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A New Approach to Database Logic

GABRIEL M. KUPERt
Stanford University
Stanford, California.

1 Introduction

In this paper we propose a mathematical
framework for unifying and generalizing the three
principal data models, i.e., the relational, hierar-
chical and network models {[U]). Until recently
most work on database theory has focussed on
the relational model ([C1]), mainly due to its el-
egance and mathematical simplicity compared to
the other models. Some of this work has pointed
out various disadvantages of the relational model,
among them its lack of semantics ([C2], [HM],
[SmSm]) and the fact that it forces the data to
have a flat structure that the real data does not
always have.

Several recent papers have addressed this
problem by trying to find a more general math-
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§ This work was done while this author was at Stanford

University and supported by a Weismann Fellowship and
AFPOSR grant 80-0213.

MOSHE Y. VARDI}
IBM Research Laboratory
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ematical framework. Specifically, Jacobs [J] de-
scribes “database logic,” a mathematical model
for databases that claims to generalize all three
principal data models. Also, Hull and Yap [HY]
describe the “format model.” In their model, they
view database schemes as trees, where each leaf
represents data, and each internal node represents

some conncction between the data.

Both these models are unsatisfactory in their
ability to restructure data, i.e., the ability to query
the database. While Hull and Yap ignore the issue
of a data manipulation language, Jacobs’ treat-
ment is an overkill-his query language enables
one to write noncomputable querics [V].

Furthermore. both approaches fail to model
a significant aspect of hierarchical and network
database management systems, which is the abil-
ity to use virtual records. Virtual records are
essentially pointers to physical records, and they
are used to avoid redundancy in the database [U)].
Note that virtual records introduce cyclicity not
only in the schema level but also at the instance

level.

In the model we proposc here a database
scheme is an arbitrary directed graph. As in the
format model, lcaves (i.e., nodes with no outgoing
cdges) represent data, and internal nodes repre-
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Figure £ Format Representation of Fig. 1.

Example 1. Assume we are given the PER-
SON-PARENT relation shown in Fig. 1. We can
represent the structure of this relation in the for-
mat model by the format in Fig. 2. This format

"has two nodes u and v of type [ that correspond

to the attributes of the relation, and one node w
of type () that connects the pairs of related at-
tributes.

An instance of this format will be an assign-
ment of values to each node., as follows. We shall
use the notation J(u) to mean the set of values as-
signed to the node u by the instance I. We could
just take as the instance of a node a set of ele-
ments from the underlying domain, or tuples or
sets taken from the instance of the node’s succes-
sor. If we were to use this approach, we would
not be able to deal with cycles in the format, and
even if the format were acyclic, we would lose the
ability to represent pointers to other nodes in our
model, since the data would be represented explic-
itly at each node. What we do instead is have the
instance of each node consist of a set of l-values,
with corresponding r-values.

Intuitively, r-values constitute the data space,
and the l-values constitute the address space. The
instance of a node consists of sct of l-values, with
an r-value assigned to each of them. Formally, the
Lvalues are elements of a fixed set L (usually taken
to be the natural numbers). We require that the
instances of different nodes be disjoint. We also

have a function r on L, that assigns r-values to
these )-values, and we require that the r-values be
of the correct form, depending on the type of the

node.

Definition 2. An instance of a schema § =
(G, p) consists of a mapping I fromV to P/i"(L)
(all finite subsets of L), and a mapping r from
UoevI(v); r maps l-values to their r-values. If
v # w, then I(v) and I(w) must be disjoint. For
each node v in G, I(v) must satisfy

(1) If u(v) = O, then for each | € I(v), r(l) must
be in D.

(8) Ifu(v) =0 andvy,...,v, are the successors
of v, then for any L € I(v), r(l) must be a
tuple (13,...,1,), such that for each i between
1 and n, l; is an element of I(v;). An l-value
in I{v;) can appear in any number of tuples,

including none of them.

(8) If u(v) = O and ¥ is v’s successor, then r(l)
must be a subset of I(9).

If 1 is an l-value, r(l) is called the r-value of 1.

I(u) I{v) I(w)

() ) L] (1) .
1|{Rchoboam 4| Solomon 8 ((1,4)
Solomon 5| David 9 ((2,5)

3} David 6 | Batshcba 10/ (2,6)
7| Jesse  11(3,7)

Figure 8 Instance for the First Example
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sent connections between the data. While it is
not hard to model cyclicity at the schema level, it
is not quite apparcnt how to do it at the instance
level without running into cyclic definitions. Qur
solution is to kecp the obvious distinction between
memory locations and their content. Thus, in-
stances in our model consists of r-values, which
constitutes the data space, and Il-values, which
constitutes the address space. This mechanism
enables us to give semantics to instances in a well-
defined way. '

A data model consists of several components
(see [TL]). The first is the database structure men-
tioned above which describes the static portion of
the database. The second component is a way to
specify integrity constraints on the database, that
restrict the allowed instances of the schema. We
shall describe a logic in which integrity constraints
can be specified. Unlike Jacobs’ logic, our logic is
effective. That is, given a database and a sentence
in the logic, one can test effectively whether the
sentence is true in the database or not.

The third component will be a way to restruc-
ture data, in order to describe user views, query
languages, etc. We describe two such mechanisms,
a logical, i.e., non-procedural, query language and
an algebra, i.e., procedural, query language that
are analogous to Codd’s tuple calculus and re-
lational algebra, and we prove them equivalent.
These languages have a novel feature: not only
can they access a non-flat data structure, ie., a
hierarchy, but the answers they produce do not
have to be flat either. Thus, the language really
does have the ability to restructure data and not
only to retrieve it.

2 The Format Model

In our model, a schema is an arbitrary di-
rected graph, with a type associated with each

node. These types can be as follows.

(1) DBasic type, written (0. Nodes of this type
contain the data stored in the database.

(2) Composition, written (). Nodes of this type
contain tuples whose components are taken

from the successors of the node.

(3) Collection, written O. Nodes of this type
contain sets, all of whose elements are taken

from the node’s successor.

Formally,

Definition 1. A schema is a directed graph G,
together with a function u that assigns a type to
each node of G. p s a function from V, the set of
nodes of G, to the set {3,0,( }. p(v) can be O
only when v has no successors; It can be () only
when v has at least one successor; O only when v

has ezactly one successor.

For each node v of type (] we have an order-
ing of its successors, so that we can refer uniquely
to “the kB successor” of v. Note that we do
not have pointer types cxplicitly. However if we
wanted them in the model, we could describe them

as (J-nodes with exactly one successor.

PERSON I PARENT
Rchoboam | Solomon -
Solomon David
Solomon | Datsheba
David Jesee

Figure 1 PERSON -PARENT Relation. ‘:
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Figure 4 Hierarchy for the Genealogy.

I(u) I{w) I(v)

1 r()) 1 (1) 1] ()
1| Rehoboam 6| {2} 9 1(1,6)
2| Solomon 71{3,4} 101(2,7)
3| David 8| {5} 11|(3,8)
4| Batsheba

5 Jesse

Figure 5 Instance of the Format in Example 2.

In Fig. 3 we show an instance of the format
in Fig. 2 corresponding to the data in Fig. 1.

Example 2. We could also be given the geneal-
ogy as a hicrarchy, as shown in Fig. 4. This could
be represented in the format model as the format
in Fig. 4, with the instance in Fig. 5. In general,
given a hierarchy, we can convert it to a hierar-
chy as follows. Let R;, ..., R, be the nodes in
the hierarchy (the logical record types). For each
R; we have a corresponding ()-node v; in the for-
mat. For each field of the logical record type R;,
v; has one successor of type [J. The links are rep-
resented as follows. If L; is a link in the hierarchy,
with owner R; and member R;, we have in the
format a node w; of type O, that is a successor of
Ry, and whose succeseor is R;.

u w

Figure 6 Another Represcntation of the Genealogy.

I(u) I(v) I(w)
) Le) 1] r())
Rehoboam (1,11) 11| {7}

1

6
Solomon 71{(2,12) 12} (8,9}
David 8 (313 13| {10}
Batsheba 9 |(4,14) 14| @
Jesse 10| (5, 14)

Figure 7 Instance of the Format in the Figure 6.
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Example 3. We can also use the format model
to represent data structured in ways that do not
correspond to any of the standard data models.
For example, we could represent the genealogy by
the format in Fig. 6, and the instance in Fig. 7.

3 Logic

We define a calculus on formats in two stages.
In this section we define a logic on formats. Then
in the next section, we use this logic to define
queries on formats. These queries will corre-
spond to tuple calculus expressions in the rela-
tional model. We can also use the calculus to de-
scribe integrity constraints in the database.

Each variable in our logic has a fixed sort,
where the sorts are nodes in the graph. The sorts
restrict the possible valucs the variable may take.
For example, if z is a variable of sort v, z can
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take only values in [(v). In future, we will usu-
ally subscript the variable with its sort, e.g., z,.
Though the values of variables are always l-values,
we shall say “the l-value of z,” when we mean the
value of z,, and “the r-value of z,” when we mean
the r-value of the value of z,.

Definition 3. An atomic formula s one of

(1) zo ®¢ Y, meaning that the l-value of x, is the
tth component of the r-value of Y.

(2) 2o € yu, meaning that the l-value of z, is o
member of the r-value of Yy,

(3) 2o =i yw, meaning that the l-values of z, and
Yw are equal.

(4) Zo =+ Yw, meaning that the r-values of z,, and
Yw are equal.

(5) zo =, d, where d is an element of the domain
D, meaning that the r-value of z,, is d.

We then define well formed formulas in the
usual way. F;¢(ly,...,I,) will mean that ¢ is sat-
isfied by [,,...,l, in the instance I. This is defined
as follows.

Definition 4. Let ¢(zt ,...,27) be o formula

with free variables z; ,...,z3 . Let ly,...,1,

be l-values, where for each i, I; € I(v;). Then

Fré(ly,... 1) is defined by induction on the size

of ¢, as follows.

(1) I 6 is 2% mc ¥, them F(z m 2L)(0h,. ., La)
iff w is of type () with at least t successors,
and ; = IL,(I;).

(18) If ¢ o 2 € 2L, then F(z} € 2L )(ly,...,0n)
il w is of type O and; is an element of r(l).

(2c) If ¢ 0 28 = 25, then F(z! = =L )(1y,...,0n)
=1

(1d) Ifp ia 2} =, 21, thenF(z! =, zL)(ly,...,ln)
o r{l) = r(l;).

(1¢) If ¢ is 25 =, d, where d is an element of D,
then E(z! =, d)(ly,...,1n) iff r(l) = d.

(2) If ¢ is 61 V 2 or ~¢,, then the definition is
the usual one.

(3) If ¢ 18 a formula with free variables z,‘,‘ y eeesy

zy , and yy, then

S (EMT T
iff there is an | in I(w) such that

Eo(ly,... 1)

Example 4. The formula z, 7, y, says that
the l-value of z, is equal to the first component
of the r-value of y,. It is satisfied in the instance
of Example 3 by the (z,,y.) pairs (1,7), (2,8),
(3,9), (4, 10), and (5, 11).

Lemma 1. Ifé(2},,...,2z7.) is ¢ formula with
free variables z) ,...,z5 , and Uy,...,l, are
l-values, where for each i, I; € I(v;), then

Fré(ly,...,ln) can be determined effectively.

Proof: This is shown by induction on the size of
the formula. For atomic formulas testing for satis-
faction is straightforward. Testing for disjunction
and negation is also clearly effective, and the re-
sult for quantification follows from the fact that
all instances are finite. [

4 Queries

In the relational model the result of a query is
a relation. We might therefore in analogy expect
that the result of a query on the format model will
be a format, i.e., a schema and an instance of it.
This approach generalizes the relational algebra
approach and may also suggest query languages

for the other data models.

We modify this approach a bit by not requir-
ing that the query’s schema be an indcpendent
schema, but we allow the successors of nodes in
the query to be nodes in the database. One reason
for this is that we may want our answer to have
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references to the database rather than copies of
large structures. Another reason is to simplify the
definitions of the algebraic operations. We shall
want each algebraic opcration to be the result of
some query, but on the other hand we would like
to be able to simulate an arbitrary “safe” query by
a sequence of algebraic operations, and if each op-
eration had to create a completely new format, the
definitions would be unnecessarily complicated.
Notice that if the query were a “normal query,”
i.e., one which created a completely new structure,
the corresponding algebraic operations would first
copy the required nodes, and then would combine
L-values only from these new nodes.

The natural thing to do now, using the anal-
ogy with the tuple calculus in the relational model,
is to take some formula ¢ and let the instance be
those things satisfying it.

There are two problems with this approach.
The first is that the queries cannot build the 1-
values by themselves—such a formula just says
when a given instance satisfies it, but gives no
way to construct such an instance. One solution
is to prevent the query from referring directly to
l-values, and allow them to be referred to only by
their r-values. We could then find all possible r-
values than could appear in the result, assign them
arbitrary l-values, and try to show that the result
is unique up to isomorphism.

Figure 8

AR - o.( ‘(. N 'fﬁf\‘f

-------

Figure 9 A Possible Result of the Query

I3(u) I(v)
1]r(l) Lr(l)
11(3) 3[(2)
2] (4) 4| (1)

Figure 10 Another Possible Result of the Query.

Another problem with this approach is deal-
ing with cyclicity. We need the ability to refer
directly to l-values in order to make use of the
cyclicity, but even then the result of the query
will not always be defined uniquely. For example,
if the query schema is the format in Fig. 8, and
the query just specifies that I(u) and I(v) each
contain at least two different }-values. Then Fig. 9
and 10 shows two incomparable instances, and we

. have no way to choose between them. QOur solu-

tion has been to restrict the queries to ones not
containing cycles, while allowing cyclicity in the
database, and allowing the query to refer explic-
itly to l-values in the database.

The formal definition of a query is

Definition B. Given a database schema S =

(G,u), and an instance I, a query @ = (S',®)

on the database consists of

(1) A set of nodes and directed edges with types
associated with each node, S' = (G', '), such
that

(a) G' is a DAG, and edges can also connect
nodes of G' to nodes of G.

(3) (GUG',pU y') is a schema, which we shall
call 8* = (G*,p*).
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{2) The Jact that G' is a DAG implies that there
is an order < on the nodes of G', such that if
v and w are nodes of G’ and v is a successor
of w, then v < w. Let < be a fized ordering
of the nodes with this property.

(3) ® is a set of formulae, one for each node v of
G’. The formula ¢, corresponding to v must
satisfy

{a) There is only one free variable in ¢,, and it
19 of sort v.

(b) Al other variables are bound, and their sorts
are either nodes of the database, or are nodes
that precede v under <.

Since the query is now acyclic, we can create
the result of the query “bottom-up,” i.e., we define
the result of the query at cach node in terms of the
results at its successors. We define the result of
the query by the following inductive construction.
Assume that I(w) has been defined for all nodes
w in the query that precede v under <. We then
say that r is a candidate r-value for v if by setting
r(l) = r, and letting I(v) contain the single l-value
1, we get F1 ¢, (1) (1 is an arbitrary unused l-value).
The construction of I(v) is as follows. Let R be
the set of all candidate r-values for v. For each
r € R arbitrarily select a different unused }-value
l,, set r(l,) = r, and let I(v) contain of all these
l-values. Repeat this for each node v in the order
given by <.

We now give the formal definition of the re-
sult of 8 query. We start with the definition of
candidate r-value.

Definition 8.  Let ¢,(z,) be a formula with free
variable z, and let I be an instance of some of the
nodes in the format, including the sorts of all the
bound variables in ¢,. Let | be an l-value that s
unused in I. We say that r is a candidate r-value
for v if by setting r(l) = r, we get "Iu(l) o(l). Let
R be the set of all candidate r-values for v. For

AP RGN IR W

------

eachr € R, select a different unused l-value I, (the
choice of l-values is arbitrary), and set r(l,) = r.

Then [l | ¢.()] 18 defined to be {I, | r € R}.

Lemma 2. In Definstion 6, assume that R 1s
finite. Then if I(v) is defined to be [l | d,(1)], the
Jollowsng hold.

(§) For each l in I(v), F1é4(l).

(%) If we take different unused l-values in the def-

initton, we get an 1somorphic instance I'.

(355) There are no two different l-values in I(v),
ll #( lz with f(ll) = f(lg).

(sv) I(v) is mazimal satisfying (i)-(s5s). @

Definition 7. The result of the query is an
instance I* of the schema S*. It is defined by
induction as follows. If v is a node of the database,
we define I*(v) = I(v). If v is a node of the query,
assume that we have already defined I' (w) for any
node w that precedes v under <. Then I*(v) is
defined as (I | 6,(1)).

w

Figure 11 Query on the Genealogy Database.
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Figure 12 Possible Result of the Query.

Example 5. Assume that the database is the
genealogy format of Fig. 6 with the instance of
Fig. 7. The query will consist of the node u’ in
Fig. 11, with formula ¢/ (2') = (Qyu)(zw =r yu)-
In other words, we want I(u’) to be a copy of
I(u) (removing duplicated values, if I(u) had any).
To answer the query we do the following. First,
take an unused l-value, say 17. Now look for all
possible r-values r (in this case, elements of D),
such that if we set r(17) = r, and I(v') = {17},
we get F; ¢,.(17). The set R of candidate r-values
is R = {Rehoboam, Solomon, David, Batsheba,
Jesse}, and therefore the result of the query (up
to isomorphism) is as shown in Fig. 12.

Definition 8. A query Q on a database with
schema S is safe if for every instance I of S the
result of the query ezists.

The following lemma shows that to check if a

query is safe, it suffices to check the results at the
leaves.

Lemma 3. A query Q on database achema S ¢s
safe iff for cvery instance I of the database,.and
Jor every node v of the query of type [, the set of
candidate r-values for v is finite. |}

Lemma 4. Let Q be a query on a database with
schema S, and let wy,...,w, be the nodes in the
database of type [J. Q is safe iff if there is a fi-
nite set {d},...,d}.} of elements of D such that

v 5
L ".‘ i“v'.‘ LR P ,'.’, a,

for every instance I of the database S, and for ev-
ery node v of type O in the query Q, all of the
candidate r-values for I(v} are cither r-valucs of
elements of the I(w;)’s or are among the d;’s.

The constants in the above lemma are those
elements of D that arec mentioned in any of the
formulas ¢,,.

5 Algebra

We now define an algebraic query language.
This language is equivalent to the logical query
language. That is, each logical query is equivalent
to a logical query and vice versa.

The algebraic language consists of the follow-
ing basic operations:

(1) w « v creates a new node w of the same type

as v, and with the same successors as v. I{w)

contains a copy each l-value in I(v).

(2) w «— O(d) creates a node w of type (1, that
contains a single l-value, whose r-value is d.

Example 8. Let the database be the genealogy
of Fig. 6 with the instance of Fig. 7. The opera-
tions 4’ — [O(u) and v’ — (“Absalom”) each add
a new node u’ and v’ respectively to the database.
Their instances are shown in Fig. 13 (a) and (b).

I{vw') I(v')
{ | r(l) { l r(l)
17 | Rehoboam 17 | Absalom
18] Solomon
19| David
20 | Batsheba
21 Jesse

.Figurc 18 Examples of (a) v’ — u (b} v/ «— COI(d).

(3) w — O(v) creates a new node w of type O
with successor v. I(w) contains a copy of each
possible subsct of I(v).
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(4) w «— Q(vy,...,vn) creates a new node w of
type (), with successors vy,...,v,. I(w) con-
tains all possible tuples with 5** component in
I(vy).

(5) ¥ v is anode of type (] with n successors, and
$ 0 7 is one of the relationsi € 5,s 11, 5, ¢ = j,
i =, j and i =, d, then w + 0;¢ j(v) creates
a node w of the same type as v and with the
same successors, that contains a copy of each
tuple from I(v) whose i** and j** components
are in the specified relation.

(6) vy, ..., v, are all of the same type and have
the same successors, then w « U(v,,...,v,)
creates another similar node w that contains
a copy of each element that is in one of the
I(v;)’s.

(7) If vy and vy have the same type and the same
successors. then w — v; — v; creates another
similar node w that contains a copy of each

- element of I(vy) whose r-value is not the r-
value of any clement of I{v;).

(8) X v is of type () with successors vy,...,v,,
and § = {8;,...,8x} is a subset of the set
{1,...,n}, then u ~— Ilg(v) creates a new
node w of type (J with successors v,,,...,v,,,
that contains all projections of tuples in /{v)
onto these components.

(9) If v is of type (] and has exactly onc succes-
sor, ¥, then w «— Ii(v) creates a new node w
similar to 7, that contains a copy of each el-
ement of I{6) that is the component of some
element of I(v).

IR

X u w

Figure 1§ Example of I1.

1(s') I(z)
()

18 | Batsheba
Figure 15 Example of I(xu').

Example 7. Suppose the database is the geneal-
ogy format with the extra node u’ shown in Fig. 14
and with the instances in Fig. 7 (u, v and w) and
Fig. 15 (v'). Then z « II(u') creates the node z
in Fig. 14, with I(z) as in Fig. 15.

Main Theorem. The algebraic language and the
logical language are equivalent, i.e., every alge-
braic query is equivalent to a safe logical query,
and every safe logical query is equivalent to an
algebraic query.

Outline of Proof. The first direction of the the-
orem, that for each algebraic operation there is an
equivalent query, is shown by creating, for each
operation, a query that consists of one new node
w with formula ¢,,. This query will be safe and
will have the same result as the corresponding al-
gebraic operation. The details are fairly straight-
forward and will not be given here.

For the sccond part of the theorem, we are
given a safe query, and we have to show that it
can be simulated by a sequence of algebraic oper-
ations. Let Q be the query. We shall construct
the desired algebraic expression by induction on
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the nodes in the query using the order <. Assume
therefore that we have an algebraic expression for
each node that precedes a node w in the query, and
we now want to find an algebraic expression that
constructs the node w. The formula correspond-
ing to w is ¢, (z,). Let the bound variables of
éw be zl ,...,20 (where each variable is bound
by exactly onc quantifier). Since the query is safe,
there is a set {d},...,dx} of elements of D, such
that each r-value of a node of type [ is either one
of these constants, or is an r-value of some node
in the database of type Ol.

Our first step is to create a node % that rep-
resents the domain of w, i.e., all the r-values that
elements of I(w) could possibly have, if ¢, con-
tained no restrictions apart from the safeness re-
quirement given above. We define 1 as follows.
(1) ¥ w is of type [J, and v,, ..., v, are all the

nodes in the database of type [J, then define

o as follows. (i) Let wy —v;for1<i<n

(ii' et way; — O(d;) for 1 < i < k, where

the d;’s are the constants listed above. (iii)

Let v — wiU---Uwpii-

(2) f w is of type [} and its successors are

Wy,... Wi, let @ — wy X -0 X wy,

(3) If w is of type O and its successor is u, let

% — Ofu).

We can then show:

Lemma 8.  Let I(w) be the result of the given
query at node w. Then every ! in I(w) must satisfy
r(l) e r[I(w)]. B

Let the bound varisbles in §,, be z{,, ...,
zp . Let

U v X-oo X Uy X W,

and “label” each v; with the variable z! . This
cnables us to distinguish between two copies of

the same node that came from different variables.
Also label % with z,,. We define nodes vy, for each

-
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well-formed subformula ¢ of ¢, by induction on
the size of ¢, as follows.

(1) Ify is an atomic formula of the form z}, 0 =},
let vy «— 0¢ g j(u). If ¥ is of the form z§, 0 z,,,
let vy «— 0;¢ n+1(u), similarly for the cases
where ¢ is of the form z,, 0 1::',‘, and z,, 0 z,,.
In each case ¥ has the same successors as u.

(2) If ¥ is ¥ V 3, vy, and vy, may have dif-
ferent successors. We shall show below that
w is always a successor of each vy. Let the
common successors of vy, and vy, be labeled
Ze! 5... Tor, and z,. Let vy « Il (vy,)

- and ”:bz +— Ig,(vy,), where S) and S; are
the numbers of the components of vy, and
vy, corresponding to the common successors
of vy, and vy,. Then let vy — v}, Uvy, .

(3) If ¢ is -9, let z;:‘,...,z;:k and z, be the
labels of the successors of vy.. Let

Uy n(n,,...,u,u+l )(u)v
and vy «— uy ~ vyr.
(4) X ¢ is (32}, )(¢') and 2! ,...,z3 , zo, are
the labels of the successors of vy, assume that
v; is the ** component of vy. Let
ve — M, k1) () (ve)-

It can then be shown that:

Lemma 6. For each subformula ¢ of ¢ = Pos

(1) vy is of type (.

(8) The successors of vy, are & and the sorts of
the all the bound variables that appear in vg,
ezcept for those that are bound by a quantifier
in Y. .

(8) Assume that the successors of vy are labelled

z,',:l yeves z,‘,:. and z,,. Then
Ivp) =[] r(t) = (las- -+ s k1)
XA JUBSR WY
Al levd) € fMg i (T(R))]),
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where Y = (23! ,...,23% 7u). 1

To prove the theorem, apply Lemma 6 to the
formula ¢. We get a (}-node vy, whose only suc-
cessor is W (all other variables are bound in 9),
and

I(vg) = [t r(t) = (") AE8(Y)
AW) € P gnpiy I(u)]].
Since by Lemma 5, F ¢(I') implies that I' € I(),
and each element of I{w) is the only component of

the r-value of some element of r[I1,,(I(u))], we
have

Ive) = [1]#(1) = () A E $(1)].

Finally, we let w «— II(v,), which gives us a node
w of the same type as t that satisfies I(w) = [l |

¢(). 8
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