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Abstract

The maxima/minima of one response surface (measure of
effectiveness, MOE) is calculated when the domain is con-
strained by’ consecutive levels (aspirations) of a second
response surface. Thus, the optimal trade-off between the
two responses (MOE's) is displayed over an entire operating
domain, providing new and unique capabilities to evaluate
options.

The study applies this development to a strategic
force structure modeled in a linear programming model. The
methodology determines the optimal force siructure to maxi-
mize one MOE given the aspiration levels of the other MOE.
Therefore, the decision maker has the optimal force struc-
tures to achieve a range of demands/aspirations and also
maximize the second goal.

The methodology has applications to multicriteria
optimization when relatively.large numbers of domain con-
trol variable combinations are involved. This technique
may be a tool to design the optimal weapon system charac-
teristics or choose the optimal mix of weapon types to
fulfill dual mission requirements.

This work is an extension of previous work which used
response surfaces, experimental design, and mathematical
programming to conduct multi-dimensional, sensitivity

analysis and weapon system comparisons.
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CHAPTER ONE

The Research Problem

Introduction
N This study is concerned with a system's optimal
structure of operation when determined by multiple measures
v of merit. Its purpose is to offer a methodology to aid the
multicriteri; decision process when involved in a relatively
large number of alternatives. In particular, it considers
a system's optimization of one measure of merit (response)
in comparison to a second measure of merit (response). The
research is an extension of Palmer W. Smith's work (29,30)
; in application of response surface methodology to analytical
: math modeling.
This first chapter introduces the problem and outlines
the study to follow. A brief background and literature re-
i view lends further insight to the problem and offers some
recommended references for the various methodologies to be
studied. With this foundation, the chapter then delineates
the problem statement and research objectives. Finally, the
scope of the research example is defined. Following the
study, the appendices list the model being considered for
generating the surfaces, the regression design, the regres-
sion analysis, and various samples of computer code employed.
This study involves many disciplines, i.e., research

design, response surface methodology, rf ,ression analysis,

Lagrange multipliers, and non-linear n +h programming. In
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view of this, it is beyond the scope of this paper to
attempt an in-depth review of all these disciplines. There-
fore, the literature review is primarily concerned with an
overview of the current methodologies for multicriteria
decision making. The remainder of the literature review is
intended more as a descriptive definition of the methodol-
ogies that are employed in the study. References to these
different methodologies will be made throughout the text and

are used during the research.

Background

A system's effectiveness is often determined by more
than one measure of merit. These measures of merit are
usually determined by the objectives of the system's de-
signer and are not necessarily of the same numeric scale or
units of measure (non-commensurate). For instance, a
system's commensurate goals may be to increase retail sales
and decrease overhead costs. Since both these measures are
monetary, the two goals can be combined to a single measure
of merit, profit. If, however, the two goals were increased
retail sales and decreased production time, then the measure
of merit would be money and time (non-commensurate’.
Obviously, system policies which increase the prior and de-

crease the latter are sought by the decision maker. “~owever,

the actual relati hips between the various goals their
respective optimi .Oon can, at times, be vague ani eliusive
for the decision . 2r. Often, the analyst atterrts to

2




i

o T

Y Y

e o &

By A

%

PR

AN

LI -

IPRAPR -3y

Tets
b ."'

Lg X X

5 A

K

AR,

b isaaenes

e s

B>

|

i 2 g B R R At L ey | Bt LA A S AL Riaks 'Wwﬁrm'ﬁwmﬂ

transform the different measures of merit (MOE's) into a
common unit such as dollars. The transformation, although
appealing, may raise some serious questions. Ignizio (15:
375) exemplifies this problem by considering the dilemma of
minimizing highway funding and also minimizing highway in-
juries and deaths. Few decision makers will want the task
of trading off dollars for lives. Since a common unit is
not always attainable, then the system's operation is
characterized by more than one measure of effectiveness
(MOE). A vector of multiple MOE's is applied. Each vector
element is the level of attainment for one of the decision
maker's (system's) objectives, i.e., an MOE. Once the com-
bination of possible MOE's is determined over the operating
range, the decision maker must still make a trade-off or a

decision as to which is the optimal solution.

Literature Review

In 1light of the decision maker's problem, several
methodologies have been developed to aid in his thought
process. Some of the current methodologies for multiple
comparisons are multiple goal programming (MGP), multiple
attribute utility theory (MAUT), and multiple objectives
optimization theory (MOOT).

The first technique, multiple goal programming, is an
extension of linear programming and is presented in

Ignizio's text (15). Essentially, multiple goal programming

sequentially solves a series of linear programs. However,
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instead of a single objective function and setting hard
values on the right-hand-side of the constraint set, MGP
uses deviational variables in the cbjective function and
also the constraint set. Therefore, the sequential linear
program attempts to minimize the distance or range of the
deviational variables from their right-hand-side values
(aspiration levels) (15:376). With this technique, the MGP
allows the analyst to sequentially go through a series of
lexographically ordered goals and either minimize or
maximize the deviation from the aspiration level set in
the right-hand-side value. This technique avoids many of
the linear programming cases of infeasibility. Since each
MGP objective is made of deviational variables, the algo-
rithm often finds how "close" one can come to the tradi-
tional linear programming optimal solution eveﬁ though the
actual aspiration level (right-hand-side) may not be
attainable.

However, a disadvantage in the use of the MGP algo-
rithm may occur if the goals require a mix of deviational
variables from different right-hand-side values. In this
case, the goal in question requires the deviational vari-
ables to be commensurate in both common units of measure
and equal numeric scale. If a single goal contains non-
commensurate deviational variables, the algorithm will
treat the unit change in one as equal to a unit change in

the other. Thus, if a right-hand-side range for one de-




viational variable were in terms of tenths, whereas a
second were in terms of hundreds, the MGP algorithm would
be unable to distinguish the deviation of tenths versus
we that of hundreds. Likewise, it would equally weight the
value between unalike measures of effectiveness such as
time and money.
Thus, the MGP solution is a lexographic ordering of the

goals based on the deviations from the goals' aspiration

4
G
- -

levels, It does, as stated earlier, yield a solution even

Y

2

if all goals are not attained. This MGP solution is the

R
#a

"best/optimal" given the order of goals and the relative

( . . . . )
g deviation from the unattained goals. See Ignizio (15:16)
ﬁg for further multiple goal programming discussion.

The next two techniques, MAUT and MOOT, were developed.
to handle multicriteria decision theory problems. The
first, MAUT, is used to elicit from the decision maker his
preference function in the trade-off between the system's
measures of effectiveness over the range of possible opera-

tion. This preference function applies its criteria weight

to each alternative policy and then searches for the al-
Ury ternative with the greatest weighted value. This approach
) requires a good deal of elicitation time with the decision

maker and also a calculation of each alternative.

‘% . . ‘ . .
1 The second approach, MOOT, is a multiple optimization
%@ method which attempts to identify a non-dominated solution
Ny

- set (NDSS). The NDSS is the set of solutions or alterna-
o

o

A

5 ‘ ' SCATSESTERE I SO P A ST L .




tives that cannot be bettered by any other alternatives.

This dominance is based on an alternative's set of measures
of effectiveness (MOE's). Each alternative's performance
is evaluated by its MOE's. Thus, associated with each al-
ternative, Ai' is a set or vector of MOE's, vy (11:1). The
non-dominated solution set is determined, then, by a com-
parison between each alternative's MOE vector (Vi)' When
compared to another MOE vector, each element of the non-
dominated vector must be greater than or equal to the com-
pared vector and at least one of the non-dominated vector
elements must be greater than its respective counterpart in
the compared vector. Unlike MAUT, this technique of non-
dominance does not require the development of an exacting
trade-off between the individual measures of merit which
characterize the system's operation. Therefore, the NDSS is
an optimal set of alternatives (Aj) with an MOE vector
better than any other alternative MOE vector. This solution
set is also referred to as a pareto-optimal frontier. Both
Keeney and Raiffa (18) and Zeleny (34) offer texts for
studying multicriteria decision theory. Dr. Dewispelare's
paper (11) offers an excellent review of multicriteria
decision theory and also presents a combined MOOT non-
dominated solution set and MAUT preference function approach
to give the optimal recommendation to the decision maker.

In either case, MOOT or MAUT, the techniques require

an appreciable time with the decision maker and also require

AN LY O



his arbitrary choice or trade-off between the measures of
merit. Both approaches require a calculation be made upon
each possible alternative which, in the case of a very
complex or large problem, may take a considerable amount of
time,

Besides these three major areas (MGP, MAUT, and MOOT),
the literature review also covers a technique employed by
the chemical engineering industry. In 1960, Lind, Golden,
and Hickman (21) demonstrated the use of a research design

to develop a response surface for yield (MOE 1) based on the

mix of three possible chemicals (independent domain vari-
ibﬂ ables). Their second MOE, cost, was then calculated for the
§, possible combinations of their independent variables. Thus,
o two response surfaces representing their two measures of
effectivenéss were created. Each surface was then reduced

into iso-value contour lines, similar to those used in typo-

graphy to define elevations. To then optimize the systen,

the two sets of contours were then overlaid to find the

-

. XS
W A

maximum ratio of yield to costs.

In 1981, Khuri and Conlon (19) showed the optimization
of several responses (MOE's) Ey use of a regression poly-
nomial. In this case, the authors show that they can

generate a global "best" solution over multiple response

surfaces of the same degree over the same operating domain.

This "best" solution is generated from the individual

maxima of each response. A distance measure, r, is devised
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to move from the original starting point of the individual

maxima to a common point of the highest estimated value.

This distance function is essentially the distance moved

S0

35 _ o .

§\$ from a maximum divided by the variance of said estimate.
T

* 0

% Given this distance measure, the analyst may then find the

global "best" solution for the multiple MOE's of equal

ks

f&%%&é;

e P

Y

degree response surfaces.

Thus far, the literature review has focused on the

i%% area of global optimization. Now the attention is shifted
;3 to offering the decision maker a range of optimal solutions
R for a system's operating domain.
ET P. W. Smith (29,30) has shown, through the use of
'fé orthogonal design and multivariate regression, the ability
i to accurately predict the increase in a measure of effective-
%g ness due to each of the operating domain elements. He
iiﬁ demonstrates the optimal rate of MOE increase per domain
h element in the orthogonal/independent regression coefficients.’
Eé; Likewise, a pairwise trade-off between domain elements is
va determined by the ratio of the respective independent re-
- gression coefficients. Thus, Smith's regression equation
N may be used to predict which domain element(s) should be
f§ used in the achievement of some aspiration level set by the
i: decision maker. This solves the problem of having to
3;2 totally rerun a set of linear programs and thus gives the
;?E analyst a very powerful tool if the aspiration level
Tf should change for the decision maker. This regression
AN
N
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prediction will be good as long as it is used within the
origiqal domain limit of the research design. Further use
of Smith's study and the extension to this research will be
defined in Chapter Two for the proposed methodology.

To adequately review the proposed methodology requires
preliminary knowledge of several disciplines such as re-
sponse surface methodology, multiple regression, and re-
search design. Although each is a subject in itself, a
brief definition and overview are offered as follows.

Response Surface Methodology. Response surface method-

ology was originally proposed by G.E.P. Box and K.B. Wilson
in their article in the Journal of the Royal Statistical
Society in 1951. Since then, it has been well covered in
many texts such as Cochran and Cox (6) and Myers (22). The
concept of the response surface is as the name says, a sur-
face such as that of the earth. We may think of a surface
as responses or measures of effectiveness that are a
function of their domain elements. In the analogy to the
earth's surface, we can think of elevation as being the
coordinates, latitude and longitude. Thus, the elevation
changes as we move across the domain. This surface, then,
may be expressed in a functional form where the dependent
variable, r, is the measure of effectiveness and is a
function of the independent variables, dk’ where k runs

from 1 through n, n being the dimension of the domain and

n+l being the dimension of the entire surface. Eq (1) is
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representative of this functional relationship.
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o

BN = .
- ;1.!‘\" rij Rl(dl’ dzl -o.dn) (l)
,$}§ where i = the type of response considered and j = the domain

N location (i.e., j = (d;, dy, ...d ) ). Eq (1) also demon-

Iy

3y

strates the response surface's functional relationship for
"i" multiple response surfaces over the same domain. Thus,
as in our original example, the earth elevation is a measure
of merit that would be response one over the domain of lati-
tude and longitude. Likewise, a second response such as the
average annual rainfall could also be mapped over the
earth's longitude and latitude. This would create a vector
of two measures of effectiveness, elevation and average
rainfall, as a function of the same domain. This is the
same as MOOT's vector of measures of effectiveness used for

the non-dominated solution set determination. Figure la is

representative of a typical response surface where we have
two domain elements, dl and d2' Figure la is the geometric
representation of a three-dimensional space, and Figure lb
collapses that figure into iso-value, two-dimensional con-
tour lines similar to those used in typography. Each con-
tour line is representative of Eq (1) where the value of r
is set at a constant. Thus, we can think of each contour

as v o L3 and so on. The examples shown are no greater
than three-dimensional to allow for graphic illustration.
Obviously, however, from Eq (1), we can see that a response

surface can be of any dimension depending on the number of

10
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Fig 1. Example Response Surface

variables in our domain. Thus, the purpose of the response
surface is to help us visualize, as it were, the functional
relationship between our measure of effectiveness and the
independent variables in our operating domain. There are

also numerous techniques, such as gradient search, for ex-

e

ploring the surface in search of stationary (critical)
- points. These techniques and further discussion of re-
sponse surfaces are best covered in Myers' text (22). Next

we consider the research design.

Ex 11
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Research Pesign. The research design is a powerful

sampling technique used by the experimenter to try to ap-
proximate the response surface mentioned above. The number
of possible permutations of our domain set can grow very
quickly as the range of each domain element increases. Thus,
an attempt to evaluate each point may prove tedious if not
impossible in some cases. For example, if a three-element
domain were to have respective ranges of 10, 15, and 20
units each, then the number of permutations for all com-
kinations would exceed some 3,600 samples. Although this
number seems large, consider if the ranges were increased to
20, 40, and 50 respectively. Rather than 3,696 samples,
43,911 samples would be required. Obviously, total enumera-
tion of the surface becomes impossible as the problem's
domain range increases. Thus, the analyst must approximate
the surface by sampling different points across it. If the
surface is known to be flat, the analyst would simply sample
each of the corner points and then, connecting these corners,
be able to completely define the surface in question. If,

on the other hand, the surface is not flat or unknown, this |
sampling of strictly the corner points is insufficient to

describe the changing curvature over the surfaces.

The theory of research design is well documented in
numerous texts (6,14,22,32) and also in numerous articles
such as Box, et al (3,4). In general, the design is

chosen by the experimenter based on some prior knowledge
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of the response surface or some assumption about it. Thus,
a 2K design is chosen if the experimenter believes there are
no second order terms describing the surface. If, upon
testing, his data lacks goodness of fit, the researcher must
re-evaluate his original assumption about the curvature of
the surface and choose a smaller region to examine or per-
haps a higher corder model. The 3k design allows for second
order terms in the characteristic eguation of the surface
and thus would be the next choice. This characteristic
equaticn is the regression of the surface and is discussed
in the next definitiocn.

Thus, the research design is nothing more than a choice
in the number and location (domain elements' levels) of
samples to be taken. The power of the design is its ability
to represent the experimental region in as few samples as
possible. This power of design is developed by choosing
the domain levels (sample locations) such that, when put
into an array, the resultant matrix is orthogonal. 1In this
design matrix, each row is a sample and each column is one
of the domain elements at its particular level for that
sample. Thus, if we had a three-element domain, and ten
samples, we would have a ten-row by three-column matrix for
our design. Appendix B shows the design matrix applied in
this study. The true power of the orthogonal design matrix
is in its ability to generate independent coefficients in

the general linear regression model mentioned bkelow. ToO
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ﬁ{ accomplish this, our design matrix (D) is crthogonal; thus,
W”: the transpose times the original matrix equals a diagonal
ss; matrix, D'D = A+I. There are many published designs which
z&g accomplish this (2,3,4, and 8). This study is primarily
N concerned with a 3% fractional factorial, rotatable design
5f§ introduced by Box and Behnken (2). This design will be

ésg further discussed in Chapter Two of our methodology.

L Multiple Regression. As mentioned earlier, response
igi surface is merely a geometric means tc helpr interpret the

é 3 functional relationship shown in Eq (1). The researcher
ﬁ; chooses the experimental design in hopes of achieving a
iiﬁ cgood characteristic sampling of the surface in question.
;%% This characteristic sampling is then expressed in a multiple

regression equation. The multiple regression equaticn is a

i& ‘simplified polynomial expression of a functional relation-
;:ﬁ ship depicted in Eg (l1). The accuracy of this polynomial
V:; lies in its ability to predict points on the surface.

%g Thus, the goodness of fit is determined by the resicdual
?ﬂ% error between the polynomial prediction and that of the
b

T:i actual experimental value. This study is primarily con-
i%? cerned with linear regression mcdels rather than the

ﬁﬁ; curvilinear regression. DeGroot (9:5-10) and Devore

‘;-
',,

(10:422) bothgive excellent theoretical descriptions of

N

|

least square estimates and their use in regression
estimates. Likewise, Kleinbaum (20:136) shows regression

application to fitting response surfaces. Eq (2) is a

.o
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L
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515\ polynomial approximation for the functional relationship

ALY
y$5 in Eq (1). This equation can also be expressed as in
;w{j Eq (3) in matrix form, where r is a column vector of re- !
e ;
AN . . .

kgd sponses, B 1s the vector of coefficients, and D is the de-

'A.".'i

: sign matrix as described previously. In minimizing the

oo error term, e, in Eq (3), it has been shown in many texts

A4

T, (9:513, 22:29) that the maximum likelihood estimator which

! minimizes the variance is B, as shown in Eq (4). The power

elld 2 2

Py TR = P, * 00

;:2:2 I =By * Bydy *+ Bydy ...Bpdy *+ Bydy + Byyd,

1N +B d%+ B .d,d, ... +B d d

K nn n 127172 (n)(n-1)"n"n -~ 1 (2)
K

ng r = D*B + e ) (3)
@#g B = (D'D) Der (4)
5.0y

of the orthogonal design is again shown in the solution of

B estimate. As stated earlier, the power of the D'D term,

Lt which collapses into a diagonal identity matrix, is to create
the orthogonal polynomials which, in turn, cause each of the
coefficients in the B vector to be independent from one
another (31:72). The power and use of this independence
between the regression coefficients is brought up and used

in the methodology and referenced in Smith's work also.

Finally, the error term in the regression equation is a

o~
.

>
3 .
o ¥

measure of our lack of ability to predict the true value on

-

N
e
3

%
B

the response surface. This error term is composed of two

LS Th

.

]

components, response variance and model bias. Wonnacott
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(33:21) gives an excellent exargle - < e errcr 2ivision
between bklas and variarnce. Imn thls st.uw, and vwra- of
Smith, a deterministic mcdel 1s used ani, &S Such, there

is no stochastic variance in our error term. Thus, designs
which minimize the bias induced by the model would be of
optimal choice for this study. Karson (16,17) shows the
criteria for a minimum bias, two-dimensional design to be
orthogonality, rotatability, and equal spacing. However,
there is no three-level design which meets the criteria for
minimizing only bias. The Box and Behnken design (2)
chosen for this study is designed to reduce both measure-
ment variance and model bias.

The last three topics, response surfaces, research de-
sign, and regression analysis, have each been briefly re-
viewed iﬁ comparative isolation from one another. 1In
actuality, response surface methodology incorporates all
three topics simultaneously. This is evidenced by the in-
ter-relationship between the design level and the order of
the regression equation. The three-way interdependence is
completed by the regression equation's error term which
measures the adequacy of thé researcher's estimate of the
surface.

The reader should see Myers' "Response Surface

Methodology" (22) for a combined, in-depth coverage of

these sub jects.
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Problem Statement

There is a conceptual problem for a system's decision
maker between nultiple objectives, their respective measures
of merit (MOE's), and the optimal system structure/operation
to achieve these respective goals. Methodologies mentioned
in the literature review aid the decision maker in this
process but still depend heavily upon:

(i) The decision maker's MOE trade-off weight;

(ii) The use of commensurate goals; and

(iii) The calculation of each alternative to de-

termine the non-dominated solution set.
Although these problems may not all arise in a particular
study, they become more prevalent as the range and number
of the domain elementé increase. This is exemplified by

optimal mix problems mentioned earlier.

Research Obijectives

Find the optimal relationship between a system's set
of measures of effectiveness over a relatively large
operating domain.

Subob jectives:

(1) Generate the surfaces for comparison over the
same domain;

(ii) Apply a research design to estimate the
surfaces in regression equations;

(iii) Choose response surface, ry, to be constrained

I.' W -.'vf\"‘{ o ‘..i".-..\.. f\('...‘-:\‘. y
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by the second response surface, rs. Represent

R

-8

B the constraining surface, Yoy in iso-value con-

o

}-. tour lines;

v . .

:». (iv) Determine the constrained maxima of r, for

- each of the r, contours;

‘Wf (v) Map the constrained maxima function for ryi and

Sg (vi) Reverse the roles of r, and r, and show the

’d.

1 constrained maxima function for r,. ;
!

ﬁg Scope

2§ The purpose of this study is to optimally compare mul-
o tiple response surfaces over the same operating domain.

;\: Thus, the development of a highly sophisticated model to
:§3 generate such surfaces is not deemed necessary. This study
e uses a deterministic, aggregated, arsenal exchange model to
:ﬁ look at the problem of optimal force mix in strategic

;& planning. This model is discussed further in the method-

. ology, Chapter Two, and again in Appendix A.

E; Since the true functional relationship, Eq (1), is not

S

known, this study assumes a second order relationship

«.!

between the MOE and the domain variables. This decision was

s

43 based on the prior work of Smith (30) on similar systems.
f% Smith found the damage expectancy measure of effectiveness
;5 to be monotonically increasing and a second order regression
B polynomial gave excellent results. In view of this pricor

d knowledge, this research will start by using a second




order regression and three-level design.

General Methodology

(i) Represent one surface in a set of iso-value
constraint lines and determine the interval
for those lines;
(ii) Find the constrained maxima of rq subject to
the iso-constraint of r,; and
(iii) Map the constrained maximum function in terms
of a constraining response.
The next chapter expands the methodology and discusses
the specific theory involved. Chapter Three will then apply
this proposed methodology to an example. The analysis

A section of the methodology is covered in Chapter Four.
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N CHAPTER TWO
2
‘§ﬁ Methodology
7 |
8
;‘ Introduction
N?
fﬁ This chapter details the methodology for the comparison
. and optimization for one response surface to another. It
;ﬁ builds on the general methodology described in Chapter One
3
Tt and expands on those areas of the literature review which
N
’ are pertinent to the proposed methodology.
r:'?g! . . .
gﬂ This methodology consists of 12 steps. Each step is
}
%; presented both in general format and specific application
4
for Chapter Three. Prior to the actual stepwise presenta-
'éi tion, however, an overview of the theoretical basis is
A
o4 covered. This overview serves as the "big picture" for the
step-by-step optimization process.
“‘- .‘é
%. Theory
R The theoretical basis for this study is best described
:éi by Lagrange multipliers. Protter (27:176) demonstrates the
] Q"
'; use of Lagrange multipliers to determine the constrained
ol maxima of one function (RO) over the domain, di' subject to i
0 the constraints of other functions (Rl' R2"") over the '
a%} same domain. Eqgs (5) through (9) demonstrate the general
2 methodology for Lagrange multipliers where RO (di) is the
A
ff, objective to be optimized subject to the requirements of
Y
Y
A
.
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optimize r, = Ro(di)

subject to Rl(di) =0

The Lagrange multipliers are introduced to form a new func-
tion Ré(di’ Aj) where di is the original domain and A‘j is

the multiplier for the th constraint.

optimize Ré(di' Aj) = Ro(di) + A j . Rj(di)

Thus, the problem is now to optimize the new function

Ré(di' A j)' This is accomplished by simultaneously solving

the set of partial derivatives of R) set equal to 0.

solve Ré/a di O for all i's

R(’)/a)‘j 0 for all j's

The solution to this set of equations is the set of critical
(stationary) points for Ry subject to Rj‘ Protter (27:178)
gives several numeric examples of this technique.

Chapter One's literature review describes the response
surface graphically in Figure 1, and functionally in Eq (1).
The review also describes the researcher's approximation
for the response surface functional relationship in a multi-
variable regression polynomial, Eq (2). The combination of
these techniques with Lagrange multiplier optimization lays
the foundation for this study.

Figure 2a depicts the surface to be optimized, Ro(di)'

Figure 2b depicts the constraint surface Rl(dl) in both the

(5)

(6)

(7)

(8)
(9)
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n+l problem dimension and collapsed into contour lines in
the n dimensional domain. Thus, each constraint contour
is a subset of the total surface Rl(di) with a constant
value r1 . Therefore, the surface R1 (di) is represented

J
as a set of contour lines in the operating domain. Eq (10)
depicts this set of jr constraint contours. The number

1
of contours required to characterize the surface is de-

pendent on the surface complexity.

r = Rl(di)

1.
J

The question of contour interval criteria is determined in
step 9 of the Methodology presentation. Figures 2a and 2b
pictorially define the two measures of merit (MOE) which are
to be optimized one to the other. Figure 2c combines

Figure 2a's surface, Ro(di)' and Figure 2b's contours,

r = Rl(di)' The final step is to find a maximum value of

1.
]
RO(di) when constrained to each contour, r, = Rl(di)' Thus,

J
there are j sets of Lagrange multiplier constrained maxima

problems to be solved, Eq (1l1).

optimize each r, = R4 (d;, Aj) = Ry(dy) + A i (Ry(d;)
J

The solution set (rO , r. ) depicts the optimal Ro(di) for

1
J
a given Rl(di) value over the entire operating domain (di)'

L S |

(19)

(11)

This theoretical presentation must be further constrained

23
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for most applications. The theory allows the range of

each domain element, di' to be unlimited. In practical
application, the domain is limited to some experimental/
operating range. In fact, it is this range which defines the
research design and, therefore, limits the area to which the
regression polynomial may be applied (6:336). This problem
is exemplified in the case of the polynomials approximating
each surface being second order. In this case, the Lagrange
optimization will seek to reach the global critical point.
This point, although mathematically correct, may lie out-
side the design region under consideration. Therefore, the
upper and lower bounds for each domain element must be in-
cluded in the problem, Eq (12). These additional con-

straints require a Lagrange multiplier for each bound.

u; €45 <1,

Thus, for n domain elements, an additional 2+n A 's must be
included in the optimization function, Ré(di, Aj’ Aui,);li).
The methodology to solve this new inequality con-
strained optimization function is shown in Hadley & Whitin's
text (13:436). Essentially, the process involves a pairwise
comparison between inequality constraints and the original
problem to determine which constraints are active. An
active constraint is one which actively restricts the optimal

domain of the original problem. These active constraints are

set to equalities and the problem is resolved. The inactive

24
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constraints are less restrictive than the active ones and
therefore can be ignored. "The effort required to solve the
problem increases rapidly with the number of [inequality]
constraints," (13:437). Due to this increased effort, an
alternative approach is also offered in step 10 of the

methodology.

In conclusion, this section has shown the theoretical
basis for the proposed methodology. Figure 2 has shown the
two MOE's (ro, rl) in question as response surfaces (RO, Rl)
and collapsed the constraining surface into iso-value con-
straint lines (ri_ = Rl(di) ) in the operating domain.
Finally, the constrained maxima of the optimization surface
subject to each contour is found using Lagrange multiplier
techniques. It is the solution set of j maximized, ordered
pairs thch depict the optimal trade-off between the two
surfaces. The remainder of this chapter is dedicated to

the actual step-by-step process to achieve this optimization.

Stepwise Methodology

Figure 3 is a flowchart of the proposed methodology.
It serves as an outline to this chapter and the entire study.
The first three steps are systems analysis techniques and the
remaining steps are optimization specific. Obviously,
these first three steps cannot summarize the many systems
analysis texts. However, this study is primarily concerned

with an optimization technique; these three steps are in-

25

...........

WL, W WA S A YRS




o]
o

L W
-
-7

s
I

AP
-

Wi

1

P

" L od
h o)

B A
TRAR
o

o e

i

e Yo %!
(XXX
PR : ':';':

oy ‘

At DGR IO MR SR g A O A e T A

l. Problem Definition/Statenment

2. Variable Selection

3. Operational Limits of Control/
Domain Variables

4. Data Source/Generator

5. Initial Surface Estimate

6. Research Design Selection

7. Global Regression Estimate for
Each Surface

8. Regression Error

9, Contour Interval Determination

10. Constrained Maxima per Contour

11. Map Solution Set

12. Analysis

Fig 3. Methodology Flow Chart
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3 \:
;:H: cluded to re-emphasize their importance in a complete re-
o
Y search project.
1\ﬁ Step 1 - Problem Definition. The problem statement
P A Y
»:n‘:h.
Eot e acts as the keystone and focus for the research. In de-
N fining the research problem, Quade (28:69) offers a series
A of questions to hélp the analyst interrogate the system's
Sty
LﬁH designers/decision makers. The purpose is to construct as
ZN
N » ) + ) . . ) .
N lucid and specific a task definition as possible. One
N question bears reiteration throughout the study:
Lo
3 ﬁ "Is it the right problem anyway? Might it
& j not be just a manifestation or a symptom of a
it much larger or deeper problem? Would it be
s better to tackle this larger problem if there
Ny is one?" (Quade 28:69)
2N
‘3&5 As the research progresses, this question must be reiterated
A
g 4, . D . C e
) since greater problem insight may require a redefinition of
f'; the research task. It is this iterative process which the
SN
fv, flowchart, Figure 3, depicts with arrows returning to step
22
one.
RN ”.
’:: For Chapter Three's example, the problem is to find
N
sﬁg the optimal mix of a given set of strategic force types to
A YA
— fulfill two missions. The first mission is to maximize the
j;j counterforce (CF) capability given the force must meet the
A
. & o .
vﬁi countervalue (CV) requirements. The second mission reverses
WY . . . .
-— the roles of the first and considers the maximization of CV
f?E given the required level of CF.
W,
AN . } .
TN Step 2 - Variable Selection. The first step focuses
[
. the research on either the system's inability to reach an
g
o
“~
NN 27
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aspiration level (goal) or a new goal of that system. Thus,
step two begins by determining the system's objectives and
their respective goals/aspiration levels set by the decision
maker. Each goal's level of achievement is a measure of
effectiveness and becomes the problem's dependent variable.
The independent/control variables are defined by the domain
in which the system is operating. One of the major tasks of
the analyst will be to determine which of the domain elements
have a dynamic effect upon the measure of effectiveness under
consideration. Those that are correlated to the measures of
effectiveness will become the controcl variables, while

those that are not will be treated as constants. If, later
in the research, data does not appear to be reacting properly,
it may be caused by an actual control variable that was
thought to be a constant and left out of the domain. An
alternative perspective is to redefine the total system in
terms of the model being assumed. This model consists of
strictly the MOE's under consideration and those factors
believed to be the primary cause of MOE changes. Thus, all
other elements of the domain now become part of the environ-
ment in which this model operates.

The next section discusses the problems associated with
scenario dependence in the selection of variables and their
respective ranges.

Chapter Three's measures of effectiveness are levels

of counterforce damage and countervalue damage as determined

28
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iﬁg by the aggregate arsenal exchange model. The control

3$. variables are the amount of each type of weapon available.
?*T: For this example, four out of five weapons are ranged and
%zi: one weapon is held constant. The number of variables not
‘;ﬁ included as control variables for this study is large when

considering the variables of the linear programming model,

$ , each of the right-hand-side values, and each of the equa-
if: tions in the matrix. Those variables not included in the
}}‘ study are discussed more thorouchly in steps four and five.
o

ég Step 3 - Operational Limits of Variables. This step
fi; defines the range of each control variable. Step two's

1?; variable selection combined with these ranges define the
;§' system for the research study and also the environment or
N scenario under which it will operate. Quade (28:193) dis-
,j; cusses the importance of this scenario/environment to the
S% overall analysis. He discusses how an analysis may be

E; biased by the choice of scenario. Likewise, a well chosen
32‘ scenario may aid in the robustness of the study to changes
oK)

‘ég from the initial problem statement in step one. Therefore,
é} the research should iterate back to step one to insure that
;tf the problem definition and research objective can be de-
23; fined using the choice of variables in step two and the

ii‘ range of the control variables in step three.

;2% For the example in Chapter Three, the range of the

}?g control variables is first selected to start at zero and

16

run to the upper limits of 450, 750, 1040, and 424 for each

29
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5 of the four weapons systems respectively. As we will see
XN

" P . . :

o from the example, the lower limits of this problem were

changed to 300, 450, 720, and 200 respectively, after

initial analysis.

2
BN
1‘3 Step 4 - Data Source/Generator. In any research, the
- question of what resources will be available to the analyst
?3 must be addressed early in the study. These resources will
AN
l?‘ include the personnel available, computer-time, the ex-
;ﬁ:_ perimental or previous studies' data, and existing model
f% availability. It will be from these resources that the data
;g for analysis will be generated. The choice between re-
5’ sources will be determined by both the cost and time limita-
i_ tion upon the study and also the level of detail and variance
o
N: acceptable for the solution.
Fé For this research, the model is aideterministic,
”3 aggregated arsenal exchange model. The model uses linear

‘ programming to solve for the cptimum use of weapons using
o damage expectancy. The model considers ten types of targets
Eg and five types of weapons. The objective function seeks to
;? maximize the damage expectancy given the effectiveness of
\E each type of weapon on each type of target and the capability
§§ to strike a target twice with the same weapon type. Further
;f details of the model used to generate the data are available
T% in Appendix A.
Is Since a simplex algorithm is generating each data
?: point, the response surface 1is actually a surface of all
X
;é 30
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optimal points. Thus, for each n-tuple of the domain
variables, there is a wide range of possible damage ex-
pectancy which could be considered, but the response
surface only contains the optimal DE from each n-tuple of
weapons.

As previously mentioned, the choice of control variable
(weapens availability) is not inclusive of all possible
variables in the linear programming (LP) algorithm.
Therefore, the true functional relationship between the
damage expectancy and the domain is not known due to the
complexity of the LP algorithm. The LP domain consists of
the study's control variables, the other right-hand-side
values, all tableau variables, the number and type of equa-
tions in the matrix, and finally the objective function.
Chapter One, Eq (1), depicts this actual functional rela-
tionship of the response over its LP domain. This actual
relationship is unknown to the researcher and, therefore,
the assumed regression model is chosen to estimate the
relationship. In the next chapter's research example, only
the control variables (right-hand-side weapon availability)
are varied. Thus, the example regression approximates the
true functional relationship of optimal DE with only the
four weapons availability variables. This is, however, a
good estimation of the surface, since changes across it will
be a function of only those variables which are changing

in the overall LP algorithm, In this case, the four out of
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five weapons chosen for the study are the control vari-
ables., The effect of the constant fifth weapon is displaved
in the BO coefficient of the regression polynomial.

Thus, a no-variance surface of optimal DE points is
generated from the LP arsenal model and estimated in the
four-variable regression model.

Step 5 - Initial Surface Estimation. The researcher's

initial estimate for the regression model of the response
surface should be determined by some prior Knowledge of the
actual system or a similar system. If the system's change
in response is unknown, then either a simple, first order
model, which may have a poor fit, is chosen, or a higher
order model, which may require unnecessary sampling, is
chosen.

For this study, prior knowledge of similar systems
was available from Smith and Mellichamp's work (30). They
found, in stﬁdying a similar model, that a second order
regression polynomial gave an excellent prediction of the
damage expectancy caused in a five-weapon arsenal. Based
on this prior knowledge, the study estimates the example
arsenal will respond in a similar manner and the damage
expectancy will be a monotonically increasing function
which may require a second order regression polynomial.

Step 6 - Research Design Selection. Chapter One

displays the power of the research design as a sampling

tool to gather data points for use in the regression
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estimate. This step now defines the criteria to choose a
design. Smith and Mellichamp (30) displayed the analytic
advantage of independent co-efficients for the comparative
trade-off between control variables with respect to the MOE.
Therefore, one of the selection criteria will be orthogonality.

A further criterion is brought about by the use of a
deterministic model. As shown in Chapter One, the de-
terministic model has no measurement variance and, thus, a
primary criterion now becomes that of minimizing the bias.
Unfortunately, Karson's minimum bias criteria is only shown
for a two-level design (17) and no minimum bias, only 3k
designs, exist. Hence, from the previous step we will need
a design which will allow for a second order equation and
orthogonality.

This criterion is satisfied by Box and Behnken's
fractional factorial 3K design (2). This 3K design samples
points from each corner of a cube and each point of a star
which is co~located with the surface of the cube and at the
center of the cube. Appendix B shows this research design
and the value of each of the measures of effectiveness for
each sample point. The design is given in two formats,
coded and uncoded. The coded format has transformed the
range of each domain variable from upper and lower limits
to plus and minus one respectively, and zero for the mid-
point. Eq (13) shows this transformation where x is the

mid-point in the range between the upper and lower limit
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and d is the actual range. Thus, for the example in
Chapter Three, the first domain variable, Wy, ranges from

300 to 450. For this case, X is 375 and d is 150.

coded x = (x - x)/4d/2 (13)

Using Eq (13), we see that the lower limit of 300 is trans-

s

E$5 formed to a -1 and the upper limit of 450 to +1 and the mid-
s

N point to zero. The transformed design simplifies checking
G for the orthogonality of the research design. Likewise, if
T

» gt
"0

said regression algorithm does not have an automatic co-

i)

variance computing tecnnique, the transformed matrix may be

-
8

fi; used.

3%? For example, in Chapter Three, the power of this design
R can be displayed in the number of samples which will be

“:? required for the combinations of the ranges of each of the
i2§ domain variables. If a full enumeration of the surface were
ﬁ?é done, it would require greater than three billion samples.
;#B However, the example research design uses 25 points. It

should be noted that the original Box and Behnken design

)
S

::: required an additional two repetitions on the center point
J?? for degrees of freedom to estimate the variance error.

:té However, this repetition of the center point is not re-
LAY quired since this example uses a deterministic model with
j f only bias error.
$§¢ Step 7 - Global Regression Estimate. Egq (1) shows the
%f: functional relationship betwen the measure of effectiveness
A\ $

2N
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-;, and its control variables. This step now estimates that
N
f’ functional relationship in a regression polynomial using
A
:? the sampled points from the design in step six. There are
:f many computer regression packages available to do this.
= For the case in point, the Statistical Package for the
i:j Social Sciences (SPSS) (25:320) is used to calculate the
P2 regression equation. A stepwise regression option is
Ay
e -,
’ chosen, thus, allowing the researcher to follow the intro-
- duction of each independent cocefficient and re-check for

this independence. A sample of the regression output is
found in Appendix C. It should be noted that since we are
,é\ using a deterministic model, the F statistic is meaningless
except as a ratio of the sum of squares explained to the

. sum of squares unexplained, which may be an indicator of

l"

; the bias error.

-
;$3 The normal statistical inferences drawn from the F

L]

- statistic cannot be used in this deterministic regression
i
oy ' ) . . .
A5 model. The reason lies in the basic assumption that there
-
;?j is a distribution of y for each value of x in the regression
j. (33:15). Thus, the assumption can be thought of as a con-
ﬁ;: ditional probability, P(Yi xi). However, with the use of a
h .'.?

;{ deterministic model, this conditional probability equals

- one. Therefore, the error term in our generalized regres-
'&2 sion equation is not a measure of both the measurement

. variance and the model bias but, rather, only the bias due
‘¢ to the assumed model and its inability to fit the actual
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response surface. Since the F statistic is a ratio of the
variance explained by the regression to the unexplained
variance, we see that with the use of this deterministic
model, the unexplained variance is actually a measure of

the lack of fit of our regression polynomial to the surface
divided by the degrees of freedom, Eq (14). Since the model
has no variance in measurement, it would be wrong to make
statistical inferences as to the sample population from the
F statistic.

. (%, - D%/p
F Var, Explained i

Var, ined ~
ar, Unexplaine (3}i - yi)z/(n—p)

p = # of regression variables

Step 8 - Regression Error. This step tests the re-

gression polynomial's goodness -of fit for each surface. As
stated earlier, the normal F statistical inferencés cannot
be used. Therefore, the primary criteria will be residual
error between the predicted and actual values. The residual
error predicted for each of the design points is included in
the SPSS output. To increase the confidence in the regres-
sion equation, a random sampling of residual error is also
taken.

Step 9 - Contour Interval Determination. As mentioned

in Chapter One, we must represent our constraining surface
as a set of iso-value contour lines. The criteria as to how

many lines or the interval between these lines lies pri-~

o ‘.'.',.-. ", .f‘f.‘t'.‘d".:'..ﬂ'..f - .'f.'f‘q-\.-\(.' \
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.}ﬂ marily in the last two steps. If the error is small in our
i}ﬂ prediction from our regression polynomial, then the in-

!

\}f terval between our contour lines may, likewise, be small. i
%3 The purpose of the contour is to show the change in slope i
5$Q of the surface. Thus, if we are unable to distinguish a

Q{ change in slope, there is no point in having a contour at
}és that point in the projection of the surface. Using this

‘?; logic, we can look at the standard deviation of the error
»gb from steps seven and eight above. If we assume that we will
v:% be unable to distinguish a change in response unless it is
;; outside of the error of the estimate, then we would not

\

'§ want a contour interval any closer than that of the error.
\2 Thus, an interval criteria can be established based on the
tﬁ standard deviation of residual error. Sincé the regression
i*$ has only bias error of a least square fit of the design

ﬂé data, the bias should be a normal distribution. Using

. this assumption, a range of two standard deviations of

'ﬁ: residual error would be a minimum interval for selection.
f: OQutside this range, one would be assured that at least 97%
o™,

1:‘ of the time, the model will be able to estimate a change in
‘;: the response surface that was not caused by the regression
(3 error. This criteria then sets a minimum value for the

:f contour interval. The maximum interval must be determined
:5 by the complexity of the surface and the degree of

;a accuracy required in the solution.

I: For the example in Chapter Three, the standard devia-
Cg
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tional errors were so small that the interval was arbitrar-

i1ly chosen at a value larger than the minimum that could be

allowed. This arbitrary choice was based on an estimate

1:; believed to be a sufficient number of samples to adequately
:ﬁ define the trade-off between the two measures of effective-
5 ness.

‘ég Step 10 - Constrained Maxima Determinaticn. As de-

N

" scribed earlier in the chapter, Lagrange multipliers can now
f: determine the maximum of response RO’ as compared to each

.;i contour line found in the preceding step. However, it was
ab)

: also shown that the Lagrange multiplier technique could

W\ . become tedious with the number of multipliers required for

5% the inequality constraints. Thus, with the number of con-
X4 straints and no computer libraries readily available to
[E solve the Lagrange technique, an alternative optimization
'NE technique was found. This technique is based on the work of
N Fiacco and McCormick (12) in nonlinear programming. The
i: actual computer library that is used was developed by

b LN

é‘ Mylander (23). This algorithm finds the minimum of either
Ex a linear or nonlinear, multivariate objective function,
fﬁ subject to linear or nonlinear equality and inequality

o

,g constraints. The algorithm uses Fiacco and McCormick's

modified objective function which is formulated by using
the original objective function and a penalty function.

It then starts an iterative process in choosing new

R o s

estimates to minimize this new objective function. The

Rl W Wt T4 N
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routine estimates each new iterative answer by an extra-
polation process. It then tests for convergence. In
seeking its next iterative solution, it also uses a
gradient search routine to speed the process. This is a
powerful algorithm which solves Fiacco and McCormick's
function and also simultaneously solves a dual problem
based on Lagrange's technique. For further discussion of
the theory, see Chapter 8 of Fiacco and McCormick (12) and
also Appendix D, a description of the SUMT library as
composed by Captain R. M. Floyd for the Air Force
Institute of Technology.

Step 11 - Map Solution Set. The solution set consists

of the maximum points for each constraint contour,

(max i rl) The trade-off between the two measures of

j°
effectiveness may be displayed graphically by plotting the
solution pairs. The slope of this graph yields the trade-
off of marginal return for the maximum of Ty given a value
of r,. Likewise, the n-tuples which created this optimal
set and which also come from the SUMT program can be plotted,
allowing a visual picture of the correlation between each

domain variable and its use in this trade-off.

Step 12 - Analysis. This final step is the interpreta-

tion of the data that is gathered in the past eleven steps.
The data mapping of step eleven, when compared to the in-
dependent regression coefficients of each weapon system,

will give insight into the effectiveness of each control
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. measures of merit, and the optimal trade-off in roth.
» . Chapter Four of this study will show the comparisons and
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insights through this technique.
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CHAPTER THREE

Application Example

Introduction

This chapter lends numeric reality to Chapter Two's
proposed methodology. The application is a generic mili-
tary force structure problem similar to that studied by
P. W. Smith and J. Mellichamp (30). All but the last two
steps of the methodology will be addressed in this chapter.
The data mapping and analysis are postponed until Chapter
Four. The chapter presentation closely follows the actual
chronological order of the research.

As stated earlier, this generic force structure prob-
lem is similar to that studied by Smith and Mellichamp.
Their research shows the individual effectiveness of each
weapon system when used in concert with the remaining
arsenal available. Their study uses a single measure of
effectiveness (MOE), damage expectancy (DE). Their use of
independent regression coefficients shows both the in-
cremental MOE value of each weapon and the marginal return
of one weapon to another. Building on Smith and Mellichamp's
work, this study considers a similar force and then compares
the optimal trade-off between two missions (MOE's),
counterforce (CF) and countervalue (CV). The optimization

of this trade-off is shown in the following methodology

application.
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Problem Definition

The decision maker must determine the best mix of
forces to fulfill tweo missions. The first is a counter-
force (CF) mission and the second is a countervalue (CV)
mission. The force structure must be optimized so that it
has the flexibility to perform one mission or the other.
The alternatives for the structure are the possible com-
binations of five different weapon systems' respective
ranges of values. The fifth weapon system is set at a
fixed level of 360 warheads prior to this analysis. The
decision maker's problem is to determine the optimal force
structure for a range of different CV demands (mission
requirements) and for the remaining four weapon systems.

The generic weapon characteristics are shown in
Table I. The weapons (Wi) may be thought of as representa-
tive components of an arsenal. For instance, Wy and Wo
may be thought of as two different types of ICBM's and Ws

may be an SLBM component. For this problem, w. is assumed

5
to be introduced at a constant level of 360 warheads. The
two characteristics, yield and circular error probable
(CEP), define the level of destructive force on a target.
CEP is the radius within which the guidance of the system
will land the warhead fifty percent of the time. CEP and

weapon yield are given in thousands of feet and megatons

respectively.
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\‘.‘
xﬁ Weapon System Characteristics
,
\
:.‘ o T r .
_.: i W, Wy W, g
“
{\ CEP .200 .150 . 240 .600 .200
-
‘i Warheads/Weapon 1 3 10 4 6
5 Yield 2.0 .17 .05 .35 .20
a Reliability .85 .85 .85 .85 .85
7,
b
;4 Daily Alert .85 .85 .85 .33 .33
Max Warheads/Type 450 750 1040 424 360
" 4
g
v
-
e The target base defines the remainder of the system.
- Table II shows the characteristics of the targets. There
fﬁ are six targets in the CF class and four in the CV class.
N
o The CF type targets may be representative of such things

as ICBM silos, military bases, and C3I facilities. Likewise,

)

the CV type targets may be representative of such things

L

as storage or industrial facilities. The vulnerability

e ey

b
<

1

number in Table II is the connection between the target and

'J the weapon.
> _
% The vulnerability number (VNTK) consists of five
e alpha numeric characters (1:34). The first two numeric
l: characters represent the target's level of hardness to its
»3 most vulnerable kill mechanism. The alpha character identi-
 ~ fies the kill mechanism most effective against that target.
s
)
2
I 43
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TABLE II

Target Base Characteristics

Vulnerability |

Type Number Number Diameter

cvl 140 24Q0 .56

Cv2 215 13P1 .49

Cv3 430 31P06 .00

Ccv4 520 2300 .31

CF1 450 35P7 .00

CF2 1000 52P8 .00

CF3 200 39P0 .00

CF4 20 22P1 .36

CF5 150 11P0 .00

CFro 100 1001 .79
Finally, the last number shows the target's susceptibility
to increased duration of the particular effect. The linear
programming arsenal exchange model requires these VNTK's to
be converted into single-shot probability of kill (SSPk) co-
efficients for the objective functions. The arsenal exchange
work of Robert Bunnell and Richard Takacs (5) required the

computer coding of this conversion from VNTK to SSPy.. With
their kind help, this program has been employed to compute

the SSPk's for this study. Further explanation of the
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target characteristics and weapons characteristics used

in this aggregated arsenal exchange model are given in

Appendix A.

Variable Selection

As mentioned in the previous chapter, there are many
possible variables in the arsenal exchange linear programming
model. For this study, we are primarily concerned with the
objective function value and the right-hand-side value for
the number of weapons available. The ability to destroy the
target base in question is measured by the objective function
value. Since two separate missions are considered, CF and
CV, the measure of effectiveness is the level of destruction
to each of the respective target bases. This study will
refer to each MOE as CF or CVlrespectively, where each is a
measure of the objective function for that particular model.
Likewise, for consideration of a combined mission of both
CF and CV, this study will refer to this as all forces (AF).

The control variables will be the five weapon systems

which compose the proposed arsenal. Of these five systems,

the first four will be varied in the study and, therefore,
included in the regression analysis. The fifth system is
constant and will be shown in the regression section to be
in the B, term of the pclynomial. Similarly, all the other
variables in the LP which remain constant do not have to

be included in the control variables. This selection of

control variables thus assumes that the target bkase will
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remain constant, otherwise the change in target base would
likewise have to be considered in the regression analysis
and also in the sampling from the LP model. This variable
selection, then, leads to the four weapons as control

variables and the two measures of merit, CF and CV.

Control Variable Limits

The range of each control variable is determined by
the scenario or the study under consideration. For this
example, weapon five is introduced and maintained at a con-
stant level of 60 weapons or 360 warheads. The remaining
four weapons are assumed to have previously determined
upper limits shown in Table I. Since all but one of the
weapon systems has multiple warheads, the Wi variables are
in terms of warheads rather than actual weapon numbers.

The lower bounds for these variables are dependent on the
range/degree of conflict to be considered. Initially, the
lower limits are set at zero. However, after the regression
error was determined in step eight, the lower limits were
re-evaluated and set as shown in Table III. This revision

is further explained in step eight, Regression Error.

Data Source/Generation

The data for this generic problem are generated from
the aggregated arsenal exchange model, which is detailed in

Appendix A. The choice of this particular model was not
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TABLE III

.
DA
‘s %

»

Control Variables' Ranges

’w,,

s

nLon

Weapon Ranges (Warheads)

3027,
» P

W

Initial Revised

L
P 4

‘-, .ntv.,,l‘ L

450

IN
=
IA

450 300 <

LN
O (@)
A
A
A

W 750 450 750

IN
IA

=
IN

y
(@]
A

W 1040 720 1040

T4l
IA
=
w
A

424 200

P
(@)
IN

W 424

IN
IN

=
A

W 360 W 360

“
Ol

Palala)

-t

critical to the methodology example; therefore, a simplified

version was chosen.

-, -
T e 0 d

ﬁ The model attempts to maximize the DE from the weapons
available on the given target data base. The separate

. missions are modeled by using either the CF or the CV

“ components in the objective function. Thus, each mission
has the same LP tableau except for the change in objective

N function. The two measures of effectiveness, CV and CF,

e are determined by the two different objective functions

respectively. Since all other LP components remain con-

P,

stant, the changes in the respective MOE are due solely to

alam

changes in the right-hand-side control variables. Thus,

the two MOE variables are dependent upon the combinations
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é of independent variables, Wi levels. The function of the

;} independent variables, Wi is the simplex algorithm, the

;. objective value of which is the MOE in question.

g Initial Surface Estimation

* As mentioned earlier, the initial surface estimation

i is based on the study of Smith and Mellichamp (30). In

l that study, they found the DE to be a monotonically in-

? creasing function of the force structure. Thus, the study

'

? assumes that the contour of each surface, CF and CV, will

% be similar to that of the combined mission which Smith and

¥ Mellichamp studied. 1In light of this, a second order re-

52 gression model is assumed.

X

S Research Design Selection

;, Chapter Two shows the criteria for selection of a re-

g search design. In particular, Smith and Mellichamp's

{: analysis (30) relies on independent coefficients which

b require an orthogonal design. A minimum bias design is

? optimal for the deterministic model but, as previously

fﬁ mentioned, there are none avallable for greater than two

5 dimensions. Thus, the criteria of rotatability, eguispacing,
:E and orthogonality were chosen to minimize the variance and

; bias. To fulfill these criteria, the Box and Behnken's

& fractional factorial 3¥ design was chosen (2). The original i
S design calls for 27 samples. This design was modified to 25
- samples because the model is deterministic. The difference

as i
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Research Design and Sampled Values
Design Points (Coded) CF cv AF
450( 1) 750( 1) 880( 0) 312( 0)| 932.67 1190.02 1736.46
450( 1) 450(-1) 880( 0) 312( 0)| 868.40 1159.39 1618.73
300(-1) 750( L) 880( 0) 312( 0) | 862.12 1170.66 1652.86
300(-1) 450(-1) 880( 0) 312( 0) | 797.85 1139.65 1504.04
375( 0) 600( 0) 1040( 1) 424( 1) | 873.84 1165.56 1677.36
375( 0) 600( 0) 1040( 1) 200(-1)| 868.13 1165.56 1645.10
375( 0) 600{ 0) 720(-1) 424( 1) | 865.41 1164.70 1626.09
375( 0) 600( 0) 720(-1) 200(-1)}839.61 1164.31 1585.47
450( 1) 600( 0) 880( 0) 424( 1) ] 904.92 1174.87 1701.47
450( 1) 600( 0) 880( 0) 200(-1) | 899.15 1174.81 1668.05
300(-1) 600( O) 880( O) 424( 1) | 834.40 1153.39 1602.27
300(-1) 600( 0) 880( 0) 200(-1)}828.60 1155.32 1567.22
375( 0) 750( 1) 1040( 1) 312( 0) | 901.59 1180.83 1717.52
375( 0) 750( 1) 720(-1) 312( 0) | 893.14 1179.81 1673.61
375( 0) 450(-1) 1040( 1) 312( 0) | 837.39 1150.28 1594.231
375( 0) 450(-1) 720(-1) 312( O) | 828.87 1148.42 1526.83
450( 1) 600( 0) 1040( 1) 3212( 0) | 906.24 1175.30 1708.49
450( 1) 600( 0) 720(-1) 312( 0) {[897.79 1174.28 1657.15
300(-1) 600( 0) 1040( 1) 312( 0) |835.76 1155.32 i612.06
300(-1) 600( 0) 720(-1) 312( 0) [827.24 1153.96 1554.73
375( 0) 750( 1) 880( O) 424( 1) |900.26 1180 40 1710.86
375( 0) 7S50( 1) 880( 0) 200(-1) | 894.50 1180.. "681.32
375( 0) 450(-1) B80( O) 424( 1) |836.03 1149.8% 385.12
375( 0) 450(-1) 880( 0) 200(-1) }830.23 1149.79 .340.05
375( 0) 600( 0) 880(.0) 312( 0) | 877.77 1165.13 1 35.88
49
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is in the repetition of the center point which is required
for degrees of freedom in an experiment which has no vari-
ance. Table IV displays this design for the revised limits
in both its coded and uncoded version, as described in
Chapter Two. The coded values are shown in parentheses

next to their uncoded counterparts. This table alsoc shows
the sample values of each MOE (CV, CF, AF) for these re-
spective design points. A further description of the design

is in Appendix B.

Global Regression Estimate

The above-mentioned design yields 25 data points for
use in a regression analysis. Each regression looks at the
MOE regressed on the four control variables, the cross
products of these variables and the square terms of these
variables, Eq (15).

2
MOE (wi) BO + Blwl + B2W2 + B3w3 + B4w4 + Bllwl

2 2 2 . T
+ B22W2 + B33W3 + B44W4 + B12wl Wz

+ BygWy * Wy + By Wy o Wy + By, » Wy

+ B24W2 . W4 + B34W3 . W4

The computer regression library chosen was the
Statistical Package for the Social Sciences (SPSS) with a
stepwise option (25:330). An example of a full regression
is shown in Appendix C. Likewise, the final steps of each

of the other regressions is also given in this Appendix.
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The choice of the stepwise option allows the researcher to

follow the introduction of each coefficient and display its
independence from the other coefficients. Egs (16), (17),
and (18) are the respective regression polynomials using
the initial limits shown in Table III. When applying the
revised limits' design points, the regression polynomials

are found to be Egs (19), (20), and (21) respectively.

AF = 302.022 + O.91918Wl + 0.94721W, + 0.87583W3

2 2

+ O.82253W4 - O.OOOOSW1 - 0.00014W, -0.00027wW

3

- 0.00018W42 - 0.00011W,W

1V - 0.0000ZWlW

3 - O.OOOOZWlW4

- 0.00019W, W

oWy - O.OOOZZWZW4 - O.OOO49W3W

4

CF = 370.603 + 0.7024W, + 0.4473W, + 0.1813W3 + 0.1604W

1 2 4
2 2 2 .2
- 0.00016W1 - 0.000135W2 - O.OOOO7W3 - O.OOOOBW4
- O.OOO.’?OWlW2 - O.OOOOZW1W3 - O.OOOO4W1W4 - 0.00003W2W3
- O.OOOO4W2W4 - 0.00013W3W4
CV = 279.659 + 1.23O7W1 + 1.0376W2 + 0.5759W3 + 0.7330w4
2 2 2 2
- 0.00035Wl - 0.00035W2 - 0.00016W3 - 0.00036W4

- O.OOO7OW1W2 - O.OOO46W1W3 - O.OOO37W1W4 - O.OOO36W2W3
- 0.00026W2W4 - O.OOO4OW3W4
51
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?jx AF = 323.747508 + l.357ll9w1 + 1.335273w2 + 0.5225785w3
¢:¢~_'
ff' + O.4350739w4 - 0.0002055w12 - O.0002804w22 - O.OOOO657w32
L
‘bﬁ - 0.0000239W 2. 0.0006909W. W, - 0.0001248W,W
N 4 172 173
2%

- - - - -
200 0.0000485w1w4 0.0002518w2w3 O.0002311w2w4
i}é -~ 0.0001166w3w4 (19)
~$€ CF = 504.542366 + 0.4715619wl + 0.2955107W, + 0.0288839w3

: + 0.0278609W, + 0.0000003W, % - 0.0000671W,% - 0.0000006H
e
IS 2
L%~ % - - - -
é?\ O.OOOOOOSW4 0.0000015w1w3 O.OOOOOO9w1w4

4 - O.OOOOOO7W2N3 - O.OOOOOO6W2W4 - 0.0000013w3w4 (20)
nA .

ﬂ& CV = 1027.039 + 0.1658222W; + 0.1198222w2 + O.O3O7574w3

.’J'
b

+ 0.0019064w4 + 0000054w42 - 0.0000153W12 - O.OOOOO4OW22

XY
f:? - 0.0000075W 2 . 0.0000129W.W, - 0.0000175W.W
03 3 172 173

g
N - -

b, 0.0000087w2W3 O.OOOOOS4W3W4 (21)
!; The first SPSS regression of the revised limits rounded

{<

% the ccefficients to the fourth decimal place. Thus, it
;-{. dropped most of the second order terms from the CF equation
"»'\'
'53 and all of the second order and cross terms from the CV

f&f equation. A second regression on the revised samples was
f:f run to allow the seven decimal places in Egs (19), (20), and
LS
A:Z (21). These small coefficients are probably due to the

i
k%! smaller region and slow change of surface contour in this

;,’ region. The next section considers the goodness of fit of
e
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these polynomials to the actual surfaces and explains the

reason for revised area of consideration.

Regression Error

At this point in the research, it was determined that
the initial regression polynomials lacked the degree of
accuracy sought in the solution. This can be seen by look-
ing at the standard deviation of the residual error of each
regression. The standard deviations were 17.4, 7.9, and
20.3 for all force, counterforce, and countervalue re-
spectively. Since this error was thought to be unacceptable,
further error random sampling was not accomplished.

In accordance with the methodology, the study returned
to steps six and three of the methodology. In step six,
Research Design Selection, the Box and Behnken design was
reviewed for its orthogonality and all data points were re-
checked as to accuracy. This review showed the area of
consideration to be too large for the second order response
surface. Thus, a redefinition of the problem scenario or
level cf conflict was considered. The redefinition found
the more realistic ranging of variables listed in Table IV.
Therefore, the revised lower limits were applied in step
six, a new sampling taken, and the methodology proceeded
as designed.

The error for the second set of regression equations,
Egs (19), (20), and (21), was found to be much smaller.

Table V summarizes the regression error for the CF, CV, and

53
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AF surfaces respectively. The table shows the high degree
of accuracy with the revised control variable limits. The
CF and CV estimates are accurate to within a single unit
for even three standard deviations of error. This small

error is significant in the next section.

TABLE V

Regression Error Summary

Design S.D. Random Mean Random S.D.
Surface Of Error Error of Error
CF 0.0131 0.223 0.204
Ccv 0.1569 0.234 0.222
AF 1.0066 1.233 1.154

Contour Interval Determination

Chapter Two determined the criteria for minimum in-
terval to be no closer than two standard deviations of
error. From the above-mentioned regression error, the
minimum interval for counterforce and countervalue con-
strained surfaces was determined to be no less than one unit.
In the case of AF, it was determined that it would be no
less than three units. In actual fact, it was not neces-
sary to utilize such small steps to show the optimal
trade-off between surfaces. A step of two units was more
than sufficient for counterforce and countervalue and five

units for all force.
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Constrained Maxima Determination

As described in the previous chapter, the SUMT program
was used to optimize and find the maximum of one surface
constrained to the contours of another. For the planned
analysis in the next chapter, three cases of optimization
are looked at. The first two cases consider the optimiza-
tion of CF given a value of CV and CV given a value of CF.
Both these cases use simplified, regression polynomials
described in the next chapter. The third case compares
the difference between the use of simplified and detailed

regression polynomials. The data for these cases are con-

tained in Appendix D.

Conclusion

This chapter has applied the proposed methodology to
a generic, military force structure problem. The final
results are compiled in Appendices D and E. The next

chapter provides an analysis of these results.
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CHAPTER FOUR

Analysis

Introduction

This chapter presents the study's analysis utilizing
Chapter Three's example data. The analysis goals are twofold.
One is to develop insight into the optimization process be-
tween the measures of effectiveness (MOE's) and their re-
spective domain elements (n-tuples) in achieving the con-
strained maxima. The second goal is to offer the decision
maker this analysis in a usable format. Prior to the
analysis, redefinition of Chapter Three's works and some
simplifying assumptions are made.

In Chapter Three, the MOE response surface is generated
from a linear programming optimization model. Thus, each
point on the surface represents the optimal use of its re-
spective domain elements (n-tuple). Since each point is an
optimal, the surface displays the optimal MOE for the
system's entire range of domain elements. Therefore, the
regression polynomials in Chapter Three (Egs (19), (20), and
(21) ) represent the regression estimates for the optimal
employment of the domain elements to achieve their re-
spective MOE. 1In terms of the example, each equation re-
presents the optimal force structure to achieve its re-
spective mission (MOE). Using the above-mentioned poly-
nomial definitions, the SUMT program selects from a dorain

subset (force), already optimally designed to fulfill one
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MOE (mission), the best mixture of domain elements (weapon
systems,wi) to fulfill a second MOE (mission). In the
analysis, the first goal is to determine the cause for the
optimal trade-off between these MOE's and the domain n-
tuples which generate this trade-off. To aid this discus-
sion of constrained maxima (optimal trade-off), the regres-
sion polynomials are simplified by rounding the coefficients
to four decimals.

These simplified polynomials, Egs (19a), (20a), and

(21a), display three major points of discussion in the

chapter.
AF = 323.7475 + 1.3571%W, - 0.0002*W ° - 0.0007*W W,

- 0.0001*W Wy + 1.3353*W, - 0.0003*¥,°

~ 0.0003*W,W; = 0.0002*W W, + 0.5226%W,

- 0.0001*W,% - 0.0001*W W, + 0.4351%W,, (1oa)
CF = 504.542 + 0.4716%W, + 0.2955%W, - 0.301*W,°

+ 0.0289*W, + 0.0279*W, (20a)

Ccv

1027.039 + 0.1658*W, + 0.1198*W, + 0.0308*W

1 2 3

*
+ 0.0019 W4 (21a)

First, they are used to show a graphic representation of
the optimization process of an MOE surface constrained to

a single contour; thus, giving some pictorial validity
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by demonstrating graphically the results of SUMT. Second,
the simplified regression equations aid in the analysis of
the MOE's optimal trade-off and the priority process for
entering domain variables. Finally, it is hoped that while
these equations serve to improve the quality of discussion,
they also serve to exemplify possible pitfalls in rounding
the regression coefficients.

The chapter presentation begins with the above-
mentioned graphic representation of the optimizaton process.
This is accomplished through a series of MOE contour plots;
one type MOE overlaid upon another type MOE. Following the
graphic optimization, the data from Chapter Three is mapped
and analyzed over the range of domain elements. The
chapter concludes with a summary of the methodology's ad-

vantages to the decision maker.

Graphic Optimization

This section graphically displays the SUMT optimization
of CF for a given CV contour. The simplified regression
polynomials, Egs (20a) and (2la), are used in this section
of the analysis.

In Chapter Three, CF was optimized for CV values of 1154
to 1224 in two unit steps. These CV lower and upper limits
are determined by the lower and upper limits of the domain
elements. The standard deviation of error for CV was found
to be 0.222. Thus, the minimal interval criteria was evalu-

ted to be one unit. This close an interval was not
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necessary to adequately represent the trade-off between CF
and CV. Thus, the contour interval of two units was chosen.
Appendix E contains a full listing of the example MOE com-
rarisons and their respective domain elements. A review of
these data shows W, is constant at 450 in the region of

CVv = 1176. Therefore, the graphic example uses CV = 1176

and W, = 450.

2
In this experimental region (CV = 1176, W, = 450), the
contour plots consist of variables wl, w3, w4, and the MOE.

This requires representation of four dimensions on a two-
dimensional plot. This is accomplished through multiple
contours.

The comparison data plots for CF and CV are generated
by a computer program which iterates each feasible combina-
tion of control variables for each regression polynomial.
These data were then plotted and are availabl. in Appendix E.
Several of the plots in Appendix E have been reduced in
scale and are used in combined overlays throughout the re-
mainder of the chapter.

Figure 4 represents the counterforce contour value of
85C and also 860 (dashed line) with ordinate W4 and ab-
scissa Wae Each diagonal line across the graph is a con-
tour of both CF and weapon cone. As such, each is identified

by the pair of numbers in parentheses. The first is the

MOE and the second 1is the wl value.
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Figure 5 represents the countervalue of 1176 with the
various diagonal lines due to the stepwise increase in Wy
This representation of five-space in two-dimensional plots
is similar to that used by Smith and Mellichamp (30).

If Figures 4 and 5 are combined, the intersection of
common Wl value contours reveals the area of common domain

between surfaces. Thus, the graphic comparison optimiza-

tion becomes a search for the maximum CF value with a

common w1 value on both graphs. Figure 6 is the overlay of

Figures 4 and 5.
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The figure displays a commonality in the 1176 CV contour and

the 850 CF contour; however, there is no common domain point(s)
for the 860 CF contours and the contours of 1176 CV. There-
fore, Figure 6 has bounded the graphic optimization search
between CF values of 850 and 860.

Figures 7 and 8 have similarly overlaid the CV plot of
1176 against the CF plots of 854 and 856 respectively.
Figure 7 shows the common points for values of wl at 435
and 430. Figure 8 has no common points. However, Figure 8
does show the closest point to a common wl value of 435.

This point is just off the Wy axis and is marked "Z."

W
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Fig 7. Overlay Plot of CV = 1176 and CF = 854
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Fig 8. Overlay Plot of CV = 1176 and CF = 856

Graphically, the optimal point lies between the CF
values of 854 and 856, and the W, value lies between 430
and 435. This graphic solution compares very well with
that predicted by the SUMT optimization in Appendix E.

The SUMT operating domain is 434.9, 450, 720, and 400.3 for
Wy through Wy respectively. The graphic solutions between
Figures 7 and 8 show this to be the operating domain upon
which the plots converge. Likewise, SUMT's predicted
maximum CF of 855.36 very closely approximates the "Z"

point just off the axis of the CF 856 plot.
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Therefore, the overlay contour plots in Appendix E
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have graphically validated the optimization process used

in the SUMT algorithm. This plot overlay technique will
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be applied again in the next sections.
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The raw data are presented in Appendix E and are presented
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here, graphically, in Figures 9 and 10. These graphs are

L/

250
(WIS

J‘S

shown in larger scale in Appendix E.

These graphs and most of the analysis are based on the
simplified regression polynomials, Egs (20a) and (2la). The
rounding error for the terms less than four decimal places
is initially assumed small and simply added into the re-
gression error. The danger of this assumption is discussed
in the closing of the analysis.

Figure 9 represents the maximum countervalue available
given a counterforce value requirement. Counterforce is
displayed on the left, vertical axis, and countervalue on
the horizontal axis. This graph also displays the optimal

weapons combination to achieve this maximum CF for a given

b Cv. The number of weapons is given along the right-
b '.-"r';
ﬁ:' vertical axis. For example, given a CV of 1190, the maxi-
}iﬁ murn CF is approximately 880. Likewise, the respective

weapons set is 450, 536, 757, and 393. At the beginning of
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the graph, weapons two and three are approximately constant
at their lower limits of 450 and 720 respectively. Weapon
one is steadily increasing to its maximum limit of 450.
Weapon one reaches this upper limit at approximately 1180
CV. Interpretation of this figure is left for the analysis
in the next section. Figure 10 is similar to Figure 9, but
the roles of CV and CF are reversed. Thus, the graph shows
the maximum CV available for a given CF. 1In this case,
weapon one remains constant at the beginning of the graph
while weapon two is steadily increasing towards its upper
limit. At approximately 850 CF, weapon one begins increas-
ing as weapon two has reached its limit. Both these figures

are compared and discussed in the following section.

Analysis

This section is concerned with three areas. First, an
explanation of the trade-off between MOE's and what causes
the changes in this trade-off. Second, the determination
of the causes for the force structure changes and, in
particular, the apparent randomness of w3 and w4 values on
the graphs. Finally, the danger involved in using the
rounded-off, simplified regression equations rather than
the full polynomials is discussed.

Figure 9 shows the relative trade-off between maxi-
mum CF and CV as approximately two regions. Both these
regions are approximately linear. The first region

runs from a CV value of approximately 1154 to 1178.
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1R

-
?ﬁﬁ _ by a straight-line function of slope, 2.9. Likewise, the
{.
A second region runs approximately from 1180 to 1206 CV and
3;5 is closely approximated by a straight-line of slope, 1.52.

e

<2, These approximate slopes may be accurately calculated by the r
oy ratio of the total derivatives of each of the regression
o,
*f% polynomials, Egs (20a) and (2la). These total derivatives
~"'J

W are shown in Egs (22) and (23) with their respective examples
:ft* in Egs (22a) and (23a).
R,

5
..-; dCF = (aCF/awl)*dwl + (aCF/awZ)*dwz + (aCF/aw3)*dw3

A4

e AT

- + (8CF/oW,) *dw, (22)
N
0N
9509 dCF = (.4716)*dW; + ((.2955)~(.002)*W,)*dW, + (.0289)*dW,
1y

7 *

<?t% + (.0279) dw4 (22a)
.«,’."-:
{T‘fi}‘ dcv = (8CV/aW, ) *aw,
s i (23)
o

) = * * * * 31y

0N dcv (.1658) dw1 + (.1198) dw2 + (.0308) dw3 + (.0019) di, (23a)
230N

.‘.'..

. Thus, the trade-off between MOE's is equal to the slope.
25

h‘b‘
{J: dMOEl/dMOEz.

From Chapter Three's data (Appendix E), the ratio of

. = o
s éed
oy

N CF to CV changes, ACF/ACV, may be compared to the total
Ty derivative's ratio. For example, from a CV of 1162 to a
AN
e,
e CV of 1168, the ACF/ACV = 2.8817, which compares to the
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wds
;i ratio of total derivatives of CF to CV of 2.8766,
;? (dCF/dCVv = 2.8766). Likewise, the second region from CV
Lx 1180 to 1206 has a slope, ACF/ACV, equal to 1.53, which com-
‘;§ pares to the total derivative ratio of 1.51.
-~ Since the change in weapons (dwi) is the same for both
~§ the CF and CV total derivatives, the ratio of each co-
ff; efficient may be compared separately if the other dwW,'s are
?ﬁ relatively small. Thus, in this case, the dwl coefficient
;\$ equals .4716/.1658 which equals 2.84. In the region 1162 CV
:Sé to 1168 CV (Figure 9), only w1 is actively changing. Thus,
:r the trade-off between MOE's in this region is closely ap-
&1 proximated by the dw1 coefficients' ratio. The difference
5l between the two ratios (2.8766-2.84 = ,0366) is due to the
x“ small change in the other weapon systems (dwi).
Eﬁ This technique, of course, becomes more difficult when
'it the coefficients have cross terms or square terms such as
¥ the w2 term. In this case, an average value of W2 for the
&g range of consideration must be applied in the calculations.
?g Although this explains the relative trade-off or slope of
g? the maximum CF given a CV line, it should not be inferred
gg as the effectiveness of a weapon system to increase the

J
§3 maximizing MOE. Weapon four, for example, has a ratio of
LT 14.68 for its MOE trade-off. However, the actual change
%ﬁ in CF per weapon four is very small with its CF regression
Eﬁ coefficient of .0279. Consequently, although the relative
f? ratio may give a high rate of return in terms of one MOE to
i~
e
:3 68
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another, it may have little importance as to the actual
change in total value of the maximum MOE. This leads to
the question of which weapons are the most effective in the
optimal force structure to maximize a secondary MOE given
the level of a primary constraining MOE.

Smith and Mellichamp's work (30) shows the independent
regression polynomial coefficients used to determine the
incremental increase in the MOE per weapon. Using this
rationale, the maximizing MOE prefers the weapon system
with the highest coefficient first. Thus, the increase in
the MOE will be due to the maximizing MOE's regression co-
efficients and the amount of weapons availlable. The number

of weapons available, however, becomes a function of the

level of the constraining MOE. Thus, given a CV level,

the operating domain is restricted as shown graphically

“,
3
-l
o

.'l}'

2

with the contour lines. Operating within this restricted

D

domain, the maximizing function attempts to trade-off the

b o

highest coefficient weapons system with the number available

and compare its relative MOE increase to that of introducing

AALA AR
72

K
e
e

some less efficient system that may change the number of

% |
G-

weapons available. This is best shown in Eq (24).

L%

l"l

CF(wi) = 9CF * [Number of Wi available]

C
Wy (24)

8

£

)

(CV—(.1198)*W7-(.0308)*W3-—(.0019)*W4

. 1658

Y

C4

CF(Wl) = (.4716)*

)
%)
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S

»
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In Eq (24) the number of We available is simply the

regression polynomial for the constraining MOE solved for
that particular weapon system (wi). Eg (25) shows the
example of maximizing CF in terms of weapon system one. The
maximizing algorithm (SUMT) must trade-off the introducton
of a lesser efficient weapon system against the value of

. not decreasing the number of weapons available for con-
tribution in Eq (25). This is numerically shown in Egs (26),

“~ \~7)l and (28).

3
e
4 8 a s

o A Ay

CF(WI) gain 2 CF(W,) gain (26)

L4716 (<9308

T8 V3 .188W, 2> .0289W

3 3 (27)

4716 (<9212 w,) = .o0116w, ;/.0279w4 (28)
~h When Eq (26) is true, then the algorithm will not increase

Wi+ Eq (27) is the gain to CF as a function of weapon one

due to the level of weapon three as compared to the value

of weapon three, as deterined by its CF regression co-

efficient. In Eq (27) a .188 gain is determined in the CF

equation due to weapon one, whereas only .0289 is due to

weapon three., This case is not true, however, in Eq (28)

where the gain for weapon one is only .0ll6 as compared to

the actual increase of .0279 if weapon four is introduced.

(XA
“‘

Therefore, the algorithm will choose to enter weapon four

rather than leave it out in favor of the number of weapon

Sv
P e

NN,
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ones available. This preference for W

while wl is in-

4

- creasing is shown in Figure 9. In the wl increasing region.,

W,y is at or near its upper limits while W3 is at its lowver

: limit.

i%’ It is due to this algorithm trade-off comparison be-
i{ tween each domain system's relative MOE increase that the
gg graph of the data appears erratic. This is a especially
24 true for the smaller coefficient values such as weapons

3

;E three and four. In light of this erratic change, no attempt
iﬁ has been made to smooth the weapons' curves.

T

:i The section, thus far, has explained the trade-off
lﬁi and algorithm optimization of the force structure by using
§§§ the simplified regression polynomials. The final point in
:f‘ this analysis section is to determine the error introduced
.f% by this simplification and its implications.

‘¥§ Figure 11 is a plot of max CF vs. CV using the full
ﬂ  polynomials given in Egs (20) and (21). A comparison of
3% Figures 11 and 9 shows there is, indeed, a difference in
,Eg not only trade-off value but also in the weapon systems'
i order and rate of entry.

e

E; The reason for the change in slope or trade-off is
.;g due to both a reduced value in CV and the inclusion of the
'? square and cross terms, and also an increased value in CF
§§ due to this more accurate use of the square and cross

Ll

gg; terms. At first glance, this does not appear plausible for
:’t the case of CF. However, the rounding up of only the I\'jz
g *
0
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tx; CF coefficient causes the change in maximum CF available
:;S from the original 939 down to a lesser value of 924 in the
o

({ simplified equation. Thus, the rate of trade-off 1s less in
Do a simplified case.

TS

o The change in the force structure due to the rate at

- ﬂ which different systems are entering is not greatly affected

by weapons one or two. However, there is a large change in

b weapon three. Again, this change is due to the trade-off

done by the optimization technique when looking at weapon

g
%;g three's introduction in comparison to reducing the numbers
?ﬁi of weapons one and two available.
ff( Throughout the analysis, the only mention of the bias
ié; error listed in Table V has been in the ﬁinimum contour in-
.;' terval determination. Ignoring such a small error has
{f\ little effect on the MOE trade-off calculation; however, it
;? may affect the force structure numbers of the lesser effici-
;;ﬁ ent domain elements (weapons). Thus, the constraining

%; numbers of weapons available should be recalculated to de-

A
{Sﬁ termine if two standard deviations of error significantly
'52 change the optimal n-tuples.
_{i: In conclusion, the analysis hac found and been abkle to
Sai describe the relationship between measures of effectiveness
e
T and the optimal force structure. Likewise, it has shown
-Q; that the original assumption of rounding to the fourth
L
E;E decimal place changes the overall structure of the wvroblen.
o
i

s
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The question of rounding the four digits originally

PRERENES
- e Ta telt
T R AR

arose in the research because the regression package used

Eﬂ automatically rounded to four decimal places as seen in

Sj Appendix C. However, when the package did compute its

- residual error it had, in fact, maintained the values of
g those coefficients to the degree of accuracy that the

,g computing device used. Thus, rathe. than using the SPSS
f: automated covariance matrix, the prcblem could have been

A

': avoided by using the coded design.

E Decision Tools

{ The above methodology should, with a high degree of
5 accuracy, predict an optimal force to achieve a maximum

E measure of effectiveness given a constraint level of a

(u second measure of effectiveness. Thus, the decision maker
é has, in Figure 11, the ability to see not only his optimal
ﬁ force structure, but how that force will change as changes
) occur in his MOE requirements.

- So far this methodology has given the decision maker
his best single domain set for a given constraint MOE. It
1s foolish to -assume that in any analysis all the factors
would ke known or that some which were assumed to ke constant
in the operating environment may not have changed. In light
this, a choice of optimal sclutions would probably be

-or suited as a tool for the decision maker. Tne SUNT

finds only a single optimal solution; however,
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the graphic techniques applied in the opening of this
chapter can also show a near optimal set of solutions.
Figure 12 shows the overliay for CV 1176 with CF plots of
850, 852, and 854 CV. Lines connecting the common domain
points for each CF value are shown in Figure 12 as iso-CF
lines (heavy print lines), given the CV level of 1176.

Thus, any of the force structures along one of the iso-CF
lines will guarantee that CF value and the CV of 1176. For
example, the line AB is a CF value of 854, given a CV value
of 1176. This AB line contains domain ranges of W, from
436 to 427, W3 from 720 to 765, and w4 from 305 to 420. Al-
though these alternatives have given up approximately 1.4

CF from the SUMT optimal solution of 355.4 CF, it may bke

of greater overall value to the decision maker to have these
multiple options available to him. Thus, these lines offer
the decision maker a trade-off from a single optimal solu-
tion to a set of multiple solutions.

Finally, the research has vet to consider the decision
maker weighting the value of one MOE to another. However,
if the decision maker did decide to weight the MOE's, it
would have little change on the methodology as it has been
applied. For example, if the decision maker decided that
CF was twice as valuable as CV, the only change would be to
multiply the total derivative ratio d~nominator by two.

This is shown in Egs (29a) and (29b) respectively.

. S e e e e e e e T e T AT
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:% Thus, the slope of the trade-off curve has decreased;

T however, the optimal force to create that curve is un-

A changed.

-

(D
'\

o CF = 2CV (29a)
i
L.

. dCF = dCF
e d(2.cv) 2-dCVv (29b)
)
it
?ﬁ If, on the other hand, the decision maker were to
\Q change the value of the individual targets rather than the
Ied
N value of the overall MOE class, then this would require a
" complete re-sampling and running of the model.

s .

. Conclusion

o This chapter contains the analysis portion of the re-
P search. The analysis began with a graphic technique to

\\Q
,} maximize the counterforce MOE given a countervalue con-

N
o straint contour of 1176. This graphic presentation vali-
. dated the optimization technique and the SUMT algorithm
ol . . ,

j% employed to calculate the constrained maxima. Following
i‘." ) ) ' )
hA the single graphic case, the maximum CF trade-off given a
—

o CV level was analyzed for the entire experimental domain.

- . .

?; This analysis revealed the rate of trade-off to be the
N . L . .

:2 MOE's ratio of total derivatives (dMOE_/dMOE_). This maxi-~
- mized trade-off was determined by the optimal selection of
'l
f.. N . . ‘
:; domalin elements (n-tuples). This selection was shown to be {
‘. o . !
5\ a complex trade-off between each element's ability to in-

5 crease the maximized MOE (GHOEO/adi) and the availability
!
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of each element as determined by the constraint MOE
= M
(di f(lAOEC) ).
Finally, the decision maker's use of the analysis was

greatly enhanced by utilizing "near optimal" solution sets.

These solutions were shown graphically to contain multiple
E&. n-tuples which achieve equal value MOE (iso-CF 1line, Figure
-53 12). Thus, for a relatively small decrease from the SUMT
optimal (less than one percent), the decision maker was

:ﬂi given greater flexibility in his choice of operating domain.
fi The advantages of this analysis are further discussed

 Ser in the concluding chapter.
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CHAPTER FIVE

Concluding Remarks

Research Summary

This study presents the optimization methodology for
a deterministic, mathematically modeled system as defined
by the aspiration levels of one measure of effectiveness
(goal/mission) and optimization of a second measure of ef-
fectiveness (MOE). The methodology's advantage over other
multicriteria decision theories is its ability to consider
large numbers of alternatives, show the MOE's comparisons
throughout the range of alternatives, and use non-commensur-
ate measures of effectiveness.

The research example demonstrates the methodology ap-
plied to a generic, aggregated military force structure
problem defined by a linear programming arsenal exchange

model. The example has two measures of effectiveness,

counterforce (CF) and countervalue (CV). The system involves

five weapon systems, of which four are varied over their
plausible ranges, and ten target classes. The number of
feasible force structure alternatives over these ranges
exceed three billion. The optimal effectiveness of these
alternatives is closely approximated (less than one percent
error) by use of response surface methodology.

The employment of a central composite 3k fractional
factorial research design enabled the generation of a sur-

face for each MOE from a minimal number of model runs. The
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original design required 27 samples per surface (2).
However, the deterministic model has no variance; thus, the
samples are reduced to 25 per surface. With these two sur-
faces, CF and CV, the methodology then shows an appropriate
interval to describe the optimal trade-off between the
aspiration MOE and the second MOE. The interval selection
criteria includes both the regression error and the change
in the contour surface. With this selection of contours,
the methodology then optimizes the second measure of effec-
tiveness as constrained to the contour lines of the
aspiration measure of effectiveness. These data are then
plotted and displayed in Chapter Four of the analysis and
also in Appendix E.

The analyses of these data give the decision maker a
range of tools to gain further insight into the optimal
operation of the system. The data map displays the de-
cision maker's optimal system structure given his goal
aspiration level. As new demands are made upon the system's
measures of effectiveness, this map shows the required
changes to each component of the system to achieve the
higher MOE demands. The graphic techniques of Chapter Four
offer the decision maker a choice of multiple solutions
which very closely approximate the optimal trade-off value.
For the example given, an aspiration/demand ocf 1176 CV, the
decision maker has a wide range of force structures to

choose from by simply reducing the CF value by 1.4 from the

80




optimal of 855.4 This reduction is less than two tenths
of a percent from the optimal value. In consideration of

the accuracy of the vulnerability determination and single-

o5

S?j shot probabilities of kill used in the arsenal exchange
E;E model, this small reduction in the optimization process is
!!! minimal. However, this negligible reduction gives the

ti' decision maker greater flexibility in his choice of the

KA

.

L .“-
PRSI

system's operational structure.

padkre
[}

Applications

J 4

L el
e

f&; Considering the number of deterministic optimizaticn
N

kL™, . . .

' models 1in use today, this methodology should have wide-

1

L i
A SAPLE

" 4

spread application when viewing multiple missions or roles

;ﬁﬁ of the system.

ANES

Y The military applications are several. The methodology
53; application to force structure planning is well illustrated
t:ﬁ in the research example and Smith and Mellichamp's work

:’ (30). Beside force planning, the methodology may give in-
.ié sight as a measurement and design tool for weapon systems.
ﬁg Many of today's weapon systems are required to perform
f;( multiple missions, some of which may be performed by several
£/

E& configurations of a weapon system or by different systems.

;Ez This methodology may serve as a measurement tool to de-

TT: termine which configuration or system performs best in the

j:; dual mission. Likewise, the methodology may ke applied as

:g a design tool for the weapon systems. For instance, 1if a

new bomber was being designed, it may have a strategic
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penetration mission (aspiration MOE) and also a search
and destroy mission (second MOE). The operating domain would
be the flight characteristics and capakility of the bomber.
This methodology would choose the best selection of
operational capabilities to achieve the aspired penetration
goal and also maximize the second mission of search and
destroy. It would also show how these capabilities would
have to be -hanged to meet new mission requirements. Thus,
this methodology offers a planning tool for new systems as
well as total forces.

A larger scale application may be in force structure
as seen in an arms reduction or limita;ions agreement. In
this case, if both parties were able to represent their re-
spective capabilities in a response surface, then each
would be able to offer and counteroffer an optimal selection
of weapon systems from their particular arsenal that equated

to equal levels of damage expectancy for the agreement.

Further Research

This methodology was originally proposed for the com-
parison of non-commensurate goals. As the study evolved,
it was obvious the scope would not allow the comparison of
more than two surfaces at a time. As such, further re-
search is required for the comparison of three or more l
measures of effectiliveness.

The dual measure of merit case has the advantage of

not changing the optimal solution domain regardless of the
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decision maker's weighting of the MOE's. However, in the
case of three or nore measures of merit, this weighting mayv
determine the interval contour pattern as it restricts the
operating domain of the maximized MOE under consideration.

Another approach may be to use the dual measure of
effectiveness and then project each maximized function into
a next higher dimension and find a third response surface

common to the two optimization processes. For example,

Y
b

find the maximum A subject to C and the maximum B sub ject

204
.l ‘l
* L3
[ —I, ‘1'

to C. Then, determine the maximum C as a function of

N
.l ‘I .‘
l‘ l‘ ,

"
Lon ALY
k4

“l

max A(C) and max B(C).
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APPENDIX A

Aggregated Arsenal Exchange Mcdel

This appendix details the aggregated arsenal exchange
model employed in this study. The model was developed
with the expert assistance of Captain Robert Bunnell. Its
purpose 1is to generate three different response surfaces
for the methodology example. As such, its complexity is
minimal in comparison to other arsenal exchange models.

Chapter Three's Tables I and II are repeated below
as a description of the target class and weapon class

characteristics.

TABLE 1

Weapon System Characteristics

W1 W2 W3 W4 W5
CEP . 200 .150 . 240 .600 . 200
Warheads/Weapon 1 3 10 4 6
Yield 2.0 .17 .05 .35 .20
Reliability , .85 .85 .85 .85 .85
Daily Alert .85 .85 .85 .33 .33
Max Warheads/Type 450 750 1040 424 360
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TABLE II

Targec Base Characteristics

Vulnerability
Type Number Number Diameter
cvl 140 24Q0 .56
Cv2 215 13pP1 .49
Cv3 430 31P6 .00
cv4 520 23Q0 .31
CF1 450 35p7 .00
CF2 1000 52P8 .00
CF3 200 39P0 .00
CF4 20 22P1 .36
CF5S | 150 11pP0 .00
CF6 100 10Q1 .79

As mentioned in Chapter Three, the vulnerability number
characterizes a target's vulnerability to its most suscept-
ible threat (i.e., overpressure, dynamic pressure, etc.).
The first two digits are its level of susceptibility to the
threat. The alpha character is the most threatening type of
effect for the target in question. The last number 1is the
target's sensitivity to the duration of the particular

weapon's effect. Thus, with five alpha numeric characters,
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- the target's worst case vulnerability is defined.
:f- Likewise, the weapon's ability to create the effects
‘: used in the target VNTK number is calculated from its
"N
N _ . .
o Yield 1n megatons, circular error probable (CEP), and the
e N
> . . .
o probability of reaching the target (reliability). These
P effects are determined in a cumulative, lognormal damage
>
-E function (1:3).
ﬁ* The target and weapon characteristics are combined
A\ . . . .
20 1n accordance with the physical effects eguations of the
fﬁj Defense Intelligence Agency's Physical Vulnerability
- Branch (1:34) to determine a single-shot probability of
rf survival (SSP_) for each target when attacked by each
;% weapon. Thus, for this example of five weapon types, five
o
o SSP_ are calculated for each target. The transformation
{
\p from the VNTK number and weapon characteristic to SSP_ is
f; accomplished by a computer program used in the Bunnell and
\.':
L Takacs study (5).
ﬂi The SSPS are converted into single-shot prokakilities
Ca
.
:l of kill (SSPk) for each target and weapon combination,
o Eq (30).
e
«~ = - (30
= SSP, 1 SSP (30)
j Likewise, the single-shot probability of kill is calculated
:¥ for two weapons of the same type against each target type,
o
i Hoo— ’ ‘2 312
= SSF’k = 1 - (SSPS) Loa )
a
e
o
.t'. 8?_)
o
@

.................
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Thus, each target now has five pairs of SSPK'S associated
with it - one for single strike and cne for two strikes
by the same weapon.

The arsenal exchange i1s modeled using linear pro-
gramming. The model uses the SSPK'S and SSPK"S as the co-
efficient for the objective function. The number of

targets struck is the variable for the tai.eau. The LP

-

algorithm maximizes the sum of damage possible as deter-

mined by the SSP, coefficients times the number of targets

Kk

struck. Eqgq (32) depicts this example okjective function.

5 10

5;1 5;1 sspkw. T, + SSPK; CoTm
where

Kk = target struck class

W = weapon class

In this tableau, a separate variable 1s used for a target
struck twice by a particular weapon class.
The first ten rows of the tableau define the sum of

each class of targets available, Eg (33).

row(i) = # of targets in class (1)

50
= T. . + T L
;il i(23-1) i(23)
J_
where
(23-1) = odd colurns up to 9u
(23) = even columns up tc 100
i = 1 through 1id

7

A A S A A

(32)

[
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Rows 11 through 15 define the sum of each class of

weapons available, Eq (34).

row (i) = # weapons in class (i)

50
= . . + . . , "
z T1(23-1) 2 T1(23)
j=1
where
(2j-1) = odd columns up to 99
(23) = even columns up to 100
i = 11 through 15

The difference between the CF, CV, and AF models is
in the objective function. The objective variables, TOj’
which are designated CF or CV are given a coefficient SSP)
of zero if not in the exchange under consideration. Thus,
to run a CF exchange, all'CV targets are given an SSPk of
zero.

Since the model was to have multiple runs for the
weapons available in rows 11 through 15, a program was
written which compiled a tableau for each MOE (CF, CV, AF)
This program, CREATE2, is an interactive program which
requests the user to enter the right-hand-side values
(RHS) for the number of weapons available in each class
(rows 11 through 15). The program then requests if any
other tableau values should be changed from the initial
values already constructed into the tableau. Upon com-

pletion of these two data entry steps, the program sends

88
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the tableau for each option to local files AF, CF, and CV,

respectively. The tableau format is determined by the
linear programming package "Multi-Purpose Optimization
f¢ System (MPOS)." The source code for this Fortran Five

A program follows.

L FROGRAM CHEATED
DIMENSION ALI(DI15,00 0000 OFIJiai15, 00100, .0 ' 1o, ot 90 )

ty

THIS PEOGRAN CRFATES THE DATA MACKTY FOR 2 A Sh7 AT ae Top
EXCHANGE MUGEL TG RE SOVUED & me s . T - G0 AA TE
TARGET RATERGRIES Al P E WFArdN + > "FT, .0« .o
A SINGLE TY7Z WEAFON AGATHST A FARTINTVAF 10 727 0 Tw,
OBJECTIVE(ROW ©) MAXIMIZES TWi TAMAGE = - 750 .« o ¢
TOTAL TARGET BASE. 10D MOLSL ALLTWS A ° w6l Wk 0% & 3
PAIR OF 3AIL MEAFCHS TO BT ALUCAT T 77 A (e . 50 7.

-

.
o
¥
5
% w

NOTE? THE RIGHT-HAND SIDE VALUTSIRAT: AR- o O (20 - 2 n
THE NRBJECTIVE COEFF. ARI [h ROW ZERY

INITIALIZE MATHIX AIJ TO ALL ZERDS.

e B I w B aw B o B as B 0 B v B B e S o B T B 00 S w B s T o 8 o

ng 200. J=0,1900

00 100, I=0,1%5

AT, 0= 0,0
160 LONTINUE
200 CGNTINUE

=% »

[ 5.

2, C

%;% £ BUILDING TARGET CONSTRAINT SET(ROWS 1 TO 10
% o

—t B0 400, II=0,40,20

— " 300, I=1,10

g ATICT, (ZXI4TT)= 1,0

‘ AT T (2N T-14T 0= 1,0
?% 300 CONTINUE

490 CONTINDE

u e 89
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400

]

800

OO oOn

000

BUILIY WEAFIN CONSTRAINT HET(RDWS 11 7D 1)

A=l
JE=19

ng 800, 1=11,15
ng 500, J=Jh, JB, 2

ﬁIJ(I,J)= 1.0
ALMI,(I+1))=2.0

CONTINUE

JA=JA+20
JE=JR$20

CONTINUE

SET RHS (CDL.,0 ROWS O THRU 10} FOR OBJECTIVE AND NUMRER OF
TARGETS TN EACH CATEGORY.

ALJ(0,0)=
ALIL, 0=
ALJ(2,0)=
ALJ(3,0)=
AIJ(4,0)=
ALJ(S,0)=
A1J(5,0)=
ALI(740)=
A1J(8,0)=
ALI{9,C)=
ALJ(10,05=

SET PK’S IN OBJECTIVE FUNCTION(ROW 0, COLS. 1 TO 100)

ATJ(O,1)=
AIJ(0,2)=
ATJ(0,3)=
AIJ(0,4)=
A1JC0,5)=
AIJ(0,6) =
A1I(0,7)=
AIJ(0,8)=
ALJ(O,9)=
ATJ(0,10)=
ATJ(O,11)=
ATJ(0,12)=
A1J(0,13)=
ATJ(0,14) =
ALICD,15) =

ey
3 .9;“\

0.0

140.9
215.0
430.0
1000.0
200.0
20.90
150.0
100.0
430.0
20,0

0.84797
0,9758%
0.85000
0.97750
0.83249
0.97194
0.,47032
0.71944
0.67217
0.89253
0.,84997
0.,977%0
0.85000
0./7730
0.85000

E PR AL SEL G A Y W,

90
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N AIJ(0,18)=  0,97750
B ATI(0,17)= 0.84440
AIJ(0,18)=  0.97447
AT 1= 0,8497%
AlJ(0,20:=  0,97724

';;: ALI0,21)=  0,74714
- ATJ(0,22)=  0,94579
. AIJ(0,23)=  0.85000

AIJ(0,24)=  0,97750

ATJ(0,25)= 0.61073
A1J(0,26)= 0.84847
ATJ(0,27)= 0.15429
o AL1J(0,28)= 0,28473
o ALJ(0,29)= 0.37563
"’ ATJ(0,30)= 0.51014
ATJ(0,31)= 0.83104
ALJ(0,32)= 0.97145
ALJ(0,33)= 0.8%000
A1J(0,34)= 0.77750
A1J(0,35)= 0.85000
ATI(0,34)= 0.97750
ALI(0,37)= 0.71782
. ALJ(0,38)= 0.92038
i ALJ(0,39)= 0.81872
gl _ ATJ(0,40)=  0,94714
- ATJ(0,41)= 0.44304
ALJ(0,42)= 0.468982
ATJ(0,43)= 0.84164

o ATJ(0,44)= 0.97492

R AIJ(0,45)= 0.14544

ATJ(0,44)= 0,246973

ALJ(0,47)= 0.02643

AlJ(0,48)= 0.,05255

. ALJ(0,49)= 0.08043

¥ A1J(0,50)= 0,1%5475

B ATI0,51)=  0.51804

3 ATJ(0,52)= 0.74771

N ALI(D,53)= 0.84982

' ALJ(0,54)= 0.97744

; ATI(D,55)= 0.84097

& ALJ(0,56)= 0.97471

s ALJ(0,57)= 0.22121

' ALJ(0,58)= 0,39349

ALJ(0,59)= 0.52353

e ATJ(0,60)= 0.77298

‘ ATJ(D,81)= 0.36172

5 ATJ(0,62)= 57260

e ATI(0,63)= 0.82551

a ATJ(0,64)= 0,94955

ATJ(H,65) = 0.11517

e ATJ(0,88)= 0.21708
. 91
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ALI(D,67)= 0.,02452

AJC0,48)= 0.04747 -
ATI(0,69)= 0.04993
ALIC0,70)= 0.09741
ALJC0,71)= 0.40449
ATJ(0,72)= 0.64561
A1J(0,73)= 0.84494
AlJC0,74)= 0.975%94
ALJ(0,78)= 0.83478
Al1J(0,76)= 0.97336
A1J(0,77)= 0.17125
ALJ(0,78)= 0.31317
AIJ(D,79)= 0.40083
ALJ(0,80)= 0.44099
ALJ(0,81)= 0.72773
ALJ(0,82)= 0.92587
AIJ(0,B3)= 0.85000
ATI(0,34)= 0,97730
AIJ(0,85)= 0.4842
AIJ(0,86)= 0.73395
AL1J(0,87)= 0.10276
ALJ(0,88)= 0.194956
AIJ(0,89)= 0.2460352
ATJ(0,90)= 0+45317
AIJ(0,71)= 0.80019
ATJ(0,92)= 0.95008
A1J(0,93)= 0.85000
ATJ(0,%4)= 0.97750
ATJ(0,99)= 0.85000
AIJ(0,96)= 0.977350
ALJ(0,97)= 06084635
A1J(0,98)= 0.84685
ALJ(D,99)= 0.78184

ATJ(0,100)=  0.95241

RHS VALUES REQUESTEL FOR EACH WEAFON CATEGORY.
ANY COEFFICIENTS MAY BE CHANGED IN THIS SECTION., THE SEGSICH
IS TERMINATED WHEN THREE ZEROS ARE ENTERED.

PRINTX, INFUT ROW NUMEBER,COLUMN NUMBER,COEFFICIENTI(I,J,COEFF)”
FRINTX, ‘FOR EACH WEAPON RHS AND ANY OTHER COEFFICIENT TO BE’
PRINTX, ' CHANGEDs ENTER ONLY ONE SET AT A TIME. TO TERMINATE®
PRINTX, ‘ENTER THREE ZEROS (0 0 0)

READ%, 1,J,C

IF(I.EQG.O.ANDLJ.EQ.O.AND.CLEG,0) GO TH 902

ATJ(I,H=C

G070 200
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FRINT®, ‘ENTER THE RHS WEAPON ALLGCATION VALLESS
REAL%,C

AL:I,0=C

CONTINU

PRINTX,'THE FILE CONTAINING YOUR ARSENAL MOTIEL MATRIXC
FRINTX, 15 CALLED-MN FOR ALL FORCES AND CV/CF FOR OFTIGNS.’

AKSENAL MATRIX WRITEN TO FILE MTX., ARSENAL MATRIX ALSO
COFIED FOR CV AND CF OPTIONS.

OPENC12,FILE="MN')
REWIND 12
o 954, I=0,1%
Do 952, J=0,100
IF(ATJ(I, IV WNE.0.0)  WRITE(1Z,991) I,J,A14¢01,4)
FORMAT(2X,13,2%,13,2X,F10.,5)
CFIJ{I, )=ATJ(I,. D)
CCVINI,D=AII(I,D)

CONTINUE
CONTINUE
CLOSE(12)

COUNTER-FORCE MATRIX? SET PR=0.0 FOR CVY TARGETS IN QRJECTIVE

OPEN(11,FILE="CF")

REWIND 11

no 13, 11=0,80,20
ng 11, I=1,4
CFIJC0,I4110= 0.0
CONTINUE
e 12, 1=17,20
CFIJ(Q,I+1ID)= 0.0
CONTINUE

CONTINUE

COUNTER~VALUE MATRIX: SET PK=0.0 FOR CF TARGETS IN GRIECTIVE

OPEN(13,FILE="CV")

REWIND 13

[0 14,11=0,80,20
0 15,I=5,16
CVTI0,T+T1= 0.9
CONTINUE

CONTTMUE
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10 21; I=0p15
00 20,J=0,190
IFICFTA(TI, DD NE.2,0Q) WRITECLI,27) T.J0,CFTJ0Y, 000
TFCCVIHILJ)WHEL0.0) WRITE(13,29) I,J,CVIJ0T,.00
20 CONTINUL
21 CONT INUE
29  FORMAT(2X,I3,2X,I13,2X,F10.5)

c
CLOSE(11)
CLOSE(13)
c
S5TOF

END!
dedkdedededwdkhdkdedddhhddohkdhkhhhhhhdkdhdhddhhddhdhddedhdededhdhhhhihk

The linear programming package chosen to optimize
the tableaux is the Multi-Purpose Optimization system.
Thanks to the work of fellow student, James Cooke, several
flaws in the MPOS options were discovered prior to this
study. Thus, the MIMIT option was chosen (7:38). This
option solves a "sequence of primal and/or dual iterations,"”
(7:38.1). Samples of the MPOS control cards for each MOE

and a sample MPOS output are given below.
CF Control cards:

XTHIS IS THE CONTROL CARD DECK FOR MFNE AEH
TITLE

ARSENAL EXHANGE FRODIEM
MINIT

VARIABLES

X1 70 X100

FACKED

MAXIMIZE

CONSTRAINTS 15

Pttt EdEEEEEE

FORMAT

(2%, I3,2X,13,2X4,F10,5)
REWIND

READ CF

NPTIMIZE

94
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CV Control cards:

XTHIS IS THE CONTROL CARD DECK FOR MPOS AFM

TITLE
ARSENAL EXHANGE FROELEM
MINIT
VARIABLES
X1 TO X100
FACKED
MAXIMIZE
CONSTRAINTS 15
R
FORMAT
(2%,13,2X,13,2X,F10,5)
REWIND
READN CV
OFT IMIZE
v}f AF Control cards:
rﬁg .
AN XTHIS IS THE CONTROL CARD DECK FOR MFOS AEM
T TITLE MCN
ARSENAL EXHANGE PROBLEM
B UARTABLES
S X1 T0 X100
A FACKED
B MAXINIZE
_ CONSTRAINTS 15
B R )
. FURMAT
o (2X,13,2X,13,2X,F10,5) i
. REWINI
Ny KEAD MN
- OPTTMIZE
':E:;:‘Ju'
g,
i
RN
W
B
e
N
et

SRR \‘.\v-*.v:\“



MPOS VERSION 4.0

MPOS VERSION 4.0

N B e @, T, . o« o Wt e

list f=ocf

NORTHWESTERMN UNIVEREITY

LS P EE PRSI EEEELEEIEEL LSS S REEES S
*
X MFOS

VERSION 4.0

MULTI~FPURPASE CPTIMIZATTIUON SYSTEM

¥} ¢ W I, K

X
X
X
X
*
X

XXXXXXXEERARKIHRIR IR LLRRK I KKK KKK

F

fxxkk PROBLEM NUMBER 1 k¥dkx

XTHIS IS THE CONTROL CARD DECK FOR MPOS AEM
TITLE

ARSENAL. EXHANGE PROELEM

MINIT

VARIABLES

X1 TO X100

FACKED

MAXIMIZE

CONSTRAINTS 13

+H+4i4+4+Hi444

FORMAT

(X I392X1342X4F10.3)

REWIND

REAIY CF

OFPTIMIZE

NORTHWESTERN UNIVERSITY

kEtteepiettbeees et
X PROBLEM NUMBER 1 X
KEEXLXRKRRIKHR KKK XK

USING MINIT
ARSENAL EXHANGE FROBILEM
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FEX
QA%
bax
BLX
CLX
b 21
09X
by
Bz
A

[aTaRYS
TLN

0EXx
bax
81x
oIx

ax

SINOI3S 01371 =
001X - 001 hEX - b6
26 56X - Gé v6X - té £4X - £6
06 48X - 48 88X - 88 (BX - (8
Lg% £8X -~ 8 ¢BX - <8 18X - 18
8L LEX —~ Ld X - 9L BLX - 8L
&L X =~ 1L 04X - 0L 67X - 69
99 59X - &9 F9X - 9 £PX - £9
09 65X - 65 85X - 8% (54 - /S
144 geX - £5 chX ~ & X - IS
224 LvX - Lb X - b SkX - Sb
ch X ~ 1t ovX - OF 6EX - 6%
9e SEX ~ &8 bEX - V€ £ExX - £2
LV} 6EX — &2 REX ~ 8¢ LeX - (&
v £cX - £2 ¢eX - oo X - 1c
gf LIX -~ LT 2TX - 91 51X - 51
al TIX - 11 01X - 01 X - 6
9 X -5 L2 S £X - ¢

IWYL FMYTHYA
1043001 =37WI8Y 4] =30N
LINVAII=1IHIT 0 =JNON

LNVA30=843 ££°'ET =1N3J434 00T =70t
£0-300T* =701 00C =H3AHNAN 0 =INI

oatt e ahas o oo iy e 200 o s s4ae o0 e e - e 0 s oo i oo ot 2o e o dhve S0y 00 o v pase tume sine e b St e

SaNNoa 5431 30NV SOY3Z-NON

§319VIHYA

AUYHHNS LNANT WITHOHA

JUIL NOYLYISNYHL 104NI

864 — 84
C6X - &6
98X - 98
08X - 08
VX - vl
89X - 89
X - £
LY - 95
05X ~ 08
142 Sad 24
8LX - 8¢
cEx - &g
gexX - 9E
0eX -~ 0C
vIX ~ b1
gx - 8
X - Z
51 oL
0 =539
ST =631
0 =503
SINIVMISNOD

L6X
16X
S8X
LiX
£LX
AR
T9X
£5X
LU X
£rX
£8X
1£X
LeX
41X
£ixX
£X
IX

Lé
Te
34
74
|4
£3?
19
s
14
th
e
g
SC
61
£l
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AT MRS ELELRL R 2" e etava. mne Ol A DA SR ) A TiAe 254 PN I AL ALY PR PTG MR Pou B
{,d# o v ‘y_ﬁ
AN
LN,
RN
‘3;2% DIATA STARAGT REQUIREMENTS ARE 004754 OCYVAL
SN FOELD LENGTH FOR THIS FROBLEM 0T0000 NOTAL
' 1 NPOS VERSIMM 4.0 NOFTHWESTE § UNTYERSLTY
.
h:?;, LERETE LSS SE TR TES VI
SN ¥ PROELEM NUWRER 1 %
% tj KERIIXXXKEKRKAKKKKNKKK
N
USING MINIT
R ARSENAL EXHANGE FROBLEM
%5 L)
5%
;;{f ENTERING FHASE Il
AR A
ITERATION 1IN VAR- 5 OUT VAR- 103  -ZHIN= 374,421
e ITERATION 2 IN VAR- 34 OUT VAR- 107  -ZIMIN= SI1.a8
N ITERATION I IN VAR- 30 OUT YAR- 105  -ZHIN= 543,270
“<J§i ITERATION 4 IN VAR~ 94 ONT VAR- 108  -7MIN= 741,528
3-:4 ITERATION 5 IN VAR- 47 QUT VAR- 113 -ZHI= 744,482
Uyl ITERATION 6 IN VAR- 32 OUT VAR- 104  -IMIN= 793,891
‘ ITERATION 7 IN VAR- 88  OUT VAR- 115 -ZHIN= 799 . 43¢
R ITERATION 8 IN VAK- 56 OUT VAR- 94  -ZHIN= 313,379
PN ITERATION 9 IN VAR- &8  OUT VYAR- 104  -ZMIN= 220,022
gz?q ITERATION 10 IN YAK- 28  QUT VAR- 112 -ZMIN= 621,211
,,ﬁg ITERATION 11 IN VAR- 74  OUT VAR~ 48  -ZMIN= 353.,04C
ANES ITERATION 12 IN VAR- 52 OUT VaR- 34  -ININ= 8597.70%
ITERATION 13 IN VAR- 92  OUT VAR~ 32  -IMIN= 25&.093
A ITERATION 14 IN VAR- 48  OUT VAR- S2  -ZIMIN= 858,847
;f§3' ITERATION 15 IN VAR~ 27 QUT VAR- 28  -ZMIN= 342,348
A~ ITERATION 14 IN VAR- 87 DUT VAR- 47  -ZHIN= R44.347
b 3 ITERATION 17 IN VAR- 76  OUT VAR- 114  -ZMIN= 284,592
Tl ITERATION 18 IN VAR~ 54 OUT VAR~ 56  -ZMIN= 864,404
» ITERATION 19 IN VAR- &  OUT VAR- 111 -ZMIN= G644, 604
ﬁggs ITERATION 20 IN VAR- 7 OUT VAR- &  -ZMIN= 844,504
RN ITERATION 2 IN VAR- 25  0QUT VAR- 27  -ZHIN= 897,598
g ITERATION 22 IN Vak- 90 OUT VAR- 5 -IWIN= 904,335
;%;ﬁ ITERATION 23 IN VAR- 84 OUT VAR- 8%  -ZMIN= 204 . 084
At TTERATION 24 IN VAR- 47 OUT VAR- 20  -ZMIN= 914,463
ITERATION 25  IN VaR- 24 QUT VaR- 27 -ZMIN= 723,842
ITERATION 256 IN VAR~ 9 OUT VAR- 25 -IMIN= 731,488
ITERATION 27  IN VAR- 52 OUT VAR~ 92  -ZMIN= 932,486
1 MPOS VERSION 4.0 NORTHWESTERN UNIVERSITY

XEORERXAXXLIRRKRK KRRk
¥ FRORBLEM NUMEER 1 X%
KEEXKREKIXELKKKERR KKK

USIMG MINIT
ARSENAL EXHAKGE FPRUOBLEM
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AYA 7
{\x o)
. ?
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e 11
) 12
2 "
=1\ i4
XN 15
3 1
. 17
- 18
4
L 19
1) 2
~Jﬁ 21
vois 22
AV}
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d 04
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AN 27
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il 4 30
y! oy 31
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P 33
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‘}e 34
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N 38
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5
\
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SUMMARY OF RESULTS

VARTARLE HCTIVTTY
At |EVEL

X1 --

X2 --

X3 --

X4 -

XS --

Xé --

7 R 355,0000000
Xa NE -

X9 B 750600000
X10 N -
X11 NE --
X12 N -
X13 NE -
X14 NE --
X15 NE --
X16 NE -
X17 NE -
X18 NE -
X19 NE --
X20 NE -
X21 NE -
X22 N --
X23 NE --
X24 NE -
X25 MR --
X25 R 270.0000000
X27 NE --
X28 NH -
X29 NE --
X30 B 1050000000
X31 Nz --
X32 NE --
X33 NE -

X3 MR -
X35 NE -
X36 NE -
X37 NE -

X3 N -
X329 NE -
X40 NE -
X41 NE --
X42 NE --
X43 NE -
44 N -
%15 NE -
X4¢ N -
LRSION 4.0 NORTHWE ST N
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13T T4 T Ty T

575100

FIP2200
+ 45731090
L 9392200
0779900
+3081500

+ 2204900
. ’TAD"E'OO
xJ\..‘\.'49,)0
H / \J P00
» T452100
LBE7I200
» 34246100
+ 3347200
44695106
392200
+ 3676100
+2392200
2035900
40746000
+ 2038000
4075000
+ 0337400
,ﬁ=0”°00
235300
.0407500
286300
+ 1520200
< 2774000
+ \-.;EL-—"A”,‘}{
« 2783000
» 3531000
« 2033000
» 4076000
¢ 2028000
+ 4078000
+ 0239200
+05173400

-
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: SUMMARY OF RECULTS

&

2 VARIARLE UARIARLE  BASI LEEORTUATTY ROl
. i) HAME  NON-RASTE T M
* B

3 47 X47 2 -

» 43 x48 B --

' 49 X49 NE -- 1473500
o 50 X50 NE -- 0996500
N 51 X51 NE - 2237500

52 X52 K 20,0000000 -
3 53 X53 NE - v 1017000
y 54 X54 E 24,0000000 -

-

-

-

£ 55 X55 NE L 1079500
1] 54 XS NE -— 0001300
i 57 X57 NE -- 0259200
A 58 K58 NE - L 0518400
W 50 X549 NEL -- 0252206
k) 40 X40 N - L 0512400
o &1 141 NE - 0251800
% &2 %42 NE — LORO3L00
P 43 X63 NE - 0251300
. 54 Xé4 NE - 0503600
o 85 X465 NE ~- L IS0RT00

. bé X466 NE -~ L2741500
57 X467 NE - 0012700
T 48 X48 NE -— 0034000
L 49 X467 NE -~ L17TTR00
: 70 %70 NK - 1355100
b 71 X71 N -- V38T 500
i 72 X72 NK -~ .1206200
: 73 X732 NE - + 1053400
; 74 X74 K 540000000 -

* 75 X75 NE - 11114000
74 X76 K 100,0000600 -

77 X77 NE - 0251300
78 X78 NE — 0502400
79 X7%9 NE - 0251300
80 X80 NB - 0503400
31 ¥21 NE - . 1465400
82 X82 NE _— L 2930400
83 X83 NE - 1455400
B4 %84 NR - L 2930800
85 Xo5 NE - 1032100
B4 X85 K 180,0000000 -

87 X87 NE -- 0445500
88 X238 NR -- 0982300

-

i B

-

-

| e e

»

4
:
;
4

i
L]

A a9 X&9 NE ~- +08RE20C
A 90 X90 NR -~ 0424700
i 9] X91 NE -- » 0422200

' 92 X92 MR -- -2488700

3
¥
:
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' k FROBLEM NUMZER 1 %

N KREEERE KK KRR KRR
SRR
3T, USING MINIT
ey ARSENAL EXHANGE PRUBLEM
G SUMMARY OF RESULTS
!

e VARIABLE VARIABLE  ERASIC ACTIVITY OPEORTUNITY  ROW
b NO. NAME  NON-BASIC LEVEL cosT NO.
NN 93 X93 NE -- V2221400

- 94 X94 NE -- 2411800

oy 95 X95 NB - + 2155400
TR 94 X94 NE -~ » 2383800
% 97 X97 NE - + 1445400
FEN 93 ¥98 NE -- . 2970800
52 99 X99 NE -~ + 1445400

_ 100 X100 NE - 2930800

£453 101 --SLACK K 140,0000000 -- ¢

24 102 --5LACK R 215,0000000 - ¢
Lo 103 --SLACK NE -- L4408700 ()
0 104 --SLLACK NI -- L0007100 (  4)
¥ 105 --SLACK NE -~ 2025600 (5

: 104 --SLACK NE -~ V7158700 (&)
T 107 --5LACK NE -- 9255000 ( 7)

Py 108 --SLACK NE -- 9230000 ( 8
A 109 -~SLACK E 430.0000000 -- ¢
A 110 --5LACK B 520,0000000 - { 10)
i 111 --SLACK NE - V4696100 ( 11)

112 ~-SLACK MB -- 2038000 ( 12)

i 113 --SLACK NE -- 0259200 ( 13)
AR 114 --5LACK NE - L0251800 ( 14)
e+ g 115 --5LACK NE ~= V1445300 { 15)
A%

——
MAXIMUM VALUE OF THE ORJECTIVE FUNCTION = 732, 485560
CALCULATION TIME WAS 0720 SECONDS FOR 27 TTERATIONS.

2TOTAL TIME FOR THI® PRORLEM WAS 359 SECONDS
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APPENDIX B

Research Design

The research design chosen for this study is a three-
level, 3k, fractional factorial design (2). It is a four-
factor design which requires twenty-seven samples for the
model with variance. For this study, the LP model has
no variance; therefore, the repetitions of the center point
sample are not required. Thus, only twenty-five samples
are required.

The design is shown with its respective sample values
in the following examples. The first example is the un-
coded design and each of the respective sampled MOE's
(CF, CV, AF). This design was used for the revised lower
limits of 300, 450, 720, and 200 for each L] respectively.
The remaining examples are in coded format (+1, 0, -1).

This format assigns one for the upper limit of the variable,
zero for the mid-range of the limit, and negative one for
the lower limit. These coded designs were used in the

initial lower Wi limits of zero.
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Sampled MOE's and Research Design for Revised Limits:

CF cv AF W W W W

1 2 3 4
P, 732,67 1190.02 1736.45 150 750 gao 312
o R68.40 1157.5% 1618.73 430 450  8g¢ 312
. 862.12 1170.66 1652,86 300 750 880 312
; 797.85  1139.65 1504.04 300 450 830 317
r 873.84  1185.56  1477.36 3I7S5 600 1040 424
868,13  1165.546  1645.10 375 400 1040 200
.43 845,41 1164.70 1626.0% 375 800 720 424
;ﬁ ] 859.61 1164.31 1585.47 375 600 720 200
g§§ 904.92  1174.87  1701.47 450 400 880 424
LAY 897.1% 1174.81 1648.05 430 600 830 200
B 834,40 1155.39 1402.27 300  S00 8BO 424 i
828,60  1155.32 1567.22 300 600 88O 200
3@ ?01.59 1180,83 1717.52 3?5 750G 1040 31w
fgg 293.14 1179.81 1673.61 373 0 720 312
& 837.39 1150.28 154,91 375 4u0 1040 342
E%_ 28.37 1148.42 1526433 375 450 720 312
N7 ?06.24 1175.30 1798.49 450 500 1040 312
- 397.79  1174.20 1657.13 450 500 720 312
3 835.76  1155.87  1412.06 300 400 1030 312
e 827.24  1153.946 1594.73 300 400 720 312
. ?00.26 1180.,40 1710.36 375 730 880 424
R 894,50 1180.34 1481.32 375 750 830 200
836.02 1149.85 1585.12 375 450 880 424
- 330,23  11492.79 1540.05 373 430 830 20
vux 866,77 1155,13  1435.88 375 800 830 312
19
"( The next two examples are for coded CF and CV research
%ﬁ‘ designs and their sampled values. These designs were used
52 in the initial lower limit of zero.
oy
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%X
3*& Regression
13 This section includes a complete stepwise regression
7‘? for CF, and the final step and residual scatter diagrams

for CV and AF regressions. It concludes with Tables VI,
VII; and VIII which show the regression error for each
) surface.

The Statistical Package for the Social Sciences
(SPSS) was employed with a stepwise regression option for
the determination of the regression polynomials.

Example CF Stepwise Regression:

84/03/31. 15.58.17. FAGE 1
w ASD COMFUTER CENTER

Y WRIGHT-PATTERSON AFB,OHIO

)
S F S S - - STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES
s VERSION 8.3 (NOS) -—- MAY 04, 1902

376300 CM MAXIMUM FIELD LENGTH REQUEST
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PN NAME
FILE NAME

SECOND' ORDER RECRESRKION FOR 4 INTEF, VARIARLES
ACORESSION ANALYSIS WITH SGDAT
VARIARLE LIST CF,CM,AF,W1,42,4W3,u4

N OF CASES 25

INPUT MEDIUM  CARD

INFUT FORMAT  FREEFIELD

COUMPUTE Wli=W1%%2

CONFUTE W22=W2%xx2

CONFUTE W33=WIkk2

COMFUTE Wa4=W4%x2

COMPUTE Wi2=wixW2

CONFUTE W1li=W1xW3

COMPUTE Wl4=W1%W4

CUMPUTE W23=W2%W3

COMFUTE W24=W2%kW4

COMFUTE Wi4=U3%W4

CPU TIME REQUIRED.,. 044 LHECONDS

REGRESSION HETHOD=STEPWISE/
VARIABLES=CF TO W4,W11,W22,U33,W44,W12,W13,W14,U73,W24,W34
REGRESSION=CF WITH W1 TO W34/RESIDUALS/
REGRESSION=CV WITH W1 TO W34/RESIIUALS/
REGRESSION=AF WITH W1 TO W34/RESIDUALS/

STATISTICS ALL

00056000 CM NEEDED FOR REGRESSION

1SECOND ORDER REGRESSION FOR 4 INDEP. VAR 84/03/31. 15.56.17. PAGE

FILE - REGRESSI (CREATEL - 84/03/31) ANALYSIS WITH RGLAT

A XXX IXAXXXMULTIPLE

VARIABLE

CF
cv
AF
Wi
w2
W3
W4
Wi

ladn]
ke

W33

MEAN STANDARD DEV CASES
866,0364 33,9360 25
11464,9860 12,9165 25
1631,34460 43,6308 235
375.,0000 53.0330 29
600,0000 106.0660 25
880.0000 113.,13721 25
312,0000 791960 29

143325.0000 3987340347 29

370800,0000 127775 .2464 25

7REGRB L NAQN 199543.4740 25
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Wa4 103265,1200 4983C. 4902 25
g W12 225060, 0000 51143.1619 25
k3 W13 330000,0000 £3261,3624 25
3t Wid 117000,0000 34167, 2045 25
s w23 528000,0000 115827.,4579 25
5063 W24 187200, 0000 58310,2049 25
s W34 274560, 0000 78463,7564 25
f
f;ﬂ CORRELATION COEFFICIENTS.
i
s A VALUE OF 99.00000 1S FRINTED
f““ IF A COEFFICIENT CANNOT BE COMPUTED.
MK
'g,*}i v + 96255
oy, AF +94427 193601
| Wi V73483 53064 55301
ey W2 166937 JDA161 74357 0
&> W3 00836 03570 30704 0 0
:: W4 (06015 .00292 19999 0 0 0
TR Wil /73340 ,53717 5522 V99741 0 0
A%, w22 166466 ,83810 73647 0 199594 0
W33 08858 03541 30665 0 o 99786
W44 06047  ,00376  ,20068  ,00000  ,00000  ,00000
Wiz 97779 98924 91788 ,62217 77771 0
Wil (60135 ,42093 81314 ,73772 0 67065
W14 VA0B1L 24336 L A44135  ,48424 0 0
w23 59119 L69848 77587 0 30584  ,5R4606
W24 42890  ,48001  ,58204 0 56753 0
W34 ,09315  .01846  ,31451 0 0 .44987
CF v AF W1 W W3
. Wit 0
“15 22 o  -,00182
B W33 0 ~,00133 -,00166
3 WA4 99173 ~,00260  -,00325  -,00237
Sy w12 0 .62056 77457 0 0
. Wiz 0 .,73581 0 68922 0 ,2339%
] Wi4 186916 ,4B299 0 0 .B86197  ,30128
i w23 0 0  .80258  ,58481 0 .62671
W24 V81491 0 .56524 0 .30817 34137
P, W34 ,28821 0 0 44871 .83085 0
OR
s WA W11 W22 W33 Wad Yyo
"",tl."f
3y
A
P
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VY
R
I
ik
Ly
RY:
o Wed V35724
3 W3 . 39307 )
‘ W24 0 L, 70229 L 45732
a5 W34 30171 77200 V25365 72381
93 W13 W14 W2 W24
. 1SECOND' ORDER REGRESSION FOR 4 INDEF, VAR 84/03/31. 15.56.17. FAGE 2
o
o FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGDAT
~ KX XXX XXX KMULTIPLE REGREGSSIONXX XX K XX % K
DEF, VAR... CF
: MEAN RESPONSE 846,03440 STH. ULEV, 33,93598
4 YARIAELE(S) ENTERED ON STEF 1
W12
LY )
: MULTIPLE R .9778 ANOVA IF SUM SWUARES MEAN SG. F
5 R SOUARE ,9561 REGRESSION 1. 26425,270 26425,270 500,493
:" STD DEU 104.601. F\'ESIDUM 230 1:’14 35 J&.o/ 778 S]Go ¢
iy ADJ R SOUARE .9542 COEFF OF VARTIABILITY L8PCT
| VARIABLE B S.E. B F SIG. RETA  ELASTICITY
“ 12 .001 ,000 500,498 0 97779 16854
N CONSTANT 720,055 6,685 11501,442 0
5 FX XX E XXX XL XA K E XXX K XK XXX KX XX XXX KXXKXKX X
: VARIABLE (§) ENTERED ON STEP 2
N13
. MULTIPLE R .9927 ANOVA DF SUM SQUARES MEAN SO, F
i R SQUARE .9855 REGRESSION 2, 27240,206 13420,103  750.201
B STU DEV 4,2609 RESIDUAL 22, 399,416 18,155 SIG. .000
: ADJ R SQUARE ,9842 COEFF OF VARIARILITY JSPCT
s
o VARIABI £ B S.E, B F 516, EETA  ELASTICITY
Al wi2 001 .000 749,877 0 88708 .1'"*7 I
» W13 . 000 ,000 44,887 ,000 19327 LNEYE
; CONSTANT 499,085 5,014 19421,403 0
, 15ECONT DRDER ReGRESSINN FrA 4 INDER, VAR R4/07/21, 15.54.17. FAGE 4
T FILE - REGRESSI (CREATED - 84/03/31) ANALYSIZ WITH BGIW
107
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2 23 -1200 W00 70307 LOLE  -,00245  ~.00044
5 W33 -, 000 000 7,593,017 -.0035C  -.000Sé
3 W24 -.000 000 2,349 134 ~-,00102  -,00013

1 W44 -, 000 000 1,479,247 -,00081  -.00007

CONSTANT 504,445 \360  J196E407 0O

43 1SECOND ORDER REGRESSION FOR 4 INDEP. VAR 84/03/31, 15.56.17. FAGL 12
¥

3

% FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGIAT

N9

s XKEXX KX KX KXMULTIPLE REGRESGSIONS®XK¥XXXK&
2y DEP. YAR... CF

&-

.

32 UAKIABLE(S) ENTEREL ON STEF 17
B Wi

- MULTIFLE . 1.0000 ANOUA DF  SUM SQUARZS MEAN SQ. F

o R SGUARE  1.0000 REGRESSION 13,  27839.620 2126,125 1256408
K STD UEV L0131 RESTIUAL 11, .002 .000 516, 0
Py ADJ R SGUARE 1,0000 COEFF OF VARIABILITY +OFCT

N .

* VARIABLE B S.E. B F sIG, BETA  ELASTICITY
A W1z -.000 000 7,186 ,021  -,00272  -,00054
! W14 -.000 000 1,320 .275  -.00090  -.00012
& W2 \29% ,000 .357E+06 O (92361 20473

; Wi .472 L001 .163E406 O (73693 20419
& w22 -, 000 ,000 37746,079 O . -.25266  -.02873
W3 ,029 001 2272,737 0 09629 02939

g wa +028 .001 1977,203 0 L0£302  ,01004
p W34 -.000 ,000 11,879 ,005  -.00290  ~.00040
0 w23 - 000 000 7,184,021  -.00249  ~,00044

' W33 - 000 000 3,523 L0B7  -,00335  ~.0008D

- W24 -,000 000 2,347 .154  -,00102  -.0001Z

, W44 ~.000 +000 (564 489 ~.00068  ~.00005
4 w11 +000 +000 ,044 834 ,00035  .0000%
o CONSTANT  504.542 (590 JTIEH06 O
- F-LEVEL OR TOLERANCE-LEVEL INSUFFICTENT FOR FURTHER COMPUTATION,
5
K

108




CHOEFFICIENTT AND CONFIDFNCE IHTERVALS.

¥as VARIABLE R %5 #CT C.I.
N W13 ~,0000 -,0000  -.,0000
gt W14 -, 0000 -+ 0000 + 0000
W2 +2955 2944 V2944
o W1 W4716 +4690 14741
*‘j‘, i “22 -00001 “00001 -00001
N w3 ,0289 0274 0302
35 Wa 0279 L0265 0292
. W34 -. 0000 -, 0000 -,0000
w23 -.0000 -.0000 -.0000
P W33 -, 0000 -.0000 0000
1 W24 -.0000 -+ 0000 0000
N WA4 -+ 0000 -, 0000 0000
T Wit . 0000 -,0000 L0000
e, COMSTANT 504,5424 S03,2444 505.3401

1GECOND ORDER REGRESSION FOR 4 INDEP, VAR 84/03/31, 15.56.17. FAGE 13

FILE - REGRESSI (CREATED - 84/03/31) ANALYSIS WITH RGUAT

XE XXX XXXXMULTIPLE REGRESSIONIXXKX XXX

]
DEF. VAR.., CF

T3 YARIANCE/COVARIANCE MATRIX OF THE UNMORMAL IZEI' REGEFSSION COEFEICTENTS.

o

) Wi +00000

. w2 00000  ,00000

g W3 00000 ,00000  ,00000

2 Wa 00000  ,00000  .00000 00000

o Wil -.00000  -,00000 -.00000  =,00000  ,09000

il 422 -,00000  -,00000 -,00000 -,00000  .00000  .40000
- W3 -,00000  -,00000 -,00000  -,00000  ,00000  .00000
oy W44 -.00000  -,00000 -,00000 -,00000  .00000 00000
o W13 -,00000  -,00000 -.00000 -,00000  ,00000  .0GANO0
-3 W14 =,00000  ~,00000 -,00000 -,00000  ,00000 00000
N W23 =,00000  ~,00000 -.00000 ~.00000  ,00000  .00000

- W24 -,00000  ~,00000 ~-.00000 -.00000  ,00000 00030

j:a W34 =,00000  -,00000 -.00000 -,00000 00700 00000

RY W1 W2 W3 W4 Wil e

3

’ -x;g

e

;“\ §

:

L% 109




R AR PRGN P DR IBUAR U AT M A Y WS TR D LS Y LIPS T N A e DERCE A SN

‘!;;h },

f %

ol

Y,

;231 W33 L 00000

tipg Wad L 00000 L0000

X Wiz L, 00000 L CO000 L OG000

3% W14 L 00500 L00000 -, 00000 L 00000

;*QQ 23 L 00009 ,00000  ~,00000  -,00000 L0000

fri; W24 .00000 ,00000  ~,00000 L00000 -, 09000 L0007
B W34 00000 ,00000  ~,00000  -.00000  -,00000 L0000
¥

- W33 W44 W13 Wia W23 W24

"

hﬁﬁ

5§ W34 00000

AR

"’.‘

-2 W34

1SECOND ORDER REGRESSINN FOR 4 INDEF. VAR 84/03/31, 15,56.17. FAGE 14

Py FILE ~ REGRESSI (CREATER - 84/03/31) ANALYSIS WITH RGDAT
ée AKXXKXKXXXXHULTIPLE REGRESESIONKXXKXKKKS
[IEF, VAR..., CF
s SUMMARY TABLE,
o STEP VARIABLE E/R F MULT-R R-SQ CHANGE R  OVERALL F  S1G.
0¥
RN
59 1 w12 E 500,498 ,978 ,956 996 .97 500.498 0
£ 2 W13 E 44,88/ ,993 .984 ,029 L4601 750,201 .000
‘ 3 w14 E 14,803 .996 ,992 ,006 .408 518.861 0
an 4 Wil E S.995  .997 .993 .002 733 741,719 ,000
By 5 W2 E 53,057 .997 .998 .005 .867 2204,100 0
e & Wl E 31,552 1,000 ,999 .001 .735 4799.883 .000
;’;‘f
e 7 w12 R ,000 1,000 .999 0 .978 &079.851 0
o 8 W22 £ 54,029 1.000 1,000 000 .45 19216,177 009
- 9 il R ,002 1,000 1,000 -,000 733 24337.452 0
.~ 10 W3 E 39,242 1,000 1,000 000 .088 61108.470 000
¥ 11 W4 E  3411,381 1,000 1,000 ,000 .060 .998EF07 0
N 12 W3s E 6,890 1,000 1,000 000 ,093 .118E408 000
2% 13 w2z E 5,284 1,000 1,000 ,000 ,591 ,132E408 O
¥ 14 W33 E 5,359 1,000 1,000 .000 .089 .1S4E+08 000
-~ 15 W24 E 2,459 1,000 1,000 ,000 429 .154E+08 0
pr7 14 W44 E 1,479 1,000 1,000 .000 040 ,147E+08 000
b 17 Wit E .046 1,000 1,000 .000 .733 J12GE+08 O
1 1SECOND ORDER KCGRESSION FOR 4 INDEP, VAR 04/03/31. 15.56,17. FAGE 1S
4
=Y FILE - REGRESSI (CREATED - 84/33/31) ANALYSIS WITH RGDAT

L.

REeyi

Bk

-~

-
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-
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B L R, ST NPLY . ) 4 ) Bog PN BAR D Rl N JPMCIAC St DAL A R A )

KL x x ¥ X XX XkMULTIPLE REGRESSINONIRX XXX KX

REZITUAL FLOT.

T VALUE Y EST. RESIDUAL -250

o
S
-+
k3
~—

932,670 912,855 015 I .
848,400 3648.403 -+003 |

862,120 862.121 ~.001 oI

797,830 797.870 =020 . I

873.840 873.8%55 ~.013 N I

868,130  868.125 +004 I .
865.410 865.418 ~.008 . 1

859.4610 859,400 010 I

904,920 904,712 + 008 I .
899.150 899.153 -+003 |

834.400 834,393 +007 I .
828,400 828,405 =003 . I

901.390 901.595 =,005 . I

893.140 993.148 -, 008 » I

837.39¢ 837.373 012 I .
B828.870 828.3462 -008 I .
906,240 904,247 -007 v I

897.790  897.800 -+010 v I

335,760 835,749 +011 I '
827.240 827,232 +008 I v
900.260 900,257 »003 I .
894.500 894,504 =004 |

336,030  B836.025 +005 i .
830,230 830.232 -,002 o I

886,770 866,770 +000 .

NOTE - (%) INDICATES ESTIMATE CALCULATED WITH MEANS SURSTITUTED
R INDICATES POINT CUT OF RANGE OF FLOT

NUMEZR OF CASES PLOTTED 25,
NUMBER OF 2 5.0, OUTLIERS 0 Ok 0 PERCENT GF THE TOTAL
VON NEUMANN RATIO 1.79118 DURBIN-WATSON TEST 1,71954
NUMBER OF POSITIVE RESIDUALS 12,
NUMRER OF NEGATIVE RESIDUALS 13,
NUMBER OF RUNS OF SIGNS 15,
EXPECTED NUMRER OF RUNS OF S5IGNS 13.
EXFECTED S.0, OF RUN DISTRIBUTION 2.44328
UNIT NORMAL DEVIATE-
Z=(0BRSERVED-EXPECTED+0.3) /8. 0. +B82675
FROBABILITY OF ODBTAINING .GE. ARS{L) + 20419
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CF Summary Regression:

A Xy ke Myy T IPRLE & E

BEF. YaR,.. CY

YARIABLE(S) ENTERED ON STEF 12
W4

MULTIFLE R 1.,0000 ANOVA UF  SUM SQUARES
R SQUARE +9999 REGRESSION 2. 4003.748
STD DEV +1569 RESIDUAL 12. + 295
AllJ R SQRUARE .9999 COEFF OF VARIARILITY +OFC
UARIABRLE E S.E. R F 516G,
W12 -.000 «Q00 3.416 ,089
W2 »120 004 358,895 000
W1 v184 +014 133,499  .000
W3 +031 +007 17,845,001
1&13 -, 000 .000 74185 Q20
W23 ~-+000 +Q00 7.163% 040
W33 =-+000 +000 4,195 4063
W44 +000 +000 + 527 4034
W22 -+ 000 +000 «729 L3554
Wit -,000 +000 853 374
W4 +002 Q04 079 L7358
CONSTANT  1027.03% 74121 20799.923 0

F~-LEVEL OR TOLERAMCE-LEVEL INSUFFICIENT
COEFFICIENTS AND CONFIDENCE INTERVALS.

3 R E

PN RN N N

PN E X

HMEAN SQ.
333,644
025

T

BETA

-.05103
ERLY
+05034
£ 28941

-+ Q&7

-.07845

~+11342

-+ 03305

-, 03938

e 04734
01159

¥ X ¥ & X

ELASTICITY

-.0024¢

= 004945
- 00397
=.00504

00048
=, 00127
~+001R7

+ 00051

FOR FURTHER COMPUTATION,

VAKIARLE B ?3 FCT C. 1.
W12 -.0000 -.0000 +0000
W2 + 1124 <1060 +1334
Wi +1658 + 1346 +1971
W3 0308 +01479 + 0466
‘4”-5 "00000 '00000 ‘00000
W23 -+0000 =.0000 -.0000
W33 ~+.0000 -+0000 + 0000
W44 +Q000 -+92000 +001)
U34 -+0000 -, 0000 + 0000
W22 -+ 0000 -,0000 +00C0
Wil -.0000 =-+0001 +000C
W4 L0017 ~.0113 y 0151
CONSTANT »10E+04 162404 +10E+04
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- RESTDUAL FL.OT.

2 Y VALUE Y EST. RESIDUAL -2ST 0.0 P25

" 1190.020 1190.021 -, 001 .

N 1159.590 1159.545 025 I

e 1170.660 117¢.4633 027 I

¢, 1139.650 1139,595 +054 I .

N 1165,540 1185.418 -, 058 N

1165.5560 1165.704 -, 144 . T

A 1164,700 1164,501 199 [ .

v 1164.310  1184.200 110 I .

P 1174,870 117%5.004 -.134 . I

N 1174,810 1174.897 -.087 . H

% 1155.390  1155,325 L O4Y I .

. 1195.320  1155,21% 101 T .
% 1190.830 1180,868 V142 I

N 1179.810 1179.776 034 I,

IJ 1150,280 1150,341 -.081 v

o) 1148.420 1148.410 -, 190 . T

W 1175,300 1175.137 11863 I .

) 1174,280 1174.246 L 034 A TN

_ 1155,820 1155.879 -, 059 v 1
f 1153,940 1154,147 -.187 . i
i 1180.,400 1180.534 -.134 ’ I
ux 1180,340 1180,428 -,088 . 1

' 1149.850 1149.7983 0672 1.

p 1149,790 114%.481 109 i .

Y 1165.130  1145.130 , 000 .

1%
>l NOTE - (%) INDICATES ESTIMATE CALCULATED WITH MEANS SURSTITUTED

N R INDICATES FOTNT QUT OF RANGE OF FLOT
; ;
s NUMEER OF CASES FLOTTED 25,
) NUMBER OF 2 5.0t OUTLIERS 0 OF 0 FERCENT OF THE TOTAL
UON NEUMANN RATID  1.71919 TURBIN-WATSON TEST  1.8¥047
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AF Summary Regression:

1 GEP. VAR AF

N VARTARLE(S) ENTERED ON ZTEF 14
W44

MULTIPLE R L7999 ANOVA IF  Sui SUUARES  HEAM 3Q. F
R SQUARE +7999 REGRESSION 14. 9716%,036  §940.,220  A349.74

r

30 ST DEV 1,0066 RESTUUAL 10, 10,132 1,013 516, .00
;5@ ALY R SQUARE  ,9997 COEFF OF VARIARILITY VIFCT

q-;*

N UARIABLE B 8.E. R ¥ 516, RETA  SLASTTOLNY
}iy N12 -,001 000 238,497,000 ~ BEHZ0 07505
-r: W34 - 000 000 17.245 L0472 -~ 14380 - 0104
Qo W3 L5233 L047 125,143,000 *%190

jg W2 1,325 (042 1027,334 000 32257, V49111
v Wi 1,357 L094 208,441 000 1.13109 V31194
\ 4 22 -000 JO0G 110,898,000 ~ SEE0T - 08773
o W2z -, 000 V000 144,143,009 -, 45330 -.08149

x W4 + 433 +044 g1.11%9  L000 +541589 LSH3321
oY W24 -+0D00 + 000 39,509 .000 - 21173 -, 02552
N Wi3 -.000 + 009 3,833  .014 -+ 12407 -.02524
N W33 =000 +000 7.88% .019 - 20806 - 03149
Wil -:+000 + 000 3,722,083 -.12878 -.01303
o n W14 ~,0000 +654 W A37 -+ 02605 -.00348

:y W24 =000 <000 »230 L4283 -.01870 —.Q0331
! CUNSTANT 323.743 446,559 12,355 L0000

:;a ALL VARTABRLES ARE IN THE EGUATION.

e

COEFFICIENTS AND CONFIDENCE INTERVALS.

‘ .__.3: VARIARLE H 2% PCT C.1.

%53 W12 -10007 L0008 -,0006
A W34 -,0001 -, 00072 -.0001
. W3 V24 L4185 524
) W2 1,3353 1,2425 1.4291
o Wi 1.3571 1.1478 15665
o W2z -.0003 -.0003 -, 0002
N W23 L0003 -,0003 -, 0007
L Wa L4351, 5427

T W24 -,0002 -, 0003 -,0002
Wi -, 0001 -.0002 -, 0000
W3 -, 0001 -, 0001 -, 0000
Wit -, 000% -,0004 L0007
W14 -, 0000 - D002 L0001
W44 - 2000 - omox L0001
CINSTANT 38,7473 .,_..u'O 4077, 4877
LSECONI OKDER REGRESSION FOR 4 KNHEP. VAR RG/DIS3T. LS4, FARF
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TABLE VI

CF Regression Error

Design Points

Wy Wy W3 Wq CFp CFo Residual

450 750 880 312 932.67 932.655
450 450 880 312 868.40 868.403
300 750 880 312 862.12 862.121
300 450 880 312 797.85 797.870
375 600 1040 424 873.84 873.855
375 600 1040 200 868.13 868.126
375 600 720 424 865.41 865.418
375 600 720 200 859.61 859.600
450 6C0 880 424 904.92 904.912
450 600 880 200 899.15 899.153
300 600 880 424 834.40 834.393
300 600 880 200 828.60 828.605
375 750 1040 312 901.59 901.595
375 750 720 312 893.14 893.148
375 450 1040 312 837.39 837.378
375 450 720 312 828.87 828.862
450 600 1040 312 906.24 906.247
450 600 720 312 897.79 897.800
300 600 1040 312 835.76 835.749
300 600 720 312 827.24 827,232
375 750 880 424 900.26 900,257
375 750 880 200 894.50 894.504
375 450 880 424 836.03 836.025
375 450 880 200 830.23 830.232
375 600 880 312 866.77 866.770

.015
.003
.001
.020
.015
.004
.008
.010
.008
.003
. 007
.005
.005
.008
.012
.008
.007
.010
.011
.008
.003
.004
.005
.002
.000

Design Points Standard Deviation of Error = 0,0131

continned
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Table VI continued

e ¢

Bx]

- ::} Random Sample

T 441 469 803 226 864.41 864.289 .12l
;. 328 458 752 286 808.84 808.915 .075

391 604 923 333 876.80 876.780 .021

ﬂ 300 645 969 260 841,71 841.990 .280
ool

B " 423 711 853 357 912.46 912.689 .228
o

“1 R 350 480 825 275 826.08 825.885 .195
f 429 577 726 208 880.68 880.385 .294
p{

‘. 403 585 789 241 872.62 872.423 .196

gg 408 470 947 410 857.71 857.549  .160
w&‘

. 489 545 791 216 904.31 903.527 .783
f: 355 462 894 392 829.02 828.921 .099
:"' Random Sample Mean Error, e = 0,223

~ Random Sample Standard Deviation of Error = 0.204
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TABLE VII

CV Regression Error

Design Points

Wy W, Wy W4 CVn Cvg Residual
450 750 880 312 1190.02 1190.021 .001
450 450 880 312 1159.59 1159.565 .025
300 750 880 312 1170.66 1170.633 .027
300 450 880 312 1139.65 1139.596 .054
375 600 1040 424 1165.56 1165.618 .058
375 600 1040 200 1165.56 1165.706 .146
375 600 720 424 1164.70 1164.501 .199
375 600 720 200 1164.31 1164.200 .110
450 600 880 424 1174.87 1175.004 .134
450 600 880 200 1174.81 1174.897 .087
300 600 880 424 1155.39 1155.325 .065
300 600 880 200 1155.32 1155.219 .101
375 750 1040 312 1180.83 1180.668 .162
375 750 720 312 1179.81 1179.776 .034
375 450 1040 312 1150.28 1150.341 .061
375 450 720 312 1148.42 1148.610 .190
450 600 1040 312 1175.30 1175,137 .163
450 600 720 312 1174.28 1174.246 .034
300 600 1040 312 1155.82 1155.879 .059
300 600 720 312 1153.96 1154.147 .187
375 750 880 424 1180.40 1180.534 .134
375 750 880 200 1180.34 1180.428 .088
375 450 880 424 1149.85 1149.788 .062
375 450 880 200 1149.79 1149.681 .109
375 600 880 312 1165.13 1165.130 .000

Design Point Standard Deviation of Error = 0.1569

continued
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,‘é} Table VII continued

2

g Random Sample

N 441 469 803 226  1159.99 1159.955  .035

T:? 328 458 752 286 1143.91 1143.285 .625
! 391 604 923 333 1167.73 1167.811 .081

;*5 300 645 969 260 1160.21 1160.778 .568

; o 423 711 853 357 1182.59 1182.649 .059

o 350 480 825 275 1149.49 1149.118 .372

2N 429 577 726 208 1169.02 1169.070 .050

: § 403 585 789 241 1166.83 1167.267 .437

g:j 408 470 947 410 1156.36 1156.467 .107

'{J 489 545 791 216 1173.88 1174.003 .123

fag 355 462 894 392 1148.52 1148.406 .114

-:?5 Random Sample Mean Error, & = 0.234

L,.:tf Random Sample Standard Deviation of Error = 0.222
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o
\.: TABLE VIII
Y
iﬁi AF Regression Error

Design Points

8

450 750 880 312 1736.46 1737.320 .860

4

450 450 880 312 1618.72 1619.040 310

¥

300 750 880 312 1652.86 1653.337 .477

v:% 300 450 880 312  1504.04  1503.967  .073
N 375 600 1040 424  1677.36  1677.435  .07S
53 375 600 1040 200  1645.10  1645.622  .522
2 375 600 720 424  1626.09  1626.355  .265
1 375 600 720 200  1585.47  1586.182 .712
= 450 600 880 424  1701.47  1701.778  .308
j-‘ 450 600 880 200  1668.05  1666.600 1.450
N 300 600 880 424  1602.27  1603.065  .795
¥ 300 600 880 200  1567.22  1566.256  .964
4y 375 750 1040 312  1717.52  1716.390 1.130
%;, 375 750 720 312  1673.61  1673.215  .395
ig 375 450 1040 312  1594.91  1594.650  .260

375 450 720 312 1526.83 1527.305 .475

450 600 1040 312 1708.49 1708.939 «449
450 600 720 312 1657.15 1656.674 476

o
4 300 600 1040 312 1612.06 1612.405 «345
300 600 720, 312 1554.73 1554.150 .588

*\ 375 750 880 424 1710.86 1710.299 .581

o 375 750 880 200 1681.32 1682.070 .750

&1 375 450 880 424 1585.12 1584.239 .881

;%» 375 450 880 200 1540.05 1540.480 .430

?_E 375 600 880 312 1635.88 1635.880 .000

i Design Points Standard Deviation of Error = 1.0066
N

continued
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“? Table VIII continued

N

4 Random Sample

}E 441 469 803 226 1591.84 1588.798 3.042

328 458 752 286 1494.51 1496.747 2.237

b 391 604 923 333 1658.73  1658.556 .170

3:; 300 645 969 260 1612.72 1613.919  .199
g 423 711 853 357  1711.99  1711.877  .113
A 350 480 825 275 1541.90 1540.694 1.206

;; 429 577 726 208 1614.18 1614.414  .234

;‘ 403 585 789 241 1619.45 1619.095  .355

Q 408 470 947 410 1626.35 1628.740 2.390
. 489 545 791 216 1654.74 1654.590  .150

é 355 462 894 392 1571.61 1571.837 2.770

3' Random Sample Mean Error, e = 1.233

4; Random Sample Standard Deviation of Error = 1.154
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APPENDIX D

Sequential Unconstrained Minimization Technique

(SUMT)

e

[

o The SUMT program was developed by Mylander, et al (23)

)

- based on the nonlinear programming work of Fiacco and

ﬁ McCormick (12). A descriptive pamphlet of the program was

g

é developed by Captain R. M. Floyd for the Air Force Institute

' of Technology. With his permission, this pamphlet is re-

i, produced in this appendix. Following the pamphlet is an

g

f‘ example of both an executive program that was used in the
study and a sample output.
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FEB 1982
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) *FORTRAN program SUNT code and description adapted from
b References (2) and (3).
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SUMT LIBRARY

A. Purpose
This program finds the minimum of a multivariable, nonlinear

function subject to nonlinear inequality and equality constraints:,
Minimize F(Xx, X, ooy XN)
Subj.ct to Gk(xi' xz' seey &ﬂ) 2 °| k= 1' 2, eecey M

uk(xi. Xyr eees )&) = 0, k = Mel, M+2, .o., MeM2Z

B, Method
The procedure was developed by Fiacco and McCormick (1), Tne
technique uses the problem constraints and the original objective functien
to form an unconstrained objective function which is minimized by any
appropriate unconstrained, multivariable technique,
The algorithm proceeds as follows:
1) A madified objective fonction if formulated consgisting of ths

original function and penalty functions with the form A

M MEMZ 2
PaFoaer T inGg -« r
k=i - k k.-M#ll.V

where r is a positive constant. As the algorithm progresses, r is
reevaluated to form a monotonically decreasing sequence T >r2>... >0.
As r becomes small, under suitable conditions P approaches F and the
problem is solvaed,

2) Select a starting point (feasible or nonfeasible) and an initial
value for r.

3) Determine the minimum of the modified objective function for the
current value of r using an appropriate technique (several options

available),

123




2

Estimate the optimal solution using extrapolation formulas (1).
Select a new value for r (1) and repeat the procedure until
the convergence criterion is satisfied.

A logic diagram for this method is given in Pigure 1.

Use of the SUMT Library

Execution of the SUMT routines requires that the user submit
a computer job composed of the following elements; 1) Job
Control commands, 2) a MAIN program, 3) user-supplied sub-
routines, and 4) NAMELIST data. The layout of these elements
is shown below,

JOB CARDS

(7/8/9)
MAIN PROGRAM

USER-SUPPLIED SUBROUTINES
(7/8/9)

NAMELIST DATA

(6/7/8/9)

Note that an end-of-record and an end-of-file is signified
by a multipunch (7/8/9) and (6/7/8/9), respectively in column
1 of 2 keypunch card {or by "EOR and #EOF, respectively when
coded at a computer terminal)., Each element is described
separately below, In Section E an example is presented which
combines these elements for job execution.

1) Job Cards

200K

LA

ARy

s o s 7 | RS
wd” [

The Job Card sequence required to execute SUMT is

abe,Tt,I0k,CM100000, PN,name
ATTACH,1fn,SUMT, ID2T800535.

LIBRARY,1fn,
PTN.
LGO.
in which
abe 1 3 character identifier
< + decinal seconds of Central Processor time
requested for the job (default is 20)
k 1+ decimal seconds of Input/Output time requested

for the job (default is 70)
PN s user computer problem number

name 3 usew rame or cther identifring informatinn
1fm ¢ arbisrary lgc2l file name for the SUINT lizrary
124
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By
3
4
!
;s‘_;.' ;
by
i
A
Select Starting
Point and
Initial Value
of r
'
&
H ,’ . W
Correct Starting
, Point Until
s Feasible
#
Ty [
¥, Minimize Modified
- Objective Function
¥ 3
. Estimate Optimum
” Point By
! Cxtrapolation
. Reduce
% r
p A No Convergence Yes Sto
Obtained o\ oP
¥ ?
.:|
5
Ly
.-s
Ay Figure 1. Fiacco and McCormick (SUMT ALGORITHM)
y Logic Diagram
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2) MAIN Program
The MAIN program identifies three files and assigns corres-

ponding device numbers in a Program statement. It communi-
cates the device numbers through the labelled COMMON:

COMMON/DEVC/NI,NO,NS

The variables NI, NO, NS are given values by MAIN and cor-
‘respond to the device numbers for the inpht and output files
and a save file, respectively, Execution of the SUMT routines
is initiated by a call to subroutine SUMT. The code given
below demonstrates the requirements of the MAIN routines

PROGRAM MAIN(INPUT,QUTPUT,SAVE,TAPES=INPUT,
TAPE6=0UTPUT, TAPE7=SAVE)
COMMON/DEVC/NI,NO,NS

NIZ=S

NO=6

NS=7

CALL SUMT

STOP

END

User-.Supplied Subroutines

The subroutines described below are called by the given nanes
and with the given argument lists. Inclusion of the routine
RESTNT is mandatory, while routines GRAD1 and MATRIX are
optional (default routines are coded in SUMT). Each user-
supplied subroutine must contain the COMMON card: .

COMMON/SHARE/X(100) ,DEL(100),A(100,100),N(5)

This cpmmon region is used for communication between the
SUMT routines and the user-supplied routines, For each
routine, the argument IN is an input argument referring to
the objective function, the inequality constraints, or the
equality constraints as follow:

INZ- OO s objective function is being
considered

INZ21,2,....1 + the INth inequality cons*raint
is being considerad

IN 2 M4l 242,.,,,%4d2 ¢+ the 1st, 2nd,..., ¥I%h 2
constraint is teing ccns
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RESTNT(IN,VAL)

This subroutine sets the argument VAL to the value of the
objective function, an inequality constraint, or an equality
constraint according to the value of the argument IN, The
current values of the independent variables are found in the
vector X of the labeiled COMMON/SHARE/,

GRAD1(IN)

This subroutine computes the gradient of the objective
function, an inequality constraint, or an equality constraint
according to the value of the argument IN. The gradient
with respect to the Ith independent variable is stored in
location DEL(I). The current values of the independent
variables are in the vector X, and both X and DEL are in
labelled COMMON/SHARE/. The elements of BEL are not set to
zero prior to entry into GRAD1. The routine GRAD1 included
by default in SUMT computes a numerical approximation for
each gradient using the central difference technique. If

the user wishes to provide some of the gradients analytically
and éthers by numerical dafferencing, the central difference
approximation for any desired gradient as indexed by the
argument IN may be computed using a call to the SUMT library
routine DIFF1 as

CALL DIPFL1(IN)

with selective execution according to the value of IN, In
the usual case, user's rely on the default GRAC1l routine
rather than provide a replacement for it with analytically
determined gradients.

MATRIX(IN,L)

This subroutine computes the upper triangle and diagonal
elements of the matrix of second partial derivatives of the
objective function, an inequality constraint, or an equality
constaint according to the value of the argument IN. The
current values of the independent variables are in the vector
¥, and %the conmputed zcconrnd partialsg are stered in arrac b,

3oth % and & are in $the Ianalial COTIQL/3HEAIZ/. Tha nizoez-
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4)

of the array A below the main diagonal must not be modified
within MATRIX; the upper triangle of A is set to zero before
entry into MATRIX. The second argument (L) is provided so
that the user may inform SUMT that the matrix of second
partial derivatives of a function is zero: L should be set
to 1 according to the value of argument IN if the corres-
ponding matrix of second partials is zero., The routine MATRI!
“included by default in SUMT computes a numerieal approx-
imation for each matrix of second partial derivatives using
central differences to second order. If the user wishes to
provide some of the matrices analytically and others by
numerical differencing, the central difference for any des-
ired matrix of second partials as indexed by the argument IN
may be computed using a call to the SUMT library routine
DIFF2 as

CALL DIFF2(IN)

with selective execution according to the value of IN, 1In
the usual cass, user‘'s rely on the default MATRIX routine
rather than provide a replacement for it with analytically
determined second partial derivative matrices,

NAMELIST Data

Data is entered into SUMT using a NAMELIST read from the
input file; the NAMELIST is referred to as DATA and includes
the following variables:

NAMELIST/DATA/EPSI ,RHOIN,THETAO,RATIO, TMMAX,M,N, M2,
X ,NT,XEP1,XEP2,NEXOP1,NEXOP2

The ~ariables X and NT are vectors of length 100 and 10,
respectively., All of the variables in the NAMELIST are
assigned default values by SUMT (see Section 4b below). To
assign different values to any subset of these variables an
assignment is made to each appropriate variable name in the
NAYELIST input., The complete data set is delimited on the
1afs By 2DATA and con the riszhs by E¥D; indiwidual Iz2<a

H - “ .o - “ 2 ‘e - - -
assigrments are segarated Dy sommas; the L3t 32t Tn iU
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over one or more 80 column fields. No information should
be placed in column 1 of any data field, since the NAMELIST
read processes information beginning with column 2. Refer
to an appropriate FORTRAN manual for more information on

NAMELIST input.
a. Definition of NAMELIST Data Items

EPSI Tolerence, €, used to decide if an unconstrained minimum
has been achieved for each subproblem (5ee NT (7))

RHOIN Possible initial value of r, o (often set at 1.0) (see NTQ))

THETAQ Tolerance, 8 , ussad to decide if the solution to the problem
has been approairzated (see NT(5))

RATIC Parameter, C, (>1) used to compute consacutive valuas of r;
Tieg ® ri/c (often set at 16.0)

TMAX Maximum amount of time for solving problem (sec.)

M Number of inequality constraints

N Number of independent varigbles

MZ Number of equality constraints

X Independent variables (starting point on input)

NT(Q) Option kay for r values, as follows:
=1 The value fcr r is mada’bx finding an approximation
solution uiq[[V?(X°, r)[99p (X, r) J-19P(X°,r) ]} which
is a good approxipation only when X° is close to thne
boundary (i.e., for some i, Gj(X) is close to zero) or
when V2F(X°)s0 and when MZa0

=2 ry is given by formula 8.65 tRef.(l)p. 191 .] (omly
can be used when }Za0)

-3 r, = RHOIN ;
(normally set to 3)

NT () Option key for constraints as follows:
=1 The requirements (trivial constraints) that X; ¥ 0
for i = 1, ..., N are to be automatically included
in the problem

=2 The only constraints on the problem are those inputed
by the user

NT(3) Option key for printout as follows:
=1 Standard printout (this includes a call to OUTPUT after
the solution of avery subproblem, Also the estimates
of the '"Lagrange multipliers” and first- and second-
order solution estimates are printed)

=2 For additional printout (includes standard printout
and every intetsadiate point, gradient of P and e
vector §)
(normally set to 1)
(W) Cption oy on final convsr-ace a8 follows:
=1 Final corvergenee i3 J2terinned on e basis ol cirrent
solution tu the zudbprcbl.m
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=2 Final convergence is determined on the basis of the
first order estimates. The first order estimate of
the solution vector must be close to feasible.
See below.

=3 Final convergence is determined on the basis of the
second order estimates. The second order estimate of
the solution vector must be close to feasible before
the convergence check is made. If X is a solution
estimate it is considerad close to bexng feasible if
G, (X) « 9030, i=1, 2, sooy M.

(norually set to 1) .

Option key on ‘final convergence as follows:

The convergence criterion determining the problea has been
solved (Only use = 1, \-hen‘l (X 1)

G - F [x(r)]
=1 Quit when Glx(rk).l-(l‘k) Mrk“

<3
o

) o
=2 Quit when |r T j-lzn GJ.[X(rk)]l < Bo (use only rM 4= 0)

first order estimate of v, _ 1 <8
GLx(rk),u(rk),.\(rk)J "o

(normally set to 1)

27 Qlit when

Option key for extrapolation as follows:

=1 No extrapolation
=2 Extrapolate through last two minima

=3 Extrapolate through last three minima
(normally set to 1)

Option key for subproblem convergence (fixed value of r)

as follows: -1
=1 Quit when vap (<, r [%—’J vxp(x",r)l <&
iy

-1
=2 Quit when lePt(xi,r) [%’B&L)] VxP(x'l,rH
1775

<pixih - pixdh
3

=3 Quit when lvxc(x‘,r)l <

Option key on problem linearity as follows:
1 At least one norlinear constraint

=2 Linear constraints

23 Linear constraints and linear objective function
(i.e., a linear programming problem)

Wnen Opticn = = 3 MATRIX (the user subroutine =umplying
the second ra.iiai derivatives) will not be cailed, and
when Option 2 = 2 it will te called only to get the second
partials of F(X),
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' RIS,

k NT(9) nstused

.
A

NT (10} notused

S

XEP1 Finite difference paraometer used in DIFF1 if numerical
derivatives used. Usually XEP1 = 0,.0001 is satisfactory.

e,

A

XEP2 Iteration improvement limit, When minimizing the P-function
for a given value of r (RHO) the value of P must decrease

‘3 by an amount exceeding XEP2 for each iteration after the

' first. If it does not, then the code prints out the

message "apparently roundoff errors prevent a more accurate

determination of the minimum of this subproblem," and it

is assumed a minimum has been found. (Normally, sat XEP2

equal to 0.)

bt S IV

¥

RONRRS

NEXCP1 Key for checking derivatives as follows:
=1 Solve problems without checking derivatives

.

L Ty S0 )

=2 Solve problem after checking only first derivatives

=} Do not solve problem after checking only first
derivatives

r 4 Sed

=4 Solve problem aftar checking first and second
derivatives

a5 Do not solve problem after checking first and second
derivatives

P If the user wishes to check his first or second partial

h derivatives by having them printed along with experimental

A SUMT's numerical approximations, he can accomplish this
by appropriately setting NEXOP1,

! In all cases the first values printed out are those gotten
Ey from the user's code, snd the second values are thoses
gotten by numerical differencing.

NEXOP2 Key for choosing unconstrained minimization technique as
follows:
=1 The method for minimizing the unconstrained penalty
function is to be the generalized Newton-Raphsen
method as modified to .landle indefinite Hessian
matrices. This method requires function values, first
and second derivatives.

Lo ¥ v 3

=2 Same as 1, except that when an "orthogonal move” is
made because of an indefinite Hessian matrix -VP is
added to the orthogonal mcve vector.

RS

=] Steepest descent is used to minimize P-function,

=h The method for minimizing the unconstrained penalty
function is McCormick's modification of the Fletcher-
Powell method as reported in the Fiacco-McCormick
book 7. This requires function vaiues and first
derivatives.

2
b
4
)
]
%

5

i
" 131
"




< LS AN A A b I b hat ¢ A0 e e ot o Rt S A AR S Al S R e al o LA ()

1 3
L

AN

-

P e .- 3
e e,
L PO

”

AR R
AN 4

b, Default Yalues of MNAMELIST Da%a Items
Variables in 3CATA ars given the following values in SUMT
prior to execution of the NANELIST read.

. l.l L}

'’

EPSI 1 1.E-9
RHOIN 1 1.
THETAO : 1.E-6
RATIO 1 16,

-

)

2 g
-
o

>
g

TOAX s J0.
e, M 1 O

oy N 1 0

-‘:4 MZ 1 O

oy X(I) ¢ 0. Iz1,...,100
T NT(1) 1 3

ria] NT(2) s 2

N NT(3) 1 1

ij NT(4) s 1

' NT(5) t 3

- NT(6) s 1

e NT(7) 1 1

0 NT(8) 4 1

¢~ NT(Q) s )

-f; NT(10) + 1

XEPL 1 1.E-4 |

;-5 XEP2 s 0.

'3 NEXOPL 4 1

%g NEXOP2 : 4

i
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v. ' D. Program Description H
?‘"" 1)  Usage:
\% The program consists of a mﬂh1routine'two control subroutines
ﬂ?j (BODY, FEAS), twenty ome special purpose subroutines (CONVRG,
"

Y ESTIM, EVALU, FINAL, GRAD, INVERS, OPT, OUTPUT, PEVALU, SAVE,
\ REJECT, RHOCOM, SECORD, STORE, TCHECK, TIMEC, SET, XMOVE, DIFF1,

M DIFF2, CHCKER)and three user supplied subroutines (RESTNT,
o GRAD1, MATRIX). Input is coordinated by the main routine,
‘:c Output is from the main routne and subroutines 30DY,
3: CHCKER, CONVRG, ESTIM, FEAS, INVERS, OPT, OUTPUT, PUNCH, TCHECK,
A TIMEC.
2) Subroutines Required:
v i ¥ SUBROUTINE BODY coordinates all subroutines.

SUBROUTINE CHCXER computes first derivatives of objective function
using GRAD1 and DIFF1.

i T AR

SUBROUTINE CONVRG(N1) checks for convergence.
SUBROUTINE DIFF1(IN) computes first derivatives by central difference.

SUBROUTINE DIFF2(IN) comjutes second derivatives by central

¥

difference.

.z"f:.“j :

SUBROQUTINE ESTIM estimates Lagrange multiplier (Xi) values and final

solution extrapolation.

o

o

SUBROUTINE EVALU evaluates objective function and constraints.

&
Wl
*h" SUBROUTINE FEAS determines feasibility of starting point; if not
B feasible, a feasible point is sought; if no feasible point possitle,
.;.,r error message printed.
'%l SUBROUTINE FINAL(N2) checks for convergance.
p SUBROUTINE GPAD(IS) computes first derivatives of penalty function.
p
- SUBROUTINE INVERS(NSME) solves linear system of equations.
) N SUBROUTINE OPT performs one dimensional search by Colden Section
-

method (modified Fibonaccil.
SUBROUTINE QUTPUT (K) prints out results of each iteration.

SUBROUTINE PEVALU computes value of penalty function and dual.
SUBROUTINE REJECT returns stored values to original locations.
SUBROLTINE RHCCOM computes initial value of r.

SUBRCUTINE SAVE writes alal

A

L
»
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| 4 SUBROUTINE SECORD(IS) computes second derivatives of penalty function.
AL
X SUBROUTINE SET( DMAX) stores the time at start of run.
Bt
:E:- 1Y SUBROUTINE STORE stores values of current point.
."‘p.'.
o SUBROUTINE ICHECK checks run time for 90% of maximum specified.
) SUBROUTINE TIMEC checks elapsed time of run for possible termination.
S
-§:‘ SUBRQUTINE XMOVE determines saarch directions by one of several
¥ :’_{z options (modified Newton-Raphson, Steepest Descerit, Fletcher-Powell).
& SUBROUTINE RESTNT(IN,VAL) specifies objective function and constraints
o (user supplied).
Y SUBROUTINE GRAD1(IN) evaluates analytical first derivatives for
‘; o objective function and constraints (user supplied).
GO
b, SUBROUTINE MAIRIX(J,L) evaluates analytical second derivatives for
e objective function and constraints {user supplied).
2
.-"50
Jal) 3) DIMENSION Requirements:
"." . The general subroutines in the code are currently dimensioned to
handle a problem with up to 100 variables (N} and 2QQ zenstraints
23 ¢M+MZ), This should be sufficient for most problems attespted with
I this method., If the limits need to be changed, a detailed

description of the various paraneters are given elsewhere ).

4) Outout

,de The program title is printed first followed by a listing

,\ﬁﬁ of the parameters, option keys, and starting point infor-
;ﬁ mation. This is followed by intermediate result printouts

Eaiy until convergence is achieved, At convergence, the final

- answer information is printed, Execution time is listed

?%{5 with the intermediate results., In the event that the ex-

s scution time limit set by TICAY is attained, the stopping

;;ﬁ point information needed to recommence computation at the

Ualy same point achieved is output to device NS in NAXELIST form.

:::: This file (if generated) may then be cataloged and used as

i'ﬂ the inpu% NAJELIST data in 2 subseguent execution.
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% E. Example Problem
-f% : The following minimization problem illustrates the effective
3;, use of the SUMT library routines:

Minimize P(X1,X2) = (X1-1.)24(x2-2.)2
$ A Subject to
A Cl : Xl+X2=2,
e, C2 : X2-X1=1,
by v
€3 X130,

% C‘& $ xzmo
-xa Here, the objective function is nonlinear, while all constraints
Wy are linear. Constraint Cl is an inequality, C2 is an equality,
) and C3 and C4 are trivial inequality constraints. Imposing the
5 k constraint format defined in Section A, constraint Cl is re-
b written as
A |
N Cl s 2.-%1-X220,
and constraint C2 becomes
;v
F.* €2 ; X2-X1l-1.=0,
¥
'j After selecting initial values for the X vector, and choosing
o to employ the generalized Newtédn-Raphson unconsirained optim-
r,;x‘ ization algorithm, the computer run is coded as (see next page)
gl
i

2 '
R

2

o
b,

T g 3
I AP,
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QTS,T35,I0100,CM1C0000. TE20163,FLOYD
ATTACH, SUMT , SUMT, ID=T800535 .

LIBRARY,SUMT.
FIN.
LGO.
*Z0R

PROGRAM MAIN(INPUT,OUTPUT,SAVE, TAPES=INPUT, TAPEG=CUTPUT,
1 TAPET=SAVE)
CCMMON/DEVC/NI,NO,NS
NI=S
NO=6
NSaT
CALL SUMT
STOP
END
SUBRCUTINE RESTNT{IN,VAL)
CO-MON/SHARE/X(100), CEL(1C0) ,A(100,100),N(5)
IF(IN) 10,10,20
10 VAL=(X(L)-l.)#**2+(X(2)-2.)»*2

RETURN
20 GO TO(21,22),IN
2t VAL=2.-X(1)-X(2)
RETURN
22 VALaX(2)-Xx(l)-1
PETURN
END
*ECR
8DATA [¥=2,M=l MZal,X=0.,Ll.,NT(2)=l,NT(5)=2,MT(3)=2,NEX0P2=1 =MD
*EOF

The solution was obtained in about 0.25 seconds of Central
Processor time, The final printout is

FINAL VALUE OF F =  5.00CCOGCLE-1

FINAL X YALUES

X(1l) = b.320999982-1 ¥( 2) = 1.500CCCCOED
6 1) = 3.TaxTiioz 3 &) = 5.557I805E-L:
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(1) Fiacco,A.V., and G,P.McCormick. Nonlinear Seguential

g*? Unconstrained Minimization Techniques. John Wiley and
iij Sons, Inec.,, New York, 1968.
¥t
'.r;;“
iy (2) Mylander,W.C., R.L. Holmes, and G.P.McCormick. A Guide
i to SUMT-Version 4: The Comruter Program Imvlementing the
;\* Sequential Unconstrained Minimization Technigque for Non-
i linear Programming. Research Analysis Corporation, McLean,
! Virginia, 1971. (AD731 391)
s
H

K (3) Kuester,J.L., and J.H, Mize, Opntimization Techniques with
$& . FORTRAN, McGraw-Hill Book Company, New York, 1973.
3o
?ﬁ (4) Piaceco,A.V., and G,P. McCormick. ~Computational Algorithm
A for the Sequential Unconstrained Minimization Technique for
. Nonlinear Programming,” Management Science (10), 601-617
P (July 1964).
3 (5) Bracken,J., and G.P, McCormick., Selected Applications of
3 Nonlinear Programming. John Wiley and Sons, Inc,, New York,
P 1968,
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o The following program, STCFCV, is a Fortran Four

-

0 executive program for SUMT. This program is run to
{

ryy calculate the maximum CF for given contours of CV. In

“

Te

j» its current form, the program will request a data entry

Y

N

< in the form of a "namelist" for each CV contour value.

e These contours are set at two unit increments and the
[“a

\ [

' user enters the starting value.

e

:; PRAGRAM STOFCH TNV UT  DUTFUT +N8HT o TAPES=INFUT . TAFSS=0UTPUT, TAIET
N 4 =GHT

N COMMONSDEVC/NT NGNS

W COMMON/CNTUR/CVE

"

RS &
f:1 C THIS FPROGRAM USES SUMT TO SOLVE FOR THE MAKIMe OF RESFONGE ONE.
;{; C CFy CONSTRAINED TO A YALUE.CVI, (F RESFONSE TWQ, THE FRORLEM
;5: C IS FUTHER RESTRICTED BY THE OPERATING A0MATM UNLER CONSIDERSTION,
i 4‘1 C
K i

[ r‘

\ =4
) N1=5

- NO=&
e N5=7

= I1=0

3 WRITE(NO,13)

S 13 FORMAT ("X¥% ENTER INITIAL TUI VALUERIEX®)
3, READ(NI.XOCVT

CYI= 1122.0

= no 1y I1=1,34

G ‘c‘
3 fp]

CVI= CVI+ 2.0

WRITE (N, 11) (VI

WRITE(NG,11) CUI

FORMATCLIXF7.2, "=XCUTKFOR THE FOLLLOWIMG RUN fooiid finonprikake
CaLl SUMT

2

X0
.
H

- ARITE(HG,12) OV
2 L0 R ORMAT CLX, E 70y s TS Y L
a2 WRITE(HD.12) CUI
Ny 19 CONTINUE
: »
*: . ENTI
v
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R
4
€
o y
< .
' SURSOUTITHNE RLOTNTCIn.VALS
( VﬂﬂﬁGN/SLHRE/VIICS)yﬂELQTOﬁ)-ﬁ(1°0 POy H{E:
o COmEOnNAONTUR DY T
\": i
G
f{ IFCIND 10,10,20
$ot 10 VAL=-504.5423465-0,.4715619%Y (1)~0, 29551 074X (D) =0, 075 0979**\
C =0.,0278509%X(4)-0.0000003XK{X (1) XX23+0, 500067 TR(XCD) KD
> c v 0000006 X IZVRK2I+0 . D0DQ0HSK X () %227 +0. UOOH“IJKA(*)‘ ()
.ﬁ- c +0,0000009%X (1) KX (4)40,0000007¥X(2)XX(3)40,000 QOO0 2 kK14
:{; C +0,0000013XX{3)%kX 1 4)
X RETURN
£, C
20 GO T0(27,23,24,25,25,27,20,29,30),IN
f
L7 22 VAL= 450 - X{1)
2 RETURN
": 23 VAL= X(1)-360
& RETURN
. 24 UAL= 750 - X(2)
- RETURN
e 25 VAL= X{2)-4%0
3 RETURN
N P6 VL= 1040 - X(3)
v RETUAN
27 Yal= X(3)y-720
- RETU&N
5 28 Vfl= 424 - X(4)
RETURN
f 29 Val= X{4)-200
) REZTURN
30 VAL=(1027,039-CVI) 40, 165R222%X{1)+0, 119800724X (™) +. Q307N 74% 0 3)
o C +0.G019084KY (4)40,0000054X(X(4)XX2I-0,000015 REISASBF S b
P C =0, 0000040k (X (2)Xk%2)-0,000007SK (Y TYXLD -0 000012%4X ()
:5 [N -O.OOOOIYSEX(1)*1(3)—0.OOOOOH?#X{E)ﬁX(K)—O.GOﬂGOS4#Y(3
RETURN
END
;
o An e..ample of the SUMT output for the final iteration
‘ to maximize CF for a CV value of 1160 is shown on the
-
f y next page.
:xi
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APPENDIX E

Analysis Data

Py
AN
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This appendix first contains the program "surface"

which generated data for the CF and CV plots. Following

-

the program are the enlarged contour plots for each MOE

P .
LN S
‘él-"‘,

and the enlarged overlay plots used in Chapter Four.

44 4
l‘. 4‘

v

Likewise, the enlarged MOE trade-off graphs are included.
Finally, Tables IX through XII contain the actual
SUMT data for each of the MOE trade-offs in Chapter Four

and also the AF trade-off cases.
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FROGRAN

DRENCLILFILE="FLOT )

REWIND 11

TW2=450

WRITE(LL,0L1)

FORMAT(3X, "CEF 753X, 7 W17, 3X, W2 3%y W37 3%, 7 W47

LOOF CF,W1 AdD,W2 THROUGH THEIR RESFECTIVE RANGES TO SOLVE FOR W

Ho 22,1Wi=300,450,25
uo 21,IW4=200,420,2

W2 =(1/0,0289 % (1CF~504. 54240, 47180 TH1-0, 29958 1W2~-0. 0272151

N F0L000LKIW2XK2)

TFCW3, LT 10410 LANDL WILGEW720.0) THER
WRITE(1L,02) TICF,TWL,IWE, W3, WS
FORMATI2X 13, 2%, 13, 2%, 13,24, Ta, 1. 2%, 13
ENDIF
CONTINUE

CONTINUE

CONTINUE

WRITE(1',03)

AISHLIEGIERS S o0 SR S SR CR SIS SR S B3 £ S S0 SRS S o S ST Eb P S ¢
WRITE(11,04)

FORMAT(3X, 7 CV 742X, W1 72X, 7 W2 7,2X,0 W3 7,347 W4’

LO0OF CV,W3.AND W2 THROUGH THEIR RESFECTIVE HANGES TO FOLVE =00 W

ne 33,I100=11%55,1225,10

0o 32, Wi=300,459,235
¥y 31,IW4=200,420,20
W3=(1/0, 030 R{ICV-1027,039-0, 1558KTWL1-0 11 9@%1WD~0, 0019 [W4
TFOWILLTI041.,0 JAND, W3LGE.TF20 0) THEN
WRITE(11,05) ICV, TW1,TW2,W3, TW4
FORAATC(2X, 14, 2%, 132X, I3, 2%, F60 1,2%, 13D
ENDIF
CONTINUE

CONTINUE

CONT INUE

FRINT %, /RUN COMPLETE-CONTCOUR MAR UATA IN FTLE-MILOT.C

CLOSECLL)

NI
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TABLE IX

Maximum CF given CV

Max

CF

T,

Tr

! Y2 “3 g
791.14 1154 300.90 450.00 727.41  390.96
797.32 1156 314.39  450.00 720.06  393.68
803.05 1158 326.44 450.C0 720.04  395.05
809.27 1160 338.04 450.00 724.90 420.98
814.42 1162 350.43 450.00 720.65  396.45
820.30 1164  362.52 450.00 720.06  403.47
825.45 1166 374.46 450.00 721.93 384.54
831.71 1168 386.64  450.00 720.03  404.99
836.54 1170 399.13  450.00 720.04 366.74
840.10 1172 412.27 450.01  720.03  272.27
848.70 1174 422.86 450.00 720.04  401.55
855.36 1176 434.94 450.00 720.05 400.34
860.47 1178 446.60 450.00 720.09 421.44
863.35 1180 450.00 457.23 741.20  392.99
866.67 1182 450.00 473.03 744.62  393.85
870.81 1184 450.00  493.35  729.32  413.37
374.32 1186 450.00 511.60  722.72  421.92
876.92 1188 450.00 523.33  742.77  409.83
879.39 1190 450.00 536.63 757.00  393.54
883.63 1192 450.00 558.53  734.97  422.14
886.68 1194 450.00 575.42  734.21  421.97
888.70 1196 450.00 587.05  755.41  397.80
892.42 1198 450.00 605.34  747.59  423.83
895.31 1200 450.00 622.92  744.21  422.81
898.31 1202 450.00 642.42  733.31  422.44
899.78 1204 450.00 649.79  771.48  391.81
903.12 1206 450.00 656.37 770.46  415.01
906.12 1208 450.00 686.26  757.65  421.90
continued
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Table

907.89
910.30
913.11
915.14
917.24
918.70
921.40
923.19

IX continued

450.00
450.00
450.00
450.00
450.00
450.00
450.00
450.00

701.26
705.96
722.22
729.03
728.49
736.36
741.16

748.56

766.06
811.95
8l2.98
851.64
gl8.16
954.09
998.81

1035.78

392.20
405.11
415.63
411.73
421.16
394.16
419.85
406.18
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TABLE X

= SUMT: Maximum CV given CF
:_: Max CV CF Wl NZ ".’3 W4

i; 1156.85 790 300.69  456.56  806.43  225.08
;:ﬂ 1158.72 792  300.10 462.81 846.26 219.77

_ 1160.91 794 300.03 467.21 901.65  203.39

iéz 1160.65 796  300.05 478.98  844.41  249.25 }
yel 1163.77 798  300.03  480.44  942.41  209.29

"3 1165.03 800 300.06  492.10 938.52 201.72

g 1165.48 802 300.06 502.08 912.54  230.11

E;S 1166.98 804 300.44 510.39 927.30  222.20
»iié 1168.28 806 300.38 518.72 937.08  227.26
& 1169.72 808 300.07 536.28 918.73  203.67

X 1170.33 810  300.24 542.09 912.69  239.71

22 1173.13 812 300.38 545.69 990.97  203.77
ﬁ;j' 1174.13 814 300.03 561.75 963.09  203.99 |
o |
( 1175.35 816 300.04 573.60 956.37  205.12 |
oN) 1176.17 818 300.01 586.11 933.72  220.24

:Ej 1178.12 820 300.02 589.45 983.99  218.42

‘;:; ' 1179.31 822 300.39 601.34 974.51  218.53

) : 1180.71 824 300.02 616.73  962.25  213.37

'P, 1182.49 826  300.02 627.16 980.34  202.34
«é: 1183.86 828  300.29 636.29 987.55  206.58
e 1184.49 830 300.02 648.30 960.61  238.85

= 1186.93 832  300.02 659.63 997.97  204.95

.j;; 1188.22 834  300.04 675.27 978.87  205.20
Egil 1189.88 836  300.01 685.26 994.07  204.56
=N 1191.43 838  300.00 697.02 998,58  205.44 }
’\.--.

i |
?-:

f%i continued

-

oo

o

157

L'y,

N
-



s
Fur oy N

bz

v “&‘;—;a LA
il X

e

R

X

YR

AL -

« F

y (34 g

RGN 24 & s PRI A L N A I R Rt Y

Table X continued

1192.24 840
1193.80 842
1195.41 844
1197.93 846
1199.14 848
1199.01 850
1199.33 852
1201.03 854
1201.72 855
1202.64 858
1202.74 860
. 1203.20 862
1203.58 864
1204.23 866
1205.05 868
1206.74 870
1207.41 872
1208.07 874
1208.78 876
1208.60 878
1209.29 880
1210.87 882
1210.73 884
1211.67 886
1211.99 888
1212.56 890
1213.94 892

1214.94 894

continued

'.-"o..‘ '-)*v..- N, "

I N,

300.01
300.24
300.32
300.02
300.58
305.98
310.22
312.26
317.12
322,60
325.91
330.81
335.20
339.66
343.32
347.41
350.57
354.37
358.96
364.25
368.66
371.46
376.69
380.79
384.72
392.34
393.18
395.98

706.00
718.39
731.12
747.69
749.83
748.98
749.25
749.99
749.15
749.95
749.14
749.92
749.95
749.95
749.29
749.19
749.83
749.94
749.95
749.94
749.95
749.57
749.95
749.93
749.37
747.70
749.95

749.68
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988.0C%
989.37
991.5¢€
1012.72
1039.14
1007.94
993.86
1035.67
1035.57
1034.44
1020.92
1006.25
994. 36
991.37
1000.67
1036.13
1037.53
1037.51
1036.07
1000.83
999.4¢8
1038.10
1002.6¢
1011.7¢2
1002.17
988.0%
1018.¢€:

1036.52

o T e Pl S

203.01
226.71
243.83
256.96
247.04
241.01
217.00
251.00
251.01
260.70
260.00
263.64
230.08
243.50
250.42
245.94
264,71
263.19
249.54

2€7.59
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Q: Table X continued
L]
b1
e
145
1
%
¥
R
¢ , 1215.65 896 400.98 749.94 1032.46  256.32
| 1216.46 898 404.98 749.95 1037.14  255.45
‘f 1217.10 900 408.89 749.95 1036.68 261.57
5 1217.32 902 414.12 749.25 1017.83  267.99
)
B 1217.47 904 419.60 749.28 993.09 272.62
P 1219.34 906 422.18 749.95 1038.37  250.20
N 1219.84 908 425.93 749.16 1036.78  264.29
> 1220.04 910 428.75 749.05 1026.34 299.74
, 1220.63 912 433.66 749.95 1015.91  294.55
e 1221.94 914 437.33  749.93 1039.70  279.57
Sy
- 1222.20 916 439.04 749.90 1036.08  326.19
I 1222.20 918 442.96 749.07 1016.19 356.60
1223.39 920 445.30 749.72 1039.40 361.37
o
;{4 1223.57 922 448.49 749.94 1025.31  392.38
[)
; 1224.33 924 449.99  749.98 1039.90  423.55
K
v
LY.
Y
%
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; l
N TABLE XI |
4! |
ﬁ SUMT: Maximum CF given AF |
i

N

S Max CF AF W 1 124 2 W 3 W 4

.E 796.13 1440 321.83  452.41  727.13  200.04

799.73 1445 330.88 450.04 720.76  200.04
. 802.53 1450 336.80 450.05 721.00  200.02
X 804.89 1455 341.44 450.03 727.01  200.03
808.22 1460 348.89 450.11  720.45 200.03

B 810.83 1465 354.23 450.07 723.60 200.03

'3 813.63 1470 360.08 450.22 723.75 200.21

:j 816.69 1475 366.78 450.08 721.63  200.03

2 819.61 1480 372.93 450.28 720.74  200.03

" 822.43 1485 378.83 450.39 721.03  200.23

t: 824.85 1490 383.49 450.69 726.90  200.03

ﬁ 827.98 1495 390.44 450.32 724.42 200.00

‘ 831.09 1500 397.13 450.56 720.81  200.37
3 834.03 1505 403.47 450.28 721.48  200.00

N 836.54 1510 408.15 451.23 724.47 200.64

: 838.33 1515 409.29 456.35 730.19  202.12

) 842.83 1520 422.09 450.40 721.21  200.00
§5 844.41 1525 421.73 457.78 729.56  200.14

; 847.60 1530 429.29 456.07  728.20  200.47

g 851.31 1535 439.78 450.37  726.31  200.01

: 854.77 1540 447.52 450.32  720.09  200.03

) 857.14 1545 449.97 456.00 721.49  200.08

¢§ 858.87 1550 449.73 464.28 726,03  201.45

;4 860.38 1555 449.98 469.43  735.01  204.39
:; 862.92 1560 449.98 482.99  733.27 200.12

f} 864.93 1565 449.98 492.74  735.68  200.31

.? 867.07 1570 449.98 503.75  735.30  200.27

bt

continued
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Table XI continued

868.61 15375  449.95 509.38 751.41  200.02
871.20 1580 450.00 524.54 739.16  200.34
873.10 1585 449.98 533.53  746.20  200.36
874.19 1590 449.98 534.88 772.94  202.43
876.57 1595 449.98 547.93  772.99  200.31
878.47 1600 449.99 556.52 783.66  200.22
880.76 1605 449.97 569.31 782.06  200.24
883.62 1610 449.98 588.61  760.89  200.19
884.32 1615 449.98 584.25 809.42 202.98
885.76 1620 449.98 588.42 829.18  207.62
888.59 1625 449.98 605.85 825.34 203.04
891.68 1630 449.89 628.21 803.24 200.03
886.08 1635 449.99 574.87 852.24  282.03
895.77 1640 449.99 646.63 835.78  200.57
898.28 1645 449.96 662.83 830.71  200.70
900.67 1650 449.98 676.19 838.94  200.09
903.28 1655 449.99 694.81 §26.61  200.59
904.98 1660 449.99 702.35 836.39  209.36
905.97 1665 449.98 703.39 847.57  227.58
910.13 1670 449.98 731.02 866.00 206.81
910.13 1675 449.98 731.02 866.00 206.81
913.53 1680 449.97 741.14 908.44  231.17
914.25 1685 450.00 736.25 932.99  257.05
912.59 1690 © 449.99  730.61 854.22  309.40
918.45 1695 449.99  745.65 1003.14  285.49
917.32 1700 449.98  749.40 908.52  323.19
920.36 1705 449.97 747.56 1010.79  336.56
921.27 1710 449.99  749.51 1007.47 361.80
919.99 1715 449.98  745.02 949.79  399.31
920.62 1720 450.00 749.79  923.95  423.48
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TABLE XII
SUMT: Maximum CV given AF
Max CV AF Wy W, Wy W,
1157.03 1440 305.07 458.14 784.02 201.15
1157.90 1445 309.22 465.75 759.82 206.86
1158.70 1450 310.47 470.11 761.75 211.15
1159.54 1455 310.33 468.82 794.98  211.38
1160.71 1460 314.70 470.24 804.15 207.80
1162.22 1465 317.56 483.48 786.11  201.47
1163.16 1470 317.63 483,01 818.51  201.20
1163.59 1475 318.86 485.61 814.87 213.69
1165.36 1480 323.39 499.68 794.19  202.81
1166.34 1485 325.21 497.28 825.53  202.18
1167.59 1490 324.46 509.41 822.75 201.10
1168.66 1495 327.98 512.84 825.46  201.35
1169.66 1500 336.48 508.32 829.77 201.29
1170.85 1505 336.82 516.96 832.78 201.06
1171.97 1510 339.98 521.66 833.94  201.27
1173.39 1515 331.14 545.48 834.94 201.13
1174.09 1520 -347.00 528.89 836.61  204.07
1175.85 1525 331.89 563.27 841.72 201.l11
1176.55 1530 354.52 538.08 840.45 201.47
1177.26 1535 346.41 553.92 844.65 214.32
1179.63 1540 335.71 588.97 843.71  201.28
1179.22 1545 364.23 545,91 843.35 216.70
1182.43 1550 330.94 614.37 861.49 201.38
1183.72 1555 334.84 618.73 865.49  201.00
1185.29 1560 329.17 636.46 877.90 201.44
1185.34 1565 341.27 623.89 862.55 217.12
continued
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:' 1186.87 1570 347.46 625.62 872.48 212.30
;i% 1188.43 1575 364.29 619.93 855.41 201.20
LS 1190.64 1580 344.51 660.93 874.08 201.29
> 1190.45 1585 387.94 602.55 861.10 201.48
Jii 1191.17 1590 396.31 602.60 856.67 200.08
~§{ 1195.90 1595 336.58 706.61 $10.03 200.52
{"' 1197.38 1600 342.57 706.17 927.26 200.93

1199.17 1605 341.86 719.82 936.12 201.36
1201.69 1610 339.21 730.43 991.08 200.92
1201.03 1615 369.62 704.46 90€.78 201.14
1204.96 1620 347.77 745.36 993.11 201.11

P 1205.27 1625 361.87 745.66  926.02  200.80
24

Feds 1206.77 1630 373.00 731.89 968.28 202.38
M 1207.57 1635 384.88 735.04 918.18 200.99

1209.94 1640 390.98 723.08 1008.67 202.00
1212.01 1645 390.98 743.71 995.71 200.74

ﬁﬁi 1213.84 1650 396.73 749.46 1001.79  200.09
‘;, 1215.48 1655 405.39 747.86 1015.02 200.05
Lol 1216.79 1660 413.96 749.80 1003.54  200.24
¥ 1218.21 1665 422.19 749.66 1005.76 201.92
{fé 1220.05 1670 430.96 749.81 1017.72  200.07
j ;; 1219.98 1675 438.21 749.96 975.28 212.82
B0

— 1221.39 1680 449.53  749.63  96i.53  209.07
ALY 1222.87 1685 445.90 749.41 102:.35 235.69
ng 1220.88 1690 447.89  749.93 94£.86  268.78
wJ 1222.85 1695 447.86 749.95 101:.85 285.78
oy : 1223.06 1700 446.64  749.92 1022.81  315.50
i'g: 1219.17 1705 449.31  749.92 880.35 355.75
;:S 1222.55 1710 446.30 749.94 1005.20 372.56
%;3 1224.09 1715 449.86  749.96 1035.14  387.36

1223.22 1720 449.18 749.94 1008.83 417.94
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