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Abstract

The maxima/minima of one response surface (measure of

effectiveness, MOE) is calculated when the domain is con-

strained by'consecutive levels'(aspirations) of a second

response surface. Thus, the optimal trade-off between the

two responses (MOE's) is displayed over an entire operating

domain, providing new and unique capabilities to evaluate

options.

The study applies this development to a strategic

force structure modeled in a linear programming model. The

methodology determines the optimal force structure to maxi-

mize one MOE given the aspiration levels of the other MOE.

Therefore, the decision maker has the optimal force struc-

tures to achieve a range of demands/aspirations and also

maximize the second goal.

The methodology has applications to multicriteria

optimization when relatively large numbers of domain con-

trol variable combinations are involved. This technique

may be a tool to design the optimal weapon system charac-

teristics or choose the optimal mix of weapon types to

fulfill dual mission requirements.

This work is an extension of previous work which used

response surfaces, experimental design, and mathematical

programming to conduct multi-dimensional, sensitivity

analysis and weapon system comparisons.

\i
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CHAPTER ONE

The Research Problem

Introduction

This study is concerned with a system's optimal

structure of operation when determined by multiple measures

of merit. Its purpose is to offer a methodology to aid the

multicriteria decision process when involved in a relatively

large number of alternatives. In particular, it considers

a system's optimization of one measure of merit (response)

in comparison to a second measure of merit (response). The

research is an extension of Palmer W. Smith's work (29,30)

in application of response surface methodology to analytical

math modeling.

This first chapter introduces the problem and outlines

the study to follow. A brief background and literature re-

view lends further insight to the problem and offers some

recommended references for the various methodologies to be

studied. With this foundation, the chapter then delineates

the problem statement and research objectives. Finally, the

scope of the research example is defined. Following the

study, the appendices list the model being considered for

generating the surfaces, the regression design, the regres-

sion analysis, and various samples of computer code employed.

This study involves many disciplines, i.e., research

design, response surface methodology, rr ression analysis,

Lagrange multipliers, and non-linear n. th programming. In



view of this, it is beyond the scope of this paper to

attempt an in-depth review of all these disciplines. There-

fore, the literature review is primarily concerned with an

overview of the current methodologies for multicriteria

decision making. The remainder of the literature review is

intended more as a descriptive definition of the methodol-

ogies that are employed in the study. References to these

different methodologies will be made throughout the text and

are used during the research.

Background

A system's effectiveness is often determined by more

than one measure of merit. These measures of merit are

usually determined by the objectives of the system's de-

c±gner and are not necessarily of the same numeric scale or

units of measure (non-commensurate). For instance, a

system's commensurate goals may be to increase retail sales

and decrease overhead costs. Since both these measures are

monetary, the two goals can be combined to a single measure

of merit, profit. If, however, the two goals were increased

retail sales and decreased production time, then the measure

of merit would be money and time (non-commensurate&.

Obviously, system policies which increase the prior and de-

crease the latter are sought by the decision maker. owever,

the actual relati hips between the various goalE their

respective optimi Lon can, at times, be vague anj tiu sive

for the decision ar. Often, the analyst atte'Lts tD
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transform the different measures of merit (MOE's) into a

common unit such as dollars. The transformation, although

appealing, may raise some serious questions. Ignizio (15:

375) exemplifies this problem by considering the dilemma of

minimizing highway funding and also minimizing highway in-

juries and deaths. Few decision makers will want the task

of trading off dollars for lives. Since a common unit is

not always attainable, then the system's operation is

characterized by more than one measure of effectiveness

(MOE). A vector of multiple MOE's is applied. Each vector

element is the level of attainment for one of the decision

maker's (system's) objectives, i.e., an MOE. Once the com-

bination of possible MOE's is determined over the operating

range, the decision maker must still make a trade-off or a

decision as to which is the optimal solution.

Literature Review

In light of the decision maker's problem, several

methodologies have been developed to aid in his thought

process. Some of the current methodologies for multiple

comparisons are multiple goal programming (MGP), multiple

attribute utility theory (MAUT), and multiple objectives

optimization theory (MOOT).

The first technique, multiple goal programming, is an

extension of linear programming and is presented in

Ignizio's text (15). Essentially, multiple goal programming

sequentially solves a series of linear programs. However,

3
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instead of a single objective function and setting hard

I

values on the right-hand-side of the constraint set, MGP

uses deviational variables in the objective function and

also the constraint set. Therefore, the sequential linear

program attempts to minimize the distance or range of the

deviational variables from their right-hand-side values

(aspiration levels) (15:376). With this technique, the MGP

allows the analyst to sequentially go through a series of

lexographically ordered goals and either minimize or

maximize the deviation from the aspiration level set in

the right-hand-side value. This technique avoids many of

the linear programming cases of infeasibility. Since each

MGP objective is made of deviational variables, the algo-

rithm often finds how "close" one can come to the tradi-

tional linear programming optimal solution even though the

actual aspiration level (right-hand-side) may not be

attainable.

However, a disadvantage in the use of the MGP algo-

rithm may occur if the goals require a mix of deviational

variables from different right-hand-side values. In this

case, the goal in question requires the deviational vari-

ables to be commensurate in both common units of measure

and equal numeric scale. If a single goal contains non-

commensurate deviational variables, the algorithm will

treat the unit change in one as equal to a unit change in

the other. Thus, if a right-hand-side range for one de-

4



viational variable were in terms of tenths, whereas a

second were in terms of hundreds, the NGP algorithm would

be unable to distinguish the deviation of tenths versus

that of hundreds. Likewise, it would equally weight the

value between unalike measures of effectiveness such as

time and money.

Thus, the MGP solution is a lexographic ordering of the

goals based on the deviations from the goals' aspiration

levels. It does, as stated earlier, yield a solution even

if all goals are not attained. This MGP solution is the

"best/optimal" given the order of goals and the relative

deviation from the unattained goals. See Ignizio (15:16)

for further multiple goal programming discussion.

The next two techniques, MAUT and MOOT, were developed

to handle multicriteria decision theory problems. The

first, MAUT, is used to elicit from the decision maker his

preference function in the trade-off between the system's

measures of effectiveness over the range of possible opera-

tion. This preference function applies its criteria weight

to each alternative policy and then searches for the al-

ternative with the greatest weighted value. This approach

requires a good deal of elicitation time with the decision

maker and also a calculation of each alternative.

The second approach, MOOT, is a multiple optimization

method which attempts to identify a non-dominated solution

set (NDSS). The NDSS is the set of solutions or alterna-

5
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tives that cannot be bettered by any other alternatives.

This dominance is based on an alternative's set of measures

of effectiveness (MOE's). Each alternative's performance

is evaluated by its MOE's. Thus, associated with each al-
ternative, Ai, is a set or vector of MOE's, vi (11:1). The

non-dominated solution set is determined, then, by a com-

parison between each alternative's MOE vector (vi). When

compared to another MOE vector, each element of the non-

dominated vector must be greater than or equal to the com-

pared vector and at least one of the non-dominated vector

elements must be greater than its respective counterpart in

the compared vector. Unlike MAUT, this technique of non-

dominance does not require the development of an exacting

trade-off between the individual measures of merit which

characterize the system's operation. Therefore, the NDSS is

an optimal set of alternatives (A.) with an MOE vectorJ

better than any other alternative MOE vector. This solution

set is also referred to as a pareto-optimal frontier. Both

Keeney and Raiffa (18) and Zeleny (34) offer texts for

studying multicriteria decision theory. Dr. Dewispelare's

paper (11) offers an excellent review of multicriteria

decision theory and also presents a combined MOOT non-

dominated solution set and MAUT preference function approach

to give the optimal recommendation to the decision maker.

In either case, MOOT or MAUT, the techniques require

an appreciable time with the decision maker and also require

6



his arbitrary choice or trade-off between the measures of

merit. Both approaches require a calculation be made upon

each possible alternative which, in the case of a very

complex or large problem, may take a considerable amount of

time.

Besides these three major areas (MGP, MAUT, and MOOT),

the literature review also covers a technique employed by

the chemical engineering industry. In 1960, Lind, Golden,

and Hickman (21) demonstrated the use of a research design

to develop a response surface for yield (MOE 1) based on the

mix of three possible chemicals (independent domain vari-

ables). Their second MOE, cost, was then calculated for the

possible combinations of their independent variables. Thus,

two response surfaces representing their two measures of

effectiveness were created. Each surface was then reduced

into iso-value contour lines, similar to those used in typo-

graphy to define elevations. To then optimize the system,

the two sets of contours were then overlaid to find the

maximum ratio of yield to costs.

In 1981, Khuri and Conlon (19) showed the optimization

of several responses (MOE's) by use of a regression poly-

nomial. In this case, the authors show that they can

generate a global "best" solution over multiple response

surfaces of the same degree over the same operating domain.

This "best" solution is generated from the individual

maxima of each response. A distance measure, r, is devised

7
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to move from the original starting point of the individual

maxima to a common point of the highest estimated value.

This distance function is essentially the distance moved

from a maximum divided by the variance of said estimate.

Given this distance measure, the analyst may then find the

global "best" solution for the multiple MOE's of equal

degree response surfaces.

Thus far, the literature review has focused on the

area of global optimization. Now the attention is shifted

to offering the decision maker a range of optimal solutions

for a system's operating domain.

P. W. Smith (29,30) has shown, through the use of

orthogonal design and multivariate regression, the ability

to accurately predict the increase in a measure of effective-

ness due to each of the operating domain elements. He

demonstrates the optimal rate of MOE increase per domain

element in the orthogonal/independent regression coefficients.

Likewise, a pairwise trade-off between domain elements is

determined by the ratio of the respective independent re-

gression coefficients. Thus, Smith's regression equation

may be used to predict which domain element(s) should be

used in the achievement of some aspiration level set by the

decision maker. This solves the problem of having to

totally rerun a set of linear programs and thus gives the

analyst a very powerful tool if the aspiration level

should change for the decision maker. This regression

8
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prediction will be good as long as it is used within the

original domain limit of the research design. Further use

of Smith's study and the extension to this research will be

defined in Chapter Two for the proposed methodology.

To adequately review the proposed methodology requires

preliminary knowledge of several disciplines such as re-

sponse surface methodology, multiple regression, and re-

search design. Although each is a subject in itself, a

brief definition and overview are offered as follows.

Response Surface MethodoloQy. Response surface method-

ology was originally proposed by G.E.P. Box and K.B. Wilson

in their article in the Journal of the Royal Statistical

Society in 1951. Since then, it has been well covered in

many texts such as Cochran and Cox (6) and Myers (22). The

concept of the response surface is as the name says, a sur-

face such as that of the earth. We may think of a surface

as responses or measures of effectiveness that are a

function of their domain elements. In the analogy to the

earth's surface, we can think of elevation as being the

coordinates, latitude and longitude. Thus, the elevation

changes as we move across the domain. This surface, then,

may be expressed in a functional form where the dependent

variable, r, is the measure of effectiveness and is a

function of the independent variables, dk' where k runs

from 1 through n, n being the dimension of the domain and

n+1 being the dimension of the entire surface. Eq (1) is

9



representative of this functional relationship.
ri = Ri(d , d 2 ' ....d) ()

where i = the type of response considered and j = the domain

location (i.e., j = (dI, d2, ...dn) ). Eq (1) also demon-

strates the response surface's functional relationship for

"i" multiple response surfaces over the same domain. Thus,

as in our original example, the earth elevation is a measure

of merit that would be response one over the domain of lati-

tude and longitude. Likewise, a second response such as the

average annual rainfall could also be mapped over the

earth's longitude and latitude. This would create a vector

of two measures of effectiveness, elevation and average

rainfall, as a function of the same domain. This is the

same as MOOT's vector of measures of effectiveness used for

the non-dominated solution set determination. Figure la is

representative of a typical response surface where we have

two domain elements, d1 and d2. Figure la is the geometric

representation of a three-dimensional space, and Figure lb

collapses that figure into iso-value, two-dimensional con-

tour lines similar to those used in typography. Each con-

tour line is representative of Eq (1) where the value of r

is set at a constant. Thus, we can think of each contour

as rl, r2 , r3, and so on. The examples shown are no greater

than three-dimensional to allow for graphic illustration.

Obviously, however, from Eq (1), we can see that a response

surface can be of any dimension depending on the number of

10
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d d

Fig la. Fig lb.

Fig 1. Example Response Surface

variables in our domain. Thus, the purpose of the response

surface is to help us visualize, as it were, the functional

relationship between our measure of effectiveness and the

independent variables in our operating domain. There are

also numerous techniques, such as gradient search, for ex-

ploring the surface in search of stationary (critical)

points. These techniques and further discussion of re-

sponse surfaces are best covered in Myers' text (22). Next

we consider the research design.

11
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Research Design. The research design is a powerful

sampling technique used by the experimenter to try to ap-

proximate the response surface mentioned above. The number

of possible permutations of our domain set can grow very

quickly as the range of each domain element increases. Thus,

* an attempt to evaluate each point may prove tedious if not

impossible in some cases. For example, if a three-element

domain were to have respective ranges of 10, 15, and 20

units each, then the number of permutations for all com-

binations would exceed some 3,600 samples. Although this

number seems large, consider if the ranges were increased to

20, 40, and 50 respectively. Rather than 3,696 samples,

43,911 samples would be required. Obviously, total enumera-

tion of the surface becomes impossible as the problem's

domain range increases. Thus, the analyst must approximate

the surface by sampling different points across it. If the

surface is known to be flat, the analyst would simply sample

4each of the corner points and then, connecting these corners,

be able to completely define the surface in question. If,

on the other hand, the surface is not flat or unknown, this

sampling of strictly the corner points is insufficient to

describe the changing curvature over the surfaces.

The theory of research design is well documented in

numerous texts (6,14,22,32) and also in numerous articles

such as Box, et al (3,4). In general, the design is

chosen by the experimenter based on some prior knowledge

12
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of the response surface or some assumption about it. Thus,

a 2k design is chosen if the experimenter believes there are

no second order terms describing the surface. If, upon

testing, his data lacks goodness of fit, the researcher must

re-evaluate his original assumption about the curvature of

the surface and choose a smaller region to examine or per-

haps a higher order model. The 3k design allows for second

order terms in the characteristic equation of the surface

and thus would be the next choice. This characteristic

equation is the regression of the surface and is discussed

in the next definition.

Thus, the research design is nothing more than a choice

in the number and location (domain elements' levels) of

samples to be taken. The power of the design is its ability

to represent the experimental region in as few samples as

possible. This power of design is developed by choosing

the domain levels (sample locations) such that, when put

into an array, the resultant matrix is orthogonal. in this

design matrix, each row is a sample and each column is one

of the domain elements at its particular level for that

sample. Thus, if we had a three-element domain, and ten

samples, we would have a ten-row by three-column matrix for

our design. Appendix B shows the design matrix applied in

this study. The true power of the orthogonal design matrix

is in its ability to generate independent coefficients in

the general linear regression model mentioned below. To

13



accomplish this, our design matrix (D) is orthogonal; thus,

the transpose times the original matrix equals a diagonal

matrix, D'D = X-I. There are many published designs which

accomplish this (2,3,4, and 8). This study is primarily

concerned with a 3k fractional factorial, rotatable design

introduced by Box and Behnken (2). This design will be

further discussed in Chapter Two of our methodology.

Multiple Regression. As mentioned earlier, response

surface is merely a geometric means to help interpret the

functional relationship shown in Eq (1). The researcher

chooses the experimental design in hopes of achieving a
good characteristic sampling of the surfaoe in question.

This characteristic sampling is then expressed in a multiple

regression equation. The multiple regression equation is a

simplified polynomial expression of a functional relation-

ship depicted in Eq (1). The accuracy of this polynomial

lies in its ability to predict points on the surface.

Thus, the goodness of fit is determined by the residual

error between the polynomial prediction and that of the

actual experimental value. This study is primarily con-

cerned with linear regression models rather than the

curvilinear regression. DeGroot (9:5-10) and Devore

(10:422) both give excellent theoretical descriptions of

least square estimates and their use in regression

Nestimates. Likewise, Kleinbaum (20:136) shows regression

application to fitting response surfaces. Eq (2) is a

14



polynomial approximation for the functional relationship

in Eq (1). This equation can also be expressed as in

Eq (3) in matrix form, where r is a column vector of re-

sponses, B is the vector of coefficients, and D is the de-

* sign matrix as described previously. In minimizing the

error term, e, in Eq (3), it has been shown in many texts

(9:513, 22:29) that the maximum likelihood estimator which

- minimizes the variance is B, as shown in Eq (4). The power

' 2 2 . .< ':i r =B0 +Bld I + B2d2 *..B d + B1 d1  +B 2
. n n 11d1 2

2+B d +B dld +Bn )dd
Bnn n 12 1 2 (n)(n-1) n n - 1 (2)

r =DB + e (3)

B = (D'D)-1 D-r (4)

of the orthogonal design is again shown in the solution of

B estimate. As stated earlier, the power of the D'D term,

which collapses into a diagonal identity matrix, is to create

the orthogonal polynomials which, in turn, cause each of the

coefficients in the B vector to be independent from one

another (31:72). The power and use of this independence

between the regression coefficients is brought up and used

in the methodology and referenced in Smith's work also.

Finally, the error term in the regression equation is a

measure of our lack of ability to predict the true value on

the response surface. This error term is composed of two

components, response variance and model bias. Wonnacott

15



(33:21) gives an excellent 2<a.ce :: error .I s: n

between bias and variance. -n s st.; anc ".-

Smith, a deterministic model is useci ana, as suc:-, L::ere

is no stochastic variance in our error term. Thus, desigrs

which minimize the bias induced by the model would be of

optimal choice for this study. Karson (16,17) shows the

criteria for a minimum bias, two-dimensional design to be

orthogonality, rotatability, and equal spacing. However,

there is no three-level design which meets the criteria for

minimizing only bias. The Box and Behnken design (2)

chosen for this study is designed to reduce both measure-

ment variance and model bias.

The last three topics, response surfaces, research de-

sign, and regression analysis, have each been briefly re-

viewed in comparative isolation from one another. In

actuality, response surface methodology incorporates all

three topics simultaneously. This is evidenced by the in-

ter-relationship between the design level and the order of

the regression equation. The three-way interdependence is

completed by the regression equation's error term which

measures the adequacy of the researcher's estimate of the

surface.

The reader should see Myers' "Response Surface

Methodology" (22) for a combined, in-depth coverage of

these subjects.

16



.7

Problem Statement

There is a conceptual problem for a system's decision

maker between multiple objectives, their respective measures

of merit (MOE's), and the optimal system structure/operation

to achieve these respective goals. Methodologies mentioned

in the literature review aid the decision maker in this

process but still depend heavily upon:

(i) The decision maker's MOE trade-off weight;

(ii) The use of commensurate goals; and

(iii) The calculation of each alternative to de-

termine the non-dominated solution set.

Although these problems may not all arise in a particular

study, they become more prevalent as the range and number

of the domain elements increase. This is exemplified by

optimal mix problems mentioned earlier.

Research Objectives

Find the optimal relationship between a system's set

of measures of effectiveness over a relatively large

operating domain.

Subobjectives:

(i) Generate the surfaces for comparison over the

same domain;

(ii) Apply a research design to estimate the

surfaces in regression equations;

(iii) Choose response surface, rI, to be constrained

17
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by the second response surface, r2. Represent

the constraining surface, r2, in iso-value con-

tour lines;

(iv) Determine the constrained maxima of r1 for

each of the r2 contours;

(v) Map the constrained maxima function for rl; and

(vi) Reverse the roles of r1 and r2 and show the

constrained maxima function for r2 .

Scope

.9 The purpose of this study is to optimally compare mul-

tiple response surfaces over the same operating domain.

Thus, the development of a highly sophisticated model to

generate such surfaces is not deemed necessary. This study

uses a deterministic, aggregated, arsenal exchange model to

look at the problem of optimal force mix in strategic

planning. This model is discussed further in the method-

ology, Chapter Two, and again in Appendix A.

Since the true functional relationship, Eq (1), is not

known, this study assumes a second order relationship

between the MOE and the domain variables. This decision was

based on the prior work of Smith (30) on similar systems.

Smith found the damage expectancy measure of effectiveness

to be monotonically increasing and a second order regression

polynomial gave excellent results. In view of this prior

knowledge, this research will start by using a second

18
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order regression and three-level design.

General Methodology

(i) Represent one surface in a set of iso-value

constraint lines and determine the interval

for those lines;

(ii) Find the constrained maxima of r1 subject to

, the iso-constraint of r2 ; and

(iii) Map the constrained maximum function in terms

of a constraining response.

The next chapter expands the methodology and discusses

the specific theory involved. Chapter Three will then apply

this proposed methodology to an example. The analysis

section of the methodology is covered in Chapter Four.

-1
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CHAPTER TWO

Methodology

Introduction

This chapter details the methodology for the comparison

and optimization for one response surface to another. It

builds on the general methodology described in Chapter One

V. and expands on those areas of the literature review which

are pertinent to the proposed methodology.

This methodology consists of 12 steps. Each step is

presented both in general format and specific application

for Chapter Three. Prior to the actual stepwise presenta-

tion, however, an overview of the theoretical basis is

covered. This overview serves as the "big picture" for the

step-by-step optimization process.

*Theory

The theoretical basis for this study is best described

by Lagrange multipliers. Protter (27:176) demonstrates the

use of Lagrange multipliers to determine the constrained

maxima of one function (R0 ) over the domain, di, subject to01

the constraints of other functions (Ri, R2,...) over the

same domain. Eqs (5) through (9) demonstrate the general

methodology for Lagrange multipliers where R0 (di) is the

objective to be optimized subject to the requirements of

R1  (di).
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optimize r1 = R0(di) (5)

subject to Rl(d i ) = 0 (6)

The Lagrange multipliers are introduced to form a new func-

tion R6 (di, X ) where di is the original domain and X is
th

the multiplier for the j- constraint.

optimize R6(di, X ) = Ro(di) + X j - R.(d i ) (7)

Thus, the problem is now to optimize the new function

R 6 (d i , X j). This is accomplished by simultaneously solving

the set of partial derivatives of R6 set equal to 0.

solve R6/4 di = 0 for all i's (8)

R6/a X j = 0 for all i's (9)

The solution to this set of equations is the set of critical

(stationary) points for R0 subject to R. Protter (27:178)

gives several numeric examples of this technique.

Chapter One's literature review describes the response

surface graphically in Figure 1, and functionally in Eq (1).

The review also describes the researcher's approximation

for the response surface functional relationship in a multi-

variable regression polynomial, Eq (2). The combination of

these techniques with Lagrange multiplier optimization lays

the foundation for this study.

Figure 2a depicts the surface to be optimized, R 0(di).

Figure 2b depicts the constraint surface R1 (d1 ) in both the

21



Fig 2a. Fig 2b.

4r

dd

Fig 2c.

Fig 2. Response Surfaces' Constrained Maxima
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4;! n+1 problem dimension and collapsed into contour lines in

*! the n dimensional domain. Thus, each constraint contour

is a subset of the total surface R. (di ) with a constant

value r Therefore, the surface R (d.) is represented

as a set of contour lines in the operating domain. Eq (10)

depicts this set of j constraint contours. The number

of contours required to characterize the surface is de-

pendent on the surface complexity.

r = R(d) (:3)1

The question of contour interval criteria is determined in

step 9 of the Methodology presentation. 'Figures 2a and 2b

pictorially define the two measures of merit (MOE) which are

to be optimized one to the other. Figure 2c combines

Figure 2a's surface, R0(di), and Figure 2b's contours,

rlj = R (di). The final step is to find a maximum value of

Ro(d i ) when constrained to each contour, rij = R (di). Thus,

there are j sets of Lagrange multiplier constrained maxima

problems to be solved, Eq (11).

optimize each r0  R6(di, X) = R 0(d i ) + X (Rl(di)

- rl.) (11)
J

The solution set (r0 , rl) depicts the optimal R0(d i) for

a given R1(d i ) value over the entire operating domain (di).

This theoretical presentation must be further constrained

23
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for most applications. The theory allows the range of

each domain element, di , to be unlimited. In practical

application, the domain is limited to some experimental/

operating range. In fact, it is this range which defines the

research design and, therefore, limits the area to which the

regression polynomial may be applied (6:336). This problem

is exemplified in the case of the polynomials approximating

each surface being second order. In this case, the Lagrange

optimization will seek to reach the global critical point.

This point, although mathematically correct, may lie out-

side the design region under consideration. Therefore, the

upper and lower bounds for each domain element must be in-

cluded in the problem, Eq (12). These additional con-

straints require a Lagrange multiplier for each bound.

u i ! d i li. (12)

Thus, for n domain elements, an additional 2-n X 's must be

included in the optimization function, R6(d i , X X ui 1 i).

The methodology to solve this new inequality con-

strained optimization function is shown in Hadley & Whitin's

text (13:436). Essentially, the process involves a pairwise

comparison between inequality constraints and the original

problem to determine which constraints are active. An

active constraint is one which actively restricts the optimal

domain of the original problem. These active constraints are

set to equalities and the problem is resolved. The inactive

24
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constraints are less restrictive than the active ones and

therefore can be ignored. "The effort required to solve the

problem increases rapidly with the number of [inequality]

constraints," (13:437). Due to this increased effort, an

alternative approach is also offered in step 10 of the

methodology.

In conclusion, this section has shown the theoretical

basis for the proposed methodology. Figure 2 has shown the

two MOE's (rO, rI) in question as response surfaces (R0, R1 )

and collapsed the constraining surface into iso-value con-

straint lines (r. = (d in the operating domain.
1

Finally, the constrained maxima of the optimization surface

subject to each contour is found using Lagrange multiplier

techniques. It is the solution set of j maximized, ordered

pairs which depict the optimal trade-off between the two

surfaces. The remainder of this chapter is dedicated to

the actual step-by-step process to achieve this optimization.

Stepwise Methodology

Figure 3 is a flowchart of the proposed methodology.

It serves as an outline to this chapter and the entire study.

The first three steps are systems analysis techniques and the

remaining steps are optimization specific. Obviously,

these first three steps cannot summarize the many systems

analysis texts. However, this study is primarily concerned

with an optimization technique; these three steps are in-
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1. Problem Definition/Statement

* 2. Variable Selection

I1
* 3. Operational Limits of Control!

• Domain Variables

4. Data Source/Generator

5. Initial Surface Estimate

6. Research Desi gn Selection

4. 7. Global Regression Estimate for
EaCh Surface

8. Regression Error

9. Contour Interval Determination

%

!' n10. Constrained Maxima per Contour

11. Map Solution SetI

Fig 3. Methodology Flow Chart
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cluded to re-emphasize their importance in a complete re-

search project.

Step 1 - Problem Definition. The problem statement
.-

acts as the keystone and focus for the research. In de-

fining the research problem, Quade (28:69) offers a series

of questions to help the analyst interrogate the system's

designers/dicision makers. The purpose is to construct as

lucid and specific a task definition as possible. One

question bears reiteration throughout the study:

"Is it the right problem anyway? Might it
not be just a manifestation or a symptom of a
much larger or deeper problem? Would it be
better to tackle this larger problem if there
is one?" (Quade 28:69)

As the research progresses, this question must be reiterated

since greater problem insight may require a redefinition of

the research task. It is this iterative process which the

flowchart, Figure 3, depicts with arrows returning to step

one.

For Chapter Three's example, the problem is to find

the optimal mix of a given set of strategic force types to

fulfill two missions. The first mission is to maximize the

counterforce (CF) capability given the force must meet the

I countervalue (CV) requirements. The second mission reverses

the roles of the first and considers the maximization of CV

given the required level of CF.

Step 2 - Variable Selection. The first step focuses

the research on either the system's inability to reach an
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aspiration level (goal) or a new goal of that system. Thus,

step two begins by determining the system's objectives and

their respective goals/aspiration levels set by the decision

maker. Each goal's level of achievement is a measure of

effectiveness and becomes the problem's dependent variable.

The independent/control variables are defined by the domain

in which the system is operating. One of the major tasks of

the analyst will be to determine which of the domain elements

have a dynamic effect upon the measure of effectiveness under

consideration. Those that are correlated to the measures of

* effectiveness will become the control variables, while

those that are not will be treated as constants. If, later

in the research, data does not appear to be reacting properly,

it may be caused by an actual control variable that was

*thought to be a constant and left out of the domain. An

alternative perspective is to redefine the total system in

terms of the model being assumed. This model consists of

strictly the MOE's under consideration and those factors

believed to be the primary cause of MOE changes. Thus, all

other elements of the domain now become part of the environ-

ment in which this model operates.

The next section discusses the problems associated with

scenario dependence in the selection of variables and their

respective ranges.

Chapter Three's measures of effectiveness are levels

of counterforce damage and countervalue damage as determined

28



by the aggregate arsenal exchange model. The control

variables are the amount of each type of weapon available.

For this example, four out of five weapons are ranged and

one weapon isheld constant. The number of variables not

included as control variables for this study is large when

considering the variables of the linear programming model,

each of the right-hand-side values, and each of the equa-

tions in the matrix. Those variables not included in the

study are discussed more thoroughly in steps four and five.

Step 3 - Operational Limits of Variables. This step

defines the range of each control variable. Step two's

variable selection combined with these ranges define the

system for the research study and also the environment or

scenario under which it will operate. Quade (28:193) dis-

cusses the importance of this scenario/environment to the

overall analysis. He discusses how an analysis may be

biased by the choice of scenario. Likewise, a well chosen

scenario may aid in the robustness of the study to changes

from the initial problem statement in step one. Therefore,
T2

the research should iterate back to step one to insure that

the problem definition and research objective can be de-

fined using the choice of variables in step two and the

range of the control variables in step three.

For the example in Chapter Three, the range of the

control variables is first selected to start at zero and

run to the upper limits of 450, 750, 1040, and 424 for each
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of the four weapons systems respectively. As we will see

from the example, the lower limits of this problem were

changed to 300, 450, 720, and 200 respectively, after

initial analysis.

Step 4 - Data Source/Generator. In any research, the

question of what resources will be available to the analyst

must be addressed early in the study. These resources will

include the personnel available, computer-time, the ex-

perimental or previous studies' data, and existing model

* availability. It will be from these resources that the data

for analysis will be generated. The choice between re-

sources will be determined by both the cost and time limita-

tion upon the study and also the level of detail and variance

acceptable for the solution.

For this research, the model is a deterministic,

aggregated arsenal exchange model. The model uses linear

programming to solve for the optimum use of weapons using

damage expectancy. The model considers ten types of targets

and five types of weapons. The objective function seeks to

maximize the damage expectancy given the effectiveness of

each type of weapon on each type of target and the capability

to strike a target twice with the same weapon type. Further

details of the model used to generate the data are available

in Appendix A.

Since a simplex algorithm is generating each data

point, the response surface is actually a surface of all

30
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optimal points. Thus, for each n-tuple of the domain

variables, there is a wide range of possible damage ex-

pectancy which could be considered, but the response

surface only contains the optimal DE from each n-tuple of

weapons.

As previously mentioned, the choice of control variable

(weapcns availability) is not inclusive of all possible

; variables in the linear programming (LP) algorithm.

Therefore, the true functional relationship between the

damage expectancy and the domain is not known due to the

. complexity of the LP algorithm. The LP domain consists of

the study's control variables, the other right-hand-side

values, all tableau variables, the number and type of equa-

tions in the matrix, and finally the objective function.

Chapter One, Eq (1), depicts this actual functional rela-

tionship of the response over its LP domain. This actual

relationship is unknown to the researcher and, therefore,

the assumed regression model is chosen to estimate the

relationship. In the next chapter's research example, only

the control variables (right-hand-side weapon availability)

are varied. Thus, the example regression approximates the

true functional relationship of optimal DE with only the

four weapons availability variables. This is, however, a

good estimation of the surface, since changes across it will

be a function of only those variables which are changing

in the overall LP algorithm. In this case, the four out of
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five weapons chosen for the study are the control vari-

ables. The effect of the constant fifth weapon is displayed

in the B0 coefficient of the regression polynomial.

Thus, a no-variance surface of optimal DE points is

generated from the LP arsenal model and estimated in the

four-variable regression model.

Step 5 - Initial Surface Estimation. The researcher's

initial estimate for the regression model of the response

surface should be determined by some prior knowledge of the

actual system or a similar system. If the system's change

in response is unknown, then either a simple, first order

model, which may have a poor fit, is chosen, or a higher

order model, which may require unnecessary sampling, is

chosen.

For this study, prior knowledge of similar systems

was available from Smith and Mellichamp's work (30). They

found, in studying a similar model, that a second order

regression polynomial gave an excellent prediction of the

damage expectancy caused in a five-weapon arsenal. Based

on this prior knowledge, the study estimates the example

arsenal will respond in a similar manner and the damage

expectancy will be a monotonically increasing function

which may require a second order regression polynomial.

Step 6 - Research Design Selection. Chapter One

displays the power of the research design as a sampling

tool to gather data points for use in the regression
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04 estimate. This step now defines the criteria to choose a

design. Smith and Mellichamp (30) displayed the analytic

advantage of independent co-efficients for the comparative

trade-off between control variables with respect to the MOE.

Therefore, one of the selection criteria will be orthogonality.

A further criterion is brought about by the use of a

deterministic model. As shown in Chapter One, the de-

terministic model has no measurement variance and, thus, a

.primary criterion now becomes that of minimizing the bias.

9' Unfortunately, Karson's minimum bias criteria is only shown

for a two-level design (17) and no minimum bias, only 3
k

designs, exist. Hence, from the previous step we will need

1. a design which will allow for a second order equation and

orthogonality.

This criterion is satisfied by Box and Behnken's

fractional factorial 3 k design (2). This 3 k design samples

points from each corner of a cube and each point of a star

which is co-located with the surface of the cube and at the

. center of the cube. Appendix B shows this research design

and the value of each of the measures of effectiveness for

V each sample point. The design is given in two formats,

coded and uncoded. The coded format has transformed the

range of each domain variable from upper and lower limits

to plus and minus one respectively, and zero for the mid-

point. Eq (13) shows this transformation where x is the

mid-point in the range between the upper and lower limit
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and d is the actual range. Thus, for the example in

Chapter Three, the first domain variable, wI, ranges from

300 to 450. For this case, R is 375 and d is 150.

coded x = (x - £)/d/2 (13)

Using Eq (13), we see that the lower limit of 300 is trans-

formed to a -1 and the upper limit of 450 to +1 and the mid-

point to zero. The transformed design simplifies checking

for the orthogonality of the research design. Likewise, if

said regression algorithm does not have an automatic co-

variance computing tecnnique, the transformed matrix may be

used.

For example, in Chapter Three, the power of this design

can be displayed in the number of samples which will be

required for the combinations of the ranges of each of the

domain variables. If a full enumeration of the surface were

done, it would require greater than three billion samples.

*- However, the example research design uses 25 points. It

should be noted that the original Box and Behnken design
' 4. required an additional two repetitions on the center point

for degrees of freedom to estimate the variance error.

However, this repetition of the center point is not re-

* quired since this example uses a deterministic model with

only bias error.

Step 7 - Global Regression Estimate. Eq (1) shows the

functional relationship betwen the measure of effectiveness
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and its control variables. This step now estimates that

functional relationship in a regression polynomial using

the sampled points from the design in step six. There are

many computer regression packages available to do this.

For the case in point, the Statistical Package for the

Social Sciences (SPSS) (25:320) is used to calculate the

regression equation. A stepwise regression option is

chosen, thus, allowing the researcher to follow the intro-

duction of each independent coefficient and re-check for

this independence. A sample of the regression output is

found in Appendix C. It should be noted that since we are

using a deterministic model, the F statistic is meaningless

except as a ratio of the sum of squares explained to the

sum of squares unexplained, which may be an indicator of

the bias error.

The normal statistical inferences drawn from the F

statistic cannot be used in this deterministic regression

model. The reason lies in the basic assumption that there

is a distribution of y for each value of x in the regression

(33:15). Thus, the assumption can be thought of as a con-

ditional probability, P(Yi xi) However, with the use of a
1 1i

deterministic model, this conditional probability equals

one. Therefore, the error term in our generalized regres-

sion equation is not a measure of both the measurement

variance and the model bias but, rather, only the bias due

to the assumed model and its inability to fit the actual
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response surface. Since the F statistic is a ratio of the

variance explained by the regression to the unexplained

variance, we see that with the use of this deterministic

model, the unexplained variance is actually a measure of

the lack of fit of our regression polynomial to the surface

*divided by the degrees of freedom, Eq (14). Since the model

has no variance in measurement, it would be wrong to make

statistical inferences as to the sample population from the

F statistic.

F = Var, Explained _i - ) 2/p
Var, Unexplained Ai- 2 n (14)

1Y yi) /(n-p) (4
where

p = # of regression variables

Step 8 - Regression Error. This step tests the re-

gression polynomial's goodness of fit for each surface. As

stated earlier, the normal F statistical inferences cannot

- .be used. Therefore, the primary criteria will be residual

error between the predicted and actual values. The residual

error predicted for each of the design points is included in

the SPSS output. To increase the confidence in the regres-

sion equation, a random sampling of residual error is also

taken.

Step 9 - Contour Interval Determination. As mentioned

in Chapter One, we must represent our constraining surface

as a set of iso-value contour lines. The criteria as to how

many lines or the interval between these lines lies pri-
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marily in the last two steps. If the error is small in our

V.. prediction from our regression polynomial, then the in-

terval between our contour lines may, likewise, be small.

The purpose of the contour is to show the change in slope

of the surface. Thus, if we are unable to distinguish a

change in slope, there is no point in having a contour at

that point in the projection of the surface. Using this

logic, we can look at the standard deviation of the error

from steps seven and eight above. If we assume that we will

be unable to distinguish a change in response unless it is

outside of the error of the estimate, then we would not

want a contour interval any closer than that of the error.

SThus, an interval criteria can be established based on the

standard deviation of residual error. Since the regression

has only bias error of a least square fit of the design

data, the bias should be a normal distribution. Using

this assumption, a range of two standard deviations of

residual error would be a minimum interval for selection.

Outside this range, one would be assured that at least 97%

of the time, the model will be able to estimate a change in

the response surface that was not caused by the regression

error. This criteria then sets a minimum value for the

contour interval. The maximum interval must be determined

by the complexity of the surface and the degree of

accuracy required in the solution.

For the example in Chapter Three, the standard devia-
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tional errors were so small that the interval was arbitrar-

ily chosen at a value larger than the minimum that could be

allowed. This arbitrary choice was based on an estimate

believed to be a sufficient number of samples to adequately

define the trade-off between the two measures of effective-

ness.

Step 10 - Constrained Maxima Determination. As de-

scribed earlier in the chapter, Lagrange multipliers can now

determine the maximum of response R0 , as compared to each

contour line found in the preceding step. However, it was

also shown that the Lagrange multiplier technique could

become tedious with the number of multipliers required for

the inequality constraints. Thus, with the number of con-

straints and no computer libraries readily available to

solve the Lagrange technique, an alternative optimization

technique was found. This technique is based on the work of

Fiacco and McCormick (12) in nonlinear programming. The

actual computer library that is used was developed by

Mylander (23). This algorithm finds the minimum of either

a linear or nonlinear, multivariate objective function,

subject to linear or nonlinear equality and inequality

constraints. The algorithm uses Fiacco and McCormick's

modified objective function which is formulated by using

the original objective function and a penalty function.

It then starts an iterative process in choosing new

estimates to minimize this new objective function. The
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routine estimates each new iterative answer by an extra-

polation process. It then tests for convergence. In

seeking its next iterative solution, it also uses a

gradient search routine to speed the process. This is a

powerful algorithm which solves Fiacco and McCormick's

function and also simultaneously solves a dual problem

based on Lagrange's technique. For further discussion of

the theory, see Chapter 8 of Fiacco and McCormick (12) and

also Appendix D, a description of the SUMT library as

composed by Captain R. M. Floyd for the Air Force

Institute of Technology.

Step 11 - Map Solution Set. The solution set consists

of the maximum points for each constraint contour,

(max ro , r) j . The trade-off between the two measures of

effectiveness may be displayed graphically by plotting the

solution pairs. The slope of this graph yields the trade-

off of marginal return for the maximum of r0 given a value

of rI. Likewise, the n-tuples which created this optimal

set and which also come from the SUMT program can be plotted,

allowing a visual picture of the correlation between each

domain variable and its use in this trade-off.

Step 12 - Analysis. This final step is the interpreta-

tion of the data that is gathered in the past eleven steps.

The data mapping of step eleven, when compared to the in-

dependent regression coefficients of each weapon system,

will give insight into the effectiveness of each control
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variable upon the single measure of merit, the multiple

measures of merit, and the optimal trade-off in both.

Chapter Four of this study will show the comparisons and

insights through this technique.

4..
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CHAPTER THREE

Application Example

Introduction

* This chapter lends numeric reality to Chapter Two's

proposed methodology. The application is a generic mili-

tary force structure problem similar to that studied by

P. W. Smith and J. Mellichamp (30). All but the last two

steps of the methodology will be addressed in this chapter.

The data mapping and analysis are postponed until Chapter

Four. The chapter presentation closely follows the actual

chronological order of the research.

As stated earlier, this generic force structure prob-

lem is similar to that studied by Smith and Mellichamp.

Their research shows the individual effectiveness of each

weapon system when used in concert with the remaining

arsenal available. Their study uses a single measure of

effectiveness (MOE), damage expectancy (DE). Their use of

independent regression coefficients shows both the in-

cremental MOE value of each weapon and the marginal return

of one weapon to another. Building on Smith and Mellichamp's

work, this study considers a similar force and then compares

the optimal trade-off between two missions (MOE's),

counterforce (CF) and countervalue (CV). The optimization

of this trade-off is shown in the following methodology

application.
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Problem Definition

The decision maker must determine the best mix of

forces to fulfill two missions. The first is a counter-

force (CF) mission and the second is a countervalue (CV)

mission. The force structure must be optimized so that it

has the flexibility to perform one mission or the other.

The alternatives for the structure are the possible com-

binations of five different weapon systems' respective

ranges of values. The fifth weapon system is set at a

fixed level of 360 warheads prior to this analysis. The

decision maker's problem is to determine the optimal force

structure for a range of different CV demands (mission

requirements) and for the remaining four weapon systems.

The generic weapon characteristics are shown in

Table I. The weapons (wi ) may be thought of as representa-

tive components of an arsenal. For instance, w1 and w2

may be thought of as two different types of ICBM's and w3

may be an SLBM component. For this problem, w5 is assumed

to be introduced at a constant level of 360 warheads. The

two characteristics, yield and circular error probable

(CEP), define the level of destructive force on a target.

CEP is the radius within which the guidance of the system

will land the warhead fifty percent of the time. CEP and

weapon yield are given in thousands of feet and megatons

respectively.

I.
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TABLE I

' Weapon System Characteristics

4. W W W I
W1 2 3 4 5

CEP .200 .150 .240 .600 .200

Warheads/Weapon 1 3 10 4 6

Yield 2.0 .17 .05 .35 .20

Reliability .85 .85 .85 .85 .85

Daily Alert .85 .85 .85 .33 .33

Max Warheads/Type 450 750 1040 424 360

The target base defines the remainder of the system.

Table II shows the characteristics of the targets. There

are six targets in the CF class and four in the CV class.

The CF type targets may be representative of such things

as ICBM silos, military bases, and C 3I facilities. Likewise,

the CV type targets may be representative of such things

as storage or industrial facilities. The vulnerability

number in Table II is the connection between the target and

the weapon.

The vulnerability number (VNTK) consists of five

alpha numeric characters (1:34). The first two numeric

characters represent the target's level of hardness to its

most vulnerable kill mechanism. The alpha character identi-

fies the kill mechanism most effective against that target.

.4

N 43



W. % .1,

TABLE II

Target Base Characteristics

Vulnerability
Type Number Number Diameter

CVI 140 24Q0 .56

CV2 215 13P1 .49

CV3 430 31P6 .00

CV4 520 23Q0 .31

CF1 450 35P7 .00

CF2 1000 52P8 .00

CF3 200 39P0 .00

CF4 20 22P1 .36

CF5 150 ilPO .00

CF6 100 10QI .79

Finally, the last number shows the target's susceptibility

to increased duration of the particular effect. The linear

programming arsenal exchange model requires these VNTK's to

be converted into single-shot probability of kill (SSPk) co-

efficients for the objective functions. The arsenal exchange

work of Robert Bunnell and Richard Takacs (5) required the

computer coding of this conversion from VNTK to SSPR. With

their kind help, this program has been employed to compute

the SSPk's for this study. Further explanation of the
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target characteristics and weapons characteristics used

in this aggregated arsenal exchange model are given in

Appendix A.

Variable Selection

As mentioned in the previous chapter, there are many

possible variables in the arsenal exchange linear programming

model. For this study, we are primarily concerned with the

objective function value and the right-hand-side value for

the number of weapons available. The ability to destroy the

target base in question is measured by the objective function

value. Since two separate missions are considered, CF and

CV, the measure of effectiveness is the level of destruction

to each of the respective target bases. This study will

refer to each MOE as CF or CV respectively, where each is a

measure of the objective function for that particular model.

Likewise, for consideration of a combined mission of both

CF and CV, this study will refer to this as all forces (AF).

The control variables will be the five weapon systems

which compose the proposed arsenal. Of these five systems,

the first four will be varied in the study and, therefore,

included in the regression analysis. The fifth system is

constant and will be shown in the regression section to be

in the B0 term of the polynomial. Similarly, all the other

variables in the LP which remain constant do not have to

be included in the control variables. This selection of

control variables thus assumes that the target base will
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remain constant, otherwise the change in target base would

likewise have to be considered in the regression analysis

and also in the sampling from the LP model. This variable

selection, then, leads to the four weapons as control

variables and the two measures of merit, CF and CV.

Control Variable Limits

The range of each control variable is determined by

the scenario or the study under consideration. For this

example, weapon five is introduced and maintained at a con-

stant level of 60 weapons or 360 warheads. The remaining
four weapons are assumed to have previously determined

upper limits shown in Table I. Since all but one of the

weapon systems has multiple warheads, the wi variables are

in terms of warheads rather than actual weapon numbers.

The lower bounds for these variables are dependent on the

range/degree of conflict to be considered. Initially, the

lower limits are set at zero. However, after the regression

error was determined in step eight, the lower limits were

re-evaluated and set as shown in Table III. This revision

is further explained in step eight, Regression Error.

Data Source/Generation
The data for this generic problem are generated from

the aggregated arsenal exchange model, which is detailed in

Appendix A. The choice of this particular model was not
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TABLE III

Control Variables' Ranges

Weapon Ranges (Warheads)

Initial Revised

0 < W, < 450 300 < W, 450

0 < 2 < 750 450 < W2 ( 750

0 < W 3 < 1040 720 < W 3  1040

0 < w4 < 424 200 < W 4 <424

w 5 = 360 W 5 = 360

critical to the methodology example; therefore, a simplified

version was chosen.

The model attempts to maximize the DE from the weapons

available on the given target data base. The separate

missions are modeled by using either the CF or the CV

components in the objective function. Thus, each mission

has the same LP tableau except for the change in objective

function. The two measures of effectiveness, CV and CF,

are determined by the two different objective functions

respectively. Since all other LP components remain con-

stant, the changes in the respective MOE are due solely to

changes in the right-hand-side control variables. Thus,

the two MOE variables are dependent upon the combinations
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of independent variables, wi, levels. The function of the

independent variables, wi, is the simplex algorithm, the

objective value of which is the MOE in question.

Initial Surface Estimation

As mentioned earlier, the initial surface estimation

is based on the study of Smith and Mellichamp (30). In

that study, they found the DE to be a monotonically in-

creasing function of the force structure. Thus, the study

assumes that the contour of each surface, CF and CV, will

be similar to that of the combined mission which Smith and

Mellichamp studied. In light of this, a second order re-

gression model is assumed.

Research Design Selection

Chapter Two shows the criteria for selection of a re-

search design. In particular, Smith and Mellichamp's

analysis (30) relies on independent coefficients which

require an orthogonal design. A minimum bias design is

optimal for the deterministic model but, as previously

mentioned, there are none available for greater than two

dimensions. Thus, the criteria of rotatability, equispacing,

and orthogonality were chosen to minimize the variance and

bias. To fulfill these criteria, the Box and Behnken's

fractional factorial 3 k design was chosen (2). The original

design calls for 27 samples. This design was modified to 25

samples because the model is deterministic. The difference
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TABLE IV

Research Design and Sampled Values

Design Points (Coded) CF C'. AF

450( 1) 750( 1) 880( 0) 312( 0) 932.67 1190.02 1736.46

450( 1) 450(-1) 880( 0) 312( 0) 868.40 1159.59 1618.73

300(-1) 750( 1) 880( 0) 312( 0) 862.12 1170.66 1652.86

300(-1) 450(-1) 880( 0) 312( 0) 797.85 1139.65 1504.04

375( 0) 600( 0) 1040( 1) 424( 1) 873.84 1165.56 1677.36

375( 0) 600( 0) 1040( 1) 200(-1) 868.13 1165.56 1645.10

375( 0) 600( 0) 720(-1) 424( 1) 865.41 1164.70 1626.09

375( 0) 600( 0) 720(-1) 200(-1) 859.61 1164.31 1585.47

450( 1) 600( 0) 880( 0) 424( 1) 904.92 1174.87 1701.47
450( 1) 600( 0) 880( 0) 200(-1) 899.15 1174.81 1668.05

300(-1) 600( 0) 880( 0) 424( 1) 834.40 1153.39 1602.27

300(-1) 600( 0) 880( 0) 200(-1) 828.60 1155.32 1567.22

375( 0) 750( 1) 1040( 1) 312( 0) 901.59 1180.83 1717.52

375( 0) 750( 1) 720(-1) 312( 0) 893.14 1179.81 1673.61

375( 0) 450(-1) 1040( 1) 312( 0) 837.39 1150.28 1594.91

375( 0) 450(-1) 720(-1) 312( 0) 828.87 1148.42 1526.83

450( 1) 600( 0) 1040( 1) 312( 0) 906.24 1175.30 1708.49

450( 1) 600( 0) 720(-1) 312( 0) 897.79 1174.28 1657.15

300(-1) 600( 0) 1040( 1) 312( 0) 835.76 1155.82 1612.06

300(-1) 600( 0) 720(-1) 312( 0) 827.24 1153.96 1554.73

375( 0) 750( 1) 880( 0) 424( 1) 900.26 1180 40 1710.86

375( 0) 750( 1) 880( 0) 200(-1) 894.50 1180." 681.32

375( 0) 450(-1) 880( 0) 424( 1) 836.03 1149.8t 585.12

375( 0) 450(-1) 880( 0) 200(-1) 830.23 1149.79 i 40.05

375( 0) 600( 0) 880( 0) 312( 0) 877.77 1165.13 1 35.88
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is in the repetition of the center point which is required

for degrees of freedom in an experiment which has no vari-

ance. Table IV displays this design for the revised limits

in both its coded and uncoded version, as described in

Chapter Two. The coded values are shown in parentheses

|,-.*. next to their uncoded counterparts. This table also shows

the sample values of each MOE (CV, CF, AF) for these re-

spective design points. A further description of the design

is in Appendix B.

Global Regression Estimate

The above-mentioned design yields 25 data points for
use in a regression analysis. Each regression looks at the

'.4' MOE regressed on the four control variables, the cross

products of these variables and the square terms of these

variables, Eq (15).

MOE (w.) = B0 + B1W1 + B2W2 + B3W3 + B4W4 + B 1 2

22 2 + B3 3 W3  B44W4 + B12W 1 W 2

+ B1 3 W1 • 3 + B14 W1 • 4 + B23 W2 • 3

+B 24W 2 W4 +B W4  (15)

The computer regression library chosen was the

Statistical Package for the Social Sciences (SPSS) with a
4...,"4

stepwise option (25:330). An example of a full regression

is shown in Appendix C. Likewise, the final steps of each

of the other regressions is also given in this Appendix.
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V -'The choice of the stepwise option allows the researcher to

,. ~ follow the introduction of each coefficient and display its

independence from the other coefficients. Eqs (16), (17),

and (18) are the respective regression polynomials using

the initial limits shown in Table III. When applying the

revised limits' design points, the regression polynomials

are found to be Eqs (19), (20), and (21) respectively.

AF = 302.022 + 0.91918W 1 + 0.94721W 2 + 0.87583W 3

S0.82253W 0.00008W 0.00014W 2 -0.00027W 3• +0.223 4 -000W 1  3

- 0.00018W 4  - 0.00011W1 W 2 - 0.00002W 1 W 3 - 0.00002W1W 4

- 0.00019W 2W3 - 0.00022W 2 W4 - 0.00049W 3 W4  (16)

CF = 370.603 + 0.7024W1 + 0.4473W2 + 0.1813W 3 + 0.1604W4

0.00016W 12 - 0.000135W 2 - 0.00007W 32 - 0.00003W42

- 0.00020W1 W 2 - 0.00002WIW 3 - 0.00004W 1 W 4 - 0.00003W 2 W 3

- 0.00004W 2W 4 - 0.00013W 3W 4  (17)

CV = 279.659 + 1.2307W 1 + 1.0376W 2 + 0.5759W 3 + 0.7330W4

- 0.00035W 1  - 0.00035W 2 - 0.00016W3 2 - 0.00036W4 2

- 0.00070W1 W2 - 0.00046WIW 3 - 0.00037WW 4  0.00036W2IV

- 0.00026W 2 W4 - 0.00040W 3W4  (18)

51

%......................................



AF = 323.747508 + 1.357119W 1 + 1.335273W 2 + 0.5225785W 3

+ 0.4350739W 4 - 0.0002055W 12 - 0.0002804W2
2 _ 0.0000657W3

2

- 0.0000239W 2 0.0006909WIW - 0.0001248WI W
4 1 2 1 3

- 0.0000485W W - 0.0002518W2W - 0.0002311W W
1 4 2 3 2 4

- 0.0001166W 3W 4  (19)

CF = 504.542366 + 0.4715619W1 + 0.2955107W2 + 0.0288839W312
0.0278609W4 + 0.0000003W 1  2 0.0000671W22 0.0000006W32

- 0.0000005W 42 - 0.0000015WIW 3 - 0.0000009W W4

- 0.0000007W 2W 3 - 0.0000006W 2W4 - 0.0000013W 3 W4  (20)

CV = 1027.039 + 0.1658222W 1 + 0.1198222W 2 + 0.0307574W3

+ 0.0019064W4 + 0000054W42 - 0.0000153W 1 - 0.0000040W 2

4 - 0.0000075W 3
2 - 0.0000129W1 W 2 - 0.0000175W1 W3

V - 0.0000087W 2W 3  0.0000054W3 W4  (21)

The first SPSS regression of the revised limits rounded

the coefficients to the fourth decimal place. Thus, it

dropped most of the second order terms from the CF equation

and all of the second order and cross terms from the CV

equation. A second regression on the revised samples was

run to allow the seven decimal places in Eqs (19), (20), and

(21). These small coefficients are probably due to the

smaller region and slow change of surface contour in this

region. The next section considers the goodness of fit of
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these polynomials to the actual surfaces and explains the

reason for revised area of consideration.

Regression Error

At this point in the research, it was determined that

the initial regression polynomials lacked the degree of

accuracy sought in the solution. This can be seen by look-

ing at the standard deviation of the residual error of each

regression. The standard deviations were 17.4, 7.9, and

20.3 for all force, counterforce, and countervalue re-

spectively. Since this error was thought to be unacceptable,

further error random sampling was not accomplished.

'In accordance with the methodology, the study returned

to steps six and three of the methodology. In step six,

Research Design Selection, the Box and Behnken design was

reviewed for its orthogonality and all data points were re-

checked as to accuracy. This review showed the area of

consideration to be too large for the second order response

surface. Thus, a redefinition of the problem scenario or

level cf conflict was considered. The redefinition found

the more realistic ranging of variables listed in Table IV.

Therefore, the revised lower limits were applied in step

six, a new sampling taken, and the methodology proceeded

as designed.

The error for the second set of regression equations,

Eqs (19), (20), and (21), was found to be much smaller.

Table V summarizes the regression error for the CF, CV, and
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AF surfaces respectively. The table shows the high degree

of accuracy with the revised control variable limits. The

CF and CV estimates are accurate to within a single unit

for even three standard deviations of error. This small

error is significant in the next section.

TABLE V

Regression Error Summary

Design S.D. Random Mean Random S.D.
Surface Of Error Error of Error

CF 0.0131 0.223 0.204

CV 0.1569 0.234 0.222

AF 1.0066 1.233 1.154

Contour Interval Determination

Chapter Two determined the criteria for minimum in-

terval to be no closer than two standard deviations of

error. From the above-mentioned regression error, the

minimum interval for counterforce and countervalue con-

strained surfaces was determined to be no less than one unit.

In the case of AF, it was determined that it would be no

less than three units. In actual fact, it was not neces-

sary to utilize such small steps to show the optimal

trade-off between surfaces. A step of two units was more

'. than sufficient for counterforce and countervalue and five

units for all force.
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Constrained Maxima Determination

As described in the previous chapter, the SUCT program

was used to optimize and find the maximum of one surface

constrained to the contours of another. For the planned

analysis in the next chapter, three cases of optimization

are looked at. The first two cases consider the optimiza-

tion of CF given a value of CV and CV given a value of CF.

Both these cases use simplified, regression polynomials

described in the next chapter. The third case compares

the difference between the use of simplified and detailed

regression polynomials. The data for these cases are con-

tained in Appendix D.

Conclusion

This chapter has applied the proposed methodology to

a generic, military force structure problem. The final

results are compiled in Appendices D and E. The next

chapter provides an analysis of these results.
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CHAPTER FOUR

Analysis

%%" Introduction

This chapter presents the study's analysis utilizing

Chapter Three's example data. The analysis goals are twofold.

One is to develop insight into the optimization process be-

tween the measures of effectiveness (MOE's) and their re-

spective domain elements (n-tuples) in achieving the con-

strained maxima. The second goal is to offer the decision

maker this analysis in a usable format. Prior to the

analysis, redefinition of Chapter Three's works and some

simplifying assumptions are made.

In Chapter Three, the MOE response surface is generated

from a linear programming optimization model. Thus, each

point on the surface represents the optimal use of its re-

V% spective domain elements (n-tuple). Since each point is an

optimal, the surface displays the optimal MOE for the

system's entire range of domain elements. Therefore, the

regression polynomials in Chapter Three (Eqs (19), (20), and

(21) ) represent the regression estimates for the optimal

employment of the domain elements to achieve their re-

spective MOE. In terms of the example, each equation re-

presents the optimal force structure to achieve its re-

spective mission (MOE). Using the above-mentioned poly-

nomial definitions, the SUMT program selects from a dortain

subset (force), already optimally designed to fulfill one
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MOE (mission), the best mixture of domain elements (weapon

systems,w i ) to fulfill a second MOE (mission). In the

analysis, the first goal is to determine the cause for the

optimal trade-off between these MOE's and the domain n-

tuples which generate this trade-off. To aid this discus-

sion of constrained maxima (optimal trade-off), the regres-

sion polynomials are simplified by rounding the coefficients

to four decimals.

These simplified polynomials, Eqs (19a), (20a), and

(21a), display three major points of discussion in the

chapter.

AF = 323.7475 + 1.3571*W 1 - 0.0002-W1 2 - 0.0007*W W2

- 0.0001*W1W 3 + 1.3353*W 2 - 0.0003W22

- 0.0003*W2 W - 0.0002*W 2W4 + 0.5226*W 3, 23

- 3 0.0001*W3 W4 + 0. 4351"W 4  (19a)

CF = 504.542 + 0.4716*W 1 + 0.2955*W 2 - 0.301W22

+ 0.0289*W3 + 0.0279*W4 (20a)

CV = 1027.039 + 0.1658*W 1 + 0.1198*W 2 + 0.0308*W 3

+ 0.0019*W4  (21a)

First, they are used to show a graphic representation of

the optimization process of an MOE surface constrained to

a single contour; thus, giving some pictorial validity
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-. by demonstrating graphically the results of SUM1T. Second,

V the simplified regression equations aid in the analysis of

the MOE's optimal trade-off and the priority process for

entering domain variables. Finally, it is hoped that while

these equations serve to improve the quality of discussion,

they also serve to exemplify possible pitfalls in rounding

the regression coefficients.

The chapter presentation begins with the above-

mentioned graphic representation of the optimizaton process.

This is accomplished through a series of MOE contour plots,

one type MOE overlaid upon another type MOE. Following the

graphic optimization, the data from Chapter Three is mapped

and analyzed over the range of domain elements. The

chapter concludes with a summary of the methodology's ad-

vantages to the decision maker.

Graphic Optimization

This section graphically displays the SUMT optimization

of CF for a given CV contour. The simplified regression

polynomials, Eqs (20a) and (21a), are used in this section

of the analysis.

In Chapter Three, CF was optimized for CV values of 1154

to 1224 in two unit steps. These CV lower and upper limits

are determined by the lower and upper limits of the domain

elements. The standard deviation of error for CV was found

to be 0.222. Thus, the minimal interval criteria was evalu-

ted to be one unit. This close an interval was not
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necessary to adequately represent the trade-off between CF

and CV. Thus, the contour interval of two units was chosen.

Appendix E contains a full listing of the example MOE com-

parisons and their respective domain elements. A review of

these data shows W2 is constant at 450 in the region of

CV = 1176. Therefore, the graphic example uses CV = 1176

and W= 450.2

In this experimental region (CV = 1176, W 2 = 450), the

contour plots consist of variables WI , W3 , W4 , and the MOE.

This requires representation of four dimensions on a two-

dimensional plot. This is accomplished through multiple

contours.

The comparison data plots for CF and CV are generated

by a computer program which iterates each feasible combina-

tion of control variables for each regression polynomial.

These data were then plotted and are availabi- in Appendix E.
.4<

Several of the plots in Appendix E have been reduced in

scale and are used in combined overlays throughout the re-

-. mainder of the chapter.

Figure 4 represents the counterforce contour value of

850 and also 860 (dashed line) with ordinate W and ab-

scissa W3 . Each diagonal line across the graph is a con-
.... ,

tour of both CF and weapon one. As such, each is identified

by the pair of numbers in parentheses. The first is the

MOE and the second is the W value.

1
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Figure 5 represents the countervalue of 1176 with the

various diagonal lines due to the stepwise increase in 1

This representation of five-space in two-dimensional plots

is similar to that used by Smith and Mellichamp (30).

If Figures 4 and 5 are combined, the intersection of

common W1 value contours reveals the area of common domain

between surfaces. Thus, the graphic comparison optimiza-

tion becomes a search for the maximum CF value with a

common W1 value on both graphs. Figure 6 is the overlay of

Figures 4 and 5.

W 4

400-

C 0

! 0,

,72 
800 900 100

iFig 6. Overlay Plot of CV =1176 and CF =850,860

0 °A,1.
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The figure displays a commonality in the 1176 CV contour and

the 850 CF contour; however, there is no common domain point(s)

for the 860 CF contours and the contours of 1176 CV. There-

(, fore, Figure 6 has bounded the graphic optimization search

between CF values of 850 and 860.

Figures 7 and 8 have similarly overlaid the CV plot of

1176 against the CF plots of 854 and 856 respectively.

Figure 7 shows the common points for values of W1 at 435

and 430. Figure 8 has no common points. However, Figure 8

does show the closest point to a common W value of 435.

This point is just off the I4 axis and is marked "Z."
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FigJ 7.OelyPlto V 176adC 5

4. 1I .

. b- g"

.,,300- 9. .

%,/-

',7 -"
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2" Fig 8. Overlay Plot of CV = 1176 and CF =856

° Graphically, the optimal point lies between the CF

Svalues of 854 and 856, and the W 1 value lies between 430

and 435. This graphic solution compares very well with

that predicted by the SUMT optimization in Appendix E.

The SUMT operating domain is 434.9, 450, 720, and 400.3 for

W 1 through W 4 respectively. The graphic solutions between

Figures 7 and 8 show this to be the operating domain upon

i which the plots converge. Likewise, SUMT's predicted

~maximum CF of 855.36 very closely approximates the "Z"
Figpoint just off the axis of the CF 856 plot.
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Therefore, the overlay contour plots in Appendix E

have graphically validated the optimization process used

- * in the SUMT algorithm. This plot overlay technique will

be applied again in the next sections.

Data Presentation

At the conclusion of Chapter Three, the data had yet

to be presented. This section displays the data mapping

that will be used in the following section for the analysis.

The raw data are presented in Appendix E and are presented

here, graphically, in Figures 9 and 10. These graphs are

shown in larger scale in Appendix E.

These graphs and most of the analysis are based on the

simplified regression polynomials, Eqs (20a) and (21a). The

rounding error for the terms less than four decimal places

is initially assumed small and simply added into the re-

gression error. The danger of this assumption is discussed

in the closing of the analysis.

Figure 9 represents the maximum countervalue available

given a counterforce value requirement. Counterforce is

displayed on the left, vertical axis, and countervalue on

"4 the horizontal axis. This graph also displays the optimal

weapons combination to achieve this maximum CF for a given

CV. The number of weapons is given along the right-

vertical axis. For example, given a CV of 1190, the maxi-

mum CF is approximately 880. Likewise, the respective

weapons set is 450, 536, 757, and 393. At the beginning of
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A % :: .the graph, weapons two and three are approximately constant

at their lower limits of 450 and 720 respectively. Weapon

' one is steadily increasing to its maximum limit of 450.t.'

Weapon one reaches this upper limit at approximately 1180

CV. Interpretation of this figure is left for the analysis

in the next section. Figure 10 is similar to Figure 9, but

the roles of CV and CF are reversed. Thus, the graph shows

the maximum CV available for a given CF. In this case,

weapon one remains constant at the beginning of the graph

while weapon two is steadily increasing towards its upper

limit. At approximately 850 CF, weapon one begins increas-

ing as weapon two has reached its limit. Both these figures

are compared and discussed in the following section.

Analysis

This section is concerned with three areas. First, an

*explanation of the trade-off between MOE's and what causes

the changes in this trade-off. Second, the determination

of the causes for the force structure changes and, in

particular, the apparent randomness of W 3 and W4 values on

the graphs. Finally, the danger involved in using the

rounded-off, simplified regression equations rather than

the full polynomials is discussed.

Figure 9 shows the relative trade-off between maxi-

mum CF and CV as approximately two regions. Both these

regions are approximately linear. The first region

.4 runs from a CV value of approximately 1154 to 1178.
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The trade-off between MOE's in this region is approximated

- by a straight-line function of slope, 2.9. Likewise, the

second region runs approximately from 1180 to 1206 CV and

"-' is closely approximated by a straight-line of slope, 1.52.

These approximate slopes may be accurately calculated by the

ratio of the total derivatives of each of the regression

polynomials, Eqs (20a) and (21a). These total derivatives

are shown in Eqs (22) and (23) with their respective examples

in Eqs (22a) and (23a).

dCF = (aCF/0W1 )*dW1 + (aCF/0W2 )*dW 2 + (CF/aW 3 )*dW 3

+ (OCF/0W 4 )*dW4  (22)

dCF = (.4716)*dW 1 + ((.2955)-(.002)*W 2 )*dW 2 + (.0289)*dW 3

+ (.0279)*dW
4  (22a)

. dCV = (OCv/ow i )*dW i
i (23)

dCV = (.1658)*dW1 + (.1198)*dW2 + (.0308)*dW3 + (.0019)*dw41- . 2 3 " ( 23a )

Thus, the trade-off between MOE's is equal to the slope,

dMOEI/dMOE 2 '

From Chapter Three's data (Appendix E), the ratio of

CF to CV changes, ACF/ACV, may be compared to the total

derivative's ratio. For example, from a CV of 1162 to a

CV of 1168, the ACF/ACV = 2.8817, which compares to the
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ratio of total derivatives of CF to CV of 2.8766,

(dCF/dCV = 2.8766). Likewise, the second region from CV

1180 to 1206 has a slope, ACF/ACV, equal to 1.53, which com-

pares to the total derivative ratio of 1.51.

Since the change in weapons (dWi ) is the same for both

the CF and CV total derivatives, the ratio of each co-

efficient may be compared separately if the other dWi's are

relatively small. Thus, in this case, the dW 1 coefficient

equals .4716/.1658 which equals 2.84. In the region 1162 CV

to 1168 CV (Figure 9), only W1 is actively changing. Thus,

the trade-off between MOE's in this region is closely ap-

proximated by the dW 1 coefficients' ratio. The difference

between the two ratios (2.8766-2.84 = .0366) is due to the

small change in the other weapon systems (dWi).

This technique, of course, becomes more difficult when

the coefficients have cross terms or square terms such as

the W 2 term. In this case, an average value of W2 for the

range of consideration must be applied in the calculations.

Although this explains the relative trade-off or slope of

the maximum CF given a CV line, it should not be inferred

as the effectiveness of a weapon system to increase the

maximizing MOE. Weapon four, for example, has a ratio of

14.68 for its MOE trade-off. However, the actual change

in CF per weapon four is very small with its CF regression

coefficient of .0279. Consequently, although the relative

ratio may give a high rate of return in terms of one M1OE to
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another, it may have little importance as to the actual

change in total value of the maximum MOE. This leads to

the question of which weapons are the most effective in the

optimal force structure to maximize a secondary MOE given

the level of a primary constraining MOE.

Smith and Mellichamp's work (30) shows the independent

regression polynomial coefficients used to determine the

incremental increase in the MOE per weapon. Using this

rationale, the maximizing MOE prefers the weapon system

with the highest coefficient first. Thus, the increase in

the MOE will be due to the maximizing MOE's regression co-

efficients and the amount of weapons available. The number

of weapons available, however, becomes a function of the

level of the constraining MOE. Thus, given a CV level,

the operating domain is restricted as shown graphically

_ -with the contour lines. Operating within this restricted

domain, the maximizing function attempts to trade-off the

highest coefficient weapons system with the number available

and compare its relative MOE increase to that of introducing

some less efficient system that may change the number of

weapons available. This is best shown in Eq (24).

CF(W i ) = OCF * [Number of Wi available]
8W (24)

CF(W I ) = (.4716)* (CV(.1198)*W2-(.O308)*W3-(.OO19)*14 )-
1 L.1658 1 (25)
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In Eq (24) the number of W available is simply the

-. regression polynomial for the constraining MOE solved for

that particular weapon system (1i ). Eq (25) shows the

example of maximizing CF in terms of weapon system one. The

maximizing algorithm (SUMT) must trade-off the introducton

of a lesser efficient weapon system against the value of

not decreasing the number of weapons available for con-

tribution in Eq (25). This is numerically shown in Eqs (26),

.-7), and (28).

%.. CF(W1 ) gain > CF(W i) gain°.'V-, -( 26 )

' " 0308

.4716 (1-'08 W3 1 = .188W3  > .0289W3.1.6.8 -- 3" (27)

.4716 0019 .0116W 0279W4.. 1658 4  404 (28)

When Eq (26) is true, then the algorithm will not increase

Wi. Eq (27) is the gain to CF as a function of weapon one

due to the level of weapon three as compared to the value

of weapon three, as deterined by its CF regression co-

efficient. In Eq (27) a .188 gain is determined in the CF

equation due to weapon one, whereas only .0289 is due to

weapon three. This case is not true, however, in Eq (28)

where the gain for weapon one is only .0116 as compared to

the actual increase of .0279 if weapon four is introduced.

Therefore, the algorithm will choose to enter weapon fourLI rather than leave it out in favor of the number of weapon

70

l , r ,- , . ., -. - -.-. , -.-.... ,. . ..... .. .. .... ".. . . . . . . . . ...



ones available. This preference for W4 while 11 is in-
creasing is shown in Figure 9. In the IV increasing region,

• is at or near its upper limits while W is at its lower

limit.

It is due to this algorithm trade-offf comparison be-

tween each domain system's relative MOE increase that the

graph of the data appears erratic. This is a especially

true for the smaller coefficient values such as weapons

three and four. In light of this erratic change, no attempt

has been made to smooth the weapons' curves.

The section, thus far, has explained the trade-off

and algorithm optimization of the force structure by using

* the simplified regression polynomials. The final point in

this analysis section is to determine the error introduced

by this simplification and its implications.

Figure 11 is a plot of max CF vs. CV using the full

polynomials given in Eqs (20) and (21). A comparison of

Figures 11 and 9 shows there is, indeed, a difference in

not only trade-off value but also in the weapon systems'

order and rate of entry.

The reason for the change in slope or trade-off is

due to both a reduced value in CV and the inclusion of the

square and cross terms, and also an increased value in CF

due to this more accurate use of the square and cross

terms. At first glance, this does not appear plausible for

the case of CF. However, the rounding up of only the W,
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CF coefficient causes the change in maximum CF available

from the original 939 down to a lesser value of 924 in the

simplified equation. Thus, the rate of trade-off is less in

a simplified case.

The change in the force structure due to the rate at

which different systems are entering is not greatly affected

4..- by weapons one or two. However, there is a large change in

weapon three. Again, this change is due to the trade-off

done by the optimization technique when looking at weapon

three's introduction in comparison to reducing the numbers

of weapons one and two available.

:* Throughout the analysis, the only mention of the bias

error listed in Table V has been in the minimum contour in-

terval determination. Ignoring such a small error has

little effect on the MOE trade-off calculation; however, it

may affect the force structure numbers of the lesser effici-

ent domain elements (weapons). Thus, the constraining

numbers of weapons available should be recalculated to de-

termine if two standard deviations of error significantly

change the optimal n-tuples.

In conclusion, the analysis ha found and been able to

describe the relationship between measures of effectiveness

and the optimal force structure. Likewise, it has shown

that the original assumption of rounding to the fourth

decimal place changes the overall structure of the problem.
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The question of rounding the four digits originally

arose in the research because the regression package used

automatically rounded to four decimal places as seen in

Appendix C. However, when the package did compute its

residual error it had, in fact, maintained the values of

those coefficients to the degree of accuracy that the

computing device used. Thus, rather than using the SPSS

automated covariance matrix, the problem could have been

avoided by using the coded design.

Decision Tools

The above methodology should, with a high degree of

accuracy, predict an optimal force to achieve a maximum

measure of effectiveness given a constraint level of a

second measure of effectiveness. Thus, the decision maker

has, in Figure 11, the ability to see not only his optimal

force structure, but how that force will change as changes

occur in his MOE requirements.

So far this methodology has given the decision maker

his best single domain set for a given constraint MJOE. it

is foolish to-assume that in any analysis all the factors

would be known or that some which were assumed to be constant

in the operating environment may not have changed. -n light

t...s, a choice of optimal solutions would probably be

suited as a tool for the decision maker. The StXET

§inds only a single optimal solution; however,
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the graphic techniques applied in the opening of this

. chapter can also show a near optimal set of solutions.

Figure 12 shows the overlay for CV 1176 with CF plots of

* 850, 852, and 854 CV. Lines connecting the common domain

points for each CF value are shown in Figure 12 as iso-CF

lines (heavy print lines), given the CV level of 1176.

Thus, any of the force structures along one of the iso-CF

lines will guarantee that CF value and the CV of 1176. For

example, the line AB is a CF value of 854, given a CV value

of 1176. This AB line contains domain ranges of W1 from

436 to 427, W from 720 to 765, and W from 305 to 420. Al-

though these alternatives have given up approximately 1.4

CF from the SUMT optimal solution of 355.4 CF, it may be

of greater overall value to the decision maker to have these

multiple options available to him. Thus, these lines offer

the decision maker a trade-off from a single optimal solu-

tion to a set of multiple solutions.

Finally, the research has yet to consider the decision

maker weighting the value of one MOE to another. However,

if the decision maker did decide to weight the MOE's, it

would have little change on the methodology as it has been

applied. For example, if the decision maker decided that

CF was twice as valuable as CV, the only change would be to

• .,multiply the total derivative ratio de'nominator by two.

This is shown in Eqs (29a) and (29b) respectively.
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Thus, the slope of the trade-off curve has decreased;

!.owever, the optimal force to create that curve is un-

changed.

CF = 2CV (29a)

dCF = dCF
d(2.CV) 2-dCV (29b)

If, on the other hand, the decision maker were to

change the value of the individual targets rather than the

value of the overall MOE class, then this would require a

* complete re-sampling and running of the model.

Conclusion
-a

This chapter contains the analysis portion of the re-

search. The analysis began with a graphic technique to

maximize the counterforce MOE given a countervalue con-

straint contour of 1176. This graphic presentation vali-

dated the optimization technique and the SUMT algorithm

employed to calculate the constrained maxima. Following

the single graphic case, the maximum CF trade-off given a

CV level was analyzed for the entire experimental domain.

This analysis revealed the rate of trade-off to be the

MOE's ratio of total derivatives (dMOE /dMOE c). This maxi-

mized trade-off was determined by the optimal selection of

domain elements (n-tuples). This selection was shown to be

a complex trade-off between each element's ability to in-

crease the maximized MOE (9-OEo /,di) and the availability
01

7-7



V77.

of each element as determined by the constraint MOE

(di = f(MOEc )"

Finally, the decision maker's use of the analysis was

greatly enhanced by utilizing "near optimal" solution sets.

These solutions were shown graphically to contain multiple

n-tuples which achieve equal value MOE (iso-CF line, Figure

12). Thus, for a relatively small decrease from the SUMT

optimal (less than one percent), the decision maker was

given greater flexibility in his choice of operating domain.

The advantages of this analysis are further discussed

in the concluding chapter.
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CHAPTER FIVE

Concluding Remarks

Research Summary

This study presents the optimization methodology for

a deterministic, mathematically modeled system as defined

by the aspiration levels of one measure of effectiveness

(goal/mission) and optimization of a second measure of ef-

fectiveness (MOE). The methodology's advantage over other

multicriteria decision theories is its ability to consider

large numbers of alternatives, show the MOE's comparisons

throughout the range of alternatives, and use non-commensur-

ate measures of effectiveness.

The research example demonstrates the methodology ap-

plied to a generic, aggregated military force structure

problem defined by a linear programming arsenal exchange

model. The example has two measures of effectiveness,

counterforce (CF) and countervalue (CV). The system involves

five weapon systems, of which four are varied over their

1plausible ranges, and ten target classes. The number of

feasible force structure alternatives over these ranges

exceed three billion. The optimal effectiveness of these

alternatives is closely approximated (less than one percent

error) by use of response surface methodology.
The employment of a central composite 3k fractional

factorial research design enabled the generation of a sur-

face for each MOE from a minimal number of model runs. The
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original design required 27 samples per surface (2).

However, the deterministic model has no variance; thus, the

samples are reduced to 25 per surface. With these two sur-

faces, CF and CV, the methodology then shows an appropriate

-- interval to describe the optimal trade-off between the

aspiration MOE and the second MOE. The interval selection

criteria includes both the regression error and the change

in the contour surface. With this selection of contours,

the methodology then optimizes the second measure of effec-

tiveness as constrained to the contour lines of the

aspiration measure of effectiveness. These data are then

plotted and displayed in Chapter Four of the analysis and

also in Appendix E.

The analyses of these data give the decision maker a

range of tools to gain further insight into the optimal

operation of the system. The data map displays the de-

cision maker's optimal system structure given his goal

aspiration level. As new demands are made upon the system's

measures of effectiveness, this map shows the required

changes to each component of the system to achieve the

5higher MOE demands. The graphic techniques of Chapter Four

offer the decision maker a choice of multiple solutions

which very closely approximate the optimal trade-off value.

For the example given, an aspiration/demand of 1176 CV, the

decision maker has a wide range of force structures to

choose from by simply reducing the CF value by 1.4 from the
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optimal of 855.4 This reduction is less than two tenths

- of a percent from the optimal value. in consideration of

the accuracy of the vulnerability determination and sincle-

shot probabilities of kill used in the arsenal exchange

model, this small reduction in the optimization process is

minimal. However, this negligible reduction gives the

decision maker greater flexibility in his choice of the

system's operational structure.

Applications

Considering the number of deterministic optimization

models in use today, this methodology should have wide-

spread application when viewing multiple missions or roles

of the system.

The military applications are several. The methodology

application to force structure planning is well illustrated

in the research example and Smith and Mellichamp's work

(30). Beside force planning, the methodology may give in-

sight as a measurement and design tool for weapon systems.

Many of today's weapon systems are required to perform

multiple missions, some of which may be performed by several

configurations of a weapon system or by different systems.

This methodology may serve as a measurement tool to de-

termine which configuration or system performs best in the

dual mission. Likewise, the methodology may be applied as

a design tool for the weapon systems. For instance, if a

new bomber was being designed, it nay have a strategic
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penetration mission (aspiration MOE) and also a search

and destroy mission (second OE). The operating domain w¢ould

be the flight characteristics and capability of the bomber.

This methodology would choose the best selection of

operational capabilities to achieve the aspired penetration

goal and also maximize the second mission of search and

destroy. It would also show how these capabilities would

have to be -hanged to meet new mission requirements. Thus,

this methodology offers a planning tool for new systems as

well as total forces.

A larger scale application may be in force structure

as seen in an arms reduction or limitations agreement. In

this case, if both parties were able to represent their re-

spective capabilities in a response surface, then each

.4 would be able to offer and counteroffer an optimal selection

of weapon systems from their particular arsenal that equated
'."~

to equal levels of damage expectancy for the agreement.

Further Research

*"' This methodology was originally proposed for the corn-

parison of non-commensurate goals. As the study evolved,

it was obvious the scope would not allow the comparison of

more than two surfaces at a time. As such, further re-

search is required for the comparison of three or more

measures of effectiveness.

The dual measure of merit case has the advantage of

not changing the optimal solution domain regardless of the

82

Jr. % %

.... N - 4, •! -_ ". ,%",' ,--'"-"-" ". ".",","-.i .- % _e ",." ,""," %,_.'A''.-.'' ".,k.-' .",',"-v '- .". %. v"'''...-.



~-'-

decision maker's weighting of the MOE's. However, in the

case of three or more measures of merit, this weighting may

.. determine the interval contour pattern as it restricts the

operating domain of the maximized MOE under consideration.

Another approach may be to use the dual measure of

effectiveness and then project each maximized function into

.- a next higher dimension and find a third response surface

common to the two optimization processes. For example,

find the maximum A subject to C and the maximum B subject

to C. Then, determine the maximum C as a function of

max A(C) and max B(C).
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APPENDIX A

Aggregated Arsenal Exchange Mcdel

This appendix details the aggregated arsenal exchanae

model employed in this study. The model was developed

with the expert assistance of Captain Robert Bunnell. Its

V purpose is to generate three different response surfaces

for the methodology example. As such, its complexity is

minimal in comparison to other arsenal exchange models.

Chapter Three's Tables I and II are repeated below

as a description of the target class and weapon class

characteristics.

"p:

TABLE I

Weapon System Characteristics

A

W W W W W51 2 3 4

CEP .200 .150 .240 .600 .200

Warheads/Weapon 1 3 10 4 6

Yield 2.0 .17 .05 .35 .20

Reliability .85 .85 .85 .85 85

Daily Alert .85 .85 .85 .33 .33

Max Warheads/Type 450 750 1040 424 360
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TABLE II

Target Base Characteristics

Vulnerability
Type Number Number Diameter

CVl 140 24Q0 .56

CV2 215 13P1 .49

CV3 430 31P6 .00

CV4 520 23QO .31

CF1 450 35P7 .00

CF2 1000 52P8 .00

CF3 200 39P0 .00

CF4 20 22P1 .36

CF5 150 1IPO .00

CF6 100 10QI .79

As mentioned in Chapter Three, the vulnerability number

characterizes a target's vulnerability to its most suscept-

ible threat (i.e., overpressure, dynamic pressure, etc.).

The first two digits are its level of susceptibility to the

threat. The alpha character is the most threatening type of

effect for the target in question. The last number is the

target's sensitivity to the duration of the particular

weapon's effect. Thus, with five alpha numeric characters,

W M
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the target's worst case vulnerability is defined.

Likewise, the weapon's ability to create the effects

used in the target VNTK number is calculated from its

yield in megatons, circular error probable (CEP), and the

probability of reaching the target (reliability). These

effects are determined in a cumulative, lognormal damage

function (1:3).

The target and weapon characteristics are combined

in accordance with the physical effects equations of the

Defense Intelligence Agency's Physical Vulnerability

Branch (1:34) to determine a single-shot probability of

survival (SSP) for each target when attacked by each

weapon. Thus, for this example of five weapon types, five

SSP s are calculated for each target. The transformation

from the VNTK number and weapon characteristic to SSP s is

accomplished by a computer program used in the Bunnell and

Takacs study (5).

The SSP s are converted into single-shot probabilities

of kill (SSPk) for each target and weapon combination,

Eq (30).

SSPk = 1 - SSP (30)

Likewise, the single-shot probability of kill is calculated

for two weapons of the same type against each target type,

Eq (31).

SSPk" i (SSPs) 31



Thus, each target now has five pairs of SSP k s associated

with it - one for single strike and one for tw¢o strikes

by the same weapon.

The arsenal exchange is modeled using linear pro-
*.!

gramming. The model uses the SSP k's and SSP "s as the co-
"k .

efficient for the objective function. The number of

targets struck is the variable for the tah-eau. The LP

algorithm maximizes the sum of damage possible as deter-

mined by the SSP k coefficients times the number of targets

struck. Eq (32) depicts this example objective function.

5 10

Z SSP k T k + SSP" T "
W=. K=l w w (32)

where

k = target struck class
w = weapon class

In this tableau, a separate variable is used for a target

struck twice by a particular weapon class.

The first ten rows of the tableau define the sum of

each class of targets available, Eq (33).

row(i) = of targets in class (i)

50

T=1i( 2 j-1 ) + i (2 j)

J.. where

(2j-i) = odd columns up to 9,_

a (2j) = even columns up to iKQ
i=1 through i)
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Rows 11 through 15 define the sum of each class of

weapons available, Eq (34).

row (i) = # weapons in class (i)

50

= T Ti(2j-1) 2-Ti(2j)"
j=1 (34)

where

(2j-1) = odd columns up to 99
(2j) = even columns up to 100

i =11 through 15

The difference between the CF, CV, and AF models is

in the objective function. The objective variables, Toil

which are designated CF or CV are given a coefficient SSPk

of zero if not in the exchange under consideration. Thus,

to run a CF exchange, all CV targets are given an SSP k of

zero.

Since the model was to have multiple runs for the

weapons available in rows 11 through 15, a program was

written which compiled a tableau for each MOE (CF, CV, AF).

This program, CREATE2, is an interactive program which

requests the user to enter the right-hand-side values

(RHS) for the number of weapons available in each class

(rows 11 through 15). The program then requests if any

other tableau values should be changed from the initial

values already constructed into the tableau. Upon com-

pletion of these two data entry steps, the program sends

88
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the tableau for each option to local files AF, CF, and CV,

respectively. The tableau format is determined by the

linear programming package "Multi-Purpose Optimization

System (MPOS)." The source code for this Fortran Five

program follows.

PROGRAM CN-EA1 E2
DIMENSION A .(.; 5 0 0'. ,] I ,,,' b . 0 ,r' . , ",.., "0

C
C
C THIS PR: RAV " ... . . TH'i' [ rA *"i ) .j ,

E '.CHANCE MI) E . T1; ?E 1 '.; . , T "-1!

, Tli:GET r TEGVPI.ES 7 j7r I: I-. r

C A SINGLE iY.-_ WEAPON AGA t l' .- -TF; "AF "' 7' >- , E

C OBJECT.V[F(R W 0) ,AXIMT.E3 T1-;. T Nv t 3 --.

C TOTAL TARGET f!ASE. T;-.7 M)[-.L ALl. -,JS " - W1
C PAIR OF 3AID W..AFCS TO I". AL_,_.CA 'r, 771 A ;,. .

C NOTE: THE RIGHT-HAND SIDE VAIUiS(FRA AIR ,. '
C THE OBJECTIVE COEFF. AKE i1 ROW :E'r
C
C
C

INITIALIZE MATPIX AIJ TO ALL ZE2, 0S.

DO 200. J=0,100
DO 100, I=0 1 , .,

A'"J(].,J)-Z 0.0

I.0 CONTINUE
.00 C(.NTINUE

C
C
C BUILDINO TAw-.JGET CCNSTRAINT SET(ROWS 1 Tol i0
C

DO 400, Ii=0,t0,20
TIO 300, i1,10
AIJOl,(2:I+l- { )= 1,0

3o0 CONTINUE
400 !.]. II
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C
C BUJILD WEAPON CO.NSTRAINT ,T(OWS 11L TO 1.5)
C
C

-.!A=t.

DO 800, 1=11,15
DO 600, J=JAYJB,2
AIJ(IJ)= 1.0
AIJ(II(J+1))=2.O

6-00 CONTINUE
C

JB=JB+20

BOO CONTINUE
C
C
c SET RXS (COI.O ROWS 0 THRU 10) FOR OPBECT~tVF AND NUMB~ER OF
C TARGETS IN EACH CATEGORY.
C

AIJ(OO)= 010
AIJ(1,0)= 140.0
AIJ(,0)= 215.0
AIJ(3v0)= 450.0
AIJ(4,0)= 1000.0
AIJ(5,O)= 200.0
AIJ(6,0)= 20.0
AIJ(7,O)= 150.0
AIJ(8f0)= 100.0
AIJ(9,C)= 430.0
AIJ(1O,O)= 520.0

C
C
C SET PK'S IN OBJECTIVE FUNCTION(ROW 0, COLS. 1 TO 100)

AIJ(0,1)= 0.84797
AIJ(O,2)= 0,97689
AIJ(0,3)= 0.85000
AIJ(OP4)= 0,97750
AIJ(0,5)= 0*83249
AIJ(0,6)= 0.97194
AIJ(0,7)= 0.47032
AIJ(0,8)= 0.71944
AIJ(0,9)= 0.67217
AIJ(Op10)= 0.89253
AIJ(0,li)= 0.3499?
AIJ(0,i2)= 0.77750
AIJ(0,13)= 0.85000
AIJ(OP14)= 0.'/'7-,50
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AIJ(0,16)= 0.97750
AIJ(0?147)= 0.84660
AIJ(0,18)= 0.97647
AIJ(0,19)= 0.8497'!
AIJ(0,20 = 0,97744
AIJ(0,21)= 0.76716
AIJ(0,1;2)= 0.94579
AIJ(0,23)= 0,35000
AIJ(0,24)= 0,97750
AIJ(0,25)= 0.61073
AIJ(0,26)= 0.84847
AIJ(0,27)= 0.15429
AIJ(O,28)= 0.23478
AIJ(0,29)= 0.37563
A'[J(0,30)= 0.61016
AIJ(0,31)= 0.83104
AIJ(0,32)= 0.97145
AIJ(0,33)= 0.81000
AIJ(0,34)= 0.97750
AIJ(0,35)= 0.85000
AIJ(0,36)= 0.97750
AIJ(0?37)= 0,71782
AIJ(0,38)= 0.92038
AIJ(0,39)= 0.81872
A*XJ(0,40)= 0.96714
AIJ(0,41)= 0.44306
AIJ(0,42)= 0.68982
AIJ(0,43)= 0.84164
AIJ(0,44)= 0.97492
AIJ(0,45)= 0.14544
AIJ(0,46)= 0.26973
AIJ(0,47)= 0,02663
AIJ(0,48)= 0.05255
AIJ(0,49)= 0*08063
AIJ(0,50)= 0,15475
AIJ(0,51)= 0.51804
AIJ(0,52)= 0.76771
eAXJ(Of53)= 0.8498s2
AIJ(0,54)= 0.97744
AIJ(0,55)= 0,84097
AIJ(0,56)= 0.97471
AIJ(0,57)= 0.22121
AIJ(0,58)= 0.39349
AIJ(0,SS')= 0.52353
AIJ(0,60)= 0.77298
AIJ(0,6l)= 0,36172
ATAJ0,612)= 0.59260
ATI4(0,63)= 0.82551
AT.J(0,64)= 0.9S955
A) J(U ')- 0.11517
AIJ(0,66)= 0 .2170 8
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A).J(0,6f7)= 0.02422
AA'J(0,68)= 0.04747
AliJ(0,6?)= 0,04995
AIJ(0,70)= 0.09741
AIJ(0,71)= 0.40469
AIJ(0,72)= 0.64561
AIJ(0,73)= 0.84494
AIJ(0,74)= 0.?7596
AIJ(0,75)= 0*83678
AIJ(0,76)= 0,97336
AIJ(0,77)= 0.17125
AIJ(0,713)= 0.31317
AIJ(0,79)= 0.40083
AIJ(0,80)= 0.64099
AIJ(0,81)= 0.72773
AIJ(0,82)= 0.92587
AIJ(0,83)= 0.85000
AIJ(0,84)= 0.97750
AIJ(O,85)= 0.48420
AIJ(0,86)= 0,73395
AIJ(0,87)= 0.10270
AIJ(0,88)= 0.19496
AIJ(0,89)= 0,26052
AIJ(0,90)= 0,45317
AIJ(0,91)= 0.80019
AIJ(0,92)= 0.96008
AIJ(0,93)=- 0.85000
AIJ(0,94)= 0.97750
AIJ(0,95)= 0.85000
AIJ(0,96)= 0,97750
AIJ(0#97)= 0,60865
AIJ(0,98)= 0,84685
AIJ(0,99)= 0.78184
AIJ(0,100)= 0.-95241

C
C
C RHS VALUES REQUESTED FOR EACH WEAPON CATEGORY.
c ANY COEFFICIENTS MAY BE CHANGED IN THIS SECTION. THE S8Ib
C IS TERMINATED WHEN THREE ZEROS Af*E ENTERED.
C
900 PRINT*, INPUT ROW NUME'ER,COLUMN NUMBER,COEFFICIENT: (I ,J,C~cEFF)'

PRINJTWFOR EACH WEAPON RHS AND ANY OTHER COEFFICIENT TO BE'
PRINT*t'CHiANGED. ENTER ONLY ONE SET AT A TIME. TO TERMINATE'
PRINTWENTER THREE ZEROS (0 0 0)/
READ'*, l,JC
IF(I.EQOAND.JEQ.0.ANL'.G.EO.0) GO TO 902
AIJ(IJ)=C
GOTO 900
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C
902 PR!NT*, 'rlNTER THlE RI-IS WEAPON fALLOCATION VAIJIE-'

Eta 46?1=11,15
READ*7C

.46 CONTINUK
C

950 r'RINTWTHE FILE CONTAINING YOUR ARSENAL MOTIEL MATRIX'
FRINTWIS CALLED-MN FOR ALL FORCES AND CV/CF FOR OPTIONS.'

C

C ARSENAL MATRIX WRITEN TO FILE MTX, ARSENAL MATRI.X ALSO
C COPIED FOR CV AND CF OPTIONS.
C

OPEN(12,FILE='tlN')
REWIND 12
DO 954, 1=0,15
DO 952, J=0,100

951 FORMAT(2'A,I3,2'X,13,2X,FIO,5)
CFIJ(IJ)=AIJ(I ?,J)
CVIJ(I,.J)=AIJ( I,J)

C
952 CONTINUE
954 CONTINUE

CLOSE( 12)
C
C COUNTER-FORCE MATRIX: SET PK=0.0 FOR CV TARGETS IN OBJEcr3jvr.
C

OPEN(11,FILE='CF')
REWIND 11
DO 13, 11=0,80,20
DO 11, 1=1,4
CFIJ(0,I+IID= 0.0

11 CONTINUE
Eta 12", I=17,20
CFIJ(0,I+II)= 0,0

12 CONTINUE
13 CONTINUE

C
C
C
C COUNTER-VA.UE MATRIX:, SET PK=O.0 FOR CF TARGETS IN OB.IrCTIVFE
C

OPEN (13 ,FILE=' CV' )
REWIND 13
DiO 16,11=0,80,20
DtO 15,1=5,16
C'IJ(OrT+I'.!= 0.0

1.5 CONTINUE
16 CONTINUE
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C
Pj0 2 1.. I .

DO 20,j=0,100

21 CONTINUE

21 CONTINUE
29FORMAT(2X,13,2X,13,2XF1O.5)

C
CLOSE( 11)
CLOSE(13)

C
STOP

The linear programming package chosen to optimize

the tableaux is the Multi-Purpose Optimization system.

Thanks to the work of fellow student, James Cooke, several

flaws in the MPOS options were discovered prior to this

study. Thus, the MIMIT option was chosen (7:38). This

option solves a "sequence of primal and/or dual iterations,"

(7:38.1). Samples of the MPOS control cards for each MOE

and a sample MPOS output are given below.

CF Control cards:

*THIS IS THE CONTROL CARD DECK FOR MPCIS AEII
TITLE
ARSENAL EXHANGE PROBLEM
MINIT
VARIABLES
X1 TO X1.00
PACKED
MAXIMIZE
CONSTRAINTS 15
+++ 14...........
FORMAT
QX , I 312X, 13,v 2X? ,FO .5)
REWIND
READ CF
OPTIMIZ7E
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CV Control cards:

*THIS IS THE CONTROL CARD DECK FOR MPOS AFM
TITLE
ARSENAL EXHANGE PROBLEMI
MI NIT
VARIABLES
X1 TO X100
PACKED
MAXIMIZE
CONSTRAINTS i5
..............+
FORMAT-
(2X,I3,2X?13,2X,F10.5)

REW IND
READ CV
OPT EMIZF

AF Control cards:

*THIS IS THE CONTROL CARED DECK FOR MPOS AEM
TITLE MCN
ARSENAL EXHANGE PROBLEM
MINIT
VARIABLES
X1 TO X100
PACKED
MAXI MIZE
CONSTRAINTS 15
*..............++
FORMAT
(2X, I3v2Xv13,2X,F1O,5)
REW IND
HEAD MN
OPTIMIZE
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listf=ocf

MPOS VERSION 4.0 NORTHWESTFRN UNIVERSTTY

* MFOS

* VERSION 4.0

- MULTI-PURPOSE OPTIMIZATION SYSTEM

**** PROBLEM NUMBER 1 *****

*THIS IS THE CONTROL CARD DECK F(1R MPOS AEM
TITLE
ARSENAL EXHANGE PROBI.EM
MINIT
VARIABLES
Xl TO X100
PACKED
MAXIMIZE

CONSTRAINTS 15
+++++++++++ ++
FORMAT
(2X, 13,2cX, 13,2X,F10.5)

REWIND
READ CF
OPTIMIZE

MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY

* PROBI.EM NUMBER 1*

.jIN MINIT
ARSENAL EXHANGE PROBLEM
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DATA STORAG . REQtlrFRENTS ARE 0042.64 OCVAL
F'ELD LENGTH FOR, THtS PROBLEM 0Z0000 ))i7TAL.

I MPOS VERsI r(.f 4.0 NOP. rH+A ,STE' I- N.:,I T V!, I TY

SPROBLEM NUMTEIR I :

USING MINIT
ARSENAL EXHANGE PROBLEM

ENTERING PHASE II

ITERATION 1 IN VAR- 5 OUT VAR- 103 -ZmIN= 374,621
ITERATION 2 IN VAR- 34 OUT VAR- 107 --ZMIN= 521 ,.2-16
ITERATION 3 IN VAR- 30 OUT ')AR- 105 -ZIN 643.27

ITERATION 4 IN VAR- 96 01T VAR- 108 -ZMIN= 741,023

ITERATION 5 IN VAR- 47 OUT UAR- 113 -ZMIN= 764.462
ITERATION 6 IN VAR- 32 OUT VAR- 106 -)TIN= 723.8?i
ITERATION 7 IN VAR- 88 OUT VAR- 115 .-ZMIN= 799.403
ITERATION 8 IN VAR- 56 OUT VAR- 96 -ZMIN= 313.379
ITERATION 9 IN VAR- 68 OUT VAR- 104 -ZMIN= 320,02
ITERATION 10 IN VANl- 28 OUT VAR- 112 -ZMIN= 821.211
ITERATION 11 IN VAR- 74 OUT VAR- 68 -ZMIN= 353.040
ITERATION 12 IN VAR- 52 OUT VAR- 34 -ZMIN= 957.705

ITERATION 13 IN VAR- 92 OUT VAR- 32 -ZMIN= 858.0?3
ITERATION 14 IN VAR- 48 OUT VAR- 52 -ZMIN= 858.8-47
ITERATION 15 IN VAR- 27 OUT VAR- 28 -ZMIN= 362. 38
ITERATION 16 IN VAR- 87 OUT VAR- 47 -ZMIN=
ITERATION 17 IN VAR- 76 OUT VAR- 114 -ZMIN= 864.592
ITERATION 18 IN VAR- 54 OUT VAR- 56 -ZMIN= 064,604

ITERATION 19 IN VAR- 6 OUT VAR- 111 -ZlN= 864.604
ITERATION 20 IN VAR- 7 OUT VAR- 6 -ZMIN= 864.604
ITERATION 21 IN VAR- 25 OUT VAR- 27 -ZMIN= 897.593
ITERATION 22 IN VAR- 90 OUT VAR- 5 -ZMIN= 904.335
ITERATION 23 IN VAR- 86 OUT VAR- 8' -ZMIN= 906,100.3
ITERATIUN 24 IN VAR- 47 OUT VAR- 90 -ZMIN= 914.463

ITERATION 25 IN VAR- 26 OUT VAR- 87 -ZMIN= 223.882
ITERATION 26 IN VAR- 9 OUT VAR- 25 -ZMIN= T31.688
ITERATION 27 IN VAR- 52 OUT VAR- 92 -ZMIN= 932.6'6
I MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY

* PROBLEM NIJMIER 1

UIN i MW'IT
ARSENAL EXHANGE PROBLEM
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,.,.J'MARY OF F.ESULT,

VARIA.BL E YATLE BASE? ,CTITVTY FP."R T! .T
NJ. IAflE NONi"ASIC Rk),&L

t X 1M B 4 -4 6 1 0(
2 . N.B .3?2200

3 X3 NB -- 4'.? t00
4 X4 NB -- 9292 00
5 X5 NB -- .0779900
6 X6 NB -- .4081500
7 X7 B 355.0000000 --

8 XO NB -- #2204.00
9 X9 B 95.000000 --

10 X1O NB -- 2472500
11 Xli NB -- t3354900
12 X12 N8- .6775900
13 X13 NB -- .5452100
14 X14 NB -- .8873200
15 x5 NB -- .5426100
16 X16 NB -- .8847200
17 X17 NB .4696100
18 Xis NB -- .9392200
19 X19 NB -- .4696100
20 X20 NB -- .9392200
n2 X21 NB -- .2038000
22 X22 NB -- .4076000
23 X23 NB -- .2038000
24 X24 NR -- 4076000
25 X2 5 NB -- .0339400
26 X26 B 270.0000000 --

27 X27 NB -- .0502200
23 X28 NP 1. 35300
29 X29 NB -- .0307300
30 X30 B 105-0000000 --
31 X31 NB -- .0886300

32 X32 NB -- .152020-"
33 X33 NB -- .2794000
34 X34 N --

35 X35 NB ..2763000
:36 X36 NB -- 353100
37 X37 NB -- .2038000
38 X38 NEI -- .4076000
39 X39 NB -- .2033000
40 X40 NB -- .4076000

41 X41 NB -- *0259200
42 X42 NB -- .051340043 X43 NB -- .0259200

44 "j'44 NB -- .02 3.40.0

4 45 X 5 NB +,2 00
44 X46 N -" 222-00
MF'0S V..RSION .4. 0 NOR TFS R .. 7.. .Y
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- - -L , - .~r r r .r ... ~ b&

, .~!M , 0" REJLTS

AI:., r UABt I T E ABLE BAS ]:i' AT... .T.i. .T+:9'-; 0.L'rTc; IC: l:'':Tii! T r .:

47 X4' 7 63;, 00000
48 X48 B 7.0008000 --

49 X49 NB .14, 50050 X50 NB 40996500
51 X51 NB -- .2237500
52 Xv52 20.0000000 --
53 X53 NB -- .1017000
54 X54 B 94.0000000 --
55 X55 NB -- .1079500
56 X56 NB .0001300
57 X57 NB -- . 259200
58 X58 NB -- .0518400
59 X59 ND -- n05? .
60 X60 NB - 052o
61 X61 NB ... .0251800
62 X1 NB , .U 0 ,.j.,00
63 X63 N1B 1 . 025130
64 X64 NB .. .3 6 00
65 X65 NB .50..3 300
66 X66 N B -.741500
67 X67 NB -- 01.700
68 X68 NB -- .0036000
69 X69 NB -- 17900
70 X70 NB .1555100
71 X71 NB -- .236,'7600
72 X72 NB -- 12 0620073 X73 NB -- .1053400
74 X74 B 56.0000000 --
75 X75 NB -- .1114000
76 X76 B 100.0000,100 --
77 X77 NB -- .0251800
78 X78 NB -- *0503A00
79 X79 NB - .0251300
80 XBO NB -- .0503600
a1 X81 NB -- .1465400
82 X82 -- 2930800
83 X83 NB -- .1465400
84 X84 NB I 1 730,,00
85 X85 NB - .1032100
06 X86 B 180.0000000 --
87 X87 NB -- .0445100
88 e NB -- .0982w 300
39 X89 NB -- 0 08, 5 8
90 X90 NB -- 0424700
9 , A 1 N-- ."22200A , 4 r;.. .

92 .:2 4- -. *48370
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:,< FI:C)B!..M iN- Ut:)'F. 1 ;K

USING MINIT
ARSENAL EXHANGE PROBLEM

SUMMARY OF RESULTS

VARIABLE VARIABLE BASIC ACTIVITY OPFORTUNITY ROW
NO. NAME NON-BASIC LEVEL COST NO.
93 X93 NB -- 42221400
94 X94 NB -- ,2411800
95 X95 NB -- 92195400
96 X96 NB -- ,238{5800
97 X97 NB .1465400
98 X98 N-- .2930800
99 X99 N1 -- .1465400

100 X100 Ni -- ,2930801)
101 --SLACK B 140,0000000 -- 1)
102 --SLACK B 215.0000000 --- ( 2)
103 --SLACK NB -- .4408700 ( 3)
104 --SLACK NB -- .0007100 ( 4)
105 --SLACK NB -- .2025600 ( 5)
106 --SLACK NB -- .7158700 ( 6)
1.07 --SLACK NB -- .92 6000 ( 7)108 --SLACK NB -- .9230000 ( 8)
i09 --SLACK B 430.0000000 -- ( 9)
110 --SLACK B 520.0000000 -- ( 10)
111 --SLACK NB 1-- .4696100 ( )

112 --SLACK NB -- ,203000 ( 12)
113 --SLACK NB -- .0259200 ( 13)

114 -- SLACK ND -- .0259800 ( 14)

115 --SLACK NB -- .14500( 15)

MAXIMUM VALUE OF THE OBJECTIVE FUNCT:ION ' j32,665560

CALCULATION TIME WAS .0720 SECONDS FOR 27 ITERATTON2.,
" 2TOTA. TIME FOR THIS 'PROBLEH WAS .359 SECONDS
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AAPPENDIX B

Research Design

The research design chosen for this study is a three-

level, 3k, fractional factorial design (2). It is a four-

factor design which requires twenty-seven samples for the

model with variance. For this study, the LP model has

no variance; therefore, the repetitions of the center point

sample are not required. Thus, only twenty-five samples

are required.

The design is shown with its respective sample values

in the following examples. The first example is the un-

coded design and each of the respective sampled MOE's

(CF, CV, AF). This design was used for the revised lower

limits of 300, 450, 720, and 200 for each Wi respectively.

The remaining examples are in coded format (+1, 0, -1).

This format assigns one for the upper limit of the variable,

zero for the mid-range of the limit, and negative one for

the lower limit. These coded designs were used in the

initial lower Wi limits of zero.

102



Sampled MOE's and Research Design for Revised Limits:

CF CV AF W1  W2  W3  W4

932.67 1190.02 1736,46 '00 7)0 . ".)
868.40 1159.59 1618.73 450 450 880 312
8,362.12 1170.66 1652.36 300 750 380 312
797.85 1139.65 1504.04 300 450 880 312
873.84 1165.56 1677.36 375 600 1040 424
868.13 1165,56 1645,10 375 600 1040 200
865.41 1164.70 1626.0? 375 600 720 424
859.61 1164.31 1585.47 375 600 720 200
904.92 1174.87 1701.47 450 600 3 ) 424
899.15 1174.81 1668.05 450 600 880 200
834.40 1155.39 1602.27 300 600 880 424
828.60 1155.32 1567.22 300 600 880 200
901.59 1180,83 17 7.52 375 750 1040 3 12
893.14 1179.81 1673.61 375 750 720 31?
837+39 1150.28 1594.91 375 4 0 1040 312
828.37 1148.42 1526.83 375 490 720 312

906.24 1175,30 1708.49 450 600 1040 312
897.79 1174,2.1 1657.15 450 600 720 312
835.76 1155+8? 1612.06 300 600 10-40 3.2
827.24 1153.96 1554.73 300 600 720 312
900+26 1180.40 1710.86 375 750 880 424
894.50 1180,34 1681.32 375 750 880 200
836.03 1149,85 1585.12 375 450 880 424
830.23 1149.79 1540.05 375 450 880 2V0
866.77 1165t13 1635.88 375 600 830 312

The next two examples are for coded CF and CV research

designs and their sampled values. These designs were used

in the initial lower limit of zero.
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APPENDIX C

Regression

This section includes a complete stepwise regression

for CF, and the final step and residual scatter diagrams

for CV and AF regressions. It concludes with Tables VI,
VII, and VIII which show the regression error for each

surface.

The Statistical Package for the Social Sciences

(SPSS) was employed with a stepwise regression option for

the determination of the regression polynomials.

Example CF Stepwise Regression:

1
T

84/03/31. t5.56.17. FPAGE

ASD COMPUTER 
CENTER

WRIGHT-PATTEnSON AFBOHIG

S P S S - - STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES

VERSION 8.3 (NOS) -- MAY 04, 1982

376500 CM MAXIMUM FIELD LENGTH REQUEST
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V ? N NAME J .. .' ......

RUN NAME SECOND ORDER RECESSInN F'8R 4 IN'EP. VAR'.ALES
FILE NAME REGRESSION ANALYSIS WITH :rGDAT
VARIABLE LISr CF,CV.AF,W!.,2,W3,W4
N OF CASES 25
INPUT MEDIUM CARD
INPUT FORMAT FREEFIELD
CUMPUTE W11=W1**2
COMPUTE W22=W2**2
COMPUTE W33=W3**2
COMPUTE W44=W4*2
COMPUTE W12=W1*W2
COMPUTE WI'Z=WI*W3
COMPUTE W14=WI*W4
COMPUTE W23=W2*W3
COMPUTE W24=W2XW4
COMPUTE W34=W3*W4

CPU TIME REQUIRED*, .044 SECONDS

REGRESSION METHOD=STEPWISE/
VARIABLES=CF TO W4,WIIW22,W33,W44,WI2,W13,WI4,W23,W24,W34
REGRESSION=CF WITH WI TO W34/RESIDUALS/
REGRESSION=CV WITH WI TO W34/RESIDUALS/
REGRESSION=AF WITH WI TO W34/RESIDUALS/

STATISTICS ALL

00056000 CM NEEDED FOR REGRESSION

ISECOND ORDER REGRESSION FOR 4 INDEP. VAR 84/03/31, 15.56.17. PAGE 2

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT

S*** *M U L T I P L E R E G R E SS I 0 N**** *

VARIABLE MEAN STANDARD DEV CASES

CF 866.0364 33.9360 25
CV 1164,9860 12.9165 25
AF 1631,3460 63,6308 25
W1 375.0000 53.0330 25
W2 600.0000 106.0660 25
W3 880,0000 113.1371 25
W4 312.0000 79.1960 25
WII 143325.0000 378.0367
W22 370800.0000 127795.2464 25
(433 /R66&8.)000 9954 .67 40
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-7-Z

W44 10336541200 49870.4904 25
W12 225000.0000 51143,1 "4 2
W W13 330000,0000 6' 1.362 .5
W14 117000.0000 3:i5'. 245 20

SW23 528000.0000 115827.4579 2,5
W24 187200*0000 58310 .2 04?

W34 274560,0000 78463,7564 5

CORRELATION COEFFICIENTS4

A VALUE OF 99.00000 IS PRINTED

IF A COEFFICIENT CANNOT BE COMPUTED.

CV .96255
AF .94427 .93601
Wi .73483 .53064 .55301
W2 .66939 .84161 ,74357 0
W3 .08836 .03570 .30704 0 0
W4 .06015 .00292 .19999 0 0 0
WI .73340 .53717 .55226 .99741 0 0
W22 .66466 .83810 .73667 0 .79596 0
W33 .08858 .03541 .30665 0 0 .99736
W44 .06047 .00376 .20068 .00000 .00000 .00000
W12 .97779 .98924 .91788 .62217 .77771 0
W13 .60135 .42093 .61314 .73772 0 .6706!
W14 .40811 .26336 .44135 .48424 0 0
W23 .b9119 469868 .77587 0 .80584 .58606
W24 .42890 .48001 .58204 0 .56753 0
W34 .09315 .01846 .31451 0 0 .44787

CF CV AF W1 W2 W-3

WI 0
W22 0 -.00182
W33 0 -,00133 -.00166
W44 .99173 -.00260 -.00325 -.00237
W12 0 .62056 .77457 0 0
W13 0 .73581 0 .66922 0 .45899
W14 .86916 .48299 0 0 .16197 .70128
1423 0 0 .80258 .58481 0 .62671
W24 .81491 0 .56524 0 .80317 .44137
W34 .38821 0 0 .4489t .88086 0

W4 WI1 W22 W33 44 .
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W, 4 .35724
W23 .39307 0

W24 0 .70.2 .4573'
W34 .30171 .7720 .2365 72731

W13 W14 W23 W24

1SECOND ORDER REGRESSION FOR 4 INDEP, VAR 84/03/31. 15.56.17, PAGE

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT

: U MULT I PLE REGRE S SI N**

DEP, VAR,.. CF

MEAN RESPONSE 866.03640 STD. DEV. 13.93598

VARIABLE(S) ENTERED ON STEP 1
W12

MULTIPLE R .9778 ANOVA DF SUM S(OUARES MEAN SO. F
R SQUARE .9561 REGRESSION 1, 26425.270 26425.270 500.492
STD DEV 7.2662 RESIDUAL 23. 1214.352 52.798 SIG. 0
ADJ R SQUARE o9542 COEFF OF VARIABILITY .8PCT

VARIABLE B S.E. B F SIG. BETA ELA&STI;ITY

W12 .001 .000 500,498 0 .97779 .16856
CONSTANT 720,055 6.685 11601,442 0

VARIABLE(S) ENTERED ON STEP 2
W13

MULTIPLE R .9927 ANOVA DF SUM SQUARES MEAN SO. F
R SQUARE .9855 REGRESSION 2. 27240.206 13620,103 750.201
STD DEV 4.2609 RESIDIIAL 22. 399.416 18.155 SIG. .000
ADJ R SQUARE .9842 COEFF OF VARIABILITY ,SPCT

VARIABLE B S.E. B F SIG. BETA EI.A(TICITY

W12 .001 .000 949.877 0 .88F70. 1r 7"

W13 .000 .000 44.887 .000 .19327 .0 .. 51
CONSTANT 699.085 5,016 19421.403 0

1SECON1i ORDER kR.GRESSLN FCR 4 INDEEP. VAR 8 4/03/31 15 , 1'. A(!- 4

FILE - REGRESSI (0REATEDI - 84/03/71) -%NALYS* I-'3 RGIITH
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W23 -.000 .000 7307 .01l -00249 -Q00

W33 -.000 .000 7,593 ,017 -.00360 -.00056
W24 -.000 .000 2.549 .136 -. 00102 -.00013
W44 -.000 .000 1.479 .247 -.00081 -.00007
CONSTANT 504.445 .360 .196E+07 0

iSECOND ORDER REGRESSION FOR 4 INDEP. VAR 84/03/31. 15.56.17. PAGE 12

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT

* * *U*LMULTIPLE R EGRE SI N***.1'0**N

DEP. VAR... CF

VARIABLE(S) ENTERIED ON STEP 17
WIl

MULTIPLE r 1.0000 ANOVA DF SUM SQUARES MEAN Sf,
P SQUARE 1.0000 REGRESSION 13. 27639.620 2126.125 .125E+08
STD DEV .0131 RESIDUAL 11. .002 .000 IG. 0
ADJ R SQUARE 1.0000 COEFF OF VARIABILITY .OF'CT

VARIABLE B S.E. B F SIG. BETA ELASTICITY

W13 -.000 .000 7.186 .021 -,00272 -.00056
W14 -.000 .000 1.320 .275 -.00090 -.00012
W2 .296 .000 ,357E+06 0 .92361 .20473
W1 .472 .001 .163E+06 0 .73693 #20419

W22 -. 000 .000 37746.079 0 -.2526, -. 02873
W3 .029 .001 2272.737 0 t09629 ,02935
W4 .028 .001 1977.203 0 .06502 .01004
W34 -.000 .000 11.879 .005 -.00290 -.00040

W23 -.000 .000 7.186 .021 -.00249 -0,0044
W33 -.000 .000 3.523 .0t7 -.00335 -.00052
W24 -.000 .000 2.347 .154 -.00102 -.00013

W44 -.000 .000 .564 ,469 -.00068 -,00006
Wil .000 .000 .046 .834 .00035 .00005
CONSTANT 504.542 .590 .732E+06 0

F-LEVEL OR TOLERANCE-LEVEL INSUFFICIENT FOR FURTHER COMPUTATION.
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COEFF!CIENT' AND CONFIDFNCE !'riERVALS.

VARIABLE B 95 PCT C.I.

W13 -.0000 -.0000 -.0000
W14 -.0000 -.0000 .0000
W2 *2955 02944 ,2966
WI .4716 14690 .4741
W22 -.0001 -.0001 -.0001
W3 .0289 .0276 .0302
W4 .0279 .0265 .0292
W34 -.0000 -.0000 -.0000
W23 -.0000 -.0000 -.0000
W33 -.0000 -.0000 .0000
W24 -.0000 -.0000 .0000
W44 -.0000 -.0000 .0000
Wil .0000 -.0000 .0000
CONSTANT 504.5424 503,2446 505.3401

ISECOND ORDER REGRESSION FOR 4 INDEP. VAR 84/03/31. 15.56.17. PAGE 13

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT

** ** ***MUL T IULT PLE REGRESS I ON *

DEP. VAR., CF

VARIANCE/COVARIANCE MATRIX OF THE UNNORMAIlZED REGRFISSION COLFFICIFNTS.

Wi .00000
W2 .00000 .00000
W3 .00000 .00000 .00000
W4 .00000 .00000 .00000 .00000
W1i -.00000 -.00000 -.00000 -.00000 .00000
W22 -.00000 -.00000 -.00000 -.00000 100000 .0000
W33 -.00000 -.00000 -.00000 -.00000 .0000O .00000
W44 -.00000 -.00000 -.00000 -.00000 .00000 .00000
W13 -.00000 -.00000 -.00000 -.00000 .00000 .00100
W14 -.00000 -.00000 -.00000 -.00000 .00000 .00000
W23 -.00000 -.00000 -.00000 -.00000 .00000 .00000
W24 -.00000 -.00000 -.00000 -.00000 .00000 .00(00
W34 -.00000 -.00000 -.00000 -.00000 .00000 .00000

Wl W42 W3 W4 WI"
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W33 .00000
W44 .00000 .00000
W17 ,G000 *C00 . 00000
W14 .00000 -00000 -.00000 .00000
W23 .00000 .00000 -.00000 -.00000 .000C
W24 .00000 .00000 -.00000 .00000 -. 0 000 .0000:
W34 .00000 .00000 -.00000 -.00000 -.00000 .00000

W33 W44 W13 W14 W23 W24

W34 .00000

W34

ISECOND ORDER REGRESSION FOR 4 INDEP. VAR 84/03/31. 15,56,17. PAGE 14

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT

* * * * * * M U L T I P L E R E G R E S S I 0 N *:

DEP. VAR... CF

SUMMARY TABLE.

STEP VARIABLE E/R F MULT-R R-SQ CHANiE R OVERALL F SIG.

1 W12 E 500,498 .978 #956 .956 .97t bOO.498 0
2 WI3 E 44.88/ .993 .986 .029 .601 750.201 .000
3 W14 E 14.803 .996 .992 .006 .408 318.861 0
4 W11 E 5.995 .997 .993 .002 .733 761,719 .000
5 W2 E 53.057 .99? .998 .005 .669 2206.100 0
6 WI. E 31.552 1.000 .999 .001 .735 4799,83 .000
7 W12 R .000 1.000 .999 0 .973 6079,851 0
8 W22 E 54,029 1.000 1.000 .000 .665 192'16.170 .000
9 Wil R .002 1.000 1.000 -.000 .733 24337.452 0
10 W3 E 39.242 1.000 1,000 .000 .088 61.108.470 .000
11 W4 E 3411.581 1,000 1.000 .000 .060 .998EF07 0
:12 W34 E 6.890 1.000 1,000 .000 .093 .11A0N .000
13 W23 E 5.284 1.000 1.000 .000 .591 .132E+08 0
14 W33 E 5.359 1.000 1,000 .000 .089 .154E+03 .000
15 W24 E 2,459 1,000 1.000 .000 .429 .154E+08 0
16 W44 E 1.479 1,000 1.000 .000 .060 .147E+08 .000
17 Wit E .046 1.000 1.000 .000 .733 .125E+08 0

ISECOND ORDER R[GRESSION FOR 4 INrIEP, VAR 314/03/31. 15. .56.17. PAGE t5

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT
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* ****** U*MULTIPLE E

RESIDUAL PLOT.

Y VALUE Y EST. RESIDUAL -2S1 0.0 +2;D

932.670 932.65-5 .015 I
868,400 868.403 -.003 I
862,120 862.121 -.001 .1
797.850 797.870 -.020 I

873.840 873.855 -.015 I
868.130 868.126 .004 i
865.410 865.418 -.008 I
859,610 859,600 .010 I
904.920 904.912 1008 1
899.150 899.153 -.003 I

834.400 834+393 .007 I
828.600 828.605 -.005 I
901.590 901,595 -.005 .[
893-140 893.148 -.008 I
837,390 837.378 .012 I
828.870 828,862 .008 I
906,240 906,247 -.007 I
897.790 897.800 -.010 * I
835,760 835.749 .011 I
827.240 827.232 .008 I
900.260 900.257 .003 I
894.500 894,504 -.004 I

336.030 836.025 .005 1
830.230 830.232 -.002 I
866.770 866.770 .000

NOTE - (*) INDICATES ESTIMATE CALCULATED WITH MEANS SUBSTITUTED
R INDICATES POINT OUT OF RANGE OF PLOT

NUMBER OF CASES PLOTTED 25.

NUMBER OF 2 S.D. OUTLIERS 0 OR 0 PERCENT OF THE TOTAL

VON NEUMANN RATIO 1.79118 DURBIN-WATSON TEST 1,71954

NUMBER OF POSITIVE RESIDUALS 12,
NUMBER OF NEGATIVE RESIDUALS 13.
NUMBER OF RUNS OF SIGNS 15.

EXPECTED NUMHER OF RUNS OF SIGNS 13.
EXPECTED S.D. OF RUN DISTRIBUTION 2,44328
UNIT NORMAL DEVIATE-
Z=(OBSERVED-EXPECTD+.5)/S.D. ,82676

FRODAB[LITY OF OBTAINING .GE. A$S() .20419
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CF Summary Regression:

):EP. VAR.,. CV

VARIABLE(S) ENTERED ON STEP 12
W4

MULTIPLE R 1.0000 ANOVA DF SUM SQUARES MEAN SQ. F
R SQUARE .9999 REGRESSION 12, 4003.748 333.646 13552.390
STD DEV .1569 RESIDUAL 12, .295 .025 SIG: .000
ADJ R SQUARE .9999 COEFF OF VARIABILITY *OPCT

VARIABLE B S.E. P F SIG. BETA ELMSTi ..IrY

W12 -1000 .000 3.416 .089 -.05103 .- ,00249

W2 .120 .006 35a .95 .000 .'.,.394 .0671
Wi .l6 .014 133.499 .000 .68084 .053
W3 .031 .007 1.7,845 .001 .26941 .02323
W13 -.000 +000 7.165 .020 -,0571 -.0049S
W23 -.000 .000 7.165 .020 --.07/.46 -.00397
W33 -.000 .000 4.195 .063 -.11542 -.00504
W44 .000 .000 .523 .434 .02076 .00U48
W34 -.000 .000 1.545 .238 -.03305 -.00128
W22 -.000 .000 .929 .354 -.03958 -.00127

WIl -,000 .000 .853 .374 -.04734 -.00189
W4 .002 .006 .099 .758 .01169 .00051
CONSTANT 1027,039 7.121 20799.923 0

F-LEVEL OR TOLERANCE-LEVEL INSUFFICIEW';T FOk FUR.-THER COi-FtJTATION,

COEFFICIENTS AND CONFIDENCE INTERVALS.

VA[IABLE B 95 F'CT C.I.

Wt2 -.0000 -.0000 .0000
W2 .119 .1060 .1336
Wt .1658 .1346 .1971
W3 .0308 .0149 .0466
W13 -10000 -.0000 -.0000

W23 -. 0000 -. 0000 -. 0000
W33 -.0000 -.0000 .0000
W44 .0000 -.0000 .0000

W34 -.0000 -.0000 .0000
W" : -. 0000 -. 0000 .0000
W411 -.0000 -.0001 .0000

W4 ~ ~~ .00 -- [1 -715

CONSTANT 1OE+04 .10E+04 10E+04
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4..7

RESLOIUAL LOT.

Y VtiLUE Y EST, RESIDUAI_ -2SO 0.0 .2D

1190.020 1190.021 -1001
1159,590 1159,565 .025 I .
1170,660 1170.633 .027 i
1139,650 1.139.596 ,054 I
1165.560 1145,618 -.058 I

1165.560 1165.706 -.146 1,

1164.700 1164.501 .1.99 i
I.164,310 1164.200 .II0 I
1174,870 1175.004 -.134 . I
1174 810 1174 897 -. 08 7 TI

115i 390 1155-325 .06F5 I
1155. .320 1155.219 .101 I.

110.830 1180.668 .1,, I
1179.810 1179+776 .034 .

i150.280 1150.341 -.061 * i
1148.420 1148.610 -.190 +
1175+300 1175.137 .163 I
1174.280 1.174.246 .034 .
1155.820 1155.879 -.059 * I
1.153.Q0 1154.147 -.187 i

1180.400 1180.534 -.134 , I

1180.340 1180.428 -.083 * I
1149.850 1149.788 .062 I
11.49,790 1149.681 .109 1
1165.130 1i5.130 .000

4NOTE - ( N) IEDICATL3 ESTIMATE CKCULATIrD WITH IEAS M UBi.-TTTUTE
R INDICATES POINT CUT OF RANGE OF PLOT

NUMBER OF CASES PLOTTED 25,
NUMBER OF 2 3.D. OUTLtER3 0 OR 0 FERCENT OF THE TOTAL.

VON NEUMANN RATI 1.71919 T'URBIN-WATSON TEST I.6'.:)42
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' AF Summ~ary Regression:

VAl:I8. BLE(S) ..;4TERED ON 3TEF' 14
W44

MULTIPLE R .9999 ANOVA DF SUM SUARES MEAN SO,
R SQUARE .9999 REGRESSION 14, 97163,036 6940.2220 6849.74
STD DEV 1.0066 RESIDUA. 10. 10..37 1.013 SIG. .00
DJ R SQUARE .9997 COEFF OF VARIABILITY .IPCT

VARIABLE B S.E. B I- SIG. BETtr 1-A.T T i'Y

IV12 -.001 .000 23-' 49. ... -. 5" 0 ...
E,34 -000 .000 17.245 002 -143,.14.,. 03 --- 1 3 2 tg..

.. 047 ., . ,00 0203190

.42 .. .042 102 334 .000 6 ,49111.... '1 .0 1 ,? - q1

,Wi..357 .094 208.661 .OOG . .00 7 :1 1.-
W122 -. 000 .000 110.8? .0,0 .309 -,
W123 -.000 .000 144.143 .000 -.47370 r . - 149
W4 .435 .048 81.I? .000 .54150 .. 8 72
W24 -.000 .000 59.509 .000 -.2117:3 -.0.i.'.
W13 -.000 .000 3.853 .014 -.i)407 -.0.4

W33 -.000 .000 7.885 .019 -. 2f606 -. 0A i.9
W1i -.000 .000 3.723 .083 - 1 -,01'R05
W14 -.0000 .656 .437 -.026015 -00348
W44 -.000 .000 .250 .623 -.01870 -100: 1
CONSTANT 323,748 46.551 483. .000
ALL VARI:ABLES AtNE IN THE EQUATION.

COEFFICIENTS AND CONFIDENCE iNTERVALS.

VARIABLE B 95 PCT C.I

1W2 -.0007 -,0008 -.0006
W34 -. 0001. -. 0002 -. 0001
W. .4185 .,.7
W2 1.7-753 1.2425 1 4 281
Wi. 1,3571 1.1478 1.5661,
'422 -. 0003 -.0003 -.0002

W23 -. 0003 - .000 3 - 02
W4 .4351 .5427
W24 -.0002 -.0003 -.0002
W13 -.0001 -,0002 -.0000
W33 -.0001 -0001. -.0000
wit1 -.0002 -.0004 .000C.
W14 -.0000 -. 0002 .0001
W44 -. 1000 0001. 1000 1
CONSTANT 32" .7 4 7/ , .C.07 I 477.4879!j.j it~i~~ ~o~:i o TE . ,'. ,,-,Z .... , !,, .. . . . -

ISEC INO ORD x, S I ..... 1' 01: 4 .- 3. . .
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TABLE VI

CF Regression Error

Design Points

*W W2  W 3  W4  CFm CFe Residual

450 750 880 312 932.67 932.655 .015

450 450 880 312 868.40 868.403 .003

300 750 880 312 862.12 862.121 .001

300 450 880 312 797.85 797.870 .020

375 600 1040 424 873.84 873.855 .015

375 600 1040 200 868.13 868.126 .004

375 600 720 424 865.41 865.418 .008

375 600 720 200 859.61 859.600 .010

450 600 880 424 904.92 904.912 .008

450 600 880 200 899.15 899.153 .003

300 600 880 424 834.40 834.393 .007

300 600 880 200 828.60 828.605 .005

375 750 1040 312 901.59 901.595 .005

375 750 720 312 893.14 893.148 .008

375 450 1040 312 837.39 837.378 .012

375 450 720 312 828.87 828.862 .008

450 600 1040 312 906.24 906.247 .007

450 600 720 312 897.79 897.800 .010

300 600 1040 312 835.76 835.749 .011

300 600 720 312 827.24 827.232 .008

375 750 880 424 900.26 900.257 .003

375 750 880 200 894.50 894.504 .004

375 450 880 424 836.03 836.025 .005

375 450 880 200 830.23 830.232 .002

375 600 880 312 866.77 866.770 .000

Design Points Standard Deviation of Error = 0.0131

continied
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Table VI continued

Random Sample

441 469 803 226 864.41 864.289 .121

328 458 752 286 808.84 808.915 .075

391 604 923 333 876.80 876.780 .021

300 645 969 260 841.71 841.990 .280

423 711 853 357 912.46 912.689 .228

350 480 825 275 826.08 825.885 .195

429 577 726 208 880.68 880.385 .294

403 585 789 241 872.62 872.423 .196

408 470 947 410 857.71 857.549 .160

489 545 791 216 904.31 903.527 .783

355 462 894 392 829.02 828.921 .099

Random Sample Mean Error, e = 0.223
Random Sample Standard Deviation of Error = 0.204
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VTABLE VII

CV Regression Error

Design Points

W1  W 2  W3  W4  CVm CVe Residual

450 750 880 312 1190.02 1190.021 .001

450 450 880 312 1159.59 1159.565 .025

300 750 880 312 1170.66 1170.633 .027

300 450 880 312 1139.65 1139.596 .054

375 600 1040 424 1165.56 1165.618 .058

375 600 1040 200 1165.56 1165.706 .146

375 600 720 424 1164.70 1164.501 .199

375 600 720 200 1164.31 1164.200 .110

450 600 880 424 1174.87 1175.004 .134

450 600 880 200 1174.81 1174.897 .087

300 600 880 424 1155.39 1155.325 .065

300 600 880 200 1155.32 1155.219 .101

375 750 1040 312 1180.83 1180.668 .162

375 750 720 312 1179.81 1179.776 .034

375 450 1040 312 1150.28 1150.341 .061

375 450 720 312 1148.42 1148.610 .190

450 600 1040 312 1175.30 1175.137 .163

450 600 720 312 1174.28 1174.246 .034

300 600 1040 312 1155.82 1155.879 .059

300 600 720 312 1153.96 1154.147 .187

375 750 880 424 1180.40 1180.534 .134

375 750 880 200 1180.34 1180.428 .088

375 450 880 424 1149.85 1149.788 .062

375 450 880 200 1149.79 1149.681 .109

375 600 880 312 1165.13 1165.130 .000

* Design Point Standard Deviation of Error 0.1569

continued
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Table VII continued

Random Sample

441 469 803 226 1159.99 1159.955 .035

328 458 752 286 1143.91 1143.285 .625

391 604 923 333 1167.73 1167.811 .081

300 645 969 260 1160.21 1160.778 .568I 423 711 853 357 1182.59 1182.649 .059

350 480 825 275 1149.49 1149.118 .372

429 577 726 208 1169.02 1169.070 .050

403 585 789 241 1166.83 1167.267 .437

408 470 947 410 1156.36 1156.467 .107

489 545 791 216 1173.88 1174.003 .123

355 462 894 392 1148.52 1148.406 .114

Random Sample Mean Error, g = 0.234
Random Sample Standard Deviation of Error = 0.222
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TABLE VIII

AF Regression Error

Design Points

W1  W 2  W 3  W4  AFm AFe Residual

450 750 880 312 1736.46 1737.320 .860

450 450 880 312 1618.72 1619.040 .310

300 750 880 312 1652.86 1653.337 .477

300 450 880 312 1504.04 1503.967 .073

375 600 1040 424 1677.36 1677.435 .075

375 600 1040 200 1645.10 1645.622 .522

375 600 720 424 1626.09 1626.355 .265

375 600 720 200 1585.47 1586.182 .712

450 600 880 424 1701.47 1701.778 .308

450 600 880 200 1668.05 1666.600 1.450

300 600 880 424 1602.27 1603.065 .795

300 600 880 200 1567.22 1566.256 .964

375 750 1040 312 1717.52 1716.390 1.130

375 750 720 312 1673.61 1673.215 .395

375 450 1040 312 1594.91 1594.650 .260

375 450 720 312 1526.83 1527.305 .475

450 600 1040 312 1708.49 1708.939 .449

450 600 720 312 1657.15 1656.674 .476

300 600 1040 312 1612.06 1612.405 .345

300 600 720, 312 1554.73 1554.150 .588

375 750 880 424 1710.86 1710.299 .581

375 750 880 200 1681.32 1682.070 .750

375 450 880 424 1585.12 1584.239 .881

375 450 880 200 1540.05 1540.480 .430

375 600 880 312 1635.88 1635.880 .000

Design Points Standard Deviation of Error - 1.0066

continued
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Table VIII continued

Random Sample

441 469 803 226 1591.84 1588.798 3.042

328 458 752 286 1494.51 1496.747 2.237

391 604 923 333 1658.73 1658.556 .170

300 645 969 260 1612.72 1613.919 .199

423 711 853 357 1711.99 1711.877 .113

350 480 825 275 1541.90 1540.694 1.206

429 577 726 208 1614.18 1614.414 .234

403 585 789 241 1619.45 1619.095 .355

408 470 947 410 1626.35 1628.740 2.390

489 545 791 216 1654.74 1654.590 .150

355 462 894 392 1571.61 1571.837 2.770

Random Sample Mean Error, e = 1.233
Random Sample Standard Deviation of Error = 1.154
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APPENDIX D

Sequential Unconstrained Minimization Technique

(SUMT)

The SUMT program was developed by Mylander, et al (23)

based on the nonlinear programming work of Fiacco and

McCormick (12). A descriptive pamphlet of the program was

developed by Captain R. M. Floyd for the Air Force Institute

of Technology. With his permission, this pamphlet is re-

produced in this appendix. Following the pamphlet is an

example of both an executive program that was used in the

study and a sample output.
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DESCRIPTI ON*

OF

SUMT LIBRARY
I

54P

CAPT R.M. FLOYD

FEB 1982

OFORTRAN programn S?.''T code and description adapted from
References (2) and (3).
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p

SUMT LIBRARY

A. Purpose

This progrm finds the minimum of a multivariable, nonlinear

funct ion subject to nonlinear inequality and equality constraints:.

Minimize MXi, X2 , ... , X)

Subject to Gk(X. , x 21 ..* XN) 0', k a 1, 2, ..., M

.k ( xl , x ,  . .-- 1 x N ) 0 'o k . . .M 1 , M -2 , M . Z

B. Method

The procedure was developed by Fiacco and McCormick (1). The

technique uses the problem constraints and the original objective function

to form an unconstrained objective function which is minimized by any

appropriate unconstrained, multivariable technique.

The algorithm proceeds as follows:

i)A mndiflted okjectiva ftinclti~ il forn..ulated cznistlng of thec

original function and penalty functions with the form

M k MZP . IF - r E- OnG k + E- H;r

kal. k=Z4.l

where r is a positive constant. As the algorithm progresses, r is

reevaluated to form a monotonically decreasing sequence r1 >r 2 > ... ,0.

As r becomes small, under suitable conditions P approaches F and the

problem is solved.

2) Select a starting point (feasible or nonfeasible) and an initial

value for r.

3) Determine the minimum of the modified objective function for the

current value of r using an appropriate technique (several options

available).
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ii.) Estimate the optimal solution using extrapolation formulas (I).

5) Select a new value for r (1) and repeat the procedure until

the convergence criterion is satisfied.

A logic diagram for this method is given in Figure 1.

C. Use of the SUXT Library

Execution of the SU?4T routines requires that the user submit
a computer job composed of the following elements, 1) Job

Control commands, 2) a MAIN program. 3) user-supplied sub-

routines, and 4) NAMELIST data. The layout of these elements

is shown below.

JOB CARDS
(7/8/9)
MAIN PROGRAM
USER-SUPPLIED SUBROUTINES
(7/8/9)
NAMELIST DATA
(6/7/8/9)

Note that an end-of-record and an end-of-file is signified

by a multipunch (7/8/9) and (6/7/8/9), respectively in column

1 of a keypunch card (or by OBOR and *EOr, respectively when

coded at a computer terminal). Each element is described

separately below. In Section E an example is presented which

combines these elements for job execution.

1) Job Cards

The Job Card sequence required to execute SUMT is

abcTt,IOk,CMlOOOOO. PNname
ATTACHlfn,SUNT,ID:T800535.

4LIBRARY,lfn.

FTN.
LGO.

in which
abe 3 character identifier
c decimal seconds of Central Processor time

requested for the job (default is 20)
k I decimal seconds of Input/Output time requested

for the job (default is 70)
PN i user computer problem number
ne : user r1re or other iei fying infor-s'tjn
if n i oc3l file name for the SU:T i"r'.ry
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Selet Startng
Point and

Initial Value

ofI
Correct 

StartingPoint Until

Feasible

J Ninimize Modified
1Obje~ictive Function

Es~timate Optimum
Point By

ExtrapoioJ

Figure 1. Fiacco and McCormick (SL-MT ALGORITHMI)
Logic Diagram
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2) MAIN Program

The MAIN program identifies three files and assigns corres-

ponding device numbers in a Program statement. It communi-

cates the device numbers through the labelled COMMON,

COMMON/DEVC/NI.NO.NS

The variables NI, NO, NS are given values by MAIN and cor-
respond to the device numbers for the input and output files

and a save file, respectively. Execution of the SUMT routines

is initiated by a call to subroutine SUM?. The code given
below demonstrates the requirements of the MAIN routine,

PROGRAM MAIN(INPUTOUTPUT,SAVE ,TAPE5:INPUT,
TAPE6:OUTPUT,TAPE7:SAVE)
COMMON/DEVC/NI.NO,NS
NI:5

* ., NO:6
NS:7
CALL SUM?
STOP
END

3) User-Suzolied Subroutines

The subroutines described below are called by the given names

and with the given argument lists. Inclusion of the routine

RESTNT is mandatory, while routines GRAD1 and MATRIX are

optional (default routines are coded in SUTM). Each user-

supplied subroutine must contain the CO'ON card,

COM0N/SHARE/X(100),DEL(IOO),A(100,100),N(5)

This cpmmon region is used for communication between the
SUMT routines and the user-supplied routines. For each
routine, the argument IN is an input argument referring to

the objective function, the inequality constraints, or the

equality constraints as follow:

IN : 0 s objective function is being
considered

IN 1,2,.. the INth inequality constraint
is being ccnsiterll

ID :M l,+2,. +.Z the ist, 2nd,..., Y[th .qzi::
constraint is being considered
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RESTNT(IN,VAL)

This subroutine sets the argument VAL to the value of the

objective function. an inequality constraint, or an equality

constraint according to the value of the argument IN. The

current values of the independent variables are found in the

vector X of the labelled COCION/SHARE/.

GRADl(IN)
This subroutine computes the gradient of.the objective

function, an inequality constraint, or an equality constraint

according to the value of the argument IN. The gradient

with respect to the Ith independent variable is stored in
location DEL(I). The current values of the independent
variables are in the vector X, and both X and DEL are in
labelled CONM1N/SHARE/. The elements of DEL are not set to

zero prior to entry into GRAD1. The routine GRAD1 included

by default in SUMT computes a numerical approximation for

each gradient using the central difference techniquw. If

the user wishes to provide some of the gradients analytically

and others by numerical differencing, the central difference

p;proxirmation for any desired gradient as indexed by the

argument IN may be computed using a call to the S,,T library

routine DIFFI as

CALL DIFFI(IN)

with selective execution according to the value of IN. In

*' the usual case, user's rely on the default GRAD1 routine

rather than provide a replacement for it with analytically

determined gradients.

MATRIX(IN.L)

This subroutine computes the upper triangle and diagonal
elements of the matrix of second partial derivatives of the

objective function, an inequality constraint, or an equality

constaint according to the value of the argument IN1. The

current values of the independent variables are in the vector

, . ., and the con7uted z-co-d :srtials are stored in -
*. . Both X and A are in th,- .: I-,-! , 3..- /. 1:> a 2-2": --
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of the array A below the main diagonal must not be modified

within MATRIX, the upper triangle of A is set to zero before

entry into MATRIX. The second argument (L) is provided so

that the user may inform SU4T that the matrix of second

partial derivatives of a function is zero, L should be set

to 1 according to the value of argument IN if the corres-

A ponding matrix of second partials is zero. The routine MATRI

included by default in SUMT computes a numerisal approx-
imation for each matrix of second partial derivatives using

central differences to second order. If the user wishes to

provide some of the matrices analytically and others by

numerical differencing, the central difference for any des-

ired matrix of second partials as indexed by the argument IN

may be computed using a call to the STT4T library routine
DIFF2 as

CALL DIFF2(IN)

with selective execution according to the value of IN. In

the usual case, user's rely on the default MATRIX routine

rather than provide a replacement for it with analytically

determined second partial derivative matrices.

e4) NAMELIST Data

Data is entered into SUMT using a NAMELIST read from the

input file; the NAMELIST is referred to as DATA and includes

the following variables,

NA. LIST/DATA/EPSI,RHOIN,THETAO, RATIO,TMMAX,M,N,MZ,
X,NT,XEPl,XEP2,NEXOPl.NEXOP2

The v-ariables X and NT are vectors of length 100 and 10,

respectively. All of the variables in the NA.ELIST are

assigned default values by SUTM (see Section 4b below). To

assign different values to any subset of these variables an

assignmtent is made to each appropriate variable name in the

NAVELIST input. The complete data set is delimited on the

.- left by 1DATA and on the ri;ht by ?TD, ind!:idual.

szigr.zents ar3 se-arated by ::tunas; *hne data st-a : : -,
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over one or more 80 column fields. No information should

be placed in column 1 of any data field, since the NAMELIST

read processes information beginning with column 2. Refer

to an appropriate FORTRAN manual for more information on

NAMELIST input.

a. Definition of NAMELIST Data Items

. SI Tolerence, E, used to decide if an unconstrained minimum
has been achieved for each subproblem (see NTT))

RHOLI Possible initial value of r, r., (often set at 1.0) (see NT(1))

T--TAO Tolerance, 9., used to decide if the solution to the problem
has been appro)icated (see NT(5))

% RATIO Parameter, C, (>i) used to compute consecutive values of r;
ri 1 4 ri/C (often set at 16.0)

7M4AX Maximum amount of time for solving problem (sec.)

H Number of inequality constraints

N Number of independent variables

MZ Number of equality constraints

X Independent variables (starting point on input)

NT(1) Option key for r values, as follows:
-1 The value for r is mada" bX finding an approximation

solution mintCr7P(Xo, which
is a good appro.cipation only when XO is close to the
boundary (i.e., for some i, Gi(X) is close to zero) or
when 72F(Xo).O and when MZO

=2 r, is given by formula 8.65 [Ref. (1)p. 191 .1 (Only
can be used when NZO)

=3 r. a RHOIN

(normally set to 3)

NT(2) Option key for constraints as follows:

=1 The requirements (trivial constraints) that Xi 2 0
for i a 1, ... , N are to be automatically included
in the problem

-2 The only constraints on the problem are those inputed
by the user

NT(3) Option key for printout as follows:

=I Standard printout (this includes a call to OUTPUT after

the solution of every subproblem. Also the estimates
of the "Lagrange multiplior--" end first- and second-
order solution estimates are printed)

w2 For additional printout (includes standard printout

and every- i1 et:,'-d1ate point. gradient of P and ::e
vector 5)

(normally jet to 1
:l (4) Option ' " , fr.' . :'': ce ' f ,

-1 Fi.-.al co.i.e ::: , s :2tc--iiirod on thc basis of crre:ir

solution t the .4ubpjrcb! .1
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=2 Final convergence is determined on the basis of the

first order estimates. The first order estimate of
the solution vector must be close to feasible.

See below.

-3 Final convergence is determined on the basis of the

second order estimates. The second order estimate of
the solution vector must be close to feasible before
the convergence check is made. If X is a solution

* .estimate it is considered close to being feasible if
-G1(X) . 9 a, i . i, I , ... , M.

(normally set to 1)

NT(5) Option key on-final convergence as follows:
The convergence criterion determining the problem has bden
solved (Only use = 1, whenNT(L4) 1)

G [X(r)] <
.1 Qut whe rt3 7 rk,XrkiJ

.2 Quit when Ir E jm G.[X(r ) <90 (use o=4fbr M -0)

7 Quit when first order estimate of v, <= ui wen GLX~rk), rk),X(rk) J - 0 <e

(normally set to 1)

NT(6) Option key for extrapolation as follows:

=1 No extrapolation

u2 Extrapolate through last two minima

a3 Extrapolate through last three minima

(normally set to 1)

NT(T) Option key for subproblem convergence (fixed value of r)
as follows X.~( 1~ 1
a_ Quit when 1v p(xlr r ) y(Xr)l <E

.2 Quit when 1pt(Xr) P(Xr)) 1] Z , r)I

%I < P(X i '1 .-Fi )

5

.3 Quit when IVXP(Xi,r) I < E
NT(8) Option key on problem linearity as follows:

=1 At least one nonlinear constraint

a2 Linear constraints

n3 Linear constraints and linear objective function
(i.e., a linear programming problem)

hen Option - mATRIX (the u3er subroutine urplytng
the second d erivatives) will not be called, and
when Option * 2 it will be called only to get the second
partials of F(X).

130



N T(9) n t used

N T (10) not used

XIL Finite difference parameter used in DIFF1 if numerical
derivatives used. Usually .W1 - 0.0001 is satisfactory.

XEP2 Iteration improvement limit. When minimizing the P-function
for a given value of r (R.JH) the value of P must decrease
by an amount exceeding XP2 for each iteration after the
first. If it does not, then the code prints out the
message "apparently roundoff errors prevent a more accurate
determination of the minimum of this subproblem," and it
is assumed a minimum has been found. (Normally, set XEP2
equal to 0.)

NEOPI Key for checking derivatives as follows:
=1 Solve problems without checking derivatives

u2 Solve problem after checking only first derivatives

w3 Do not solve problm after checking only first

. derivatives

./ Solve problem after checking first and second
derivatives

.5 Do not solve problem after checking first and second
derivatives

If the user wishes to check his first or second partial
derivatives by having them printed along with experimental
SUNT's numerical approximations, he can accomplish this
by appropriately setting NEXOPI.

In all cases the first values printed out are those gotten
from the user's code, end the second values are those
gotten by numerical differencing.

NEXOP2 Key for choosing unconstrained minimization technique as
follows:
al The method for minimizing the unconstrained penalty

function is to be the generalized Newton-Raphson
method as modified to .andle indefinite Hessian
matrices. This method requires function values, first
and second derivatives.

w2 Same as 1, except that when an "orthogonal move" is
made because of an indefinite Hessian matrix -P is
added to the ort.hogonal xorvector.

*. Steepest descent is used to minimize P-function.

uli The method for minimizing the unconstrained penalty
function is McCormick's modification of the Fletcher-
Powell method as reported in the Fiacco-HcCormick
book " ". This requires function values and fi:st
deri" .3"iVes.
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b. Default Values of :A:,LIST Data Items
Variables in $EATA are given the following values in SUt.*T

prior to execution of the NA',LIST read.

EPSI l.E-9

RHOIN 1.

THETAO t 1.E-6

RATIO 16.

TWXAX 30.
M 0
N 0

MZ 0
X(I) 0. I:1,...,100
NT(l) 3
NT(2) 2
NT(3) 1

MT(7) 1

NT(8) 1
!N (q) i

NT(lO) 1
XEP1 1.E-4

XEP2 0.
NEXOPI 1

NEXOP2 4
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D. Program Descriotion

1) Usage:

The program consists of a mAin routine, two control subroutines

(BODY, FEAS), twenty one special purpose subroutines (CONVRG,

ESTIM, EVALU, FINAL, GRAD, INVERS, OPT, OUTPUT, PEVALU, SAVE,

REJECT, RHIOCO, SECORD, STORE, TCHECK, TZIiEC, SET, .*tO%, DIFFt,

DIFF2, CHca)and three user supplied subroutines (RESTNT,

GRADI, MATRX). input is coordinated by the main routine.

Output is from the main routine and subroutines BODY,

CHCIKR, CONVRG, ESTI4, FEAS, INVERS, OPT, OUTPUT, PUNCH, TCHECK,

TMTEC.

2) Subroutines Required:

SUBROUTINE BODY coordinatep all subroutines.

SUBROUTINE CHCXER computes first derivatives of objective function

using GRADI and DIFFI.

SUBROUTINE CONMMG(NI) checks for convergence.

SUBROUTINE DIFF1(IN) computes first derivatives by central difference.

SUBROUTINE DIFF2(IN) coma.tes second derivatives by central

difference.

SUBROUTINE ESTLM estimates Lagrange multiplier (k.) values and final

solution extrapolation.

SUBROUTINE EVALU evaluates objective function and constraints.

SUBROUTINE FEAS determines feasibility of starting point; if not

feasible, a feasible point is sought; if no feasible point possible,

error message printed.

SUBROUTINE FINAL(N2) checks for convergence.

SUBROUTINE GPAD(IS) compures first derivatives of penalty function.

SUBROUTINE I,VERS(.NSNE) solves linear system of equations.

SUBROUTIN.E OPT performs one dimensional search by Colden Section

method (modified Fibonacci).

SUBROUTINE OUTPUT (K) prints out results of each iteration.

SUBROUTINE PEVALU computes value of penalty function and dual.

SUBROUTINE REJECT returns stored values to original locations.

SUBROTINE RHCCOM computes initial value of r.

$SBRCUTINE S A'," E wr-.e " "a'A13 s $ z de- : r. 13e e3n

zz :<!ces '";e M . - n"" ot .' A X)
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SLBROUTIN SECORD(IS) computes -econd derivatives of penalty function.

SUBROUTINE SET(D4AX) stores the time at start of run.

SUBROUTINE STORE stores values of current point.

SUBROUTINE TCHECK checks run time for 90% of maximum specified.

SUBROUTINE TfLEC checks elapsed time of run for possible termination.

SUBROUTINE M4OVE determines search directions by one of several

options (modified Neton-Raphson, Steepest Descedt, Fletcher-Powell).

SUBROUTLNE RESTNT(IN,VAL) specifies objective function and constraints

(user supplied).

SUBROUTINE GRADI(IN) evaluates analytical first derivatives for

objective function and constraints (user supplied).

SUBROUTINE MATRIX(J,L) evaluates analytical second derivatives for

objective function and constraints (user supplied).

3) DIMENSION Requirements:

The general subroutines in the code are currently dimensioned to

handle a problem with up to 100 variables (V) and 20n_ car.j-n

(144Z). This should be sufficient for most problems attempted with

this method. If the limits need to be changed, a detailed

description of the various parameters are given elsewhere (2).

4) Outvut

The program title is printed first followed by a listing

of the parameters, option keys, and starting point infor-

mation. This is followed by intermediate result printouts

until convergence is achieved. At convergence, the final

answer information is printed. Execution time is listed

with the intermediate results. In the event that the ex-

ecution time limit set by TOWAX is attained, the stoppiig

point information needed to recommence computation at the

same point achieved is output to device NS in NA:,ELIST form.

This file (if generated) may then be cataloged and used as

the input NA.-L!ST data in a subsequent execution.
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E. Example Problem

The following minimization problem illustrates the effective

use of the S rT library routines,

Minimize F(XIX2) = (XI-l.) 2 ,+(X2-2. )2

Subject to C1 , Xl.X2-2.

C2 ,X2-Xl=l.

C3, iXl-O.
C4 , X2fO.

Here, the objective function is nonlinear, while all constraints
are linear. Constraint Cl is an inequality, C2 is an equality,

and C3 and C4 are trivial inequality constraints. Imposing the

constraint format defined in Section A, constraint C1 is re-

written as

Cl , 2.-2l-X2O.

and constraint C2 becomes

C2 , X2-Xl-l.=O.

After selecting initial values for the X vector, and choosing
to employ the generalized Newtbn-Raphson unconstrained optim-

ization algorithm, the computer run is coded as (see next page)
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qTS,T35 ,IO1OO,CI4.OOOOO. Te20163 ,FLOYD
ATTACH, SUMT, sui-, I D T8005 35.-
LIBRARY, SUMI.

LGO.
*EVR

PROGRAM MAIN'( INPUJT, OUTPUT, SAVE, TAPE53INPUT, TAPE6-CUTPuT,
1 TAPE7-SAVE)

-. 4COMMQON/DEVC/N!, NO, I
NI-5 ,N

NS-T
CALL SUMT
STOP
ED
SUBROUTIDM RZSTT( IN,,VAL)
CO,24ON4/HARE/X(1CO) ,'DEL(.CO) ,A(100,i.O) ,N(5)
IF(IN) 10,10,20

10 VAL=(X(1)-l.)**2+(X(2)-2.)**2

LII VAL-X2-X1)-12
RETURN

EDD

$DATA .2!.,Z1,=..,(2s,(5=,()2,E021rI

The solution was obtained in about 0.25 seconds of Central

Processor time. The final printout is

F:XAL VALUS OF F = 5 .COCCOOO4E-1

FINAL X VALUES

x( ) 1.9999982!-1 XV( 2) * .50CCCCOEO
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The following program, STCFCV, is a Fortran Four

executive program for SUMT. This program is run to

calculate the maximum CF for given contours of CV. In

its current form, the program will request a data entry

in the form of a "namelist" for each CV contour value.

These contours are set at two unit increments and the

user enters the starting value.

'":)ORAM .TCFC'1( IW jT T fUT'ESINHb , "%=rr'tT.

COMCNDTVRi:N:( , N), NTe*CO;1MOiCN'FV'iCVi

C

C

C THIS PROGRAM USES S3UMT TO SOLVE FO]R THEC MAXIMA OF }:.ESP"(NSE ONE,
(] C ', CONSTRAINED. TO A, VA'LUE,CVi:, OF RESPONSE TWO, THE iZ.RFJEBLEPM

vC IS FU'IHER RES;TRICTEr' EBY THE OPERATING i OM,%.!N UN[~: CONSIiIEASTION'.

C

C

NI=5

N NO=6~I4*,NS=7

11=0
C

WRITE(NO, 13)
13 FORMAT('*** ENTER INITIAl.. CVI VALUE:01,:K4)

REA1D(NI)CVT
r CVI= 11220

DO 19 11=1,34
C

CVI CVI+ 2.0
C:

WRIIE(Ni,11) CVI
WRITE(NS,i1) CUT

11 FORHAT(1X,.F7.2,'=*CVI*FOR THE FOLLOWIG "'UN *'."A .:' : :k' .

CALL SUMT
4RITE(F. i;,12) ]"VI

WRITEI41O. !.2) C11
V? CIONT iNU:

C
.S. T C r-"

_" END
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SUD'~. . .. . . .I R..*N , t' L'

::oi01cN3 E I'' (>') ) . 0000003*( t) ""*I2).

c C.0 0 0 * X 3 '"7) 0 0 ,I C,))(14 *;-) 0 0 A (I
c 0 0 0 0 9 X ) X4CD 0 0 0 'I* ( )kA,,+~~, ( o-X ) ''1

C

VAL= 451) - (.
R E T U R N

RP UP~
:2 A ! 750 -

* RETURN
25 VAL= X(2)-450

RETURN
26 VA~L= 1040) - X(3)

27 Y)IL= X(3)-720
RETUR~N

23 VL= 424 - X(4
RETURN

RE TURN

C +.0064X(4)+0,0000O54*(X(4)2*)-0,)OOO19-,7,(v(l1)%'*2")'

c -0),000075:*.X(2)*X(3 )-o ,O0000)?*x 9 )*30.0 5~ 3

END

An e...ample of the SUNT output for the final iteration

to maximize CF for a CV value of 1160 is shown on the

next page.
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APPENDIX E

Analysis Data

This appendix first contains the program "surface"

which generated data for the CF and CV plots. Following

the program are the enlarged contour plots for each MOE

and the enlarged overlay plots used in Chapter Four.

Likewise, the enlarged MOE trade-off graphs are included.

Finally, Tables IX through XII contain the actual

SUMT data for each of the MOE trade-offs in Chapter Four

and also the AF trade-off cases.
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OPE4,(i11FTL!E.'P O~T')
REW TNr 1.1

WRITE Cli ?Oi)

C
C LOOlP CV,Wi ANLW2 THROUNTh THPIIR RIFSPECTIVE F .FES TO '3OILVE FT;

DiO 23,ICF=FJOO.72-D20
(10 2??IWl=300,450,25

T.0 n lIW4='00yX410,10
177 =1/0 .0289 CF -504K'424-0 4716XWI1 2)??1- ;42-0 02701W

C +Q.00l*IW2**2)
IF(01,T.I441O ANDI. 437j.,'~E.720.0) THE.i
WFU.TE(11,02) IC 1.W1ylIW2rW3,IW4

02 FORMrAT(!2X4.3,2vXI3 2X,I3,XFz .Xi

EN IiIF
2.1 CONTINUE
22 CONTINUE

23 CONTINUE

WRITE(l 1,03)

WRITE(11,04) / 14
04 FOR1MAT(3', ' CV ' ?2Xv W I ' ,2 A' 12 1 'W7 (41

C LOOP CV,W3,ANJ W2 THFOUGH THEIR RESFECTIVE S- ANGES TO (F)L.VE ::"O; 4i

DO1 33IC~v1=t15q1225,i0
DO0 32,1W1=300 ,450,
DOr 31,IW4='200P4211-20

IF(W3LT.i041.0 5ANDI ,31J72 0) THEN

ob FORMAT'(2 X,f4,2'-X,I3,J,2X,:E3,2XF6.t ,2X*"%I3--)
ENEIIF

3]. CONTINUEk 32 CONTINUE
33 CONTINUE

PRINT *, 'RUN ~ MCFL.EfOTLF AP DATA iN -h-"
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TABLE IX

SUMT: Maximum CF given CV

Max C CV 1 2 3

791.14 1154 300.90 450.00 727.41 390.96

797.32 1156 314.39 450.00 720.06 393.68

803.05 1158 326.44 450.00 720.04 395.05

809.27 1160 338.04 450.00 724.90 420.98

814.42 1162 350.43 450.00 720.65 396.45

820.30 1164 362.52 450.00 720.06 403.47

825.45 1166 374.46 450.00 721.93 384.54

831.71 1168 386.64 450.00 720.03 404.99

836.54 1170 399.13 450.00 720.04 366.74

840.10 1172 412.27 450.01 720.03 272.27

848.70 1174 422.86 450.00 720.04 401.55

855.36 1176 434.94 450.00 720.05 400.34

860.47 1178 446.60 450.00 720.09 421.44

863.35 1180 450.00 457.23 741.20 392.99

866.67 1182 450.00 473.03 744.62 393.85

870.81 1184 450.00 493.35 729.32 413.37

874.32 1186 450.00 511.60 722.72 42..92

876.92 1188 450.00 523.33 742.77 409.83

879.39 1190 450.00 536.63 757.00 393.54

883.63 1192 450.00 558.53 734.97 422.14

886.68 1194 450.00 575.42 734.21 421.97

888.70 1196 450.00 587.05 755.41 397.80

892.42 1198 450.00 605.34 747.59 423.83

895.31 1200 450.00 622.92 744.21 422.81

898.31 1202 450.00 642.42 733.31 422.44

899.78 1204 450.00 649.79 771.48 391.81

903.12 1206 450.00 656.37 770.46 415.01

906.12 1208 450.00 686.26 757.65 421.90

continued
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Table IX continued

907.89 1210 450.00 701.26 766.06 392.20

910.30 1212 450.00 705.96 811.95 405.11

913.11 1214 450.00 722.22 812.98 415.63

915.14 1216 450.00 729.03 851.64 411.73

917.24 1218 450.00 728.49 918.16 421.16

918.70 1220 450.00 736.36 954.09 394.16

921.40 1222 450.00 741.16 998.81 419.85

923.19 1224 450.00 748.56 1035.78 406.18
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TABLE X

SUMT: Maximum CV given CF

Max CV CF W1  42 3 W4

1156.85 790 300.69 456.56 806.43 225.08

1158.72 792 300.10 462.81 846.26 219.77

1160.91 794 300.03 467.21 901.65 203.39

1160.65 796 300.05 478.98 844.41 249.25

1163.77 798 300.03 480.44 942.41 209.29

1165.03 800 300.06 492.10 938.52 201.72

1165.48 802 300.06 502.08 912.54 230.11

1166.98 804 300.44 510.39 927.30 222.20

1168.28 806 300.38 518.72 937.08 227.26

1169.72 808 300.07 536.28 918.73 203.67

1170.33 810 300.24 542.09 912.69 239.71

1173.13 812 300.38 545.69 990.97 203.77

1174.13 814 300.03 561.75 963.09 203.99

1175.35 816 300.04 573.60 956.37 205.12

% 1176.17 818 300.01 586.11 933.72 220.24

1178.12 820 300.02 589.45 983.99 218.42

1179.31 822 300.39 601.34 974.51 218.53

1180.71 824 300.02 616.73 962.25 213.37

1182.49 826 300.02 627.16 980.34 202.34

1183.86 828 300.29 636.29 987.55 206.58

1184.49 830 300.02 648.30 960.61 238.85

1186.93 832 300.02 659.63 997.97 204.95

" 1188.22 834 300.04 675.27 978.87 205.20

1189.88 836 300.01 685.26 994.07 204.56

1191.43 838 300.00 697.02 998.58 205.44
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Table X continued

1192.24 840 300.01 706.00 988.06 237.85

1193.80 842 300.24 718.39 989.37 236.49

1195.41 844 300.32 731.12 991.56 235.77

1197.93 846 300.02 747.69 1012.72 203.01

1199.14 848 300.58 749.83 1039.14 226.71

1199.01 850 305.98 748.98 1007.94 243.83

1199.33 852 310.22 749.25 993.86 256.96

1201.03 854 312.26 749.99 1035.67 247.04

1201.72 856 317.12 749.15 1035.57 241.01

1202.64 858 322.60 749.95 1034.44 217.00

1202.74 860 325.91 749.14 1020.92 251.00

1203.20 862 330.81 749.92 1006.25 251.01

1203.58 864 335.20 749.95 994.36 260.70

1204.23 866 339.66 749.95 991.37 260.00

1205.05 868 343.32 749.29 1000.67 263.64

1206.74 870 347.41 749.19 1036.13 230.08

1207.41 872 350.57 749.83 1037.53 243.50

1208.07 874 354.37 749.94 1037.51 250.42

1208.78 876 358.96 749.95 1036.07 245.94

1208.60 878 364.25 749.94 1000.83 264.71

1209.29 880 368.66 749.95 999.48 263.19

1210.87 882 371.46 749.57 1038.10 249.54

1210.73 884 376.69 749.95 1002.66 267.59

1211.67 886 380.79 749.93 1011.75 260.63

1211.99 888 384.72 749.37 1002.17 278.75

1212.56 890 392.34 747.70 988.09 244.99

1213.94 892 393.18 749.95 1018.62 259.10

1214.94 894 395.98 749.68 1036.5- 266.23

continued
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Table X continued

1215.65 896 400.98 749.94 1032.46 256.32

1216.46 898 404.98 749.95 1037.14 255.45

1217.10 900 408.89 749.95 1036.68 261.57

1217.32 902 414.12 749.25 1017.83 267.99

1217.47 904 419.60 749.28 993.09 272.62

1219.34 906 422.18 749.95 1038.37 250.20

1219.84 908 425.93 749.16 1036.78 264.29

1220.04 910 428.75 749.05 1026.34 299.74

1220.63 912 433.66 749.95 1015.91 294.55

1221.94 914 437.33 749.93 1039.70 279.57

1222.20 916 439.04 749.90 1036.08 326.19

1222.20 918 442.96 749.07 1016.19 356.60

1223.39 920 445.30 749.72 1039.40 361.37

1223.57 922 448.49 749.94 1025.31 392.38

1224.33 924 449.99 749.98 1039.90 423.55
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TABLE XI

SUMT: Maximum CF given AF

Max CF AF w W 2 W3 W4

796.13 1440 321.83 452.41 727.13 200.04

799.73 1445 330.88 450.04 720.76 200.04

802.53 1450 336.80 450.05 721.00 200.02

804.89 1455 341.44 450.03 727.01 200.03

808.22 1460 348.89 450.11 720.45 200.03

810.83 1465 354.23 450.07 723.60 200.03

813.63 1470 360.08 450.22 723.75 200.21

816.69 1475 366.78 450.08 721.63 200.03

819.61 1480 372.93 450.28 720.74 200.03

822.43 1485 378.83 450.39 721.03 200.23

824.85 1490 383.49 450.69 726.90 200.03

827.98 1495 390.44 450.32 724.42 200.00

831.09 1500 397.13 450.56 720.81 200.37

834.03 1505 403.47 450.28 721.48 200.00

836.54 1510 408.15 451.23 724.47 200.64

% 838.33 1515 409.29 456.35 730.19 202.12

842.83 1520 422.09 450.40 721.21 200.00

844.41 1525 421.73 457.78 729.56 200.14

847.60 1530 429.29 456.07 728.20 200.47

851.31 1535 439.78 450.37 726.31 200.01

854.77 1540 447.52 450.32 720.09 200.03

857.14 1545 449.97 456.00 721.49 200.08

858.87 1550 449.73 464.28 726.03 201.45

860.38 1555 449.98 469.43 735.01 204.39

862.92 1560 449.98 482.99 733.27 200.12

864.93 1565 449.98 492.74 735.68 200.31

867.07 1570 449.98 503.75 735.30 200.27

continued
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" Table XI continued

868.61 1575 449.95 509.38 751.41 200.02

871.20 1580 450.00 524.54 739.16 200.34

873.10 1585 449.98 533.53 746.20 200.36

874.19 1590 449.98 534.88 772.94 202.43

876.57 1595 449.98 547.93 772.99 200.31

878.47 1600 449.99 556.52 783.66 200.22

880.76 1605 449.97 569.31 782.06 200.24

883.62 1610 449.98 588.61 760.89 200.19

884.32 1615 449.98 584.25 809.42 202.98

885.76 1620 449.98 588.42 829.18 207.62

888.59 1625 449.98 605.85 825.34 203.04

891.68 1630 449.89 628.21 803.24 200.03

886.08 1635 449.99 574.87 852.24 282.03

895.77 1640 449.99 646.63 835.78 200.57

898.28 1645 449.96 662.83 830.71 200.70

900.67 1650 449.98 676.19 838.94 200.09

903.28 1655 449.99 694.81 826.61 200.59

904.98 1660 449.99 702.35 836.39 209.36

905.97 1665 449.98 703.39 847.57 227.58

910.13 1670 449:98 731.02 866.00 206.81

910.13 1675 449.98 731.02 866.00 206.81

913.53 1680 449.97 741.14 908.44 231.17

914.25 1685 450.00 736.25 932.99 257.05

912.59 1690 449.99 730.61 854.22 309.40

918.45 1695 449.99 745.65 1003.14 285.49

917.32 1700 449.98 749.40 908.52 323.19

920.36 1705 449.97 747.56 1010.79 336.56

921.27 1710 449.99 749.51 1007.47 361.80

919.99 1715 449.98 745.02 949.79 399.31

920.62 1720 450.00 749.79 923.95 423.48
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TABLE XII

SUMT: Maximum CV given AF

Max CV AF W I  W 2  W3  W4

1157.03 1440 305.07 458.14 784.02 201.15

1157.90 1445 309.22 465.75 759.82 206.86

1158.70 1450 310.47 470.11 761.75 211.15

1159.54 1455 310.33 468.82 794.98 211.38

1160.71 1460 314.70 470.24 804.15 207.80

1162.22 1465 317.56 483.48 786.11 201.47

1163.16 1470 317.63 483.01 818.51 201.20

1163.59 1475 318.86 485.61 814.87 213.69

1165.36 1480 323.39 499.68 794.19 202.81

1166.34 1485 325.21 497.28 825.53 202.18

1167.59 1490 324.46 509.41 822.75 201.10

1168.66 1495 327.98 512.84 825.46 201.35

1169.66 1500 336.48 508.32 829.77 201.29

1170.85 1505 336.82 516.96 832.78 201.06

1171.97 1510 339.98 521.66 833.94 201.27

1173.39 1515 331.14 545.48 834.94 201.13

1174.09 1520 347.00 528.89 836.61 204.07

1175.85 1525 331.89 563.27 841.72 201.11

1176.55 1530 354.52 538.08 840.45 201.47

1177.26 1535 346.41 553.92 844.65 214.32

1179.63 1540 335.71 588.97 843.71 201.28

1179.22 1545 364.23 545.91 843.35 216.70

1182.43 1550 330.94 614.37 861.49 201.38

1183.72 1555 334.84 618.73 865.49 201.00

1185.29 1560 329.17 636.46 877.90 201.44

1185.34 1565 341.27 623.89 862.55 217.12
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Table XII continued

1186.87 1570 347.46 625.62 872.48 212.30

1188.43 1575 364.29 619.93 855.41 201.20

1190.64 1580 344.51 660.93 874.08 201.29

1190.45 1585 387.94 602.55 861.10 201.48

1191.17 1590 396.31 602.60 856.67 200.08

1195.90 1595 336.58 706.61 910.03 200.52

1197.38 1600 342.57 706.17 927.26 200.93

1199.17 1605 341.86 719.82 936.12 201.36

1201.69 1610 339.21 730.43 991.08 200.92

1201.03 1615 369.62 704.46 906.78 201.14

1204.96 1620 347.77 745.36 993.11 201.11

1205.27 1625 361.87 745.66 926.02 200.80

1206.77 1630 373.00 731.89 968.28 202.38

1207.57 1635 384.88 735.04 918.18 200.99

1209.94 1640 390.98 723.08 1008.67 202.00

1212.01 1645 390.98 743.71 995.71 200.74

1213.84 1650 396.73 749.46 1001.79 200.09

1215.48 1655 405.39 747.86 1015.02 200.05

1216.79 1660 413.96 749.80 1003.54 200.24

1218.21 1665 422.19 749.66 1005.76 201.92

1220.05 1670 430.96 749.81 1017.72 200.07

1219.98 1675 438.21 749.96 975.28 212.82

1221.39 1680 449.53 749.63 961.53 209.07

1222.87 1685 445.90 749.41 102-.35 235.69

1220.88 1690 447.89 749.93 94E.86 268.78

1222.85 1695 447.86 749.95 101.35 285.78

1223.06 1700 446.64 749.92 1023.81 315.50
1219.17 1705 449.31 749.92 880.35 355.75

1222.55 1710 446.30 749.94 1005.20 372.56

1224.09 1715 449.86 749.96 1035.14 387.36

1223.22 1720 449.18 749.94 1008.83 417.94
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