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"}
This study was part of an ongoing effort at the Air

P ]
%

Force Institute of Technology to design a tracking algorithm
) for use with the Air Force Weapons Laboratory“§ high energy
§ laser weapon system. The purpose of this zgﬁé;-was to take
previously developed tracker algorithms and incorporate a

multiple model adaptive filter algorithm into the existing

s

structure. This approach was intended to provide adaptive

expansion of the effective tracker field of view, which in

turn would increase the tracker's ability to maintain lock

on highly dynamic, close range targets. (’ —
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sor, Dr. Peter S. Maybeck, for his guidance, motivation, and

‘I’ above all, patience. His willingness to expend that extra
effort to keep this research on track was invaluable to the
completion of this study.
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Abstract

Previous studies at the Air Force Institute of Tech-
nology have developed two tracker algorithms which provide
significant improvements in tracker performance against
close-range, highly-dynamic, airborne targets, over a cur-
rently used direct correlation method. Digital signal pro-
cessing techniques are used to derive a target shape func-
tion from available sensor information. 1In one formulation,
this shape function is used in the measurement update por-
tion of an extended Kalman filter to determine the target
position offsets from the center of the sensor field of
view. In the other tracker, the offsets are derived and
incorporated into the tracking algorithm by using the shape
function as a template for an enhanced correlator/linear
Kalman filter structure. Combining these offsets with any a
priori target information allows the tracker to produce
better target position estimates than achievable from a
conventional correlator. This research investigates using a
multiple model approach for the adaptive expansion of the
effective tracker field of view as a means of increasing the
dynamic range of the tracker. Two independent Kalman fil-
ters, each receiving measurement information from a shared
sensor, generate target position estimates. The multiple
models are created by tuning the respective filters for
"best" performance at differing conditions of exhibited
target behavior and differing the physical size of their

respective fields of view. Adaptive expansion of the

xvi
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(Wi tracker field of view is obtained by summing the weighted

g&g estimates of the two filters.
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ENHANCED TRACKING OF AIRBORNE TARGETS USING
MULTIPLE MODEL FILTERING TECHNIQUES FOR
ADAPTIVE FIELD OF VIEW EXPANSION

I. Introduction

Even though lasers were first developed in the late
19508, they have generally been considered as part of future
technology by the public at large. Recent advances in laser
technology have allowed their use in everyday life to in-
crease steadily. Today, lasers are widely used in surgery,
scientific laboratories, industry, and military applica-
tions, because of their ability to deliver almost instanta-
neously, finely focused, concentrated beams of energy onto a
particular spot.

It is these charactristics that make the laser very
attractive as a possible weapon system. Because of its
almost instantaneous transmission of energy from the weapon
to the target, it eliminates the need for computing the lead
angle necessary for a ballistic projectile to intercept the
target. However, a number of factors will affect a laser's
effectiveness against any target. Some of these factors are
associated with the laser itself, such as the strength or
power of the heam. Others are related to the atmosphere, or
the medium through which the beam must pass on its way to
the target. These include diffusion, or spreading of the
beam, as well as any other condition which alters or dis-

torts the beam in any way. Finally, there is the target

itself. 1Its composition and sensitivity to the energy de-
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..............

posited by the laser on the target will affect the laser's

,4 s ability to neutralize it. These factors will determine the
% HE? necessary power, concentration, and duration of the laser's
g: radiation of a particular spot on the target needed to
~ disable it effectively. Add to all the above factors any

evasive maneuvers performed by the target, and the develop-

ment of a ground-based, anti-aircraft/anti-missile laser

Gy !

weapon system becomes a task replete with obstacles.

RERRARES

Two significant obstacles to the development of an
effective laser weapon system are precision pointing of the

laser and accurate tracking of the target. It is not suffi-

cient simply to "paint®” the entire surface of the target

with laser energy, nor is it currently possible to have a

¢ F g wm

e X

laser powerful enough to achieve the instantaneous, spec-

X

a tacular destruction of the target portrayed in fictional

depictions of future warfare. As stated above, practical

limitations of the laser, the distortion of the beam as it

s
a

passes through the atmosphere, and the nature of the target

itself, all make it necessary for the laser energy to be

- ui‘.'. .

g

concentrated on a specific spot on the target for some

= finite amount of time before the target is disabled.

,3 1.1 Background

fj The Air Force Weapons Laboratory at Kirtland AFB, New

f} Mexico, is currently testing a high energy laser weapon
L)

system against airborne targets. These targets must be

>

A

tracked despite the presence of several factors which can

R cause relative motion between the emitted beam and the

Y,

’
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- i .
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:ég target. These include: target motion, mirror vibration, !
i%gﬁ - atmospheric jitter, and sensor measurement errors (15:2).

ﬂ ':::\ Target measurements are supplied by a Forward Looking

;E;g Infra-Red sensor (FLIR). This sensor was chosen because it E
5:? allows the tracker to gather target information passively,

;«33 thereby preventing the target from detecting that he is %
:?7‘ being tracked. ?
§§§ The current research effort at the Weapons Laboratory

33\ uses a correlation tracker to process sensor information.

s'l At any one time, the tracker takes predetermined or pre-

%'i viously gathered FLIR data and compares it with new informa-

%TJ tion gathered at the current time. Cross correlation be-

;ii tween these two sets of data is used to generate the rela-

?éf tive position offsets from one frame of data to the next.

E% o, !

These offsets are used to control gimbals which position the

(¥

‘Ei} FLIR so that the target is centered within the sensor's
,:;1 field of view. Since the laser has been coupled to the FLIR
N through a shared aperture, this centering of the target
gf' within the FLIR's field of view also points the laser toward

‘!\"',s'._!

the target.

By - & - %

Though this correlation technique can be applied to a

f

P A

wide variety of targets because it relies only upon measured

target data, it is highly susceptible to noise and takes no

Tl
S eSS
i

f‘: advantage of any a priori knowledge about the target. 1In
§&§ most practical applications, however, information about the
:Zgi target can be supplied or at least estimated. If this
¢lﬂ

information could be incorporated into the tracking algo-
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rithm, performance should be improved. Furthermore, the

effects of atmospheric disturbances on radiated waveforms is
well-known and can be described statistically. This will
allow separation of true target motion from apparent motion
caused by the distortion of the infrared wave while it
travels from the target to the sensor. This separation is
important since the laser beam will not undergo the same
distortion as it travels toward the target. Finally, sta-
tistical information about the FLIR measurement noise and
background noise is available and can be used to improve the
estimate of the target's position further.

In recent years, considerable effort has been spent at
the Air Force Institute of Technology, to demonstrate the
feasibility and accuracy of a tracker for this application
that uses an extended Kalman filter. This algorithm has
been tested in simulations against both long range targets
(12) and short range air-to-air missile targets
(2,3,5,12,13,15,17). This algorithm results in a signifi-
cant improvement in tracking capability over the currently
used correlation tracker.

Specifically, the study by Mercier (12) demonstrated
the feasibility of using the extended Kalman filter in an
algorithm against long range targets whose FLIR image plane
intensity shape function could be modelled as an Airy disc
(well approximated as a bivariate Gaussian) pattern due to a
point source. Also due to these long ranges, the exhibited

target dynamics would be very benign.
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The next study, by Harnly and Jensen (3), concluded

:\‘ that while estimates of target position and atmospheric
E‘ %Qﬁ‘ jitter were sufficient to track very benign target trajec-
;::5' tories, additional estimates of target velocities and accel-
-"J erations were needed to enable tracking of more maneuverable
j targets. Target intensity images were no longer portrayed
*':J as having circular equal intensity contours, but were now
.ES described as being elliptical. Additional modifications
E ' were made to the algorithm to allow adaptive estimation of
\;_ the true sizes and shapes of ellipses.
: Studies by Worsley (17) and Flynn (2) demonstrated that
;‘ a constant turn rate target acceleration model was a more
:. descriptive model of maneuvering airborne targets than
h: either a Brownian motion or a first order Gauss-Markov
N? @ target acceleration model. This model consistently produced
:.-4‘ : less biased estimates than those produced by filters using
%‘ the other acceleration models. However, the improvements in
X performance were not significant enough relative to the
E; additional computational burden imposed by using the con-~
:" stant turn rate model, to warrant its use in all applica-~
' tions. Flynn's study (2) utilized the multiple model filter
S%‘; algorithm which was used in this research. The primary
:2’ purpose of the research was to investigate if using a bank
of independent Kalman filiters (each tuned for optimum per-
SE," formance against a different target dynamics condition) and
'-:..* optimally combining the estimates produced by each filter, |
A
Ton . could produce a better estimate of target position than a
o
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non-adaptive filter could. Combination of the state esti-
mates is accomplished by weighting the estimates of each
filter with a weighting factor based ¢ii the "correctness" of
each filter dynamics model relative to true target dynamics.
The major problem of Flynn's study was that, because of the
similarity of the residuals from all the filters, the algo-
rithm was coﬁsistently unable to identify the filter with
the "best" model.

Studies by Singletery (15) and Rogers (14) implemented
algorithms which made no claims as to prior knowledge about
the size or shape of the target hot-spots. Digital signal
processing techniques were used to take FLIR data and com-
pute an estimated target shape. 1In addition, Rogers' thesis
demonstrated the feasibility of this technique against mul-
tiple hot-spot targets performing very benign trajectories.
Rogers also developed an alternative tracker form, one which
used the estimated target shape as a template against which
later measurement data could be compared. This comparison
is performed by an enhanced correlation algorithm whose
output is provided as "measurements"™ to a linear Kalman
filter. These "measurements" are the offset distances from
center of the template to the point of maximum correlation
in terms of FLIR image plane coordinates. A linear Kalman
filter, as opposed to the non-linear extended Kalman filter,

could be used because the offset distances are linear func-

tions of the chosen filter states.
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Because both techniques demonstrated similar capability

against multiple hot-spot targets, follow-on studies by
Kozemchak (5) and Millner (13) further developed these con-
figurations by testing them against more realistic target
trajectories. These trajectories included benign constant
velocity trajectories and more dynamic constant-g, pull-up
manuevers. The targets were also allowed to perform rolling
maneuvers to test the trackers against multiple hot-spot
targets whose target intensity functions in the FLIR image
plane were changing constantly.

While the trackers in both of the above studies per-
formed well against the simulated target maneuvers, both
trackers had difficulty maintaining lock on targets per-
forming pull-up maneuvers in excess of 5 g's. It is for
this reason that investigation of additional techniques for

processing target information was performed.

1.2 Problem

The purpose of this research was to take the tracker
formulations developed by Kozemchak (5) and Millner (13) and
determine the feasibility of implementing a multiple model
filter structure as a means of adaptively adjusting the
aperture of the tracker field of view to permit the tracking
of targets performing highly dynamic maneuvers. As with
Flynn's thesis (2), the different filters were tuned to
achieve optimal performance at different degrees of target

dynamics.
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The data processing algorithms for the tracker confic
rations will now be described. The first model is t
extended Kalman filter tracker used by Kozemchak (5). 1T
second model is the linear Kalman filter/correlator track
used by Millner (13).

1.2.1 Extended Kalman Filter Tracker. Figure 1I
illustrates the algorithm for the extended Kalman filt
tracker implemented by Kozemchak (5). In this configurati
the center of the FLIR field of view is positioned at t
filter predicted target centroid location due to targ
dynamics over the most recent sample period. Each frame
FLIR data is arranged into a 64-dimensional measureme
vector E(ti)' which is the input to the extended Kaln
filter in the lower path of the figure. The extended Kaln
filter uses the nonlinear and the linearized intensity fur
tions (g[g(ti'),ti] and,g[g(ti'),ti] respectively) to cc
pute an updated estimate of the state variables, g(ti*

from the measurement vector via the equation:

R(t31T) = R(t47) + K(tj) [z(tj) = h[R(t;7),t4)] (1-
where R(tl ) = state estimate vector after measuremer
incorporation at time tj
R(tl ) = state estimate vector propagated from

previous measurement update to time t;
K(tj) = Kalman filter gain
z(ti) = measurement vector of average intensit

over individual picture elements (pixe
of the FLIR array; the assumed
measurement model is:

z(tj) = hix(t;),t3] + v(ty)

-Iw‘\
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h(R(t;7),ty] intensity shape function for measurements
at time t; as a function of the state

estimate

HIR(t;7),t;] = dh/dx | :=y; used in generation of
* * the Kalm%&t%iﬁter gain K(t;)

v(t;j) = measurement corruption noise vector
which includes FLIR measurement and
background noises

3} The Kalman filter will then propagate this updated state
ﬂf{ estimate to the next sample time, tj,1s based on its inter-

nal target dynamics model. This information is passed to

Sﬁﬁ the controller which positions the FLIR so that the center
: of its field of view is once again pointing to the predicted
gis target position. For this research it was assumed that the
égﬁ controller was capable of pointing to the filter indicated
; position in the time available between samples (1/30 sec-
' " @ ond) .
E;E ’ Returning to the upper path of Figure I-1, a Fourier
Sg: Transform is taken of the FLIR measurement data so that
a subsequent operations can be performed in the frequency
$Q§ domain. The motivation for carrying out those calculations
¥S$ in the frequency domain will be covered in a later chapter.
l;é Unlike the z(t;) measurement vector formulated for the Kal-
'Es; man filter, the data is arranged in a 24 x 24 measurement
:Eg array as opposed to an 8 x 8 array. This larger array was
'*; processed to reduce edge effects, aliasing, and leakage
Eﬁi conditions involved when transforming finite sequences
E&E (15:18). In most engineering applications, the larger array
-

is created by padding the original data with zeros. This is
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a valid procedure as long as the image intensity is essen-
|

tially zero at the edge of the 8 x 8 field of view. How-

RILIADNO - 4 5

ls ever, if this is not the case, padding with zeros will

e g

AN '- ‘; '- ‘-,‘o -

introduce artificial edge effects. 1In such cases, it is
more appropriate to pad with data. Such padding is possible

in this application because the field of view encompasses

only a small portion of the entire FLIR measurement.

I

Generation of the nonlinear and linearized intensity
functions requires interframe filtering to reduce the

effects of noise. In order to perform this filtering, the

target intensity profile must first be centered so that the

" o

noise can be averaged out. This centering of the target

image is accomplished by multiplying the Fourier transform

s s )JJ."

of the measurement data by a negating phase shift in the

o

‘l’ frequency domain. This negating phase shift is the complex
71 ' conjugate of the linear phase shift corresponding to the
(estimated) target image offset in the spatial domain. The
causes of this offset are atmospheric jitter and imperfect

propagation of the target dynamic states. This information

[t b ey

is available from the updated state estimates of the
- extended Kalman filter.

Exponential smoothing is then performed on the centered
data. Because the noise is expected to be changing far more

rapidly than the target intensity pattern from one sample

- 1 A S Ty

time to the next, this process will attenuate the noise by

am
L A ' 4

averaging the centered data of successive frames of data.

a

The underlying target intensity function generated is used
oW

‘8-
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as the reference image, h[®(t;),t;]. The smoothed data is

.
‘E . then differentiated with respect to a change in the Kalman
;: ?SE filter states by employing the derivative property of the
E_ Fourier Transform to provide the frequency domain represen-
'% tation of the linearized intensity function, H.
.; Because the nonlinear and linearized intensity func-
'; tions will be used to update the Kalman filter estimates
¢ after the next measurement, both functions are evaluated at
the state expected at the next sample time. This informa-
': tion is made available by propagating the updated Kalman
EE filter states from the current measurement time to the next
5 measurement time. Since it is assumed that the FLIR is
ii centered on the position predicted due to estimated target
;} dynamics, the intensity patterns are evaluated at the loca-
f ‘[) tion of the predicted atmospheric states. Again, the shift
3 theorem of the Fourier Transform is employed to perform the
A? phase shift in the frequency domain. The inverse Fourier
N transform is then performed and h[f(t;,,7),tj,;] and
; H[2(tj,1 +tj+1] are ready for the extended Kalman filter to
’S use when processing the next frame of data.
'f 1.2.2 Linear Kalman Filter/Correlator Tracker. The
E Linear Kalman Filter/Correlator Tracker was the tracker
:; initially developed by Rogers (14) and later extended and
: implemented by Millner (13). As can be seen in Figure I-2,
i it is very simiiar in structure to the extended Kalman |
ﬁ filter tracker described in Section 1.2.1. The derivation
01
% of the target reference image is accomplished as before.
A
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f,:j The difference is that it is now used as the template of a
:éﬁ oo, correlator against which new data received from the sensor
f%“ 3§§ will be compared.
T?i Correlation is performed in the frequency domain and
gﬁj the outputs of the correlator are the position offsets of
43’ the target centroid from the center of the reference image.
@ . Because these offsets are linear functions of the chosen
‘igi filter states, a linear Kalman filter can be used in place
25
N of the extended Kalman filter operating on raw FLIR data, as
“E: in the previous section. This results in significant reduc-
:% tion in the number of operations required to process meas-
L2 urement information. 1In addition, because the "measure-
fé% ments®” to the Kalman filter are only the position offsets,
fg? the measurement vector is now only a 2-dimensional vector.
e QE; Filter state propagation from one sample time to the
“53 next is accomplished és before, but now measurement updates
? for the linear Kalman filter are done using:
N
-‘\\: R(t;Y) = R(ty7) + K(ty) [2(ty) - Hx(t;7)] (1-2)
,;ﬁ: where R(t;*) = state estimate vector after measurement
:§g incorporation at time tj
(t;7) = state estimate vector propagated from
AN previous measurement update to time tj
?2§ K(t;) = Kalman filter gain
1$: z(ty) = measurement vector of target centroid
o offsets from the center of the FLIR
ey field of view, as generated by the
:%:. correlator of Figure I-2
LSS

linear combination of the states which
contribute to the respective measurements

S
o
]
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Pointing of the sensor is accomplished as before under
the assumption that the controller is capable of pointing to
the filter indicated position within one sample time is as

described in the previous section.

1.3 Overview

Chapters II, III, and IV describe in detail the mathe-
matical models used in the computer simulation. More spe-
cifically, Chapter II presents the truth model, which was
the ehvironment from which measurements were taken. Chapter
I11 describes the Kalman filters, extended and linear, that
were used in the respective tracker configurations. Chapter
IV discusses the multiple model filter algorithm; why it was
chosen and how it was incorporated into the existing tracker
structures.

Chapter V presents a performance analysis of the both
tracker types, with the multiple model filter algorithm in
place, against a variety of target trajectories. Chapter VI
presents the conclusions and recommendations drawn from this

research.




2 II. Truth Model

'é? . 2.1 Introduction
éﬁﬁ tﬁf The truth model is the representation of the real
}ﬁ_. world implemented by the researcher. It may not be the most
;*§ complete model available to him, but it should embody all
\% important aspects of the problem and reproduce the real
e world environment with good fidelity. 1In this study, the
e,
‘fi following processes were included in the truth model: at-
';? mospheric jitter, target dynamics and shape effects, and
lff background and FLIR noises. These processes are of impor-
ié% tance to the tracking problem because they describe the
j‘ motion of the true target in inertial space, and the distor-
ﬁé tion of the target intensity function as it passes through
‘;S the atmosphere, as well as any background and FLIR measure-
N GE, ment noises which combine to produce the observed target
NS image.
AN , . . .
f: This chapter describes the truth model used in this
“‘ study. It includes discussions on the model for atmospheric
‘Q jitter, the target trajectories used, and the development of
_g} the target measurement model.
;:: 2.2 Target Centroid Offset Model
Eéi During target tracking, there are a number of effects
&3 which can create apparent motion between the target and the
k? sensor. These include: target dynamics, sensor boresight
i& error, FLIR system vibrations, and atmospheric jitter. For
?3 this study of a ground-based laser system, it was assumed
;" é§§ that dominant modes of apparent target motion are those
Y
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associated with target dynamics and atmospheric distur-
bances. Therefore, a continuous-~time target model which
incorporates both target dynamics and atmospheric distur-
bances describes the apparent target motion.

The FLIR measurements are scalar quantities that repre-
sent the average intensity of the received image over each
picture element (pixel). The tracking window used in this
research consisted of an 8 x 8 array of pixels in the FLIR
image plane. Although the measurements are passed to the
extended Kalman filter as a 64-dimensional vector, target
dynamics and atmospheric disturbances are described using an
X~y coordinate frame in the two-dimensional FLIR image plane
in units of pixels (where each pixel is 20 urads by 20
Mprads). Hence the x- and y- coordinates of the apparent

target centroid in FLIR image plane coordinates are:

Xc = Xp + Xp (2-1a)

Yo = ¥p *+ Ya (2-1b)

where Xc x-coordinate of apparent target centroid
Yo = y-coordinate of apparent target centroid
Xp = x-offset due to target motion
Yp = y-offset due to target motion
Xp = x-offset due to atmospheric disturbances

Yp = y-offset due to atmospheric disturbances

I11-2
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2.3 Atmospheric Disturbances

The target's intensity function will undergo transla-
tional motion on the FLIR image plane due to atmospheric
disturbances which cause phase distortions in the radiated
wavefronts from the target as they propagate through the
atmosphere (14:27). The model used in this study was devel-
oped by The Analytical Sciences Corporation (16) and data
analysis by Hogge and Butts (4). The power spectral density
of this phenomenon in each of the two FLIR plane directions
can be well approximated as the output of a third-order
linear shaping filter driven by unit-strength, zero-mean,

white Gaussian noise (12:12).

> Kab > x
A (s+a) (s+b)? A

where Wa

unit-strength, zero-mean, white Gaussian
noise

K = system gain

]
]

break frequency, 14.14 rad/sec
b = break frequency, 659.5 rad/sec

X, = output of the shaping filter

By adjusting the value of the system gain, K, the
desired root-mean-squared (rms) atmospheric characteristic
can be obtained (12). The effects of atmospheric jitter are

assumed independent of the direction on the FLIR image

I1-3




plane, so two independent shaping filters of the above form

can be used to model jitter; one for each coordinate direc-

IO
Qﬁ& tion of the FLIR image plane.

The developed mathematical model for atmospheric jit-
ter will now be expressed in state space notation. Atmos-
pheric jitter can be expressed in the time-invariant sto-
chastic differential equation of the form:

Xa(t) = EaXa(t) + Gowy(t) (2-2)
where F, = atmospheric plant matrix
§a(t) = six atmospheric noise states
G, = atmospheric noise input matrix

ga(t) = two-dimensional vector of white Gaussian

noise inputs with statistics:
E{wa(t)} = 0
G Elw, (£)w, T (t+7) ] = 15(7)

The shift of the intensity funciton due to atmospheric

jitter can be expressed with:

Xa(t) = Hyx.(t) (2-3)

where Ea(t) = shift in FLIR coordinates, with
components x, and y, as in (2-1)

H, = system output matrix

Because of the independence between the disturbances

occurring in the horizontal and vertical directions of the

FLIR image plane, they can be decoupled and separate models
can be developed. 1In Jordan canonical form, the distur-

bances in the x- (horizontal) direction becomes (12:73-75):
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e -a 0 0 Gl

X3 . . 0 -b 1 G2

iz;; Xaxl(t) = 0 0 “b| x 4 (t) + G3 | woy(t) (2-4)

! where a,b are the break frequencies described earlier

-

N and:

.
§: Gl = Kab?/(a-b)?

; G2 = =Gl |
& i
= G3 = (a-b)Gl :
.

) The output equation becomes:

.

Ny

N Xpx(t) = [ 1 1 0 1x,,(t) (2=5)

“~

™ The solution to the state differential equation (2-2)

e .

! over one sample interval assumes the form: :
:: i
N

3 . Kaltjer) = @altisgeti)Xalty)
o~ L) tis1 |
N + Paltje1,T)G(T)W,(T)AT (2-6) i
\* tl i
o5 f
A4 |
2 where gh = the state transition matrix which is the |
' solution to the matrix differential

o equation: !
: . :
3 $altety) = Ea0y(t,ty) |
i and the initial condition: .
::4 I
c.4
b ®a(ty,ty) = I (the identity matrix)
;: Since F, is time-invariant, the state transition matrix is

{ solely a function of the sampling time, At = tj, ,-t;.

- Therefore, for a constant sampling time, A4t, the state-

7 transition matrix is itself a constant. Thus, for the

< W !
* :
! 1I-5 : |
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system in (2-4) the state transition matrix for any time,

. ti’ iS:
:J':‘_.'_
)‘..
exp(—aAt) 0 0
0 exp(-bAt) Atexp(-bAt)
Palti,10t5) = 0 0 exp(-bat) (2-7)
As before, the distortion in the y- (vertical) direction can
be represented with a model of the same form.

Since it was desired to use a digital computer program
to test the developed algorithms, an equivalent discrete-
time system model of the continuous-time system was devel-
oped (6:42):

Kaltijeq) = @a(tje1eti)Xa(t5) + waglty) (2-8)
where Ead(“ is a discrete-time white Gaussian noise process
‘t’ with the identical statistics as the integral term of Egqua-
) tion (2-6) for all time:
E{w,q(tj)} = 0 (2=-9a)
ElWaq(tj)WagT(ti) ] = Qaqlty)

tivl T, T

= Jf P (tj,1,T)GIG, " d (L5 ,9,7)dT (2-9b)
ti

E(Waq(ti)WaqT(t5)) = 0 (for t; # tg) (2-9¢)

Therefore the equivalent discrete-time system model

can be expressed as (12:15):
c
Xaltjeg) = @altisqeti)Xa(ty) + VQag Wplty)  (2-10)
oy
Bl
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e where Q.4 is the lower Cholesky square root of Q.4 (6:3
‘"'\ 71) and:

SR

- (. E{w,(t;)] = 0 (2-1
i Ewy (t5)wpT(e5)3 = I (2-1
P E(wn (t3)wpT(£5)3 = 0 (for t; # ty) (2-1
A

-I::-_ 2.4 Target Dynamics Models

RN

\ The model for target dynamics is a continuous-ti
- deterministic model which describes a highly maneuveral
x 3{ aircraft or missile, In order to test the algorithm in
j:'.; realistic environment as possible, a number of maneuv:
'f‘-'-’.: were generated (5:35):

; (1) straight line propagation

": (2) constant roll-rate maneuvers

’.:"'\ C’j (3) constant G, constant speed turns

‘:f;.;j ) These manuevers will be tested individually to det
;’::J mine the algorithm's ability to follow a target perform
* highly dynamic maneuvers. Later these same maneuvers w;
.\3' be performed sequentially and/or simultaneously by the t
:;%: get so the algorithm can be tested against a realis
l'\ dynamic target whose intensity function is constan
E",' changing.

".5:..: Two previous studies, by Kozemchak (5) and Mill
' (13) respectively, assumed that the centroid of the tar

S}: intensity pattern coincides with the center of gravity
:{:‘ the target. Furthermore, the center of gravity of
s

o target was assumed to be on the roll axis of the target,
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5"-'
\ rolling maneuvers performed by a non-pitching aircraft have
.\~h‘
N no effect on centroid dynamics. Conversely, a pull-up ma-
S
~‘ DA neuver does affect centroid dynamics for multiple hot-spot
d
targets (5:35,13:22).
N
‘\'f-}_ﬁ As developed by Harnly and Jensen (3), the true target
RS
'- location in the two-dimensional FLIR image plane can be
vt expressed in azimuth, a(t)~, and elevation, B(t). This true
O
A'\.'..
L location can be compared with the filter estimates to eval-
NS¢l
ol uate filter performance. As with Kozemchak (5) and Millner
A
e (13), the azimuth and elevation rate inputs are used for
R
_;'-" propagating the true position as well as determining the
-
e accuracy of the filter's acceleration estimate. Thus, the
;:_ time history of the target location can be generated via:
250
ot . é(t)]
S b.4 = = t -
( {"3 Xp u(t) B (t) (2=-12)
.:-':.'. .
}_Z-‘_; where a(t) and é(t) are the time varying azimuth and eleva-
’;.::'_; tion velocities in inertial space. While it would have been
‘., easier to input time histories for a(t) and B(t) directly
o
"\ for this deterministic case, the above form was used so a
NGy
}";j: stochastic model could be readily implemented if desired at
G a later time (13:15).
L At this point Kozemchak (5) and Millner (13) differed
<
A in their respective approximations of the dynamic offset.
‘ -. Kozemchak used a second-order model which assumed constant
e acceleration over each sample period:
--:_Z.' . .
or Xpl(ti,q) = Xplty) + Xp(t;)at + 0.5% (t )at?  (2-13)
RENERN
b 11-8
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#ﬁ Millner used a first order model which used the values of
1§ . the azimuth and elevation velocities which correspond to the
:E 533‘ midpoint of the sampling interval:

.

:: Xplti,1) = Xpltj) + Xp(ti+At/2)aAt (2-14)
x5

The approximations of the dynamic offset were kept
3 intact for each of the respective filters. This means that
:E the extended Kalman filter tracker and the linear Kalman
filter tracker used different truth models. 1If the assump-

tions made in the derivation of each model are correct (i.e.

¢

s

ig constant acceleration over each sample period for the ex-

{& tended Kalman filter tracker), then there is very little

;:3 . difference between the two models for a small sample period.

Lfﬁ However, the Millner form is a more correct model because it

:3 sz uses only those terms that are independently specifiable.
3 The acceleration term in (2-13) is derived from the change
t in elevation and azimuth velocities, &(t)and é(t)respec-
) tively, over a given sample period.

;% The azimuth and elevation velocities are initially

Sg calculated in the inertial frame and must then be projected

;: into the FLIR image plane. The relationship between these

Sg two frames of reference is shown in Figure II-1 (5:37).
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Eazimuth
=I
Zazimuth
Figure II-1. Inertial Coordinate Frame

where Xyr Yyr 21 = inertial axes

p = range to target
Vv; = target inertial velocity
ry, = horizontal range

azimuth angular displacement

@.

™
[}

elevation angular displacement

The geometry associated with azimuth direction is

shown in Figure II-2 (13:19).

Figure II-Z.'Azimuth Geometry
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Thus, the displacement angle, a«(t), is defined as:

a(t) = tan"lz (t)/x;(t)] (rad) (2-15)
and
a(t) = [xp(t)2 () - zI(t)iI(t)JI/ [z72(t) + x72(t)]
(rad/sec) (2-16)
and

a(t) = CIxp(L)Zy(t) ~ Xp(t)zp(t)1rp? - 2[(xp(t)xg(t)
+ zp(B)Z21(8)] [xp(t) 21 (t) - Xp(t)zp(e)]1} / rpt

(rad/sec ) (2-17)

where ry is determined by ry = (xIZ + 212)1/2. To convert
these values into FLIR image plane units, pixels/sec, divide
the number of radians by 20 x 10”8, This conversion factor
is derived from the fact that each pixel represents a region
20 mrads x 20 mrads (3:33).

Similarly, Figure II-3 displays the geometry involved
in calculating elevation, elevation velocity, and elevation

acceleration (13:20).

pe

YI fo=—

» X , Zr plane

Jﬁ‘--

Figure II-3. Elevation Geometry
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b
‘-‘ where p = (xI2 + ylz + 212)1/2. Therefore,
%ﬁ
e cf-é?‘r B(t) = tanlly (t)/ry(t)] (rad) (2-18)
: |
N and |
§Ij3
!
3 B(t) = [rp(t)yg(t) = yr(t)rp(t)] / p2(t) (rad/sec) (2-19) |
,-. where fh(t) = [il(t)xI(t) + il(t)zI(t)] / ryp(t)
B
i%& (m/sec) (2-20) |
ey i
B ‘
o and i
k'v‘: P .o ve
35 Ble) = (p2(t) [y (t) ¥ (t) = yp(B)F(1)]
SN . . .
1 = [rp(t)yp(t) = yr(8)TL(8) 1 [2p(t)p(t) 1) / pdit)
g} (rad/sec) (2=-21)
-.é’ o e * L 1] [ ]
"g% where Tp(t) = {Ixg(£)Xp(t) + X 2(t) +z(£)Z (t) + 2;2(8)]
; @ X rp(t) = Lp(t) [Xp(E)Xp () + zp(£)21(8)])
ey / th2(t) (m/sec?) (2-22)
o
3%yl ° . . -
"gé; p(t) = [xI(t)xI(t) + YI(t)YI(t) + ZI(t)ZI(t)]
/ p(t) (m/sec) (2-23)
Ef
:f; The values for g(t), é(t), and E(t) can be converted to FLIR
;f; image plane units by the same conversion factor procedure
‘ used for the azimuth terms.
. The solutions to the dynamics differential equation
(2-12) have the form:
Xp(tisy) = $pltj.g.ty)xplty)
tis1
+f @p(ti,1,7)Bp(T)up(ridr (2-24)
t
i
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where ¢n(t,r) = state transition matrix for vehicle
dynamics
Bp(r) = controliinput matrix
up(r) = control function for the truth model

as defined in equation (2-12)

For digital computer implementation, accelerations approx-
imated as piecewise constant between sampling times result
in a piecewise linear function for up(t). Therefore Equa-

tion (2~24) can be expressed in discrete-time form as:
Xp(tje1) = 2pl(ty,1,t5)Xplt;) + Bgaltyluglty)  (2-24)

In Kozemchak's thesis he defined Byltjlug(ty) as:

at 0 0.54t2 9] | &)

Bg(tjluglty) = | 0 at 0 0.54t 8 (t5)
..(t )

Bt3)

(2-26)

where, of course, a and a are as given abo&e'and are not

independently specifiable, and similarly for Eand B
Millner defined the quantity somewhat differently, with

(more appropriately) independently specifiable components

only:

at o] [a(ti + At/z)]
(2-27)

By(ti)ug(ty) = [ 0 alE] + 8t/2)

2.5 Overall State Space Model

Combining the truth models for target dynamics and

atmospheric distortions yields a single eight state dis-

crete~time model which consisting of two dynamics states and

- a4 T . TN v Ta .
_“_',F."" A I ) LA LIRS AR A R A A A S A A A A AR S T

S, L,




L
s
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o six atmospheric states.

N

<
SN Ep(tier) = Ep(tiagti)Xplty) + Bauglty) + Gawg(ty)  (2-28)
{ where ®p(ti,q,t5) = Splty,q-t;) = &p(dt) =

.
2% 1 0 0 0 0 0 0 0
o 0 1 0 0 0 0 0 0

o 0 0 exp(-aAdt) O 0 0 0 0

. 0 0 0 exp(-bAt)Atexp(-bat) 0 0 0
L 0 0 0 0 exp(-bat) 0 0 0
= 0 0 0 0 0 exp(-aat) 0 0
33 0 0 0 0 0 0 exp(-bAt)Atexp(-baAt)
o 0 0 0 0 0 0 0 exp(-bat)
;53 Xpltj) = [xpltj) yplty) x3a(t5) xp(t5) X3a(85) ¥ypalty)
o T
N Yop(ti) y3altyi)l
R For Kozemchak's study:
S Ba(ty) =[at 0 o0.58t2 0,
o 0 At 0 0.5at

CE> 0 0 0 0

e 0 0 0 0
Pk 0 0 0 0
G 0 0 0 0
o | 0 0 0 0 |

uglty) = lalty) B(ty) alty) Blty)]T

XPZR

R

For Millner's study:

o
|

oOoo0oo0oo0ooOort

Ba(ty) =

7
*

e N

Vv

O

@5

>

[eNeNeoNoNoNoNs Neo

" ."'..'

- &
il

—

uglty) = [a(ty+at/2) Blty+at/2)1T

ey
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ANATEENLY where Qpup ={0 0 0 0 0 O0 o0 O
VL ORI ™ 1o 0o 0 0o 0 0o o o0
- 0 0 Q1L Q2 Q3 0 0 0
2 0 0 Q2 Q4 Q5 0 0 0
% 0O 0 03 Q5 Q6 0 0 0
b1 0 0 0 0 0 Q1 Q2 03
.‘3 0 0 0 0 0 Q2 Q4 @5
B} _oooooo3ososJ
-
R %
-0 Q1 = [G12/2a] (l-exp(-2aat)
S5
B 02 = [G12/(a+b)] [(l-exp(-(a+b)At) (-2b/(a+b)
. - (a-b)Atexp(-(a+b)At)]
A
) Q3 = [(a=b)/(a+b)]G12(1-exp(-(a+b)At)
SR
‘?g Q4 = [G12/2b] ([(l-exp(-2bat)](l-(a-b)/b + (a=b)2/2b)
": + (a=-b) (2-(a~b)/b) Atexp(-2bAt) - (a-b)2at?
e
13‘. ) X exp(-2bAt) ]
I
o Q5 = [G12(a=b)/2b] [(1 - exp(-2bAt)(a-3b)/2b - (a-b)
&
o X texp(-2bat)]
e
N Q6 = [(a=b)2G12/2b] (1-exp(-2bat)
CAY
VR Gl = Kab/(a-b)?
] with statistics:
s
?:ﬁ‘:
hAT E{wa(t;)} =0
5 Xat-i -
i Elug(ts)wq® (t5)) = Laj;
% XT(ti) = ETET(ti) (2-29)
o2
where ym(tj) = | Xcantroid
.
28N Ycentroid
::;":
X Cp=f1 0 1 1 o o 0o o
Y- o 1 0 0 o0 1 1 0
Vo™, C )
W&
NG
2"' 11-15
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2.6 Target Coordinate Frames

In order to describe the dynamics of various parts of
the target relative to its center of mass, additional coor-
dinate frames needed to be defined. This was necessary
because a realistic image on the FLIR plane must be gener-
ated for instances when a multiple hot-spot target performs
various maneuvers.

Target frame - This frame has its origin at the target

center of mass. One of its axes is the inertial velocity
vector of the target. Another axis is defined as being out
the right side of the aircraft perpendicular to the velocity
vector and in the plane of the radiating sources of the
target. For example, for an aircraft with wing mounted
engines, if the engines hang from pods, then the radiating
sources are not in the same plane as the target center of
mass. This model approximates many multi-engined aircraft.
The third axis is defined by a vector perpendicular to the
plane formed by the previous two vectors. This coordinate
frame will be expressed with unit vectors ey, eny/, and eppys
respectively.

a-f plane - This frame originates at the target center
of gravity and is perpendicular to the true line of sight
from the tracker (located at the origin of the inertial
coordinate system) to the target. This plane can be shown
to be defined by unit vectors e, and &g which are misaligned
from the inertial frame by the angles a and f which were

defined in Figure II-1. The third basis vector is aligned

II-16




0y
o
{0
e along the line of sight to the target.
T
:E JREey 2.7 Target Trajectories
-, ‘_:-‘\
{ As mentioned previously, a number of deterministic
2,
.o target trajectories which incorporate a number of maneuvers
»:% were developed to provide as realistic targets for the
tracking algorithm as possible. The basic trajectories used
:} in this study are those used by Millner (13).
\&3 Trajectory 1 - This trajectory is depicted in
" Figure I1-4 and is a benign trajectory in which the target
-
%;u flies a constant-heading, straight-and-level course, either
rI
f wings-level or performing a constant roll-rate maneuver.
w4
N }XI
WY
'
hel
" ®

4 L) -

g

- v
ON ~ T -
P z ~ -

o

~ a- ~ 1 £

X T T

1 Figure 1I-4. Trajectory 1

23

ﬁ: The inertial velocity, vy, for this maneuver is held
P ~

‘4
oAy constant and is parallel to the X1-21 plane. Roll maneuvers
;@ are performed with clockwise rotation of the target as seen
:2 from behind.
\'..c

- Trajectory 2 - To evaluate filter performance against
+? a more dynamic maneuver, a constant G pull-up maneuver was
o,

N
%Q simulated. 1In this model the target begins with the same
‘AN

initial conditions as in the previous model. The maneuver

S is initiated at some pre-determined time after the simula-

ol 155
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“:::
ft: tion begins to allow the tracker to obtain good target
,:3 .. position estimates before the maneuver begins. This trajec-
{\ O tory can be seen in Figure II-S.
R\

<)

o

'
(.

N

"~

g2¢

-.'\

Ei

..z’::

v Figure II-5. Trajectory 2

S 4

N

.&j It should be pointed out that this pull=-up maneuver
:h was started with a step change to the pitch~up rate, which
‘}‘ CED is not a realistic model. However, this represents a more
4~ﬂ severe maneuver than any found in the real world, so the
§ﬂ tracker should perform better against a more realistic
L7 target.

*' Trajectory 3 - This trajectory was used to evaluate
‘ h.

:: performance with a target that begins and terminates a
X maneuver during a simulation. As with trajectory 2, a
YN
y
! constant G pull-up maneuver is executed but instead of
)
! continuing the maneuver to the end of the simulation, it is
Y

S terminated (again with a step change in the pitch=-up rate)
:2 at some earlier time so the target returns to straight-line
:: propagation. The target assumes whatever inertial velocity
5\ éﬁ} it possessed at the termination of the pull-up maneuver.
e o’

5

by
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e this velocity remains constant for the remainder of the

j:é S simulation.

('- - Trajectory 4 - This trajectory was used to provide a
‘i; target which displays motion in all inertial directions. As
’EEE was true for trajectory 3, this trajectory is similar to

trajectory 2, but instead of terminating the maneuver as

3&: done in trajectory 3, the target turns toward the FLIR
iﬁ plane. This out-of-plane change maneuver causes the projec-
;_ ted target image on the FLIR image plane to change its
:5%: appearance more dramatically than in the previous cases,
i?i with substantial changes in the separation between the indi-
;f- vidual hot-spots.

-

23' 2.7 Non-realistic Trajectories and Intensity Pattern Time
o Variations

i : ng Other areas of interest include non-realistic trajec-
éé tories and intensity pattern variations. The desire here is
T

?; not to portray realistic targets, but to determine the
P’ algorithm's sensitivity to various parameter changes. This
:Eﬁ can include investigation of performance against targets
f¥§ executing maneuvers beyond the capability of current air-
;:% craft, such as instantaneous and dramatic heading changes.
iﬁl Such a test could be useful in determining the tracker's
i;; ability to re-acquire a target that has shifted out of its
:¢4 field of view. Other parameter changes that can be investi-
':éz gated include: varying hot-spot size, intensity, separation
::E between hot-spots, and variation of these parameters with
ey e, time.

W
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2.8 Measurement Model

The measurements provided to the tracker algorithm
represent the intensity function generated by the target
projected onto the FLIR image plane. This function is also
corrupted by any background and FLIR noises that may be
present, For distant targets, it was found that these
target patterns could be modelled with a bivariate Gaussian
function with circular constant-intensity contours (12).
However, close range targets were found to be better modeled
with similarly distributed contours of elliptical shape (3).
As the target gets closer to the tracker positon, individual
and separate hot-spots can be identified on the target, each

model led with the following intensity function:

I = IpayexP(-0.5[(x=Xyq,x) (y-ypeak)][_I_’_]"l

x [(XXpeax) (Y-Ypeak)!” ' (2-30)

where I .. maximum intensity of the hot spot

= coordinates of the peak intensity of the

X ' Y
peak peak hot-spot

P = matrix whose eigenvalues are dvz and
O,y ¢ which corresponds to the disper-
sgon of the elliptical contour in the
target plane defined earlier, and whose
eigenvectors dictate the angular
orientation of the principal axes of
these el lipses
The x- and y- coordinates for Equation (2-30) are calculated
relative to the center of the tracker field of view.
For single hot-spot targets the centroid of the inten-
sity function is assumed to coincide with the target center

of mass. For multiple hot-spot targets the hot-spots are

I1-20

“w

L S TN TP AP R I S T UL IS - - .~ - T . R WL S L T P S e T
P AP IV IORT I VR N DN W'ﬁ" NN \'ﬁ"::.'):&\.s' .'.';Ln." -i;':.'h'.ih ’.H‘ :\h'.*i‘;l"n.i‘ )'-. J.'T::}"}Lq -':\-L-'.A}L'}I;.-f:.-': .L\‘.\M.‘ S N )



3 '[ 1.. )
AN

distributed, for example, as shown in Figure II-6 (13:40)

o\
®
(@ _[® @)

— : aireraft center

Figure II-6. Distribution of Hot-Spots

The multiple hot-spot case requires that the distance
each hot-spot from the target center of mass be kno
Also, it is assumed that the target side slip angle
angle of attack are zero and that all the major axes of
el lipsoids are parallel and aligned along the velocity v
tor of the target, which extends out the nose of
vehicle.

For both the single and multiple hot-spot cases, f
measurements are generated by taking the average intens
of each pixel in an 8 x 8 pixel tracking window, which
due to the combined effects of each of the hot-spots and
corruptive background and FLIR noises:

M
zkl (ti) = mgl[1/Apk{t‘]:m(xly1xpeakm(ti) IYpeakm(ti))dde]

pixel

+ Vv (ts)
k11 (2

I1-21
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N

5§' where Im(ﬂ = intensity function of the mth hot spot
o of M hot-spots

50 .

e Zp) (tj) = output of the klth pixel at time t;; the
Y S averadge intensity over that pixel as

{: sensed by a detector in the FLIR image
- plane

o A, = area of one pixel

2 i

.fﬁ (x,y) = coordinates of any point within the klth
. pixel

-

e X (ts) (t;) = location of the peak of the
e eakmiti)s ¥ P

ﬂ?- P peakm®™1 mth intensity function at
o time tj

- Vkl(ti) = additive noise to the klth pixel

Lﬁ corresponding to the background and FLIR
ﬁﬁ noises

bl

.‘ v

e 2.9 Target Image

ek

23 It was assumed that the major axes of the m hot-spots
‘.-"l

‘kﬁ are all aligned parallel to the inertial velocity vector.
"ﬂ CED Furthermore, by assumption, all m hot—-spots lie in the plane
.:k . formed by the wings of the target.

<4
a}ﬁ As discussed previously, Vi, the inertial velocity
NIk .

e vector of the target is assumed to be projected out the nose
-.', . .

g of the target. The a-8 plane is perpendicular to the true
>

g

S line of sight from the tracker to the target as defined by
i

f' the basis vector e,. The origin of the target coordinate
L“E frame, the a-gf plane, is the target center of mass. Figure
A
‘:; II-7 illustrates the geometry involved.
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_ ‘ Tracker

Figure II-7. Image Projection

From the figure it can be seen that
cosf§ = a(t)/[(v | LOS] (2-32)
sing = §(t)/[v | LOS] (2-33)

where (v L LOS) is the magnitude of the velocity perpen-
dicular to the tracker line of sight, i.e., the projection
of v; onto the a-g plane, defined by (v | LOS] = [a(t)?
+ 5(t)2]1/2.

The size of the target and the distances between the
hot-spots are fixed and do not vary with time. On the other
hand, the image of the target as seen by the sensor will
change as the target moves closer or farther away from the
tracker or changes its orientation relative to the FLIR.
This image at any time during the simulation is expressed in
terms of some previously defined image, which has been

specified at an initial range and size, and the current

target range and velocity. The reference image is defined
with the target lying flat in a plane perpendicular to the

line of sight to the target. This produces an image with

II1-23
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the largest possible size. For example, if the reference

image was flat and circular in shape, any other orientation
will project an elliptical image of much smaller area onto
the FLIR image plane. The following expressions relate the

current image size with respect to the reference image:

dpv = deOpO/p (2"34)

0y = (po/p) lopyo * COsé (0yg=apy)]

Opy{1+[(y | LOS)/¥;][AR-1]} (2-35)

where 6yor Opyo ~ the digperison gf the target along
the major and minor axes of the
radiating ellipsoid, i.e., axes
along and perpendicular to the
velocity vector, respectively,
for the reference image

Oys Opy = the current dispersions of the
target image
P, = reference range from sensor to the
target

current range from sensor to the
target

©
"

Vi = inertial velocity vector

I<

}_
(o
(@]
o
1]

~projection of Vi onto the a=-f8 plane,
the plane perpendicular to the line
of sight to the target
§¢ = angle between the inertial velocity
vector, vy, and the a -8 plane, as
shown in gigure I1-7

AR = = maximum aspect ratio of

Ovo/a
gﬂ% Ho 9spot reference image

As stated at the beginning of this section, the objec-
tive is to define the target image in terms of FLIR image
plane coordinates. The relative distance between the hot-

spots is known in the target frame defined in Section 2.6.
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The coordinates of the centers of the hot-spots must be

converted to a=8 plane coordinates for use in (2-30) and (2-
31). The transformation from the target frame coordinates

to a=-f coordinates is accomplished via:
[x cos ¢ -sino] x]
Xag =LY aB= Sing cosg || Y| target frame = 2 X
(2-36)
The dispersion matrix is transformed using:
= T -
Pag=RAERA (2-37)

Since it is desired to have the inverse of Pag for use in
(2-30), a more convenient yet equivalent transformation can
be generated by inverting this expression and using the

orthogonal nature of A to yield
Pl = ap~)aT (2-38)

2.10 Spatially Correlated Background Noise

The noise term, vy,(t;), in Equation (2-31) associated
with real data was found by Harnly and Jensen (3:19) to
contain spatial correlation of the background noise with a
correlation distance of about 2 pixels; this was modelled by
maintaining non-zero correlation between each pixel and its
two closest neighbors symmetrically in all directions. The
64 measurements (8 x 8 pixel array tracking window) are
arranged as a 64-dimensional vector and so the spatially

correlated noise can be modeled with:
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N
:: .. where v'(tj) = a 64-dimensioned vector of independent
; iﬁy, white Gaussian noise processes with

o4 statistics:

v
a
P

E{v' ()3 =0

:;; ECy'(t;)v'T(ty)} = Is;

i The resulting noise process, Vv(t;), has strength,

i E[!(ti)gT(tj)} = Réjj, where R is the 64 x 64 matrix which

f describes the spatial correlation between pixels and is
discussed in detail in the studies by Harnly and Jensen (3)

3:‘ and Kozemchak (5).

In order to generate the spatially correlated noise,
the pixel numbering scheme illustrated in Figure II-8 was

adopted. This array, which corresponds to the 8 x 8 FLIR

Aty S MR

ity

data array, was numbered from 1 to 64 starting from the

‘:p upper left hand corner of the array and proceeding across

o the rows as done by Harnly and Jensen (3:19).

1 2 3 4 5 6 7 8

4

§3 9 10 11 12 13 14 15 16
g‘ 17 18 19 20 21 22 23 24
‘m 25 26 27 28 29 30 31 32
;: 33 34 135 36 37 38 39 40

41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Yoo 4

Figure 1I-8. Pixel Numbering Scheme
8

-
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20 Harnly and Jensen (3) determined that the correlation
b3
:.-1 ) coefficient matrix derived from using the above numbering
*’.)': N
PR scheme is:
L
s
; :\ 1 rl'z rl’3 PR r1’64

1,2 £2,3 -+ T2,64
o
’.::i\: r1’3 r2,3 l s eaa r3’64
\}' e e * e * o O e o o L BN BN 2
§I

' *1,64 %2,64 T3,64 - 1

e . .
g Harnly and Jensen (3) aiso determined that the correla-
P\ 4
3 tion terms not associated with the first and second nearest
Fan
A neighbors of a given pixel, could be approximated as essen-
€8
#‘ tially zero. For example, pixel 28 in Figure II-8, would
b3 !
N8 have non-zero correlation terms only for pixels 10, 11, 12,
@ 13, 14, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 34, 35, 36,
;:: 37, 38, 42, 43, 44, 45, and 46. The measurement noise
cf." .
. : covariance matrix is obtained by multiplying the derived
o correlation coefficient matrix by the variance of the back-
"1‘
-"'%1 ground noise.
Harnly and Jenson (3) also found that the effect of
- time correlation of the background noises is negligible at
3
"v the anticipated signal-to-noise ratios. At this point, all
X
o7, o
':'. the necessary terms for the measurement equation (2-31) have
been developed in full. .
.: :
W3
o
“5 , “‘..;'\\
:\x '\:::
o I1-27
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2.11 Summary

This chapter has presented a number of models which
have been used to model the real world. The processes that
were modeled include: atmospheric jitter, target dynamics
and shape effects, and background and FLIR noises. Deter-
ministic target trajectories were introduced to provide
baseline and realistic tracking scenarios to test the trac-
ker algorithm. Finally, a number of coordinate frames were
defined to aid in generating the appropriate realizations of
the target intensity function in the FLIR image plane, and

the entire truth model simulation was established.
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22 I11. Tracker Configurations

.~,§:

JE; 5&} 3.1 Introduction

(; = The two tracker configurations, which served as the
;Eg foundation of this research, were developed in studies by
z:% Kozemchak (5) and Millner (13). These trackers are suffi-
iv ciently different that each must be presented separately in
'fﬁ this chapter. Both of these trackers were first developed
,§§ by Rogers (14) for multiple hot-spot targets performing very
» benign maneuvers. The later trackers extended the previous
,g% work to include targets performing much more highly dynamic
az and realistic trajectories.

t:; The first tracker to be presented in this chapter is
gg the one developed by Kozemchak (5). As shown in Figure I-1,
;fp it uses an extended Kalman filter to provide estimates of
“‘S GE; target position, velocity, and acceleration, as well as
ZS§ estimates of atmospheric disturbances. The need to include
,:E the estimate of target acceleration with the position and
Ao velocity estimates in a tracking scenario against highly
'ig maneuverable targets was shown by Harnly and Jensen (3). 1In
;hi order to maintain a reasonable computational burden for
XA filter operation while still having the best possible target
EEE model, two different target models were used. The first
;E; used a simple first-order Gauss-Markov acceleration model
(3,5,12,13,14,15,17), while the second used a constant
ﬁ@ speed, constant turn~rate model for target acceleration
htﬂ (5,17). While non-linear, the latter model has been shown
:3i %ﬁ% to provide a much better description of real world target
o .

~§: : ITI-1

O
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dynamics when operating at short ranges, as in the case for
air-to-air combat (2,17). Development of the equations
needed to propagate the filter estimates and to update these
estimates with FLIR measurement data will be presented later
in the chapter.

While the above algorithm has tracked simulated targets

adequately, the non-linearity of the problem requires a
large number of equations to be processed on-line in real-
time. If some sort of linear relationship in estimating the
target parameters could be established, then many of the
quantities needed to propagate and update the target esti-
mates could be pre-computed and the on-line computational
burden could be reduced. This desire for reducing the

computational loading led to the development of an alterna-

tive tracker design to the extended Kalman filter tracker.
This alternative tracker uses the estimated target
y shape as a template in a correlator to provide pseudo-
measurements to a linear Kalman filter, as shown in Figure
I-2. These pseudo—-measurements allow the use of the linear
Kalman filter because they are in reality offset distances
from the center of the field of view in the FLIR image
plane. These distances are linear functions of the chosen
state variables described in Chapter II (13). This tracker
uses a first-order Gauss-Markov target acceleration model
because the linear measurement model motivates use of a

linear target descriptor, in order to yield a linear Kalman

filter as the optimal data processor. Development of the

.....
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necessary equations to propagate and update these target

% K estimates as well as a description of the correlation algo-

i
( el rithm used will also be presented in this chapter.
e
\‘
“ 3.2 Extended Kalman Filter Tracker
ﬁ As stated earlier, this tracker uses an extended Kalman

filter to provide estimates of target dynamics and atmos-

pheric disturbances. Implicit in this use of the extended

' %o 5o T

Kalman filter is the assumption that the non-linear target

-

intensity function can be adequately linearized about the

0t

2 estimated states by using a Taylor series truncated to first
) order. Due to the relatively high measurment rate used in
: this research, such an approximation is considered valid.

’E 3.2.1 Gauss—-Markov Target Acceleration Model. The
"

N

first of the filter models represents target dynamics accel-
| © -
eration and atmospheric jitter position as stationary,

first-order Gauss—Markov processes. Such processes can be

- .

7 generated as the output of a first-order lag driven by zero-

; mean white Gaussian noise (6). A third-order model for

S

;: atmospheric jitter position was presented in Chapter II, but

]

; because the double pole appearing in that model is suffi-

4 ciently far away from the single dominant pole, it has

o+

P

% little effect on the low frequency characteristics of the

; jitter (5). The filter vector states can be defined as
target position, velocity, and acceleration, and jitter

; position, in each direction of the FLIR image plane:

2

= ‘ii Xp = [Xp YD Vx Vy ax ay xa yalT (3-1)

7R

Y

o
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The relationship between the states are as follows:

*,%

. 8N
h

2 Xp = Vi (3-2a)
Yp = Vy (3-2b)
Ve = ay (3-2c)
Vy = ay (3-24)
ay = (=1/Tpplay + Wpy (3-2e)
ay = (-1/Tpplay + wpy (3-2f)
Xp = (=1/Tpp)Xp + Way (3-29)
Ya = (=1/Tap)ya + way (3-2h)

where Tpp = correlation time for target acceleration

TaAF correlation time for atmospheric jitter

Wpxs Wpyr Waxr Way = white Gaussian noise
processes of zero mean and

strength depending on the
effect being modelled.

Note that identical independent models are used to represent
effects in x- and y~- directions of the FLIR image plane.

From the above relationships a state vector differen-

tial equation can be written in standard form:

Xp(t) = Fp(t)Xp(t)+Gp(t)wp(t) (3-3)

where Fp(t) = the system plant matrix which is constant
for this application and can be written as:

II1-4
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Gp(t) = the system noise input matrix which also is
constant for this application

(4 X 4) (3-5)

wp(t) = noise vector containing mutually independent
white Gaussian noise processes Wpx’ Wpy’ Wax’
Way with statistics:

E{wp(t)} = 0

E{wp (t)wpl (t+ )} = Qpés( )

0 0 0 20,52/ Tap | (3-6)

UDF2 = assumed target dynamics noise variance {or rms
value)

assumed atmospheric jitter noise variance (or
rms value)

3.2.2 State Propagation of the Gauss-Markov Model. Due
to the linear nature of the filter state model equations
above, the state estimates can be propagated using standard

Kalman filter propagation equations.
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g(ti+1-) = QF(tj_+]_'ti)§(ti+) (3=-7a)

P(tj,17) = ®plty, 1 t1) Rt )ept (ti,,t;)
t.
i+l
+ f ®p(ty,1,7)GpQpGp opT (ty,1,7)dr
ti . 4
(3-7b)

filter state transition matrix
for propagating from time t; to

where ®p(t;,;,t;)

time t +1
P(t1 ) = conditional state covariance
matrix after measurement update
at time ty
P(tj,1 ) = conditional state covariance

matrix before measurement update
at time tj,.q.

The filter state transition matrix e(tj,;,tj) must satisfy

the following differential equation:

2F(trti) = EFQ-F(t’ti) (3-8)

over the interval (t ti+l)' given the initial condition

il

2F(ti'ti) = J. Because of the time invariant Fp matrix, the
state transition matrix, gjti+l,ti), is only a function of

the sampling time At ( = [t; t;1) and can be evaluated

i+1 7

via Laplace domain techniques or via matrix exponentials as:

1 0 At 0 J1 0 0 0
0 1 0 At 0 J1 0 0
0 0 1 0 J2 0 0 0
0 0 0 1 0 J2 0 0
o(t; yts) =10 0 0 0 J3 0 0 0
ir1r™l ¢ 0 0 0 0 J3 0 0
0 0 0 0 0 0 J4 0
0 0 0 0 0 0 0 J4 (3-9)
III-6
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The solution to

where Al

A2

A3

A4

AS

A6

A7

<

FAI 0 A2 0 A3 0 0 0
0 Al 0 A2 0 A3 0 0

A2 0 A4 0 A5 0 0 0

0 A2 0 A4 0 AS 0 0
=|A3 0 AS 0 A6 0 0 0
0 A3 0 AS 0 A6 0 0

0 0 0 0 0 0 A7 0

0 0 0 0 0 0 0 A7

- A B o Sl T P

J2 = Tppll-exp(-at/Tpp)]
J3 = exp(-4t/Tpp)
J4 = exp(-At/Tpyp)

-~ 3 .
e e e T T TR Ty TN e A T T T TS TN IR R T A TN T

- “® e - - -

the integral in Equation (3-7) becomes:

(3-1

opp? [2Tppat3/3 - 2Tpp2at2 - 4T p3atexp(-at/Tppl

4

+ 2Tpp3at - Toplexp(-28t/Tpp) + Tpptl

opp2 [Tppat? + 2Tpp2Atexp(-4t/Tpp) + Tpps

- 2Tppexp (-at/Tpp) - 2Tpplat

Opp? [-2Tpp3atexp(-at/Tpp) + Tpp?

- Tpplexp(-24t/Tpp]

opp® [2Tppat = 3Tpp? + 4T p2exp(-At/Tpp)

- Tpp2exp(-24t/Tpp) ]

Opp? (Tpp = 2Tppexp(=At/Tpp) + Tppexp(-2at/Tpp)

Oap? [1-exp (-20t/Tpp) ]

3.2.3 Constant Turn-Rate Target Acceleration Mod¢

The constant turn rate model has been shown to model t

dynamics of real world airborne targets at close rar

better than the Gauss-Markov acceleration model (2,17}). '

I11-7

tradeoff of using this improved model is the introduction



where W

o

non-linearities into the propagation equations.

differential equation becomes:

1))

[xp(t)] + Gpwp(t) =

FLIR image plane deri
relationship,

w= |vxal/|y|? = (Vgay=vy

of the Gauss-Markov target acceleration model.

. 0 0 0
0 dpp 0 0
0 0 20pp2/Tap O
0 0 0 205p2/Typ

The filter estimates are propagated

by integrating:

The state

-2

Vg + Wpx(t)

(=1/Tap) xp + wax(t)

(3-11)

magnitude of the target's turn rate on the

ved via the

ag) / (vg2+vy?)

All other variables are as defined in the development

With the

statistics of the noise vector being:

(3-12)

forward in time
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Yo R(t/ty) = £(R(t/ty)] (3-13)
‘.$".\ °
RS B(t/ty) = EltsR(t/t3)IB(t/t5) + B(t/t)FTIt;R(t/t;)]
.\ o '\':‘..
T = + G(t)Q(t) 6T (t) (3-14)
\:T'.
:i- where (t/ti) means at time t, given measurements through
7;:‘ time t;, starting from the initial conditions:
!".:
e R(t3/t5) = (547 (3-15)
P(tj/ty) = P(t;") (3-16)
’
t*# The non-linear function £[R(t/t;)] can be shown to be
-:"\‘
:::: equivalent to the time rate of change of the estimate of the
o
N state at time t. Purthermore, since there is a desire to
A4
Sbﬁ‘ keep the computational burden as low as possible, the inte-
~.“
pr gral of Equation (3-13) will be approximated with first
o . order Euler integration, and so the state propagation equa-
. JCW) '
e . tion becomes:
ot
S
- -: - e
3} R(tj497) = g(ti+) + R(t;/t;)At (3-17)
[}
o e The relationship assumes that the time rate of change of the
&{f state vector is piecewise constant during the time interval,
:\\
BN At. This approximation is valid when the propagation time,
iL{ At, is small compared to the natural transient times of the
e
SRS system.
g
5T To solve Equation (3-14) in real time would be both
IQj computationally burdensome and time consuming because of a
(ol
t“\c':
uﬁi time-variant Fp matrix which requires continuous re-calcula-
b <l
f*} tion of the state transition matrix. For practical imple-
:j} .ﬁﬁ} mentation, a first order Euler integration approximation was
st i oy
N
el I11-9
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made here as well. First, g[t;g(t/ti)] is assumed to be

"

{j e, piecewise constant during each time interval, At, and can
LA ‘-«.‘_._-'
(‘ * be derived as a function of the current state estimate.

~_‘:. F(ty) = 32[51/?5 | X = 3(ti+) (3-18)

Given an invariant system plant matrix for each sample

<{; period, the state transition matrix can be determined.

]
&3§ However, even this approximation requires significant num-
) bers of operations to calculate QF(ti+1'ti) and to determine
P,
N the integral of Equation (3-14). To resolve this problem
\‘_i:
:i; the upper-left 6 x 6 portion of the state transition matrix
s

ﬁﬁ was truncated to first order terms.
N

:ﬂ

'3 @pltivety) = L+ Eltj)at (3-19)
. Gz; The remaining portion of the state transition matrix is
-(4':‘ -

}ﬁ associated with the atmospheric jitter model and since it is
.‘.4

il

~§? time invariant, can be determined exactly, as J4 in Equation
_;‘ (3-9). The integral of Equation (3-15) can be similarly
".1.'

o~ approximated with:
o
b Qrp = GrOpGplat (3-20)
- Qrp = SrQrGr
'§£ 3.2.4 Measurement Update Equations. The measurement
o
ﬁ:{ equation presented in Chapter II, (2-31), can be written in
;\\ general form as:

:§3

>

ol Zkl(ti) = hkl[l(_(ti) 'ti] + vkl(ti) (3-21)
J

T e, where 2z, (tj) represents the average intensity in the FLIR
:.: -.\P.-:*

\:;
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image plane at the kl-th pixel at time tjy, hy1 represents
the average intensity over that pixel due to the true target
intensity, and vy, represents the summed effects of back-
ground corruption and internal FLIR noise. The average
intensities over each pixel in the FLIR image plane together
form the target intensity shape function in terms of the
most recent target measurement. The measurement information,
provided at each of the 64 pixels in the tracking window, is
used to update the filter and to produce a new estimate of
the target centroid location in the FLIR image plane. The
extended Kalman filter was used to incorporate the measure-
ment information because of its ability to handle the non-
linearities of the problem and because it is less computa-
tionally burdensome than other non-linear filters
(7:Ch 12).

The need to minimize computational loading also moti-
vated the use of the inverse covariance form of the measure-
ment update equations. Use of this form eliminated the need
to perform a 64 x 64 matrix inversion at every update time

(12). Thus, the update relations are:

Plies*) = p7h(eyT) ¢ BT (e ) RTI (650 H(ES) (3-22)
B(t;*) = (27l h7t (3-23)
K(tg) = Rt ) HT(£)RD(ey) (3-24)
R(ti*) = R(t47) + K(ty){z(ty) = hlR(t;7),t5]) (3-25)

where H(tjy) = dh[x,t;]1/9x | 4 . g(ti7)

the first partial of the average
intensity function evaluated at the most
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A recent state estimate

LR

':; 3 g(ti') = propagated conditional covariance matrix !
e S before measurement update at time tj.

’ =

o P(t;*) = conditional covariance matrix after

0 measurement update at time tj.

.

N K(ty) Kalman filter gain

g(ti') = propagated state estimate before
measurement update at time t;.

Y g(ti*) = state estimate after measurement update
kI3 at time tj.
“~

h{2(t;7),tj] = non-linear measurement function of

.-,\‘ average intensities at time t; as a

N function of the most recent state

o\ estimate.

b

o 2(tj) = actual realization of the measurement
v vector at time t;.

2N

N .

X The method used to derive the non-linear and linearized
£ i. intensity functions will now be presented.

:ﬁﬁ 3.2.5 Derivation of Non-linear and Linearized Intensity
~~}
!ﬁ Functions. The extended Kalman filter tracker uses the
A

.

N nonlinear intensity function h{f(t;),t;], and the linearized
3ol intensity function, H(tj), to update the filter state esti-
J‘\

; mates after each measurement, as shown in Equations (3-22)

E? to (3-25). The method for deriving the nonlinear and
>N linearized intensity functions will be outlined here.
'éﬁ All of the information of a two-dimensional intensity
P pattern can be represented by a set of eigenvalues and
'?t eigenfunctions. To obtain all the information contained in
iﬁs such a pattern may require an infinite number of such func-
N

2 tions and values. Such a representation is unattractive ;
o RO because it cannot be practically implemented.

, $ g~
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19
,:} Ideally, it is desired to have a transformation which
g; ?52. is not burdensome yet provides an accurate representation of
l “ patterns in an x-y coordinate system. 1In keeping with the
ég truth models developed in Chapter II, it should also provide
:g decoupling of the components in the new coordinate space.
X The Karhunen-Loeve transformation is one such transfor-
;ai mation. It generates a new coordinate space with perfectly
;% uncorrelated elements. Tne major disadvantages of this
o
:’ technique are that it produces a correlation matrix of
ié dimension N2 x N2 for an N x N input matrix, and it is very
Q§ difficult to perform in its exact form (14:15).
\; Such disadvantages encourage use of the Fourier trans-
'ig form. While this does not provide perfect decorrelation of
’jé the components, it is computationally attractive and pos-
&J‘ CE} sesses a property of separability which allows a two-dimen-
Eﬁ sional transform to be obtained via one-dimensional opera-
é; éions (14:15).
“? 3.2.6 Two-Dimensional Foufier Transform. In Section
EE 1.2.1, it was explained that the target image had to be
;ai centered before averaging over successive frames of data
~;' could be performed to attenuate the noise. The derivative
GE of the nonlinear intensity function was also needed to
AEE update the extended Kalman filter (see Figure I-1). The
: Fourier transform was used because it allows us to perform
jﬁ the centering (shifting) and derivative operations in the
EE frequency domain where they are easily done. 1In the Fourier

transform, complex exponentials are used as eigenfunctions

s @
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and the image is projected along the basis vectors asso-

RS ciated with those exponentials.
ek

The Fourier transform of a complex-valued function of
two independent variables, §(x,y), is a decomposition of
oSy §(x,y) into a linear combination of functions of the form

exp[j2m(f,x + fyy)] (15:8). The Fourier transform is de-

oy fined by:
P
:{M @®
R E(fx.fy) = F(g(x,y)) =/ﬁ(x,y)exp[-j21(fxx + £,y)]laxdy
8 7" (3-26)
- N
'jj where G(fx,fy) = frequency spectrum, transformed
»ns function in spatial frequency domain
,d §g(x,y) = function in spatial domain
‘\
g? fx,fy = spatial frequencies
1
e X,y = spatial variables
\ .
‘ CED F( ) = Fourier Transform operation
oy *
\""
..‘-
ﬁs The inverse of this transform also exists and is defined by:
K
X R
7 §(x,y) = F7(G(fy,£y))
o3 =ff§(fx,fy)exp[+j21(fxx + £,¥)1dE,df, (3-27)
= - @
3 ~ .
where the terms are as defined above.
‘ﬁf Because the FLIR provides target information as the
A
14 average intensities over its exposed area, a two-dimensional
’. .
I3
;LB discrete Fourier transform (DFT), is used. Due to of the
.Q$ separability of the Fourier transform, the two-dimensional
Iy
)
‘;1 transformation can be accomplished via a series of one-
o
iﬁ dimensional transformations, so the double integral can be
L Py
‘ék ﬁ%& resolved into a double summation for the discrete case. The
)
v
e I1I-14
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‘E equations for the DFT and its inverse are:

o

SN

OO N-1 N-1

[ H(fg,£y) = 2 X h(x,y)exp[-j2m(fyx + f,y)] (3-28)

) X=0 y=0

o N-1 N-1

h(x,y) = 1/N2 3 35 H(fy,f,)exp[+I2/(£,x + £u¥)]
f,.=0 fy =0 (3-29)

E where H(fx,fy) = frequency spectrum, transformed

.k. function in spatial frequency domain

n‘\!

- h(x,y) = function in spatial domain

is fx,fy = spatial frequencies

3ﬁ X,y = spatial variables

5 The variable N refers to the period of the assumed

N

:; recurring sequence in both directions. The assumption of a

\J‘

3 periodic sequence is essential in formulation of the DFT.

K - -

i ‘ED Thus the complex sequence of intensity values is discretized

into an N x N pixel array.

PORIY

b Although the tracking window is dimensioned to 8 x 8
;’ .

< pixels, the array that is processed by the DFT is dimen-
'.\‘
;3 sioned to 24 x 24. This is achieved by padding the data
A
}3 with a border of 8 zeros on each side of the tracking win-
— dow. The purpose of this padding is to reduce the edge
.
.:j effects, aliasing, and leakage conditions involved when
.

.
,Ei transforming finite sequences of numbers (15:18). Due to
T small area of the tracking window, it might not be appro-
5% priate to pad with zeros since the image intensity at the
O
;ﬁ edges of the window might not be essentially zero. To pad
SN such an image with zeros would introduce artificial edge
NN

o

< -
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effects (5:10). However, since the tracking window is
actually part of a much larger field of data from the FLIR,
it is possible to pad the data of the tracking window with
real data instead of zeros and thus minimize the introduced
edge effects.

3.2.7 Shifting Property of the Fourier Transform.
Since the target intensity pattern must be generated from
noise corrupted FLIR data, interframe smoothing is necessary
to attenuate the noise. This smoothing requires the target
intensity profile to be centered from frame to frame since
each pattern experiences different shifts from the center of
the field of view. Successive centered frames of data can
then be averaged to attenuate the noise, while at the same
time accentuating the true target intensity function. Cen=-
tering of each frame utilizes the shifting property of the
Fourier transform as well as the filter's estimated location
of the intensity profile.

The shift theorem for the Fourier transform states that
a linear phase shift in the frequency domain corresponds to
translation in the spatial domain. Because of the assumed
periodic nature of the sampled data, such a phase shift can
be thought of as a cylindrical shift. That is, rotation of
the samples out one side of the interval results in rotating
them into the other side of the interval. This property can
be used to show that the only difference between the cen-
tered image and a translated image is a linear phase shift

proportional to the spatial displacement in the x- and y-

II1-16
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directions as in (3-30), if F(§(x,y)) = a(fx,fy), then

F(§(x-a,y-b)) = a(fx,fy)exp[-ij(fxa + £4b)1 (3-30)

where a = shift of the spatial function in the x-

direction

o
"

shift of the spatial function in the y-
direction

The filter's updated estimate of the location of the cen-
troid of the intensity profile with respect to the center of
the FLIR field of view can be used to determine the negating
phase shift required to obtain the centered image needed for
interframe smoothing.

3.2.8 Exponential Smoothing. The intensity profile of
the target is neither known at any given time, nor can it be
measured directly. Furthermore, the measurements that are
available are corrupted by FLIR measurement noises as well
as background noise. It is assumed that for most sampling
rates, these corruptive noises tend to change significantly
faster than the target intensity pattern from sample period
to sample period (12).

A memory efficient, exponential smoothing algorithm was
used to exploit this property. It captures the essence of a
true finite memory averager without the need for storage of
all the previous frames of data. This algorithm can be

expressed as (1):

2(t) =ay(t) + (1-a)Q(t-1) (3-31)
where 2(t) = current averaged value

y(t) = current data frame

II11-17
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previous averaged data frame

(o]
o
]
'_.\
1]

R
[}

smoothing constant, 0 { a < 1

The smoothing constant, a, can be adjusted to account for
$§¥ the dynamics of the image. For slowly changing images, a
‘pt smaller a would be appropriate, while a rapidly changing
image requires that the most recent frames of data be
weighted heavily. An a should be chosen that gives the best
performance characteristics for all expected image
variations. Appropriate values for a are: 0  a < 1.

The necessary operations required to perform interframe
smoothing have now been defined. A method for centering the
intensity profiles and smoothing the data to attenuate the
effects of noise has also been presented. The following
operations are performed to get a centered intensity profile
in the spatial domain.

1) The Fourier transform of the raw FLIR measurements

is calculated

2) The appropriate negating phase shift is applied to

center the image in the frequency domain based on

the extended Kalman filter's estimate of the
location of the centroid of the image

" 3) Interframe smoothing of the centered data is
performed

4) The predicted target centroid position at the next
sample time, g(t-+l‘), is the sum of the predicted
position due to éarget dynamics and the predicted
position due to atmospheric disturbances. In
equation form,

R(t1,17) = Rayn(tie1™) * Rappltivg”)

However, as stated in Chapter I, control is applied
at each sample time to zero the predicted dynamic
states. That is, the FLIR is pointed so the center
of the FLIR field of view points toward the

I11-18
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predicted target centroid position due to target
dynamics. So now, the intensity shape function is
evaluated at the states after control has been
applied,

R(ti417 ) = Rapp(tien”)

where the superscript ¢ denotes after controller
application

5) The inverse Fourier transform is performed to obtain
the intensity profile
3.2.9 Derivative Property of the Fourier Transform. 1In
Section 3.2.4, the derivative of the intensity function with
respect to the states was shown to be necessary to perform
filter updates. This can be easily accomplished in the
frequency domain, where differentiation in the spatial do-
main becomes simple multiplication by j2 (f, + fy). This

process can be described by:

F{dh(x,y)/3x] j2xE Flh(x,y)] (3-32)

Floh(x,y)/dy] = j2mf Flh(x,y)] (3-33)

The necessary variables to propagate and update the
estimates of the extended Kalman filter tracker have now
been presented. The next sections of this chapter will
cover the linear Kalman filter/correlator tracker configura-
tion shown in Figure I-2, which shares many of the same

processes described above.

3.3 Linear Kalman Filter/Correlator Tracker

As stated in the introduction to this chapter, a desire
to obtain an algorithm that was less computationally

burdensome to implement than a high-measurement-dimensioned

I1I-19
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extended Kalman filter led to the investigation of the
feasibility of using an enhanced correlator and Kalman
filter in the same tracker. The correlator can be
considered enhanced because it uses the estimated intensity
function as a template against which to compare the new
target information. Also, thresholding is performed on the
cross-correlation to reduce the likelihood that false peaks
will skew the estimate of the point of maximum correlation.
This allows the correlator to incorporate a priori informa-
tion about the target into the algorithm instead of
operating solely on the collected data, as well as providing
a better target template than the previous frame of raw FLIR
data. Correlation of the template and the target informa-
tion is used to estimate the relative position offsets from
one sample period to the next. These pseudo-measurements
are provided to the linear Kalman filter, which uses them to
generate a new es*imate of the target intensity function and
target centroid lccation. Although Millner (13) investi-
gated many different correlation techniques, the FFT method
exhibited the best performance characteristics and was the
method employed for this research.

3.3.1 FFT Correlator. The correlator used in this
study computes the cross correlation of the template, which
is the estimated target intensity function positioned at the

best estimate of centroid offset (Q[g(ti €1), and the raw
data from the FLIR. The FFT can be used to perform the

cross-correlation as illustrated below:

I111-20
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T F = G(f :

o (g(x,y)] G( xrfy) (3
I Fll(x,y)] = L(fy,£y) (3

_— = *

tg;‘ Flg(x,y)*1l(x,y)] = g(fx,fy) ° L (fx,fy) (3

L where g(x,y)*1l(x,y) = cross-correlation of the two

B dimensional spatial sequences

g(x,y) and 1l(x,y)

)

S Q*(fx,fy) = complex conjugate of the Four:

.x;y transform of the sequence 1(x

i By taking the inverse FFT, or IFFT, of Equation (3-36),

A

L cross—correlation is obtained:

ﬁi; R(x,y) = g(x,y)*1(x,y) = F-l[g(fx,fy)'é*(fx,fy)] (3-

Once the cross-correlation, R(x,y), has b

determined, it may be necessary to process it wit

5%‘ threshholding function. 1If any one element of R(x,y)
hY

S o less than some pre-selected fraction of the element

maximum correlation, then it will be considered as hav

poor correlation information and be set to zero. 1

;i:j should reduce the likelihood of false peaks biasing
,5&; estimated offset between the template and the target d:
.7?2 While using a true maximum correlation finder wo
Ei; eliminate this source of error, it is not attractive
;i} implement due to such problems as ambiguity of multi
t;it peaks and heavier computational loading, so a correlat
%k; peak was "found" by a center of mass correlation.

'iﬁz After threshholding, a centroid summation was use
;1' locate the center of mass of R(x,y). This centroid

assumed to be a good indication of the peak location.
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location of the autocorrelation centroid is calculated in

either the x- or y- direction using the following equation:

N
z: i-amp;
i=1
C 2 =—cccmcccccca——
5
amp
i=1 * (3-38)

The calculated position of the centroid of R(x,y) is
the correlator's estimate of the offset of the target from
the center of the data frame. This information is now the
"measurement” passed to the Kalman filter. The appropriate

measurement equation is:

z(tj) = Hpxp(tj) + vpl(ty) (3-39)

Xpc XaC
Ypc | *| Yac

= the estimate x- and y- coordinates
of the centroid of the target intensity
function as estimated by the correlation
algorithm. The estimate of the centroid
location is based on filter predicted
centroid location due to dynamics and
atmospherics.

where z(t;)

the linear combination of
the state variables which contribute to the
measurement elements

Xpl(ty) = [Xp yp Vx Vy ay ay X YA]T
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'.;-_.:-_ Vp(tj) = corruptive noise assumed to be a white Gaussian
R process with statistics
~;:-.‘ e E(Vp(t;)} = 0
%
R E{Vp(t1)¥pT(t4) 3 = Rp(ti)s;
j,(;i-.; Recall that each measurement is considered to be the sum
3 total of the position offsets from the center of the field
o
"_‘:j: of view due to target dynamics and atmospheric jitter, and
oo
3:.'{:::. the corruptive noise.
)
- The appropriate propagation equations for this filter
'1“‘"
-.::::} are the same as those developed earlier for the Gauss-Markov
AN
R target acceleration model. This linear model was used
st because it 1s 1linear and, together with the 1linear
L,
T measurement model, will yield a final filter that is totally
N
j::-:f:i linear. Because of the linearity of the equations in this
Lo .
( 6? tracker, standard Kalman filter update equations can be
:-\.:_- :
e used:
<
s :
s K(t;) = Pp(t; )HpT [HpPp(t; )HpT + Rp(t;)]~1 3-40
; k{tj) = Pp(ti )Hp" (BpPp(t; )Hp" *+ Rp(t;) ( )
Ly Rp(ti") = Rp(ty7) + K(tj) [z(t;) - HpRp(t;7)] (3-41)
Al
I3 © Bp(t;”) = Pp(t;T) + K(t;7)HpPp(t;”) (3-42)
LN
o S
where all quantities have been defined previously.
B,
e . o .
o 3.4 Estimation of Dynamic Driving Noise
e
-2 The dynamic driving noise matrix, Qpp: a@s in Equation
(
_\, (3-6), 1is used to model the expected effects of target
P
Y
?}ﬁ:ﬁ motion. Because this motion is rarely constant, a constant
RN
et .
P Qpp Would be less than optimal most of the time for a target
.-.'. .'- exhibiting a wide range of manuevers. Filter performance
R
e I11-23
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L

J-".‘ . 3 . . I .
.-_:.:: would be improved if this matrix could be adaptively set in
:;::j_: AT response to the observed target behavior. This adaptive
: estimation of the noise matrix can be employed for either
NG tracker.

/0 An estimator for Qpp is determined as follows
] (71:Ch 10):

=

o Bplt;™) = @plty bty 1) Pplt; 12Tty t59) + Qpplty_q)
AN

‘- (3-43)
\

\ which is a restatement of Egquation (3-7b), substituting
O

~ S

\,':‘-" Qpp(tj) for the integral; t; for t;,;; and tj_; for tj.

X

J\ P(t;") = Pp(ty”) = K(tj)H(t;)Pp(t;™) (3-44)

Solving for OrDp using Equations (3-43) and (3-44) yields:

I Qrp(ti-1) = K(tj)H(t;)Pp(tyT) + Pplt;™)
S - Bplty,tio)) Pplti g M)epT (t5 ki)
N (3-45)
';:;'C: Only the first term of Equation (3-45) is not readily
o,
)
:;i‘*. available because it is desired to have the Kalman filter
“4 gain reflect the observed target behavior. To incorporate
~_'~‘
\;32 this information into Equation (3-45) using the filter resi-
>,
'\-',‘
“Q-"\ dual, £FI let
,% Rp(t;?) - Rp(ty7) = K(ty)rp(ty) = ax(t;) (3-46)
J'_:
Ve . . .
o, If the ergodic assumption is made, the ensemble average can
o _
. be replaced with a time averager on a single sample, as
! \)‘ ; -I"..’
Sl
AP
h:)q
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E(Ax(t;)axT(t5)3 = /N 3 [8x(ty)axT(£5)]
j=i-N+1
(3-47)

Additionally, the residual sequence has been shown to be a

white Gaussian sequence of zero mean and covariance

[H(t)R(EDHT (t5) + R(t5)] (6:229).
E{Zp(ty)rp’ (t;)) = H(t))R(E;TIET (t5) + R(tj)  (3-48)
- so that

E(AX(t;)AxT(t4)} = K(tj)Elrp(t;)rpT () IKT (t5)

g(ti)ﬁ(ti)g(ti') (3-49)
Combining Equations (3-45), (3-46), and (3-49) gives:

i

A
Qppl(ty) = (/N 3 [ax(t5)axT(t5)1) + Pplt;*)
j=i-N+1

= pltirti ) Pp(tiog®) pllti,tioq) (3-50)

But rather than averaging just for the first term of the
above equation, averaging was performed over all terms for
the N most recent sample periods:
A gi P .
Qep(ty) = 1/N [Bx(ts)ax"(ty) + Pp(ts™)
FD'*i j=iThe1 J J F'™)]
= ®p(ty,k4o1) Bplty-1N)@pT (t,t521)) (3-51)
This is also a closed form approximation to the maximum

likelihood estimate of Qpp to be obtained simultaneously

with a state estimate (7:123).
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To reduce the data storage requirements,

memory approximation to this average was used:

A
Qpp(ti) = KQpp(tj.y) + (1-k)Qppg(t;)

a fading

(3-52)

A
where QFDl(ti) = is a single term in the summation of

Equation (3-51) when j=i

k = parameter which controls the length of

time old estimates of Qpp are
maintained, 0 < k < 1

3.5 Summary

This chapter presented the two tracker configurations

which served as the foundations of this research effort.

The developemnt of how state estimates were propagated and

updated for both trackers was presented. Additionally, the

C:3 use of the Fourier transform to derive the target intensity
. .

function was demonstrated.

The next chapter will discuss addition of a multiple

model adaptive filter structure to the algoritms presented

here.
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::: IV. Multiple Model Adaptive Filter
‘ ‘ f.‘* 4.1 Introduction
‘.'! The studies by Kozemchak (5) and Millner (13) cited in
‘Q earlier chapters used a tracking window much smaller than
-: the entire area covered by each frame of FLIR data. Only an
N 8 x 8 array tracking window for measurement updates and a
E',I 24 x 24 array for data processing (out of an available
i‘-“- 500 x 400 pixel measurement array) were used in an effort to
;_, minimize the computational and memory storage requirements
'.’3;:1 of the tracker (3:4). Unfortunately, limiting the dimen-
:Z‘? sions of the tracker field of view increases the likelihood
_:. that the image of a highly dynamic, c¢lose-range target will
:35 be outside the tracking window during a given sample period.
‘-; @ Such a condition causes the tracker to lose track of the
‘ . target. Any effort to increase the aperture of the single
:}:‘ /filter tracker without simultaneously increasing the array
'. dimensions will decrease tracker resolution. A reduction of
(}_. resolution results in poor tracker performance for benign
é target trajectories.
.' One approach which allows the tracker field of view to
: be expanded without increasing the dimensionality of the
data processing arrays uses a multiple model filtering algo-
rithm. Under this approach, a second identically dimen-
.';j_:I sioned filter is processed in parallel with the original
,:: filter. The differences between the two filters are that
.
"".; the added filter possesses a different model of target
E\ ‘f";' dynamics and larger field of view. By optimally combining
Lt




-t

[
A

5

.
L,

E the estimates produced by the two filters at each sample
% L time, an overall estimate can be created. This structure
(. - will maintain the desirable high resolution for benign tar-
f' get trajectories while allowing the tracker to maintain lock
52 on highly dynamic targets.

b This chapter will describe the multiple model filter
Eg algorithm and how this algorithm was implemented in both the
«3 Kozemchak and Millner form of trackers.

\~

) 4.2 Multiple Model Adaptive Filter Algorithm

? In any tracking scenario there are many parameters
‘i; related to target motion which are highly uncertain. Such
?} parameters may be related to target capabilities and/or
:é target commanded maneuvers. Furthermore, these uncertain
;ﬁ QE? parameters can be grouped together to form, a; a vector
l} - which represents these uncertain parameters. The parameter
)%- vector a lies in a continuous parameter space, as each
ﬁ parameter composing a can generally assume any value over a
@ continuous range of values. To make the estimation of a a
é more manageable task, this continuous space was discretized

into K distinct models for the uncertain parameter vector.

These models are well distributed over the range of expected

! L] .J.
S A

values for a (7:130). The multiple model algorithm consists

[N
s %

of K independent (Kalman) filters, each with its own esti-

mate of the value of a. That is, each filter's model for a

R U AAANINS

contains values for each uncertain parameter, i.e. component

of a, that falls within the range of possible realizations

.y
0y

L 3
NCSN

of that parameter. Given that the filter whose a vector

‘.".".‘.
A

Iv=-2

e s R & &
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33 most closely resembles the true values for the uncertain
Y
Eﬁ :S; parameters should produce the best state estimates, one
-‘\- .:)-‘
{: would, in a multiple filter environment, want to weight the
'kﬂ estimates from that filter most heavily, while weighting
. those from the progressively less accurate models
increasingly lightly.
Pl
ﬁg The multiple model filter structure is shown in
o Figure IV-1 (7:132).
A
d":i
o~
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5.

: As the figure illustrates, the multiple model filter
} consists of a bank of K independent Kalman filters. The
" L filters are processed in parallel, and they independently
, produce their own states estimates based on the incoming
; measurements. When a measurement update is performed at
': each sample time, the residuals of all filters are used to
.>_f_ calculate conditional probabilities which are used to assign
1" the appropriate weighting factors to the estimates of each
” filter.

These conditional probabilities, called hypothesis
f conditional probabilities, are the probabilities that the
X

uncertain parameters, a, have assumed the same values as

those modeled by the kth Kalman filter, akr 9iven the meas-

. urements received up to that time, for K Kalman filters.

: @ (4-1)

w0 Pk(ti) = prob {a = ak | z(ti) = 2i}
‘:';jlf where a = a random vector which can take on values a2,
7 to ag

) 2k = values for the uncertain parameters of the
L kth Kalman filter where k = 1,2,...,K for

'ﬁ K Kalman filters in the filter structure

)

;E Zj = measurement time history up to time tj

S Pk(tj) = weighting factor for tie estimates of the kth
e Kalman filter at time tj

=

L) P a4 a s .

:1 The conditional probabilities at time t; can be expressed as
< (7:131) ¢
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= Prlti) = f2(¢ti)|a,z(ti-1) (ZilaksZi_1) Pkltj_g)

S K

:':"' 5 / jz:l f2(ti)]a,z(ti-1) (Zilaj2i-q) Pylti-q)

\‘;‘ k = l,2,o--lK (4-2)
S0

‘\':N

o where the denominator is simply the sum of all computed
;3 numerator terms and thus is the scale factor required to
i: insure that the sum of all conditional probabilities is one.

;uﬁ This permits the use of the conditional probabilities as the

‘z weighting factors of the filters' estimates.

5: The conditional density functions of (4-2) may be

J"‘

RS evaluated as:

"&

N,

2 £2(ti)|a,z(ti-1) (2ilakrZj-q)

\\1

% = (2m™2 |aL(t;) |22 expt ¢ ) (4-3)

‘,. @ where { * } = {-O.S_I_'kT(ti)ék-l(ti)_r_k(ti)]

AY

o Iy = residuals of the kth Kalman filter

:::: k=l’2'...K

i)

[Py (t57V H™ + Ryl

F

A
Ty . .
o As stated earlier, one would expect the filter whose model
.'l
3; for a most closely resembles the true values for the uncer-
e tain parameters to produce the best state estimates. That
N
;%ﬁ is, it should have the best behaved residuals, i.e. the most
oS
ff; zero mean, white, Gaussian, of covariance 2qual to the
2 computed value of Ay (7:133), It is the size of the resi-
-~ -
‘;" duals relative to the filter's computed estimates of the
NS
ig variance of the residuals errors (via A = [HPHT + R]) that
‘F v indicates which is the "correct" model for a.
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As illustrated in Figure IV-1, all the filter estimates

are combined to form

K
3(t1+) = égigk(tk+)pk(ti) (4-4)

The conditional covariance of 3(ti) can be expressed as:

K
P(t;%) = k}_‘,lpkwi) (P (ti™) + (R (th) = ("))
x (R (t1%) = (g5 (4=5)

It is not absolutely necessary to compute (4-5) in the
online algorithm.

As stated earlier, the filter which consistently pro-
duces the smallest residuals relative to its own estimates
of its errors that is weighted most heavily. Therefore, it
is important that there be significant differences between
the residuals from this "best" filter and the residuals from
the other mismatched filters. Failure to obtain such dif-
ferences could cause the algorithm to assign inappropriately
large probabilites to incorrect models of the uncertain
parameter values which will result in poor performance. In
terms of implementation, this means that each filter in the
algorithm should be tuned for optimal performance when the
true values of the uncertain parameters are identical to its
model for those parameters. When tuning these filters, one
should avoid a "conserv-tive" philosophy, that is, adding

large magnitudes of pseudonoise to dynamics. This would

IV=-6




"hide" the inadequacies of the target dynamics model.
Finally, care should be taken when calculating the
hypothesis conditional probability values. As can he seen

in Equation (4-2), the current value of the conditional

- " ‘»J.,..v-..' T
F000A - BRI

Ed

probability is the product of the conditional density of

.l
L
2

Equation (4-3) and the values of the conditional probability
at the previous time, divided by the sum of all such pro-
ducts for the K filters. This means that if the conditional
probability is allowed to go to zero at any one time, all
subsequent values of the conditional proovability for that

filter will be zero. This will effectively shut off all

. SO PN
RN G A N

future contributions from that filter's estimates into the

.

., overall multiple model filter estimate. This could reduce

e
Y

. the overall filter's ability to respond to future changes in

£

L'

o
.
'@,

the true parameter values. Consequently, each conditional

Iv-7

:? probability was artificially bounded to keep it from con-
ii verging to zero (7:135). Another factor which motivated
ﬂ_ using a lower bound on the conditional probabilities was
E; natural damping effect on the conditional probabilities
;5 imposed by the structure of Equation (4-2). Because the
_t current conditional density function is multiplied by the
'; previous value of the conditional probability, there is a
;Z certain amount of lag before the filter responds to changes
;? in the true parameter values. By setting the lower bound to
i? a value of 0.01, it was possible to keep the conditional
?a probabilities from converging to zero while simultaneously
3 improving the multiple model filter's ability to respond to
=

>

L’
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sudden changes in the true parameter values. This value for
the bound was chosen based on actual test results of the
program. After lower bounding each probability, the resul-
tant probabilities are rescaled so that their sum is kept at

one.

4.3 Implementation of the Multiple Model Algorithm

The multiple model algorithm just described was imple-
mented in both the Kozemchak and Millner tracker formula-
tions. While the means of implementation differed because
of the inherent differences in the structures of both
trackers, certain characteristics are shared by both.

In both filter models, the structure of the original
filter and of the truth model as described in Chapters I1I

and 111 remains unchanged, Also, with the exception of the

%

I,
¥
i

inclusion of the second filter and the asscciated algorithms
needed to combine the estimates via the multiple model
algorithm just described, the structure of each tracker
remains as outlined in Chapter I.

FLIR measurements for the original small field of view

T
A B
P

are generated as before. Measurements for the larger field
of view are generated by taking the 24 x 24 array with the
same field of view center as used for the original smaller
field of view and averaging the intensities within each
3 x 3 pixel area within that original region, to create an
8 X 8 measurement array for the larger field of view. This
averaging of the intensities over each 3 x 3 pixel was done

455 to keep the dimensionality of the filter for the larger

1v-8
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‘2 field of view at the same level as that of the original
I '\ filter; it's pixels are now 60 urad-by-60 urad instead of 20
a urad-by-20 urad, as originally.

' For the larger field of view, the measurement noise of
:; the PLIR was assumed to be spatially uncorrelated because
§' the distance between its pixel centers is now greater than
j two small (20 mrad) pixels in length. Recall from Chapter
: II that spatial correlation was modeled as being non-zero
Jl only for each pixel and its two closest neighbors in all
:}f directions. In addition, the larger field of view makes it
§ reasonable to assume that the target image intensity is
i essentially zero at the borders. Therefore, the larger
E field of view was padded with zeros, as opposed to data.
S Also, all noise contributions to the larger field of view
A @ were calculated as the average of the noise terms of the
13 equivalent area for the smaller field of view.
b Finally, each filter was tuned for best performance at
&‘ different target trajectories. The smaller filter was tuned
'i‘s for best performance at very benign trajectories (trajectory
'3 1 as described in Chapter II). The larger filter was tuned
to accommodate a highly dynamic target trajectory (trajecto-
z' ry 2 as described in Chapter II with a 20g commanded pul l-up
: maneuver). As explained earlier, this tuning was performed
: to create significant differences between the residuals of
the two filters so that the weighting factors assigned to
; the estimates of each filter would accurately reflect the
. e suitability of that filter's target dynamics model to the
i

: 1v=9
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, ; maneuver being performed at that time.

E.i:'\.t oy 4.3.1 Implementation in the Kozemchak Tracker Configu-
?’h“ X ration. In this tracker model, the multiple model algorithm
b3 }: was implemented by rescaling the dimensions of the pixels in
&‘ the second filter. The pixel sizes for the second filter
R were set to be 60 microradians by 60 microradians, which is
:ﬁ a threefold increase in pixel size. Recall from Chapter 1
?;E% that the extended Kalman filter tracker processes the FLIR
e measurements directly, so the increase in pixel size corre-
sponds to the way the FLIR measurement array for the larger
fg.: field of view was created in Section 4.3. This rescaling of
T * the pixel size also necessitated that the dynamics model for
5 the second filter also had to be rescaled.

2 The measurements from the FLIR did not require re-
v Q scaling except for thc aforementioned averaging to account
..§ _ for the larger pixel size. Because of this averaging, the
'i extended Kalman filter measurement vector, z, remains a
;" 64 x 1 vector, but its components are each the average
2. :::. intensities over a 3 x 3 block of the smaller pixels.

:E: Because z is a 64-dimensioned vector, the matrix A in
Equation (4-3) will be a 64 x 64 matrix. This would require
*\‘ that a full 64 x 64 matrix be performed at every sample time
to determine each of the hypothesis conditional probabili-
ties. For a multiple model filter with K Kalman filters,
';3_ this would correspond to K 64 x 64 matrix inversions at
every sample time, assuming each filter is identically di-
;;"‘ :59‘ mensioned. As explained in Chapter II, a desire to avoid
f 7504

af‘, Iv-10
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23 {; doing one such inversion at each sample time required using
the inverse covariance method for measurement update of the

Kalman filter for the single filter tracker. However, cal-

XS culation of the A matrix is explicitly required in the
:'{i multiple model filter formulation.
a0 Two approximations were made to alleviate this problem.
«.“‘ First, the inverse of the A matrix was derived using only
;Sé the diagonals of A (2:24). This approximation was easy to
b implement and requires only 64 divisions instead of the 32
‘ million operations needed to perform a full inversion.
f-:“ Similarly, the calculation of the determinant of A, also
? required in Equation (4-3), requires over 8000 multiplies so
E’ it also required an approximation. Since the magnitude of
-.?ﬁ the determinant is independent of the "correctness™ of the

i g . filter models and it was anticipated that the major differ-
:? - ences between the two filters would be in the residuals, the
scalar term (2w)m/2 |A,|1/2 terms of Equation (4-3) were
s ignored (2:24,7:133).
%«ﬁi{ Another approach to providing a value of 5_"1 would have
,;: been to perform full inversion of those elements of A that
.—’ are associated with the center 4 x 4 region of the field of
\_:’ - view. This central region was chosen because it is the area
@'73‘ where the centroid of the target is expected to be located
(2:24). The A matrix would be treated as diagonal or ig-
l‘i nored altogether, outside of this region.
%&’; Due to the size of the matrices involved, the exponen-
m - tial argument of Equation (4-3) would often exceed the
NG .jw:'}

g X 4 Iv-ll




bounds for the exponential function as implemented on the

computer (2:25). A scale factor of .01 was used to bring
the argument's magnitude down to acceptable levels. While
this scaling reduces the relative ratios between the two
filter conditional probabilities, it was deemed acceptable
until another means of scaling could be found (2:25). The

implemented form of Equation (4-3) was:

£2(t1)]a,z(ti-1) (ZilaksZ3-1) = exp(-0.005r,T(ty)
x A"l ey (t)) (4-6)

For the approximation which uses the 4 x 4 foveal
approximation, because of the reduced dimensions of the A
matrix, no such scaling factor was introduced.

Finally, in Chapter I it was explained that for the
extended Kalman filter, the filter state estimates were used
to derive the non-linear intensity shape function and the
linearized intensity measurement function. This assumed
that the appropriate control was applied to FLIR so that the
center of the tracking window was located at the predicted
target centroid position due ﬁo target dynamics as shown in

Equation (4-7):

’-tcen(ti+1-) = gdyn(tj_+1-) + &am(ti+1-) {(4=7)
where gcen(ti,l') = predicted target centroid location

zdyn(t1+1—) = predicted target centroid location
due to dynamics. Control is applied
to point the sensor toward this
spot so it is ﬂ:fectively zeroed
out; that is, (ti.1 ©) (dyna-
mic location afﬁﬁ?‘céﬁéro1 is
applied) is zero

Iv-12
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%:} Ratm(ti+1”) = predicted target centroid location
i ’ due to atmospheric disturbances
RN

Because the predicted target centroid location due to
dynamics is zeroed out, the nonlinear and linearized shape
functions are evaluated at the filter's predicted centroid
location solely due to atmospherics.

(Rayn(tis1) * Ratm(tis1) - Xgynltjeg”) = gatm(ti+1:z_8)

However, in the multiple model filter, the FLIR is
pointed such that the predicated target centroid position
due to target dynamics of the combined estimate is at the
center of the field of view. Therefore the intensity shape
function and the intensity measurement function for both
filters must now be calculated based on the fact that the
foveal center is now at some offset distance from the fil-
ter's estimate of the location of the target centroid. The
nonlinear and 1linearized intensity functions are now
evaluated at:

Raynk (ti+17) * Raemk(tier?) '3dyn(adaptive)(ti+1-)(4_9)

for the kth filter.

For very severe target maneuvers, the difference bet-

ween the position estimates of the small field of view

5@% filter and those of the multiple model filter become so
%;% large that cylindrical shift of the image approaches a
?gg complete cycle. At this point, the small field of view
}%ﬁ G%@ filter will diverge. Because of the lower bounding on the
AR Iv=-13
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conditional probabilities of each of the filters, this will
eventually cause the whole algorithm to diverge. To avoid
this condition, the states of the small field of view filter
were set to the appropriately rescaled values of the large
field of view filter when the magnitude of the shift ex-
ceeded 3.0 pixels in magnitude. 1Its error covariances were
set at levels so the filter would undergo another acquisi-
tion cycle. The conditional probabilities were kept at
their current values to indicate low confidence in the small
field of view filter's state estimates.

4.3.2 Implementation in the Millner Tracker Configura-
tion. In the Millner tracker model the rescaling needed to
accommodate the larger field of view was accomplished within
the correlator, and was transparent to the linear Kalman
filter. Recall from Chapter I that the correlator produces
"measurements” for the Kalman filter by calculating the
offsets from the center of the field of view. Since the
correlator provides these estimates in units of pixels, the
output of the correlation algorithm for the larger field of
view was multiplied by a factor of three prior to being
provided to the associated Kalman filter.

Unlike the implementation of the multiple model algo-
:ithm in the Kozemchak tracker model, the conditional proba-
bilities can be calculated exactly as outlined in Equations
(4-2) and (4-3). This is because A is now a 2 x 2 matrix
since the measurements to the Kalman filters are offsets

from the center of the tracking window.
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4.4 Summary
This chapter described the reasons for adopting the

multiple model filter algorithm and the structure of the
algorithm. It also explained how this algorithm was imple-

mented with the existing tracker configurations.
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E?#% V. Performance Analysis

A

%f@ ig}f 5.1 Introduction

¥ ﬂ This chapter presents the tracking performance of the
;yf two tracker formulations against the target trajectories
%iﬁ descirbed in Chapter 1I, after incorporation of the multiple
$mﬂ model filter algorithm. The first section of the chapter
i.% discusses the figures of merit used to evaluate tracker
ifrﬁ performance. The next section describes the performance
SN plots generated by each set of computer simulations. The
third section of the chapter lists the parameter values
XﬁV assigned to the truth and filter models used in this re-
}?5 search. These values were chosen on the basis that they
;:g provided the best model of true target behavior and/or they
iﬂq were shown to result in best tracker performance in the
,;\:w; @ studies by Kozemchak (5) and Millner (13). The final sec-
g:} tion of this chapter discusses the results of the computer
VE%E simulations using both the figures of merit and the perform-
gﬁg ance plots.

|

Bty 5.2 Derivation of Tracker Statistics

Statistics on tracker performance were gathered using a
Monte Carlo analysis technique. Previous studies by Harnly
and Jensen (3) and Flynn (2) have shown that a total of 10
Monte Carlo runs will exhibit reasonable convergence of the
error statistics to the actual error statistics of an infi-
nite number of runs. Each Monte Carlo run simulated 5

seconds in real time for a total of 150 frames of data at
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the 30 Hz sampling rate.

In the tracking problem, one of the quantities of
interest is the error committed when estimating the target's
true position due to its own dynamics. This error reflects
how well the internal filter dynamics model performs against
a target performing a wide variety of manuevers. Statistics
were also kept on the accuracy of the tracker's estimates of
the target centroid. These statistics are of interest be-
cause errors in the estimation of the target centroid will
affect the accuracy of the estimated target intensity shape
function in the extended Kalman filter tracker, and the
target reference image in the linear Kalman filter/correla-
tor tracker. Errors in the estimated intensity function are
important because this function is used when updating filter
estimates each time new information is received from the
FLIR. Errors in the target reference image will affect the
correlation process in the linear Kalman filter/correlator
tracker.‘ This will produce less accurate offset quantities
(the pseudo-measurements for the linear Kalman filter),
thereby affecting the accuracy of the tracker.

All of the above statistics were kept for instances
before and after measurement incorporation. By comparing
the errors committed before and after the filter estimates
are updated, it is possible to evaluate how well estimates
of target position are improved each time information from a

frame of data is received.
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The sample mean errors of the filter state estimates

are calculated as follows:

N N
Exd(ti) = 1/N kzl[xdk(ti) - Rgex(ti)] = 1/N kzlexdk(ti)

(5-1)

sample mean error (i.e. ensemble
average error over all simulations)

in x-dynamics position at time tj

where Eyq(tj)

R3fk(ti) = multiple model filter estimated x-
dynamics value at time t; for
simulation k

X3k (ti) = truth model x-dynamics value at time tj
for simulation k
eydk(tj) = error in x-dynamics position at time tj

for simulation k

N = number of Monte Carlo runs

and the sample variance of the error is given by:

N —
Oga(ty) = 1/(N-1) kglexdkz‘ti’ = [N/(N-1)1 Egq°(ty)
(5-2)

where the quantities are as defined above. The two equa-
tions, (5-1) and (5-2), may be generalized to perform sample
mean error and variance calculations for the errors
committed when estimating the y-dynamics position, and the
x- and y- centroid location coordinates. These errors are
expressed in FLIR image plane coordinates and describe off-
set from the center of the sensor field of view. The units
of the errors are pixels, with each pixel being 20 rads in

length.
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In addition to averaging the errors over all Monte
Carlo runs, time averaging was performed on the mean errors
and standard deviations. This temporal averaging was con-
ducted from t=0.5 seconds to t=2.0 seconds for trajectory 1
evaluations, and from t=3.5 seconds to t=5.0 seconds for all
other trajectories. The earlier time frame for trajectory 1
evaluations was selected because it allowed the filter tran-
sients to die out while avoiding the minimum range/maximum
passing rate condition that occurs near the end of the
simulation. In this condition, any filter tuned for a
benign target trajectory begins to exhibit markedly degraded
performance. The later time frame chosen for the other
trajectories allows the filter transients due to manuevers
initiated at t=2.0 seconds to die out completely before time
averaging begins.
This time averaging allows presentation of the data in
a compact, tabular form. However, temporal averaging can
also result in misleading figures of merit. For instance,
if the errors should follow a ramp function from negative to
positive values over the period of temporal averaging, a
misleading sample mean error of approximately zero will be
the result. This figure could lead to an erroneous assump-
tion that an unbiased estimate was being generated by the
filter. Therefore, care should be taken before making
sweeping generalizations based only on the figures :  2sented

in the tables. r this reason, the performanc. ; »>ts of

the simulation:s ‘e included in Appendices A, B, and C.
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"\E These plots are grouped according to trajectory type
}:i e and according to severity of the maneuver within those
- groups. The performance plots for trajectory 1 evaluations
'-'\1 are followed by those for trajectory 2, trajectory 3, and
"j_" son on. Within those groups, the plots for a 2g pull-up
':' maneuver are followed by those for the 10g pull-up maneuver,
fﬁ and then the 20g maneuver. Still further, the plots of the
'; multiple model filter are followed by those of the small
*W‘ field of view filter, and then those of the large field of
%:g view filter. Appendix A contains the plots for the linear
":E Kalman filter/correlator tracker. Appendix B contains the
u.. plots for the extended Kalman filter tracker using the
-:.;»: Gauss-Markov target acceleration model. Appendix C contains
;:9:: the plots for the same tracker as Appendix B, but these
. . @3 results are for the constant turn rate target acceleration
::i - model.

e

1:\ 5.3 Performance Plots

\‘;:-; As mentioned in the previous section, performance plots
E:: of the simulations are generated to prevent possible misin-
‘:f": terpretations of the results caused by the temporal aver-
:«_ aging of the statistics. These performance plots are of the
\ x- and y- dynamics mean errors, and the x- and y- centroid
:f:\‘:': mean errors; plus and minus the standérd deviation of the
,;-.:.: respective errors. Because of the large number of cases run
"3 during this research, only the x- and y- dynamics mean error
;.% (plus and minus one standard deviation) plots at both before
\;: *‘:; and after measurement incorporation are included in this
4.; 7
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E;} document. This is due to the fact that: (1) estima
“) true target states xg and yq are of primary importan
{?' St tracking; and (2) it is in fact easier to estimat
;ﬁ position of the apparent target centroid than to ide
'?ﬁ the individual components of Equation (2-1). The num
iﬁ plots was further pared down by including only those
:Ei which illustrated important trends. For example, most
:E% involving target maneuver will have plots only for t

axis, which was the direction of the maneuver.

zg Examples of the types of performance plots genc
;% are Figures V-1 and V-2. These are plots of the y-dy
ii mean error plus and minus one standard deviation.
':\3 these figures, it is evident that the maneuver was ini
::‘ at t=2.0 seconds. At that point, a dramatic incre:
:;v (g? mean tracker error is exhibited. It can also be see
‘é? it takes the filter some finite amount of time to re
;g Figure V-1 is a plot of the y-dynamics error statist
a the time prior to measurement incorporation, or t]
minus" error. Figure V-2 is a plot of the same qua
but at the time after measurement incorporation, or t
i, plus” error. To illustrate how well the filter improv
g; target position estimates each time measurement infor
g? is received from the FLIR, note the mean peak err:
- Figures V-1 and Vv-2. The mean peak error is approxir
?3 -7.0 pixels for the minus time, and is only -3.8 pixe
j§; the plus time. Pixels are defined as before, witl]
if . pixel measuring 20 prad in length. The values of th
SRR
a
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error and standard deviation are generated by applying Equa-

tions (5-1) and (5-2) to the data at each sample time for

each Monte Carlo run.

5.4 Parameter Values

In order to allow direct comparison of the results
obtained for the extended Kalman filter tracker and the
linear Kalman filter/correlator tracker, both trackers were
presented with as identical as possible truth model repre-
sentations of the target. Therefore, the truth models of
both the extended Kalman filter and the linear Kalman
filter/correlator trackers were set so they possessed iden-
tical descriptions of target shape and intensity, as well as
identical models for background and FLIR measurement noises,
atmospheric jitter, etc. On the other hand, the parameter
values used in the filter models for the respective trackers
will vary somewhat with the tuning done for each tracker.

5.4.1 Truth Model Parameters. For all simulations, the
initial inertial parameters of the target in the inertial
reference frame were:

Inertial’position: x 5000 m

Yy =500 m
z = 20000 m

Inertial velocity: vx = —1000 m/s

<
[ ]

Inertial acceleration: ay

[ ]
o0 O [=Y o]




3 I
‘.

.
-~

:.' :,.1" .
o _8s_

Y %

[\l

LEINEY

-
s
.

 ~

F

.45
! 0-n!
a

aa

All trajectories described in Chapter II start from these
initial conditions. The input measurement variance, which
includes both the background and FLIR noises, was set to a
value of one. This parameter value was expressed in terms
of (intensity)2 units, which are arbitrarily chosen units
used to indicate the strength of the image received by the
FLIR. The maximum intensity of each target hot-spot was
given a value of 20. The resulting signal-to-noise (SNR) of
all simulations is 20, which is defined by the following

relationship for this application:

(maximum signal intensity)

SNR = —- -— —— -—

(rms background and FLIR noise intensity)

(5-3)
This value for the SNR is representative of realistic track-
ing scenarios (3). The variance of the atmospheric jitter
was set to 0.2 pixels2. This value may be somewhat low
éompared to the true level of atmospheric jitter in the real
world so it'may be advisable to investigate the sensitivity
of the algorithm to different levels of atmospheric jitter
in future studies. Finally, the multiple hot -spot target
were defined using circular intensity contours with a glint
dispersion parameter of 2.0 pixelsZ2.

5.4.2 Data Processing Parameters. In the data pro-
cessing algorithms of both tracker types, a number of para-
meters could be varied to alter tracker performance. One
such parameter determines the nature of the padding done to

the 8 x 8 tracking window discussed in Chapter I. Recall
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E&:! that a 24 x 24 array is processed instead of the 8 x 8 field
}:; f:\'.‘;:' of view to generate the FFT's. A common engineering prac-
:‘ ’ - tice would be to pad the field of view by surrounding it
\E with a border of 8 rows and columns of zeros. However, as
(\2 stated earlier, this would introduce artificial edge effects
if the target intensity function is not very close to zero
. at the borders of the 8 x 8 tracking window. Since measure-
J ment data of the regions outside the tracking window was
¥ available, there was the luxury of being able to pad the
‘a tracking window of the smaller field of view with real, but
:,‘ noise-corrupted data, instead of zeros. On the other hand,
" the increased size of the larger field of view motivated
ﬁ padded it with zeros at all times since it is better to pad
;, X with zeros versus the noise value, if the signal has gone to
b .' g zero at the borders of the tracking window.
_:.:3: High frequency spatial frequency filtering could also
}.E be performed for both tracker types when deriving the target
intensity profile. This can be accomplished by zeroing out
\.‘;,’ a specified number of high frequency components within the
ii\% Fourier transform of the image. For a target whose inten-
sity is slowly changing in the spatial domain, this type of
j’é’ filtering will generally enhance tracker performance. Con-
2$f,( versely, for a rapidly changing target intensity functiorn,
_ this type of filtering will produce errors in the target
%"ﬁ reference image and degrade tracker performance (13:106).
.‘*;j In both tracker configurations, it was inappropriate to
;' {};‘c perform high frequency filtering for the larger field of
W
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Eg view since, with pixel scaling, the large field of view
ﬁ e signal spatial frequency content goes to three times the
;? ot highest frequency as seen in the original field of view.
’$3 Finally, the relative weighting parameter used in per-
}% forming exponential smoothing can be varied to account for a
" rapidly changing target intensity profile. This parameter
EE was set to 0.1 for both tracker formulations since it was
‘? found to yield best performance in previous studies (5,13).
> This indicates that the target intensity function is
:ﬁ expected to be slowly varying relative to the 30 Hz sampling
ég rate.
;; 5.4.3 Filter Parameter Values. As stated in Chapter
ﬁk IV, each filter in both tracker types was tuned for optimum
;; performance at a specified degree of target motion. The
.j: ‘zb smaller field of view filters were tuned to achieve best
Qj performance for constant velocity frajectories. The large
ffﬁ field of view filters were tuned for best performance for
f the 20g pull-up maneuver. During this research, it was
L% found that explicitly tuning the larger field of view for a
ég 20g pull-up manuever made it incapable of maintaining lock
Ti“ on a constant velocity target. Therefore, this filter was
;? tuned for best performance for a 20g pull-up maneuver while
ié still being able to track a constant velocity target. Be-
:; cause this study was intended to be a feasibility study for
’% the multiple model adaptive filter algorithm, no investiga-
'% tions were made to determine the increase in rms error
;; e caused by the need to maintain lock on a constant velocity
VIS
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target. 1In a tracking scenario, this philosophy makes sense
since the wider aperture would also be used for target
acquisition, where the targets would be at long-range and
exhibiting very benign behavior. The performance achieved
from the individual filters under these tuning conditions
will be presented in Table V-1 and associated figures.

For all filters, atmospheric jitter was modelled with
an assumed correlation time of 0.07 seconds. This value was
chosen based on the results of previous research efforts
(3,12,14).

For the extended Kalman filter tracker, the values for
the parameters for the smaller field of view filter were
selected on the basis of those values which gave best per-
formance for the benign target trajectories in Kozemchak's
(5) study. A filter time correlation constant for filter
acceleration dynamics, using the first-order Gauss-Markov
model, was set to 1.5 seconds, with the assumed target
acceleration white noise strength set to 300 pixelszlsecs.
As before, pixels are defined to be 20 urads in length.
Except where explicitly stated, this definition of a pixel
will hold at ail times. Parameters for the larger field of
view will also be expressed in these pixel units even though
the actual picture elements of the larger field of view
measure 60 mrads in length. On the basis of tuning runs
performed, the time correlation constant for filter accel-
eration dynamics was set to 1.3 seconds for the Gauss-Markov

model. The target acceleration white noise strength was set

V=13




to 5000 pixelsz/sec5 for both the constant turn rate and
Gauss-Markov target acceleration models for the larger field
of view filter. The similarity of the values for the two
disimilar acceleration models is due in part to the need to
maintain lock on a constant velocity target.

For the linear Kalman filter/correlator tracker, Mill-
ner's (13) results indicated that a dynamic correlation time
of 3.5 seconds and an assumed target acceleration white
noise strength of 150 pixelszlsec5 achieved best performance
for the small field of view filter. The large difference in
the dynamics correlation time for the two tracker types
indicates that perhaps the larger correlation time for the
‘linear Kalman filter/correlator tracker could be reduced to
be more consistent with the value of the same parameter for
the extended Kalman filter tracker. This was not investi-
gated during this research and should be explored in any
future study. Test runs of the larger field of view filter
indicated it performed best for the 20g pull-up maneuver
when these parameters were set to 1.3 seconds and 2000
pixels2/secS respectively.

Before presenting the performance capabilities of the
individual filters at their tuned-for conditions, a
narrative on the organization and presentation of the
information would be helpful. First, each case, or
simulation is uniquely identified using a mnemonic code.
This code is described in Figure V-3. The figures of merit

presented in the tables are defined as:

V-14




N
BT
wie Xg = time-average of the mean error for the true
%ﬁi position in the x-direction from time t=3.5
2 s seconds to t=5.0 seconds (t=0.5 seconds to t=2.0
~§’_ Q&g seconds for trajectory_} targets) at time minus

and plus (similarly for yg)

an

Oxo, = time~average of the standard deviation of the
error for the true position in the x-direction
from the time t=3.5 seconds to t=5.0 seconds

3

2

e

,Q (t=0.5 seconds to t=2.0 seconds for trajectory 1
* targets) at times minus and plus (similarly for
‘ ‘ ‘Ye )
BN Cx, and gCxe = errors as degined above for the cen-
32, troid position (similarly for cyg and cyg)

& A

The performance capabilities of the respective filters

A
P48
@f% are presented in Table V-1. The first three cases presented
;%j in the table are those of the small field of view filters.

Recall that this filter was tuned for the constant velocity
trajectory. The performance plots of the x-dynamics error
for these cases are Figures A-2, B-2, and C-2, respectively.

The Millner linear filter/enhanced correlator tracker

exhibits lower sample mean errors but with larger standard

deviations. From the performance plots for the extended

{%? Kalman filter tracker cases, the poor tuning of the small
;jd field of view filter is clearly evident. The estimates show
gij a drifting behavior that indicates that the filter dynamic
ﬁ?ﬁ driving noise was set too low. Unfortunately, this poor
fﬁg tuning condition (based on tuning values established in
Sﬁg reference (5]) was not noticed until late in this research.
ES‘ At that point, while it would have still been possible to
?H: perform a total retuning of the filter, for this feasibility
ﬁ;; study, there was some concern that increasing the level of
R igﬁ the filter dynamics driving noise would reduce the differ-
< >

:
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;fﬁa Each simulation is uniquely identified with a mnemonic code.
DA This code will consist of up to eight characters and
}i} e describes the tracker formulation used, target acceleration
’}pi igq‘ model, trajectory type, and whether the multiple model, the
! small field of view filter, or the large field of view
1GN, filter was used in the simulation.

PR

The code generally follows this pattern:

N L 10 'I;'Z MF

R {———— = MF - multiple model adaptive filter

{3} = F1 - small field of view filter only

ﬁﬁq = F2 - large field of view filter only

’} w ‘-.
SR
" l————— = T1 -~ trajectory 1

KA = T2 - trajectory 2
\Sk = T3 - trajectory 3

Y = T4 - trajectory 4
R
i

ki g level of maneuver (i.e. 10 g's)

:_\_1.

D

iy

5N, = L -~ linear Kalman filter/correlator
SO tracker, Gauss—-Markov target accelera-
HEN tion model
. e:: = G - extended Kalman filter tracker, Gauss-
ﬁ\; o Markov target acceleration model

e = C - extended Kalman filter tracker,

) constant turn rate target acceleration
NN model
AR

Tee Special initial codes:
RN -
- :_ LA
Mol GA tracker with ad hoc changes to conditional
{1 CA probabilites
200 LS linear Kalman filter/correlator tracker, SNR = 10
"»

.n.'.l}‘ﬂ 2
. _@ ‘.. > 4 _8

Figure V-3. Simulation Mnemonic Codes
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ences between the large and small field of view filter

y : models, thus making it difficult for the multiple model
if - adaptive filter algorithm to select the correct filter model
:EE to match current target behavior. This lack of significant
:%f differences hampered the early stu.dv on the multiple model
f‘: filter algorithm by Flynn(2). Due to this poor tuning of
\:S the smaller field of view filter for the extended Kalman
:;% filter tracker, the Millner tracker formulation also exhi-
f l bits smaller sample rms errors for the benign trajectory.
;3% . However, in a laser weapon system, it may be more important
igg to minimize the area painted by the laser so it may be more
:¥ desirable to have smaller standard deviations than small
?%& offset errors; i.e. small standard deviations may be more
E;F essential than small mean errors. One final characteristic
ir. @E? evident in these performance plots is the increase in the
‘Eﬁ mean errors during the last 0.5 seconds of each simulation.
i;& This increase is due to the minimum range/maximum passing
o rate condition alluded to earlier in this chapter.

‘f.: The second group of cases cited in Table V-1 are those
é5' of the large field of view filters for the 20g pﬁll—up
:iv maneuver. The performance plots for these cases are Figure
'Eg A-10, B-10, and C-10. Only the y-dynamics error plots are
o

‘ﬁy - presented since the maneuver took place in that direction.
fﬁ{ As before, the extended Kalman filter tracker has much
333 smaller sample standard deviations. However, that tracker
g%g formulation, using the contant turn rate acceleration model,
.‘ e demonstrates far superior performance. As shown in the
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performance plots, its peak mean errors are smaller and the
bias of the estimate once the filter transients have settled
down is very small. The performance plots of the Mlllner
tracker formulation (Figure A-10) show similar mean peak
errors with and unbiased estimate after the transients have
died out. But comparing the length of time it takes the
filter to recover from the manuever shows that the extended
Kalman filter tracker using the constant turn rate accelera-
tion model has a much shorter transient time. Figure B-10,
which is of the same tracker formulation but with the Gauss-
Markov model shows the same good transient behavior but with
larger peak mean errors. The figure also graphically illus-
trates the large bias that appears in Table V-1. This large
rms error indicates the inadequacies of using the first-
order Gauss-Markov target acceleration model for tracking

highly dynamic targets.

5.5 Tracker Performance Against Target Trajectories

Both multiple model tracker formulations were evaluated
against the target trajectories described in Chapter 1II.
For convenience, they are summarized here. Trajectory 1 is
a constant velocity trajectory which maintains the initial
velocity throughout the simulation. Trajectory 2 is a con-
stant g pull-up maneuver. It begins the same as trajectory
1, but the target initiates a constant-speed, constant-g
pul l-up maneuver two seconds into the simulation and main-
tains this maneuver until the end of the simulation. The

cases studied included 2, 10, and 20g pull=-up maneuvers.
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Trajectory 3 is similar to trajectory 2, but inste
continuing the pull=-up maneuver until the end of the s
tion, it terminates the pul l-up maneuver 3.5 second
the simulation. At this point, the inertial velocity
existing at that time are propagated until the end
simulation at S5 seconds. Trajectory 4 is begun &
previous maneuvers, but instead of performing a pu
maneuver, it executes a constant-g turn toward the t
until the end of the simulation.

5.5.1 Evaluations Using Trajectory 1. For this t
tory, Monte Carlo runs were performed to evaluate ti
performance using both filters in the multiple model
tive algorithm; only the small field of view filte:
only the large field of view filter. Recall from Chap
that a claim was made that simply enlarging the ¢t
field of view for all applications would result in j
tracker performance at benign trajectories relative t
achieved using the small field of view filter.

Table V-2 presents the results of these simul:
using the multiple model adaptive algorithm and on
large field of view filter for both tracker types. Re
that the results of the simulations using only the
field of view filter were presented in Table V-1,
corresponding performance plots are Figures A-1 and A-
and B-3; and C-1 and C-3.

The first two cases in the table are for the Mi

tracker formulation. The first of these is for the mu
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model adpative algorithm, the second is for the larc
of view filter only. As expected, the larger field
filter, which was tuned to be able to handle a 20g
maneuver, performed poorly against a benign target
tory relative to the original filter presented in T:
which was expressly tuned for good performance agai
type of target behavior. Comparing the figures of 1
the multiple model adaptive filter and those of ¢t
field of view filter reveals values that are very
indicating that the multiple model algorithm is ¢
weighting the estimates of the small field of vie
heavily, thus maintaining the desired high resol
benign target trajectories. This heavy weightin
small field of view filter also manifests itsel
similarity of the performance plots for the multip
and small field of view filters (Figures A-1 and A-.
tively).

Results for the extended Kalman filter track
rithm are similar though less conclusive due to
tuning of the small field of view filter. 1In this«
larger field of view filter exhibits much lower sar
and rms errors than the small field of view filte
ever, its standard deviations are much higher. The
acteristics are evident in the performance plots, F
3 and C=-3. 1t should also be noted that the multig
filter figures of merit resemble those of the small

view filter (as with the linear Kalman filter/co
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":'::‘ tracker) despite the fact the larger field of view filter
ézﬁ S has smaller rms error values. This characteristic is con-
"-" e firmed by comparing Fig}zres B-1 and B-2, and Figures C-1 and
;T:_-:;Z C-~3. This indicates that the multiple model algorithm was
still able to choose the correct filter model even in this
o, pporly tuned case. those of the larger field of view filter
'E‘-":_ even though it has smaller sample rms error values. This
':‘.‘ indicates that the multiple model algorithm was able to
\‘;- choose the correct filter model even in this poorly tuned
:ﬁi case.
:"f-' 5.5.2 Evaluations Using Trajectory 2. Tables V-3, V-4,
" and V-5 present the results of the simulations for 2, 10,
}.1\ and 20g constant speed, constant-g pull-up maneuvers respec-
a)“ tively. The corresponding performance plots are Figures A-4
.~ thru A-10, B-4 thru B-10, and C-4 thru C-10.
z_f‘f Table V-3 presents the results for a 2g pull-up maneu-
?,-_,[: ver. Along with the results for the multiple model adaptive
filter algorithm, are those for the individual filters.
E::: Generally speaking, the linear Kalman filter/correlator
‘:;: tracker produces lower sample mean errors with much larger
‘ standard deviations than the extended Kalman filter tracker
E_‘t‘é} configuration. 1In this instance, the sample rms errors of
iz::a the multiple model filter in the Millner tracker formulation
; are also much smaller. This is again largely due to the
f'-.?-: poor tuning of the smaller field of view filter for the
::;é Kozemchak tracker formulation. As seen in the performance
’;‘ - plots and the figures of merit, the performance of the
R
fi-r: V=22
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multiple model adpative filter more closely resembles that

of the small field of view filter since its constant velo-
city model more closely resembles the 2g pull=-up maneuver
than does the 20g pull-up maneuver model. The performance
plots also show that the bias for the extended Kalman filter
tracker using the Gauss-Markov model is very large compared
to the biases for the other cases. Finally, the performance
plots for the large field of view filter (Figures A-6, B-6,
and C-6 respectively) show that, because of the large filter
target acceleration white noise strength, the maneuver is
not as evident as in the plots of the small field of view
filter.

Tables V-4 and V-5 respectively, present the results
for 10 and 20g pull-up maneuvers. The performance plots for
these cases are Figures A-7 thru A-10, B-7 thru B-10, and
C-7 thru C-10. Only plots for the y-axis errors are in-
cluded since that is the direction of target motion. Fur-
thermore, only cases using the multiple model filter algo-
rithm and only the large field of view filter are presented
here as the small field of view filter was completely unable
to maintain lock on these targets. For these highly dynamic
cases, the extended Kalman filter tracker exhibits much
smaller sample rms errors than the linear Kalman filter/cor-
relator tracker. For both tracker types the multiple model
filter has slightly worse figures of merit than those of the
large field of view filter by itself. This is due to the

lower bounding of the conditional probabilities discussed in
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Chapter IV. This results in having at least part of the
state estimates being based on the estimates of a filter
with a totally inappropriate model for the current target
behavior. The lower bounding could cause a problem if at
any time either of the filters in the bank should diverge.
During the course of this research, it was found that a
higher setting of the lower bound allowed the multiple model
filter to apply heavy weight to the correct filter much more
quickly, at the expense of a heavier weight on a totally
inappropriate model after the transients have died out.

From the performance plots of these cases, it can be
seen that the extended Kalman filter tracker exhibits better
transient behavior than the other tracker formulation. This
includes a shorter transient in response to a step change in
the target truth model acceleration and lower mean peak
errors as well. This is due to the non-linear nature of the
algorithm as well as the fact that the extended Kalman
filter tracker operates directly with the raw FLIR data
while the other tracker type receives only position offset
information from the enhanced correlator.

In the Millner tracker formulation, the multiple model
as well as the single filter cases performed more poorly for
a 10g pull-up maneuver than the more severe 20g pull-up
maneuver. This is because the large field of view filter
was tuned for best performance for a 20g pull=-up maneuver
while no equivalent filter was tuned for a 10g pull=-up

maneéuver. In other words, the 10g maneuver was a case for
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which no filter model existed. However, no such behavior
was observed for the extended Kalman filter tracker using
either target acceleration model. This could be due to the
poor tuning of the small field of view filter or perhaps the
nonlinearity of the filter itself. These issues should be
investigated in future studies.

At the 20g pull=-up maneuver, use of the constant turn
rate target acceleration model results in superior per-
formance over all other cases. This follows since this
acceleration model has been shown to be a better model of
realistic, highly-dynamic, target maneuvers than the Gauss-
Markov acceleration model.

5.5.3 Evaluations Using Trajectory 3. Tables V-6, V-7,
and V-8 present the results of the simulations for trajec-
tory 3 targets performing 2, 10, and 20g pull-up and con-
tinuation maneuvers. The plots for these cases are Figures
A-11 thru A-17, B-11 thru B~17, and C-11 thru C-17. As with
trajectory 2 evaluations, the results of the multiple model
adaptive filter algorithm and the individual filters are
presented. All of the trends observed in the trajectory 2
evaluations are repeated here. The sample mean errors tend
to be higher than those for the trajectory 2 evaluations
since the period over which temporal averaging is performed
includes the transients created by the termination of the
pul l-up maneuver; thus the plots are particularly important
here for appropriate insights.

Once again, the performance plots shown are only of the

V=28
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y-dynamics mean errors since that is the direction of the
; target maneuver. It is easy to see the termination of the
1 - maneuver at t=3.5 seconds. In the 2g case, the heavy
'_\ weighting of the small field of view filter is still evident
.,-;; in comparisons of the figures of merit and the plots for the
. multiple model filter and the small field of view filter.
_'j The performance of the multiple model filter appears to be
'\ much worse than the performance of either of the individual
.. filters in the Millner tracker formulation. The plots of
_, this case, Figure A-11, show that while the times of the
:_' pull-up and continuation maneuver are clearly evident, the
. standard deviations become very large, especially after
' termination of the maneuver. During this time period, the
. multiple filter is having a difficult time selecting the
. c‘, correct filter model. The obhserved target behavior is that
:b of a constant velocity target buth the approach of the
‘::l:j minimum range/maximum passing rate condition indicates that
. the field of view should be larger to handle a more dynamic
trajectory. No such behavior is noted in the plots for the
< extended Kalman filter tracker, where again the poor tuning
of the small field of view filter may be hindering the
j filter from adaptively reducing the size of the effective
1 tracking window. As before, the extended Kalman filter
i tracker, using the Gauss-Markov model is showing much larger
biases. Finally, as with trajectory 2 evaluations, the high
‘ setting of the strength of the target acceleration white
. noise tends to mask out low g maneuvers.
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5.5.4 Evaluations Using Trajectory 4. Table V.
sents the results of the simulations for trajectory
gets performing 2, 10, and 20g constant speed turns
ever, because early results indicated that perform
the trackers did not vary greatly from the perf«
observed in trajectory 2 evaluations, simulations we:
performed for the linear Kalman filter/correlator t
The reason for the similarity is that, even with
target, the out-of-plane component of the target path
to remain very small due to the short duration of th
lation. At the same time, because the target turns
the tracker during this maneuver, the target intensit
function changes considerably over the simulatio
This demonstrates the tracker's ability to mainta:
estimates of a time varying shape function, and th
tracking performance.

The performance plots of these cases are Figu
thru A-24. The plots of the x-dynamics mean errc
included for the 2g case to demonstrate that the majo
the maneuver still takes place in the y- directio
plots of the y-dynamics error statistics can be comp
those for the trajectory 2 evaluation (Figures A-4
10) to see the similarity of tracker performance for
types of trajectories.

5.5.5 Changes in Signal-to-Noise Ratio. As
earlier in this chapter, the nominal SNR for all simu

was set 20. To test the multiple filter's robustne

V=33
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}ﬁf change in the expected SNR, a few test cases were performed
LY. R

= N C Y

;3? j}i« using the Millner tracker formulation at a SNR=10. No
(i retuning of the filter was done for this lower SNR. This

(R
ra

value also corresponds to a reasonable SNR for a tracking

%

5‘ ‘-. g &y 1y
> P

[
. ’'d

:giz scenario (3). The results are presented in Table V-10 for a
nﬁ; trajectory 2 target performing 2, 10, and 20g pull-up maneu-
ﬁg? vers. The associated plots are Figures A-25 thru A-27. As
EE%E with trajecotry 4 evaluations, these plots can be compared
Yo to the original plots for the trajectory 2 evaluations
figé (Figures A-4 thru A-10), to see the similarity in perform-
}ﬁif ance., While there is some increase in the tracker sample
z

rms errors, it still does a reasonable job of tracking even
the highly dynamic 20g target. Attempts to reduce the SNR

further to a value of unity resulted in completely divergent

filter behavior, as seen previously in the study by Harnly

vy
0h

w8
Y

and Jenson (3) for single hot-spot targets.
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5.5.6 Ad Hoc Changes to Filter Conditional Probabili-
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when a maneuver was initiated. The result is a step change
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‘;: correspond with the step change in the truth model. Because
-
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tempofal averaging of the statistics takes place, this ad
hoc change in the conditional probabilities had little or no
effect on the figures of merit. However, the plots (Figures
A-28 and A-29; B-18 and B-19; and C-18 and C-19) show that,
as compared to the trajectory 2 evaluation plots, there was
little effect on the time it took the filter transients to
die out after the maneuver was initiated. What was changed,
was the mean peak error of each tracker type, which was
reduced by a factory of two. Since this was the only signi-
ficant deviation in the performances of the multiple filter
and the ad hoc cases, it was decided that the multiple
filter performs reasonably well as compared to this theo-~

retical upper bound.
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VI. Conclusions and Recommendations

The multiple model filter algorithm has been shown to
perform well against a wide dynamic range of targets. While
not capable of performing as well as the original tracker
formulations against relatively benign target trajectories,
it does offer the advantage of being able to maintain lock
onto highly dynamic targets that the original trackers were
unable to follow. This increase in tracker capability would
seem to offset the additional memory storage requirements
and computational burden imposed by the multiple model fil=-
ter algorithm. The additional time required to implement
the multiple model filter can be tempered by using parallel
processing techniques to process each individual filter,
instead of processing them sequentially, as was done in this
research.

From an implementation standpoint, it is easier to
incorporate the multiple model algorithm into the linear
Kalman filter/correlator tracker formulation than into the
extended Kalman filter tracker. The linearity of the filter
as well as the low dimensionality of the filter measurement
vector for the Millner tracker formulation made it possible
to implement the multiple model algorithm without any of the
approximations and ad hoc changes necessary to implement the
same algorithm in the extended Kalman filter tracker. The
high dimensionality of the filter measurement vector for the
extended Kalman filter tracker also drastically increased

the memory storage requirements and computational loading of
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e the multiple model filter. Using identical FLIR measurement
-’
:} . algorithms for the computer simulations of both tracker
.

types, the simulation for the multiple model filter for the

A: extended Kalman filter tracker occupied twice as much memory
'ﬁE space and took approximately 30 percent more time to execute
"

- than the same simulation incorporating the linear Kalman
;; filter/correlator structure. For this feasibility study, no
T,

Z; attempts were made to minimize the memory requirements of
~ each simulation other than what would be the result of
{; structured programming techniques. Therefore, the memory
-

j{ required to run either simulation is subject to change and
1.

‘ the differences between the simulations may also change when
#13

‘Q more efficient programming techniques are applied.

e

.Q The results of the computer simulations show that the
‘. ‘jp extended Kalman filter tracker significantly outperforms the
o Millner tracker formulation when evaluating tracker per-
'y formance against highly dynamic targets. Furthermore, the
- constant turn rate acceleration model is superior to the
52 Gauss-Markov model as a model of true target behavior. Even
TS

:i at very benign trajectories, where the poor tuning of the
"

A small field of view filter was a problem, the Kozemchak
P

N tracker formulation possessed much smaller sample standard
“

.

A deviations of tracker errors. For a laser weapon system,
.. A \
o\ this may be more desirable than the lower sample mean errors
*,

:g achieved by the Millner tracker formulation, as long as the
9

;j rms errors of both tracker types are about the same. The
5

. pa, filter transients and mean peak errors were also smaller for
f; Rets
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N the extended Kalman filter tracker. Overall, for this con-
RV
f:é S figuration of the multiple model adaptive algorithm, with
Gy f\.q_:.‘
[ two independent Kalman filters, the improved performance of
M the extended Kalman filter tracker is worth the additional
'\._'\
:13 memory storage and computational burden.
00N
N Recommendations
W,
iﬂ- Further study is recommended in order to investigate
4
\‘
?ﬂ problems encountered or tasks not accomplished in this re-
S, search. These areas include:
;f * Improved filter tuning of the small field of view
'.S'
s filter for the extended Kalman filter tracker
e * Addition of more filters in the bank of independent
a
:3 Ny filters, to imclude additional target dynamics levels,
; tb?
o different fields of view, etc.
0
2
rfj * Implementation of the constant turn rate target
"y
. acceleration model in the 1linear Kalman
A S
;ﬁ filter/correlator tracker
.-::;
b
%f * Realistic changes to the truth model target dynamics.
;: A more realistic model than the step change of the
L
3 truth model at the inititation of a maneuver may show
’J
N that the dynamic range achieved by the multiple model
Ny
o filter is not necessary for realistic tracking
2%
A scenarios.
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* Test trackers against targets whose shape functions are

rapidly changing. This includes targets performing

roll maneuvers as well as non-realistic scenarios where
- 1 the size, shape, intensity, and number of hot-spots is

changing.

* Improved ways of handling the approximation made to
implement the multiple model algorithm in the extended

L Kalman filter tracker

QRP * Extending the length of the simulation to investigate
'-ﬂ\“,

:%% the minimum range/maximum passing rate condition and
WA

WAL

;" the response of the multiple model adaptive filter to
"

:g:" it

NN

AR . * Determine how changes in the sampling rate of the
:3§ GE: simulation affects tracker performance

B

AN

N * Determine the algorithm's sensitivity to different
e b

= settings for the standard deviation of atmospheric
L\l' .

Bﬁ jitter

¥ |

* Determine the algorithm's sensitivity to the value of
2 the lower bound on conditional probabilities
e

:§§ (requiring filter retuning for best performance)

P

;ﬁ * Other robustness studies should be performed to
v

;\k determine the algorithm's sensitivity to target shape,
Q

ﬁ?r

separation of the hot-spots, etc.
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Appendix A
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A
ae
I
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v
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v

. This appendix contains the performance plots for the
N linear Kalman filter/enhanced correlator tracker configura-
DN tion using a Gauss-Markov target acceleration model. These
cases are identified according to the mnemonic code des-
cribed in Figure V-3. The values for the parameters of

gl these simulations are also found in Chapter V.
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- Appendix B

5 .

2 :..;Lf This appendix contains the performance plots for the
2._: extended Kalman filter tracker configuration using a Gauss-
i} Markov target acceleration model. Thes cases are identified
& according to the mnemonic code described in Figure V-3. The
values for the parameters of these simulations are also
{- found in Chapter V.
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e Appendix C

- o This appendix contains the performance plots for the
. extended Kalman filter tracker configuration using a con-
stant turn rate target acceleration model. Thes cases are

identified according to the mnemonic code described in

o Figure v-3. The values for the parameters of these simula-
f} tions are also found in Chapter V.
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Figure C-7a. Performance Plot for ClOT2ZMF
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Figure C-7b. Performance Plot for C1l0T2MF
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Figure C-8a. Performance Plot for Cl0OT2F2
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Figure C-8b. Performance Plot for Cl0T2F2
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Figure C-9a. Performance Plot for C20T2MF
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