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Preface

-This study was part of an ongoing effort at the Air

Force Institute of Technology to design a tracking algorithm

for use with the Air Force Weapons Laboratory's high energy

laser weapon system. The purpose of this study was to take

previously developed tracker algorithms and incorporate a

multiple model adaptive filter algorithm into the existing

structure. This approach was intended to provide adaptive

expansion of the effective tracker field of view, which in

turn would increase the tracker's ability to maintain lock

on highly dynamic, close range targets. (
I wish to express my deepest thanks to my thesis advi-

sor, Dr. Peter S. Naybeck, for his guidance, motivation, and

above all, patience. His willingness to expend that extra

effort to keep this research on track was invaluable to the

completion of this study.

I would also like to thank my family, especially my

parents, whose love and support keep me going when things

aren't going well, and inspire me to do more when they are.

I would also like to thank my fellow classmates in GE-83D,

their friendship made the last 18 months at AFIT a bearable

burden.
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Abstract

Previous studies at the Air Force Institute of Tech-

nology have developed two tracker algorithms which provide

significant improvements in tracker performance against

close-range, highly-dynamic, airborne targets, over a cur-

rently used direct correlation method. Digital signal pro-

cessing techniques are used to derive a target shape func-

tion from available sensor information. In one formulation,

this shape function is used in the measurement update por-

tion of an extended Kalman filter to determine the target

position offsets from the center of the sensor field of

view. In the other tracker, the offsets are derived and

incorporated into the tracking algorithm by using the shape

function as a template for an enhanced correlator/linear

0Kalman filter structure. Combining these offsets with any a

priori target information allows the tracker to produce

better target position estimates than achievable from a

conventional correlator. This research investigates using a

multiple model approach for the adaptive expansion of the

effective tracker field of view as a means of increasing the

K1 dynamic range of the tracker. Two independent Kalman fil-

ters, each receiving measurement information from a shared

* sensor, generate target position estimates. The multiple

models are created by tuning the respective filters for

"best" performance at differing conditions of exhibited

target behavior and differing the physical size of their

respective fields of view. Adaptive expansion of the

xvi



tracker field of view is obtained by summing the weighted

estimates of the two filters.
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ENHANCED TRACKING OF AIRBORNE TARGETS USING
MULTIPLE MODEL FILTERING TECHNIQUES FOR

ADAPTIVE FIELD OF VIEW EXPANSION

I. Introduction

Even though lasers were first developed in the late

1950s, they have generally been considered as part of future

technology by the public at large. Recent advances in laser

technology have allowed their use in everyday life to in-

crease steadily. Today, lasers are widely used in surgery,

scientific laboratories, industry, and military applica-

tions, because of their ability to deliver almost instanta-

neously, finely focused, concentrated beams of energy onto a

particular spot.

It is these charactristics that make the laser very

attractive as a possible weapon system. Because of its

almost instantaneous transmission of energy from the weapon

to the target, it eliminates the need for computing the lead

angle necessary for a ballistic projectile to intercept the

target. However, a number of factors will affect a laser's

effectiveness against any target. Some of these factors are

associated with the laser itself, such as the strength or

power of the beam. Others are related to the atmosphere, or

the mediup through which the beam must pass on its way to

the target. These include diffusion, or spreading of the

beam, as well as any other condition which alters or dis-

torts the beam in any way. Finally, there is the target

itself. Its composition and sensitivity to the energy de-

I-i
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posited by the laser on the target will affect the laser's

ability to neutralize it. These factors will determine the

(V necessary power, concentration, and duration of the laser's

radiation of a particular spot on the target needed to

disable it effectively. Add to all the above factors any

evasive maneuvers performed by the target, and the develop-

ment of a ground-based, anti-aircraft/anti-missile laser

weapon system becomes a task replete with obstacles.

Two significant obstacles to the development of an

effectiv- laser weapon system are precision pointing of the

laser and accurate tracking of the target. It is not suffi-

cient simply to "paint" the entire surface of the target

with laser energy, nor is it currently possible to have a

laser powerful enough to achieve the instantaneous, spec-

O tacular destruction of the target portrayed in fictional

depictions of future warfare. As stated above, practical

limitations of the laser, the distortion of the beam as it

passes through the atmosphere, and the nature of the target

itself, all make it necessary for the laser energy to be

concentrated on a specific spot on the target for some

finite amount of time before the target is disabled.

1.1 Background

The Air Force Weapons Laboratory at Kirtland AFB,'New

Mexico, is currently testing a high energy laser weapon

system against airborne targets. These targets must be

tracked despite the presence of several factors which can

4. cause relative motion between the emitted beam and the

1-2



target. These include: target motion, mirror vibration,

atmospheric jitter, and sensor measurement errors (15:2).

Target measurements are supplied by a Forward Looking

Infra-Red sensor (FLIR). This sensor was chosen because it

allows the tracker to gather target information passively,

thereby preventing the target from detecting that he is

being tracked.

The current research effort at the Weapons Laboratory

uses a correlation tracker to process sensor information.

* At any one time, the tracker takes predetermined or pre-

viously gathered FLIR data and compares it with new informa-

tion gathered at the current time. Cross correlation be-

tween these two sets of data is used to generate the rela-

tive position offsets from one frame of data to the next.

These offsets are used to control gimbals which position the

FLIR so that the target is centered within the sensor's

field of view. Since the laser has been coupled to the FLIR

through a shared aperture, this centering of the target

within the FLIR's field of view also points the laser toward

the target.

Though this correlation technique can be applied to a

wide variety of targets because it relies only upon measured

target data, it is highly susceptible to noise and takes no

advantage of any a priori knowledge about the target. In

most practical applications, however, information about the

target can be supplied or at least estimated. If this

information could be incorporated into the tracking algo-

1-3
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rithm, performance should be improved. Furthermore, the

effects of atmospheric disturbances on radiated waveforms is

- .. well-known and can be described statistically. This will

allow separation of true target motion from apparent motion

caused by the distortion of the infrared wave while it

travels from the target to the sensor. This separation is

important since the laser beam will not undergo the same

distortion as it travels toward the target. Finally, sta-

tistical information about the FLIR measurement noise and

background noise is available and can be used to improve the

estimate of the target's position further.

In recent years, considerable effort has been spent at

the Air Force Institute of Technology, to demonstrate the

feasibility and accuracy of a tracker for this application

that uses an extended Kalman filter. This algorithm has

been tested in simulations against both long range targets

(12) and short range air-to-air missile targets

(2,3,5,12,13,15,17). This algorithm results in a signifi-

cant improvement in tracking capability over the currently

used correlation tracker.

Specifically, the study by Mercier (12) demonstrated

the feasibility of using the extended Kalman filter in an

algorithm against long range targets whose FLIR image plane

intensity shape function could be modelled as an Airy disc

(well approximated as a bivariate Gaussian) pattern due to a

point source. Also due to these long ranges, the exhibited

target dynamics would be very benign.

"1-4



The next study, by Harnly and Jensen (3), concluded

that while estimates of target position and atmospheric

jitter were sufficient to track very benign target trajec-

tories, additional estimates of target velocities and accel-

*' erations were needed to enable tracking of more maneuverable

targets. Target intensity images were no longer portrayed

as having circular equal intensity contours, but were now

described as being elliptical. Additional modifications

were made to the algorithm to allow adaptive estimation of

-S. the true sizes and shapes of ellipses.

.12_ Studies by Worsley (17) and Flynn (2) demonstrated that

a constant turn rate target acceleration model was a more

descriptive model of maneuvering airborne targets than

either a Brownian motion or a first order Gauss-Markov

0target acceleration model. This model consistently produced

less biased estimates than those produced by filters using

the other acceleration models. However, the improvements in

performance were not significant enough relative to the

'p additional computational burden imposed by using the con-

stant turn rate model, to warrant its use in all applica-

tions. Flynn's study (2) utilized the multiple model filter

algorithm which was used in this research. The primary

purpose of the research was to investigate if using a bank

of independent Kalman filters (each tuned for optimum per-

formance against a different target dynamics condition) and

optimally combining the estimates produced by each filter,

could produce a better estimate of target position than a

1-5



non-adaptive filter could. Combination of the state esti-

mates is accomplished by weighting the estimates of each

filter with a weighting factor based or the "correctness" of

each filter dynamics model relative to true target dynamics.

4... The major problem of Flynn's study was that, because of the

similarity of the residuals from all the filters, the algo-

rithm was consistently unable to identify the filter with
b" *

the "best" model.
Studies by Singletery (15) and Rogers (14) implemented

algorithms which made no claims as to prior knowledge about

the size or shape of the target hot-spots. Digital signal

processing techniques were used to take FLIR data and com-

pute an estimated target shape. In addition, Rogers' thesis

'. demonstrated the feasibility of this technique against mul-
4.

tiple hot-spot targets performing very benign t7ajectories.

Rogers also developed an alternative tracker form, one which

used the estimated target shape as a template against which

later measurement data could be compared. This comparison

is performed by an enhanced correlation algorithm whose

output is provided as "measurements" to a linear Kalman

filter. These "measurements" are the offset distances from

center of the template to the point of maximum correlation

in terms of FLIR image plane coordinates. A linear Kalman

filter, as opposed to the non-linear extended Kalman filter,

could be used because the offset distances are linear func-

tions of the chosen filter states.

1-6
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Because both techniques demonstrated similar capability

. against multiple hot-spot targets, follow-on studies by

Kozemchak (5) and Millner (13) further developed these con-

. figurations by testing them against more realistic target

trajectories. These trajectories included benign constant

velocity trajectories and more dynamic constant-g, pull-up

manuevers. The targets were also allowed to perform rolling

maneuvers to test the trackers against multiple hot-spot

targets whose target intensity functions in the FLIR image

plane were changing constantly.

While the trackers in both of the above studies per-

formed well against the simulated target maneuvers, both

trackers had difficulty maintaining lock on targets per-

forming pull-up maneuvers in excess of 5 g's. It is for

this reason that investigation of additional techniques for

processing target information was performed.
..,,

* - 1.2 Problem

The purpose of this research was to take the tracker

formulations developed by Kozemchak (5) and Millner (13) and

determine the feasibility of implementing a multiple model

* *-. filter structure as a means of adaptively adjusting the

aperture of the tracker field of view to permit the tracking

of targets performing highly dynamic maneuvers. As with

Flynn's thesis (2), the different filters were tuned to

- achieve optimal performance at different degrees of target

*" dynamics.

0*4 1-7
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The data processing algorithms for the tracker confic

rations will now be described. The first model is t

" -extended Kalman filter tracker used by Kozemchak (5). T

second model is the linear Kalman filter/correlator trac

K used by Millner (13).

1.2.1 Extended Kalman Filter Tracker. Figure I

A illustrates the algorithm for the extended Kalman filt

E- tracker implemented by Kozemchak (5). In this configurati

the center of the FLIR field of view is positioned at t

filter predicted target centroid location due to targ

dynamics over the most recent sample period. Each frame

FLIR data is arranged into a 64-dimensional measureme

vector z(ti), which is the input to the extended Kalu

filter in the lower path of the figure. The extended Kaln

filter uses the nonlinear and the linearized intensity fur

tions (h[R(ti-),ti] and H[2(ti-),tiJ respectively) to cc

V pute an updated estimate of the state variables, _(ti'

from the measurement vector via the equation:

, (ti+ ) = R(ti- )  + K(ti) [z(ti) - h(_(ti- ) ,ti)] (1-

where (ti+) = state estimate vector after measuremer
incorporation at time ti

-(ti-) = state estimate vector propagated from
previous measurement update to time tj

K(ti) - Kalman filter gain

z(ti) - measurement vector of average intensit
over individual picture elements (pixE
of the FLIR array; the assumed

.. 4 measurement model is:

h* z(ti) = h[x(ti),t il + v(t i )

1-8
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h[l(ti-),ti] = intensity shape function for measurements
at time ti as a function of the state
estimate

t h/ x t-,; used in generation of
-- t )-- ] the Kalm-i hIter gain K(ti)

v(ti) = measurement corruption noise vector
which includes FLIR measurement and
background noises

The Kalman filter will then propagate this updated state

estimate to the next sample time, til, based on its inter-

nal target dynamics model. This information is passed to

the controller which positions the FLIR so that the center

of its field of view is once again pointing to the predicted

target position. For this research it was assumed that the

controller was capable of pointing to the filter indicated

position in the time available between samples (1/30 sec-

ond).

Returning to the upper path of Figure I-1, a Fourier

Transform is taken of the FLIR measurement data so that

subsequent operations can be performed in the frequency

domain. The motivation for carrying out those calculations

in the frequency domain will be covered in a later chapter.

Unlike the z(t i ) measurement vector formulated for the Kal-

man filter, the data is arranged in a 24 x 24 measurement

. array as opposed to an 8 x 8 array. This larger array was

processed to reduce edge effects, aliasing, and leakage

conditions involved when transforming finite sequences

(15:18). In most engineering applications, the larger array

is created by padding the original data with zeros. This is

1-10



a valid procedure as long as the image intensity is essen-

tially zero at the edge of the 8 x 8 field of view. How-

* ever, if this is not the case, padding with zeros will

introduce artificial edge effects. In such cases, it is

more appropriate to pad with data. Such padding is possible

in this application because the field of view encompasses

only a small portion of the entire FLIR measurement.

Generation of the nonlinear and linearized intensity

functions requires interframe filtering to reduce the

effects of noise. In order to perform this filtering, the

target intensity profile must first be centered so that the

noise can be averaged out. This centering of the target

image is accomplished by multiplying the Fourier transform

of the measurement data by a negating phase shift in the

frequency domain. This negating phase shift is the complex

conjugate of the linear phase shift corresponding to the

(estimated) target image offset in the spatial domain. The

causes of this offset are atmospheric jitter and imperfect

propagation of the target dynamic states. This information

is available from the updated state estimates of the

extended Kalman filter.

Exponential smoothing is then performed on the centered

data. Because the noise is expected to be changing far more

rapidly than the target intensity pattern from one sample

time to the next, this process will attenuate the noise by

averaging the centered data of successive frames of data.

The underlying target intensity function generated is used

I-li
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as the reference image, h[(ti),ti]. The smoothed data is

then differentiated with respect to a change in the Kalman',

filter states by employing the derivative property of the

Fourier Transform to provide the frequency domain represen-

tation of the linearized intensity function, H.

*" Because the nonlinear and linearized intensity func-

tions will be used to update the Kalman filter estimates

after the next measurement, both functions are evaluated at

the state expected at the next sample time. This informa-

tion is made available by propagating the updated Kalman

filter states from the current measurement time to the next

measurement time. Since it is assumed that the FLIR is

centered on the position predicted due to estimated target

dynamics, the intensity patterns are evaluated at the loca-

0 tion of the predicted atmospheric states. Again, the shift

theorem of the Fourier Transform is employed to perform the

phase shift in the frequency domain. The inverse Fourier

transform is then performed and h[R(t+il-),ti+il] and

H[R(ti+l-,ti+] are ready for the extended Kalman filter to

use when processing the next frame of data.

1.2.2 Linear Kalman Filter/Correlator Tracker. The

Linear Kalman Filter/Correlator Tracker was the tracker

initially developed by Rogers (14) and later extended and

implemented by Millner (13). As can be seen in Figure 1-2,

it is very similar in structure to the extended Kalman

filter tracker described in Section 1.2.1. The derivation

of the target reference image is accomplished as before.

1-12
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The difference is that it is now used as the template of a

correlator against which new data received from the sensor

I2 "will be compared.

Correlation is performed in the frequency domain and

the outputs of the correlator are the position offsets of

the target centroid from the center of the reference image.

Because these offsets are linear functions of the chosen
filter states, a linear Kalman filter can be used in place

of the extended Kalman filter operating on raw FLIR data, as

in the previous section. This results in significant reduc-

tion in the number of operations required to process meas-

V- urement information. In addition, because the "measure-

ments" to the Kalman filter are only the position offsets,

the measurement vector is now only a 2-dimensional vector.

Filter state propagation from one sample time to the

next is accomplished as before, but now measurement updates

for the linear Kalman filter are done using:

1(ti+ ) = 2(ti-) + K(ti)[z(ti) - Hx(ti-)] (1-2)

where 2(ti + ) = state estimate vector after measurement
incorporation at time ti

(ti-) - state estimate vector propagated from
previous measurement update to time ti

K(ti) = Kalman filter gain

Sz(ti) = measurement vector of target centroid
offsets from the center of the FLIR
field of view, as generated by the
correlator of Figure 1-2

H = linear combination of the states which
contribute to the respective measurements

1-14
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Pointing of the sensor is accomplished as before under

the assumption that the controller is capable of pointing to

-* the filter indicated position within one sample time is as

described in the previous section.

1.3 Overview

Chapters II, III, and IV describe in detail the mathe-

matical models used in the computer simulation. More spe-

cifically, Chapter II presents the truth model, which was

the environment from which measurements were taken. Chapter

III describes the Kalman filters, extended and linear, that

were used in the respective tracker configurations. Chapter

IV discusses the multiple model filter algorithm; why it was

chosen and how it was incorporated into the existing tracker

structures.

VChapter V presents a performance analysis of the both
tracker types, with the multiple model filter algorithm in

place, against a variety of target trajectories. Chapter VI

presents the conclusions and recommendations drawn from this

research.

1-15
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II. Truth Model

2.1 Introduction
The truth model is the representation of the real

world implemented by the researcher. It may not be the most

complete model available to him, but it should embody all

important aspects of the problem and reproduce the real

world environment with good fidelity. In this study, the

following processes were included in the truth model: at-

mospheric jitter, target dynamics and shape effects, and

background and FLIR noises. These processes are of impor-

tance to the tracking problem because they describe the

motion of the true target in inertial space, and the distor-

-A tion of the target intensity function as it passes through

the atmosphere, as well as any background and FLIR measure-

ment noises which combine to produce the observed target

image.

This chapter describes the truth model used in this

study. It includes discussions on the model for atmospheric

jitter, the target trajectories used, and the development of

the target measurement model.

2.2 Target Centroid Offset Model

,During target tracking, there are a number of effects

which can create apparent motion between the target and the

sensor. These include: target dynamics, sensor boresight

error, FLIR system vibrations, and atmospheric jitter. For

this study of a ground-based laser system, it was assumed

- that dominant modes of apparent target motion are those

- II-



associated with target dynamics and atmospheric distur-

bances. Therefore, a continuous-time target model which

*, incorporates both target dynamics and atmospheric distur-

bances describes the apparent target motion.

The FLIR measurements are scalar quantities that repre-

I sent the average intensity of the received image over each

picture element (pixel). The tracking window used in this

research consisted of an 8 x 8 array of pixels in the FLIR

image plane. Although the measurements are passed to the

extended Kalman filter as a 64-dimensional vector, target

dynamics and atmospheric disturbances are described using an

x-y coordinate frame in the two-dimensional FLIR image plane

in units of pixels (where each pixel is 20 )rads by 20

Arads). Hence the x- and y- coordinates of the apparent

target centroid in FLIR image plane coordinates are:

xC = XD + XA (2-1a)

YC = YD + YA (2-1b)

where xC = x-coordinate of apparent target centroid

yC = y-coordinate of apparent target centroid
X D = x-offset due to target motion

YD = y-offset due to target motion

xA = x-offset due to atmospheric disturbances

A= y-offset due to atmospheric disturbances

t11-2
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2.3 Atmospheric Disturbances

The target's intensity function will undergo transla-

tional motion on the FLIR image plane due to atmospheric

disturbances which cause phase distortions in the radiated

wavefronts from the target as they propagate through the

atmosphere (14:27). The model used in this study was devel-

oped by The Analytical Sciences Corporation (16) and data

analysis by Hogge and Butts (4). The power spectral density

of this phenomenon in each of the two FLIR plane directions

can be well approximated as the output of a third-order

linear shaping filter driven by unit-strength, zero-mean,

white Gaussian noise (12:12).

".,

WA KXAb - xA- -,(s~a) (.s+b) 2

where wA = unit-strength, zero-mean, white Gaussian
wr A noise

K = system gain

a = break frequency, 14.14 rad/sec

b = break frequency, 659.5 rad/sec

4' XA = output of the shaping filter

By adjusting the value of the system gain, K, the

desired root-mean-squared (rms) atmospheric characteristic

can be obtained (12). The effects of atmospheric jitter are

assumed independent of the direction on the FLIR image

11-3
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plane, so two independent shaping filters of the above form

can be used to model jitter; one for each coordinate direc-

tion of the FLIR image plane.

The developed mathematical model for atmospheric jit-

ter will now be expressed in state space notation. Atmos-

pheric jitter can be expressed in the time-invariant sto-

* chastic differential equation of the form:

( t) = a(t) + Gw (t) (2-2)

where Fa = atmospheric plant matrix

Xa(t) = six atmospheric noise states

Ga = atmospheric noise input matrix

Wa(t) = two-dimensional vector of white Gaussian
noise inputs with statistics:

EQ a(t)] = 0

p E(Wa(t)waT(t+)] = Ia(T)

The shift of the intensity funciton due to atmospheric

* jitter can be expressed with:

A(t) = Haxa(t) (2-3)

where (t) - shift in FLIR coordinates, with
components xA and YA as in (2-1)

H- system output matrix

Because of the independence between the disturbances

occurring in the horizontal and vertical directions of the

FLIR image plane, they can be decoupled and separate models

can be developed. In Jordan canonical form, the distur-

bances in the x- (horizontal) direction becomes (12:73-75):

11-4
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"Xaxlt) = -btax (t)2-4)

where a,b are the break frequencies described earlier

and:

G1 = Kab 2 /(a-b) 2

G2 = -GI

G3 = (a-b)Gl

The output equation becomes:

XAx(t) = 1 1 1 0 ] ax(t) (2-5)

The solution to the state differential equation (2-2)

over one sample interval assumes the form:

N , ati+l ) -_a(ti+lIti)Xa(ti)

fa(ti+iT1' )Ga (T)wa(T)dT (2-6)
_ ti

where -a = the state transition matrix which is the-a solution to the matrix differential

equation:

_;a(tIti) = Fa.a(tti)

and the initial condition:

.-

-. a(titi) = I (the identity matrix)

Since Fa is time-invariant, the state transition matrix is

solely a function of the sampling time, At = til-t i .

Therefore, for a constant sampling time, At, the state-

transition matrix is itself a constant. Thus, for the

11-5
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system in (2-4) the state transition matrix for any time,

t i , is:

exp(-a6t) 0 0

0 exp(-bAt) Atexp(-bat)
_±a(ti+lti) - 0 0 exp(-bAt) (2-7)

As before, the distortion in the y- (vertical) direction can

be represented with a model of the same form.

Since it was desired to use a digital computer program

to test the developed algorithms, an equivalent discrete-

time system model of the continuous-time system was devel-

oped (6:42):

Ka(ti+l) = _a(ti+lIti)xa(ti) + Wad(ti) (2-8)

where wad(') is a discrete-time white Gaussian noise process

with the identical statistics as the integral term of Equa-

tion (2-6) for all time:

E(Had(ti) ] = 0 (2-9a)

E(ad(ti)_adT(ti)] = Qad(ti)

fiti a(ti+ )_GIGT± T(ti+ 1,)dr (2-9b)

ti

E(wad(ti)ad T(tj)] = 0 (for t i # tj) (2-9c)

Therefore the equivalent discrete-time system model

can be expressed as (12:15):

C
xa(ti+l) = a(ti+l,ti)a(ti) + d Wn(ti) (2-10)

11-6
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where V:;d is the lower Cholesky square root of Qad (6:3

71) and:
' .*

E(Wn(ti)) = 0 (2-1

E[Wn(ti)wnT(tj)I = I (2-1
EWn(ti)wnT(tj)] = 0 (for ti # tj) (2-1

2.4 Target Dynamics Models

The model for target dynamics is a continuous-ti

deterministic model which describes a highly maneuvera

aircraft or missile. In order to test the algorithm in

realistic environment as possible, a number of maneuvi

were generated (5:35):

(1) straight line propagation

(2) constant roll-rate maneuvers

(3) constant G, constant speed turns

These manuevers will be tested individually to det

mine the algorithm's ability to follow a target perform

highly dynamic maneuvers. Later these same maneuvers w:

be performed sequentially and/or simultaneously by the t

get so the algorithm can be tested against a realis

dynamic target whose intensity function is constan

changing.

Two previous studies, by Kozemchak (5) and Mill

(13) respectively, assumed that the centroid of the tar

intensity pattern coincides with the center of gravity

the target. Furthermore, the center of gravity of

target was assumed to be on the ro 1 axis of the target,

11-7



rolling maneuvers performed by a non-pitching aircraft have

no effect on centroid dynamics. Conversely, a pull-up ma-

neuver does affect centroid dynamics for multiple hot-spot

targets (5:35,13:22).

As developed by Harnly and Jensen (3), the true target

location in the two-dimensional FLIR image plane can be

expressed in azimuth, a(t), and elevation, #(t). This true

* location can be compared with the filter estimates to eval-

uate filter performance. As with Kozemchak (5) and Millner

(13), the azimuth and elevation rate inputs are used for

propagating the true position as well as determining the

accuracy of the filter's acceleration estimate. Thus, the

: . time history of the target location can be generated via:

= (t) =[(t) J(2-12)
where 1(t) and A(t) are the time varying azimuth and eleva-

tion velocities in inertial space. While it would have been

easier to input time histories for a(t) and O(t) directly

for this deterministic case, the above form was used so a

stochastic model could be readily implemented if desired at

a later time (13:15).

At this point Kozemchak (5) and Millner (13) differed

in their respective approximations of the dynamic offset.

. .V Kozemchak used a second-order model which assumed constant

*. acceleration over each sample period:

2ED(ti I) = xD(ti) + xD(ti)At 0.59D(t )At2  (2-13)

11-8
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Millner used a first order model which used the values of

the azimuth and elevation velocities which correspond to the

% . midpoint of the sampling interval:

XD(ti+1) = 3D(ti) + D(ti+At/2),at (2-14)

The approximations of the dynamic offset were kept

intact for each of the respective filters. This means that

the extended Kalman filter tracker and the linear Kalman

filter tracker used different truth models. If the assump-

tions made in the derivation of each model are correct (i.e.

constant acceleration over each sample period for the ex-

tended Kalman filter tracker), then there is very little

difference between the two models for a small sample period.

However, the Millner form is a more correct model because it

uses only those terms that are independently specifiable.

The acceleration term in (2-13) is derived from the change

in elevation and azimuth velocities, 1(t) and h(t) respec-

tively, over a given sample period.

The azimuth and elevation velocities are initially

calculated in the inertial frame and must then be projected

into the FLIR image plane. The relationship between these

two frames of reference is shown in Figure 11-i (5:37).

'41-9
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Figure II-i. Inertial Coordinate Frame

awhere xI, YI, zI = inertial axes

p = range to target

vI = target inertial velocity

rh = horizontal range

a = azimuth angular displacement

= elevation angular displacement

The geometry associated with azimuth direction is

shown in Figure 11-2 (13:19).

X azimuth

X/

.
z

Figure 11-2. Azimuth Geometry
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Thus, the displacement angle, a(t), is defined as:

",.v k" ,(t) = tan -  [zI (t)/x I (t)] (rad) (2-15)

and

"; (t) - xi(t)!.i(t) - zi(t) xI(t)] /[z I 2tM + X I 2(t)I

(rad/sec) (2-16)

and
v e 96 •• •

a(t) =[xi(t)z 1 (t) - xI(t)zi(t)lrh 2 - 2[xi(t)xi(t)

+ z(t)zi(t)][xi(t)zI(t) - ki(t)zi(t)] rh 4

(rad/sec) (2-17)

where rh is determined by rh = (xi2 + zi2)1/2. To convert

these values into FLIR image plane units, pixels/sec, divide

the number of radians by 20 x 10- 6. This conversion factor

is derived from the fact that each pixel represents a region

A 20 jrads x 20 prads (3:33).

Similarly, Figure 11-3 displays the geometry involved

in calculating elevation, elevation velocity, and elevation

acceleration (13:20).

YI

-- YXY

rh * _x-- , Z. plane

Figure 11-3. Elevation Geometry
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where p =(X 1
2 + YJ+ ZiTherefore,

6' (t) = tan LCyI(t)/rh(t)] (rad) (2-18)

* and

j(t) =[rh(t)'I(t) -YIMt~h(t)] /pt) (rad/sec) (2-19)

where h(t) =[(tMX 1(t + ; 1 (t)z 1 (t)] / rh(t)

(m/sec) (2-20)

and

5(t)= (p(t) [rh(t)yI(t) - yI(t)rh(t)]

4 - (rh(t)yI(t) - yI(t)rh(t)] (2;(t)p(t)]] p 4 (t)

(rad/sec) (2-21)

where rh~t M ((xI(t),1 (t) + 2 (t) + 2(t)]zt e12M

4h / h(t) (m/sec2) (2-22)

/ p (t) (m/sec) (2-23)

The values for 0(t), h(t), and X(t) can be converted to FLIR

image plane units by the same conversion factor procedure

used for the azimuth terms.

.The solutions to the dynamics differential equation

(2-12) have the form:

+ ti+i -Dt+,~~()D~f (2-24)

4 'ti

11-12
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where 4_D(t,r) = state transition matrix for vehicle
dynamics

JS BD(r) = control input matrix

3D(T) = control function for the truth model
as defined in equation (2-12)

For digital computer implementation, accelerations approx-

imated as piecewise constant between sampling times result

in a piecewise linear function for uD(t). Therefore Eaua-

tion (2-24) can be expressed in discrete-time form as:

xD(ti+ I ) - ±D(ti+1,ti)xD(ti) + Bd(ti)Rd(ti) (2-24)

In Kozemchak's thesis he defined Bd(ti)Rd(ti) as:

At 0 0.at 2 .t i )

Bd(ti)Md(ti) -- t 0 05 sat(t i )I Z(ti)
[0lti)J

(2-26)

where, of course, a and a are as given above and are not

independently specifiable, and similarly for h and 0*.

Millner defined the quantity somewhat differently, with

(more appropriately) independently specifiable components

only:

Rd(ti)ud(ti) - At o(ti + At/2) (2-27)

2.5 Overall State Space Model

Combining the truth models for target dynamics and

atmospheric distortions yields a single eight state dis-

crete-time model which consisting of two dynamics states and

11-13



six atmospheric states.

AT(ti+I ) = lT(ti+1,ti)_ET(ti) + Ed.d(ti) + GdWd(ti) (2-28)

where _OT(ti+lti) = _T(ti+l-ti) -T(At) -

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 exp(-a~t) 0 0 0 0 0
0 0 0 exp(-bat)Atexp(-bAt) 0 0 0
0 0 0 0 exp (-bat) 0 0 0
0 0 0 0 0 exp(-aat) 0 0
0 0 0 0 0 0 exp(-bAt)Atexp(-b6t)
0 0 0 0 0 0 0 exp (-bat)

AD(ti) = [XD(ti) YD(ti) XlA(ti) X2A(ti) X3A(ti) YlA(ti)

Y2A(ti) Y3A(ti) ]T

For Kozemchak's study:

Bd(ti) = 4t 0 0.54t 2  00 at 0 0.5MAt 2

0 0 0 0
9' 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

Ud(ti) = [f(ti) 0(ti ) a(ti )  Bt ) ]

For Millner's study:

Rd(ti) At 0
0 at
0 0
0 0
0 0
0 0
0 0
0 0

d(t i )  =[&(ti+4t/ 2 )  b(ti+At/2)] T

11-14



whereO2TD= 0 0 0 0 0 0 0 0-
0 0 0 0 0 0 0 0
0 0 01 02 Q3 0 0 0
0 0 Q2 04 05 0 0 0

0 0 03 Q5 Q6 0 0 0
0 0 0 0 0Q 2Q
0 0 0 0 0Q 4Q

-0 0 Q 5Q

01 =(G1 2 /2a] (1-exp(-2a,6t)

02 [ G1 2 /(a+b)] [(1-exp(-(a+b)&t) (-2b/ (a+b)

- (a-b)4texp(-(a+b)dt) I

Q3 [(a-b)/(a+b)]G1 2 (1-exp(-(a+b)At)

04 [ G12 /2b] ([(1-exp(-2bat)](1-(a-b)/b + (a-b) 2 /2b)

+(a-b) (2-(a-b)/b) Atexp(-2bat) - (ab2a

x exp (-2bat)]I

05 = [G1 2 (a-b)/2b] ((1 - exp(-2b~t)(a-3b)/2b -(a-b)

x texp(-2b~it)]

06 = [(a-b) 2 G12 /2b] (1-exp(-2bat)

GI = Kab/(a-b) 2

with statistics:

4.E E(wd (ti) 3 = 0

.4.'EQ((ti)!fT(ti)] _ j~

X.T(ti) -= T~i (2-29)

where YT(ti) =Xcentroid

[ycentroid j
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2.6 Target Coordinate Frames

In order to describe the dynamics of various parts of

the target relative to its center of mass, additional coor-

dinate frames needed to be defined. This was necessary

because a realistic image on the FLIR plane must be gener-

Al ated for instances when a multiple hot-spot target performs

various maneuvers.
Target frame - This frame has its origin at the target

center of mass. One of its axes is the inertial velocity

vector of the target. Another axis is defined as being out

the right side of the aircraft perpendicular to the velocity

vector and in the plane of the radiating sources of the

target. For example, for an aircraft with wing mounted

engines, if the engines hang from pods, then the radiating

sources are not in the same plane as the target center of

- mass. This model approximates many multi-engined aircraft.

The third axis is defined by a vector perpendicular to the

plane formed by the previous two vectors. This coordinate

frame will be expressed with unit vectors jv' 2pv' and Sppv'

respectively.

a-0 plane - This frame originates at the target center

of gravity and is perpendicular to the true line of sight

from the tracker (located at the origin of the inertial

coordinate system) to the target. This plane can be shown

to be defined by unit vectors e. and e which are misaligned

from the inertial frame by the angles a and 0 which were

.9 defined in Figure II-1. The third basis vector is aligned

0 11-16
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along the line of sight to the target.

2.7 Target Trajectories

As mentioned previously, a number of deterministic

target trajectories which incorporate a number of maneuvers

were developed to provide as realistic targets for the

tracking algorithm as possible. The basic trajectories used

in this study are those used by Millner (13).

Trajectory 1 - This trajectory is depicted in

Figure 11-4 and is a benign trajectory in which the target

flies a constant-heading, straight-and-level course, either

wings-level or performing a constant roll-rate maneuver.

4-

Figure 11-4. Trajectory 1

The inertial velocity, v1 , for this maneuver is held

constant and is parallel to the xI-z I plane. Roll maneuvers

are performed with clockwise rotation of the target as seen

from behind.

Trajectory 2 - To evaluate filter performance against

a more dynamic maneuver, a constant G pull-up maneuver was

simulated. In this model the target begins with the same

initial conditions as in the previous model. The maneuver

: .'- is initiated at some pre-determined time after the simula-

11-17
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tion begins to allow the tracker to obtain good target

position estimates before the maneuver begins. This trajec-

' tory can be seen in Figure 11-5.

-I

Figure I-5. Trajectory 2

It should be pointed out that this pull-up maneuver

was started with a step change to the pitch-up rate, which

is not a realistic model. However, this represents a more

severe maneuver than any found in the real world, so the

tracker should perform better against a more realistic

target.

Trajectory 3 - This trajectory was used to evaluate

performance with a target that begins and terminates a

maneuver during a simulation. As with trajectory 2, a

constant G pull-up maneuver is executed but instead of

continuing the maneuver to the end of the simulation, it is

terminated (again with a step change in the pitch-up rate)

at some earlier time so the target returns to straight-line

propagation. The target assumes whatever inertial velocity

*.., it possessed at the termination of the pull-up maneuver.
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'<.. .Lnis velocity remains constant for the remainder of the

simulation.

Trajectory 4 - This trajectory was used to provide a

target which displays motion in all inertial directions. As

was true for trajectory 3, this trajectory is similar to

trajectory 2, but instead of terminating the maneuver as

done in trajectory 3, the target turns toward the FLIR

plane. This out-of-plane change maneuver causes the projec-

ted target image on the FLIR image plane to change its

appearance more dramatically than in the previous cases,

with substantial changes in the separation between the indi-

vidual hot-spots.

2.7 Non-realistic Trajectories and Intensity Pattern Time
-2: Variations

Other areas of interest include non-realistic trajec-

tories and intensity pattern variations. The desire here is

not to portray realistic targets, but to determine the

algorithm's sensitivity to various parameter changes. This

can include investigation of performance against targets

executing maneuvers beyond the capability of current air-

.- craft, such as instantaneous and dramatic heading changes.

Such a test could be useful in determining the tracker's

ability to re-acquire a target that has shifted out of its

field of view. Other parameter changes that can be investi-

gated include: varying hot-spot size, intensity, separation

between hot-spots, and variation of these parameters with

-.*. time.

11-19
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2.8 Measurement Model

The measurements provided to the tracker algorithm

represent the intensity function generated by the target

projected onto the FLIR image plane. This function is also

corrupted by any background and FLIR noises that may be

present. For distant targets, it was found that these

target patterns could be modelled with a bivariate Gaussian

function with circular constant-intensity contours (12).

However, close range targets were found to be better modeled

with similarly distributed contours of elliptical shape (3).

As the target gets closer to the tracker positon, individual

and separate hot-spots can be identified on the target, each

modelled with the following intensity function:

I = ImaxeXp[-0.5[(x-Xpeak) (y-Ypeak) I [P]

X [(XXpeak) (eak)] T (2-30)

where Imax = maximum intensity of the hot spot

Xpeak, Ypeak = coordinates of the peak intensity of thehot-spot

P= matrix whose eigenvalues are av and
IF v , which corresponds to the disper-
sion of the elliptical contour in the
target plane defined earlier, and whose
eigenvectors dictate the angular
orientation of the principal axes of
these el lipses

The x- and y- coordinates for Equation (2-30) are calculated

relative to the center of the tracker field of view.

For single hot-spot targets the centroid of the inten-

sity function is assumed to coincide with the target center

.', I of mass. For multiple hot-spot targets the hot-spots are

4., 11-20
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-" distributed, for example, as shown in Figure 11-6 (13:40)

[ -°.~C (D":::C

aircraf't center
of mass

Figure 11-6. Distribution of Hot-Spots

The multiple hot-spot case requires that the distance

each hot-spot from the target center of mass be kno

Also, it is assumed that the target side slip angle i

angle of attack are zero and that all the major axes of

ellipsoids are parallel and aligned along the velocity v,

tor of the target, which extends out the nose of I

vehicle.

For both the single and multiple hot-spot cases, 1

measurements are generated by taking the average intens

of each pixel in an 8 x 8 pixel tracking window, which

due to the combined effects of each of the hot-spots and

corruptive background and FLIR noises:

M
Zkl (ti) L [3/A kfmlxyxpeakmlti),Ypeakm(ti))dxdy]m=1 kl

'.-',.pixeli

+ vkl(t i )
1-2(2-
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where = intensity function of the mth hot spot
of M hot-spots

. Zkl(ti) = output of the klth pixel at time ti; the
average intensity over that pixel as
sensed by a detector in the FLIR image
plane

A = area of one pixel

(x,y) = coordinates of any point within the klth
pixel

xpeakm(ti), Ypeakm(ti) = location of the peak of the
mth intensity function at
time ti

vkl(t i ) = additive noise to the klth pixel
corresponding to the background and FLIR
noises

2.9 Target Image

V It was assumed that the major axes of the m hot-spots

are all aligned parallel to the inertial velocity vector.

A-0%Furthermore, by assumption, all m hot-spots lie in the plane

formed by the wings of the target.

As discussed previously, vI, the inertial velocity

vector of the target is assumed to be projected out the nose

of the target. The a-0 plane is perpendicular to the true

line of sight from the tracker to the target as defined by

the basis vector er. The origin of the target coordinate

p frame, the a-0 plane, is the target center of mass. Figure

11-7 illustrates the geometry involved.

•-....
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Tracker

Figure 11-7. Image Projection

From the figure it can be seen that

.. : - cosO = ;(t)/(v J LOS] (2-32)

sin - h(t)/[v J LOS] (2-33)

where (v j LOS) is the magnitude of the velocity perpen-

dicular to the tracker line of sight, i.e., the projection

of v, onto the a-0 plane, defined by [v J LOS] = [1(t) 2

+ h(t)2]11 2.

The size of the target and the distances between the

hot-spots are fixed and do not vary with time. On the other

JS hand, the image of the target as seen by the sensor will

change as the target moves closer or farther away from the

tracker or changes its orientation relative to the FLIR.

This image at any time during the simulation is expressed in

* terms of some previously defined image, which has been

specified at an initial range and size, and the current

?4 target range and velocity. The reference image is defined

with the target lying flat in a plane perpendicular to the

'line of sight to the target. This produces an image with
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the largest possible size. For example, if the reference

image was flat and circular in shape, any other orientation

" will project an elliptical image of much smaller area onto

the FLIR image plane. The following expressions relate the

current image size with respect to the reference image:

Upv = 6pvoPo/P (2-34)

v (po/p) [Gpvo + cost (Ovo-opv)]

= apv(l+[(v I LOS) /vI] [AR-i] ] (2-35)

where avo, upvo = the disperison of the target along
the major and minor axes of the
radiating ellipsoid, i.e., axes
along and perpendicular to the
velocity vector, respectively,
for the reference image

e v' Upv = the current dispersions of the
target image

po = reference range from sensor to the
* Otarget

p = current range from sensor to the
target

-v = inertial velocity vector

(v I LOS) = projection of v, onto the a-0 plane,
the plane perpendicular to the line
of sight to the target

= angle between the inertial velocity
vector, v , and the a-0 plane, as
shown in-igure 11-7

AR = /c = maximum aspect ratio of
e thh-spot reference image

As stated at the beginning of this section, the objec-

tive is to define the target image in terms of FLIR image

plane coordinates. The relative distance between the hot-

spots is known in the target frame defined in Section 2.6.

11-24
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The coordinates of the centers of the hot-spots must be

converted to a-$ plane coordinates for use in (2-30) and (2-

31). The transformation from the target frame coordinates

to a-8 coordinates is accomplished via:

x [Cose0 -Sin
sin os target A x

S-o Y] target frame -Ax

(2-36)

The dispersion matrix is transformed using:

P = A P AT (2-37)

Since it is desired to have the inverse of P for use in

(2-30), a more convenient yet equivalent transformation can

be generated by inverting this expression and using the

orthogonal nature of A to yield

P - 1 - A (P- 1 ) AT (2-38)

2.10 Spatially Correlated Background Noise

The noise term, vkl(ti), in Equation (2-31) associated

with real data was found by Harnly and Jensen (3:19) to

contain spatial correlation of the background noise with a

. correlation distance of about 2 pixels; this was modelled by

maintaining non-zero correlation between each pixel and its

.;- . two closest neighbors symmetrically in all directions. The

64 measurements (8 x 8 pixel array tracking window) are

arranged as a 64-dimensional vector and so the spatially

correlated noise can be modeled with:

11-25
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v(ti) = T v'(ti) (2-39)

where v'(ti) = a 64-dimensioned vector of independent
white Gaussian noise processes with

-5- statistics:

E(v ,(ti)) = 0
' T

E(vs(ti)v (tj)] = I6ij

The resulting noise process, v(ti), has strength,

Etv(ti)VT(tj)] = Rij, where R is the 64 x 64 matrix which

describes the spatial correlation between pixels and is

discussed in detail in the studies by Harnly and Jensen (3)

and Kozemchak (5).

In order to generate the spatially correlated noise,

the pixel numbering scheme illustrated in Figure I-8 was

adopted. This array, which corresponds to the 8 x 8 FLIR

data array, was numbered from 1 to 64 starting from the

0 upper left hand corner of the array and proceeding across

the rows as done by Harnly and Jensen (3:19).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 11-8. Pixel Numbering Scheme
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Harnly and Jensen (3) determined that the correlation

coefficient matrix derived from using the above numbering

V - .. scheme is:

1 r1 ,2  r1 ,3  " r164

r12 1 r2 ,3  r2,64

r1,3  r2 ,3  1 r3,64

r1,64 r2 ,6 4  r3 ,6 4  ... 1

Harnly and Jensen (3) also determined that the correla-

tion terms not associated with the first and second nearest

neighbors of a given pixel, could be approximated as essen-

tially zero. For example, pixel 28 in Figure 11-8, would

have non-zero correlation terms only for pixels 10, 11, 12,

13, 14, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 34, 35, 36,

37, 38, 42, 43, 44, 45, and 46. The measurement noise

covariance matrix is obtained by multiplying the derived

correlation coefficient matrix by the variance of the back-

ground noise.

Harnly and Jenson (3) also found that the effect of

time correlation of the background noises is negligible at

the anticipated signal-to-noise ratios. At this point, all
the necessary terms for the measurement equation (2-31) have

been developed in full.

11-27



2.11 Summary

This chapter has presented a number of models which

have been used to model the real world. The processes that

were modeled include: atmospheric jitter, target dynamics

and shape effects, and background and FLIR noiseb. Deter-

ministic target trajectories were introduced to provide

,. baseline and realistic tracking scenarios to test the trac-

ker algorithm. Finally, a number of coordinate frames were

defined to aid in generating the appropriate realizations of

the target intensity function in the FLIR image plane, and

the entire truth model simulation was established.

.9
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III. Tracker Configurations

3.1 Introduction

The two tracker configurations, which served as the

foundation of this research, were developed in studies by

Kozemchak (5) and Millner (13). These trackers are suffi-

ciently different that each must be presented separately in

this chapter. Both of these trackers were first developed

by Rogers (14) for multiple hot-spot targets performing very

benign maneuvers. The later trackers extended the previous

work to include targets performing much more highly dynamic

.. and realistic trajectories.

The first tracker to be presented in this chapter is

the one developed by Kozemchak (5). As shown in Figure I-1,

it uses an extended Kalman filter to provide estimates of

target position, velocity, and acceleration, as well as

estimates of atmospheric disturbances. The need to include

the estimate of target acceleration with the position and

. velocity estimates in a tracking scenario against highly

maneuverable targets was shown by Harnly and Jensen (3). In

order to maintain a reasonable computational burden for

filter operation while still having the best possible target

model, two different target models were used. The first

used a simple first-order Gauss-Markov acceleration model

(3,5,12,13,14,15,17), while the second used a constant

N speed, constant turn-rate model for target acceleration
4.

(5,17). While non-linear, the latter model has been shown

: . to provide a much better description of real world target
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dynamics when operating at short ranges, as in the case for

air-to-air combat (2,17). Development of the equations

needed to propagate the filter estimates and to update these

estimates with FLIR measurement data will be presented later

in the chapter.

While the above algorithm has tracked simulated targets

adequately, the non-linearity of the problem requires a

large number of equations to be processed on-line in real-

time. If some sort of linear relationship in estimating the

target parameters could be established, then many of the

quantities needed to propagate and update the target esti-

mates could be pre-computed and the on-line computational

burden could be reduced. This desire for reducing the

computational loading led to the development of an alterna-

tive tracker design to the extended Kalman filter tracker.

This alternative tracker uses the estimated target

shape as a template in a correlator to provide pseudo-

measurements to a linear Kalman filter, as shown in Figure

1-2. These pseudo-measurements allow the use of the linear

Kalman filter because they are in reality offset distances

from the center of the field of view in the FLIR image

plane. These distances are linear functions of the chosen

state variables described in Chapter II (13). This tracker

uses a first-order Gauss-Markov target acceleration model

because the linear measurement model motivates use of a

linear target descriptor, in order to yield a linear Kalman

filter as the optimal data processor. Development of the

4
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necessary equations to propagate and update these target

estimates as well as a description of the correlation algo-

rithm used will also be presented in this chapter.

3.2 Extended Kalman Filter Tracker

.As stated earlier, this tracker uses an extended Kalman

filter to provide estimates of target dynamics and atmos-

pheric disturbances. Implicit in this use of the extended

Kalman filter is the assumption that the non-linear target

intensity function can be adequately linearized about the

estimated states by using a Taylor series truncated to first

order. Due to the relatively high measurment rate used in

this research, such an approximation is considered valid.

3.2.1 Gauss-Markov Target Acceleration Model. The

first of the filter models represents target dynamics accel-

eration and atmospheric jitter position as stationary,

first-order Gauss-Markov processes. Such processes can be

generated as the output of a first-order lag driven by zero-

mean white Gaussian noise (6). A third-order model for

atmospheric jitter position was presented in Chapter II, but

because the double pole appearing in that model is suffi-

ciently far away from the single dominant pole, it has

little effect on the low frequency characteristics of the

jitter (5). The filter vector states can be defined as

target position, velocity, and acceleration, and jitter

position, in each direction of the FLIR image plane:

XF z (XD YD vx Vy ax ay XA yA]T (31)
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The relationship between the states are as follows:

XD = v x  (3-2a)

YD ; Vy (3-2b)

Vx = ax (3-2c)

v Vy = a y (3-2d)

ax = (-l/TDF)ax + wDx (3-2e)

.y = (-1/TDF)ay + wDy (3-2f)

XA = (-l/TAF)xA + WAx (3-2g)

YA = (-I/TAF)YA + WAy (3-2h)

where TDF = correlation time for target acceleration

TAF = correlation time for atmospheric jitter

WDx, WDy, WAxI WAy - white Gaussian noise
processes of zero mean and
strength depending on the
effect being modelled.

Note that identical independent models are used to represent

effects in x- and y- directions of the FLIR image plane.

From the above relationships a state vector differen-

tial equation can be written in standard form:

xF(t) = FF(t)xF(t)+GF(t)wF(t) (3-3)

where FF(t) ; the system plant matrix which is constant
for this application and can be written as:

-11,-
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0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0%-I.'

FE  0 0 0 0 0 1 0 0
0 0 0 0 -I/TDF 0 0 0
0 0 0 0 0 -l/TDF 0 0
0 0 0 0 0 0 -I/TAF 0
0 0 0 0 0 0 0 -I/TAF (3-4)

2F(t) = the system noise input matrix which also is
constant for this application

N- 1
(4 x 4)

-= I
(4 x 4) (3-5)

wF(t) = noise vector containing mutually independent
white Gaussian noise processes wDx, WDy, wAx,

! .* WAy with statistics:

E(wF (t)) = 0

EWF(t)wFT(t+ )] = QF6(

.2DF 2/TD 2 0 0

2F 0 0 2 0A2/ 2E

L 0 0 0 20AF2/TAF (3-6)

2 = assumed target dynamics noise variance (or rmsDF value)

A = assumed atmospheric jitter noise variance (or
rms value)

3.2.2 State Propagation of the Gauss-Markov Model. Due

to the linear nature of the filter state model equations

above, the state estimates can be propagated using standard

Kalman filter propagation equations.

111-5
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1(ti+l-) = _F(ti+1Iti)_Z(ti + ) (3-7a)
I..

. P(ti+l-) = ±F(ti+l ti)P(ti+)±FT(ti+l ti)

ti

(3-7b)

where ±F(ti+l,ti) = filter state transition matrix
o for propagating from time ti totime

P(ti .) = conditional state covariance
matrix after measurement update
at time ti

P(ti+l-) - conditional state covariance
matrix before measurement update
at time ti

The filter state transition matrix *(ti+i,ti) must satisfy

the following differential equation:

" F(t,ti) = FF (t,ti) (3-8)

over the interval (ti,ti+i), given the initial condition

F(titi) = I. Because of the time invariant FF matrix, the

state transition matrix, _(ti+l,ti), is only a function of

the sampling time At ( = [ti+ 1 - ti]) and can be evaluated

via Laplace domain techniques or via matrix exponentials as:

1 0 at 0 Ji 0 0 0
0 1 0 at 0 Ji 0 0
0 0 1 0 J2 0 0 0
0 0 0 1 0 J2 0 0

*(ti+lti) = 0 0 0 0 J3 0 0 0
G 0 0 0 0 J3 0 0
0 0 0 0 0 0 J4 0
0 0 0 0 0 0 0 J4 (3-9)

-V.. where J1 = TDF[At-TDF(I-exp(-At/TDF))]
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J2 = TDF[I-exp(-At/TDF)]

J3 = exp(-4t/TDF)

J4 = exp(-4t/TAF)

The solution to the integral in Equation (3-7) becomes:

Al 0 A2 0 A3 0 0 0
0 Al 0 A2 0 A3 0 0

A2 0 A4 0 A5 0 0 0
0 A2 0 A4 0 A5 0 0

2FD A3  0 A5 0 A6 0 0 0
0 A3 0 A5 0 A6 0 0
0 0 0 0 0 0 A7 0
0 0 0 0 0 0 0 A7 (3-1

* where Al 0 GDF 2 [2TDFAt 3 /3 - 2TDF 2At 2 
- 4TDF3 6texp(-At/TDF]

+ 2TDF 3At - TDF 4exp(-2&t/TDF) + TDF 4

A2 = ODF2[TDFAt + 2TDF 2 atexp(-4t/TDF) + TDF

-
2TDF 3 exp(-t/TDF) - 2TDF 2at

0 + TDF 3exp(-2At/TDF]

A3 = UDF 2-2TDF3Atexp(-At/TDF) + TDF
2

- TDF 2exp(-2At/TDF]
A4 = DF2[2TDF t - 3 TDF 2 + 4TDF2exp(-At/TDF)

- TDF 2exp(- 2At/TDF)]

A5 - GDF2 [TDF - 2TDFexp(-&t/TDF) + TDFexp(- 2at/TDF)]

A6 = (DF 2[-exp(-2 At/TDF)]

A7 = orF 2 [l-exp(-2tTAF)]

3.2.3 Constant Turn-Rate Target Acceleration Mod(

The constant turn rate model has been shown to model t

dynamics of real world airborne targets at close rar

better than the Gauss-Markov acceleration model (2,17).

tradeoff of using this improved model is the introduction
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non-linearities into the propagation equations. The state

differential equation becomes:

vx

Vy

a

F(t)= f[x(t)] + FF(t) = -w 2vx + W x(t)

-w2Vy + WDy(t)

(-l/TAF)XA + WAx(t)

(_I/TAF)YA + WAy(t)

(3-11)

". where W = magnitude of the target's turn rate on the
FLIR image plane derived via the
relationship,

w = I x l/I_2= Iv / (Vx2+vy2)

All other variables are as defined in the development

of the Gauss-Markov target acceleration model. With the

statistics of the noise vector being:

*DF2 0 00

0 VDF 0 0

2F 0 0 2 AF2/TAF 0

0 0 0 20AF 2 /TAF (3-12)
- -

-D

VL

The filter estimates are propagated forward in time

by integrating:
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-_(t/ti) = f[_lt/ti)] (3-13)

(t/t i ) = F[t;i(t/ti)1t/t i ) + P(t/ti)FT t;R(t/ti)]

- G(t)Q(t)GT (t) (3-14)

where (t/ti) means at time t, given measurements through

time ti, starting from the initial conditions:

-. _ (ti/ti) = _(ti) (3-15)

' [R (ti/t i )  =P(ti + )  (3-16)

The non-linear function f[2(t/ti)I can be shown to be

equivalent to the time rate of change of the estimate of the

state at time t. Furthermore, since there is a desire to

keep the computational burden as low as possible, the inte-

- gral of Equation (3-13) will be approximated with first

order Euler integration, and so the state propagation equa-

tion becomes:

.(ti+j) R(ti+ ) + _(ti/ti)At (3-17)

The relationship assumes that the time rate of change of the

state vector is piecewise constant during the time interval,

At. This approximation is valid when the propagation time,

at, is small compared to the natural transient times of the

system.

To solve Equation (3-14) in real time would be both

computationally burdensome and time consuming because of a

.. '4time-variant FF matrix which requires continuous re-calcula-

tion of the state transition matrix. For practical imple-

4..- 4[mentation, a first order Euler integration approximation was
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made here as well. First, F[t;_(t/ti)] is assumed to be

. -. piecewise constant during each time interval, At, and can

be derived as a function of the current state estimate.

F(ti) = f(x]/ax I x = 1(ti+ ) (3-18)

Given an invariant system plant matrix for each sample

period, the state transition matrix can be determined.

However, even this approximation requires significant num-

bers of operations to calculate _±F(ti+l,ti) and to determine

. the integral of Equation (3-14). To resolve this problem

S:. the upper-left 6 x 6 portion of the state transition matrix

was truncated to first order terms.

.±F(ti+l,ti) = I + F(ti)At (3-19)

The remaining portion of the state transition matrix is

associated with the atmospheric jitter model and since it is

time invariant, can be determined exactly, as J4 in Equation

(3-9). The integral of Equation (3-15) can be similarly

approximated with:

2 FD 2F2F2FAt (3-20)

3.2.4 Measurement Update Equations. The measurement

equation presented in Chapter II, (2-31), can be written in

general form as:

4 Zkl(ti) - hkl[x(ti),ti] + vkl(t i ) (3-21)

where Zkl(ti) represents the average intensity in the FLIR

III-10
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image plane at the kl-th pixel at time ti, hkl represents

the average intensity over that pixel due to the true target

intensity, and vkl represents the summed effects of back-

ground corruption and internal FLIR noise. The average

intensities over each pixel in the FLIR image plane together

form the target intensity shape function in terms of the

most recent target measurement. The measurement information,

provided at each of the 64 pixels in the tracking window, is

used to update the filter and to produce a new estimate of

the target centroid location in the FLIR image plane. The

extended Kalman filter was used to incorporate the measure-

ment information because of its ability to handle the non-

linearities of the problem and because it is less computa-

tionally burdensome than other non-linear filters

Q(7:Ch 12).

The need to minimize computational loading also moti-

vated the use of the inverse covariance form of the measure-

ment update equations. Use of this form eliminated the need

to perform a 64 x 64 matrix inversion at every update time

(12). Thus, the update relations are:

P-'(ti+) = P-(ti-) + HT(ti)R-l(ti)H(ti) (3-22)

P(ti+ ) [p- (ti+ )]-' (3-23)
E(ti) - P(ti+)HT(ti)R-l(ti) (3-24)

_R(ti+) = _(ti-) + K(ti)(z(t i ) - h[R(ti-),ti] (3-25)

where H(ti) = ch[x,ti]/6x I x = (ti-)

the first partial of the average
.~intensity function evaluated at the most

0%

"II-li
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recent state estimate

P(ti) = propagated conditional covariance matrix
before measurement update at time ti.

P(ti ) = conditional covariance matrix after
measurement update at time ti .

K(ti) = Kalman filter gain

j(ti) = propagated state estimate before
measurement update at time ti.

2(ti + ) = state estimate after measurement update
at time ti.

h[P(ti-),ti] = non-linear measurement function of
average intensities at time ti as a
function of the most recent state
estimate.

z(ti) = actual realization of the measurement
vector at time ti.

The method used to derive the non-linear and linearized

intensity functions will now be presented.

3.2.5 Derivation of Non-linear and Linearized Intensity

Functions. The extended Kalman filter tracker uses the

nonlinear intensity function h(R(ti),ti], and the linearized

intensity function, H(ti), to update the filter state esti-

mates after each measurement, as shown in Equations (3-22)

to (3-25). The method for deriving the nonlinear and

linearized intensity functions will be outlined here.

All of the information of a two-dimensional intensity

pattern can be represented by a set of eigenvalues and

eigenfunctions. To obtain all the information contained in

such a pattern may require an infinite number of such func-

tions and values. Such a representation is unattractive

:because it cannot be practically implemented.
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Ideally, it is desired to have a transformation which

is not burdensome yet provides an accurate representation of

patterns in an x-y coordinate system. In keeping with the

truth models developed in Chapter II, it should also provide

decoupling of the components in the new coordinate space.

The Karhunen-Loeve transformation is one such transfor-

mation. It generates a new coordinate space with perfectly

uncorrelated elements. The major disadvantages of this

technique are that it produces a correlation matrix of

dimension N2 x N2 for an N x N input matrix, and it is very

difficult to perform in its exact form (14:15).

Such disadvantages encourage use of the Fourier trans-

form. While this does not provide perfect decorrelation of

the components, it is computationally attractive and pos-

sesses a property of separability which allows a two-dimen-

sional transform to be obtained via one-dimensional opera-

tions (14:15).

3.2.6 Two-Dimensional Fourier Transform. In Section

1.2.1, it was explained that the target image had to be

centered before averaging over successive frames of data

could be performed to attenuate the noise. The derivative

of the nonlinear intensity function was also needed to

update the extended Kalman filter (see Figure I-1). The

Fourier transform was used because it allows us to perform

the centering (shifting) and derivative operations in the

frequency domain where they are easily done. In the Fourier

transform, complex exponentials are used as eigenfunctions
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and the image is projected along the basis vectors asso-

ciated with those exponentials.
'We. ,

The Fourier transform of a complex-valued function of

two independent variables, q(x,y), is a decomposition of

4(x,y) into a linear combination of functions of the form

exp[j2w(fxx + f yy)] (15:8). The Fourier transform is de-

fined by:

G(fx'fY) = F(l(x,y)) =ff (x,y)exp[-j2lr(fxx + fyy)ldxdy

a) (3- 26)

where G(fx,fy) = frequency spectrum, transformed
function in spatial frequency domain

4(x,y) = function in spatial domain

fx fy= spatial frequencies

x,y = spatial variables

F( ) = Fourier Transform operation

The inverse of this transform also exists and is defined by:

4(x,y) =F - l (G(fxfy))
fp(fx,fy)exp[+j2(fxx + fyy)]dfxdfy (3-27)

where the terms are as defined above.

Because the FLIR provides target information as the

average intensities over its exposed area, a two-dimensional

discrete Fourier transform (DFT), is used. Due to of the

separability of the Fourier transform, the two-dimensional

transformation can be accomplished via a series of one-

dimensional transformations, so the double integral can be

resolved into a double summation for the discrete case. The
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- equations for the DFT and its inverse are:

N-i N-i
H(fx,fy) = E h(x,y)exp[-j2r(fxx + fyy)] (3-28)

x=O y=O

N-i N-i

h(x,y) = 1/N2 E E H(fx,fy)exp[+j2r(f x + f y)]
fx=0 fy=0 (3-29)

where H(fxfy) = frequency spectrum, transformed
function in spatial frequency domain

h(x,y) = function in spatial domain

fx,fy = spatial frequencies

x,y = spatial variables

The variable N refers to the period of the assumed

recurring sequence in both directions. The assumption of a

periodic sequence is essential in formulation of the DFT.

Thus the complex sequence of intensity values is discretized

into an N x N pixel array.

Although the tracking window is dimensioned to 8 x 8

pixels, the array that is processed by the DFT is dimen-

sioned to 24 x 24. This is achieved by padding the data
with a border of 8 zeros on each side of the tracking win-

dow. The purpose of this padding is to reduce the edge

effects, aliasing, and leakage conditions involved when

transforming finite sequences of numbers (15:18). Due to

small area of the tracking window, it might not be appro-

priate to pad with zeros since the image intensity at the

edges of the window might not be essentially zero. To pad

..4 such an image with zeros would introduce artificial edge
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effects (5:10). However, since the tracking window is

¢ .actually part of a much larger field of data from the FLIR,

it is possible to pad the data of the tracking window with

real data instead of zeros and thus minimize the introduced

edge effects.

3.2.7 Shifting Property of the Fourier Transform.

Since the target intensity pattern must be generated from

noise corrupted FLIR data, interframe smoothing is necessary

to attenuate the noise. This smoothing requires the target

intensity profile to be centered from frame to frame since

each pattern experiences different shifts from the center of

the field of view. Successive centered frames of data can

then be averaged to attenuate the noise, while at the same

time accentuating the true target intensity function. Cen-

fit, tering of each frame utilizes the shifting property of the

Fourier transform as well as the filter's estimated location

of the intensity profile.

The shift theorem for the Fourier transform states that

a linear phase shift in the frequency domain corresponds to

translation in the spatial domain. Because of the assumed

periodic nature of the sampled data, such a phase shift can

be thought of as a cylindrical shift. That is, rotation of

the samples out one side of the interval results in rotating

them into the other side of the interval. This property can

be used to show that the only difference between the cen-

tered image and a translated image is a linear phase shift

proportional to the spatial displacement in the x- and y-

111-16



directions as in (3-30), if Fltlx,y)) = G(fx,f) then

-a ' " F(C(x-a,y-b)) G(fx,fy)exp[-j2w(fxa + fyb)] (3-30)

where a = shift of the spatial function in the x-
direction

b = shift of the spatial function in the y-
direction

The filter's updated estimate of the location of the cen-

troid of the intensity profile with respect to the center of

the FLIR field of view can be used to determine the negating

phase shift required to obtain the centered image needed for

inter frame smoothing.

3.2.8 Exponential Smoothing. The intensity profile of

the target is neither known at any given time, nor can it be

measured directly. Furthermore, the measurements that are

available are corrupted by FLIR measurement noises as well

as background noise. It is assumed that for most sampling

rates, these corruptive noises tend to change significantly

faster than the target intensity pattern from sample period

to sample period (12).

A memory efficient, exponential smoothing algorithm was

used to exploit this property. It captures the essence of a

true finite memory averager without the need for storage of

all the previous frames of data. This algorithm can be

expressed as (1):

" - (t) --ay(t) + (1-a)2(t-1) (3-31)

where 2(t) = current averaged value

y(t) = current data frame
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..- (t-l) -- previous averaged data frame

The': a = smoothing constant, 0 < a < 1

The smoothing constant, a, can be adjusted to account for

K> the dynamics of the image. For slowly changing images, a

smaller a would be appropriate, while a rapidly changing

image requires that the most recent frames of data be

weighted heavily. An a should be chosen that gives the best

performance characteristics for all expected image

variations. Appropriate values for a are: 0 < a < 1.

The necessary operations required to perform interframe

.. % smoothing have now been defined. A method for centering the

intensity profiles and smoothing the data to attenuate the

effects of noise has also been presented. The following

operations are performed to get a centered intensity profile

in the spatial domain.

1) The Fourier transform of the raw FLIR measurements
is calculated

2) The appropriate negating phase shift is applied to
center the image in the frequency domain based on
the extended Kalman filter's estimate of the

- location of the centroid of the image

3) Interframe smoothing of the centered data is
performed

4) The predicted target centroid position at the next
sample time, R(ti+l-), is the sum of the predicted
position due -b target dynamics and the predicted
position due to atmospheric disturbances. In
equation form,

-_(ti+ - = _dyn(ti+l-) + _atm(ti+l

However, as stated in Chapter I, control is appliedat each sample time to zero the predicted dynamic

states. That is, the FLIR is pointed so the center
., of the FLIR field of view points toward the

.8: . '..
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predicted target centroid position due to target
dynamics. So now, the intensity shape function is
evaluated at the states after control has been
applied,

!!(ti+I - c) = -9atm(ti+l-)

where the superscript c denotes after controller
application

5) The inverse Fourier transform is performed to obtain
the intensity profile

3.2.9 Derivative Property of the Fourier Transform. In

Section 3.2.4, the derivative of the intensity function with

respect to the states was shown to be necessary to perform

filter updates. This can be easily accomplished in the

frequency domain, where differentiation in the spatial do-

main becomes simple multiplication by j2 (f + f) Thisx .y

process can be described by:

F( h(x,y)/x1 = j2TfxF[h(x,y)] (3-32)

F[3h(x,y)/6y] = j21fyF[h(x,y)] (3-33)

The necessary variables to propagate and update the

estimates of the extended Kalman filter tracker have now

been presented. The next sections of this chapter will

cover the linear Kalman filter/correlator tracker configura-

tion shown in Figure 1-2, which shares many of the same

processes described above.

3.3 Linear Kalman Filter/Correlator Tracker

As stated in the introduction to this chapter, a desire

to obtain an algorithm that was less computationally

burdensome to implement than a high-measurement-dimensioned
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extended Kalman filter led to the investigation of the

. feasibility of using an enhanced correlator and Kalman

filter in the same tracker. The correlator can be

considered enhanced because it uses the estimated intensity

function as a template against which to compare the new

target information. Also, thresholding is performed on the

cross-correlation to reduce the likelihood that false peaks

will skew the estimate of the point of maximum correlation.

This allows the correlator to incorporate a priori informa-

tion about the target into the algorithm instead of

operating solely on the collected data, as well as providing

a better target template than the previous frame of raw FLIR

A data. Correlation of the template and the target informa-

tion is used to estimate the relative position offsets from

one sample period to the next. These pseudo-measurements

are provided to the linear Kalman filter, which uses them to

generate a new estimate of the target intensity function and
'J

target centroid location. Although Millner (13) investi-

gated many different correlation techniques, the FFT method

exhibited the best performance characteristics and was the

method employed for this research.

-' 3.3.1 FFT Correlator. The correlator used in this

study computes the cross correlation of the template, which

is the estimated target intensity function positioned at the

best estimate of centroid offset (h[P(t i c]), and the raw

data from the FLIR. The FFT can be used to perform the

- * cross-correlation as illustrated below:
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F[g(x,y)] G= xf 3

F[l(x,y)] = L(fx,fy) (3.

F[I(x,y)*l(x,y)] = G(fx,fy) L* (fx,fY) (3.

where j(x,y)*l(x,y) = cross-correlation of the two
dimensional spatial sequences
g(x,y) and l(x,y)

L(fxf = complex conjugate of the Four:
transform of the sequence l(x

By taking the inverse FFT, or IFFT, of Equation (3-36),

cross-correlation is obtained:

R(x,y) = g(x,y)*l(x,y) = F-l[G(fx,fy)"L*(fx,fy)] (3-

Once the cross-correlation, R(x,y), has b

determined, it may be necessary to process it wit

threshholding function. If any one element of R(x,y)

less than some pre-selected fraction of the element

maximum correlation, then it will be considered as hav

poor correlation information and be set to zero. 7

should reduce the likelihood of false peaks biasing

estimated offset between the template and the target di

While using a true maximum correlation finder wo

eliminate this source of error, it is not attractivE

implement due to such problems as ambiguity of multi

peaks and heavier computational loading, so a correlat

peak was "found" by a center of mass correlation.

After threshholding, a centroid summation was usei

locate the center of mass of R(x,y). This centroid

assumed to be a good indication of the peak location.
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location of the autocorrelation centroid is calculated in

either the x- or y- direction using the following equation:

N
i'ampi

C=1
C---------------

N
L ampi
i=1 (3-38)

The calculated position of the centroid of R(x,y) is

the correlator's estimate of the offset of the target from

the center of the data frame. This information is now the

"measurement" passed to the Kalman filter. The appropriate

measurement equation is:

Z(ti) = HFPX(ti) + VF(ti) (3-39)

XDC IIxAC
where z(ti) = YDC YAC

- the estimate x- and y- coordinates
of the centroid of the target intensity
function as estimated by the correlation
algorithm. The estimate of the centroid
location is based on filter predicted
centroid location due to dynamics and
atmospherics.

HF-f1 0 0 0 0 0 1 0

-'" F : 0 1 0 0 0 0 0 1

= the linear combination of
the state variables which contribute to the
measurement elements

F(ti) = [XD YD vx vy ax ay XA yA]T

111-22



SF(ti) - corruptive noise assumed to be a white Gaussian
process with statistics

E(vF(ti)] = O

EtVF(ti)vFT (tj)) = RF(ti)6i j

Recall that each measurement is considered to be the sum

total of the position offsets from the center of the field

of view due to target dynamics and atmospheric jitter, and

the corruptive noise.

The appropriate propagation equations for this filter

are the same as those developed earlier for the Gauss-Markov

target acceleration model. This linear model was used

because it is linear and , together with the linear

.: measurement model, will yield a final filter that is totally

linear. Because of the linearity of the equations in this

tracker, standard Kalman filter update equations can be

used:

K(ti) = _F(ti)HFT[HFP(ti-)HFT + RF(ti)] 1  (3-40)

FP~t tF -Fi)t)RF(ti + ) = RF(ti- ) + K(ti)[z(ti) - HFAF(ti-)] (3-41)

... F(ti + )  = PF(ti-) + K(ti-)HFPF(ti-) (3-42)

where all quantities have been defined previously.

3.4 Estimation of Dynamic Driving Noise

The dynamic driving noise matrix, QFD' as in Equation

(3-6), is used to model the expected effects of target

motion. Because this motion is rarely constant, a constant

WAq 2 FD would be less than optimal most of the time for a target

'p. "-.. exhibiting a wide range of manuevers. Filter performance
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would be improved if this matrix could be adaptively set in

response to the observed target behavior. This adaptive

estimation of the noise matrix can be employed for either

tracker.

An estimator for QFD is determined as follows

(71:Ch 10):

.'-'-'..P~li- -- Fp tilti-l)P (ti_l )(bFT(ti,ti_l )  + QFD(tiI)

(3-43)

which is a restatement of Equation (3-7b), substituting

QFD(ti) for the integral; ti for ti+i; and ti_ 1 for ti.

. P(ti + ) = EF(ti-) - K(ti)H(ti)PF(ti-) (3-44)

Solving for QFD using Equations (3-43) and (3-44) yields:

S QFD(ti-1) = K(ti)H(ti)PF(ti- ) + PF(ti+ )

!! !! ~- F (ti'Iti-1) PF (t -)F T t'i

.(3-45)

Only the first term of Equation (3-45) is not readily

available because it is desired to have the Kalman filter

gain reflect the observed target behavior. To incorporate

this information into Equation (3-45) using the filter resi-

dual, IF, let

"Fti) - Flti-) = K(ti)rF(t i ) = x(t i ) (3-46)

If the ergodic assumption is made, the ensemble average can

be replaced with a time averager on a single sample, as
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* . i
TTE[Ax(ti)AxT(t i ) I 11IN ( Ax(tj)axT(tj)]I

j=i-N+1
.' (3-47)

Additionally, the residual sequence has been shown to be a

white Gaussian sequence of zero mean and covariance

[H(ti)P(t7)HT (ti) + R(ti) ] (6:229).

E(rF(ti)rFT (ti)] =H(ti)P(ti-)H(t.) + R(t i ) (3-48)

so that

ECax(ti)AxT(ti)] = K(ti)E(rF(ti)rF T(t) ]KT(t i )

= K(ti)H(ti)P(ti-) (3-49)

Combining Equations (3-45), (3-46), and (3-49) gives:

A i 

QFD(ti) = (1/N L (Ax(tj)AxT (tj)]3 + PF(ti + )

j=i-N+l

- F(titil)PF(ti.l+) FT(ti,ti_) (3-50)

But rather than averaging just for the first term of the

above equation, averaging was performed over all terms for

the N most recent sample periods:

QFD(ti) = 1/N [ [Ax(tj)ax T (tj) + PF(tj + )

j=i-N+i

- ±_(tjtjl)PF(tj.l+)_F T (tjtjl)] (3-51)

This is also a closed form approximation to the maximum

likelihood estimate of -QFD to be obtained simultaneously

with a state estimate (7:123).
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To reduce the data storage requirements, a fading

memory approximation to this average was used:

A

2 FD(ti) = kQFD(ti1) + (l-k)QFD1(ti) (3-52)

A

where QFD1(tj) = is a single term in the summation of"Equation (3-51) when j=i

k = parameter which controls the length of
time old estimates of QFD are
maintained, 0 < k < 1

3.5 Summary

.. This chapter presented the two tracker configurations

which served as the foundations of this research effort.

The developemnt of how state estimates were propagated and

updated for both trackers was presented. Additionally, the

use of the Fourier transform to derive the target intensity

function was demonstrated.

The next chapter will discuss addition of a multiple

model adaptive filter structure to the algoritms presented

here.

.
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IV. Multiple Model Adaptive Filter

4.1 Introduction

The studies by Kozemchak (5) and Millner (13) cited in

earlier chapters used a tracking window much smaller than

.4 the entire area covered by each frame of FLIR data. Only an

8 x 8 array tracking window for measurement updates and a

24 x 24 array for data processing (out of an available

500 x 400 pixel measurement array) were used in an effort to

minimize the computational and memory storage requirements

of the tracker (3:4). Unfortunately, limiting the dimen-

*sions of the tracker field of view increases the likelihood

that the image of a highly dynamic, close-range target will

be outside the tracking window during a given sample period.

Such a condition causes the tracker to lose track of the

target. Any effort to increase the aperture of the single

filter tracker without simultaneously increasing the array

dimensions will decrease tracker resolution. A reduction of

resolution results in poor tracker performance for benign

target trajectories.

One approach which allows the tracker field of view to

be expanded without increasing the dimensionality of the

data processing arrays uses a multiple model filtering algo-

rithm. Under this approach, a second identically dimen-

sioned filter is processed in parallel with the original

filter. The differences between the two filters are that

the added filter possesses a different model of target

dynamics and larger field of view. By optimally combining
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the estimates produced by the two filters at each sample

time, an overall estimate can be created. This structure

will maintain the desirable high resolution for benign tar-

get trajectories while allowing the tracker to maintain lock

on highly dynamic targets.

This chapter will describe the multiple model filter

algorithm and how this algorithm was implemented in both the

Kozemchak and Millner form of trackers.

4.2 Multiple Model Adaptive Filter Algorithm

In any tracking scenario there are many parameters

related to target motion which are highly uncertain. Such

parameters may be related to target capabilities and/or

target commanded maneuvers. Furthermore, these uncertain
..

-parameters can be grouped together to form, a; a vector

which represents these uncertain parameters. The parameter

vector a lies in a continuous parameter space, as each

parameter composing a can generally assume any value over a

continuous range of values. To make the estimation of a a

more manageable task, this continuous space was discretized
into K distinct models for the uncertain parameter vector.

These models are well distributed over the range of expected

values for a (7:130). The multiple model algorithm consists

of K independent (Kalman) filters, each with its own esti-

mate of the value of a. That is, each filter's model for a

contains values for each uncertain parameter, i.e. component

of a, that falls within the range of possible realizations

.. of that parameter. Given that the filter whose a vector
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most closely resembles the true values for the uncertain

parameters should produce the best state estimates, one

would, in a multiple filter environment, want to weight the

estimates from that filter most heavily, while weighting

those from the progressively less accurate models

increasingly lightly.

The multiple model filter structure is shown in

Figure IV-1 (7:132).

A

Z Kalman filter l 2E
based on a1  Pl

A

/x

Kalman filte -
based on a2

-Z.

I--,

A

F -Le based on

":

44

Hypothesis
Conditional p
Probability
Computation IpK

• "-Figure IV-1. Multiple Model Filter Algorithm
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As the figure illustrates, the multiple model filter

consists of a bank of K independent Kalman filters. The

filters are processed in parallel, and they independently

produce their own states estimates based on the incoming

measurements. When a measurement update is performed at

each sample time, the residuals of all filters are used to

calculate conditional probabilities which are used to assign

the appropriate weighting factors to the estimates of each

filter.

These conditional probabilities, called hypothesis

conditional probabilities, are the probabilities that the

uncertain parameters, a, have assumed the same values as

those modeled by the kth Kalman filter, ak' given the meas-

urements received up to that time, for K Kalman filters.

Pk(ti) = prob (a = ak I Z(ti) = Zi3  (4-1)

where a = a random vector which can take on values a,
to Ak

ak = values for the uncertain parameters of the
kth Kalman filter where k = 1,2,...,K for
K Kalman filters in the filter structure

Zi = measurement time history up to time ti

Pk(ti) = weighting factor for the estimates of the kth
Kalman filter at time ti

The conditional probabilities at time ti can be expressed as

(7:131):
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i[.iPk (ti )  f fz(ti) a, z(ti-1) (Zi -ak'Z-i-l) Pk (ti-i )

K"Z f,- / zlti)JaZ(ti-1) (ilaj-Zi-l) Pjlti-l)
j=1 -

k = 1,2,...,K (4-2)

where the denominator is simply the sum of all computed

numerator terms and thus is the scale factor required to

insure that the sum of all conditional probabilities is one.

This permits the use of the conditional probabilities as the

weighting factors of the filters' estimates.

The conditional density functions of (4-2) may be

evaluated as:

• ' fz(ti) la,Z(ti-l) (ilakZ i-l)

= (2T)m/2 IAk(ti)11 / 2 expt • (4-3)

where C • = C-0.5rkT(ti)Ak-l(ti)rk(ti))

.k = residuals of the kth Kalman filter
k=l,2, ... K

k = CE kjk(t-)HkT + Ek ]

As stated earlier, one would expect the filter whose model

for a most zlosely resembles the true values for the uncer-

tain parameters to produce the best state estimates. That

is, it should have the best behaved residuals, i.e. the most

zero mean, white, Gaussian. of covariance equal to the

". computed value of Ak (7:133). It is the size of the resi-

duals relative to the filter's computed estimates of the

variance of the residuals errors (via A = [HPHT + R]) that

indicates which is the "correct" model for a.
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As illustrated in Figure IV-1, all the filter estimates

are combined to form

K
5z (ti+) = k(tk+)Pk(ti) (4-4)

k=1

The conditional covariance of R(ti) can be expressed as:

K
S(tiL) =kPk(ti) C.k(ti+) + (k(tk+) - R(tk+)]

[! ' x [Rt +  _k(ti + ) ]T] (4-5)

It is not absolutely necessary to compute (4-5) in the

online algorithm.

As stated earlier, the filter which consistently pro-

* duces the smallest residuals relative to its own estimates

of its errors that is weighted most heavily. Therefore, it

is important that there be significant differences between

the residuals from this "best" filter and the residuals from

the other mismatched filters. Failure to obtain such dif-

ferences could cause the algorithm to assign inappropriately

large probabilites to incorrect models of the uncertain

parameter values which will result in poor performance. In

terms of implementation, this means that each filter in the

algorithm should be tuned for optimal performance when the

true values of the uncertain parameters are identical to its

model for those parameters. When tuning these filters, one

* should avoid a "conservrtive" philosophy, that is, adding

large magnitudes of pseudonoise to dynamics. This would

IV-6
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"hide" the inadequacies of the target dynamics model.

Finally, care should be taken when calculating the

hypothesis conditional probability values. As can he seen

in Equation (4-2), the current value of the conditional

probability is the product of the conditional density of

Equation (4-3) and the values of the conditional probability

at the previous time, divided by the sum of all such pro-

ducts for the K filters. This means that if the conditional

probability is allowed to go to zero at any one time, all

subsequent values of the conditional probability for that

filter will be zero. This will effectively shut off all

future contributions from that filter's estimates into the

overall multiple model filter estimate. This could reduce

the overall filter's ability to respond to future changes in

the true parameter values. Consequently, each conditional

probability was artificially bounded to keep it from con-

verging to zero (7:135). Another factor which motivated

using a lower bound on the conditional probabilities was

natural damping effect on the conditional probabilities

imposed by the structure of Equation (4-2). Because the

current conditional density function is multiplied by the

previous value of the conditional probability, there is a

certain amount of lag before the filter responds to changes

in the true parameter values. By setting the lower bound to

a value of 0.01, it was possible to keep the conditional

probabilities from converging to zero while simultaneously

improving the multiple model filter's ability to respond to
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sudden changes in the true parameter values. This value for

the bound was chosen based on actual test results of the

program. After lower bounding each probability, the resul-

tant probabilities are rescaled so that their sum is kept at

one.

4.3 Implementation of the Multiple Model Algorithm

The multiple model algorithm just described was imple-

mented in both the Kozemchak and Millner tracker formula-

tions. While the means of implementation differed because

of the inherent differences in the structures of both

trackers, certain characteristics are shared by both.

In both filter models, the structure of the original

filter and of the truth model as described in Chapters II

and III remains unchanged. Also, with the exception of the

inclusion of the second filter and the associated algorithms

needed to combine the estimates via the multiple model

algorithm just described, the structure of each tracker

remains as outlined in Chapter I.

FLIR measurements for the original small field of view

are generated as before. Measurements for the larger field

of view are generated by taking the 24 x 24 array with the

same field of view center as used for the original smaller

field of view and averaging the intensitie3 within each

3 x 3 pixel area within that original region, to create an

8 x 8 measurement array for the larger field of view. This

averaging of the intensities over each 3 x 3 pixel was done

to keep the dimensionality of the filter for the larger
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field of view at the same level as that of the original

filter; it's pixels are now 60 prad-by-60 Arad instead of 20

prad-by-20 Arad, as originally.

For the larger field of view, the measurement noise of

the FLIR was assumed to be spatially uncorrelated because

the distance between its pixel centers is now greater than

two small (20 Arad) pixels in length. Recall from Chapter

II that spatial correlation was modeled as being non-zero

only for each pixel and its two closest neighbors in all

directions. In addition, the larger field of view makes it

reasonable to assume that the target image intensity is

essentially zero at the borders. Therefore, the larger

field of view was padded with zeros, as opposed to data.

Also, all noise contributions to the larger field of view

S were calculated as the average of the noise terms of the

equivalent area for the smaller field of view.

Finally, each filter was tuned for best performance at

different target trajectories. The smaller filter was tuned

for best performance at very benign trajectories (trajectory

1 as described in Chapter II). The larger filter was tuned

to accommodate a highly dynamic target trajectory (trajecto-

ry 2 as described in Chapter II with a 20g commanded pul 1-up

maneuver). As explained earlier, this tuning was performed

to create significant differences between the residuals of

the two filters so that the weighting factors assigned to

the estimates of each filter would accurately reflect the

suitability of that filter's target dynamics model to the
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maneuver being performed at that time.

4.3.1 Implementation in the Kozemchak Tracker Configu-

ration. In this tracker model, the multiple model algorithm

was implemented by rescaling the dimensions of the pixels in

the second filter. The pixel sizes for the second filter

were set to be 60 microradians by 60 microradians, which is

a threefold increase in pixel size. Recall from Chapter I

that the extended Kalman filter tracker processes the FLIR

measurements directly, so the increase in pixel size corre-
sponds to the way the FLIR measurement array for the larger

field of view was created in Section 4.3. This rescaling of

the pixel size also necessitated that the dynamics model for

the second filter also had to be rescaled.

The measurements from the FLIR did not require re-

scaling except for thc aforementioned averaging to account

for the larger pixel size. Because of this averaging, the

extended Kalman filter measurement vector, z, remains a

64 x 1 vector, but its components are each the average

intensities over a 3 x 3 block of the smaller pixels.

Because z is a 64-dimensioned vector, the matrix A in

Equation (4-3) will be a 64 x 64 matrix. This would require

that a full 64 x 64 matrix be performed at every sample time

to determine each of the hypothesis conditional probabili-

ties. For a multiple model filter with K Kalman filters,

this would correspond to K 64 x 64 matrix inversions at

every sample time, assuming each filter is identically di-

mensioned. As explained in Chapter II, a desire to avoid
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doing one such inversion at each sample time required using

,.:. the inverse covariance method for measurement update of the

Kalman filter for the single filter tracker. However, cal-

culation of the A matrix is explicitly required in the

multiple model filter formulation.

Two approximations were made to alleviate this problem.

First, the inverse of the A matrix was derived using only

the diagonals of A (2:24). This approximation was easy to

implement and requires only 64 divisions instead of the 32

million operations needed to perform a full inversion.

*Similarly, the calculation of the determinant of A, also

required in Equation (4-3), requires over 8000 multiplies so

it also required an approximation. Since the magnitude of

the determinant is independent of the "correctness" of the

Ofilter models and it was anticipated that the major differ-
ences between the two filters would be in the residuals, the

scalar term (2r)m/2 IAkIl/ 2 terms of Equation (4-3) were

ignored (2:24,7:133).

Another approach to providing a value of A-1 would have

been to perform full inversion of those elements of A that

are associated with the center 4 x 4 region of the field of

view. This central region was chosen because it is the area

2 where the centroid of the target is expected to be located

(2:24). The A matrix would be treated as diagonal or ig-

nored altogether, outside of this region.

Due to the size of the matrices involved, the exponen-

tial argument of Equation (4-3) would often exceed the
%'
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bounds for the exponential function as implemented on the

computer (2:25). A scale factor of .01 was used to bring

the argument's magnitude down to acceptable levels. While

this scaling reduces the relative ratios between the two

* filter conditional probabilities, it was deemed acceptable

until another means of scaling could be found (2:25). The

implemented form of Equation (4-3) was:

fz(ti)la,z(ti-1) (ziIAk,Zi1) " expE-0.005rkT(ti)

x Ak-(ti)rk(ti)] (4-6)

For the approximation which uses the 4 x 4 foveal

approximation, because of the reduced dimensions of the A

matrix, no such scaling factor was introduced.

Finally, in Chapter I it was explained that for the

extended Kalman filter, the filter state estimates were used

to derive the non-linear intensity shape function and the

linearized intensity measurement function. This assumed

that the appropriate control was applied to FLIR so that the

center of the tracking window was located at the predicted

target centroid position due to target dynamics as shown in

Equation (4-7):

!cen(ti~l-) - _*dyn(til-) + -atm(ti+l-) (4-7)

where Itcen(til-) - predicted target centroid location

ltdyn(til-) a predicted target centroid location
due to dynamics. Control is applied
to point the sensor toward this
spot so it is effectively zeroed
outi that is, I (tl - c) (dyna-mic location aft#Jcontrol is
applied) is zero
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_atm(ti+l) z predicted target centroid location
due to atmospheric disturbances

Because the predicted target centroid location due to

dynamics is zeroed out, the nonlinear and linearized shape

functions are evaluated at the filter's predicted centroid

location solely due to atmospherics.

(2yntijl-) + 2atm(ti+I-) - !Sdyn(ti+l-) = -Patm(ti+l)

(4-8)

However, in the multiple model filter, the FLIR is

Apointed such that the predicated target centroid position

due to target dynamics of the combined estimate is at the

center of the field of view. Therefore the intensity shape

function and the intensity measurement function for both

filters must now be calculated based on the fact that the

foveal center is now at some offset distance from the fil-

ter's estimate of the location of the target centroid. The

nonlinear and linearized intensity functions are now

evaluated at:

-dynk(ti+l-) + atmk(ti+l-} -dyn(adaptive) (til-) (49)

for the kth filter.

For very severe target maneuvers, the difference bet-

ween the position estimates of the small field of view

filter and those of the multiple model filter become so

large that cylindrical shift of the image approaches a

complete cycle. At this point, the small field of view

filter will diverge. Because of the lower bounding on the
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conditional probabilities of each of the filters, this will

S .,eventually cause the whole algorithm to diverge. To avoid

this condition, the states of the small field of view filter

were set to the appropriately rescaled values of the large

field of view filter when the magnitude of the shift ex-

ceeded 3.0 pixels in magnitude. Its error covariances were

set at levels so the filter would undergo another acquisi-

tion cycle. The conditional probabilities were kept at

their current values to indicate low confidence in the small

field of view filter's state estimates.

4.3.2 Implementation in the Millner Tracker Configura-

tion. In the Millner tracker model the rescaling needed to

accommodate the larger field of view was accomplished within

the correlator, and was transparent to the linear Kalman

0filter. Recall from Chapter I that the correlator produces

*measurements" for the Kalman filter by calculating the

offsets from the center of the field of view. Since the

correlator provides these estimates in units of pixels, the

output of the correlation algorithm for the larger field of

view was multiplied by a factor of three prior to being

provided to the associated Kalman filter.

Unlike the implementation of the multiple model algo-

rithm in the Kozemchak tracker model, the conditional proba-

bilities can be calculated exactly as outlined in Equations

(4-2) and (4-3). This is because A is now a 2 x 2 matrix

since the measurements to the Kalman filters are offsets

from the center of the tracking window.

IV-14



: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ W r V.: ,. 77. V. - -. . . . . .. . ..- , - " n  
.

4.4 Summary

This chapter described the reasons for adopting the

multiple model filter algorithm and the structure of the

algorithm. It also explained how this algorithm was imple-

mented with the existing tracker configurations.
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V. Performance Analysis

* 5.1 Introduction

This chapter presents the tracking performance of the

two tracker formulations against the target trajectories

descirbed in Chapter II, after incorporation of the multiple

model filter algorithm. The first section of the chapter

discusses the figures of merit used to evaluate tracker

performance. The next section describes the performance

plots generated by each set of computer simulations. The

third section of the chapter lists the parameter values

assigned to the truth and filter models used in this re-

search. These values were chosen on the basis that they

provided the best model of true target behavior and/or they

were shown to result in best tracker performance in the

studies by Kozemchak (5) and Millner (13). The final sec-

tion of this chapter discusses the results of the computer

simulations using both the figures of merit and the perform-

ance plots.

5.2 Derivation of Tracker Statistics

Statistics on tracker performance were gathered using a

Monte Carlo analysis technique. Previous studies by Harnly

and Jensen (3) and Flynn (2) have shown that a total of 10

Monte Carlo runs will exhibit reasonable convergence of the

error statistics to the actual error statistics of an infi-

nite number of runs. Each Monte Carlo run simulated 5

seconds in real time for a total of 150 frames of data at
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the 30 Hz sampling rate.

In the tracking problem, one of the quantities of

interest is the error committed when estimating the target's

true position due to its own dynamics. This error reflects

how well the internal filter dynamics model performs against

a target performing a wide variety of manuevers. Statistics

were also kept on the accuracy of the tracker's estimates of

the target centroid. These statistics are of interest be-

cause errors in the estimation of the target centroid will

affect the accuracy of the estimated target intensity shape

function in the extended Kalman filter tracker, and the

target reference image in the linear Kalman filter/correla-

tor tracker. Errors in the estimated intensity function are

important because this function is used when updating filter

0 estimates each time new information is received from the

FLIR. Errors in the target reference image will affect the

correlation process in the linear Kalman filter/correlator

tracker. This will produce less accurate offset quantities

(the pseudo-measurements for the linear Kalman filter),

thereby affecting the accuracy of the tracker.

All of the above statistics were kept for instances

before and after measurement incorporation. By comparing

the errors committed before and after the filter estimates

are updated, it is possible to evaluate how well estimates

of target position are improved each time information from a

frame of data is received.
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The sample mean errors of the filter state estimates

are calculated as follows:

N N
Exd(ti) - 1/N F (xdk(ti) - Ptdfk(ti)] - 1/N exdk(ti)

k(5-1)

where Exd(ti) -sample mean error (i.e. ensemble
average error over all simulations)
in x-dynamics position at time ti

ldfk(ti) = multiple model filter estimated x-
dynamics value at time ti for
simulation k

xdk(ti) = truth model x-dynamics value at time ti
for simulation k

exdk(ti) = error in x-dynamics position at time ti
for simulation k

N = number of Monte Carlo runs

and the sample variance of the error is given by:

N
Wxd 2 (ti) = 11(N-1) = eXdk 2 (ti) - (N/(N-.1)] Exd 2 (ti)

(5-2)

where the quantities are as defined above. The two equa-

tions, (5-1) and (5-2), may be generalized to perform sample

mean error and variance calculations for the errors

committed when estimating the y-dynamics position, and the

x- and y- centroid location coordinates. These errors are

expressed in FLIR image plane coordinates and describe off-

set from the center of the sensor field of view. The units

of the errors are pixels, with each pixel being 20 rads in

length.

v-3
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In addition to averaging the errors over all Monte

S. . Carlo runs, time averaging was performed on the mean errors

and standard deviations. This temporal averaging was con-

ducted from t=0.5 seconds to t=2.0 seconds for trajectory 1

evaluations, and from t=3.5 seconds to t=5.0 seconds for all

other trajectories. The earlier time frame for trajectory 1

evaluations was selected because it allowed the filter tran-

sients to die out while avoiding the minimum range/maximum

passing rate condition that occurs near the end of the

simulation. In this condition, any filter tuned for a

benign target trajectory begins to exhibit markedly degraded

performance. The later time frame chosen for the other

trajectories allows the filter transients due to manuevers

. initiated at t-2.0 seconds to die out completely before time

averaging begins.

This time averaging allows presentation of the data in

a compact, tabular form. However, temporal averaging can

also result in misleading figures of merit. For instance,

if the errors should follow a ramp function from negative to

positive values over the period of temporal averaging, a

misleading sample mean error of approximately zero will be

the result. This figure could lead to an erroneous assump-

tion that an unbiased estimate was being generated by the

filter. Therefore, care should be taken before making

sweeping generalizations based only on the figures -. sented

in the tables. r this reason, the performanc ts of

the simulationz e included in Appendices A, B, and C.
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These plots are grouped according to trajectory type

and according to severity of the maneuver within those

groups. The performance plots for trajectory . evaluations

are followed by those for trajectory 2, trajectory 3, and

son on. Within those groups, the plots for a 2g pull-up

maneuver are followed by those for the 10g pull-up maneuver,

and then the 20g maneuver. Still further, the plots of the

multiple model filter are followed by those of the small

field of view filter, and then those of the large field of

view filter. Appendix A contains the plots for the linear

Kalman filter/correlator tracker. Appendix B contains the

plots for the extended Kalman filter tracker using the

Gauss-Markov target acceleration model. Appendix C contains

the plots for the same tracker as Appendix B, but these

results are for the constant turn rate target acceleration

.q model.

5.3 Performance Plots

As mentioned in the previous section, performance plots

of the simulations are generated to prevent possible misin-

terpretations of the results caused by the temporal aver-

aging of the statistics. These performance plots are of the

x- and y- dynamics mean errors, and the x- and y- centroid

mean errors; plus and minus the standard deviation of the

respective errors. Because of the large number of cases run

during this research, only the x- and y- dynamics mean error

(plus and minus one standard deviation) plots at both before

, . and after measurement incorporation are included in this

v-5
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document. This is due to the f act that: (1) estima

true target states xd and Yd are of primary importan

tracking; and (2) it is in fact easier to estimat

position of the apparent target centroid than to id(

- the individual components of Equation (2-i). The num

plots was further pared down by including only those

which illustrated important trends. For example, most

involving target maneuver will have plots only for t

axis, which was the direction of the maneuver.

Examples of the types of performance plots gen(

are Figures V-i and V-2. These are plots of the y-dy

mean error plus and minus one standard deviation.

these figures, it is evident that the maneuver was ini

at t=2.0 seconds. At that point, a dramatic increi

mean tracker error is exhibited. It can also be see

it takes the filter some finite amount of time to re,

4. Figure V-i is a plot of the y-dynamics error statist

the time prior to measurement incorporation, or t]

minus" error. Figure V-2 is a plot of the same qua

but at the time after measurement incorporation, or t

plus" error. To illustrate how well the filter improv

target position estimates each time measurement infor

is received from the FLIR, note the mean peak erri

Figures V-i and V-2. The mean peak error is approxir

-7.0 pixels for the minus time, and is only -3.8 pixe

the plus time. Pixels are defined as before, wit]

pixel measuring 20 grad in length. The values of th
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error and standard deviation are generated by applying Equa-

tions (5-1) and (5-2) to the data at each sample time for

each Monte Carlo run.

5.4 Parameter Values

In order to allow direct comparison of the results

obtained for the extended Kalman filter tracker and the

linear Kalman filter/correlator tracker, both trackers were

presented with as identical as possible truth model repre-

sentations of the target. Therefore, the truth models of

both the extended Kalman filter and the linear Kalman

filter/correlator trackers were set so they possessed iden-

tical descriptions of target shape and intensity, as well as

identical models for background and FLIR measurement noises,

atmospheric jitter, etc. On the other hand, the parameter

values used in the filter models for the respective trackers

will vary somewhat with the tuning done for each tracker.

*5.4.1 Truth Model Parameters. For all simulations, the

initial inertial parameters of the target in the inertial

reference frame were:

inertial position: x n 5000 m
y - 500 m
z - 20000 m

Inertial velocity: vx 0 -1000 m/s
v 0y 0
vz - 0

Inertial acceleration: ax a 0
ay .0
az 0
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All trajectories described in Chapter II start from these

initial conditions. The input measurement variance, which

includes both the background and FLIR noises, was set to a

value of one. This parameter value was expressed in terms

of (intensity)2 units, which are arbitrarily chosen units

used to indicate the strength of the image received by the

FLIR. The maximum intensity of each target hot-spot was

given a value of 20. The resulting signal-to-noise (SNR) of

all simulations is 20, which is defined by the following

relationship for this application:

(maximum signal intensity)
SNR - -------------------------------------------

(rms background and FLIR noise intensity)

(5-3)

This value for the SNR is representative of realistic track-

ing scenarios (3). The variance of the atmospheric jitter

was set to 0.2 pixels 2. This value may be somewhat low

compared to the true level of atmospheric jitter in the real

world so it may be advisable to investigate the sensitivity

of the algorithm to different levels of atmospheric jitter

in future studies. Finally, the multiple hot -spot target

were defined using circular intensity contours with a glint

dispersion parameter of 2.0 pixels 2.

5.4.2 Data Processing Parameters. In the data pro-

cessing algorithms of both tracker types, a number of para-

meters could be varied to alter tracker performance. One

such parameter determines the nature of the padding done to

the 8 x 8 tracking window discussed in Chapter I. Recall
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that a 24 x 24 array is processed instead of the 8 x 8 field

of view to generate the FFT's. A common engineering prac-

tice would be to pad the field of view by surrounding it

with a border of 8 rows and columns of zeros. However, as

stated earlier, this would introduce artificial edge effects

if the target intensity function is not very close to zero

at the borders of the 8 x 8 tracking window. Since measure-

ment data of the regions outside the tracking window was

available, there was the luxury of being able to pad the

tracking window of the smaller field of view with real, but

noise-corrupted data, instead of zeros. On the other hand,

the increased size of the larger field of view motivated

padded it with zeros at all times since it is better to pad

with zeros versus the noise value, if the signal has gone to

O zero at the borders of the tracking window.

High frequency spatial frequency filtering could also

-* be performed for both tracker types when deriving the target

intensity profile. This can be accomplished by zeroing out

a specified number of high frequency components within the

Fourier transform of the image. For a target whose inten-

sity is slowly changing in the spatial domain, this type of

filtering will generally enhance tracker performance. Con-

"1 versely, for a rapidly changing target intensity function,

this type of filtering will produce errors in the target

reference image and degrade tracker performance (13:106).

-a In both tracker configurations, it was inappropriate to

perform high frequency filtering for the larger field of

~V-11



view since, with pixel scaling, the large field of view

signal spatial frequency content goes to three times the

highest frequency as seen in the original field of view.

Finally, the relative weighting parameter used in per-

forming exponential smoothing can be varied to account for a

rapidly changing target intensity profile. This parameter

was set to 0.1 for both tracker formulations since it was

found to yield best performance in previous studies (5,13).

This indicates that the target intensity function is

expected to be slowly varying relative to the 30 Hz sampling

rate.

5.4.3 Filter Parameter Values. As stated in Chapter

IV, each filter in both tracker types was tuned for optimum

performance at a specified degree of target motion. The

0smaller field of view filters were tuned to achieve best
performance for constant velocity trajectories. The large

field of view filters were tuned for best performance for

the 20g pull-up maneuver. During this research, it was

found that explicitly tuning the larger field of view for a

20g pull-up manuever made it incapable of maintaining lock

on a constant velocity target. Therefore, this filter was

tuned for best performance for a 20g pull-up maneuver while

still being able to track a constant velocity target. Be-

cause this study was intended to be a feasibility study for

the multiple model adaptive filter algorithm, no investiga-

tions were made to determine the increase in rms error

caused by the need to maintain lock on a constant velocity

V-12
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target. In a tracking scenario, this philosophy makes sense

since the wider aperture would also be used for target

acquisition, where the targets would be at long-range and

exhibiting very benign behavior. The performance achieved

from the individual filters under these tuning conditions

will be presented in Table V-1 and associated figures.

For all filters, atmospheric jitter was modelled with

an assumed correlation time of 0.07 seconds. This value was

chosen based on the results of previous research efforts

(3,12,14).

For the extended Kalman filter tracker, the values for

the parameters for the smaller field of view filter were

selected on the basis of those values which gave best per-

formance for the benign target trajectories in Kozemchak's

(5) study. A filter time correlation constant for filter

acceleration dynamics, using the first-order Gauss-Markov

model, was set to 1.5 seconds, with the assumed target

acceleration white noise strength set to 300 pixels 2/sec 5.
As before, pixels are defined to be 20 Mrads in length.

Except where explicitly stated, this definition of a pixel

will hold at all times. Parameters for the larger field of

view will also be expressed in these pixel units even though
the actual picture elements of the larger field of view

measure 60 Mrads in length. On the basis of tuning runs
performed, the time correlation constant for filter accel-

eration dynamics was set to 1.3 seconds for the Gauss-Markov

model. The target acceleration white noise strength was set
~V-13
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to 5000 pixels 2/sec 5 for both the constant turn rate and

Gauss-Markov target acceleration models for the larger field

of view filter. The similarity of the values for the two

disimilar acceleration models is due in part to the need to

maintain lock on a constant velocity target.

For the linear Kalman filter/correlator tracker, Mill-

ner's (13) results indicated that a dynamic correlation time

of 3.5 seconds and an assumed target acceleration white

noise strength of 150 pixels 2/sec 5 achieved best performance

for the small field of view filter. The large difference in

the dynamics correlation time for the two tracker types

indicates that perhaps the larger correlation time for the

linear Kalman filter/correlator tracker could be reduced to

be more consistent with the value of the same parameter for

the extended Kalman filter tracker. This was not investi-

gated during this research and should be explored in any

future study. Test runs of the larger field of view filter

indicated it performed best for the 20g pull-up maneuver

when these parameters were set to 1.5 seconds and 2000

pixels2/sec5 respectively.

Before presenting the performance capabilities of the

individual filters at their tuned-for conditions, a

narrative on the organization and presentation of the
information would be helpful. First, each case, or

simulation is uniquely identified using a mnemonic code.

This code is described in Figure V-3. The figures of merit

presented in the tables are defined as:

~V-14



Xe a time-average of the mean error for the true
position in the x-direction from time t-3.5
seconds to t=5.0 seconds (t-0.5 seconds to t=2.0
seconds for trajectory 1 targets) at time minus
and plus (similarly for ye)

ae time-average of the standard deviation of the
error for the true position in the x-direction
from the time t-3.5 seconds to t-5.0 seconds
(t-0.5 seconds to t=2.0 seconds for trajectory 1
targets) at times minus and plus (similarly for
G'Ye)

cxe and qe = errors as degined above for the cen-
troid position (similarly for cye and cye)

The performance capabilities of the respective filters

are presented in Table V-1. The first three cases presented

in the table are those of the small field of view filters.

Recall that this filter was tuned for the constant velocity

trajectory. The performance plots of the x-dynamics error

for these cases are Figures A-2, B-2, and C-2, respectively.

The Millner linear filter/enhanced correlator tracker

exhibits lower sample mean errors but with larger standard

deviations. Prom the performance plots for the extended

Kalman filter tracker cases, the poor tuning of the small

field of view filter is clearly evident. The estimates show

a drifting behavior that indicates that the filter dynamic

driving noise was set too low. Unfortunately, this poor

tuning condition (based on tuning values established in

reference [5]) was not noticed until late in this research.

At that point, while it would have still been possible to

perform a total retuning of the filter, for this feasibility

study, there was some concern that increasing the level of

the filter dynamics driving noise would reduce the differ-

V-15
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Each simulation is uniquely identified with a mnemonic code.
This code will consist of up to eight characters and
describes the tracker formulation used, target acceleration
model, trajectory type, and whether the multiple model, the
small field of view filter, or the large field of view
filter was used in the simulation.

The code generally follows this pattern:

L 10 T2 MF

.- = MF - multiple model adaptive filter
- F1 - small field of view filter only
, F2 - large field of view filter only

T1 - c

- Ti - trajectory 1
= T2 - trajectory 2
= T3 - trajectory 3
= T4 - trajectory 4

g level of maneuver (i.e. 10 g's)

,_ _ = L - linear Kalman filter/correlator
tracker, Gauss-Markov target accelera-
tion model

= G --extended Kalman filter tracker, Gauss-
-Markov target acceleration model

= C - extended Kalman filter tracker,
constant turn rate target acceleration
mode l

Special initial codes:

LAQr, GA tracker with ad hoc changes to conditional
CA probabilites

. LS linear Kalman filter/correlator tracker, SNR = 10

Figure V-3. Simulation Mnemonic Codes

(
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ences between the large and small field of view filter

models, thus making it difficult for the multiple model

adaptive filter algorithm to select the correct filter model

. to match current target behavior. This lack of significant

differences hampered the early st.Jv on the multiple model

filter algorithm by Flynn(2). Due to this poor tuning of

%the smaller field of view filter for the extended Kalman

filter tracker, the Millner tracker formulation also exhi-

bits smaller sample rms errors for the benign trajectory.

However, in a laser weapon system, it may be more important

to minimize the area painted by the laser so it may be more

desirable to have smaller standard deviations than small

offset errors; i.e. small standard deviations may be more

essential than small mean errors. One final characteristic

evident in these performance plots is the increase in the

mean errors during the last 0.5 seconds of each simulation.

This increase is due to the minimum range/maximum passing

rate condition alluded to earlier in this chapter.

The second group of cases cited in Table V-i are those

of the large field of view filters for the 20g pull-up

maneuver. The performance plots for these cases are Figure

A-10, B-10, and C-10. Only the y-dynamics error plots are

% presented since the maneuver took place in that direction.

As before, the extended Kalman filter tracker has much

smaller sample standard deviations. However, that tracker

formulation, using the contant turn rate acceleration model,

demonstrates far superior performance. As shown in the

4' V-17
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performance plots, its peak mean errors are smaller and the

"-"-"bias of the estimate once the filter transients have settled

down is very small. The performance plots of the Mlllner

tracker formulation (Figure A-10) show similar mean peak

errors with and unbiased estimate after the transients have

died out. But comparing the length of time it takes the

filter to recover from the manuever shows that the extended

Kalman filter tracker using the constant turn rate accelera-

tion model has a much shorter transient time. Figure B-10,

which is of the same tracker formulation but with the Gauss-

Markov model shows the same good transient behavior but with

larger peak mean errors. The figure also graphically illus-

trates the large bias that appears in Table V-i. This large

rms error indicates the inadequacies of using the first-

order Gauss-Markov target acceleration model for tracking

a fa
5  

highly dynamic targets.

5.5 Tracker Performance Against Target Trajectories

Both multiple model tracker formulations were evaluated

against the target trajectories described in Chapter II.

For convenience, they are summarized here. Trajectory 1 is

a constant velocity trajectory which maintains the initial

velocity throughout the simulation. Trajectory 2 is a con-

stant g pull-up maneuver. It begins the same as trajectory

1, but the target initiates a constant-speed, constant-g

pull-up maneuver two seconds into the simulation and main-

tains this maneuver until the end of the simulation. The

. cases studied included 2, 10, and 20g pull-up maneuvers.

V-18



Trajectory 3 is similar to trajectory 2, but instf

continuing the pull-up maneuver until the end of the s

tion, it terminates the pull-up maneuver 3.5 second

the simulation. At this point, the inertial velocity

existing at that time are propagated until the end

simulation at 5 seconds. Trajectory 4 is begun a

previous maneuvers, but instead of performing a pu

maneuver, it executes a constant-g turn toward the t

until the end of the simulation.

5.5.1 Evaluations Using Trajectory 1. For this t

tory, Monte Carlo runs were performed to evaluate tj

performance using both filters in the multiple model

tive algorithm; only the small field of view filte:

only the large field of view filter. Recall from Chap

that a claim was made that simply enlarging the tj

I' field of view for all applications would result in I

tracker performance at benign trajectories relative t

achieved using the small field of view filter.

Table V-2 presents the results of these simuli

using the multiple model adaptive algorithm and on

large field of view filter for both tracker types. Re

that the results of the simulations using only the

* "field of view filter were presented in Table V-i.

corresponding performance plots are Figures A-i and A-

and B-3; and C-i and C-3.

The first two cases in the table are for the Mi

tracker formulation. The first of these is for the mu

hZI
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model adpative algorithm, the second is for the larc

of view filter only. As expected, the larger field

filter, which was tuned to be able to handle a 20g

maneuver, performed poorly against a benign target

tory relative to the original filter presented in Ta

which was expressly tuned for good performance agai

type of target behavior. Comparing the figures of r

the multiple model adaptive filter and those of t:

field of view filter reveals values that are very

S."* indicating that the multiple model algorithm is c

weighting the estimates of the small field of vie

heavily, thus maintaining the desired high resol

benign target trajectories. This heavy weightin

small field of view filter also manifests itsel

similarity of the performance plots for the multip

and small field of view filters (Figures A-I and A-:

tively).

Results for the extended Kalman filter track

rithm are similar though less conclusive due to

tuning of the small field of view filter. In this (

larger field of view filter exhibits much lower sar

and rms errors than the small field of view filtE

.'- ever, its standard deviations are much higher. Th4

acteristics are evident in the performance plots, F.

3 and C-3. It should also be noted that the multiF

filter figures of merit resemble those of the small

view filter (as with the linear Kalman filter/co

V-20
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tracker) despite the fact the larger field of view filter

has smaller rms error values. This characteristic is con-
==- - " firmed by comparing Figures B-1 and B-2, and Figures C-1 and

C-3. This indicates that the multiple model algorithm was

still able to choose the correct filter model even in this

pporly tuned case. those of the larger field of view filter

even though it has smaller sample rms error values. This

- indicates that the multiple model algorithm was able to

choose the correct filter model even in this poorly tuned

. case.

5.5.2 Evaluations Using Trajectory 2. Tables V-3, V-4,

and V-5 present the results of the simulations for 2, 10,

and 20g constant speed, constant-g pul 1-up maneuvers respec-

tively. The corresponding performance plots are Figures A-4

thru A-10, B-4 thru B-10, and C-4 thru C-10.

C;,. Table V-3 presents the results for a 2g pull-up maneu-

ver. Along with the results for the multiple model adaptive

filter algorithm, are those for the individual filters.

pGenerally speaking, the linear Kalman filter/correlator

tracker produces lower sample mean errors with much larger

standard deviations than the extended Kalman filter tracker

configuration. In this instance, the sample rms errors of

the multiple model filter in the Millner tracker formulation

are also much smaller. This is again largely due to the

poor tuning of the smaller field of view filter for the

Kozemchak tracker formulation. As seen in the performance

plots and the figures of merit, the performance of the

V-22
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multiple model adpative filter more closely resembles that

of the small field of view filter since its constant velo-**,* v °..

city model more closely resembles the 2g pull-up maneuver

than does the 20g pull-up maneuver model. The performance

plots also show that the bias for the extended Kalman filter

tracker using the Gauss-Markov model is very large compared

to the biases for the other cases. Finally, the performance

plots for the large field of view filter (Figures A-6, B-6,

and C-6 respectively) show that, because of the large filter

target acceleration white noise strength, the maneuver is

not as evident as in the plots of the small field of view

filter.

Tables V-4 and V-5 respectively, present the results

for 10 and 20g pull-up maneuvers. The performance plots for

these cases are Figures A-7 thru A-10, B-7 thru B-10, and

C-7 thru C-10. Only plots for the y-axis errors are in-

cluded since that is the direction of target motion. Fur-

thermore, only cases using the multiple model filter algo-

rithm and only the large field of view filter are presented

here as the small field of view filter was completely unable

to maintain lock on these targets. For these highly dynamic

cases, the extended Kalman filter tracker exhibits much
smaller sample rms errors than the linear Kalman filter/cor-

* * relator tracker. For both tracker types the multiple model

filter has slightly worse figures of merit than those of the

large field of view filter by itself. This is due to the

lower bounding of the conditional probabilities discussed in

V-24
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Chapter IV. This results in having at least part of the

.state estimates being based on the estimates of a filter

with a totally inappropriate model for the current target

behavior. The lower bounding could cause a problem if at

any time either of the filters in the bank should diverge.

During the course of this research, it was found that a

higher setting of the lower bound allowed the multiple model

filter to apply heavy weight to the correct filter much more

quickly, at the expense of a heavier weight on a totally

inappropriate model after the transients have died out.

From the performance plots of these cases, it can be

seen that the extended Kalman filter tracker exhibits better

transient behavior than the other tracker formulation. This

includes a shorter transient in response to a step change in

the target truth model acceleration and lower mean peak

errors as well. This is due to the non-linear nature of the

algorithm as well as the fact that the extended Kalman

filter tracker operates directly with the raw FLIR data

while the other tracker type receives only position offset

information from the enhanced correlator.

In the Millner tracker formulation, the multiple model

as well as the single filter cases performed more poorly for

a 10g pull-up maneuver than the more severe 20g pull-up

maneuver. This is because the large field of view filter
4

was tuned for best performance for a 20g pull-up maneuver

while no equivalent filter was tuned for a 10g pull-up

maneuver. In other words, the 10g maneuver was a case for

V-27
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which no filter model existed. However, no such behavior

• . was observed for the extended Kalman filter tracker using

"f either target acceleration model. This could be due to the

poor tuning of the small field of view filter or perhaps the

nonlinearity of the filter itself. These issues should be

investigated in future studies.

At the 20g pull-up maneuver, use of the constant turn

rate target acceleration model results in superior per-

formance over all other cases. This follows since this

acceleration model has been shown to be a better model of

realistic, highly-dynamic, target maneuvers than the Gauss-

Markov acceleration model.

5.5.3 Evaluations Using Trajectory 3. Tables V-6, V-7,

and V-8 present the results of the simulations for trajec-

0tory 3 targets performing 2, 10, and 20g pull-up and con-
tinuation maneuvers. The plots for these cases are Figures

A-li thru A-17, B-il thru B-17, and C-il thru C-17. As with

trajectory 2 evaluations, the results of the multiple model

adaptive filter algorithm and the individual filters are

presented. All of the trends observed in the trajectory 2

evaluations are repeated here. The sample mean errors tend

to be higher than those for the trajectory 2 evaluations

since the period over which temporal averaging is performed

includes the transients created by the termination of the

pull-up maneuveri thus the plots are particularly important

here for appropriate insights.

Once again, the performance plots shown are only of the
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y-dynamics mean errors since that is the direction of the

target maneuver. It is easy to see the termination of the

maneuver at t=3.5 seconds. In the 2g case, the heavy

weighting of the small field of view filter is still evident

in comparisons of the figures of merit and the plots for the

multiple model filter and the small field of view filter.

The performance of the multiple model filter appears to be

much worse than the performance of either of the individual

filters in the Millner tracker formulation. The plots of

this case, Figure A-II, show that while the times of the

pull-up and continuation maneuver are clearly evident, the

standard deviations become very large, especially after

termination of the maneuver. During this time period, the

multiple filter is having a difficult time selecting the

correct filter model. The observed target behavior is that

of a constant velocity target buth the approach of the

minimum range/maximum passing rate condition indicates that

the field of view should be larger to handle a more dynamic

trajectory. No such behavior is noted in the plots for the

extended Kalman filter tracker, where again the poor tuning

of the small field of view filter may be hindering the

filter from adaptively reducing the size of the effective

tracking window. As before, the extended Kalman filter

tracker, using the Gauss-Markov model is showing much larger

biases. Finally, as with trajectory 2 evaluations, the high

setting of the strength of the target acceleration white

noise tends to mask out low g maneuvers.
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5.5.4 Evaluations Using Trajectory 4. Table V

sents the results of the simulations for trajectory

gets performing 2, 10, and 20g constant speed turns

ever, because early results indicated that perform,

the trackers did not vary greatly from the perf(

observed in trajectory 2 evaluations, simulations we:

performed for the linear Kalman filter/correlator t

The reason for the similarity is that, even with

target, the out-of-plane component of the target path

to remain very small due to the short duration of th

lation. At the same time, because the target turns

the tracker during this maneuver, the target intensit

function changes considerably over the simulatio

This demonstrates the tracker's ability to mainta:

0. estimates of a time varying shape function, and th

tracking performance.

The performance plots of these cases are Figu

thru A-24. The plots of the x-dynamics mean err(

included for the 2g case to demonstrate that the majc

the maneuver still takes place in the y- directio

plots of the y-dynamics error statistics can be comp

those for the trajectory 2 evaluation (Figures A-4

A 10) to see the similarity of tracker performance for

types of trajectories.

5.5.5 Changes in Signal-to-Noise Ratio. As

" earlier in this chapter, the nominal SNR for all simu

was set 20. To test the multiple filter's robustnE
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change in the expected SNR, a few test cases were performed

.~ \W using the Millner tracker formulation at a SNR=l0. No

retuning of the filter was done for this lower SNR. This

value also corresponds to a reasonable SNR for a tracking

scenario (3). The results are presented in Table V-10 for a

*trajectory 2 target performing 2, 10, and 20g pull-up maneu-

vers. The associated plots are Figures A-25 thru A-27. As

with trajecotry 4 evaluations, these plots can be compared

to the original plots for the trajectory 2 evaluations

(Figures A-4 thru A-10), to see the similarity in perform-

ance. While there is some increase in the tracker sample

rms errors, it still does a reasonable job of tracking even

the highly dynamic 20g target. Attempts to reduce the SNR

" ;further to a value of unity resulted in completely divergent

filter behavior, as seen previously in the study by Harnly

and Jenson (3) for single hot-spot targets.

5.5.6 Ad Hoc Changes to Filter Conditional Probabili-

tias. The final test performed during this research was

done to establish some upper bound on the performance of the

-NZ multiple model filter's ability to switch from one filter

model to the other when a step change occurs in the truth

- model description of the target. This was accomplished by

artificially providing the filter with perfect knowledge of

when a maneuver was initiated. The result is a step change

in the conditional probabilities of the single filters to

correspond with the step change in the truth model. Because

. ;the filter transients have already died out by the time

V-35
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temporal averaging of the statistics takes place, this ad

I. hoc change in the conditional probabilities had little or no

effect on the figures of merit. However, the plots (Figures

A-28 and A-29; B-18 and B-19; and C-18 and C-19) show that,

as compared to the trajectory 2 evaluation plots, there was

little effect on the time it took the filter transients to

die out after the maneuver was initiated. What was changed,

was the mean peak error of each tracker type, which was

reduced by a factory of two. Since this was the only signi-

ficant deviation in the performances of the multiple filter

and the ad hoc cases, it was decided that the multiple

filter performs reasonably well as compared to this theo-

retical upper bound.
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VI. Conclusions and Recommendations

The multiple model filter algorithm has been shown to

perform well against a wide dynamic range of targets. While

not capable of performing as well as the original tracker

formulations against relatively benign target trajectories,

it does offer the advantage of being able to maintain lock

onto highly dynamic targets that the original trackers were

unable to follow. This increase in tracker capability would

seem to offset the additional memory storage requirements

and computational burden imposed by the multiple model fil-

ter algorithm. The additional time required to implement

the multiple model filter can be tempered by using parallel

processing techniques to process each individual filter,

instead of processing them sequentially, as was done in this

research.

From an implementation standpoint, it is easier to

incorporate the multiple model algorithm into the linear

Kalman filter/correlator tracker formulation than into the

extended Kalman filter tracker. The linearity of the filter

as well as the low dimensionality of the filter measurement

vector for the Millner tracker formulation made it possible

to implement the multiple model algorithm without any of the

approximations and ad hoc changes necessary to implement the

same algorithm in the extended Kalman filter tracker. The

high dimensionality of the filter measurement vector for the

extended Kalman filter tracker also drastically increased

. . , the memory storage requirements and computational loading of

VI-1

. .Vk % J. ~..~ V.. ' %.;..%



the multiple model filter. Using identical FLIR measurement

algorithms for the computer simulations of both tracker

types, the simulation for the multiple model filter for the

extended Kalman filter tracker occupied twice as much memory

space and took approximately 30 percent more time to execute

than the same simulation incorporating the linear Kalman

filter/correlator structure. For this feasibility study, no

attempts were made to minimize the memory requirements of

each simulation other than what would be the result of

structured programming techniques. Therefore, the memory

required to run either simulation is subject to change and

the differences between the simulations may also change when

more efficient programming techniques are applied.

The results of the computer simulations show that the

extended Kalman filter tracker significantly outperforms the

Millner tracker formulation when evaluating tracker per-

formance against highly dynamic targets. Furthermore, the

constant turn rate acceleration model is superior to the

Gauss-Markov model as a model of true target behavior. Even

at very benign trajectories, where the poor tuning of the

small field of view filter was a problem, the Kozemchak

tracker formulation possessed much smaller sample standard

deviations of tracker errors. For a laser weapon system,

this may be more desirable than the lower sample mean errors

achieved by the Millner tracker formulation, as long as the

rms errors of both tracker types are about the same. The

filter transients and mean peak errors were also smaller for

VI-2



the extended Kalman filter tracker. Overall, for this con-

. figuration of the multiple model adaptive algorithm, with

two independent Kalman filters, the improved performance of

the extended Kalman filter tracker is worth the additional

memory storage and computational burden.

Recommendations

Further study is recommended in order to investigate

problems encountered or tasks not accomplished in this re-

search. These areas include:

* Improved filter tuning of the small field of view

filter for the extended Kalman filter tracker

* Addition of more filters in the bank of independent

filters, to imclude additional target dynamics levels,

different fields of view, etc.

Implementation of the constant turn rate target

acceleration model in the linear Kalman

filter/correlator tracker

Realistic changes to the truth model target dynamics.

A more realistic model than the step change of the

truth model at the inititation of a maneuver may show

that the dynamic range achieved by the multiple model

filter is not necessary for realistic tracking

scenarios.
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* Test trackers against targets whose shape functions are

rapidly changing. This includes targets performing

roll maneuvers as well as non-realistic scenarios where

the size, shape, intensity, and number of hot-spots is

changing.

* Improved ways of handling the approximation made to

implement the multiple model algorithm in the extended

Kalman filter tracker

* Extending the length of the simulation to investigate

the minimum range/maximum passing rate condition and

the response of the multiple model adaptive filter to

it

S* Determine how changes in the sampling rate of the

simulation affects tracker performance

S* Determine the algorithm's sensitivity to different

settings for the standard deviation of atmospheric

jitter

-* Determine the algorithm's sensitivity to the value of

the lower bound on conditional probabilities

(requiring filter retuning for best performance)

S* Other robustness studies should be performed to

determine the algorithm's sensitivity to target shape,

separation of the hot-spots, etc.

." VI-4
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Appendix A

This appendix contains the performance plots for the

.v linear Kalman filter/enhanced correlator tracker configura-

tion using a Gauss-Markov target acceleration model. These

cases are identified according to the mnemonic code des-

cribed in Figure V-3. The values for the parameters of

these simulations are also found in Chapter V.
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Ap1endix B

% This appendix contains the performance plots for the

extended Kalman filter tracker configuration using a Gauss-

Markov target acceleration model. Thes cases are identified

according to the mnemonic code described in Figure V-3. The

values for the parameters of these simulations are also

found in Chapter V.
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Appendix C

This appendix contains the performance plots for the

extended Kalman filter tracker configuration using a con-

stant turn rate target acceleration model. Thes cases are

identified according to the mnemonic code described in

Figure V-3. The values for the parameters of these simula-

tions are also found in Chapter V.
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