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! INTRODUCTION

Synthetic aperture radar imaging of the Earth's surface was proved to be a
practical concept by the SEASAT global ocean monitoring satellite launched by
NASA in June 1978. Although this satellite remained operational only until
October 1978 a considerable quantity of SAR digital data was recorded, and is

still being processed at various centres throughout the world.

SEASAT stimulated great interest in orbital SAR and this interest is grow-
ing. Since 1978 the Shuttle imaging radar SIR-A has provided more data, =zlthough
this was optically recorded. The next Shuttle radar mission SIR-B in 1984 will be
digitally recorded, and looking further into the future the ESA satellite ERS-1,
to be launched in late 1987, will also carry a digital SAR.

Much has been written about the principles of SAR and of optical SAR data
processing, see for example the books by Harger] and by Hovanessian2 and the
collection of papers edited by Kova1y3. Further background informution can be
found in Refs 13-15. The literature on digital SAR data processing is, however,
somewhat fragmented; see for example Refs 4-12. The SAR processor designer needs
to have a theory presented as a coherent whole. Others who need such a theory

zre the image users who must interpret images in the light of such knowledge.

The material presented in this paper is in the nature of an advanced treat-
ment of the theory underlying crbital synthetic aperture radars and provides an
intreduction to the techniquaes of digital SAR processing. An attempt has been
made to present the theory in a useful form as a coherent whole. In addition,

a number of approximations are examined and an attempt made to answer many ques-

tions which the author is often asked by workers new to the subject.

An introduction to the basic ideas behind SAR will be found in Refs ! and 2
and in Refs 13-i53. It is assumed in the treatment presented here that the

reader is familiar with the contents of these papers.

2 OUTLINE OF THE SAR IMAGING PROCESS

In order to define processes and terms and to fix ideas an outline of the
SAR imaging process is presented in this section. in particular, as an illustra-

tion, the imzge of a single point on an absorbing background is considered.

Consider just one pulse, the nth pulse, say, and an echo of unit amplitude

from a point on an absorbing background. The received echo is:
- : _ N2
E(t) = exp 12n[£0(tn ) + ol =t ] (1)

(see Ref 10).
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If the radar receiver outputs a real valued signal then, ignoring a

constant phase term

E() = cos 2nf,(t - t) +alt_ - )7 , )

fo is the centre frequency of the transmitted range chirp, tn is the time
measured from the centre of the nth pulse, tD is the round trip time from radar
to point to radar for this particular pulse. If a(t) 1is the range of the point
from the radar then ty = 2a(t)/c where c¢ 1is the velocity of light. In this
section a(t) 1is assumed constant for one pulse but varies from pulse to pulse.
This is the 'stop-start' approximation whereby the radar platform is modelled as
being stationary while a pulse is being traunsmitted and received; t 1is the over-

all time coordinate.
In equations (1) and (2) the transmitted chirp has been put implicitly into

time symmetric form:
A(t) = exp i27t (f. + at ) -T/2 <t <T/2 (3)
n 0 n n

where T 1is the pulse duration and o = bandwidth/2T .

A number of interlinked approximations arc implicitly made in this section.

Briefly these are:
(1) The 'stop-start' approximation already described.

(2) When a signal is received as a result of scattering from a target and there
is a relative velocity between transmitter/receiver and the target the frequency
of the received signal will be changed by a scaling factor B8 (the Doppler
effect). The scaling factor B 1is taken to be 8 =1 + 2v/c where v 1is the
relative velocitv of the radar with respect to the target. The signal spectrum
is transformed s(f) - s(f/B)/VTET—and £f/B is taken to be f£(1 - 2v/c) and
/Tg? =1 . This is justified by the fact that v <c .

(3) Although for a spacecrait SAR the signals received by the radar were trans-
mitted a few milliseconds earlier when the radar was at another position it is
assumed that the round trip range and Doppler frequency shift are those corres-
ponding to the time of reception. An examination of this approximation for the
SEASAT SAR shows that the main effects are an error of order 1 m in the range
direction resulting in a totally negligible defocussing in the azimuth direction

and an image shift of order 10 m in the azimuth direction with no corresponding
defocussing.

These approximations are associated with the fact that during the time

interval for which a point on the ground is illuminated by a pulse (33.9 us for
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SEASAT) the phase change caused by the varying range is very small. It can then

be shown that each pulse samples the phase cf the point, that is 4ma(t)/Ax for

the nth pulse. This whole question is examined in section 3 where it is showm

~

bt

{{é that the 'stop-start' approximation is entirely acceptable.

ot 2.1 Range compression

“7 On receipt of each pulse the radar receiver coherently mixes the 1f centre
§?§ frequency down to the 'offset videc frequency' f] . The offset frequency 1is
S .

b~ usually chosen to be one quarter of the sampling freqiency of the analogue-to-
Phe

;{ digital converter. The reason for this will become clear in section 6.1. For

583

CEASAT this frequency was approximately 11.38 MHz. The received echn is then:

E(t) = cos 2n[f]tn - £ty +oale - tD)z] . (4)

It should be made clear at this stage that it has been assumed hicre that the

.QE; signal received and input to the subsequent processing is real-vslued. It is

§§3 entirely possible for a SAR receiver to produce a complex sign.l witnh a single
f%? sideband via a quadrature filter (see Ref 16, p 119). 1In that case an offset

251 video frequency of zero would be chosen. However, this is tuo: usual since it

%%; is easier to sample the real valued signal and convert to a complex valued signal
’ig with a single sided spectrum in the subsequent digital processing ~ see section
a1

Sl

5.1,

oy iy
L7l I

3"

Range compression is performed on each pulse by correlating the pulse
against a replica of the transmitted pulse translated tc the offset video band.

The peak of the correlation occurs at the round trip delay time for this parti-

o g AN,
¥ T o
14 2 g U T
3 EL A

cular pulse, Ze at T = tD where LN is the correlation variable. In the
correlation which follows the time symmetric forms of transmitted and received
%% pulses are used and tlie start of transmission occurs at t = -T/2 so that
f§§ t = 0 coincides with the centre of the transmitted pulse. Correlating (4)
o3
3}5@ against (3) over all values of t from ty T/2 to ty * T/2 gives for the
range point spread function
i’:i
ﬁ?? tD+T/2 )
f:% gg = 1 [ exp i2n[f e - £5e, + aley = )] x
13 tD‘TIZ

X exp = iz"[fl(tn - TR) + a(tn - fR)Z]dtn

tD+T/2
+ 4 exp - iZﬂ[f]tn - f4tp + a(tn - tD)z] x
ty,-T/2
2
X exp iZ'u[fl(tn - TR) + a(tn - TR) ]dtn . (5)
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and so g;\
o

gg = cos 2n[- £otp + £,7p - alty - TR)Z] SJZA:Aii(tg T ;R) (6) é%é

R*™D R !::

where AF, = the chirp (video) bandwidth = 20T. ESE
Equation (6) assumes continuous functions. Inreality these functions are sampled, 3§§
and the correlation is performed in the frequ:ncy domain via an FFT. This is g-:
explained in section 5.4. The result ot the correlation (6) is, of course, the ;‘;
same if the correlation is performed in the frequency domain via Fourier trans— _EJ
forms, although he range point spread function (6) is slightly different when ti:
performed on sampled data and is periodically repeated. At this stage of the §g§
processing the cosive term in equation (6) is turned into an exponential, The ;;;
reason for this is explained in section 5.1. If (6) is Fourier transformed with gg%
respect to Ty ome obtains an approximately rectangular spectrum (it is a Fresnal TLY
integral) of width AFR centred on fl multinlied by exp iZﬂtthl-iO) and an §3§
approximately rectangular spectrum of width AF, centred on ~-f; multiplied by %55
exp - i21rtD(fl —fo) . As was mentioned previously the range correlation is Eﬁ;ﬁ
carried out in the frequency domain and the simple step of setting all the nega- s
tive frequency sawples to zerc gives only the positive half of the spectrum. If %%g
this is inverse Fourier transformed it will be seen that instead of (6) we have: E&?
_ . 9 sin WAFR(rD - TR) g%g

gg = e¥p 12n[— fOtD + fer - a(tD - TR) "AFR(tD — TR) . @) %%{

At the same time the offset video frequency fl is mixed to zero by the simple §§§§

procedure of moving all the frequency samples (see section 8). The resulting

range point spread function is then:

Ot

WORE G

bt "l"x.’&f' "‘%}h}
Lol el S Yo,

R

(R

sin nAFR(tD - TR) %)

. s 82
gg = exe - i2n[fyty + alt, - 1)) TAFL(tp - )

In passing it should be pointed out that these expressions for have been

g
R
multiplied by a constant (= A %, where A is the time bandwidth product) in

order to normalize them,

)
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2.2 Azimuth compression
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The next main step in the processing is azimuth correlation (although in
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practice, between range correla~ion and azimuth correlation there are the very
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important steps of corner turning and range migration correction. These are com-

l-ﬁ LA
'
[t A

putational problems and are examined in sections 2.3 and 10). Azimuth correla- .

tion is essentially the same process as range correlation but in this case the

[ ]
)

A3

dy *piibeg

frequency modulation results from the Doppler effect and the change in tD from

gives a rotating vector via

pulse to pulse. The change in round trip time t

the phase term in equation (8). The rate at whié; it rotates represents tie :

Doppler frequency. In a sense, then, each pulse samples the phase of the point %Eg
and over a number of pulses the rate of change of phase is built up, and one can aéf
then meaningfully refer to a frequency. The change in phase from pulse to pulse ;5;
is a linear function of £y in equation (8) because as ty varies from pulse to géé

,
»
!4'

pulse the value of TR for which the samples are selected from each pulse for

G

azimuth compression tracks t_ with an arbitrary offset. The quadratic function

D

of t; in (8) therefore remains constant. 1This is a consequence of range migra-

tion correction and is explained in more detail in section 2.2. The remairning

phase term in (8) gives the pnase history of the point. Now we may write

£ = 2a(t)

b ~ =%(ao+at+at2+...) 9

1 2

where the range to the target pcint has been expanded in a Taylor series about
t = 0 (Ze the centre of the synthetic aperture). That is, at t = 0 we have

2
a = aO + a]t + a2t + vee (10)

where a, is the slant range from the radar to the point, a, is the slant range

1

velocity and a,_, 1is one half of the slant range acceleration. Usually only

terms up to thezquadratic term are taken into account but sometimes, for extra

precision, the cubic term is used as in the RAE processor. The range polynomial
(10) is calculated for the general case of an elliptic orbit and rntating Earth
in seéction 4 where it is shown that the finite value of a, at the centre of the

aperture ‘s a result of radar squint, orbit eccentricity and Earth rotation.

We now correlate in the azimuth direction and at a temporal slant range
displacement from ty of Tp Note that TR is not constant. This is the so
called range migration effect. Firstly, because the Earth rotates, a point on it
is taken through many range samples (range gates) possibly several dozen for a
high resolution spacecraft SAR. Secondly, for a high resolution spacecraft S
th;>geometry is such that an arc of constant slant range cannot usually be con-
sidered 'straight' and the curvature can cause the point to move through a number
of range gates. These two effects are known as range walk and range curvature.
Together they constitute range migration and cause serious problems for the SAR

processor designer. These effects are considered further in sections 2.3 and 13,
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In passing, note that the range time coordinate R is not constant, it
tracks ty and has an arbitrary constant offset from it corresponding to the
displacement of the line of data being used for azimuth compression from the

centre of the range point spread function ItD - TRI .

Some approximations are now made in order to make the azimuth correlation
process clearer aithough it should be noted that these are not actually made in
a working digital processor. For a small change in slant range the first order

changes to the range polynomial are Aao in a; s Aao(a]/ao) in a and
Aao(az/ao) in a, . For lengths comparable with the point spread function
scale it can easily be shown that the changes to a and a, are negligible,
so that nnly the change Aao in a, » need be considered. Thus expanding a

about a = a, and t = 0 the following terms are retained:

a . +Aa.  +tat+ a t2 (11)

a'(t) 0 0" 2

. = c
where Aao = gy o (12)

In addition, for a displacement d in the direction of satellite motion, there
will be a shift in the azimuth time coordinate T equal to d/vp where v

is the local velocity of the satellite.

Ttere is ample scope for confusion here. Conventionally, the azimuth
direction is defined as the direction of the satellite motion. This has the
advantage of being constant over the whole swath width. Strictly, however, it
ought to bz defined as the direction of the resultant of vp and da(t)/dt at
the relevant point. This latter definition is used here and the two directioas
are called the 'along track direction' and the 'azimuth direction'. The true
azinuth direction, then, varies over the swath and if an image of a bright point
iz observed it will be seen that the sidelobes in the azimuth direction are
aligned along a slight curve which does not intersect the range direction at

right angles. This is illustrated in Fig 1.

The actual phase history of the pcint is exp(- iZﬂfOt vith t given

)
D
by (9) and the phase history against which it is correlated by the processor is

. ' . v s .
exp ( 12nf0tD) with tD given by:

' =
)

PRI

[ao +bag + a (e + TA) +a,(t+ TA)2] . (13)

. .
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It should be noted that these various approximations have been introduced here in
order to make this explanation clear, In practice digital processors compute the
phase history directly from the spacecraft orbit, the Earth rotation and the

geometry., Correlating (8) against exp(- i2nf_t'), then, gives:

T
o'p

5 sin ﬂAFR(tD - TR)

g(t ,1,) = exp - i2na(t, - t,) — x
R>"A % T R TBFg (tp = Tp)
T /2
x [A/ -2 Zf +at+ t2 x
J Xp T 17T Al T At T By
—TA/Z

2f0 2
: ) - - A
X exp i2nm = [;0 + Aao + al(t TA) + az(t rA) ]dt (1&)

where a synthetic aperture interval of iTA/Z centred on zero has been taken.

An asymmetric aperture simply introduces an additional phase term. Sc

2f

_ . 2 . 0 2
g(rR,TA) = exp JZﬂa(tD TR) exp 12w re (Aao + a T, + aZTA) X

sin wAFR(tD - TR) sin ﬂAFATA (s
nAFR(tD - TR) ﬂAFArA
AFA is the Doppler bandwidth. The point spread function g(TR,TA) can be
expressed in lengths in azimuth (x) and slant range (y) by means of Ty = x/v
and t, = 2y/c . The point spread function in (15) has been scaled by multiply-

R
ing by A iB } where A and B are the range and azimuth time bandwidth

products.

2.3 Range migyation

It will be observed that the position of the range point spread function
g (see equation (8)) is a function of time because tD is a function of time
as it must be to obtain a Doppler frequency shift on which the synthetic aperture
principle depends. If this shift is much smaller than the range sample separation
then its effect on the azimuth correlation integral can be ignored: for example
most aircraft synthetic aperture radar systems are designed so that this is the
case. However, as pointed out in the last section, it is not possible to do this
in the case of an orbital SAR for a high resolution imaging system. The effect of

the temporal dependence of the range point spread functionis to couple the range and
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along track directions in the azimuth correlation integral. If the azimuth
correlation integral is performed along the 'true' azimuth direction then the
range and azimuth correlations are uncoupled. The 'true' azimuth direction was
defined in the last section in one way, and in this section it is implicitly
defined in another, but closely related and equivalent way. Returning to the
azimuth correlation (14) and putting the time dependent range point spread func-

tion inside the integral we obtain

Tal2 sin mAFp (tp = Tp)
8(TpsTy) = exp = iZma(ty - p) T (e -
4 72 R'D ™ R
A

. 27 2
X exp - 1-2—2f0[a0+ alt + azt] X

2f0 9
x exp 121 - [ao + AaO + al(t - TA) + az(t - TA) ]dt . (16)

The range and along track components are uncoupled by performing an additional

convolution operation along the line defined by

2 2

in range sample time and azimuth time space. Thus 1if tg =ty = Tg ¢

TA/2 TD+T/2
8(CR,TA) = . G(tD tE - TR)dTR
—TA/Z tD-T/2

X

sin nAFR(tD - 7))

x exp = i2ma(t, - T) MAFR(Ep = To) *

X exp - 1 _ZEn_ ZfO[aO +at+ aztz] X

2f
x exp i2w —Eg [AO + Aao + al(t - TA) + az(t - TA)Z]dt (17)

where the range compressed data spans the time interval t + T/2 . It will be

noted that the additional operation must be carried out before azimuth correlation.
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Usually the convolution is carried out by 'data selection' using more or less ?ﬁ,:
. P . . . <y
approximate methods; this is explained further in section 14. Q»ze.
s
- o)
3 THE STOP-START APPROXIMATION .
In section 2 the range compression process and subsequent azimuth com- ;uii
. . . . . . [&0
pression were based on the 'stop-start' approximation in which the delay time &5};
. AN
t, was taken to be constant over a pulse width, ‘this approximation, and others e
closely linked with it, outiined in section 2, are now examined in more detail in %!Ef
3 - \\h“‘
this section. In digital processing of any kind and in particular in digital SAR ;x~{
e s ) ) i
processing it is necessary to have a very clear analysis of all the details cf g:jg
[3 . - 3 . . - - 't‘(‘“:
the imaging process including the approximations since a mathematical model must )
AN
be constructed. Faillure to do this can lead to unsatisfactory results and y"
o,
=%
unexpected problems. %éfﬁ
3.1 The delay time 4

P ¥ i

Let the radar be at rest in a referenze frame S with coordinates
(x,y,2,t) and let the target point be at rest in a frame S' with coordinates
(x',y',2',t'). There is a relative velocity between the frames ard the iwo
frames are related via a Lorentz transformation (see Ref 17, p 11C and also
p 132). For the moment any accelerations are ignored. A radar operates by

sending out a pulse of electromagnetic waves at time t, say, and receiving the

P L2y
UKL

pulse at t3 both times being measured in frame S at rest relative to the

-
*
Iy
&

radar. The time at which the pulse is estimated to arrive at the target poirt

-
Iy’
e

by an observer at the radar is then (t3 + tl)/2 ; hence
b, = (t, +t)/2 . (18)

A different time is measured by the observer at the target since to him it

appears that the clocks in the radar reference frame are slow. In the Lorentz

transformation which connects an event in each frame the relative velocity

TR
appears as v2/c2 . An Earth-orbiting spacecraft may have a velocity of several g%éi
kilometres per second, say 6.7 km/s at a (typical) orbital height of 800 km and Eééf%
v2/c2 =5 X 10_10 . This is generally not significant for a low frequency SAR li;;
such as the L-band SEASAT but note that at a wavelength of 3 cm the carrier E;SE
frequency is 1010 Hz and hence the second order term in v/c leads to a Doppler v

shift of 5 Hz or so which might be measurable. Thus with future X-band or

[LAAL
E&y :

higher frequency orbiting SARs the effect may have to be taken into account as

will be explained later in the section.

.z
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e
77
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\L&,‘.‘\ b A,
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In the analysis which follows v2/c2 is very small and so the factor

[
v

P
)

>

L |

vl - vz/(_2 in the Lorentz transformation from one frame to another will

fie
A
*

always be taken as unity. Then the analysis will be correct up to first
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order terms in v/c . Within this approximation, time can be taken as absolute

and the analysis can be performed in 'absolute' space.

Let the position vector of the radar be ?l(t) and that of the target
point Ez(t) in any suitable coordinate system. An electromagnetic wave leaves
the radar at time t and travels towards the target arriving there at time ty s
is reflected and arrives back at the radar at t3 . The distance travelled by

the wave from radar to target

5,(0) - £, (19)

[=B
I

and from target to radar

IT,(0) - E (0] . (20)

[a ¥
i

Hence the total time of the wavefront from radar to target to radar is

_ 1 [= - - -
by -t = = [Irz(tz) rl(t3)l + T, () - rz(tz)l] . (21)
Since we are dealing with differences it is easier to redefine the coordinate

system so that the origin is at the target point, Ze¢ T,(t) = 0 . Then

El(t) = T(t)
and so
tg- b = < [x(t) + ()] . (22)

In equation (22) the time of reception corresponding to tg is t and the

delay time is t, . Hence

ty = %[r(tn) +r(r - )] (23)

t, must now be obtained explicitly by solving this equation. Fortunately ty is
usually small (around 6 ms for a slant range of 850 km) and T(t) is a smooth

function so that r(tn - tD) can be expanded as a Taylor series around r(tn) .
Now,
I . —e .2
r(t -t = T(e) - V(e )ty + a(tn)tD/Z + \ (24)

where Vv = 3r/3t and a = 3v/d3t , which gives
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Y,

v s
PR

- 2
- = 3 - & N o T4 2"
r(tn tD) rU:n) r(':n V‘tn) tD * O(tD) (25)

)
f

5l

e
i$ o

-

L4

r being the unit vector in the d rection of T . It is not necessary to

-
)
l‘ '

20
l. “ "'l‘,"
ol

o
o

calculate the seccnd order term since the eventual expression for th will only

nfat

be accurate up to first ozder in v/c . So we have from equations (23) and (25)

P t}.w'a
€ r]
o

13
]
PIC]

e
i

1 - - 2\} =
D < [Zr(tn) - r(tn) . v(tn)tD + O(tD)J (26) -

w v,
.

.:v‘\
ot

.,
.

which gives

.m-,m-m—"

e
-

L4

A
u“. -. "

2r(t ) r(t) - v(t) 2\1 e
- n - n n_, v
t, * —0— |! 5= o(——z)J . @n . m

A more elaborate aralysis including the second order terms confirms this equation 5‘3'@

. 2 . .
and shows that the acceleration terms are of order v2/c and thus nepligible,

2 §=
e

The angle between r(t) anu v(t) is the azimuth angle ¢ , equal to =/2 when :E::S
the radar is broadside on to the target point. One might expect the term E:‘-};"ﬁ
f'(tn) . V(tn)/c to be negiigibly smsll and this turns out to be the case. '.Eﬁ
We have
t, = Zr(:n) 1 - V;zn) cos ¢(tn) + 0(-‘;’-;) . (28)
Note that at this stage the time aelay t is still a function of time t, via e.,g,g;
r(t), v(t) and (t) . EE
Define T, to be the time at the centre of the received pulse when ¢t is tﬁg
assumed constant, 7e if v = 0 and corresponds to the fixed t of the stop-start -;?;
approximation. The delay time at Ty is then -
Zr('ro) v(ro) 2 z.:::
tD('rO) = . 1 - e CO8 ¢>('ro) + 0(;-—2-) . (29) ::;:Q.vf;

.
L)
L}

&
»

2
.

v
Al el

P
v
"

i
‘¥t

A
Pt el
e

'l
| Fadiue:

]

We require the time delay at time offsets from Ty Up to +T/2 . The time delay
at time Tt is then

%
b

R |
Ay

(0 =t (1) + et + T2+ (30)

> ‘l‘ ﬂ‘ Ai: ‘U’ .; ';
WIS

Differentiating (28) to give the coefficients in this Taylor expansion about T

rl
L

0

€ Ta

1

gives terms involving 2r(tn)/c and its derivatives and vr(t:n) cos (b(tn)/c2
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and its derivatives. The maximum rate of change of ¢ occurs for the broadside
mode and is typically a few tens of mrad/s maximum. Also, as always, v €<c¢ and

the leading terms only are taken in the expansion to give

) 2r(1,) . 2x(1p)
tD(ro; = — and tD(TG) = .
and hence
t(T)=3r()+°()+"()—1-2- (31}
D < o t(t)t + 1(14) 5 . J
3.2 Range compression with varying time delay
Let
tD(T) = 1 + T + Toy (32)
Tt 3
where T, T 5Tt 0(t™) (33)
and
t2(1) = 24 2t.T,T 41 (34)
D 0 01 €2
2
211,71
02 22 3
where Tgg = 5t T+ o) , (35)
and from (31)
. 2r(T0) .- 2r(TO) oo 2r(10)
0 c ? 1 c ’ 2 c *
In addition
T/2
_ s _ _ 2 _
gy = ] exp 12n[f0tD flTR + a(tD TR) + Zar(tn TRi]dT . (36)
-T/2

This is obtained by rearranging the first integral in (5), the second is ignored

for the purposes of the present analysis., CSubstituting from (32) and (34) we

obtain
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= exp - i2n|f 1, -~ £.1, + a1, - 7T )2 X
Er P 00 " 1R TR T Tp
T/2
. 2
X exp - 12“[%0T€l ot o+ 2aT]T + 2aTT€1 + ZaTOTel] x

~T/2

0T

X exp = i2m ZaT[(TO - TR) + 5 ] dt . 37

The first exponential under the integral contains quadratic and higher powers of
T and the second exponential contains the linear terms in T . The non-linear
powers of 1 result in defocussing and the linear terms simply result in a shift
in the position of the point spread function in the range direction. The quadra-
tic phase term is slowly varying since the non-linear terms are small, The
linear phase term is also slowly varying in the neighbourhood of the peak of the
point spread function since Ty = Tg mear the peak. The non-linear term is

2

fOTZ 2 +atT (2 -1 ) + 0(1 ) . (38)

Note that T, 2r(ro)/c<2 since r€v and v<c¢c . Also 2(11 >f /2
since a 1is typically of the order of lO Hz/s . The largest non—llnear
term is then 2a1112 . In section 4 it is demonstrated that a typical value
of t for a broadside looking orbital SAR at an altitude of 80C km is of
order 100 m/s. The quadratic phase change over the correlation is ther of
order | mrad for a pulse width of the order of tens of microseconds. This

magnitude of phase change is completely negligible.

The first order efrect of the stop-start approximation is a shift in the
position of the point spread function by f /2a , witich, for SEASAT, is about
1.5 ns or 0.45 m in slant range. This error, however, could be much greater for
a radar operating at a higher frequency. Also, in a SAR operating in a squint
mode T, could easily be an order of magnitude greater. A shift in the posi-
tion of the point spread function, however, causes no real problems unless the
shift varies over the synthetic aperture by more than, say one half resolution
cell. T does vary in the azimuth direction but not by enough to cause
problems with the approximation considered here. Thus in conclusion the
stop-start approximation is valid to a high degree of precision for orbital

synthetic aperture radars.
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4 THE RANGE POLYNOMIAL N

LA

‘-}""_

In section 2.2, ecuation (10), the range from radar to point was expanded 22l

I

as a function of time: i!—r

o

a(t) = a, +at+a v aed ... (10) s

: 0 1 2 3
)
' In this section the terms in the expansion are calculated for a general elliptic o7
T ’b {
S orbit, and various approximations considered. N
2 gl
T : - » . “;h-'
_:::zf, It seems appropriate to mention here that there are at least three modes in "'-:
52 T
= which a SAR may opezate. These are the normal mode, the squint mode and the 3&_
: spotlight mode. In the normal mode the radar looks out sideways to the tracl. and I-;-qu
e )
perpendicular to it. The squint mode is similar except that the radar is perma- ;:f:,‘

[ -

. . Y

nently squinted either forwards or backwards to the normal mode. In the spot- %_;é

)

light mode tue radar squint angle is varied continuously as the radar passes a Ve

target so that the target is constantly illuminated, and hence the synthetic e

LS

aperture length is no longer limited by the footprint width. A very large aper- :.»:g.g

ture can then, in principle, be synthesised. The squint angle is varied by vary- ,-.:'q.j

. P . ".?.k‘,',

ing the pitch angle and/or the yaw angle of the spacecraft depending on the angle s

of incidence of the radar. Ee

P

The analysis which follows is applicable (within limits) to all three e ’;'.

modes, Before calculating the range polynomial, however, some considerations %’K
concerning the choice of orbit for SAR spacecraft are presented. haac

< Ty

4,1 Orbits for SAR satelliies et

o

Circular or nearly circular orbits are arguably the best choice for radar ;1_-?‘3.

. WY

. . . . Ve,

remote sensing satellites, There are several reasons for this. First, if an _fi-.

. approximately constant height is maintained above the Earth's surface then the l;:ﬂl.,.‘
% . . . . e 00
cgg Doppler bandwidth will remain constent and this leads to a constant pulse %:
= B . . . \
P recurrence frequency, The prf is one of the main design parameters for a f:_“;
a5 . ce s . . e By
%’5 synthetic aperture radar and if it can be kept constant this greatly simplifies i%;i
’; the design of the radar system. Further discussion of this point belongs to the T
i . . ~o%
i design of the radar rather than the processing and is not pursued here. ; ?'?
5
Secondly, if the radar data are required to be processed into images soon 'Z‘;:‘E
23,;; . R . . Lo
DR after the satellite pass then nominal (and possibly inaccurate) orbital elements mé""“
e Il . ’ . . . [53cml
= will have to be used in the processing. Refined orbital parameters are not avail- hi S
g'% s 55-‘;‘:-‘
able until several days have elapsed because of the necessity of measuring the Q-:..:

orbit at several ground stations around the Earth. The inaccuracy in the pro- ,ﬁ.:::

L4 (] 3 . 3 . 3 f *Q"

cessing due to the use of nominal orbital elements seems to be minimised if f.‘;

a circular orbit is employed, or if the orbit is frozen in some way. .“-_‘.‘-i'

S
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It could be argued that it might be desirable to have a slightly elliptical
orbit so as to maintain (to first order) a constant height above the Earth, The
orbit apogee would then lie on the equator, the Earth being a flattemed spheroid
bulging at the equator. This argument was advanced in Ref 19 in connection with
the SEASAT altimeter and such an orbit has an advantage because if the argument
of perigee is 90° (which, of course, it is if the apogee lies on the equator)
then, in principle, it is possible to choose an inclination and eccentricity
such that the orbit is frozen. That is to say such that the perigee does not
precess. Normally, the perigee processes in the orbit plane by a few degrees per

day due to the Earth's oblateness. The reader is referred to Ref 19 for a fuller

account.

Another effect of the Earth's oblateness is to precess the plane of the

orbit by 2 few degrees per day. The rate of precession £ is given approxi-

mately by: 7/2

g = - 9.97@) cos 1

(1 - ez)2

degrees/day (39)

see Ref 18, equation l.1. It will be observed that this is a function of semi-

major axis a , eccentricity e and angle of inclination 1 .

This effect has some importance to spacecraft designs because the rate of
precession can be chosen to be such that the solar panels which power most
satellites continuously face the Sun. This is a Sun-gsynchronous orbit and has
a rate of precession of approximately 360° in 365 days. Not too much weight
should be placed on this requirement, however, because quite a large variation
on a perfect Sun-synchronous orbit is acceptable and not all spacecraft are
powered by solar cells. If one were designing for a synchronous orbit then once
the height of the satellite above the ground is chosen (this is a function of
radar maximum power, area of coverage, maximum data rate capacity etc) then the
inclination angle 1 follows for a given eccentricity. The required inclination
is greater than 90° since £ must be positive and such orbits are known as
retrograde orbits, For example in the case of SEASAT i was slightly greater
than 108°. of course, if the radar platform is not dependent on the Sun for its

power (as is the case for the Shuttle for example) then the orbit is not con-

strained in this manner.

The above discussion is a somewhat simplified account of the choice of
orbit for a SAR satellite. The actual details are complicated and further
details of the choice of orbit for SEASAT will be found in Ref 19.
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In the analysis which follows a typical orbit is assumed to be as in Fig 2.
The orbit is shown projected on to a spherical surface which is 'fixed' relative
to the background stars. The direction labelled T is the vernal equirox (the
intersection of the Earth's equator and the plane of the ecliptic) and the centre
of the surface coincides with the centre of the Earth. The point P 1s the point
on the Earth's surface for which the range polynomial is to be computed. The
latitude of the point is measured in geocentric coordinates and is comstant, but
the longitude is constantly increasing due to the Earth's rotation. The point A

is the projection of the real antznna focus on to the celestial sphere,

4.2 Latitude and longitude changes of radar and target

Let the point P 1in Fig 2 have a geocentric latitude and longitude measured
on the fixed surface of ¥ and ¢ . Let R be the distance of the focus of the
(real) radar antenna from the Earth's centre and r the distance of P from the

Earth's centre. Then if a 1is the distance between the radar antenna focus and

the point P

a2 = R2 + rz - 2Rr cos 6 (40)

where 6 is the angle AOP = AOD in Fig 2. 6 is a function of time due to the
motion of the satellite and the rotation of the Earth as indicated in Fig 2.

R 1is also a function of time due to the mon-circular o.vic, but r is constant.

In Fig 2 D is the projection of r on to the celestial sphere upon which
the orbit has been projected, and the arc AD passing through the projection of
the antenna focus A and D has on a great circle centre O . The meridians
passing through A and D are also great circles and triangle ADN, N being
the north pole is a spherical triangle, Let the latitude and longitude of A be

¥ and ¢ in geocentric coordinates, Then from AADN we have:
cos § = sin ¥ sin ¢ + co3 ¥ cos ¢ cos(d - 9) (41)

which gives 6 in terms of the latitudes and longitudes of A(Y¥,0¢) and
P{v,9) .

The purpose of the analysis here is to compute the coefficients ag e 84

in the range polynomial

_ 2 3
a - ao+alt+azt +a3t L]

in the neighbourhood of t = 0 . This involves differentiating (40) successively

and setting t = 0 . Hence explicitly we have:
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ao = a at t = 0 (42)
aa = R(R.-r1 cos 6 ) - R.r 4 (cos 6,.) 43)
(1 0'0 0 0 dt 0
2a.a +a2 = R (R -rcosa)+f{[1'{ -2r—d—(._-uae)]
072 1 0" 0 0 o0 dt 0
d2
- Ror —5 (cos 60) (44)
dt”
6a.a, + 6a,a, = R (R. -1 cos 6.) + R.|2R, - 3r 4 (cos 8 )]
073 172 0" 0 0 o0 dt g
- [. d2 d3
+ R |R -Br*-(cose)]—Rr——-(cose).
01 0 dt2 0 0 dt3 0

ce v e (45)

The subgcript (0) indicates that the variable is taken at t = Q0 . When the
orbit is circular ﬁo and higher derivatives are zero and the equations simplify
greatly. To proceed further it is necessary to compute derivatives of cos 8

from (41) in the region of t =0 .

Let Fig 2 show the positions of radar and point P at t 0, and let
the projection of the satellite move on to position B at time t , see Fig 3,
In Fig 3 C 1is a point on the celestial sphere which has the same geocentric
latitude as B and the same longitvde as A (the position of the radar antenna
focus at t = 0). The angle BAC = Vo and is the 'local heading angle' of the
satellite at t = 0 . The angle AOB 1is the angle through which the satelliite
has moved in its orbit from A to B and AOB = Aa . Also BOC = AT and

Aac = AY¥ . The change in longitude, A = BﬁA, LT and A% are related by
sin é%- = sin:ég cos(¥ + AY) . (46)

The analysis is somewhat intricate and for that reason a number of the inter-

mediate steps are now set down.

The arc BC lies on a great circle and so AABC Bis a spherical triangle.
The angle ACB is not exactly a right angle, although provided Aa is small
(which it always is even for the 'spotlight' modes) then ACB is very nearly a
rignt angle. For example Ao is usually of the order of | mrad for normal modes.
Angle ACB is therefore written as n/2 + ¢ . From the sin formula for

spherical triangles
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sin v, sin Aa E

- ¥

AT = sin ’( 0 ) . (47) ‘

cos € E

To find € consider ACBN in which NCB = w/2 - ¢ and then &
1 { ) ﬁ

_ - . 1 —cos AQ) R

€ = tan [ sin(¥ + AY) Y E—ys ] . (48) v

X

W

Spherical triangle ABC gives ;E:

-1 sin AP sin ¢
= - o)
AY tan [tan Ao ros Yo T oos Aa oS A‘{’] 3

EER. - | 7%,

which is an implicit formula for AY .,

It will be evident that computing the coefficients in the range polynomial é
directly vy means of the above formulae is not a practicable task. Fortunately, ;“*,:
however, this is mot necessary. All the angular changes Ay, Ad, Aa, AT and ¢ :
are cf the same order of magnitude. Also Aa is a first order function of :"'i

4

time. Ail terms in the range polyromial up to and including the third crder

term a, are required and hence it is only necessary to expand the expressions 1

for Ay, €, AY and nd up to third order to obtain the required polynomial ;’:;5
coefficients exactly. Expanding (46) gives: ?}

K

A = AT sec ¥, + AYAT sec ¥, tan ¥. + A‘l’zAI' ta 2‘? ¥ Q‘i

0 0 0 m¥p Sec ¥y <

[y 3

2 3 W3

AYTAT AT 2 3 3 Lo

& 3¢

57— sec ‘l’o + Sy sec ‘l‘o tan \Po + 0(ATAY™, AVYATT) (50) E

(47) gives: :

3 N

_ . Aa” 2 Aag” . 5 . 32 4 e

AT = Aa sin Vo g Sin vy cos™vy + —=— sin vo * C(Aa™,807t"  A0e ) (51) "

8 e
x*fg’ (48) gives: "‘:-
Tt ‘.:-:,
y 2 N
= -A%p- sin ¥y + A‘P2A<l> cos ‘¥0 - AW4A¢ sin ‘PO .':;
2 N
5 803 2 3, .3 o8
*+ 7 sin ¥ cos"¥, = 0(AYAY,800¥7) (52) N

S

r%s‘ ;‘i-
T 9-

wa
x
f.‘t'

LN
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21 i
and (49) gives:
3

AY Ao cos Vo ~ eAl + —A-%— cos v sin3v0 + O(AaZAI‘s,A‘%‘zAI’e,AI’3e,AI‘a3) .

ye
ﬁ

e W g W5
- g
I

‘,.
h

M

cesees (53)

A5

g‘ These equations can be manipulated to give, finally:
ok, 3
‘ Ao . 2 Ao . 3

= = cm—— 2 vy 4 —
§§, AY Ao cos VO > sin vO tan 0 3 cos vo sin vo
;?% _,éﬁi s'n2v cos v, se ZW + 0(A 4) (54) iil
£ 7 S Y 0 %< 7o >
»’i e
R 353
5 2 N
fg = . .
?; A Aa sin vo sec ‘i’o + Ao~ sin vo cos \)0 sec ‘1’0 tan \Po :&"::‘
e NN
i 3 B
s -2 _sin v coszv sec ¥, + Aa3 in v, co 2 t 2, v ﬁ
ﬁé} 3 O 0 < O S1in O s \)O an s O sec 0 '.;3:
el Cets
B 3 i
BoEY . . i
st - A%— 51n3\)0 tanzYO sec WO + O(Aaa) . (55) g
‘%%é 205

a,. \‘
-

g |42

which are the required formulae for the changes in latitude and longitude in

going from A to B in Fig 3, expressed in terms of change in satellite angle a'{.:

(or 'true anomaly') Ao . :—: ‘3
a?} A problem arises here due to the singularity at the poles where ‘Po = +1/2 %‘zs
;;.ii and it is necessary to avoid this case in the analysis. Thus the region within z:‘j':_
;’* about 2° of the north and south poles is excluded, Fortunately this presents f:g.::‘i
__‘;; no aifriculty because an exactly polar orbit is very unlikely to be used in ;

., |
AR

practice. The suffix (0) on the variables in equations (54) and (55) refer to
t =0, Ze roint A in Fig 3.

-

d

Differenciating (54) and (55) and setting t = 0 gives:

e
M
W
4%1"
b

,,
"
ala

[N

L)

‘1‘0 = g cos v, (56)

e
s

* Ta T4y
»

Py '
fy Y-t »
‘#"“.

-- - L2 .2 .
‘i’o = 0y cos v =g sinv, tan ‘{’O (57)

:‘:,")
1 “
1

i1

'
Yy

:

:

o F
'l
»

&
(]
Ay

>

A had N - 2 .3 . 3
- %y \ . s
0 uo cos vo .aU 9 sin )0 tan \x/o + 2010 cos vo 3ln VO

b T Py
' Jn

.‘""- ¥
]
J'_‘J

.
S

3 , 2 2
- 3&0 sin"v, cos v, sec v (58)

4
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2 o, sin v, sec ¥, (59) ﬁ;
P

¢ = a. sin v, sec ¥, + 2&2 sin v, cos v, sec Y, tan V¥ (60) EE
0 0 0 0 0 0 0 0 0 A

eon - eon . + e @ . W h:::
@0 ay sin vo sec WO 6a0a0 sin Vo cos v, sec WO tan 0 Ei
3 . 2 3 . 2 2 =

+2 \ -

“O sin vo cos JO sec WO +6a0 sin \)O cos vo tan \PO sec ‘i’o “::

_ 53 .3 2 E:ﬂ:

2a sin”v, tan"¥, sec ¥, . (61) 4

L

.
In addition to the motion of the satellite we also have to consider the rotation Wi
of the Earth., The latitude of a given point P remains constant but its longi- 'ﬁi
3(‘1
‘.K

tude increases at a constant rate £ rad/s. Thus

i‘

$ = L. (62) o4
&

b
At this point the idea of the squint angle is introduced. The squint angle is gi
here defined as the angle between the great circle arc AD and the great circle 5]
perpendicular to the orbit direction at A - see Fig 2. This definition is SS
valid for general elliptic orbits as well as circular orbits since we consider RN
§ Al
the projection on to a sphere. If the squint angle is zero at the centre of the &x
Lan
synthetic aperture at t = 0 thenr the radar is operating in the nurmal iE
gy
'broadside' mode. This angle could be (and generally is) a function of cime due Q?;
S‘:.
to charges in the pitch and yaw angles of the spacecraft., The squint angle is %1.
defined to be positive when looking forwards. éﬁ

i~ B

Angle NAD (Fig 2) is then 7/2 - Vo ~ % where % is the squint angle at

r

g
o Ay

.
A t.“!_‘l

t=0, Note that throughout this section v, is defined as positive in Figs 2 and 3,

¥

N

0
We are now in a position to compute the coefficients in the range

r
L

o~
.ﬁ{{

- 45

[

polynomials,

4,3 The linear term

3
a7
e e

'f l'
4 My b
L,

Lifferentiating (1), substituting (56) and (59) and simplifying by means

.
wr

s
AR

"n e

of two spherical triangle formulae for triangle ADN, viz

A4

g

DR W
)
™

sin wo cos Wo cos(vO * oo) = sin WO cos(@0 - ¢0) cos wo cos(v0 + co)

Ay

LA

>

LS
el

+ sin(¢0 - ¢O) sin(v0 + 00) cos wo (63)

" ™




=TT el el el ¥ N ey 4 & 2w = W -

I T T S i P o e

23
and
sin 60 cos(\)O + 00) cos wo 31n(¢0 - ¢0) (64)
2 gives
d(cos 60) .
3 = 9 sin 60 sin o, + £ sin 60 cos WO cos(\)0 + 00) (65)
vwhich together with (43) gives:
R, RoT .
a = T (Ro - r cos 60) - % sin 90 sin o,
0 0
Ror
- £ sin 60 cos ?O cos(\)0 + 00) . (66)
Thus the linear (range walk) term neatly separates into three terms. The first

L3 . 3 Ed *
is zero for a circular orbit since R

orbit eccentricity,

and is thus associated with the radar squint.

zero and is thus associated with the rotation of the Earth.

The second term is zero when the squint angle o

is then zero, and is thus associated with

is zero
0

The third term is zero when £ is

Thus linear range

walk is in general caused by three factors; orbit eccentricity, squint and Earth

rotation,

It is instructive to calculate a

for a typical example and the example

chosen (Fig 4) is an image from Seasat Rev.762 over the east coast of England

(the Wash and East Anglia).
centre of the image.
in Table 1;

The coefficient a

1 will be calculated for the

The Keplerian orbital elements for Seasat Rev.762 sre given

Table 1

Orbital elements for Seasat Rev.762

Semi-major axis
Eccentricity
Inclination
Argument of perigee
Right ascension

Mean anomaly

7161.39494 km
0.00186004
108.0203°
148,1649° -
89.3670°
252,3242°
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R0 and its derivatives and &0 and higher derivatives can easily be worked out
from the orbital elements using the usual orbit equations ~ see for example

Ref 18, Chapter 3.

The latitude and longitudes of the satellite nadir and the centre of the
image at t = 0 (tue centre of the aperture) and values of r, RO’ ﬁo, ﬁo, &0,

&0 and eo are given in Table 2,

r 1is the Earth radius at P and is calculated on the basis of a spheroidal

Earth with a flattening factor of 1/298.3 and equatorial radius of 6.37816 ¥ 106nu

Table 2

Parameters of centre of Fig 4 at t = 0

Latitude of nadir 51.25°

Longitude of nadir -2.08°

Latitude of point 52.78°

Longitude of point 0.67°
8 2.265°
r 6.36444 x 106 m
R, 7.16297 x 10° m
ﬁo 1.37760 x 10 Tés )

0 -1.758803 x 10_3 m/s

ao 1.041312 x 10 ~ rad/s
%, 4.005 x 10~ rad/s®
£ 0.7292115 x 10~ % rad/s
vy 29.20°

The corresponding values of the three terms in the expression for a are:

R
Eccentric term: —9-(R -rcos 68.) = 13,147 m/s
a, 0 0
Ror .
Squint term: - — a, sin 8, = -38.887 m/s per degree of squint
a 0 0 .
0 for small squint angles
R r
Rotation term: --:;; £ sin 60 cos WO cos vo = -82,385 m/s .

The pitch and yaw angles of the satellite of the centre of the aperture were

about -0.0040 rad and 0.0112 rad. Because of the steep (low) incidence angle
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3 e
P
the pitch angle has a greater effect on the squint than the yaw and in this :ﬁjﬁ
instance they nearly cancel out t- give a squint angle of about ~0.092°. Hence i?i}
A
the squint term amounts to some 3,58 m/s. The squint angle cau easily be 0.5 or e
. V@«
so on occasions for SEASAT. s
i
The linear (range walk) term is then about 65.66 m/s for this example, A
One can draw some very interesting conclusions from equation (66). Notice i,
that it is possible to select a squint angle oy such that a, is zero. aence Q.

3 s‘

linear range walk could, in principle, be eliminated for a specific value of 60 xﬁx
. . . . K
corresponding to, say, the middle of the swath by varying the squint angle of :«@
. e . . L
the radar. Moreover if the orbit is circular then hif
i
Ror sin 6, r, ‘.:%_ ,E
= - ——— i + + P
a e [ao sin o, + £ cos ¥, cos(v0 OOi] (67) e
;‘2:?.'5

w3

v Sk 2o

and a, would be zero over the whote swath width.

In practice the centre of the Doppler spectrum (which is amplitude
modulated by the antenna beam pattern) would be measured on board the satellite
and the satellite yaw or (better) the pitch angle would be varied via the
satellite attitude control system until the Doppler spectrum is centred on zero,
This type of technique could have far reaching implications for the design of a
SAR and processor system for real-time processing. The range walk problem is

explained further in section 12,

4.4 The quadratic term

Differentiating (41) twice, substituting from (56), (57), (59) and (60) and

simplifying by means of (41) and an additional formula for triangle ADN:

sin 60 81n(v0 + oo) = sin wo cos YO - cos wo sin WO cos(<1>0 - ¢0) (68) 24N
gives ;‘?3
2

d Y .- . )
;:f (cos 60) = @, cos 60 + a, sin eo sin o

L 12

i plete

L
‘-’:l 5
LM

+ 25&0 [sin v cos wo cos(@o - ¢0) = cos v, cos wo sin ‘1’0 sin(¢-0 - ¢0)]

.y . g
.l.‘.1 ,‘l

'
o0y

2
- €7 cos ¥ cos y, cos(¢0-¢0) . (69)

£
AL
L 4

O
"2,

The terms including £ can be simplified further but only by introducing yet “f“$
another angle and so it has been left as it is. In conjunction with (43) and )
(45), (69) gives:




.2 .
2R R.a
1 | 0 [ ] ] [-2 ] 071
= 5—|R,*+—<5—||R,~rcos 6,|]+5—|R ~-al]-~-
230 0 RO 0 0 2a0 0 1 R0
- fﬂi F; &2 cos 0. + 0 in 6 i
72 o ©° 0 g si o 3in oo

+ ZE&O{Sin Vg Los wo cos(@0 -¢0) = cos v, cos wo sin WO sin(@o-¢o)}
- g% cos ¥ (6 =) (70)
£ cos 0 cos wo cos 0 ¢0

which is a general expression for the quadratic (range curvature) term for
elliptic orbits and rotating Earth. It can be separated into terms associated
with eccentricity (the terms containing derivatives of R and second derivative
of a), and those associated with Earth rotation (the terms containing £). For

a circular orbit, stationary Earth and zero squint angle the expression simpli-

fies drastically to give

R r&z cos 8 v

2
. _ 0% o _ pf _n
a, 230 = (l R ) cos 60 (71)

where Vp is the satellite velocity = R.a. and h is the height of the

a
00
satellite above the Earth, Since eo is usually small (2o to 30) and

h = RO/IO then the usual simple expression given in the literature for 3,5
Vﬁ/Za0 » see for example Ref 9, equation (1), is correct to within 10% or so.

It .s again instructive to determine the magnitudes of the various terms in (70)
for the 'typical example' Fig 4. Substituting values from Table 2 into the part

of (70) which contains the radial derivatives gives:

.2 -
2R R.a
1 0|r 1 [e2 2 0°1 _ -3 2
Ta_(; RO + a—o LRO r Cos 00] + rao [Ro al] - RO = 3.795 x 10 m/s .

tss e (72)

The remainder of (70) contains thes angular derivatives:
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- Egi - &2 cos 6. + a. sin 0, sin ¢
ay 0 0 0 0 0
+ 25&0{31n Vo cos wo cos(<1>0 —¢0) =~ cos v, cos wo sin WO 51n(¢0-¢0)}
- 52 cos ¥ cos Y, cos(d. -4 = 28.0946 m/s2 (73)
0 0 0 "0 * '

If the maximum synthetic aperture time is taken at #l s, and if the maximum
tolerable phase error over the aperture is taken to be equivalent to A/16 where
A is the wavelength, then it is obvious that the terms containing the radial

derivatives are negligible. The term containing a,. 1is also negligible

(Ror&O sin 04 sin oO/ZaO = 4,86 x 10-5 m/sz). °
There is no doubt that the terms associated with eccentricity can be
ignored in this instance and that a, can be calculated on the basis of a
circular orbit. Hence such phenomena as the precession of the perigee and varia-
tion of eccentricity have no material effect on the quadratic term - provided
that the orbit eccentricity is small enough. A more refined analysis can set
limits on the orbit eccentricity but this would take us too far from the main

theme of this paper.

4.5 The cubic term

The terms involving eccentricity in the quadratic case were shown to be
negligible and they are even more so in the cubic case. Unfortunately
all the other terms (of which there are very many) in the equation for a, only
differ by one order of magnitude or so and all must therefore be considered.
The resulting expression for a, will not be set down here; it can easily be
calculated along the same lines as for a, and a, - The expressions are
complicated and not easily simplified due to the inherent asymmetry. However if
this is done it will be found that substituting the values in Table 2 for the
example given before gives a = 1.26 x 10-2 m/sB. Hence over a synthetic aper-
ture of *ls there is a variation of about 1/9 wavelength. This, unfortunately,
is on the limits of the maximum acceptable error, and to be on the safe side in
this case the cubic term should be included. The example is not, of course, a

worst case example and the cubic term increases at more northerly latitudes,

For SAR systems with shorter wavelengths (such as the proposed ERS-1 SAR
with A = 5,6 cm) and hence shorter synthetic aperture intervals, the cubic term

will be completely negligible. Conversely with systems which have a long
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wavelength and long synthetic aperture interval (such as the proposed spotlight

mode for the Shuttle SIR-B mission) the cubic term will be significant.

4.6 The range polynomial: conclusion

In this section it has been shown how it is possible to calculate the

terms in the range polynomial for the most general case of an elliptical orbit

and rotating Earth. It has been shown that the eccentricity of the radar plat-

5{} form orbit has most effect on the linear term, for small eccentricity it can be
g;‘: neglected so far as the quadratic and cubic terms are concerned. A more refined
;'g analysis is possible based on this section but will not be presented here. One
in implication of this is that the use of nominal orbital parameters is more likely
o to have an effect on the linear range walk correction in the processing than on
%Eg focussing via the quadratic phase term. The use of 'auto-focussing' techniques
i%ﬁ to overcome the effects of the use of nominal orbital elements is thus somewhat
Hogh questionable. All auto-focussing techniques known to the author rely in some way
géz on the defocussing being caused by an error on the quadratic phase over the

;vi correlation. An error on the linear range walk can also cause defocussing due to
;;é the selection of incorrect data in the range walk correction procedure and this

i

is discussed again in section 13,

5 DIGITAL PROCESSING: MATHEMATICAL PRELIMINARIES

In this section some relevant background theory is briefly presented. Most
of this theory will be found in one form or another in Ref 16. Consider a func-
tion of time f£(t) ; £(t) may be complex valued. Its Fourier transform F(w)

is

F(w) = [ f(t) exp - iwt dt . (74)
The inverse transform is
F(t) = % [F(m) exp iwt du . (75)

F(w) 1is the spectrum of the function £(t) , and is a complex valued function.

If f(t) is purely real or imaginary then the real and imaginary parts of F(w)

have symmetry properties:

if £f(t) 1is real valued then F*(w) F(~w) (76)

if f(t) 1is imaginary valued then F#*(w) - F(~w) (77)

where the astcrisk indicates complex conjugate.
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§§ 5.1 The analytic signal
' e
H

From equations (76) and (77) we see that a real (or imaginary) function Tl
=5 can therefore be completely catermined by only the positive (or negative) .

%; frequencies, Ze only half of the spectrum because the other half can be recon- o

%ﬂg structed via equatiors (76) and (77). This takes us to the idea of the aralytic -
signal. e

'l

Let f(t) be purely real with F(w) given by (74). Then F*(uw)=F(-w).
Let g(t) be purely imaginary with Fourier transform G(w) . Then
G*(w) = G(-w) .

ML %

g’ ;J!d'.dw
P

":ifzﬁvﬁgn 1

N AN NI
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1]
1,

d]

1

Let g(t) be such that for w > 0, G(w) = F(w) .

]
s

v &
A AL

Then G*(w) = F*#(w) as well, for w >0 .,

»

ﬁ».
N
‘r)«

N?,
LAY
Ay
A A

Then for w < G we have G(-w) = -F(w) .

¥
o,

Let z(t)

f(t) + g(t) , then its Fourier transform is

L
~
.
Ij’ﬁ
T »

£«
oy
e

w
fl't

...

F(w) + G(w) = 2F(w) w>0
u?é,f =O w<0

f'“"'" 'y
)

i |

L
1]
«

-
‘I

Bt and we therefore have a single sided spectrum. Usually g(t) is written as
if(t) and then

kit
S

[
[

z(t) £(t) + if(t)

]
-
»

-
a

14}

i z(w) 2F (w) w>0

Ll
&
]

-
»«ﬁ,
o

= 0 w<O0 .

it
¢

L

‘l

k2
”

LRl .
EAe S
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A And so starting with a real function f(t) we can form its Fourier transform "N
e L]

F(w) , double it, and set its negative frequencies equal to zero. If this 9%

==

function is then inverse transformed, the real part of the resulting complex Ef'

valued function 2z(t) 1is equal to the original real function £(t) . Thus only Q&,

&N

half of the spectrum of the real valued f(t) 1is needed to define it completely. {:2

At}

Now consider the function !!%

a(t) exp i¢p(t) = a(t) cos ¢(t) + ia(t) sin ¢(t) o

where a(t) and ¢(t) are real valued. a(t) exp i¢(t) is assumed to be :f%:

analytic (and is an entire function of exponential type with singularities only Oe

——

P . . '

at infinity). Then it can be proved (see Ref 20, Chapter 5) that the function {}h

has a single sided spectrum. Hence it is possible to identify a(t) cos ¢(t) ?3?

~ Ll .‘-.

with f£(t) and a(t) sin ¢(t) with f£(t) . In actual fact £(t) and £(t) B
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e
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are mutual Hilbert transforms, but that is only of passing interest here. It
will be observed that the chirp signal, equation (3), is in this form and is an
analytic signal. Likewise (1) is the analytic signal corresponding to the real

signal (2).

Thus if we have a real valued function such as a(t) cos ¢(t) writing it

as a(t) exp i¢p(t) gives the 'analytic signal' with a single sided spectrum.

It will be shown in section 6.1 that, in the case of a SAR system in which
the Doppler band extends-over hoth positive and negative frequencies, it is

zbsolutely necessary to operate on analytic signals,

5.2 The convolution and correlation theorems

If
g(t) = [f(r)h(t - 1)dt = [f(t - t)h(1)dT (78)
then
G(w) = F(w)H(w) (79)

(see Ref 16, p.2l, equation (1-47)). The convolution is usually written

g(t) = £(t)®h(t) . (80)

Hence convolution in the time domain corresponds to multiplication in the

frequency domain (and vice versa).

A similar theorem exists for the correlation function:

ki%qi «© o0
!%E'a If c(t) = [f*(r)h(t + 1)dt = /f*('l' - t)h(1)dr (81)
then
C(w) = F*(w)H(w) . (82)

In Ref 21, equation (406) p.768, it is shown that the complex response from a

SESH

matched filter is determined by a correlation process,

ke

To perform matched filtering in the frequency domain therefore, one

gl

Fourier transforms the signal and multiplies it by the complex conjugate of the

a2

o

ol
¥

chirp replica spectrum and then performs the inverse transformation. This is the

basis of frequency domain compression in both the range and azimuth directions.
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5.3 The sampled discrete Fourier transform

The discrete Fourier transform pair analogous to the continuous transforms

are:
N-1
F(R) = %—Zf(k) exp - i2§k2 (83)
k=0
N-1
£(k) = ZF(!L) e iz;kz . (84)

This pair of transforms can be regarded as a mapping of the sequence f£f(k),
k=0 ,.. N-1 on to the sequence F(2), 2 =0 ... N-1 and vice versa. There

are N samples in the 'time' domain and N 1in the 'frequency' domain.

The reader is reminded that it is implicit in this representation that the
original continuous time function £(t) and the corresponding spectrum F(w)
have both been periodically repeated. Usually the temporal function f£(t) has
a finite length and is sampled at intervals of At , say, so that if T 1is the
total length T = N4t . The corresponding spectrum, however, is not finite and
the process of periodically repeating it causes the edges to be periodically
folded into the fundamental period. This is called aliasing. The width of the
fundamental frequency period is 1/At , see Ref 22, and it is therefore necessary
that there shall be no frequencies higher than fs/2, where fs = 1/At | present
in the original spectrum. The reason for the additional factor of } is that we
have both the positive and negative frequencies to contend with (see Fig 5).

The frequency fs/Z is commonly called the folding frequency. It will be
observed that the sample sequence F(2) runs from O to N-1 and therefore in the
first half of the sampled spectrum we have positive frequencies and in the second

half negative frequencies. The spectrum is folded about fs/2 .

There are no aliasing problems with the time sampled sequence because it is
a finite length record and is zero outside the sampled range. Each sample
in the time domain is separated by At where At = T/N and each sample in the
frequency domain is separated by Af = 1/T where Af =F/N and F = fs the

sampling frequency.

This discussion applies to a real valued function., When the sampled func-
tion is complex valued with a single sided spectrum then the spectrum can be
periodically repeated at double the rate of a double sided spectrum without ambi-
guity. This means that if the sampling frequency is fS the spectrum can have

frequencies up to fS instead of fs/2 before ambiguity sets in. This can be
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illustrated by a simple example, Consider the real and complex signals

and exp i2nft . Suppose both the signals are sampled at times n/fs, n=0...N-1.,

R . R e T R S

N

cos 2nft

Then for the complex signal frequencies f and f + fs are ambiguous because

i2n(f +fs)n iwan
exp ——5—— = exp —
0 0

(85)

and for the real signal the frequencies £ and f-+fs/2 are (just) ambiguous

because

(f+f3/2) 2'!:.:
cosf2n : = -cos . (86)
s s
If real signals with frequencies in the range 0 to fs/2 are sampled at f_
then the complex signal may be sampled at fS/2 without ambiguity,
5.4 The discrete convolution and correlation theorems
If
N-1 N-1
gk) = %Zf(m)h(k-m) - %Zf(k—m)h(m) 87)
m=0 m=0
then
G(R) = F(H() 2=0...N~-1, (88)
The convolutions in equation (87) and (88) are cyclic because f(m) and h(m)

m=0 ... N-1 are periodic functions. Again, then, convolution in the sampled

time space corresponds to multiplication in the sampled spectrum space.

There is a corresponding result for the correlation.

N-1 N-1
1f c(k) = %Zf*(m)h(k+m) - %Zf*(m-—k)h(m)
m=0 m=0
then
c(2) = F*@)HQR) ,

again, this correlation is cyclic.

Cyclic convolutions can produce problems (see Ref 22, p.48).

(89)

(90$)

For example,

in the case of the range compression process it will be demonstrated that there
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are end effects which make it necessary to process more data than is required by

the image.

5.5 Interpolation via the Fourier transform

In terme of its discrete Fourier transform (DFT) a sampled function is:

N-1
i <SK<N-I
£(kat) = ZF(SLAw) exp 22L cSh SNl oD
2=0

(see equation (84)). At 1is the spacing of the time samples and Aw is the
spacing of the angular frequency samples. Aw = 2mAf -here Af is the frequency

sample spacing

1 _ 2r

Suppose that the length of the inverse DFT is doubled and define a new set of
spectrum samples F'(f2Aw) such that

F'(20w) = F(RAw) for 0S8 <N-I 93)
= 0 for N< g <2N-1.
Then the new inverse DFT is:
2N-1 N-1
' i2mik  _ i2mek
F'(2Aw) exp N F(LAw) exp N
2=0 2=0
N-1
= ZF(QA«») exp LZ_M._ISE/L) . (94)
2=0
Comparing this with equation (91) gives:
2N=-1
F' (LAw) exp %&1& = f Eg—ti . (95)
2=0

Since the number of samples in the inverse DFT was do'bled, the numbers of

samples of the time function f£(t) was also doubled and there are therefore
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R
2N samples at intervals of At/2 . That is to say the time function has been S
interpolated. All the original samples exist and in additioun there are new :\:
i ”; (interpolated) samples midway between the original samples.

}fz This process can evidently be continued and if the inverse DFT is per- Ei:;
§f~” formed with a length 2" times the forward DFT this gives 2% -1 ip erpolation ::5
‘},é points. N

>
’?ia Some further comments will be made on the nrocess in section 6.3. There is ©
]

another interpolation technique using the DFT which is not limited to dividing

the sample interval by some power of 2, Returning to equation (91) it is evident

i g s
e
+ \
730

. that

58 N-1

;;: f(kaf + oAt) = :E:F(zAw) exp 12§k2 exp 12§a2 . (96)
s £=0

3 11 It is therefore possible to produce new samples at any chosen point within the
¥

%gg original intervals (a < 1) simply by weighting the spectrum samples by a phase

; E shift exp(i2maf/N) before inverse Fourier trausforming.

- Both of the above techniques have successfully been used on S.R processing
3%3 at RAE.

3o 6 SPECTRA

6.1 The range spectrum

The signal transmitted by a SAR is usually a frequency modulated 'chirp' ;xs;

. . . YN

with a large time-bandwidth product. The spectrum of such a chirp is calculated }};j

N

in Ref 16 (example 8-5, p.270). It is a Fresnel integral. If the chirp is DN

centred on f0 (the radar 'carrier' or centre frequency) and has a nominal D.‘;@i

width of AF (= the chirp rate in Hz/s x the pulse width) then the spectrum is {u;fi

. . . . Lel 8

as sketched in Fig 6. This is the spectrum of the real valued signal (2) as ’x?uﬁ

obtained by the radar receiver from a point scatterer. The actual signal as it ;};};
exists in space is complex valued and has a single sided spectrum for 3

i i L)

reasons which will not be pursued here. :;;i;

- <

-‘:\*‘J

Fig 2 shows the modulus of the complex valued spectrum as do all the iy z;

WY

subsequent figures. 0

e

ﬁ"—

Each point on the ground reflects a replica of the transmitted chirp and ?:-{;

o

the received signal at any instant is the linear sum of chirps reflected from ff}ﬁ{

e 'u"

points illuminated by the footprint and within a distance corresponding to half roele

NS

a pulse width. The bandwidth of the received signal is therefore the same as ;iﬂ?;
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;i% that of a single chirp, although, of course, the detail of the spectrum 1is

Py 7]

_ié greatly different and is noise-like being composed of chirps with random phases
! . , .

i and displaced in time.

_};,‘ The actual received spectrum is sketrched in Fig 7.

La%Y

g The receiver coherently mixes the siguaal down to the offset video frequency.

This offset is chosen to be slightly _teater than AF/2 to avoid aliasing the

spectrum and is one quarter of t*e subsequent digitising frequency for a real w_:ti
valued signal. The resulting spret;am is shew. in Fig 8. E:-\"
The signal is still v~ai valued at this sosnt. At this stage the signal E
could be operaftad on by & cuadrature filter to give the analytic signal in which !Ff
case the negative half of the spectrum disappears and then f] could be mixed Sf[
down to zero to give a spectrum symmetric about zero. The resulting signal "')
would be complex valurd. For the moment, however a real valued signal will still %
be used. L
Tha signal is next digitised at a sampling frequency fs (typically exactly -:*

four times the offset video fl ). The process of sampling the signal causes the :j‘
spectrum to be peiiodically .epeated at a frequency of fs - see Fig 9, Just the e’
envelope of the spectrum is shown in Fig 9, the positive and negative frequencies &
are indicated by '+' and '-'. :‘:::E:
When range compression is performed in the frequency domain (as it nearly :f '_E:?
always is) using a discrete Fourier trancform (the 'fast' Fourier transform i
version) then the spectrum is also sampled., If N samples are used in the E
Fourier transform the spectrum is sampled with a frequency incr:vwent of fS/N ::::::E:
from sample to sample, see Fig 10. In the case of the fast Fcurier transform (:;"
there will be 2" samples, typically 4096, 8192 or 16384 for a spacecraft SAR. f"“f"‘:ﬁ
Notice that the positive frequencies are contained in samples 1 to N/2 and the ._::rf'
negative frequencies in samples N/2 + 1 to N . The chirp spectrum is similar ::j::'
and thus the product of the chirp and signal spectra is similar, ::}.:::
;s.'::-":

At this stage the negative frequencies are eliminated by setting samples !_;E?
N/2+ 1 to N equal to zero, and on inverse transforming, the compressed :‘%
analytic signal is produced. ;:&
6.2 The azimuth spectrum : :3-;::::
Previously the spectrum of just one pulse was considered. Now, the E:f::
spectrum of a large number of pulses is discussed. Fig 8 gives the spectium of -:‘E_:
just one received pulse at the offset video frequency. The radar periodically ‘E::
repeats pulses at a pulse recurrence frequency of v Hz, say. The effect of this ;:'I'
is to turn the spectrum in Fig 8 into a line spectrum., The distance between the -?3
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lines is v Hz . The resulting spectrum of a large number of received pulses is

shown in Fig 11, This should not be confused with the line spectrum already .

considered in Fig 10. That spectrum arose in the range compression process, a g%g

process independent of the azimuth directionm. ﬁ;f

N

The spectrum shown in Fig 11 would be obtained if the radar platform were g%“

stationary, The platform moves, of course, and each of the lines in the spectrum E&g

therefore moves due to the Doppler effect, ?;%

=

Suppose that range compression is performed using real data. The recult NN

&

is given in equation (6, The Doppler 'phase' term is a cosine function. If

range compression is performed with an analytic signal the result is given in Egg
equation (7) and the phase term is an exponential. This is a crucial difference. %‘E’f
Consider just one line in the spectrum of Fig 11, If the real 'phase' term is ﬁ?i
used then a Doppler shift splits the line into two lines because the cosine term ;55
implicitly includes both positive and negative frequencies - see Fig 12. In AN
other words positive and negative frequencies are indistinguishable, Ze aliassed. 5i:$
For the analytic signal with a single sided spectrum a Doppler shift just shifts ?:%:
each line as shown in Fig 13. There is only one line and posicive and negative i;ﬁ;
frequencies are kept separate. s
i
In actual fact one has a continuum of Doppler frequencies both positive SS%
and negative for a broadside looking radar., Each line is then broadened into a %;fé
continuum - see Fig 14, ;;‘-é
Note that the radar is designed in such a way that the pulse recurrence (o
frequency is high enough to sample the Doppler band defined by the antenna beam- :i:g
width and this is done on the basis of an analytic signal. igzi
Ry

o

If the radar is a pure squint mode radar with only positive or negative

r
.

.
D

frequencies then the aliassing problem would not exist. One could then either

., T
TR A

TR

choose a high enough pulse recurrence frequency or a very carefully chosen prf C;i;
so that the Doppler band is aliassed into a wholly positive or negative band. ey
This would undoubtedly lead to problems both with the design of the radar and ?i;%
the spacecraft attitude control, 5{ 21
< L

In any event for a broadside looking rsdar thte analytic signal is always E:g;;

an absolute necessity and is probably also necessary for practical reasons for 2&%;
a pure squint mode radar. !Eﬁé
6.3 Interpolation i%;ﬁ
In section 5.5 an interpolation technique was described in which the data ;iiSi

to be interpolated are Fourier transformed via a DFT and then inverse transformed 3§E£

S via a DFT with a larger number of samples. In using this technique one has to be

Y
T S
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careful to treat the spectrum correctly. This will now be described, with

reference to interpolating range compressed data, S
L ™1

Consider the sampled range spectrum shown in Fig 8. It corresponds to a
Fourier transformed pulse. Both pulse and spectrum are sampled and periodically

repeated. The period of the spectrum is fS , the sampling frequency. Suppose

that there are N samples. N/2 cover the negative frequencies and N/2 the

positive frequencies, see Fig 9, Increasing the number of samples in the inverse oy
transform is equivalent to sampling at a higher rate and the spectrum is period- :%;:
ically repeated at a longer period mfs , say, where m 1is an integer equal to ‘%Ea
some power of 2, The resulting spectrum is shown in Fig 15. In order to achieve e
this the negative frequencies which occupy samples N/2 + 1 to N in the g%%
original spectrum must be moved up to samples mN -~ N/2 + 1 and oN in the new ggﬁ
spectrum before inverse transforming as shown in Fig 15. Everything will then %3%
be correct and the correct interpolated samples will be produced. &#i
7 SIDELOBE REDUCTION - APERTURE AND SPECTRUM WEIGHTING %

Equation (15) gives the point spread function in both range and azimuth for Kéi
the ideal matched filtering process. The modulus of the point spread function in S§Q?

both directions is of the form |sin x/x| . This function is plotted in Fig 16,

2|2

L)
"

It will be observed that together with the main lobe there are sidelobes. These

D

sidelobes are usually considered to be objectionable, although the author has ﬁ%é
. . . . . XY

processed images both with sidelobe reduction and without and can rarely tell the }&ﬁ

difference. The sidelobes are noticeable in the case of very bright point-like

s

scatterers.

”
Sy

It is possible to reduce the level of these sidelobes but only at the

,.
A,
s

expense of broadening the main lobe, 7Ze reducing the resolution.

oy Al
Wt
[
o

If the correlation process (matched filtering) is performed in the time

o My Ry
"

domain then an integral of the form:

.1
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o
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t. +T/2
0 t
lg()] = f exp i2nTAF = dt (97)
tO—T/Z

Pyt oty
A &
'.t - ’..{-{f‘:‘

‘
Fr

1&!;

~

is obtained. If the correlation process is performed in the frequency domain an

integral of a similar form is obtained (this is the inverse Fourier transform of

‘-l
kP

NN
"

the product of the spectra of the sigral and chirp replica or phase history

!. "
-"

replica).

N
T ALY

-
4

.

X

.yl'

£
L




TR X

B
L S I A

1

R
Ry

3

38

f +F/2
0 f
lg(t)] = f exp i2mTAF ¢ df (98)
fO—F/Z

where the time centre of the aperture is ty » the frequency centre is fo s
the time width is T , and the frequency width is F (this is equal to AF but

formula (98) has been written as it has in order to exhibit symmetry with (97).

Sidelobe reduction is obtained by weighting the integrals in (97) and (42).
A discussion will be found in Ref 21, section 3.4.2 p.780. Such weightiiz func~
tions are usually expressed as a Fourier series with a period of either T or
F . There are very many of them. The ideal function (ideal in the sense that
one obtains minimum mainlobe broadening for a given sidelobe reduction) is the
Dolph- Chebycheff function - see Ref 21, section 3.4.2.2 p.782, In Ref 16

Papoulis lists a number of different functions (section 7.3, p.234).

By far the most popular weighting function is a 'raised cosine'. This will
be recognised as simply the first two terms in a truncated Fourier series. This

i: also known as a Taylor weighting function -~ see Ref 21,

The time weighting function is:

m(t -to)]

w(t) = 1+ 28 cos[———,—r-/T-— “T/2 S t<t,+T/2 (99)

%o 0
and the frequency weighting version is:

w(f -£,.)
w(f) = 1+ 28 cos[—-—A-ﬂ-zo—] fO-AF/Z <f < fO+AF/2 (100)

B is a parameter 0 < B <} which specifies the sidelobe levels. The resulting

point spread function is:

. r

and the phase part of the psf is unaltered.

The signal energy is increased by a factor of 1 + 262 in both frequency

and time domain correlations since

T/2
wit)de = 1+ 282 . (102)
-T/2
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The first zero in the point spread function is located at V1/(1 ~28)/AF the $;:;
position of the other zeros are unchanged. The relationship between B8 and the ;EE;
sidelobe levels must be obtained numerically, gﬂgﬁ
O

An alternative to the Taylor weighting function is the Chebyshev weighting :E;i
function, as pointed out above. This weighting function is best designed by t;\ﬁ
means of the Remez exchange algorithm - see Ref 23, p.136. The sidelobe levels gﬁ;é
are specified and the number of weights, and then the design algorithm gives the f:fj
weights. Sidelobe weighting using this type of weighting function has been ivsed ii:i
in Ref 9. i;::
A

8  RANGE COMPRESSION —
The various aspects of the range compression process have been discussed in N
previous sections and now in this section they are collected together. Si;?
Range compression is usually performed in the frequency domain using the e
correlation theorem in section 5.2 and the discrete Fourier transform in section ot
5.3. The fast Fourier transform (FFT) version of the discrc*e Fourier transform Eﬁt&
(DFT) is invariably employed - see Ref 22 for a description of the FFT, The FFT 3%5%
is just an efficient way of computing a DFT. In order to use it the number of —
samples must be some power of 2, Ze N = 2", %
P

The question of how many pulses and which pulses to compress is consider~d g;é;

in the sections on prefiltering and azimuth compression.

It is interesting to examine the difference between correlation via the
time domain and via the FFT. The number of multiplications and additions for the
FFT is given in Ref 22. 1If there are N complex samples in the signal and n
complex non-zero samples in the replica then correlation via the FFT requires
approximately N(l-+log2N) multiplications and 2N logzN additions, and straight
correlation requires nN multiplications and nN additions. N > n because the

replica is much shorter than the signal for obvious reasons.

As an example consider SEASAT. If one chose 8192 real range samples out of
a total of 13680, Ze 4096 complex samples for the analytic signal, and 1536 real
value samples (768 complex) for the chirp replica then the FFT correlation
requires 53248 multiplications and 98304 additions and subtractions. Straight
correlation requires over 3 million multiplications and 3 million additions.

Correlation via the FFT is therefore much faster.

All pulses are correlated against the same chirp replica. This chirp
replica is known from the system specifications. Sometimes it has to be

adjusted slightly in order to achieve the best possible range focussing.,
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The chirp replica, then, is sampled at the same rate as the data. The chirp

) record length is packed out with zeros to make it the same length as each pulse
%;;  record length (= Zn, as pointed out above). The packed record is then Fourier
fﬁ%@ transformed and conjugated, the resulting spectrum is then weighted by the side-
i ?ﬁ lobe weighting function given in section 7, suitably sampled. Naturally the
3§§}§ spectral width of the weignting function AF 1is the same as that of the chirp

spectrum, The weighted chirp spectrum is then permanently stored and used to

correlate all the pulses. Each pulse signal is taken out of bulk storage and

LT TS TS TR s e e

either panked with zeros to 2% or t ‘uncated (this is more usual). Each

v v

P
L
i

g%&;_ pulse is then Fourier transformed, multiplied by the weighted chirp spectrum,

” and inverse Fourier transformed. This process is continued until all the pulses ‘f

,? required to process the image have been compressed. %

?ﬁf% The reason for the truncation (or packing) of the pulse samples is that the S‘

i%%? total number of samples in each pulse is never, in practice, an exact power of 2. 2

~f#f For example in the case of SEASAT N = 13680. There are then two choices and, :j
usually, considerations of total storage for the range compressed pulses dictate ;:

Sy
»

that each pulse be truncated to 8192 or less.

.
.

It will be recalled that the FFT correlatior is a cyclic correlation -

£ |y

see section 5.4, and this will now be examined, The signal samples can 5?
(schematically) be placed at equiangular points around a circle, and the chirp :ﬁ
replica also, see Fig 17. The cyclic convolution then implicitly involves ;%
multiplying each signal sample with the corresponding replica sample, adding, ;;
and then rotating the replica relative to the signal by one sample and repeating i?
the process N times., The FFT correlation does not do this explicitly, of ;{

courge, but is entirely equivalent,

-l
»
.

). 1o

If the signal has been truncated it is easily seen that some signal has been

lost for a time of T/2 at each truncation point, where T 1is the chirp width, (E
It will be recalled, that due to the finite chirp width, the signal reflected from ;:;
each point scatter does not extend over the whole signal but only over an interval i;
of T . Hence if both the beginning aud end of each pulse have been truncated the !3
signals will not be properly correlated over cn interval of +T/2 around the :i:
'join' in the cyclic correlation. The top and bottom of the resulting image will %f
then be spoilt over a distance corresponding to half a pulse width. It is there- ;:ﬁ
fore necessary to bear this in mind when selecting range samples to cover a par- rii
ticular image and a contingency of T/2 1is required at the beginning and end of ;;_
each pulse. An additional contingency is required to cover range migration and :43
this is explained further in section 13, ;ﬁ?

@
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It remains to be shown how the offset video frequency f] is removed, -
see equation (7) and subsequent remarks. This can be done immediately before )

inverse Fourier transforming each product spectrum, Ze after each signal spectrum

has been multiplied by the replica spectrum. As pointed ocut in section 2.1 the

)

offset video is often arranged to be one quarter of the real sampling frequency.

% v

KNP LAY

This is one half of the complex sampling frequency (the product spectrum at this

My A

stage is that of the analytic signal). If the offset video fl is exactly half

g of the maximum frequency in the spectrum then to tramslate it to zero the spectrum e
y is simply moved by one half period. The procedure, then, is to rotate the .'L
; product spectrum in either direction by N/2 before inverse Fourier transforming. :‘:5:
) The offset video can also be removed in the time domain, after inverse ;:_q;
ﬁ transforming, by reversing the sign of alternate samples, Equation (7) gives the ﬁ,:;
; phase progression due to the offset video as exp i21rf1tn . If fo is the S_Ezf.
::; sampling frequency of the real data, fS/Z is the sampling frequency of the :[;ES
! complex analytic signal and the time increment from sample to sample is Z/fs .
A Hence t = n(2/fs) and f] = ES/4 and then exp ianltn = exp im = (-0, e
These procedures can obviously be generalised to cope with the situation in which :::::::j
Qs the offset video frequency is not exactlv one quarter of the sampling frequency. ?:;:::f
X K
i 9 LOOK FILTERING ;—:-n;
}? In the processing of an image the Doppler spectrum is usually divided Es
3‘:3 into a number of equal parts and a separate image is processed from each part. E;.'
£y Thus each image is processed from a sub-aperture. The radar is designed to have ::::::::
Tt an adequate Doppler bandwidth to permit this and if an image is processed using ﬁ
% the whole Doppler bandwidth the resulting azimuth resolution is many times finer "
§E y than the range resolution. Each image processed from a sub-aperture is detected ‘:&.:
f‘_"% (Ze the modulus is formed, or an intensity image formed) and then the images are &::'
‘: added incoherently, The objeccrive is to produce speckle smoothing, that is, an %
"3:,! improvement in the radiometric resolution at the expense of spatial resolution. _’5'&5,\
g An explanation of how speckle arises will be found in Ref 24. ::\:':
K AR
z Eacn sub—aperture is generated by means of a digital band pass filter - the :3-
:: 'look filter' - centred on to a different part of the Doppler spectrum, The %!é
::g filtering can be performed before the azimuth correlation process in which case E’ff&.,
‘i:' it is known as prefiltering or alternatively, during the azimuth correlation “ﬁ;’:
% ' process. 1n principle it could also be carried out afterwards but this is never ,Z_:::::
% done for reasons that will become clear. f—..!a-.i
Prefiltering has computational advantages. Suppose that the aperture Ef:::::s
-Doppler spectrum) 1s divided into M sub-apertures each of width AFA/M where {"ff
AFA is the total Doppler specu.um, It is then evident that since we have an ;.5
-
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42 i
analytic signal it is possible to subsample the Doppler phase and reduce the :}
number of pulses which it is necessary to process. Thus for M sub-apertures v
it is oniy necessary to process every Mth pulse. 5;'

4
9.1 Design of the prefilter -~

v

0
L

The first requirement of the prefilter is that it should not introduce

* v

spurious phase shifts into the data, since this wil)] have serious consequences

(]

Sbel/

for the azimuth correlation process. A linear phase response (as a function of

‘f%i frequency) might just be tolerable since this would just shift the image in the Fﬁ
'ﬁ%i’ azimuth direction. It is, however, possible to design a digital filter which ;S
§§<§ introduces no phase shift at all. This is one of the advantages of operating ég
o with digital data; a zero phase shift analogue filter is impossible! Eg
< There are basically two types of digital filter, the finite impulse response i_
%%5% (FIR) and the infinite impulse response (IIR) filters. Only the first type can E
¥§§§ be designed to have zero or linear phase shifts. It is possible to utilise a ii
. filter which has a non zero phase shift by passing the output of the filter back o
through the filter in reverse time sequence, This removes the phase shifts and ;ﬁ
hSY

is called two pass operation., However, this filter requires all the output

a3 . . . . .
35 pulses to be realised, not just every Mth pulse. In addition this type of filter

- | A

causes difficulty with the data management, There are similar problems with the
recursive filter, An additional problem is that it is not straightforward to e

change the filter characteristics in 'mid image'. =

K
By far the most straightforward design is the phase-shift free non recursive
filter and this is the type which has been used in the RAE processor. Q

FIR filters are explained in detail in Ref 23,

Consider a sequence h(n) - (N;‘) <Sn s (N -2- ]) N odd. These may be i
regarded as the filter weights. The discrete Fourier transform of this sequence !g
is o

(N=1) 72 o
H(exp ijw) = h(n) exp - iwn (103) e~
n=-(N-1)/2 s

and this defines a finite Fourier series period 27 and gives the frequency N
response of a non recursive filter., If there is no phase shift then obviously g

H(exp iw) 1is real, and this is true if h(n) = h(-n) and then

(N=1)72
H(exp iw) = h(0) + 2 Z h(n) cos wn . (104) .

n=1
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This argument also works for N even in which case 43
N/2
H(exp iw) = ZZh(n) cos wn (105)
n=1

It is therefore possible to design a filter in which there is no phase shift.
It will not be demonstrated here, but the case N even leads to problems because
the output time samples occur midway between the input samples. Hence filters
used for prefiltering have an odd number of coefficients and have symmetric

coefficients.

One way to design the filter is the 'window method'. First of all we
decide on the shape of the required response. The ideal (from one point of
view) is the rectangular function shown in Fig 18. This is not realistic,
however, because it requires an infinit .umber of Fourier coefficients and
hence an infinite sequence of input samples. The resulting Fourier series is

truncated therefore and then the coefficients are:

c
h({0) = vy (106)
nw /v
h(n) = sin o n#0 (07D

where v = pulse recurrence frequency, w, = cutoff frequency (rad/s), and
-(N=D)/2<anS@®-1)/2.

Due to the Gibb's phenomenon there are ripples in the pass band and in the
stop band and the amplitude of these ripples is not affected by the order of the
filter N . These ripples may be smoothed by a weighting function and this
function works in exactly the same way as the sidelobe weighting function in

section 7. Typically, the Hanning weighting function is used

wn) = 1 + cos -"l—:l (108)
where k = N ; ! (109)
and then
Ye
h(0) = =~y (110)
nw /v
h(n) = [l + cos~%§] sin Zin . (i11)
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Substituting in equation (104) then gives the filter response function:

w, = (1 + cos nm/N) sin nwc/v cos nw/v
H(exp iw) = ~ + z — . (112)
n=1

The band centre can be shifted by weighting by an exponential weighting function:

i2ﬂf0n
h'(n) = h(n) exp - — (113)

where f0 is the shift.

The sub-sampling and weighting procedure is then described by:

(N+1)/2
S'(m) = h(n)S(n + Mm) (114)
n=—-(N-1)/2

M is the data reduction factor and S(n), n =1 ,.. are complex range compressed
pulses. S'(m) are the prefiltered pulses. It is important that the prefilter

be as simple as possible since too great a complexity will reduce the computa-
tional advantages gained from data reduction. So minimum N consistent with
sufficiently low ambiguities is chosen. The ambiguities are caused by non-zero
response in the stop band, Ze aliassing, and they also depend on the data reduc-

tion factor, Response curves for this type of filter are given in Ref 11,

Prefiltering has advantages for both frequency domain azimuth processing
and for time domain processing. The reduction of the data rate means that corner
turning (see section 10) can be done on smaller arrays with consequent time
saving and the forward FFT processes a smaller amount of data, The savings for
time domain processing can be considerable. The number of multiplications in
time domain processing is proportional to the square of the number of pulses,
reducing the data rate by 4 (for 4 look processing) reduces the number of multi-
plications by a factor of 16. Likewise the number of multiplications in perform-

ing the FFT is proportional to N 1og2N and is thus reduced by a factor of 8.

9.2 Frequency domain look filtering

Look filtering can be performed in the frequency domain, and this approach
is commonly followed in processors which perform azimuth correlation in the
frequency domain, see Ref 9 section 3.3. An azimuth line is assembled for

azimuth compression (see section 11 for an explanation of this process) and
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%é Fourier transformed to give the corresponding spectrum. This spectrum ther ,:}

:fg covers the whole Doppler band. If M looks are required then this spectrum 5;?
'§§§ could be simply split up into M non zero bands. However, the opoortunity can %Q;
{: be taken here to introduce sidelobe weighting at the same time. Simply splitting ;;;
;é&z up the spectrum would result in an image azimuth point spread function of Ef;
’3%5 'sin x/x' form assuming there is no weighting applied to either the Doppler j;*
3;7 spectrum or replica (see later sections). This subject is further explored in 2:4

k:

o the sections on azimuth compression. -
s L

‘- 10  CORNER TURNING N
3 2
;gfl After range compression each pulse is stored on a direct access bulk ::3
fiﬁ storage peripheral - invariably a disc file unit. Such disc file units store the S
%iii data serially line by line. Moreover the data are usually transferred to and from f»é
%i%% the disc file in the form of blocks of typically 1024 16-bit words. These blocks t:;
?i?i are stored at random on the disc wherever there happens to be space. It is evi-~ ?;f
‘i;; dent that if a matrix is stored row by row and it is required to access the p
lz;é colums of the matrix then very many blocks will have to be retrieved from the zé?
‘gég disc because each block will contain few column elements, Indeed if the length 535
;éi% of each row in the matrix exceeds 1024 words (which is invariably the case with Eﬁt
:% ) SAR data) then one block will have to be transferred for each column element, éi;
In order to set up the data for azimuth compression it is necessary to take %:5

samples from each pulse, Z¢ to read along the stored 'columns'. Unless the data yﬁa

are organised correctly this process becomes hopelessly inefficient, and con- Sgt

sequently time consuming. —

;,'&

There are a number of techniques available for reorganising the data, One gﬁﬁ

e

of the simplest and more efficient methods is to transpose the data so that the

"o
* -
I
A RN

stored blocks contain the data in serial column form rather than serial row form.

J2

This process is known as 'corner turning'. This transpose operation can itsel.

be carried out in a number of ways. The technique described by Eklundh25 is ;55
optimum in terms of the number of operations carried out, but its implementation :Sg
depends on the individual computer system and it has to be modified to handle non igi
square matrices, !gﬁ

Corner turning is not strictly necessary, and indeed it is not used for ;3
example in the RAE processor. It is used, however, in bth the Jet Propulsion :;x
Laboratory processor in the USA7 and the processor designed by Macdonald, ;;%
Dettwiler and Associates in Canadag. One alternative strategem is to write special Efj
low level routines to transfer data on and off disc in large blocks, taking advan- 33
tage of the structure of the disc file unit to incorporate some parallel reading and SE:
writing to and from the columns formed by the tracks on the stack of plattens :%}
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which make up a disc file unit, The size of the blocks is limited in various ways
by the host computer. When data are read off the disc for azimuth compression,
then this is done in large (64 kbyte) blocks. The shape of each block, 7Ze the
row and column lengtts is chosen to maximise the number of new image points which
can be processed (in azimuth) using the data taking into account the range migra-
tion, Then all the image points which can be processed using this data, and

which have not previously been processed, are processed,

The organisation of the azimuth data for both frequency and time domain
processors will be discussed further when the effects of range migration are

examined.

It should also be pointed out here that if a large enough random access
memory is available to store all the range compressed data to process a given
image then corner turning is not necessary. At the time of writing such very
large memories are just possible but they are expensive. Matters will, however,
change and in a few years' time it is probable that corner turning will become a
thing of the past, SAR processor designers have this point actively in mind and

future designs will undoubtedly feature large fast random access memories.

11 AZIMUTH COMPRESSION WITH NO RANGE MIGRATION

11.1 Frequency domain versus time domain

As peinted out in section 2.2 azimuth correlation is essentially the same
process as range correlation. It may be performed either in the time domain or
in the frequency domain via the FFT, For a small number of samples correlation
via the time domain is faster than via the FFT due to the inherent speed
advantage of the FFT method being outweighed by the greater time penalty of
memory read/write operations, For larger N , however, the FFT method is much
faster, the cross over point depends on the processor, and for the Floating Point
Systems AP120B for example, lies between 64 and 128 points. Satellite SAR azi-
muth processing is performed on data sets of several thousand samples. Hence,
when there is no range migration there are clear advantages for processing in the
frequency domain. The situation when there is range migration is discussed in

section 14,

11.2 Data selection and packing

Let the velocity of the radar platform be Vp and the prf v . Then the
distance between pulses on the ground is Vp/v metres. If the image has a length
L in the azimuth direction then Lv/Lp pulses are required, ignoring, for the
moment, 'end' effects due to: (a) extra pulses at each end of the record being
required to ensure that all the pulses which cover the image points at the ends

of the azimuth line are included, and (b) to cover end effects in the correlation.
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The required resolution determines the Doppler bandwidth AFA - see equation (15).
AF, 1is easily shown to be approximately (Ze to first order) ZViTA/AaO where

A
T, 1is the synthetic aperture time interval, ag is the range to a chosen point

A

at t =0, Ze broadside on in this case. Hence for a constant AFA (Ze constant
resolution) TA must increase across track with a, - This happens naturally
because the projected width of the antenna footprint increases linearly with a,
across track, see Fig 19. It does mean, however, that in order to maintain
constant azimuth resolution across track the number of samples in the azimuth
data (Ze the number of probes) must be increased as each azimuth line is pro-
cessed. In addition the number of samples in the azimuth chirp replica

exp - i2nf_t' (equation (13)) must also be increased. Also the contingencies

0D
mentioned above to cover the ends of the azimuth line, are also range dependent.

Consider, for the moment, the processing of the whole azimuth spectrum to
obtain a maximum resolution one look image. If the azimuth length of the
required image is L , the prf v and the radar velocity Vp then evidently
the number of pulses required is L\)/Vp . The number of samples in the Doppler
replica against which the signal is correlated is given by the aperture time

= 2 . =
Ty = AFA)\aO/ZVP and the prf, v . That is the number of samples = VT, .

The contingencies should ideally be added to the longer of the two records,
ie if the number of pulses np >’nr , the number of replica samples then the
contingency (= nr/2 for each of the two contingencies (1) and (2) given above,

ze nr), should be added to each end of the np record.

In order to perform the correlation via an FFT the number of samples
should be 2" and one has the option of either packing the record length
with zeros or choosing a record length (including contingency) equal to 2",
In fact both the signal record (azimuth line) and azimuth replica expand as
each azimuth line is processed moving across track in order to maintain

resolution,

If one is prepared to accept a variation in azimuth resolution across
track then constant length records are acceptable. In this case it is only
necessary to pack one record (probably the replica) whereas in the former case
it is necessary to pack both. However variable length records do not constitute

a major problem,
11,3 The replica

The replica is exp - i2wf0tﬁ with tb given by equation (13) except that

in this section it is assumed that a, = 0 , Ze there is no range walk., The

replica is then the same for all points alonz a given azimuth line at constant

range sample number, the only difference being a shift in the time axis. This
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translates into a phase shift in the spectrum and therefore 21l points con-
tribute the same spectrum (scaled by the scattering cross sections) with differ-
ent phase shifts. Thus all points may be correlated by the same replica
spectrum and, on inverse transforming, these phase shifts translate back into
time shifts and each focussed point is returned to its correct sequence in

the image line.

The range history is computed for each azimuth line, but is constant for
that line once computed. It is emphasised that in this section it is assumed
that there is no range migration effect (which is valid for most aircraft SARs
for instance). The replica is computed at time increments equal to the time
between each pulse and the number of samples corresponds to the number of pulses

in the aperture, or sub aperture.

11,4 The correlation process

This is identical to the range compression process described in section 8.
The Doppler signal (the azimuth line) is Fourier transformed via an FFT. The
range history is computed and Fourier transformed, complex conjugated and the two
spectra are multiplied together, multiplied by the sidelobe reduction weights
(section 7), inverse transformed, and the image line stored. The end image
points in the record corresponding to half the replica length are rejected since

they are not properly correlated.

11.5 Multilook processing

So far 'one look' processing with the entire Doppler spectrum has been
assumed. In practice multilook images are usually required and each separate
look is produced by processing a sub-aperture. This can be done by processing
prefiltered data (see section 9) or by selecting a sub-aperture during the

correlation process (as is done in Ref 9 for instance).

When processing prefiltered data the processing proceeds exactly as before
except that the effective prf is now reduced by the data reduction factor (which
equals the number of looks). Thus to process a given number of image points
requires fewer pulses. Naturally, each look is processed from a different set
of prefiltered data so that the total number of pulses processed remains the
same., However overall processing time is shorter because it depends upon the
number of pulses in a non-linear way. The effective prf is reduced by the data
reduction factor M and there are fewer pulses in the aperture, but since the
(sub) aperture is now reduced in width also by a factor M the total number of

pulses in the aperture is reduced by M2

(16 for a 4 look system). Hence if
there are approximately 4000 pulses in the full aperture (for SEASAT) there are

only 250 effective pulses in one quarter aperture (approximately). For an eight

.
"‘
v

."l" R
4 Sl
}‘.‘ ‘r"‘-’ ‘: "

_,
b
M

¥
W

.
M .
¥l

«
[l
E

5
s
Shn

‘e

L}
%'{,
e *»

PR
?,

4

W S e iy
"“!"l ‘:.
ol '.:)J P

I3

”E,'?J
be

;fp
1 “sl

Nk T

'

B
AR b
'l'l';
PR L2

RRY
]
-

v

,.
A




49

look system there would only be 63 or so and time domain correlation would begin
to become a possibility!

Hence in the construction of the replica the range history is computed at
intervals of At/M where At = 1/v and only for those samples within an interval
of T/M where T = full aperture width. Note that each sub-replica is computed
using exactly the same parameters, the sub-replicas only differ in the range of
time over which they are computed. This automatically ensures that the azimuth
image lines computed from each sub-aperture are correctly registered. The process-
ing then proceeds as before. The sub-replica is packed with zeros to make i:
the same length as the azimuth line (in terms of the numbers of samples), Fourier
transformed, multiplied by the sidelobe reduction weights, multiplied by the com-
plex conjugate of the Fourier transform of the azimuth line and then inverse
transformed. This is repeated for the other sub-apertures. The imperfectly
correlated image points a* the beginning and end of the image lines are rejected.
The modulus of each cf .ne complex valued azimuth lines is taken and they are

added incoherently to produce a smoothed image line.

An alternative strategy to prefiltering the data is to generate the looks
during the correlation process. Again, the processing proceeds much as in the
full aperture case. The pulses covering the required azimuth line (all of them)
are selected and a contingency added at each end. They are packed to 2
and Fourier transformed. The spectrum is then sgplit up into a number of
separate contiguous sections. These are the looks. The replicas are constructed
exactly as in the case of the prefiltered data and the correlation is then
performed in the same way. This technique is used in Ref 9: it will be noted
that the sidelobe reduction filter used in Ref 9 was of a different kind from that

suggested here, having a linear phase equal ripple Chebyshev response, see

section 9,2.

11.6 Azimuth correlation point by point

This technique is very slow in comparison with the block processing
inherent in the FFT correlation. It is not limited to a fixed pixel spacing of
Vp/AFA .

The pulses covering the target point are selected and the azimuth phase
replica computed for the image point Zor which the data-are being correlated.
This is a one point correlation and the time for which the replica is computed
corresponds to the time coordinate of the imaged pcint in the image. The replica
samples are complex conjugated and sidelobe weighted and the resulted weighted
samples are each multiplied by the corresponding azimuth signal samples (of

which there arc an equal number). The resulting samples are then summed and
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this corresponds to the correlated image point. The processor then moves on to Eéi
the next point (which is arbitrary) and repeats the process. i}z
12 MAPPING AND INTERPOLATION E.E
The previously explained range and azimuth correlation techniques produce ;ﬁ%

an image in slant range at fixed pixel spacings of c/ZAFR and in azimuth at a ??s
fixed pixel spacing of Vp/AFA where ¢ and V_ are the velocities of light ?2%
and the radar platform, and AFR, AF, are the video (chirp) bandwidth and i?i
Doppler (sub-aperture) bandwidth., See equation (15) and subsequent comments. Eiﬁi
There are two difficulties here. First, image users invariably require 5;3

the image to be an orthcgraphic map projection and not mapped into slant range. Eig
Second, arbitrary pixel spacing is desirable not the least because the image ggg
detection process (Ze finding the modulus) increases the effective bandwidth ;ai
when the data is converted from complex form to real form. It is therefore 32£
necessary, in principle, to increase the image sampling rate. |
R

The explicit way to do this is simply to interpolate between image sample 'ix%
points using, for example, cubic splines (see Ref 26 p,.349) or by convolving é%?
with an interpolating function which, in the case of a SAR image, would be the gg;
point spread function. In fact it is far better to interpolate an image before F!F
detection, 7¢ by interpolating the complex valued image. At least, then, the g&i
image is ..rrectly sampled before the interpolation begins! There are several :ﬁbi
possibilities and one of the most practical is to weight the point spread égg
function of the system by several samples on either side of the point at which EE%
the image is required to be interpolated, add the point spread functions and g:ﬁ
evaluate. This is just a limited convolution over a few samples. sgf

"5
o

]
R

One technique which is in use at RAE in the range direction is that
explained in section 5.5.

kK

5
+

After range compression an inverse FFT is performed

hoYy

of k times the initial length. This automatically generates k - | inter- gf?i
mediate samples between the original samples., The subsequent data selection Bjis
then chooses range samples nearest to the desired ones. This technique is a e
very fast way of performing interpolation but it requires a lot more memory. It ',\i
is a powerful technique when used in conjunction with data which has range walk 5252
because these intermediate samples reduce ghosting (see section 15) and in :Esg
addition the range walk implicitly interpolates the data (see section 13), ::;g
Most interpolation methods give trouble at the ends of a data set, ii:;

In principle given an infinite data set sampled at equal intervals the ?ﬁ;i
original bandlimited fraction can be completely reconstructed from its 3;;;
samples (see Ref 16, p 141), simply by convolving the data with a 'sin x/x' E;nﬁ
o

.
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function, In practice one has a finite data set. It can be shown that
convolving such a finite data set with a 'sin x/x' function is equivalent to
fitting a polynomial of degree n-1 to the n samples. (Actually this is
Lagrangian interpolation, see Ref 26 p.235). The difficulty is that such poly-
nomials 'wiggle' and although the interpolation may be smooth and accurate in the
middle of the data set, at the edges it could be a long way out. Fortunately the
ends of the data set are not properly correlated anyway due to end effects on the
circular convolution and in practice, bearing 1n mind that the end points of the
correlated data are discarded anyway, this method seems to work very well. It
will be recognised that inverse Fourier transforming with a larger interval than
the forward transform effectively convolves with a 'sin x/x' function and evaluates
in between the original samples. The situation is also helped by sidelobe
weighting applied to range compression which keeps down the sidelobes in the

point spread function and hence the wiggles in the interpolating polynomial,

In the azimuth direction one can also interpolate implicitly by performing

“the-azimuth correlation point by point.
—
\\
13 RANGE MIGRATION —

The Doppler effect is a result of the changing phase between the radar and

the target as the radar moves past. The phase ¢(t) 1is given by

p(t) = %\1'- (ao +art+ a2t2 + ) (115)

ags 2 and a, are defined after equation (10).

The changing phase is a result of the change in slant range between
radar and target. If the change in range is smaller than approximately one half
of the range resolution length over the whole synthetic aperture then the samples
used in the azimuth compression process (the azimuth line) can be taken from the
same sample number (or range gate) from each pulse. The factor of one half is,

introduced by the double path length.

On the other hand if the change in slant range is greater than one half
resolution cell then the azimuth samples used in azimuth compression have to be
taken from different range gates in each pulse. This effect is known as range
migration and has already been discussed from a different point of view in
section 2,3, Evidently the lccus of a point through the range gates (sample
space) is very nearly parabolic since the Doppler shift is very nearly a linear
function of time with a constant offset., The shape of the parabola is given by
equation (115) and contains a linear comnonent (the a, term) and a quadratic

component (the a, term). In this Report the linear compoment is called range
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walk and the quadratic component (the a, term) is called range curvature,
4

Together they constitute range migration,

The behaviour of the a, and a, components were investigated in sections
4,3 and 4.4, Equation (66) shows that the range walk component is caused by
orbit eccentricity, squint and Earth rotation. The rotation term is dependent on
the latitude because the Earth's surface velocity is greatest at the equator and
smallest at the 'top' of the orbit (nearest the poles) because of the much smaller
projected Earth radius. 1In addition the included angle between the swath velocity
vector and the Earth's surface velocity varies, being equal to the orbit inclina-
tion angle at the equator (if the squint is zero) and zero nearest the poles.
The range walk is hence a function of latitude and is not comstant in the along
track direction, although it can be considered so for a small enough interval.
The range walk is also a function of aq and of eo , 1e across track, since

the grazing angle varies and hence the resolved component of velocity.

The quadratic component is also a function of latitude although a much

weaker function than the linear component,

Hence in the case of an orbital SAR the range migration consists of two
components (1) a linear component (range walk), and (2) a quadratic component
(range curvature). The first is a result of the rotating Earth,non circular
orbit and squint and the second is primarily a result of the changing geometry.
Note that curvature could also be caused by higher order terms ags 3y etc.
These have been ignored here; the cubic curvature term a; was investigated in

section 4.4 and for the purposes of range migration correction it is negligible.

The situation is made clearer by Fig 20 (which has been adapted from

Ref 8 Fig 1). In Fig 8 Aw 1is the total range walk and Ac 1is the range
curvature.

The range to a target, is given by:

2
a(t)=a0+at+at . (116)

For the example discussed in sections 4.3 and 4.4 a 65.56 m/s and

a, = 28,09 m/sz. For SEASAT the distance between range gates (samples) is

about 7.89 m, Hence over an interval of 2 s, corresponding to the maximum
synthetic aperture, the total linear range walk Aw 1is about 65,66 x 2 x 2/7,89
range samples = 33,3, The extra factor of 2 is, again, due to the double path
length., In the case of the curvature we take half of the interval or | s and
this gives Ac = 7.1 range gates, Note that the range walk can be much greater

nearer the equator.
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gl The range migration problem is the dominant problem in the design of digi- E{:g
,gf tal SAR processors for satellite data; and if it can be ignored it very greatly :E:?
58 simplifies the processor design, For the future it may be that new technology :i:&
i’* will permit different satellite systems in which the effect can be ignored, if so E’ﬁf
f%i it will be possible to much simplify the processor design. Egg
:j‘f% 14 AZIMUTH CORRELATION WITH RANGE MIGRATION -,:
St

Azimuth correlation with range migration can either be performed in the

R
B ¢

frequency domain or in the time domain, The frequency domain approach is

4

examined first as this is the most usual technique. The method described in this

e AT

PR

section is that used in the JPL processor, see Refs 7 and 38, it is also employed

B~
i

in the MDA SEASAT processor, see Ref 9,

«

s

% 14.1 Azimuth correlation in the frequency domain £l
X O
% The range migration curve shown in Fig 20 is shaped like a banana and is iai
e therefore commonly known at RAE as the data 'banana', That term, being short and ?{a
i{ succinct, is used here, The box of data containing the banana, that is the rec- R
7; tangular box of data within which the banana can be fitted is called the 'banana }‘E§
Q: box'. Qfﬁ
Hrt i
The first essential idea behind the simultaneous processing of a number of hﬁg

5
8-

%%g azimuth image points via the FFT is that the banana omly slowly varies along the ;;ﬁ
?;g azimuth direction. That is a number of consecutive targets all having the same ;ﬁ;
%%ﬁ a, have nearly the same banana. Obviously the bananas are shifted in azimuth 5:3
sy relative to each other but the shape of each banana is approximately the same. wld

% e

This is sho'm in Fig 21, s

P
v, .,
N R

The second essential idea is that there is a one to one correspondence

between the azimuth coordinate (in time) and the corresponding Doppler frequency

‘g"l ('(‘.l"' :
?', ",". KA
PRI

of a target. This is obvious from equations (8) and (9). Therefore if a number

%5

f~4 of bananas are Fourier transformed, the same points in each banana map onto the -3?5
;2§§ same point in Doppler frequency/range space, This is shown in Fig 22, One can kﬁ::
B3t . . oes
R then define a spectrum banana and a corresponding spectrum banana box. Q{}
L ooz
'*;f Hence if one has a box of data containing many bananas corresponding to réé
:§§ many targets all with the same a, » and these bananas are Fourier transformed 555
}iﬁ the spectra map on top of each other with relative phases corresponding to their ifé

relative displacements, The spectrum banana is then formed. Evidently other

sl
.-’
A

H

data bananas corresponding to different values of ay are Fourier transformed in R
. L

the same way and mapped cne to one into the spectrum box. : -
\"\:

In practice one does not wish to Fourier transform along a banana but ag

. . .. . . RS

across an azimuth line at constant range, If this is done it will be seen from o
the above arguments that the spectrum bananas are automrtically created in the ¢§$
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spectrum/range space due to the one to one correspondence between offset along

the barana, range and Doppler frequency.

It is straightforward to identify a spectrum banana corresponding to a
group of data bananas because the spectrum banana is simply a data banana

stretched out in the azimuth direction to fit the spectrum width,

Tnis elegant technique will only work if all the data bananas have the same
shape and herein lies a difficulty. This requirement sets the maximum azimuth
distance which can be correlated simultaneously, The data are thus divided up
into sections. EFEach cection has a set of different bananas with different range
walk gradient. The sections must overlap in order to ensure that all target

points are properly correlated {(eud effects).

Once the box of data has been selected and Fourier transformed line by line
the spectrum bananas are obtained by piecewise approximation. A section of
specirum is taken from the appropriate part of each line. Each section of
spectrum is then ccherently assembied to form a complete spectrum banana - see
Fig 21. The appropriate section of spectrum frcm each line is selected by taking
that part of each line which has within one half rang: gate of the required
spectrum banana, Note that all of this is possible because of the one to one

correspondences noted above and the linear nature of the Fourier transform.

After the spectrum has been assembled it is operated on in exactly the same
way as in section 11, to which the reader is now referved. Briefly, the 'looks’'
are generated, unless the data is prefiltered, and the replica spectrum is generated
via the range history and Fourier transfcrmed, conjugated he spectra multiplied
and inverse transformed. The resulting image line is, of ,urse, mapped on to

the image along a stratght line atL tle corresponding value of ag .

14.2 Pre-skewing

It is evident that the number of spectrum segments required is largely
dependent on the range walk, An aperture may have a walk of several tens of
range gates and there will then be several tens ol sozccrum segments. It is
desirable to decrease the number of segments tc improve the =need nf the

processing., One way to do this 1s to pre-skew the data by rearranging the rang.

gates relative to each other - see Fig 24. 'The rate of displacement of the range
gates is chosen to be equal to the range walk. It is then only necessary to

produce a segmented approximation to the range curvature instead of both the walk

and the curv.ture. This greatly reduces the number of segments.

This technique, however, has a severe disadvantage. The range walk is

latitude dependent as pointed out in section 13 and the data must therefore be
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divided into sections as in section 14.1, Unfortunately there are difficulties
in fitting the sections together with the pre-—skewing method because of the
different range walk gradient from section to section., There are small gaps
between sections or alternatively non registering overlaps and extra manipula-

tion is required to make the sections fit together.

This problem does not arise if the range migration correction is done

»
'1‘ -

entirely in the frequency domain - see section 14.1. Tz
14,3 Azimuth correlation in the time domain i;f
This is the technique used in the RAE processorlo. It is the most straight- iﬁi
forward way to correlate data which has severe range migration. Each image point ﬁiﬁ
is correlated separately. The azimuth data is selected for the image point of E;E
interest by computing the data banana and then selecting each range sample lying 1?5
within a specified fraction of a range gate of the required banana. If the YES
range compressed data is not interpolated this fraction is one half, see Fig 25. !Eﬂ
Thus in contrast to the frequency domain correlation, it is the data banana ;t:
which is piecewise approximated. When the data banana has been assembled the F:E
range history of the point is computed at the time corresponding to the relevant ;ﬁ;
time coordinate in the image. The banana samples and the complex conjugate of EEE
the replica samples are then multiplied together and this gives the single point iﬁ?
correlation for this image point. The process is repeated for the next image EEE
point with a new banana and a new replica. The next image point can be spaced E:i

!

completely arbitrarily from the preceding point both in azimuth and range. The

-
.
[

.
atalt

. .

range migration effect helps to interpolate the data implicitly.

Y r e
Ry Ay Ay A
l‘nl.. <

g
Lo

It will be seen that this tachnique is very precise and involves no

fundamental approximation. There is the piecewise approximation of the data

]

banana but the effects of this can be mitigated by interpolating the range

o

samples (using the Fourier transform interpolating technique described in ﬁ}j
section 5.5). :%:;
Time domain correlation is slow., However, there are considerable advan— éii

tages. First, the sample spacing of the image is completely arbitrary. One :Z;
result of this is that the image can be mapped in any way without interpolation. EQ?
Second, the image can be rotated, the x and y axes.of the image dc not ;%j
necessarily have to align with the range and azimuth directions. Third, there E;;
are no awkward problems involved in fitting sections together, Above all S:?
tbe image is precisely correlated. All these advantages together produce images i;i
of very high quality, ::i:
N
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15 GHOST IMAGES

vhosts are faint replicas of the main image displaced in the azimuth
direction and appear on either side of the main image. Fig 26 shows the image
of a point target (it is the same image as Fig 1, but without ghost suppression)

and its attendant ghosts. There are usually many ghosts visible and they are

spaced out from the main image at regular intervals, The position of the ghosts

depends upon the sub-aperture position and Fig 26 shows three images from thvee
adjacent sub—apertures added. The ghosts then appear in sets of three, Fig 26
only shows clearly the fundamental ghosts, but in fact there are other groups of
three spaced out further from the central point which are not easily visible.,
These ghost artifacts are produced during the azimuth correlation process and
are caused by the piecewise approximation of the spectrum banana in frequency
domain processing or the piecewise approximation of the data banana in the time
domain, see section 14 for an explanation of these approximations. Ghosts are

produced by both frequency domain and time domain processors.

The artifact is briefly analysed in the section by considering the image
of a single point on an absorbing background. Fig 27 shows the effect of the
piecewise approximation in the time domain, and Fig 28 shows the corresponding
effect on the frequency domain. In both cases the data cycles over the top of
the range point spread function and hence the data assembled for azimuth com-
pression is amplitude modulated, There is also a phase modulation, but this will
be ignored here. The peak to peak ripple amplitude for a 'sin x/x' point spread
function in the range direction and range sample spacing equal to the distance
between the zeroes of the point spread fuaction (=c/2AFR) is 0.363 of the ampli-
tude of the psf, Ze -8.8 dB. The fundamental frequency of the modulation is
given by the rate at which the data cycles over the point spread function. The
analysis which follows is applicable to a time domain processor, it can, however,

be easily modified to make it apply to the frequency domain.
by

The range is given

2 5
a(t) ag + alt + azt . (117)

The distance between range samples is c/ZAFR and so the frequency is given by

2AFR

- [ao *ats aztz] . (118)

The amplitude modulation produces coherent sidebands in the time domain data.
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The Doppler information is contained in the sidebands and these are also corre-
lated but being shifted in frequency from the main Doppler band they are
shifted in the azimuth direction in the image. These coherent sidebands are,
then, the source of the ghosts in the image. Unfortunately in order to give

a satisfactory analysis of the ghosts it is necessary to include second-order
effects to explain the observed shift of the ghost positions with sub-aperture
position., Such an analysis can be performed but is too long to present here

(see Ref 10 for additional information).

The most elegant way to reduce the effect of ghosting is to interpolate
the range compressed data. This reduces the period of cycling on the piecewise
approximation, Ze increases the frequency. As a result the cycling occurs
over a smaller segment of the point spread function and this greatly reduces the
amplitude of the ripple. The type of interpolation referred to here is simply
the generation of intermediate samples between the original samples; this is much
faster than other types of interpolation and in the RAE processor the intermediate
samples are generated via the FFT technique described in section 5,5 With three
intermediate points between the original samples the ghosts are reduced to a

level of about -35 dB, see Fig 1.
16 CONCLUSION

In this Report an attempt has been made to set down the theory of digital
SAR processiug for orbital SAR., However, the reader should note that many topics
have not been included. For example there are several other azimuth compression
techniques. In this connection there is a techanique which at RAE is called
'coherent subimaging'. This is a hybrid time cdomain-frequency domain technique
in which a large number of prefilters, say 16 or 32, select Doppler bands and
an image is generated from each set of data. The resulting images are not
detected but are added coherently to produce an image which has full resolution,
The technique has several variations, the point being that because the data is
prefiltered it can be subsampled and all the benefits of data reduction obtained.
Because there are now far fewer pulses in each sub-aperture the time domain
approach becomes efficient - more efficient than frequency domain processing -

see the comments in section 11 on multilock processing.

Autofocussing techniques have not been addressed, nor have the effects of
partial coherence. Another problem which has not been addressed is the problem

of dynamic range in SAR processing, that is, how many bits does one need at

various stages of the processing to represent the data?
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Many of these topics are under active investigation at RAE and this list
will serve to demonstrate that the study of methods for digital SAR processing is
a problem that is certainly nct completely solved; much work is still needed
in many areas, for example on achieving higher speed processing, on selection

of optimum radar parameters and on special purpose processing to enhance
particular image features.
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