory

The Bodner-Parton plastic flow model is based on the assumption

that the total deformation rate tensor consists of elastic (reversible)

and inelastic (non-reversible) components at every stage of the loading

history. In the case of small strains, this is written

e p
ij ij ij

where the elastic and inelastic components are both non-zero for all non-

zero values of stress. Anelastic stresses and strains are neglected in

this formulation.

The elastic strain rate ;e is related to the stress rate by the

time derivative of Hooke's Law. The inelastic strain rate is taken

to follow the Prandtl-Reuss flow law of classical plasticity [29],

E" = = xS (2)
ij ij ij

where is the deviatoric plastic strain rate and S the deviatoric
* ii i

"' stress. If both sides of Equation (2) are squared and divided by two,

the result is

S12 2
~e~i Dp xi (3)

where Dp is the second invariant of the deviatoric plastic strain rate
w 2

and J2 is the second invariant of the deviatoric stress. It is assumed

in this formulation that the plastic deformations are described by the

functional relationship

5
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DP = DP (2 T, Z (4)

2 2 2' T k)

where Dp is written explicitly as a function of the deviatoric stress
2

J absolute temperature T and a set of internal state variables Zk.

-. The current values of the Zk are meant to reflect all the pertinent

effects of any prior inelastic deformations. Thus, we can write

- (D (J 2 , T, Zk)/J 2 ) (5)

The form chosen by Bodner and Partom [22] for expressing D2

(J 2 , T, Zk), motivated by the equations of dislocation dynamics, is

222k

P D 2 (6)n~
2 0 n2

where D is a limiting value for the plastic strain rate in shear and n

is a temperature dependent state variable which describes strain rate

sensitivity. The variable Z is a material hardness parameter indicating

in some sense the material's internal resistance to plastic flow, and is

.discussed in greater detail subsequently.

Some insight into the form of Equation (6) may be gained from a

brief look at disloj4ation dynamics. Dislocation velocity cannot in-

crease without limit as stress increases; it must approach some limiting

value. Quite generally the velocity may be written

v -vP m (aS) (7)

where v is the dislocation velocity, v the limiting value of dislocation

velocity, a the shear stress between slip planes and P the average
s m

probability of v taking on the value V at a given instant. Whatever

S. -
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functional form is chosen for Pm(as), it must satisfy two conditions:
m .

P (a ) must be zero .at 0 = 0, and P (cs) must approach unity asymptoti-
m s . s m S

cally for high values of a . The form proposed by Gilman [13] which

,F %le satisfies both these conditions is

. -D/ a
P e s (8)

where D is a drag stress constant, sometimes called the dislocation drag

term. Note the similarity between the resulting expression

v exp (9)

and Equation (6).

i. If Equations (2), (3), (5), and (6) are combined, the resulting

expressions are found, considering a uniaxial stress a :
x

P = XS = XA
x x x

CF x D 2 exp Z2 n n+l

,-.: = x£ D e Pt-~ - 10
7j 0 3J 2J

2

* :,2 a ,, x1

The hardness parameter Z consists of two terms, as does the time

rate of hardening, . The first term represents hardening due'to plastic

work, Wp, while the second incorporates the effects of thermal recovery

of the hardening generated by plastic work. By examining the mechanics
.: .. ,

of strain hardening and recovery on a microscopic scale, some insight

into the forms of these two terms can be found.

The softer a material is, the easier it is for dislocations to

7
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propagate through the material lattice. It is the result of this propa-

,gation of dislocations that is called "plastic strain." Dislocations

scattered through the material are one of many mechanisms that serve to

impede the propagation of mobile dislocations. Strain hardening is the

multiplication of dislocations in the material in such a way as to impede

dislocation motion.

A material containing these "impedance" dislocations has a higher

internal energy than the same material without the dislocations. The

higher the dislocation density, the higher the internal energy [11].

Over time, the material will tend toward 'a lower internal energy state.

* -The material reduces its dislocation density and hence its internal

energy by eliminating or relocating impedance dislocations. This reduc-

tion in dislocation density is what is called recovery, and the result

is a softer material.

In Bodner's formulation, [22], the work hardening expression is

written in terms of Z:

Zh = awh a (11
" wh Zw

..., W at
p

The change in hardness Z with respect to plastic work W (per unit

volume) is

wh m (ZI  Z) (12)

where m is a material constant describing the rate of work hardening

and Z is the saturation (maximum) value of Z. Note also that

P a £p (13)

8
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The thermal recovery term is postulated by Bodner [i] to have the form

rec A z (14)

Vwhere Z2 is the non-work hardened value cf Z at a given temperature, and

A and r are temperature dependent material coefficients. The complete

-.'- expression for the rate of hardening then becomes

= m (Z I - Z) O - [ 1 ]r (15)

Equations (10) and (15) together are assumed to provide sufficient

information to model the material behavior. For test conditions where

there is no load reversal, a forward integration technique may be used

to incrementally describe material behavior. When there is i load re-

versal, however, proper application of the constitutive equations is

considerably more complex.

4.N Under cyclic loading the hardness parameter Z develops directional

characteristics. Strain hardening caused by tensile loading affects the

material's subsequent behavior under compressive loas. Separate values

of the hardness Z would thus be indicated for use in Equation (10),

depending on the sign of the applied stress. When the applied stress is

tensile, the applicable Z is called Zt ; when the applied stress is com-

pressive, the applicable Z is called Zc  A simple model 7] incorpor-

ating isotropic and directional hardening allows Zt and Zc to be incre-

mentally computed from the initial value Z0 according to a few basic

principles.

Initially,

9



z c = zo  (16)

Changes from this state are computed according to

it = q Z + (1 - q) Z U (17a)

2c= q _ (1- q) 2 U (17b)

where s = depends on the sign of the applied stress, and

"'" M (Z 1  Z eff )a A Z 1 [Zeff - Z2  r= (1 - -A (18)

where

t cZeff  Z orZ (19)

depending on U . Using these computed values of it and Zc, values of Zt

- and Z are determined incrementally over time using the relationships

" t W Zt + ztAt (20a)

" Zc Zc + zcAt (20b)

Thus, at the end of the first incremental time step, there are two*1

values of hardness, Zt and Zc. The parameter q is a significant feature

of this formulation, and its value corresponds to the uature of the

hardening process. If the hardening is purely isotropic, q - 1; for

this case Z -Z c . A value of q- 0 indicates that the hardening is purely

directional. This model also allows for situations where hardening is

p. ly isotropic and partly kinematic; in this case some positive frac-

tional value is assigned to q. In general work related to strain

9~4~.10

t ' a -". . . a . . . .a-. . . . . ... ... • ." ." "*.'. ." . . ," . - "' -* . ." ." . " " ,

[, -,:,-,-;'.. -.' "" "" " " " "" "" •" . .. . . .... .... . .
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hardening it has been proposed [7] that these constitutive equations

can also be associated with strain softening; in this case a value of

q<O is used. In the subsequent discussion it is this phenomenon of

strain softening that will be dealt with. The Bodner constitutive model

is capable of modeling both hardening and softening; this is very rare.

Applications for Evaluating Coefficients

The preceeding paragraphs briefly present a technique whereby

Equations (10) and (15) can be used to describe material behavior under

cyclic loading. Under certain other loading conditions, these two

equations can be simplified to facilitate the evaluation of some of the

coefficients.

- When both strain rate and stress are constant, as is the case when

saturation is reached, Equation (10) indicates that the hardness para-

meter. Z must also be constant. Furthermore, for tests of short duration

(with no recovery) the material must be in a fully work hardened state

at saturation "to obtain the maximum value of stress" [9), so that

Z Z For these steady flow conditions,

2 n+l Z)2n

= 0 2n

/3 p  [ n+l l)
2n

2D =exp 2-

2D 2n~a

F nl z 2n

-n/3 pD  "+ nn+l 1o-I)2

in In -o -+n -n
2D 2n

/3; [2n Zl 2n( ]

ln -n---- 2n In a 2n ln Zn+Z1 + in (21)
L 2DJ.0

, 'ao *- 1 1 . . .
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From-this form it is seen that in (-in(j---)) is linearly related to in
0

Characterization of appropriately plotted experimental data will

allow determination of n from the slope- of the line. Once n is deter-

mined, Z1 can be deduced mathematically.

For test conditions such as high strain rate situations which pre-

clude recovery, Equation (15) can be written

dZ m (Z - Z) dW (22)

This can be integrated to give

in (Z1 - Z) =In (Z1 -Z) -mW (23)

where Z. is defined as the initial value of hardness Z. This shows that

a linear relationship exists between in (Z1 - Z) and the plastic work

W . The value of Z for each data point of interest can be computed~P

from an inversion of Equation (10) which reduces to

F2n 2D 1 ] n

in J (24)

Plotting in (Z1 - Z) against plastic work W allows the determination ofb. p

a value for Z0 from t-he linearly.extrapolated value of In (Z1 - Z) at

W - 0. The slope of this line defines a value for m. Once the initial
p

value of hardness Z and the rate of work hardening m are known, stress-
0

strain curves can be generated using a forward integration technique on

Equations (10) and (15). This allows comparison of the high strain rate

u-- analytical prodictions with the data.

Based on the values determined for n, m, Z and Z, stress-strain
0 an

curves are generated using forward integration. This procedure is

12
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insensitive to the values chosen for A, r, and Z(as they appear only

in the recovery term~) so the fact rhat these coefficients have not yet

been determined exactly does not impact these curves. Comparison of

these curves with appropriate experimental data allows refinement of the

values chosen f or n, in, Z 0and Z 1to best model experimental data.

A parametric study of the coef ficients and their impact on the

* . resulting stress-strain curves provides some guidance for the refinement

process. The results of this study are contained in Figures 1 through 4.

The nominal values used for the coefficients are given in Table I:

deviations from these values are annotated on the individual figures.

TABLE I

.:cminal Coefficienz Values Used in Bodner Equations

Variable Description Value

n Strain Rate Sensitivity Parameter 3.0

in Rate of Work Hardening .219 a

* Z Initial Value of Material Hardness Z 1669 MPa

* Z Saturation (Maximum) Value of Z 1795 MPa

Z Minimum Recoverable Value of Z 718 MPa
2

A Hardening Recovery Coefficient .001 sec1

r Hardening Recovery Exponent 7.0

6 -1
D 0Limiting Value, Plastic Strain Rate 10 sec

0 in Shear

-E Elastic Modulus 162.5 x 10 Na

£StrainRate 1.3 x 107 sec-

13
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- Figure I shows the impact cf Narying n ani 21 at a strain rate of

-5 -1
1.3 x 10 sec (This strain rate is one of those for which experi-

mental data exists). The four stress-sLrain curves overlay one another

quite closely. Any n value in the range from n = 2.5 to n 3.211

clearly predicts material behavior quite similar to that predicted by

any other n value in the range.

Figure 2 shows the impact of varying m plus and minus ten percent

of its mean experimental value (.219 MPa - ), again at a strain rate of

-5 -1
1.3 x 10 sec . Again, the four curves overlay one another closely,

but this time the effect is to change the' shape of the stress-strain

curve slightly (increasing m causes higher saturation stress over the

domain shown).

Figure 3 shows the impact of varying Z0 plus and minus ten percent
0

of its mean experimental value (1669 MPa), at a strain rate of 1.3 x

* ,-5 -1* 10 sec . Changes in Z0 are much more readily seen than changes in

m in these figures. Increasing Z0 is equivalent to increasing the

initial hardness of the material without changing the saturation hard-

ness Z 1. Thus the nature of the hardening portion of the curve is

affected. Higher values of Z0 correspond to a flatter appearance of the

stress-strain curve. S

Figure 4 shows the impact of varying m and Z at a strain rate of

0
-5 -1

1.3 x 10 sec . The shape of the stress-strain curve can clearly be

changed significantly by different choices of values for m and Z0.

A procedure for determining appropriate values for the remaining

material coefficients (A, Z2 and r) requires use of the full equations

(equations (10) and (15)). To demonstrate more vividly the character

14
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'.. of the various coefficients, a parametric study was undertaken. The

:information contained in Equations (10) and (15) can be graphed as a

non-dimensionalized strain rate versus a non-dimensionalized stress to

allow for a more general presentation. In this study, nominal values

were selected for all coefficients but one, and various values for this

coefficient of interest were selected to illustrate the impact of

varying that parameter. The nominal'values used in this study are

presented in Table II.

TABLE II

Nominal Coefficient Values Used in the Bodner Equations
For Strain-Rate Versus Stress Curves

" Variable Description Value

n Strain Rate Sensitivity Parameter 5.0

m times Z Dimensionless Form of m 1000.

z 21 Dimensionless Form of .2  1

A/D Dimensionless Form of A .000001
0

r Hardening Recovery Exponent 3.0

Equation (10) 4as non-dimen~ionalized as follows:

r-"[\2  n J ] a 2D

.. '. exr/2D p2- Irn n l n -

./3;p.

)2n .2n ln[
, n-1 /3 P

19



a = ln -[r ]1  (25)

Z

where a is defined as -. For this study, the condition of saturation was

assumed, meaning that

z. 0

Substituting this into Equation (15) leads to the following:

m (Z -Z)c p - A Z [Z ]r (26)

Z_

Note again that- =t. Then Equation (26) can be written

[ a -Z2 ]r
m(Z1 - a)OP AZ[

. . ( l ct c p  c a - z r

z1zD0 -50z z 1

Let x and y = P. Then

0

mZ1 (1-ax)xy A (ax2

mzl (1-x)xy - A 0 (27)
1D0 z1

Using an iterative procedure, a value for x (or ZI) can be computed for
z1

each value of y (or -). Using Equations (25) and (27), an initial
0

estimate of the proper value for x is made. Equation (25) is substituted

into Equation (27) and the left hand side of Equation (27) is calculated.

20



As this will not be zero unless the value for x is guessed exactly, the

difference between this calculated value and zero serves as a guide to

the next approximation of x. At high strain rates, where there are no
N . .

significant recovery effects, Z = ZI . Under these conditions, with Z1

*'.. substituted into Equation (25), a value for x can be found directly from

this equation alone.

Graphing the dimensionless strain rate -- versus the dimensionless
o 0

'. stress a illustrates the impact of A, r, and Z on the predicted
±2

material behavior. Figure 5 serves as a guide to the information con-

tained in this type of figure; it is based on the studies contained in

Appendix A. Figures 6, 7, and 8 and the following discussion serve to

F.. o clarify the behavior of A, r, and Z2.

A/D0 is the dimensionless form of the coefficient in thq expression

for thermal recovery of work hardening (Equation (27)). The "branching"

effect in the lower left of Figure 6 shows that the primary effect of

changes in A/D is to extend the predicted recovery regime of the mate-
0

rial. The onset of the dominance of thermal recovery is described by

this variable. For larger values of A/D0, thermal recovery dominates at

higher strain rates; for lower values of A/D 0 , thermal recovery remains

a negligible phenomenon until relatively slower strain rates occur.

Changes in A/D have no significant influence at strain rates faster
0

than that at which recovery becomes significant. As a part of the

equation descriptive of thermal recovery, A/D0 does not effect material

behavior at higher strain rates where recovery is negligible.

The coefficient r appears as an-exponent in the expression for

thermal recovery of work hardening (Equation (27)). If A (or A/D 0)

21A.



II

HIGH STRAIN RATE REGION
WHERE RECOVERY EFFECTS

MAY BE NEGLECTED

7-SLOPE DETERMINED
BY N

Ui- M ID- RANGE :

RECOVERY AND
HARDENIG LOCATION OF INTER-

• /SECTION DETERMINED
Ij BY A

I I

S LOPE kETERMINED BY RI / I-

I //

I Z2

STRESS

Figure 5. Strain Rate Versus Stress Curve:
* A Guide to the Information-2
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Figure 6. Variation of A/D0

were to be written ata function 'of the onset of recoverability, r would

be the curvature of that function. Where the value of A/D determines

at which strain rate recovery begins to be important, r determines how

quickly recovery becomes a dominant characteristic (see Figure 7). As

with A, the effect of changing r is not seen at strain rates too high

to allow thermal recovery of plastic work to be significant.

S2/Z is the dimensionless form of the coefficient Z2 . A value for

",. " 23
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Z is determined matiimatically xhen a value is selected for xi; thus

the behavior illustrated in Figure 7 is that of Z The value of Z
2' 2

-controls where the curve becomes strain rate insensitive at very low

strain rates. The value of Z2 represents the minimum recoverable value
-V2

of hardness.

A more complete discussion of the material coefficients is to be

found in Appendix A.
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111. Applications to IN 718

Use of the constitutive equations developed in the preceeding

section to model material behavior requires that appropriate values be

determined for the coefficients. In this exercise, the material to be

* modeled was Inconel 718, at 1200'F. The data was provided by the

Materials Laboratory, Air Force Wright Aeronautical Laboratories. Con-

stant strain rate tensile test, creep test and cyclic loading test

data were provided.

The linear relationship between ln andn Inafrhg
0

strain rates (Equation (21)) provides a starting poinmt for the deter-

mination of the material coefficients of the Bodner model. Equation

(21) is repeated here for continuity:

. ln(-ln(--) Op -2n ln a + (2n inZIn nl (21)
0

Considering the case of high strain rates, where recovery effects can be

ignored, allows n and Z1to be evaluated. If the appropriate experi-

mental data is graphed as ln (-n D-)versus ln 'U and a straight
0

lin approximation made tothe data, the slope of the line will be -2n.

A value for Z 1can then be determined mathematically, using Equation (21)

* and the coordinates of a point on the line. Plotting the high. strain

rate experimental data will thus allow n and Zto be evaluated.

The full data base, tabulated in Table III, was graphed in Figure 9.

This allowed an initial evaluation to be made regarding which data

points are representative of situations with high strain rates and no

recovery. Specifically, the three data points of Figure 9 which came

26

-o" .',

• ". . . .:i A.....1:: .



TABLE III

Experimental Data Base; IN 718, 12000F

Stress (KSI) Strain rate Comments

80 4.0xiO 9 sec Creep test

-8 -1
100 1.6xl0 sec Creep test

-8 71105 1.8xl0 sec Creep test

-8 -1
110 3.OxlO -8sec Creep test

-8I-

110 3.OxlO sec Creep test

110 3.0xlo-Ssec-I  Creep test

110 2.8xl0-8 sec 1  Creep test

110 3.6xlO-8sec- 1 Creep test

120 1.7xl0 7 sec Creep test

120 1.4xlo 7 sec 1  Creep test

1-7  -1
120 l.Sxl0-sec Creep test

125 4.OxlO-7 sec- 1 Creep test

125 3.0xl0-7sec Creep test

-*7 -1
130 8.3xlO7 sec Creep test

134 1.lxlO-6sec- 1 Constant strain rate

135 " 5.5xlO-6sec- 1 Creep test

140 .0x- 6  -1
140 7.0xl0-sec Creep test

1421.xi-5 -1
142 1.3x10 sec Constant strain rate

147 1.6xl0 3 sec-  Constant strain rate

27



from constant strain rate tensile tests were under consideration. They

-3 -1 -5 _i
were based on strain rates of 1.6 x 10 sec , 1.3 x 10 sec , and

-6 -1
1.1 x 10 sec It was decided that the data point representative of

-6 -1
the 1.1 x 10 sec strain rate was within the recovery regime (see

Appendix B for a discussion of this determination).

o Creep Tests

00 &Constant Strain Rate Tests
CL-

""-"" <: CD=

2 -.

00

0
0 0C<0.-

-00S
Fu 9 Ep mt DtB ; N170

)2

" * J. . *O -

'.'.,300 0,20 0.00.60 0.80 ",O
• :':" STRESS/

-- Figure 9. Experimental Data Base; IN 718, 1200 0
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/3The two remaining data points were graphed on In (-in( 2)) versus
2D0

'in a axes, where P was considered to he equal to the total constant

.'- strain rate £ in each case. A straight line was drawn to characterize

this data. The results are depicted in Figures 10 and 57.

According to Equation (21), the slope of this line was twice the

negative value of the coefficient n. Three values for n were determined

to be fairly characteristic of the data. The slope was first determined

using the coordinates of the two data points, resulting in a value of

CL

I -

C
-.

*. 0

r 6.70 6.80 6.9 7.00
L N ( rPik)

Figure 10. Determination of n andZ
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n - 3.211. Working graphically, to evaluate the effect on accuracy of

-a graphical technique, a second slope was measured which yielded a value

of n = 3.125. For comparison, the line representing a value of n = 3.0

was drawn on the graph (see Figure 57); within the limits on accuracy

imposed by the graphical methods, this line also seems fairly represen-

tative of the data. For a final point of comparison, the line repre-

* senting n = 2.5 was also drawn. This line is not so different from the

lines representing the other values. It would appear that the proper

discrimination of the best value for n is not possible from this repre-

sentation of the data. The four values for n were carried forward

two limiting values (2.5 and 3.211) and the two intermediate values

(3.0 and 3.125) -- in the hope that further comparison with the data

would provide a more solid basis for choosing a value for n.-

For each value of n, a corresponding value for Z was computed

using Equation (21). A more detailed description of the determination

"-" .. ~ of values for n and Z is to be found in Appendix B.
1

The second study undertaken, to determine values for m and Z0, was

prompted by the linear relationship between In (Z Z) and the inelastic

" work W at high strain rates (Equation (23), repeated here for conven-
p

ience):

ln(Zl-Z) = ln(Zl-Z 0) - mW (23)

Again, data from high strain rate tensile tests was used, this time to

- evaluate m and Z The data used in this step came from a single con-
0'

.'stant strain rate test at = 1.3 x 10- 5 -i= ,10 sec .This data was chosen

O. because the strain rate was fast enough to allow use of Equation (23) --

30
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which neglects recovery effects -- and because the experimental stress-

'strain curve was well defined and well-behaved (see Figure 11).

Evaluation of the data began with the computation of the plastic

strain rate indicated by the data. The line representing Young's

V. 3Modulus (23.6 x 10 KSI) [10] was drawn on the experimental stress-

strain curve and the origin translated to meet the initial condition of

zero strain at zero stress. The values for total strain at selected

stress levels were read off the graph; plastic strain was derived from

these values by subtracting off the elastic strain as indicated by

Hooke's Law.

Plastic work was then computed from a graphical presentation of

this information. A trapezoidal integration was done on the graph of

S." stress versus plastic strain (see Figure 12). The value of plastic

work at the data points provided the abscissa for the graph representing

the relationship of Equation (23).

" :"2n 0
7jP ,the value of plastic

.i. To find the values for Z = n ,7 th vlu o pasi

strain rate had to be computed for each data point. This was derived

from the total strain rate by subtracting off the e.astic strain rate

indicated by the time derivative of Hooke's Law. Then, using Equation

(24), a value of Z ;as computed at each point. The data was presented

graphically as in Figures 13 through 16.

One problem revealed in this procedure is that there is not a clear

best straight line approximation to the data. Perhaps this is due to

scatter of the experimental data; perhaps the model simply does not

adequately represent the material behavior. Whatever the cause, the

data used in this study seemed to follow a bi-linear distribution, and
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three lines were taken from each graph (Figures 13 - 16) as representa-

tive of the data. At this point, for each of the four values of n

(and ZI) there were three values of m (and Z0 ) making a total of 12
1

data sets to be evaluated. It was hoped that further comparison with

the data would indicate which set best models the experimental results.

The determination of values for m and Z0 is presented in greater

detail in Appendix C.

A A A

o A A

0
V')

V')

.00 .20 .40 .60 .80 1.00
-2

PLASTIC STRAIN X10
Figure 12. Stress Vs Plastic Strain, - -1

IN 718, 1200
0F, g = 1.3 x 10 sec
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Some parametric studies were next undertaken, in an attempt to

refine the selection of values for the coefficients n and Z* A set of

dimensionless strain rate versus stress curves were prepared; the exper-

*imental data and the Bodner model predictions were plotted for each

value of n and Z 1*The results are contained in Figures 17 through 20.

The fit of model to data in each case is measured by how nearly the curve

of the model passes through the two (h igh strain rate, no recovery) data

points indicated by arrows. In each case, the fit is quite good. With-

in the limits on accuracy imposed by the graphical techniques employed,

all values are arguably adequate.

Stress-strain curves were used next to compare the model predictions

with the data in another fashion. Values for A, r, and Z2were selected

without too much concern for their accuracy; because these cdefficients

appear only in the recovery term of Equation (15), they do not impact

material behavior at strain rates too fast for recovery to be signifi-

cant. This is illustrated in the studies of Figures 48, 49, 51, 52, 54,

and 55. Using the different values of n, stress-strain curves were then

drawn to investigate whether varying n had any effee-t on the stress-

strain curve of the model. The results, contained in Figure 1, show

that the four curves are barely distinguishable from one another.

Because there was apparently no basis in the data for discrimina-

ting between the four values of n and Z., the value of n -3.0 was

selected simply for -the convenience provided by an integer value. This

choifce is rather arbitrary; comparison with available data show only

* that the model predictions based on n =3.0 fit the data as well as the

predictions based on any other n value under consideration.
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The data base used in this work provided only two points (C = 1.3 x•2-.0-5 -li-3 -1l::

10 sec and s = 1.6 x 10- 3 sec ) with which to evaluate n and ZI .

-4 -lA Having a third data point -- at, say, = 1.0 x 10-  sec -  -- would have

allowed significantly more confidence in the values thus established for

n and Z 1 . The relatively strain rate insensitive behavior of IN 718

under the conditions of these tests allowed appropriate coefficient

values to be determined from only two data points. For a more strain

rate sensitive material, however, the exact determination of coefficient

values would likely require at least three appropriate data points.

... With a value of n = 3.0 and the corresponding Z1 value selected,
A1

the material behavior predicted by the Bodner model for the three values

of m (and Z0) were compared with the data. It is apparent from these
A0

results, presented in Figure 21, that the choice of values far m and Z
0

significantly impact the shape of the model's predicted stress-strain

curve. If the m-Z values suggested by the steepest line fit of Figure
0

-1
14 (which corresponds to m = .417 MPa and Z = 1622 Mra) are used, the

front of the model's stress-strain curve in Figure 21 fits the experi-

mental data more closely. If the shallowest line fit of Figure 14 is

used (corresponding to m = .105 b4Pa and Z 1725 NPa), then the back
0

of the stress-strain curve fits the data more closely. And if the

"mean" line of Figure 14 is used (m .219 !4Pa and Z= 1669 .Pa) the

resulting stress-strain curve doesn't quite fit the data either at the

front or the back, but it isn't too far off in either place.

The values of m and Z which enabled the model to closely fit the

0

front of the stress-strain curve were selected as the best fit. The

material behavior in the smaller strain range is of greater engineering
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interest; in cases of cyclic loading this is the range of strains that

is most likely to be studied. Recognizing that material behavior pre-

dicted by the model for large strains will not likely fit experimental

data very well, values of m = .417 HPa and Z = 1622 MPa were selected

as representative of the material.

After values were determined for A, r, and Z2, the matter of appro-

priate values for m and Z0 was again examined. Analytical predictions

according to the Bodner model of material behavior in creep tests were

compared with experimental data. Coefficient values depending on the

"front" fit of Figure 14 (m .417 MPa and Z 1622 MPa) and values
12 -d

depending on the "mean" fit (m = .219 MPa and Z = 1669 lPa) were both

used. The results of this study are depicted in Figures 22 and 23.

Figure 22 shows the Bodner model predictions under a 135 KSI load

using both the "front" fit values of m and Z0 and the "mean" fit values.

Under this load, the "mean" fit values provide a very good model of the

secondary creep strain rate -- better than that provided by the "front"

fit values of m and Z0 . Yet Figure 23 -- which depicts the same infor-

mation as in Figure 22 except the load is 140 KSI -- shows that neither

pair of values gives a very accurate model of the measured material

behavior. The inaccturacies caus&d by the curve fitting techniques on

semi-log axes are revealed here; an error in predicted strain rate of

the same order as the strain rate is as good as can be expected. It

O "would appear that creep behavior does not lend itself to use in evalu-

ating m and Z values.

With values selected for n, m, Z and Z,, parametric studies were
0

again used to determine appropriate values for the recovery coefficients,
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A, r, and Z 2*The general behavior of A, r, and Z 2are illustrated in

Figures 6, 7, and 8.. It was decided to fit A to the data first, then

z and lastly r, using the strain rate versus stress presentation to

establish the appropriate coefficient values.

The coefficient A controls the onset of significant recovery

effects. Figure 24 presents the parametric study used to select a value

of A = .0015 sec

The coefficient Z 2controls where the very low strain rate material

behavior becomes strain rate insensitive once more. This region of the

strain rate versus stress curve is of little interest in practical

engineering applications, and without a significantly more extensive

data base an accurate value of Z cannot be established. For the pur-
2

pose of these applications it is sufficient that the return Co strain

rate insensitive behavior occur below the strain rate range of the data.

Figure 25 contains the parametric study done on Z 2at this point; a

value of Z 2 718 l4Pa was chosen. If a smaller value had been selected,

the curve would have indicated a return to strain rate insensitive be-

havior at an even lower strain rate. This would no-have affected the

ability of the Bodner model to predict material behavior. The only

effect would have been to change the value selected for r -- sinceZ2

also affects the slope of the center portion of the curve.

The coefficient r controls the slope of the mid-section of the

* strain rate versus stress curve. Figure 26 contains the parametric

study used to arrive at the value r 7.0.

At this point a complete data set has been determined. It is

tabulated in Table IV. The fit of the Bodner model to the experimental
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TABLE IV

Coefficient Values for the Bodner Model, IN 718, 1200 F

- ... * -Coefficient Description Value

6 'q-l
D 0 Limiting value shear strain rate 106 sec

n Strain rate sensitivity parameter 3.0

m Rate of work hardening .417 MPa-

Z0  Initial value of hardness 1622 MPa

ZI  Saturation hardness 1795 MPa

- Minimum recoverable hardness 718 MPa

r Exponent on recovery term 7.0

A Coefficient in recovery term .0015 sec

E Young's modulus 162.5x3 MPa

.49
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data using these values is presented in Figure 27.

It is apparent from this figure that no attempt was made to bring

the curve predicted by the Bodner model through the two lowest data

-9 - -8points (s = 4.0 x 10-  sec-  and g = 1.6 x 10-  sec- ). The model lacks

the flexibility required to bring the curve back up through those two

points before it turns downward sharply in the very slow strain rate

portion of the curve. The very slow strain rates associated with these

points render that portion of the data less important to engineering

applications; matching the rest of the data was considered adequate at

this time.

Thus values were established for the coefficients of the Bodner

model for Inconel 718. Figure 28 serves as a brief descriptive guide

to the steps followed during the evaia:I - , ress.

Studies of material behavior under cyclic loading conditions were

performed using the coefficient values determined in this work. Various

strain rate and stress control situations were explored. The results of

this study are discussed in the following sections.
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.

IV. Load Cycling Effects Using The
Bodner Constants As Evaluated

Analytical studies were conducted of the material behavior under

cyclic loading as predicted by the Bodner material model developed in

previous sections. The formulation of the equations incorporated into

this study is contained in Equations (16) through (20). Fully isotropic

(q = 1) and fully directional (q = 0) strain hardening conditions were

modeled. Additionally, Bodner has indicated [71 that it is possible to

represent strain softening by incorporating a negative value of q into

the model. This last case is interesting, for if it compares well with

data then the Bodner material model is very comprehensive. It would

show the model can consider the range of material characteristics from

strain hardening to softening, including anisotropic plastic-hardening.

The results of the uniaxial analyses were compared with experimental

fatigue data. This section describes in detail the cyclic loading study

carried out.

Figures 29 and 30 contain experimental data obtained from the Air

Force Wright Aeronautical Laboratories for IN 718 at_1200 F gathered

under cyclic loading conditions. Figure 29 depicts the material be-

havior measured for a strain-controlled test (± .8.% strain) while Figure

30 depicts the material behavior measured during a stress-controlled

test (± 120 KSI). From these two figures it is clear that IN 718 ex-

hibits some strain softening behavior. Later cycles require lower

stress levels to achieve comparable strains than do earlier cycles.

This phenomenon is especially prominent in Figure 29, where the stress

level for maximum strain is getting smaller in absolute value for each
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successive cycle. Figure 30 indicates that the plastic work is continu-

ously increasing over the cycles shown. Both of these phenomena in each

figure are observed over a limited number of cycles and therefore judge-

ments that are construed are based entirely on this limited cyclic

* number. Further cyclic loading in particular may reduce the amount of

strain softening evidenced each cycle. Figures 31 and 32 illustrate

the behavior predicted by the Bodner model for IN 718 using values of

q = 1 (Figure 31) and q = 0 (Figure 32). In both cases, the cycles

repeat without change as early as the third cycle. The behavior depicted

in these figures is that of strain hardening. Figure 31 shows isotropic

hardening (q 1 i) while Figure 32 shows directional strain hardening

(q = 0). Comparison of these two figures with the experimental data of

Figure 29 indicates that these Bodner model predictions represent the

first cycle fairly well but do not indicate the softening behavior

evidenced by the material. This was to be expected; values of q between

zero and one imply isotropic/kinematic strain hardening, not softening.

It was suggested [7) that q < 0 be used to model cases of strain

softening. It is enlightening to examine what effec-t a negative value

-- say, q = -.i -- has on the cyclic equations governing changes in

9 nardness in this formulation (Equations (16) through (20)).

Initially, as Equation (16) indicates,

-j.- . t  Zc

_ = = 0  (16)

Given that the initial loading is tensile, observe that

U = (28)

95
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Thus the two time rates of change of hardness are

it = -.1 Z + (1.1) Z = Z(i) (29a)

c -. i Z- (1.1) Z = -1.2 Z( 1 ) (29b)

where

z]
Z(1) m (Z1 - Zt) p  A Z1  (30)

At the end of the first loading time increment At, the two values of

hardness are

Z = zo + A(1) t (31a)

(1 0 .(1)31b

(1) 0o (1) 1

It can be seen from this that while the hardness of the specimen in

tension is increasing, the hardness in compression is decreasing at a

faster rate. As soon as the load becomes compressive, it is the value

of Z that is used to express material hardness. Since this value is

4-

less than the value for Z at this time -- indeed, less than the original

value Z -- it is clear that the material will be softer in compression

loading subsequent to the application of the tensile load.

Figure 33 illustrates this behavior through a graph of the computer

output of Z and Zc over eight cycles using a value of q - -.1. The

7.values of Z tand Z Cwere plotted every quarter cycle to show the general

behavior of the hardness values without going into much detail. As the

value of Z increases during the application of a tensile load, the

value of Zc decreases; as the value of Zc increases during the application
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t

of a compressive load, the value of Z -decreases. And with each cycle,

the average value of Z is lower. Each time Zand Zc reach a minimum

value, it is less than the cycle before; each time they reach a maximum

-va lue, it is less than the cycle before. This decrease in Z is what is

called strain softening and it can be directly related to the character

of the stress-strain curve.

Figures 34 and 35 depict the Bodner model predictions for q -. 05

and q = -.1, respectively. As in the cases of q = 0 and q -1, the

model's loop is quite similar to that of the data, both in size and

shape. These two figures, however, possess an additional charecteris-

tic; they show clearly the strain softening trend illustrated by the

experimental data. The loops do not stabilize in these early cycles;

the material softening is still evidenced by both model and data in the

% tenth cycle. The similarity between Figure 29 and Figures 34 and 35 is

*striking. Small negative values of q do indeed enable the modeling of

the behav~.or of IN4 718 under a cyclic load.

Consider now the case of stress-controlled test situations. Figure

30 illustrates the experimentally measured behavior of IN 718 under a

cyclic load of ±120 KSI. The evidence of strain softening is dramatic.

Figures 36 and 37 contain the Bodner model predictions for q 1 and

q =0; not surprisingly, the model predictions do not match the data

very well, overall. The early cycles are matched fairly well, but again

* . the model's loop stabilizes where the experimental one continues to grow.

Figures 38 and 39, however, model the material behavior quite well,

using values of q =-.05 and q = -.1. The shape of the initial loading

* cycle matches the data in both size and shape. The model then goes on
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. to predict a growing and spreading of the loops just as the experimental

data shows. The loops of the data are growing faster than the model's,

but the trend is the same.

It is thus seen that the Bodner material model possesses a remark-

able flexibility in the realm of plasticity. It can represent both

isotropic and directional strain hardening as well as strain softening.

With the addition of only a single parameter, q, the formulation of

no-a:ions (16) through (20) allowed the extension of the model from

monotonic loading to cyclic load application, with remarkable results.

There is a problem, however, that limits the uses of this model

for strain softening situations with negative values for q. There is

n:o mechanism in this formulation to impose a minimum value of hardness.

There is no constraint in how small Z may get; eventually a negative

value is reached and the equations make no sense. Figure 33, which is

.* based in Bodner's model for the case of q = -.1, shows how the values

t c
. of Z and Z approach zero when the mean curve is considered. This

basic short-coming may be overcome by the addition of a parameter limit-

ing the strain softening representation. For a smal. number of cycles,

though, and a q whose absolute value is less than or equal to .1, the

model can be used to illustrate strain softening material behavior.

The limitations imposed by this aspect of Bodner's model are not

great, considering the remarkable flexibility it still has. It is clear

@ that the potential is here for a tool that will handle a wider range of

strain softening behavior; all that is required is the incorporation of

a mechanism for imposing a limiting value of softness.
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V. Conclusions

The following conclusions are made regarding the nature and evalu-

ation of the Bodner material coefficients and the use of this formula-

tion to model cyclic loading conditions. These results are generaliza-

tions based on work done with IN 718 at 12000 F and on a review of the

literature concerning modeling of rate-dependent material behavior:

1. Evaluation of the Bodner model material coefficients requires

the following minimum experimental data base:
.'%

a. Two, preferably three, data points for the strain-rate

versus stress curve where test conditions are high strain rate with no

recovery.

b. At least one stress-strain curve done under high strain

rate/no recovery conditions; the curve should extend out at least to

where the plastic strain equals the elastic strain.

c. Several data points spread across the lower strain rate

portion of the curve, spanning the strain rates of interest to the

researcher.

2. Each coefficient of the Bodner model has characteristic effects

on material behavior that can be discerned individually.

3. A systematic procedure can be established for determining

appropriate values for the Bodner model coefficients; it is contained

in this thesis.

4. Evaluation of coefficient values is in some significant amount

,rive in nature. Some judgement must be made regarding which strain

prise the region of interest; some evaluation of what consti-

fit" to the stress-strain curve (e.g. in the evaluation of
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- - . . .. . . . .. . . . . . ...-

= and Z ) must be made.
0

5. Because of the subjective nature of coefficient evaluation, no

two researchers are likely to arrive at the same exact coefficients

from a given data base. Differences in material behavior, if any, will

be traceable to the fundamental assumptions of the individual researcher

(e.g. which strain rates are important, which data points are "bad data",

etc.).

7. Cyri: behavior predicted under this formulation of the consti-

tutive equations models experimental results quite well. Both strain

hardening and strain softening (for sufficiently small values of q and

relatively few cycles) can be modeled.

8. Further development of the cyclic formulation of the equations

must incorporate a mechanism for imposing a minimum hardness'that may be
'.-'%

reached under softening conditions.
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APPENDIX A

Discussion of the Coefficients

This appendix contains a detailed discussion of each material co-

efficient of the Bodner-Partom plastic flow law. The parametric studies

serve to illustrate the impact of the various coefficients on material

behavior predicted by the Bodner model. The f igures are ordered so

that the variables are presented in the order in which they were studied

in the applications section. Figure 5 provides some general guidance

* . regarding the information contained in the figures. Each figure is

- * accompanied by a discussion of the properties revealed by the graphical

presentation.

The CoefficientD0

D 0is the limiting value of the plastic strain rate in shear. For

06
this entire exercise, it has been assumed to have a constant value of 106

-1 4
* .sec . Earlier work has used a value of 10 [1,2]; however, recent work

[19] indicates that a value of 10 6is more appropriate. D 0 effects at

-a~t poinL the ultra high strain rate portion of the-strain rate versus

stress curve bends off to asymptotically approach D ; for as strain
C'0

rates approach D0 the stress necessary to sustain- these strain rates

becomes infinite. Changing the value of D biases the entire curve up
0

or down, but does not effect the relationships between the other co-

efficients.

The Coefficients n andZ

The coefficient n describes the material's strain rate sensitivity.

The high strain rate version of Equation (10) (Equation (21)) contains
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only D-- assumed to be constant at 106 sec -- n, and Z Thus n
01

and Z1 control a significant portion of the material's high strain rate

behavior. The constant n has been determined [18] to be inversely

related to temperature; the form of the relationship is

n + b (32)

The coefficient n is also inversely related to the "intrinsic velocity

of dislocation motion" [1] in the atomic lattice -- meaning that lower

values of n correspond to higher dislocation velocities and freer move-

ment of dislocations. The coefficient n is not dependent on loading

history [1]. It is thus descriptive of the way the material itself

responds to the introduction, propagation, and elimination of disloca-

tions, not to the effect those dislocations have on material behavior.

Values for n and Z are tied together mathematically; at high strain

rates the relationship is that of Equation (21):

in(i p .  n+l

in (-in (-2-0) ) = -2n ln a + (2n in Z + in (-)) (21)
20 1 2

Z represents the saturation (maximum) value of Z. In a high strain

rate situation, where there is norecovery, Z = Z1.

Figure 40

This figure depicts the combined effects of variations in n and Z I.

Strain rate sensitivity, dependent on n, is observed in that high (but

not ultra high) strain rate section of the curve where recovery effects

-i .are negligible. Decreasing n has the effect of increasing strain rate

sensitivity; this is seen in the shallower slope of the curve at lower
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Figure 40. Variation of n, All Other Coefficients Constant

values of n. As the strain rates go down, recovery effects are no

longer negligible, and the significance of a given-value of n as a strain

rate sensitivity parameter becomes obscured. At high strain rates,

where Z = Z1 , the equations reduce to the closed form of Equation (24):

-I =/2n 2 n(24)

Again, D 0 (a constant), n and Z are the only coefficients present; hence
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n and Z are the only coefficients capable of modifying the high strain

rate portion of the strain rate versus stress curves of this parametric

study.

The translation of the curve along the x-axis is due to the choice

of Z as the non-dimensionalizing agent.

Figures 41 and 42

The range of values of n and Z which emerge from the interpretation

of the data (Figures 9 and 56) is presented in Figures 41 and 42. In

Figure 41 there is clearly more than one saturation stress represented.

This is due to the fact that the point B of Figure 56 (through which the

four lines representing the values for n all pass) corresponds to a

-3 -1strain rate of 1.185 x 10 sec . Only at that strain rate do all four

n values correspond to the same saturation stress. Yet the variation in

n from 3.0 to 3.211 is not significant in Figure 41. From Figure 42 it

is clear that the change in the curve slope caused by changing n such a

small amount is not significant. An arbitrary choice of n = 3.0 was

made, based on a graphical comparison with experimental data (Figures

"16 through 19).

The Coefficients m aid

The coefficient m describes the rate of work hardening exhibited by

the material. Its value also determines how long work hardening effects

will be dominant and recovery effects negligible as strain rate is

decreased. Mathematically, it is the value of m coupled to the value of

A that determines above what strain rates hardening effects dominate so

.O1 completely.
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Z0 is linked mathematically to m much as Z is linked to n. This

relationship is expressed in Equation (23):

In (Z1 - Z) = in (ZI - Z0) -mW (23)
1 0 p

-0 represents the initial state of hardness in the present loading; the

lower the value of Z., the more hardening must be accomplished before

saturation is reached and Z = Z Z is dependent on temperature.

Figure 43

The coefficient m times Z is the non-dimensional form of the co-
1

efficient describing the rate of work hardening, m. Once a value is

established for Zl, the behavior depicted by Figure 43 represents vari-

ations in m. If one compares Figure 43 with Figure 49, considering

Equation (15):

, Z = m(Z 1 - Z)asp - AZ (15)

it is observed that A and m hold analagous positions as multiplicative

coefficients in the two terms of Equation (15). Increasing A has much

the same effect as decreasing m, which is to evidence the effects of

recovery phenomena at'higher strgin rates. The interface between the

high strain rate regime (where there are no significant recovery effects)

and the strain rate region where both recovery and hardening are

O important is controlled by this balance between A and m.
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Figure 44

At high strain rates, where recovery effects are negligible, the

eifect of varying m is illustrated in Figure 44. As m is increased,

.0the shape of the stress-strain curve is slightly more rounded. The

effects of varying m by 10% are shown in Figure 44; the trend is consis-

tent, if not significant.
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Figure 45

The coefficients in and Z 0are linked mathematically. Lower values

of mn are paired with higher values of Z .Figure 45 depicts the effect
0*

of choosing various interpretations of the data graphed in Figure 13.

Using the mn and Z 0values from the first linear portion of the data of

Figure 13 (the "front" values of Z 0and mn) results in a better fit of

the front of the stress-strain curve of the data. Using the mn and Z
0

values from the second linear portion of the data of Figure 13 (the

* . "back" values) results in a flatter stress-strain curve that matches the

* .saturation stress level of the data more precisely. The choice of m and

Z 0 significantly effects the ability of the model to accurately predict

material behavior as depicted on the stress-strain curve.

Figure 46

The effect of varying Z0 is illustrated in Figure 46. SinceZ

represents the' state of hardness at the beginning of the present loading,

the difference between the hardness at the start and the maximum hardness

Z describes the hardening that may go on during the loading.

The Coef ficient A

A is the coefficient in the expression for the thermal recovery of

work hardenir<,.. The magnitude of A (relative to the magnitude of in)

determines at which strain rates recovery becomes significant. For lower

0 values of A, thermal recovery remains a less significant phenomenon until

relatively slower strain rates are reached. Changes in A do not signifi-

* cantly impact material behavior at strain rates too fast for recovery

9 effects to be significant, since A is tied strictly to the recovery mech-

anism.
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1 •Figure 47

The coefficient A (or AID0 in the non-dimensionalized form) is the

coefficient in the expression for thermal recovery of work hardening.

The "branching" effect in the lower left of this figure shows how the

primary effect of changing A is to extend the region where recovery is a

significant feature of material behavior. The onset of thermal recovery
is determined by this variable (once a value for m is established through

study of the high strain rate material behavior); for larger values of A,
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thermal recovery dominates at higher strain rates.

Figures 48 and 49

Changes in A are not significant f or strain rates faster than that

at which recovery becomes evident. Figure 48 is an analytically gener-

ated stress-strain curve for ; = 1.3 x 105 sec1 ; it shows clearly that

changes in A f or A at least as small as 0. 001 are not signif icant f or

this strain rate. Figure 49 is an analytically generated stress-strain

* 6 -1curve for e = 1.1 x 10 sec ; here, changes in A are significant until

A is at least as-small as 0.00001. These figures show that it is a

balance between the strain rate in question and the magnitude of A that

determines whether smaller values of A will impact material behavior at

the strain rate in question. Larger values of A, whose effect-is to

extend the region where recovery effects are significant, will cause

visible changes in the curve as soo- as the implied change in A makes

the strain rate relatively slow enough to allow recovery effects to

surface.

The CoefficientZ

The coefficient Z 2represents the material hardness at the completely

non-work hardened -- or fully recovered -- condition. It is the minimum

rec',verable hardness of the material, and it is dependent on the temper-

- ature conditions.

Figure 50

Once a value is established for Z1 through study of the material's

V high strain rate behavior, the material behavior depicted in Figure 50

becmestha ofZ 2 A igher value of Z 2represents a harder condition
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":?,:211
i 1

.4when minimum hardness is achieved '.under recovery. On Figure 50, Z 2

",0 -

controls where the curve turns downward again at very low strain rates.

,'.4

. Fur5Fi.ures 51 and 52

mena. Figure 51 shows that changing Z2 values at a high strain rate,

where recovery is negligible, has no significant effect on the material

behavior depicted by the stress-strain curve. A stress-strain curve set

V. drawn for a slower strain rate, where recovery effects become significant,

9...
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is shown in Figure 52. Here changes in Z2are clearly visible.

The Coefficient r

~.. .,.The coefficient r appears as an exponent in the expression for

thermal recovery of work hardening. If A (or AIDo0 ) were to be written

as a function of the onset of recovery, r would be the curvature of that

function. Where the value of A determines at which strain rate recovery

begins to be important, r describes how quickly recovery rises to domi-

nance. As with A and Z 21the effect of changing r is not seen at strain

rates too fast t6 allow thermal recovery of plastic work to be signifi-

cant.

* Figures 53, 54, and 55

Figure 53 shows that the effect of changing r is to chanSe the

sensitivity of the recovery mechanism to strain rate. Figures 54 and 55

* show quite clearly that changes in r do not effect material behavior at

strain rates where thermal recovery is negligible. At a strain rate

fast enough for recovery to be negligible (Figure 54) , changes in r

are not distinguishable on a stress-strain curve. At a slower strain

rate where recovery effects become significant (Figure 55), increases

in r are reflected Iaisa higher stress level of the stress-strain curve

over the domain shown.
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APPENDIX B

Determination of n and ZI

When both stress and strain rate are constant, the governing equa-

tion

*p 2 Er n+l ) 2n
7- D 00o17EXL 2n a (10

says that Z must also be constant. Further, for high strain rate tests

with no recovery the material must be in a fully work hardened state,

"to obtain the maximum value of stress" [9], so that Z = Z For these

steady flow conditions, Equation (21) follows:

in -in 3- p  =-2n in '+ (2n in Z + In -+) (21)
2D 1 2n -

Thus, it is seen that a linear relationship exists between 
ln(-ln - 3 ;p

2D

and in a. If high strain rate experimental data is graphed on appropri-

/3?p

ate axes (n-n D- ) versus in a) the slope of a linear approxima-

0
tion to the data will determine a value for n. A value for Z can then

be computed mathematically.

The test data used for this'procedure consisted of three constant

strain rate tensile tests presented in Table V:

TABLE V

Experimental Data, Constant Strain Rate Tensile Tests

Data Point Strain Rate Stress (KSI) Stress (MPa)
-6 -11 l.lxl0 sec 134 923.906

* 2 i.3xlO-5sec-1  142 979.065
-3i-

3 6xl -3sec 147 1013.539
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Data point 1, with a strain rate of 1.1 x 10- 6 sec -  was considered at

this stage even though the strain rate is suspected of being slow enough

to allow non-negligible recovery effects to influence the data. Figure

56 shows the location of this data point on strain rate versus stress

axes. If straight lines are drawn to characterize the two upper por-

tions of the data (as in Figure 5), data point 1 is found to lie in the

strain rate region where recovery effects are significant.

Using Equation (21) to compute the values for graphing leads to the

following:

TABLE VI

Experimental Data, Formatted to Allow Determination of n and Z

Data Point y = ln(-in-3O)) x = in a

1 3.3207 6.8286

N- 2 3.2376 6.8866

3 3.0154 6.9212

This data was graphed in Figure 57. It was clear that all three points

were not part of a single linear trend. The validity of point I was

suspect from the beginning; that point was simply discarded. The strain

-6 -1rate of 1.1 x 10 sec was apparently too slow to allow recovery

effects to be neglected. This was verified by parametric studies con-

tained in Appendix A, after a complete set of coefficients was obtained

(Figures 48, 49, 51, 52, 54, and 55). At a strain rate of 1.1 x 10- 6

-1
sec , effects of varying A, r, and Z are clearly seen; at a strain
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rate of 1.3 x 10 sec they are hardly discernable. Since these three

coefficients appear only in the recovery term of Equation (15) these

results indicate that recovery effects are not negligible at c - 1.1 x 10 - 6

-1
sec

Working with the remaining two data points, the value of n was

computed in a variety of ways. First, working mathematically, a value

of n = 3.211 was computed using the coordinates of the two points. In

' order to illustrate the limitations on accuracy imposed by the graphical

technique that would have been used had more than two appropriate data

points been available, a second value was computed. Coordinates of two

points (other than the data points) were picked off a line drawn through

the data, and they indicated a value of n = 3.125. Because n = 3.0 is a

nice integer value, the line representing it was also drawn; -it appears

to also be fairly representative of the data. As a lower limit, the

.- ~ line representing n = 2.5 was also drawn. These four values represent

the range of n values to be considered.

14Values for Z1 were then calculated. All of the aforementioned lines

were drawn through a single point B (whose coordinates are (6.92, 3.03))

in Figure 57. Using this point, the various values for n and Equation

(16) lead to the following values for Z1 :

TABLE VII

Sies Computed for n and Z

n Z1(MPa) Z1 (KSI)

N 3.211 1732.871 251.329

3.125 1756.858 254.808
3.0 .1794.672 260.293

2.5 1992.878 289.040

* 101



One consequence of the use of point B should be mentioned. It is

/3 "P
only at the strain rate indicated by ln(-ln(w3 -P)) = 3.03 that the

2D0

saturation stresses will be the same for all the values of n. It is

partly because of this fact that the saturation stress are not the same

in the stress-strain curves where n is varied (e.g. Figure 41).
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APPENDIX C

Determination of m and Z0

In the absence of thermal recovery of work hardening, the governing

equation

rz ]rm(Z Z)Op AZ (15)

can be written as a first-order linear differential equation:

dZ m (Z -Z) dW (22)

0 p

dZ
z = m dW

ln (Z1 -Z) n (Z1 -Z 0) -mWp (23)

Appropriate high strain rate data, graphed on ln (Z1 - Z) versus W axes,p

may be linearly approximated to determine m from the slope of the line

and Z0 from the y-intercept.

The data used for this procedure came from a single high strain

rate tensile test and is presented in Figure 58. This data was chosen

because the strain rate was high enough that recovery effects would most

likely be negligible, and the data maintained a nice, smooth character

across a wide range of strains.

The elastic modulus [10] was first drawn on the figure. It happens

that, although the data .is reasonably accurate in the inelastic region,

the accuracy in the elastic region is not good. Using the elastic

A 103
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modulus as a more reliable description of the material's elastic be-

havior, the modulus was drawn on the figure, tangential to the curve of

the data. The origin of the axes was then translated a negative 0.000575

units along the x-axis. This allowed the curve to indicate zero strain

at a condition of zero stress.

Coordinates of selected data points were then read off the figure.

The following table contains the information as digitized at this point:

TABLE VIII

Experimental Data Froi Figure 58

Strain plus

Point No. Stress(y) Strain(x) "offset" strain

0 122.6 KSI .00465 .005225

1 126 KSI .00492 .005495

2 128 KSI .00506 .005635

3 130 KSI .00535 .005925

4 132 KSI .00587 .006445

5 134 KSI .00654 .007115

6 136 KSI .00725 .007825

7 3 KSI .0085 .009075

8 138.6 KSI .00955 .010125

9 139 KSI .01114 .011715

10 139.5 KSI1 .012985 .01356

Computation of the plastic work W requires that plastic strains be
p

derived from the total strains indicated from Figure 58. Using Hooke's

Law, plastic strains may be computed from the equation
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A .",.... ". ',-. ",. . .",", ,... .. .. ''". .".,.".i," t " """ " """' . . ' ". . " " """""



4..p 0Y.:-'E p  e - -- (33)
4-..- E

The resulting values were then plotted against stress o, and a numerical

integration technique employed to evaluate the area under the curve.

TABLE IX

Computation of Plastic Strain

Point No. Total strain Elastic strain Plastic strain

0 .005225 122.6/23.6x10 3  3.01 x 10- 5

*3 41 .005495 126/23.6x103  1.56 x 10--. %-

2 .005635 128/23.6x103 2.11 x 10-4

3 -3 .005925 130/23.6xi0 4.17 x 10

3 -4 .006445 132/23.6xlO 8.52 x -10 4

5 .007115 134/23.6xi03 1.44 x 10-3

6 .007825 136/23.6x103 2.06 x 10-3

.%.'..7 .009075 138/23.6x103  3.23 x 10- 3

8 .010125 138.6/23.6xi0 3  4.25 x 10 3

33
9 .011715 139/23.6x10 5.83 x 10-

10 .01356 139.5/23.6x103  7.65 x 10 -

The plastic strain indicated for the point #0 was supposed to be

zero, and is included here to indicate the limits on accuracy imposed

by the method employed. Linearly interpolating between the points of

Figuire 12, and extrapolating to find a point where plastic strain Ep is

zero, the values for plastic work W were then computed. The general
p

form of the equation used is
'4.
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Wn= n-i + n-i (p(n) p(n-l)) + .(,p (n)_ Ep(n-l) )(on- (n-1))

p P2
"." (34)

wO = 0 + 121.79(.0000301 - 0) + (:0000301 - 0)(122.6 - 121.79)
p

= 0 + .00367 + V-.0000301) (122.6 - 121.79)

= .00368

Wl = WO + 122.6(.000156 - .0000301) + (.000156 - .0000301)(126-122.6)
Vp p

= .00368 + .0154 + .000214

= .01933

W2 - W1 + 126(.000211 - .000156) + 3T(.000211 - .000156)(128-126)
p p

= .01933 + .00696 + .0000553

= .02635

W W + 128(.000417 - .000211) + (.000417 - .000211)(130-128)
P p

- .02635 + .026327 + .000205

- .05282

W4 -W 3 + 130(.000852 - .000417) + k(.000852 - .000417)(132-130)
p p

- .05282 + .05658 + .000435

- .1098

w5 - W4 + 132(uQ0144 - .000852) + (.001434 - .000852)(134-132)
p p

- .1098 + .07725 + .000586

- .1877

W . W5 + 134(.00206 - .00144) + (.00206 - .00144)(136-134)
p p

- .1877 + .0838 + .000625

- .2721
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4" W7 W5
W 7 = W + 136(.00323- .00206) + (.00323- .00206)(138-136)

p p
= .2721 + .1585 + .00117

= .4317

W 8 =. 7 + 138(.00425 - .00323) + (.00425 .00323)(138.6-138)
4...p p

= .4317 + .1414 + .000307

=p .573

W9 = W9 + 138.6(.00583 - .00425) + (.00583 - .00425)(139-138.6)p p

= .5734 + .218 + .000315

= .7918

W10_ W9 + 139(.00765 - .00583) + (.00765 - .00583)(139.5-139)
p P

- .7918 + .2535 + .000456

= 1.0457

Thus the x-coordinates of Equation (23) were computed. Determina-
. .

tion of the y-coordinates begins with the evaluation of the equation

2 2n 2D ;In
Z i 1n v'3Pl (24)

44 which requires that plastic strain rates be determined at each data

point. The intervals between the points were numbered (0) through (10)

Since numerical methods were used to determine elastic stress rates

. (from changes in the stress over time intervals), strain rates for the

intervals were computed and the values of two adjoining intervals
4..-.

averaged to arrive at an appropriate value for the points.

Plastic strain rates were determined according to the following

relationships:

"V4..P.
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•"1.3 x 10-  P+ e  (35)

•e C Ao l

E At E (36)

Since the total strain rate is constant, t can be computed for each

interval using the change is total strain.

TABLE X

Determination of the Elastic Strain Rate e

AG KSI
Interval AE At (sec) Aa (KSI) t- EC e (sec-l

0 .000030085 2.314 .8123 .351 1.49x10- 5

1 .000125932 9.687 3.4 .351 1.49x10- 5

2 .000055254 4.2503 2.0 .471 1.99xl075

3 .000205254 15.789 2.0 .127 5.37x10 -6

4 .000435255 33.481 2.0 .0597 2.53x10-6

5 .000585254 45.019 2.0 .0444 1.88xi0- 6

6 .000625254 48.096 2.0 .0416 1.76xlO- 6

7 .001165254 89.635 2.0 .0223 9.45x10-7

8 .001024%77 78.814. 0.6 .00761 3.23x10 -7

9 .001573050 121.004 o.4 .00331 1.40x10- 7

10 .001823814 140.293 0.5 .00356 1.51xlO- 8

Values for the plastic strain rates over the intervals can be

easily computed, as the total strain rate is constant and the elastic

component has now been calculated. The plastic strain rates at the

points were then determined by averaging the rates over the intervals
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• i i~ '," *'. ... r . r . . r c * < . .< 4.crr- .4 .. - ' .C. s W ~ ~* " . -',"' - .'" . *" '..-"i' * .".



-47., -

adjacent to the point. The results are as follows:

TABLE XI

Determination of Plastic Strain Rate

Interval 5P (sec- I) Point 5P (sec- I) Stress(KSI) Stress(MPa)

0 -1.87xi0 - 6  0 -1. 8 7xi0- 6  122.6 845.305

1 -1.87xi0 - 6  1 -4.41x10 - 6  126 868.748

2 -6.94xi0 - 6  2 3.47xi0- 7  128 882.537

3 7.63xi0- 6  3 9.05x10-6  130 896.327
-5

4 .... xlO 4 i.08x10 132 910.117

5 l.llxlO-  5 i.12x10-5  134 923.906

-55
6 1.12x10 6 1.16x10 5  136 937.696

7 1.21xl0-  7 1,24x0 -5  138 951.933

8 i.27xi075  8 i.28x10- 5  138.6 954.933

9 1.29xi0-5  9 1.29xi0- 5  139 958.380

10 ".28x1- 5  10 l.28x1- 5  139.5 961.828
-,. i0i*8i0 5  i . 8i -

Notice that the plastic strain rates over intervals (0), (1), and

(2) turned out to have negative values. It would appear that the points

defining these intervals are sufficiently close to the elastic region

that graphical methods are not accurate enough to allow adequate deter-

mination of the strains and stresses there. Because of the negative

values, the data corresponding to points 0 and 1 cannot be graphed, and

the data corresponding to point 2 is highly suspect (and will be ignored

when the data is graphed) because one of the neighboring intervals had a

negative plastic strain rate.
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At this point, W has been determined and the groundwork has been
p

laid to allow the determination of Z and ln (ZI - Z). Calculation of Z

adds some complexity to the procedure in that there are still four

- "values of n under consideration. The following four data sets contain

the information for each value of n and Z1 . The variable Z was evalu-

• -ated using Equation (24).

" '.

!-*. TABLE XII

Computation of Ln(ZI-Z); n 2.5,Z= 1992.878 MPa

"--D " n

Point n+l i3n j Z (MPa) in (Z Z)

2 2.1036 1856.489 4.916

3 2.0537 1840.771 5.025

4 2.0508 1866.509 4.839

* 5 2.0503 1894.267 4.591

6 2.0496 1921.916 4.262

7 2.0486 1949.256 3.776

8 2.0481 1955.822 3.612

9 2.0480 1962.778 3.405

S _ 10 .2, 0480 1969.846 3.137

.. 
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TABLE XIII

Computation of Ln(ZI-Z); n = 3.0, ZI = 1794.672 MPa

2D 1 n•[."2n o

Point 73 in Z (MPa) in (Z 1 - Z)

2 1.8735 1653.474 4.950

3 1.8364 1646.048 5.001

4 1.8343 1669.447 4.830

5 1.8339 1694.353 4.608

6 1.8334 1719.177 4.324

7 1.8327 1743.771 3.930

8 1.8323 1749.718 3.806

9 1.8322 1755.957 3.656

10 1.8322 1762.279 3.478

112
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TABLE XIV

Computation of Ln(ZI-Z); n 3.125, ZI - 1756.858 MPa

2 in 2D n
Point n+l I/3J Z (MPa) in (Z - Z)

t1

2 1.8300 1615.062 4.954

3 1.7952 1609.095 4.996

4 1.7932 1632.045 4.827

5 1.7928 1656.408 4.610

6 1.7924 1680.694 4.333

7 1.7917 1704.764 3.953

8 1.7913 1710.593 3.834

' 1.7912 1716.695 3.693

1 0 1.7913 1722.875 3.526
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TABLE XV

Computation of Ln(Z1-Z); n =3.211, Z, 1732.871 MPa

r2D 1!in
2n

Point In+n7;3 TP Z (MPa) in (Z I Z)

2 1.8025 1590.744 4.957

3 1.7691 . 1585.683 4.992

4 1.7672 1608.346 4.825

. *5 1.7668 1632.365 4.610

6 1.7664 1656.310 4.338

7 1.7657 1680.048 3.967

8 1.7654 1685.802 3.852

9 1.7653 1691.817 3.715

10 1.7653 1 1697.908 3.554
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This data is presented in graphical form in Figures 13 through 16.

According to Equatio'n (23), the data should have indicated a straight

line that would allow determination of m and Z0 * In each case, however,

the data appeared to follow more of a bi-linear distribution than a

linear one. When the data point 2 (which contains some influence from

that negative strain rate) is ignored, the first five points suggest

one linear approximation and the last four points suggest another. It

is perhaps a curious coincidence that the distribution is bi-linear;

the failure of the data to be linear could be due to the inadequacy of
-F..-

the Bodner model or simply due to scatter of the experimental data.

Whatever the cause, one single straight line was not indicated by the

data, so a slight modification to the procedure was indicated.

In each case, three straight lines were taken from the figure. One

straight line, drawn through the first five data points, indicated what

is referred to as the "front" values of m and Z One straight line,

drawn through the last four data points, indicated what is referred to

as the "back" values of m and Z0. And an approximation of a straight

line through all the data provided what is called tle "mean" values of

m and ZO .

The following are the four data sets at the donclusion of this

*.'."procedure:

Set #i: n = 2.5

- Z, = 1992.878 MPa

"front" back" "mean"

m - .483 MPa- I  m = .15 MPa-  m = .242 MPa

Z = 1811.606 MPa Z= 1924.161 MPa Z0  1866.408 MPa

0- 0
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Set :-2 n =3. 0

Z, 1794.672 MPa

"f ront" "back" len

m = .417 l4Pa -1m = .104 MPa 1  m -. 219 MPa 1

Zo = 1622.24 l4Pa Zo = 1725.264 MNPa Z . 1669.461 MPa

Set JL'3: n -3.125

*Z = 1756.858 MPa

"f ront" "bc"lien

m = .4 M~a' m =.0985 a 1  m -. 18 MPa 1

z= 1586.143 MPa =o 1686.753 MTa z 1637.754 MPa

Set #4: n = 3.211

Z= 1732.871 M~a

''front" "back'' lmean"~

m.M -1  m -. 0938 MPa 1  m - .185 Mpa 41

Z=1562.155 N~a Zo = 16343.~ 1608.284 M~a

0 0 0
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APPENDIX D

Computer Programs

This appendix contains the three computer. codes used in the course

of this work. All three use the Bodner constitutive relations to pre-

dict material behavior for uniaxial loading conditions. The two programs

called BODNER and CYBODR were written by A. M. Rajendran of the Univer-

.sity of Dayton Research Institute.

Program BODNER

This program is used to generate stress-strain curves (e.g. Figure

1) and creep curves (e.g. Figure 22). It is written in FORTRAN 4; it

utilizes an external data file (TAPE5) for input and creates two output

files (TAPE6 and TAPE7). The file TAPE6 contains the incremental values

of the program parameters and is formatted in a readable fashion. TAPE7

contains plotting data in x-y pairs (strain - x, stress - y for strain

rate controlled runs; time x, strain f y for stress rate controlled

runs).

The format for the input file TAPE5 is as follows:

line 1: Bodner model, material cqefficients, free format, using real

values

E, Z0, Zi Z m, A, r, n
1' 2'

line 2: test control parameter, integer value (0, 1 or 2)

0 implies strain rate controlled run

1 implies stress rate controlled run

2 implies run over

117

S_.

"t! •"""e '" . ... ",", . o."-". - .-. ,- .j" "". :.-*. . "-, '-.' . ... *e.7.-J, .. '. . " 7. -?, .. . ,-.. .



, .
-I.

line 3: number of times the controlling load (strain rate or stress

rate) changes; integer value

line 4: test conditions, free format, using real values

Rate, Time, Time step, Print interval

where rate = stress of strain rate in this part of the test

time = time when this test condition terminates, measured

from the start of all loading

time step = time increment used for calculations (for the

stress-strain curves used in this work, the

time step was 0.01 see)

print interval = time interval between printed output

values

Repeat line 4 until there are the same number of test conditions speci-

fied as there are load changes indicated in line 3 (i.e. if line 3 reads

"3" there should be three line 4's following it.

, last line: test termination parameter; integer value of 2, free format

Program PLOT

This program is used to generate strain rate versus stress curves

(e.g. Figure 6). Ir. Is written in FORTRAN 5. Values for the variables

are set by modifying the program statements directly. The dimensionless

forms of the coefficients are used. Values for m times ZI, n, AVDO

(A/D0), r, and Z2VZI (Z2 /ZI) must be established. The form listed here

generates a family of curves, one for each different value of Z2VZl.

Output is into a file called TAPE5; x-y plotting pairs for non-

dimensionalized strain rate versus stress curves are written in free

format onto TAPE5.
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-'. iProgram CYBODR

This program is used to generate stress-strain curves for cases

involving cyclic loading (e.g. Figure 32). It is written in FORTRAN 4

and is meant to be run interactively. The Bodner material coefficients

can be changed either before compilation (by modifying the code) or

during execution when terminal inputs are solicited. The variable q

can only be changed by modifying it in the text of the code. This is a

user-friendly program requiring no special instructions prior to opera-

tion. Output is to TAPE6 in a formatted-to-read record of time steps

and incremental variable values, and to TAPE7 as free-formatted x-y

pairs.

.

. %
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PROGRAM DODNER (INPUT,OUTPUTTAPESTAPES,TAPE7)
C
C
C
C .... DODNERS MODEL 15 A UNIFIED THEORY WITH ONE
C STATE VARIABLE KNOUN AS THE HJRDNESS PARAMETERZ...
C
C .... THIS CODE USES A FIRST ORDER EULER FORUARD
C INTEGRATION SCHEME IN ORDER TO COMPARE IT TO
C OTHER THEORIES OF THE SAME TYPE ............
C
C
C

COMMON/A/E,ZZZIoRflARRN.D,UPEXLMT,EXUPLMT
C
C ..... READ IN THE DODNER CONSTANTS AS SHOUN ........
C REUIND 5

REUIND 6
REUIND 7

C
C

EXLMT-1.0 S EXUPLMT- 70.6
C
C

READ(SoS) EZ@ZI.ZI.RM,AR.RN
up-0..SIG-e.9

EPLAS-e.0
STRAIN-S.S
D6-1.EOS
T-9.0

C
C .... UP IS THE PLASTIC UORK INITIALLY
C .... SIG IS THE STRESS
C .... EPLAS IS THE PLASTIC
C .... STRAIN IS TOTAL STRAIN - ELASTIC I INELASTIC C0I1OENTS
C .... DO IS A IODNER CONSTANT
C .... T IS THE CURRENT TIME
C
C

Z-ZI-(ZI-ZO )EXP(-RM9UPl
CC

C .... THE ABUE Z EQUATION IS USED TO DETERMINE THE FIRST
C UALUE OF Z ONLY.
C

URXTE(6o161) EZZI ZIoRM,A,R RN
* 101 FORHAT(IOX 2X tE-$,EII.4,2X XZb.: F6.2,2X ZI-, F7.2 3X.ZIe3I FG.2,2X°.ZA Z.FS.2.2XDIA $,Eh.3, XouR.:.FS.2,2X.sSnAiLL N-g.

C
C

17 CONTINUE
READ(S $3 f

C MoS DENOTES STRAIN CONTROL,KNOUN STRAIN RATE OR STRAIN'TIME CURVPE
C
C M-I DENOTES:STRESS CONTROL,BCNOUN STRESS/TIZE(PIECEUISE LINEAR) CURUE
C
C M-2 INDICATES A JUMP OUT OF THE LOOP TO STOP.*¢

IF(M.EO.O) GO TO IS
IF(fl.EO.I)GO TO 16
IF(fl.Eg.2) GO TO 999

1 CONTINUE
CALL EPSLON(T.SIGSTRAIN.ZEPLAS)
GO TO 17

16 CONTINUE
CALL STRESS(T.SIG.STRAIN.Z.EPLAS)
GO TO 17

999 CONTINUE
END

C
C
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SUBROUTINE EPSLON(T.SIGSTRAIN Z EPLAS)
COMMON/A/C ZS.ZI.ZIRM.A.R,RN.BO.UP1EXLMT.EXUIPLMTURITE(6 ISO)

158 FORMAT(deXIX THIS SECTION HAS M*0.FOR STRAIN CONTROL.UHERE THE S
ITRAIN/T ME CU 2E IS IMPOSED.*,//)

C
READ(S S) N
URITE(L.162) N

12FORMAT(IOX,X,IMiPOSED STRAIN RATE CHANGES9.12,IXZTIMES.Sp'#)
C .. M IS THE NUMBER OF TIMES THE STRAIN RATE CHANGES,
C ... NOT COUNTING THE ORIGIN POINT.
C

SSC.50.
ESCa..
URITE(64 1633103 FORMATIlSX,XT2 OX *DELTA TZ lox I STRESSS,6X,:STRAIN RA1E:SAX.

DO 25 Is1.N
C

READ(5.:) RATE,TIME.DELTATPRINT

C .... R~ATE - STRAIN RATE IN THIS PIECCUISE LINEAR REGION
C .... TIME * TIME UHEN RATE FINISHES AND CHANGES TO THE NEXT RATE
C .... DELTA? a TIME INCREMENT THAT THE RATE IS DIVIDED INTO
C .... PRINT a AT UHAT TIME INTERVALS A VALUE UILL RE PRINTED

CONS? - DELTAT92.0/SORT(3.9=9D
16 CONTINUE

T -T + ELTAT
P *P. DCLT AT
IF(ASS(SIG).LE.EXLMTJ GO TO 5

IF (ADS(X3.GE.EXUPLMT) GO TO 6
CONTRI - SIGN(CONSTSEXP(X3.SIG)
GO TO 6

S CONTINUE
CONTRD * 0.0

* .6 CONTINUE
EPLAS - EPLAS + COr4TRD
UPDOT*SIG*CCONTRI )iDELTAT
SIG.SIG+E*(DELTATZRATE )-EX(CONTRD)
STRAIN.SIG/E4EPLAS
ZDOT.RM(ZI-Z)SUPDOT-213A((ZZI )/Z1 S*R
Z.Z.ZDOTSDELTAT

IF CP.LT.PRINT) GO TO 113
uRITEC6,184)T TDELTAT.SIGRATE.STRAIN,EPLAS.Z

UIRITEC7.*) STRAIN.SIG
104 'FORMAT(1X.F8.3D5X.FS.4,3x.5E14.4)-

C E PX1.100.SSTRAIN/ESC 1

URITE(?,X) 999,999
RETURN
END

C
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SU3ROUTIt4E STRESS(T,SIGSTRAIN Z,EPLAS)
COMO'AE .ZB.21. 2.RM. A, R.,RN. 60.UP, EXLMT, EXUPLMTU URITE(6 151)

151 FORMAT(10X Ix *THIS SECTION HAS M*1,FOR STRESS CO94TROLIJHERE STRESIS/TIME CURVE IS IMPOSED.*./")
C

READ(S 2) h
URITE(L.112) N

112 FORflATCIOX.1X.*IMPOSED STRESS RATE CHANGESW,12.tX.XTIMES.%,,el

ESC-.S
URITECE. 153)

153 FORnAT(15X XI 9x *DELTA TX.14X, tSTRESSt,6XKD*STRESS RATES.6X.XSRA
IIN X.SX.:PLASTIC:12x.:zs./;/

C
DO 28 I11,
READ(5 S) RATE 'TIM E DELTATPRINT
CONST-bELTAT*2.$/SOAT(3.0 )*D9
P.9

110 CONTINUE
T.T+DELTAT
P .P+DELTAT
IF(ABS(SJG).LE.EXL'T) GO TO 105

COHTRl-SIGt4CONST*EXP(K ).SIQ)
GO TO 106

19S CONTINUE
* CONTRB&0.0

~.-106 CONTIIIUE
STRAlh-STRAIN.DELTAT:RATE/E.CONTR3
IiPDOT *SIG*CONTRI/DELTAT
SIG.ES(STRAIN-EPLAS)
ZDOT.RMIZ-Z)UPDOT-Z1XAU (2-ZI )/Z1 )UR
ZZ *ZDOTIDELTAT

ePP.eeeeeei
IF (PP.LT.PRINT) GO TO 152
URITE(6 107) T DELTATSIG.RATE,STRAIN,EPLAS,Z
URITE(7't) T StRAIN

107 FOR( ATCIOX Ik FS.3.5K,F8.4,3X.5E14.4)
SXI-SIG/SSI
EPX1.100.tSTRAIN/E$C
P.0

152 CONTINUE
TTT*.0800eO00s
IF(TTT.LT.TIM'E) GO TO 118

124 T-TII1E
28 CONTINUE

RETURN
END
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PROGRAM PLOT

COMMON/UALUE/MZ1,AUDSoZVZIo.N°R X.L
REAL IZI AVD9°Z2UZI.N.XPDUAMFYLFXARRAY,YARRAY.R
INTEGER L
DIMENSION DUMMY(S),F(2),XARRAY(54),YARRAYI64)

2
2

X CREATE SOME STARTING PLACE FOR X IN THE
X ITERATIVE SCHEME TO FOLLOU

x

t INITIALIZE NOMINAL VALUES OF THE
S 'BACKGROUND* COEFFICIENTS$
5521zS55252211552s22525z
$

MZI - 747.859822
N.- 3.0
AUDS - .00e03
R - 7.0
DO 200 K-I.s

S INITIALIZE THE COEFFICIENT OF INTEREST

IF (K .EQ. 1) THEN
Z2 UZ - .3

ELSE IF (K .EO. 2) THEN
Z2ZI a 0.35

ELSE IF (K .EQ. 3) THEN
Z2UZI - 0.4

ELSE IF (K .EQ. 4) THEN
Z2UZI - 0.45

ELSE IF (K .EQ. 5) THENZaU2t - e.S
R -7.3

ENDIF
V o 1.22070312SE-16

YARRAY(1) - Y

S
CALL CALC (Y)

2
XARRAY(1) * X

DO 166 I-1,53
L .1 I
y a . S Y
CALL CALC(Y)
XARRAY(L) a X
YARRAY(L) a

6e0 CONTINUE

°o DO 150 IDl,54
URITE (5,) XARRAY(ID),YARRAY(ID)

,15. CONTINUE

200 CONTINUE

ggg FORMAT (FI5.13)

END
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SUBROUTINE CALC(Y
COMMON/VALUE/IZI.AUDSZ2VZI,.R.X.L

REAL X,Y.fZI,AV DSZ2VZIN.DUMVY,F. XP,R

INTEGER Mi

DIMiENSION DUMMY(8).F(2)

DUMMYCI) - (2. a N) / (N + 1.)

DO 106 .3-1,1
DUMMY(2) - LOG(2./(SGRT(3.:*Y))
ALPHA a (DUMMY(l) I DUMMY(2flh(-/2.9M))
DUMMY(3 - MZI X CI.-(ALPHA 2 X)) 2 X t Y
DUMlhY(4 a AUDS ((ALPHA S X) - Z2UZI) St R
FM) -- UMY DUMMYM4

..v DO SO K-1.S8
Ii L- I
IF (M CGE. 39) THEN

X a I./' ALPHA
COTO 68

ELSE
DUMMY(S) - M21 9 (1. -(ALPHA I XP)) S XP 2 Y
DUMMY(6) - AWDS f ((ALPHA S XP) - Z2UZI) St R
F(2) - DUMMY(S) - DUMMY(6)
DUPMMY(7 - (F(2) I (X - XP))/(F(l) -F(2))

DUMNY(I) - NP - DUMMiYM?
F(I) a F(P)
X - xp
Np - DUNNY(s)
IF (ABS(F(1)).LT.l.E-15) COTO 66

EhD IF
so CONTINUE

*PAIN "'* 'ROUTINE DID NOT CONVERGE'
68 CONTINUE
I"e CONTINUE

RETURN
END

.. .0

124

4f9



PROGRAM CYBOOR C IHPUTOUTPUT,TAPESTAPE6,TAPE?)
C
C
C
C THIS PROGRAM SOLVES BODERS LATEST UNjPED TNY
C FOR ANISOTROPIC PLASTIC FLOU. IN[ STATE WAR IAIL

- C PARAMETER 2 HAS BEEN SPLI1 INTO Z TENSION AND
C Z COMPRESSION. BOTH VALUES OF Z ARE CONTINUOUSLY
C COMPUTED UHETHER THE LOADING IS IN POSITIVE OR
C NEGATIVE DIRECTION.IRRESPECTIVELY.
C
C CYCLIC ANALYSIS IS CARRIED OUT UITH TIME STEP
C AUTOMATICALLY SELECTED BY THE PROGRAM. IT IS
C AN INTERACTIVE PROGRAM FOR DATA INPUT. THE
C NUMBER OF CYCLES ANALYSIS TO BE CARRIED OUT MUST BE
C TEN.
C
C

C
C S DEVELOPED BY A . N RAJENDRAN
C S SERVICE LIFE MANAGEMENT SECTION,
C I UNIVERSITY OF DAYTON RESEARCH INSTITUTE.
C

C
C

REAL MMBAR N
COMMON / MATCONS/ E,Z e.z 2 Z3,M MBARNAR.DeQ
COMMON / LIMITS / EXLMiTEXUPLMT,T6LR

C
DATA E/162.SE3/ ZO1622./,ZI/1795 / Z2/71S./,Z3/O.0/
+M/.41667/,rAR/6./,N/3./,A/1.SE-05/,R/7.0/,D/I1.E+66/

"--.So
REUIND 6

'.. REUIND S
URITE(6to00)
WRITE 1601

1001 FORMAT(///SX GOCIHt)/SX.1HSS8X,tH*/SX IHS,14X *CYCLIC *,
+*STRESS-STRA1N RESPONSES ISX 1H*/SX ,Hi S8X, Hi/SX IH*4X
+$CALCULATED FROM BODNER-PARTOM CONSTITUTIVE'MODELSi SXolHI'
+SX, 1H*,?XZFOR ISOTROPIC/ANISOTROPIC MATERIAL BEHAUIOR.8X,1Hv/
+SX IHZ SBX,1HS/SX,6O(1HX))
CALL PRINT
WRITE 1003

103 FORMAT(///1SX,*MATERIAL CONSTANT CHANGES NEEDED?2//16X.
+*(Y/N) -.) 5)

20 READ 130 I
130 FORMATC(A)

IF( I.EG.'N') GO TO 250
IF(I.EO.OYO)GO TO 58
WRITE 100,

190S FORMAT(//ISX S(IHS),2 INVALID RESPONSE IS(1HI)/IBX
+XPLLASE EMTE "Y' YES&/31X.X"N" * hOS1/"'8XS-) as
GO TO 20

SO WRITE 1602
1062 FORMAT(IISX 17(1Ht) , ENTER MATERIAL CONSTANTS 2 1(IHS)//

*.X SNOTE: It THE CURRENT VALUE OF A PARTICULAR C6OSTANT Is:.
+/IX, SACCEPTABLE, ENTER A ZERO IN THE FIELD AND RETURNS)
URITL 131•

134 FORMAT(/5X,66(IH$)/18X°E $)
CALL INPUT(E)
WRITE 135

135 FORMAT(I7X,ZSe 0 S)
CALL INPUT(ZS)
WRITE 136

- 136 FORMAT4I7XSZl - 3)
CALL INPUT(Z1)
WRITE 13?

137 FORMAT(1?XD3Z2 - X)
CALL INPUT(Z2)

- 138WRITE 138
138 FORMAT(IX,:Z3 - 9)

CALL INPUT(Z3)
WRITE 139

* .139 FORMATAISXSM - 8)
CALL INPUT()
WRITE 140

140 FORMAT(ISX,RMDAR S 3)
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CALL INPUT(PIBAR)
WRITE 141

141 FORr.AT(18X.2A * 2)
CALL INPUT(A)
WRITE 142

142 FORPIAT(18X ZR - X)
CALL INPUft(R)
WRITE 143

143 FORflAT(18X.SG - 2)
CALL INPUT(O)

C
200 CONTINUE

CALL PRINT
C
C VERIFY CONSTANT DATA INPUT
C

URITE 144
144 FORMAT(//SX 2ARE THE PRIN4TED VALUES FOR THE MATERIAL CONSTANTS:.

42 ACCEPTABLb2,//1X.X(Y/N) 1*) 2)

220 READ 130~ 1G OS

WRITE 180
GO To 220

256 EXLMT-1.0 8 EXUPLMT- 780 5 TOLR-1.E-1S
C
C

URITE 106S
leeS FORMAT(//5X,22(IH2) CYCLE CONTROL 2 23C1HlU//ISX,

*XENTERS 7X 1610 1 fRAINS/27XX'2 * TRESS//24X.,) 8)
READ z.IfPR6l
CALL I CNTL (IPROl,E)
STOP
END

C
C
C
C

SubkouTlthE ZDOT(ZT,ZC,UDRCT,WPDOTDELTAT)
REAL f9,M'BAR N
COMMON / MAfCO?1S/ E ZO ZI Z2 23 M~ I AR,N,A,RDOD
COMM7ON / LIM1ITS /ELN EXf UPLI9TT LR
IF(UDRCT.GT.TOLR ZEFF- T
IF(UDRCT.LT.TOLR) ZEFF-ZC
HARD1 II2X(Z1-ZEFF )2LPDOT
PPPPP-ABS( (ZEFF-Z2)/ZI)
ZZDCT - tARD-AZ12PPPPP)UZR
ZTDCT - (O+C1.B-Q)SUDRCT)XZZDOT
ZCDOT - (Q-(1.80)*UDRCT)ZZZDOT
ZT.ZT+ZTDOTSDELTAT
ZC.ZC+ZCDOTSDELTAT
RETURN

16 URITE & 1000)CHi,CH2
U5R1TE (1600,CHI,CH2

1000 FrRMAT(//SX,22(1HX) 2 END OF PROGRAM I :.2CIHg)/IOX.
+*THE ExPONENT OF THf RECOVERY TERMS HAVE BECOMES/IBX.
+21iEGATIVE IN SUBROUTINE *ZDOT'*//ISX,XCH1 * 2E15.4/16X.
+XCH2 -* ,EIS.4,//)
STOP
END

C
C

SUBROUTINE INPUT ( CNST
READ * CNSTMAT
IF(UiStfMAT.L.E. 0.08SBO1) RETURN
CNST - CHSTMAT
RETURN
END

C
C
C

SUBROUTINE PRINT
REAL M *MBAR N
COMMlON / IATIONS /E ZO Z1 Z2 Z3 M MIAR,HA.R.D0.0
COMMON /LIMITS /EXLPIT EX61NAT,fOLR
WRITE 100 E 20 21 Z2 Z3P M M AR N A ReDO 0
lJRITEC6.I6$SE 10 it f2 Hi'A IAR;N A R,6eo

100 FORMiAT(//SX l5(1(I2)2 tUR E T MA E IAL CONSTANT VALUES 2
+13(It1Nldf/lfiX SE - 2 F15 4/17X 22. a XF15.4/17X 221 * ~lS4
+17X 222 - X.FIS.411?k azi f.~5./3 Ps * I.,ISX.2NIAR 2 .

k*Fs.s/IIXD2N * :F6.3/iOX.2 F 2F.4/18~,2 * i.Fi.3.'17X.D0 S .
+F7.1ulUX,20 a S.FS.3/)
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RETURN
END

C
C
C

SUBROUTINE ItICNTL (IPROD.,E
WRITE 100

1ee FORMiAT(//ISX *TOTAL NUMBER OF CYCLESX//24X.Tsw> S)
READ l,NCYCLf
WRITE 1ee

120 FORMAT(I//'ISX, SMAXINUI AND IIM9UM STRAIN OR STRESS*Z/24X.*--) X)
READ 2 SMAX , SlM
WRITE 140

*140 FORMAT(//ISX,SNUiDER OF CYCLES PER MINUTES//24X,*-*) S)
READ t CPM
cps-cpA/.9
PERIOD 1 .e / CPS
RATE - SMiAX +. SlM) PERIOD 2 .S

S TOTCY *NCYCLE
TPMAX - PERIOD * TOTCY
IF(IPROB.EO.2) TSTEP*B.0001*E/RATE
IF(IPROB.EO.1) TSTEP-0.B001/RATE

C.
C

CALL STRSTh (IPROB,ZT,ZC.,RATE,TSTEPTMiAXPERIOD.SMAX.SM1N)
C

N, RETURN
- ~.*END

C
C

SUBROUTINE RATECHG CRATE, TTSTEP. PER IOD.TCHECK. IDENT .DTOLD
+. SM'AX.SMII,PCHECK)
fOLR*1 .SE-15
IF(T.LE.TOLR) RETURN
TTT *TCHECK .TOLR
TEI PsABS(RATE)
IF(IDEMT.EQ.1) PCHECK-SNAX'TEMP
IF( IDENT.EG.2) PCHECK*SM'AX/TEMP
IF( IDENT.EQ.3) PCHECK-SIN/TEMP
IF(IDENT.EQ.4) PCHECK-SMIN/TEMP
IF(TTT.LT.PCHECK) RETURN
TSTEP*DTOLD
TCHECK - 0
IJRITE(6 1111)

1111 FORMATRtXZ 999 999 999 999 999 999 ggg x')
GO TO 2 .3.4 3*IDENT
1 RAE-RAT&
IDENT-2
RE TURN

2 IrEriT-3
RETURN

3 RATE--RATE
IDENT*4
RETURN

4 IDEIIT*1
RETURN
END

C
C

C SUBROUTINE STRSTN C PROB,ZT.ZC, RATE, TSTEP. TMAX.PERIOD. SRX.SNI"
REAL M MBAR N
COMMION'/ IiAfCOMS/ E,Z@I ZIZ2 Z3. M MAR o,N,D..

C COMMION / LIMITS / E)CL~f!EkUPLMT.T6LR
C INITIALIZE THE VARIABLES
C

ZT-Z@ 5 ZC-ZS I D1OLDeTSTEP I ISTOPoI S EPINCR-0.0
UP. 0.0 1 SIG o 0.0 S EPLAST a 0.0 S ETOl e 0.0
T a@.0 1 IDENT o S TCHECK -0.0 1 TPRINT -S.9
PCHECK-SMiAX/RATE

C PRINT HEADING

URITE (6.20)
800 FORFIAT(11zSX.9S(1H*23//

O1X *TIMES SX.2TIME STEPS 6X *STRAIN* 19X *STRESS*
*lX.iIELASfIC STRAINS.3XiZ-tENISIONStE,2i-CO'PRES~iotl2/,

*SX,9g(1H*31/) .
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PRIN'!* PERIOD Z206.0
It CONTINUE

CALL RATECHG C RATETTSTEPDPERIOD,TCI4ECK,IDENT.DTOLD,
*SMAX.SMIM PCHECK)
CALL TIfE6HG(EPINCR, IDENTTSTEP. STOP)
CALL TIMEADJ PERIOD TSTEP TCHEC DTOLD. IADJ.PCHECK)
CONSTo TSTEP 2 2. / SORT (3.0 )X DO
TT*TSTEP
TCHECK 'TCHECK*TSTEP
TP 'T-TPRINT*TSTEP

IF(AVS(SIC).LE.EXLMT) GO TO 106
IF(UDRCT.GT.TOLR) Z-ZT
IF(UDRCT.LT.TOLR) Z-ZC

IF(ARS(X).GE.EXUPLMT) GO TO 199
EPINCR*SIGN(CONST I EXP(X),SIG)

GO TO 110
100 CONTINUE

EPINCR-6.0
116 CONTINUE

EPLASTeEPLAST*EPINCR
UPDOTeSIGSEPINCR/TSTEP
GO TO (120.130) IPROR

120 SIG&SIG+E*(TSTEPIRATE-EPINCR)
CTOT-S IG/E+EPLAST
CO TO 140

4.'.139 ETOT*ETOT*TSTEPSRATE/E*EPINCR
10SIG-ESCETOT-EPLAST)
19CONTINUE
UDRCTeSIC/ABS(SIG)
CALL ZDOT(2T ZCUDRCTUPDOTTSTEP)
TTT-TPRIHT.T6LR
IF(1'4DJ.EO.1) GO TO 14S

15IF(TTT.LT.PRINT) GO TO 150
1SCON-INUE
URITEC? 222) T TSTEP ETOT,SIG,EPLAST.ZT,ZC
URIrE 12 ) ET6T 4,sia

222 FORFIATCSX M12. ,4X))
TPRINT - 4.6

ISO CONTINUE
TTT*T4TOLR
IF(TTT.LT.TMAX) GO TO 1S
RETURN
END
*SUBROUTINE TIPECHG(A.IDENTTSTEPISTOP)
TOLR I .OE-06
CR-ABS(A)
GO TO (16,20 1o,20) IDENT

10 IF(CR ALE. T6LRS RETURN
IF(ISTOP .EQ. 2) RETURN
TSTEP-TSTEP/10.0
ISTOP-2
RETURN

20 IF(CR.GE.TOLR) RETURN
IF(ISTOP .EQ. 3) RETURN
TSTEPeTSTEPSIS.0
ISTOP*3
RETURN.
END

C
C
C

SUBROUTINE TIMEADJ(PERIODTSTEP.TCHECK.DTOLD.IADJ.PCIECK)
DT I *PCHECK-TCHECK
I ADJ s*
IFCDTI .CE. TSTEP) RETURNM
IADJ.1
DTOLD-TSTEP
TSTEPeDT1
RETURN
END
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