
D-R141 127 AUTOMATED 9-GERT SOURCE CODE GENERATION USING COMPUTER 112
AIDED DESIGN(U) RIR FORCE INST OF TECH WRIGHT-PRTTERSON
AF8 OH SCHOOL OF ENGI.. G M ANDERSON ET RL. DEC 83

UNCLRSSIFIED RFIT/GOR/OS/83D-2 F/G 9/2 NL

EhiiiiiimI
EElhhEEEEEEEEEEE~lhEEEEEEEEE
EEEEEEEEEEEEEl

mhEl|hhllhEEEEEmnmmhhEEI

* ill * &3.2 2

1.8

MIROCOPY RESOLUTION TEST CHART
N14NL SURE AV 0F STANOAWOS - 1963 -A

II _ 7 N I, ,i *- ., " . -, -

*4

AFiT/GoR/os/e3

~AUTOMATED Q-GERT SOURCE CODE GENERATION

USING COMPUTER AIDED DESIGN

THESI S

Gary M. Anderson Chris R. Commeford
Captains USAF Captains USAF

AFIT/GOR/OS/83D-2 DTIC

Approved for publ ic roleasel distribution unlimited

- 01

AUTI 8TE 0ER OURC COD 0EERT $

i i n.1I sti f iad -

4 SECURITY CLASSIFICATION OF THIS PAGE *,,
~ I. REPORT DOCUMENTATION PAGE

S. .. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Sunclassified none
2SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

approved for public release;
2b. 0ECLASSIPICATION/OOWN4GRAOING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER($) 5. MONITORING ORGANIZATION REPORT NUMBER(Sl

AFIT/GOR/OS/83D- 2

G.NAME OP PGRPORMINQ ORGANIZATION b. OFFICE SYMBOL 74L NAME OF MONITORING ORGANIZATION
School of Engineering(i pmbo
Air Force Inst. of Tech. IAFIT/EN

S Gr- ADDRESS MCOt. State and ZIP Code) 7b. ADDRESS (City. Stale and ZIP Code)

Wright-Patterson AFB, OH 45433

ftU NAMIE OF FUNDING/SPONSORING 812. OFFICE SYMBOL 9. PROCUREMENT IN4STRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if aplicable)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OP FUNDING NOS. ___________

PROGRAM PROJECT I TASK WORK UNIT

11 IL IcueScrt latto)ELEMENT
NO. NO. NO. NO.

See Box 19 _____ ____

12. PERSONAL AUTHOR(S

ary Me Anderson Capt USAF Chris R. Conmeford Capt. USAF
aTYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 1S. PAGE COUNT

MS Thesis 7 FROM ___ TO _ 1983/Dec/i 1 147
16. SUPPLEMENTARY NOTATION wroved I e easie? TAT AMR IS%

Do&a for Reeatb and Professional D"2=111ui

I?. COSATI CODES IS, SUBJECT TERMS (Continue on miwe If uiW"eWvr alm w maler)
FIELD GROUP Sun. aR. Automated Programmings , ompuiter Aidd Design,

12 02 Computer Graphics# Minicomputers, Simulation
Lancraces

19,. ASTRACT (Continue on meuerse if necessary and Identify by block number)

AUTOMATED Q-GERT SOUJRCE CODE GENERATION USING COM4PUTER AIDED DESIGN
(unclassified)

Advisors Lt Col Peter Bobko

OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Z 4CLASSIFIED/UNLIMITSD M1 SAME AS RIPT. 0 DTIC USERS 0unclassified
S 22L. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Pete Bobo LtCol SAF(Include A rea Code)

Petr Bbko Lt ol SAF(513) 255-3362 AFIT/EN

00 FORM 1473, 83 APR EDITION OF JA 73 IS OBSOLETE. unclassified
SECURITY CLASSIFICATION OF THIS PAGE

unclassified
%.. SECURITY CLASSIFICATION OF THIS PAGE

Abstract

The Pascal computer program developed within, uses an Apple
microcomputer and Graphics Tablet to allow an analyst to create a Q-GERT
simulation network using computer aided design techniques. The analyst
need only select commands from the Graphics Tablet's programmed menu and
answer questions regarding the symbols to be drawn. The program will
display the network on the high resolution graphics screen and generate
a text file containing the computer source code for input to the Q-GERT
Analysis program residing on a mainframe computer. The basic concepts
of Q-GERT are incorporated into the program. This includes source, regular,
queue, statistic, and sink nodes along with activities and parameters.
The program was written to be expandable for further development to include
more complex concepts of Q-GERT.

unclassified
SECURITY CLASSIF ICATION OF THIS PAGE

,
,,','.., . - ,, -, ,- ,-,,, ,
S,.-,

, ,.. ,
9,-.

AF I T/GOR/OS/83D-2

I

AUTOMATED 0-GERT SOURCE CODE GENERATION

USING COMPUTER AIDED DESIGN

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology AAccession For

Air University NTIS -GRA&I...............

In Partial Fulfillment of the Unannonupced
Jfustif ¢ __..___

Requirements for a

Masters Degree Distrib.ltion/

," /~Avail.:

!Dist

Gary M. Anderson Chris R. Commeford

Captain, USAF Captain, USAF

December 1983

Approved for public release; distribution unlimited

XW Aj~

24

Accessibility of microcomputers has brought increased

computing power to an analyst's fingertips. The purpose of

this research is not to teach Q-Gert, but, to give an

analyst familiar with G-Gert a useful tool making simulation

convenient and error free." For a complete description of Q-

G ert we refer you to lodlaI a mg d anA.ix..s.Ls UIlno Q-Ga.±t

Kletwe-ka by A. Alan B. Pritsker. If an analyst has available

to him an Apple computer and graphics tablet, using our

program, he can create basic Q-Gert simulation models. The

network diagram is displayed on a high resolution graphics

screen and the program will generate a text file containing

the computer source code that can be sent via telephone to a

mainframe computer to run the G-Gert Analysis program.

A major side effect of any thesis is the learning

process of conducting research. We learned a great deal

about the methodology of research and, equally as important,

how to work as a team. With the guidance of our thesis

committee, LtCol. Bobko and Professor Richard, we learned

more about the Apple computer and Pascal then either of use

dreamed possible. Having no previous Pascal programming

experience, we spent many long hours agonizing over

seemingly trivial problems. LtCol. Bobko was our guiding

light helping to solve many undocumented peculiarities of

Apple Pascal; while, Professor Richard gave us valuable

insight to the available data structures we needed to store

all the information to create the source code. Many thanks

_ ii

to the both of them.

"' sWe must also thank our families: Pam rand Tricia

Anderson, and Susan and Donald Commeford for their patience

and endurance when we were immersed in our studies.

Gary M. Anderson
Chris R. Commeford

-.-

.4

!

labi1a zo.i Emn-Is

Page

Preface ii

List of Figures vi

Abstract 0i. 1 6 *....i

I. Background I

Graphics, Simulation and
the Microcomputer'. 4
Why Microcomputers 6
Simulation and Microcomputers 7
Graphics and Simulation 7

II. Statement of the Problem 9

Research Questions 9
Research Objectives 10
Mater ials 11

Graphics Tablet 11
Pascal ... s.... a 12

III. Program Development 15

Data Structure .1........................... 17
Graphics Tablet Setup 23
Graphics Tablet Layout 24
Program INITLOGIC 25
Program QGERTNET 26

GETXY e... w... 28
MYPLOT 30
MENU 32

SOUREGINFOSTASININFO,
ACTINFO, QUEINFO 34
SAIESCREEN 42
LOADSCREEN 44
EDITOR 46

Program CODEGEN50
Units 53

IV. Program Capabilities and Limitations 55

V. Conclusions and Recommendations 58

Appendix A: Procedures SETUPAD and READPAD 61

Appendix S: Unit PEEKPOKE a............... 63

Appendix Cs Program INITLOGIC 64

Appendix D: Program QGERTNET 68

iv

.... 'P " ' ",'" Fr '9 *'.r ' " eYi '' ...:' 0;' .' "" , :: ,wC.. "v .''''.. - , •" ""

Appendix E: Program CODEGEN 114

AF'endix F: User's Manual 123

Bibliography ... 142

Vita 144

V

MN.. **~*

Figure Page

1. Macro View of Source Code Generation System 16

2. Record Fields 18

3. Adding a Record to a Linked List 20

4. Traversing a Linked List 21

5. Deleting a Record from a Linked List 22

6. Graphics Tablets Functional Areas 24

7. Combining Shapes to Form a Regular Node 25

8. General Structure Diagram of QGERTNET 27

9. Logic Flow of QGERTNET's Main Program 28

10. Logic Flow of Procedure GETXY 29

11. Logic Flow for Procedure MYPLOT 31

12. Bottom Row Menu 32

13. Rows I and 2 of Tablet's Menu 33

14. Logic Flow of Procedure MENU 34

15. Available Q-Gert Symbol Input 36

16. Distributions and Parameter Values 36

17. Text Location within a Regular Node 38

18. Logic Flow for Procedure SOUREGINFO 38

19. Logic Flow for Procedure ACTINFO 40

20. Logic Flow for Procedure OUTDATA 42

21. Logic Flow for Procedure INDATA 45

22. Logic Flow for Procedure EDITOR 48

23. Logic Flow for CODEGEN's Main Program 52

24. Lisiting of the Procedures Comprising
Each Program Unit 53

25. Sample Network Display and

Associated Source Code 56

vi

AFIT/GOR/OS/83D-2

-\The Pascal computer program developed within, uses an

Apple microcomputer and Graphics Tablet to allow an analyst

to create a 0-Gert simulation network using computer aided

design techniques. The analyst need only select commands

from the Graphics Tablet's programmed menu and answer

questions regarding the symbols to be drawn. The program

will display the network on the high resolution graphics

screen and generate a text file containing the computer

source code for input to the 0-Gert Analysis program

residing on a mainframe computer. The basic concepts of 0-

Gert are incorporated into the program. This includes

source, regular, queue, statistic, and sink nodes along with

activities and parameters. The program was written to be

expandable for further development to include more complex

concepts of 0-Gert.

,0

v ii

... "...............

AUTOMATED Q-GERT SOURCE CODE GENERATION
USING COMPUTER AIDED DESIGN

Simulation has been used for many years to understand

the behavior of systems. It has been applied to a variety

of manufacturing, service, and defense industries to

evaluate various strategies for achieving goals or solving

problems. Many times direct experimentation is inappro-

priate when trying to solve problems. It may be disruptive

4. to the organization, costly, time consuming, or impossible

to explore an alternative in real life experimentation.

Therefore, simulation may be appropriate if no complete

mathematical formulation of the problem exists, or the

analytica method needed is so complex that simulation is a

simplier solution method. Simulation models also allow the

experimenter to develop an intuitive understanding of the

system and 'feel' for the problem. McKenney 112] had the

following to say about using a simulation model to under-

stand the real system:

When the manager had achieved a viable under-
standing and began to manipulate the model, he
corLinuously gained new insights in' is opera-
tic He desired the model to tes+ i ariety of
al- atives so he could evaluate ,- e new in-
si . In essence, he was using tre model to
am y, his manipulative skill by eplicitl
id. fying all important ramnfications of a given
chan,.e. Because of the complex, tv o4 the svstem
it may have been possible +or him to do this on
the real system, but very tedious, and he probablv

"I

would have made errors. Thus, he turned to the
model as an evaluator of his new insights. It is4 " conjectured the model design will never be
stabilized, but continue to develop in response to
the manager's new understanding.

Schoderbek,Schoderbek,and Kefalas (161 posed a systems

science paradigm which can be used for problem solving with

simulation. First, conceptualization, where the system being

studied is defined, boundaries set, restrictions applied,

Aand measures of effectiveness identified. The system is

analyzed as to its place and interaction within it's

environment. An output of the conceptualization phase of

simulation is a flow diagram linking all the major pieces

into an accurate picture of the working system. Next, the

analysis and measurement phase wherein the system is

-expressed in quantifiable terms enabling measurement of the

changes that will occur when the system is manipulated. This

phase also entails structuring the problem solving technique

to measure and analyze the changes under different

conditions imposed on the system. Finally, computerization

involves describing the system using a simulation language,

the source code, and running this code on a compatible

computer to generate results. These three steps, are

iteratively refined as the simulation model is developed.

For instance, while translating the model into a computer

source code, a problem may arise in the logic flow of the

A% original model. The analyst must go back to the conceptual-

ization phase and attempt to redesign or reformulate the

model and go through the 3-phased process again E17).

.~2

A popular simulation language is O-Gert, developed by

4 , ".. Dr. Alan B. Pritsker as a "net,.ork model ing vehicle arid

computer analyst tool £143." The language is a general iza-

tion of PERT and an extension of GERT, two specialized

simulation languages, enabling queuing and decision capa-

" bilities to be analyzed by computer simulation. 0-Gert has
'2-

been successfully used in studying manufacturing, service

and defense systems. "It provides engineers, business ana-

lysts and operation researchers with a graphical vehicle for

modeling, analysis, and communication [143." 0-Gert net-

works are models of systems consisting of activities,

services, and queues. Through computer simulation using 0-

'Vi Gert, problem solving and risk analysis can greatly enchance

the accuracy and reliability of information available to the

decision maker.

0-Gert is used in all three phases of the system

.V science paradigm. First, in the conceptualization phase, the

logic flow layout of the system is represented using Q-Gert

symbols which specifies relationships between parts of the

-4. systems and the overall flow pattern through the system. The

logic flow diagram is in a form enabling the analyst to

communicate to others his concept of the system's structure.

Feedback from the decision maker and acquired knowledge

about the system, may necessitate a change to the model.

This change may entail redefining relationships, thus,

changing the logic flow diagram to reflect the modified

> .t'YV- version of the system. In the analysis and measurement

phase, the Q-Gert language allows specification of distribu-

S tions defining the transaction flow patterns through the

• system, ie. rates of flows between services, combinations

of servers at activities, or queue space available prior to

an activity. Finally, the graphical symbology of the net-

work is manually translated into 0-Gert computer source code

to be run on a computer system able to handle the entire 0-

Gert Analysis program.

From the authors' personal experiences, the translating

of the symbology to computer code is tedious, time consuming

and often riddled with input errors. Through the refinement

process, even if the computer source code is accurate for

the original model, incorporating any changes will again be

* susceptible to input errors and the resultant time spent

*debugging the computer source code.

Bnahia Siuia±onand III& I±Lcx-r~npLaan

'Computer aided design (CAD) has been used by engi-

neering disciplines since the middle 1960's. Architectural

engineers use CAD to design building layouts incorporating

other computer analysis programs to evaluate layouts against

existing regulations, and building codes £21). With the

ability to change layouts, testing different room sizes,

window and door placements and even construction materials,

the designers can 'optimize' the layouts. Using CAD in

conjunction with analysis programs that compute material

.. and labor costs enables the architectural engineers to

accurately estimate the total cost of a design. Utilizing an
-4.¢

_. .editing capability, changes can be made to a design and the

4. 4

,--.IL
we ** t *S - W % **:. * -

" ,/, . ', ,.':..' .'' ':.L''',:'...
', '

. -.. "-'."-,. - 'v , '" '.". .- v v:''-'%
" "

"%'""-,. "''- ,. .. ".,.'- -,S

analysis accomplished in minimal time [4). Circuit

4 -f I" designing also prospered through the use of CAD. Electrical

engineers conceptualize circuits then simulate their poten-
'

tial capabilities with additional analysis programs (8].

Time is a vital commodity saved by using CAD. Another advan-

tage that emerged by combining CAD and analysis programs is

the ability to construct and test complex structural designs1
A-4 using only computers without having to actually build a

scale model or full scale prototype for testing, again

saving time and money [21]. The use of CAD in numerous

engineering disciplines is expanding rapidly; however, CAD's

use by operation researchers is virtually nonexistent.

Use of computer graphics by operation analysts is

predominantly the depiction of results of the analysis

consisting of graphs, charts and tables (223. Computer

graphics has not been used to develop the computer models in

the conceptualization phase. The capability to instantly

express visually the analyst's ideas would save both his

and the client's time. Enhanced communications through quick

pictorial represent-ation of the model being analyzed also

. helps eliminate discrepancies between the client's and

analyst's concept of the system [14). This interaction

enables a better model to be developed and helps the client

see how his system 'really' functions.

The front end use of computer graphics in operations

'- research techniques is limited although its potential use in

: - simulation is most pronounced. This research will develop a

useful tool for modeling systems using the symbolic 0-Gert

'U "" , e,),'*' ') _' i -' i<,-._-," ,?. ',= ,' -. '.>"" . ,:', ,-.'... ;" ',' .. "5;

A simulation language. Though use of microcomputers, we wil l
,. . .

" " make this '.ool accessible to the analyst and easy to use.

Today's operations researchers must have access to a

computer to effectively analyze complex problems. Often the

ability to utilize mainframe computers is cumbersome, due

partially to limited terminal access, making modeling and

analyzing a slow process (7]. With the advent of the micro

computer, the gap between simple calculators and mainframe

computers has been bridged 118]. The micro computer's flexi-

bility allows the computer to be used as a stand-alone

'V system for solving small problems or as an intermediary to a

' Q mainframe computer acting as a terminal l inked to the

(0 larger system. Used as a remote terminal, ready to run

"source' programs developed on the microcomputer are sent to

the mainframe computer for execution. The main frame

computer with its large memory capacity can run the program

and send the results back to the microcomputer or print the

output at a central site. The linkage between the micro-

computer can be accomplished through telephone lines or a

direct connect system. With a microcomputer at his disposal,

the analysts' desk becomes a complete work station with the

accessibility of a calculator and the power of a mainframe

computer at his disposal E1].

Our purpose is to use the microcomputer as an inter-

mediary between the analyst and the mainframe computer in

simulation applications. Advantages of using a microcom-

.6

-P 3-67 .3 117 .- ,;7;-. -- w67

. puter includes minimizing mainframe computer usage in the

designing, editing, and debugging stages of programming

[183. A mainframe computer is not needed to process the

graphics and generate source code, a microcomputer can

handle this task. The computer source code can then be sent

for execution to a mainframe computer when complete or at a

later time.

~im i I a ir~ .ajd Mi.r rnmp a + .S

uSimulation is the development and use of models to aid

in the evaluation of ideas and the study of dynamic systems

and situations [131.0 Presently the use of microcomputers

in simulation is limited to small repetitive analytical

problems. Each model developed is for a specific analysis

and is composed of mathematical expressions and mani-

-' pulation (15]. There is not a powerful simulation analysis

program such as Q-Gert's available to run on a microcomputer

because of the lack of memory capability that large simula-

tion programs demand.

3zaphices anCd qimaI,&+r~

"A picture is worth a thousand wordsm has ample appl i-

cability to engineering work. A schematic is certainly more

meaningful for use in communicating ideas between engineers

and managers than a complicated mathematical formula ex-

plaining the same ideas. The schematic can focus attention

on relationships and interdependencies more quickly. A

manager not familiar with the intricacies of model building

7
-*0

-- i--... ~ ~ % .% v\ . .' %**

can visually comprehend the ideas being explained.

S.' " ' In simulation, computer generated graphics is used only

in the presentation of output [9]. Histograms, graphs and

bar charts are used to explain the results of the simula-

tion. Understanding the output of the model is paramount to

a decision maker, but a graphic representation of the system

being modeled is equally important to his understanding of

why the particular results were obtained. Computer graphics

incorporated as a means of input to the simulation program

will give the decision maker a schematic of the system as

well. Computer graphics can be used effectively for concep-

tualizing system designs, communicating with clients, as

well as, input to a computer analysis program.

@S

4%8

. ~~I I. S ata.a~.n±t n.f... pbs .nbJ.smr

The foundation of any Q-Gert simulation is the network

depiction of the flow of transactions through the system. As

changes or alternatives are considered, the analyst should

modify the graphical representation of the network then

change the computer source code. The manual translation of

0-Gert symbology into the source code frequently results in

errors due to the rigorous input requirements of the Q-Gert

language. The ability to develop and then change a network's

graphic display with automatic generation of the corres-

ponding computer source code necessary to run analysis

programs would create substantial time savings for an

analyst.

This research effort will attempt to eliminate the

basic problems discussed above answering the following:

1. Using computer aided design techniques, is there a way

of placing Q-Gert symbols on a microcomputer screen using a

graphics tablet?

2 2. Using an appropriate programming language, is it pos-

fl sible to automatically generate Q-Gert computer source code

from the graphical representation created in question 1?

3. Is it possible to edit a previously drawn network and

incorporate the same changes to the computer source code?

- 9

* -n.--- - - - -

•i4 .. ,The overall objective is to successfully execute a 0-

Gert model whose computer source code was automatically

generated using computer aided graphics. The source code

generated will be sent to AFIT's CYBER computer system to

run the G-Gert Analysis program.

The research sub-objectives are:

1. Using a graphics tablet with an Apple II+

microcomputer, represent a Q-Gert network on the computer

screen.

2. Using Pascal, convert the graphical representation on

the screen into a text file containing the complete and

accurate Q-Gert source code.

3. Edit a previously drawn O-Gert network and update the

appropriate text file containing the source code

automatically. This will necessitate a save and reload

capability.

4. Send a text file to the CYBER and successfully execute

the simulation model.

It would be desirable to include the full range of Q-

Gert symbols in this effort. However, due to the complexity

of some symbols and the limitation of time, not all of the

symbols may be included. It is the intent of this effort to

achieve all of the afore mentioned objectives on at least a

subset of Q-Gert symbols.

'4O

nL _

to

apt.r. A~~

This research effort will use computer aided design to

draw a Q-Gert network on the high resolution screen of an

Apple II+ microcomputer. At the same time, Pascal is used to

develop a data base which will be partially built by the

user answering questions presented on another screen.

Finally, the data base will be manipulated to produce the

finalized source code which can be sent via telephone lines

to the CYBER mainframe computer which will run the Q-Gert

Analysis program.

A listing of the equipment needed to run this program

is as follows:

1. Apple II+,64k RAM, two disk drives

'1 2. M & R Enterprises Sup'r'terminal board in slot #3

3. Apple Graphics Tablet in slot #5

4. Apple Pascal operating system

5. Two monitors

6. Modem to communicate with a mainframe computer

The Apple Graphics Tablet is a device that converts the

position and movement of a special pen into numbers which

the computer can understand. The software associated with

the tablet tells the Apple computer how to draw shapes,

lines, and letters on the high resolution graphics screen

using the information input from the tablet. These programs

turn the combined computer and tablet system into a

- sketchpad or engineer's drawing board. This particular

"- It

graphics tablet is primarily designed to work in a BASIC

language environment utilizing Applesoft programs i-r

displaying the drawings on the high resolution graphics

screen [I0. In this capacity, there can be no mixing of

graphics and text needed to completely illustrate a Q-Gert

network without additional software. Apple Pascal, however,

has this capability with Turtlegraphics.

In addition to the drawing functions inherent in Apple

Pascal, a sophisticated computer language is needed capable

of handling the task at hand. Due to the anticipated size of

the program and type of data structure needed, Apple Pascal

was considered the appropriate computer language to use.

Apple Pascal has two memory conserving capabilities that are

essential to execute large programs on microcomputers with

a limited amount of memory available.

After the Apple Pascal system is loaded into the

computer, the memory available to execute a Pascal program

on the Apple II is 20k of random access memory (RAM). Apple

Pascal has structures available to the user called units

that need not reside in memory unless they are being used

[23. Each unit is a collection of procedures and functions

compiled separately from the main program. Unlike standard

Pascal procedures or functions, a unit can exist separately

from the body of the main program text and still be linked

to a Pascal program's object code at run time. The power of

a unit lies in its ability to house multiple procedures or

12

- -, , 6* . - . . - . . . 6Z. -o -- -l . ,

functions, built in Pascal or assembly language, under one

k .4: roof. All of these procedures and functions are available

from within a Pascal host program. Additionally, units may

be nested within each other. By developing the program in

parts, each part can be made a unit; and, when a procedure

or function within a unit is needed by the main program,

only then will the unit come into the computer's memory thus

minimizing the memory required to run the program. When the

unit is no longer needed, it can be removed from memory

until it is needed again.

The other major reason for selecting Pascal is the use

of the dynamic data structure called linked lists used in

conjunction with record data types £6]. A record is similar

to an array in that they both can represent a group of

elements with a common name. However, while the elements of

an array must all be of the same data type; integer, real,

string, etc., the elements of a record may be a mixture of

data types. Within the same record, one field may be

designated real while another may be designated as a string

or even another record. Individual fields of a record can be

accessed and similar records can be linked together for

sequential access through a pointer system.

The use of arrays, that are fixed in dimension, sets a

limit on the size of the network. Alleviating this limita-

tion, the linked list data structure is expandable as

needed. For instance, if a network initially had 5 regular

t . nodes the number of components in the linked list would only

be 5. If the network was expanded, additional components

13

would be added to the linked list only as required. if

arrays were used, memory would be allocated at the outset of

program execution. If the dimension of an array were set at

50 nodes but only 5 were used, the memory reserved would

still accommodate 50 nodes that the array specifies. This

may necessitate limiting the size of the program or units

called by the program during execution. The linked list data

structure is available in Apple Pascal and saves memory over

the conventional array structure.

0

14

'IiS

l_

' 'The c or,,cop t oi i o irn 1: , u s i r,, g a g r aph, - tah b I- t- a.r,,-J B

• .. microcomputer is not now. Dar, $ok oI s article [1,9] outlines

4."

-." his use of interactive graphics for developing electrical

circuit schematics. Our program goes beyond just schematic

~displays, it will create a Q-Gert network and generate Q-Gert

source codeo t user's graphical selections and solicted

? inputs. The first step involved interfacing the graphics

. tablet and the Pascal operating system enabling information to

~be passed between the two. Once accomplished, the programming

to accomplish the stated objectives was started.

ShisThe system was developed in three parts. First, the -

,. Gert symbols to be displayed were developed in program

l.J

iritLC scheaic., program goRTeTws beeyod juto schatic

displays, itnwil create a et nhe dtokan gnctre Q-Gerty

data structure to a text file consisting of the desired

computer source code. Figure 1 depicts the macro view of the

source code generation system. INITLOGIC creates a file of

shapes which QGERTNET accesses to draw the network on the high

L'resolution screen. Thn GERTNET creates files of symbols'"

,.' inputs The irst stE a ep inoenerfacin the -graphiucs

tbnTwo programming concepts built into the system are
expansdibility and user friendliness. The primary requirement

to permit future e o is conservation of computer

memory. As the program grows, available computer memory

£4'%

V-..

rogram G DE
* INITLOGIC

* S
' ? l LET A

AL

".4

YE

4 C

O R

L D High Resolution Screen

-.! GEN,USH, NET, 1, 1,1984,I,1,10,50,5,E*
SU1,0,OD2,ML* SOURCE NODE
REG,2,1 ,I,D, ,L* REGULAR NODE
STA,3, v , 1 ,D ,B,N ,T, L* STATISTIC NODE

.), QUE, 4,2, ,D ,F ,N,N* QUEUE NODE
It ACT, 1,1,CO, 1.5,1,1" ACTIVITY #1

, .,ACT, 1,2 ,NO,2,2, 1* ACTIVITY #2
ACT,1,3,EX,3,3,1* ACTIVITY #3
ACT,2,4,UN,4,4,1* ACTIVITY #4

6% ACT,3,4,GA,5,5,1* ACTIVITY #5
ACT,4,5,LO,b,b,2* ACTIVITY #b
PAR,2,3.0,0.O,,0.* NORMAL DIST
PAR,3,2.5* EXPONENTIAL
PAR,4,,1.0,3.0* UNIFORM DIST
PAR,5,3.0,0.0,10.0,0.5* GAMMA DIST
PAR,6,4.0,2.O,b.0,0.2* LOGNORMAL
SIN,5,1,1 ,D,I,N,N,L* SINK NODE
FINISH*

VSource Code

Figure 1. Macro View of Source Code Generatiorn System.

16
ix

a ot.o - * °-_ - , .- - - -.- - . . - -. . ' •

decreases unl ess steps are taker to minimize the required

memory to execute the program. To consere memory4 most

procedures are contained in unit-s. w.. hich remain in computer

memory only when a procedure within the unit is being

executed. Also, the program is user friendly. Through timely

and informative prompts, the user can quickly develop a

network and generate the source code. For convenience, an

editing capability was written into program QGERTNET. This

facilitates changing the network design, as well as,

correcting accidental input errors. When the user is satisfied

with the network developed, the data structure can be saved on

diskette to redraw the network or generate the source code at

a later time.
U .

The following discussion will briefly explain the data

9w structure, layout and setup of the Apple Graphics Tablet

followed by the the logic that went into developing each of

-0.- the three programs.

JDat.aS±aun

Pascal has a mechanism for creating dynamic variables

which are defined at compile time but only created during

execution of the program. Program QGERTNET declares records as

dynamic variables. Different types of records are declared

corresponding to the different Q-Gert symbols. Source and
q''

regular nodes require the same information to describe their

function and parameters to the Q-Gert Analysis program; there-

4 fore, these symbols' records are of the same type. Statistic

and sink nodes are also similar to each other while queue

,. "..'.

nodes, activities, and parameters require separate record

types to store their ;Information. Each record also contains

informat ion to specify the symbol and i ts location on the high

resolution graphics screen. Figure 2 depicts the fields

within each type of record.

Record Type: SOUREG

INEXTI DEVICE I XLOCATIoNHYLOCATION TIPE NODENUM

>INITIAL SUBSEQUENT BIRANCHING I MARK I CHOICE COMMENT

Record Type: STASIN

NEXTT DEVICEI XLOCATION1 YLOCATION1 TIPEJ NODENUM j INITIALD

>SUBSEQUENT B3RANCHING I STATi UPPER IWIDTH ICHOICE COMMEN

-P. Record Type: QUE

SI ! ! I ! I I
NEXT DEVICEI XLOCATIONJ YLOCATION1 TIPE1 NODENUM INITIAL

>CAPACITY BRABCHING I RANKING I BALKERS UPPER WIDTH COMET]

Record Type: ACT

NEXT DEV I CE sX SY EX I T PE START INDD Io STR PARAM

>iCTqUM~u- SERVERS I C

Record Type: PAR

NEXI TIPEJ PARAMI PAR1i PAR21 PAR31 PAR4 COMMENT

Figure 2. Record Fields

• - 1 * 8.5 . * - * * * . **

'S ,

* -*

°

5*

Associated with dynamic variables are pointers. These

0. . variables contain the address in memory of the dyna mi

variable it references. Records are accumulated into

lists by having each record contain a link or pointer to the

next record in the list. Using these dynamic variables, a

data structure called a linked list is built that can expand

or contract as the program executes. The programer does not

have to know in advance how long the list will be. The only

size limitation is the amount of available computer memory.

During program execution using this data structure, the user

can create new records when building a network, change

record fields when editing, or destroy records when

modifying the network.

Each type of record is kept in a separate linked list.

Reference to a record within a linked list is not by name

but by a pointer. To keep track of the records, unique

pointers, BASE(i) and NEXT(i), are declared for each list.

NEXT(i ^ is the record within the particular linked list

referenced by pointer NEXT(i). BASEi) is always reset to

point to the first record in the list or has the value of

NIL, if the list is empty. NEXT(i) is used to traverse the

list to locate a particular record. Additionally, when the

program creates a new record, it is added to the

appropriate list and linked to the other records by a

pointer field (NEXT(i)A .NEXT) inherent in each record.

Figure 3 illustrates the addition of a new records to a

19

-- ,.

io .

new(NENT(i))i creates a new record with NEXT(O)
. ,pointing to it

.rec record 1 NI

NEXT(i)A.NEXT:n BASE(i) i connects the new record with the

other record in the list

.+. .. NEXT< i)

BASE(iMu,, NEXT(i): reset BASEi) to the front of the list

recor.d 2I --l,:~ '.

Figure 3. Adding a Record to a Linked List.

To find a particular record within a linked list, the

user must specify the field and the field's value to

identify the correct record. NEXT(i) initially points to the

first record in the list. If the specified field's value of

this record is not equal to the desired record's then

NEXT(i) is reset to point to the next record in the list. To

ensure that the entire list is interrogated, after searching

the first record, the second record is searched prior to

advancing the pointer. The search continues through the list

until the desired record is found or the interrogated

20
.i, % . .o

S *,' * '. *

records pointer field is NIL. Figure 4 illu.trates the
!dl.

ls.ea. srch routine to find record 2 whose field cal led "here- iE

equal to element.

Does NEXTli)A.here a element?

record 4 * record 3 * record 2 * record I NI

if not then does NEXTOi)A.NEXTA.here - element or

NEXT(W).NEXT -NIL

if not then NEXT(i) s NEXT(i)A.NEXT i set the pointer
NEXT(i) to the next record

irecord4 reod3* rcd2 eodIN

and again NEXT(i)z- NEXT(i)^.NEXT

Ertcod 41--j rc rd record 2 recod I NI

Figure 4. Traversing a Linked List.

Pointers can also facilitate deleting records within

the linked list. To locate the record to be deleted, the

same routine just described is used except the pointer

NEXT(i) is set to the previous record in the list. The

vp. ~ pointer field of this record is reset to point to the record

21

a * C .*. ~ '

.o" ' g * % %*. ' a * * ' .. •*.*... a .

a. Fiur 4. Trvsn a ikd it

fo I Iow ing the record to be deleted Q-HJET(iJJX-1JE*-*

* When * ~the likdlssare save to +ii ci, jil x I the record

that are linked in succession are retained, circumventing

the record to be deleted. Figure 5 illustrates deleting the

second record in a linked list.

First, record 3 is found to precede record 2.
NEXT(iMii NEXT(i)A%.NEXT

SBSE

NEX1(i).NEXTi- NEXT(W).NEXT4.NEXT i record 3's pointer
field is reset to points to record I

"SSE

After the linked list is savet

Figure 5. Deleting a Record from a Linked.List.

The the linked list data structure was selected over an

array structure because it takes up only as much memory as

needed to store the O-Gert network information. The pro-

~ ..,gramnmer does not have to specify a limit on the size o+ the

network, as in arrays. Also, this structure is convenient

W22

- - -, ,------,---.--,,---------------------------------~ --- -9 - -----.-- r- -- 4- - - .1

for accessing particular records and their associated fields

. .when editing and generating computer source code.

To use the Apple Graphics Tablet, it must be able to

communicate with the Pascal operating system. Sokol

included in his article £19) the assembly language program

that made the two compatible. The reason that the tablet

would not interface to Pascal was the Pascal BIOS (basic

input/output subsystem) did not recognize the Graphics

Tablet's existence. The program PAD.ASSY.TEXT (Appendix A)

is the assembly language linkage routine which reads data

from the pad and transfers it back to Pascal. The program

$. contains two procedures: SETUPAD which sets the tablet's

default parameters; and, READPAD which reads the pad,

flashes the cursor, and scales the results. Additionally,

SETUPAD initializes the interface between the two screens.

The symbols are dislayed on one screen using a 40 column

display capability while all text is displayed on the other

screen utilizing the sup'r'terminal's 80 column capability.

Internal to the procedure READPAD is a requirement to store

x and y coordinates read from the graphics pad in decimal

N locations 645 thru 648. Pascal recovers this data using

PEEK and POKE commands added to Pascal by a unit (Appendix

B) also written by Sokol (20]. Once data could be read from

the graphics tablet, the main programs could be written.

23

p.N7-7

.4

, . The Apple Graphics Tablet has a mylar overlay that is

placed on the surface of the tablet. The overlay divides the

surface of the Tablet into different areas, each area having

a different meaning. The overlay is aligned using the

Graphics Tablet software's MENU ALIGNMENT program which is

written in BASIC [10]. Changing to Pascal necessitates

redefining the functional areas. This is done in SETUPAD.

The center of the overlay (Figure 6), the active area,

represents the high resolution graphics screen. The bottom

three rows of the Tablet are programmed as a menu for

selecting symbols to draw or commands to execute.

A

I I l 1l I I I I I I I I I I I I I I

BLOCK

ACTIVE

AREA
I I I I I i 11i I

I ____________II I I I I i i i i i I I I l l l ____ I________

I I I I I 111111I I I I I I I I I

I I I II I 111111 III1II 11 II

il WI R 3 OF SYMBOLS I I I I I I

RIIOI W IRU2 OF SYMBOLS I I I I I I

I111I1I1I ROW I OF COMMANDS 111111

Figure 6. Graphics Tablet's Functional Areas.

24

_ _ . . '. *

-:bi a

a'.. -..

The program INITLOGIC creates the shapes used b>

program QGERTNET to draw the Q-Gert symbols. INITLOGIC

converts groups of strings to boolean arrays and saves the

arrays on disk in a file called LOGIC.CHARSET. Each named

shape is a square array, 21 elements on a side. The symbols

must be large so text can be printed inside their

boundaries, therefore, each node is made up of more than one

shape. The main program of QGERTNET loads the symbols from

LOGIC.CHARSET into memory by calling procedure GETSHAPES.

When a drawing command is selected, procedure MYPLOT

combines the shapes to draw the desired symbol. Below is an

illustration of the shapes NODEL and NODER used to create a

regular node.

NODEL NODER
*xxxxxxxxxxxx xxxxxxxxxxxxx
*xxx x x xxx

xxx x x xxx
a.xx x x xx

xx x x x x
'ixx x x x x

C *X X X XX

xx x x xx
x x x x
x x x x
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxx x
x x x x
x x x xX X xX x

x x x x
xx x x xx
xx x x xx
XX X x xx

xxx x x xxx
xxx x x xxx

xxxxxxxxxxxx xxxxxxxxxxxxx

Figure 7. Combining Shapes to Form a Regular Node.

*25-'.
i-

_ ",- j.* a''', ~ ~ ~ a' -' a'aN .a ' ~ P ' t

; ". - . - -.

.1

",. Bes i des the shapes i n LOGIC.CHARSET, the p rogr, am

S'.utilizes Turtlegraphics MOVETO command to draw activity

lines connecting the nodes in the network by moving between

two specified (x,y) coordinates. Turtlegraphics is also used

to display all text within the nodes and along the activity

lines on the high resolution screen,

fe.r~g.ai - -R~LE

Once the shapes had been saved, the program QGERTNET

was written. Depending on the user's command selection,

QGERTNET will display the network on the high resolution

screen and gather information about each symbol as the

network is built. Figure 8 depicts the general structural

-flow through QGERTNET.

The main program of QGERTNET contains the highest level

of operations. The program first initializes variables and

retrieves the shapes from the file LOGIC.CHARSET. Next, the

tablet is readied through SETUPAD, the graphics and text

screens cleared, and then, LISTMODE provides the initial

prompt to the user. The program then enters a continuous

loop between procedures GETXY and MYPLOT. Within the loop

'S the program awaits an input selection from the user. Figure

9 contains the logic flow for the main program in

.. QGERTNET.

.2

Prog~ram
GGERTNET

f GETXYMYPL

OT

READPAD MN

6ETYPE CLEARSCREEN
CODEGEN
LOADSCREEN

S~mboisSAVESCREEN
EXT

Source node LISTALL
Regular node EDITOR
Statistic node SETLOCK(clear)
Activity SETLOCK(1ockx)
Que node SETLOCK(1ocky)
Sink node

DRAWBLOCK Ln~d.~~

SOUREG INFO
Szhapacs STASININFO

ACTPARINFO
NODEL QUEINFO
NODER
ARROW
GNODEL
ONODER

Figure 8. General Structure Diagram o+ OGERTNET.

27

Z7 IIC Z: . .TV.. .. .

!'.4
in iti a] ize1
variables5

'GETSHAPES

-INITTURTLE

LISTODE

GETXY

KYPLOT

!..;FREEZE- f al so -

true

(n

Figure 9. Logic Flow of QGERTNET's Main Program.

G3E]XY.

Procedure GETXY is called by QGERTNET's main program.

It is used to determine the command selected, symbol to be

drawn, or a symbols' placement on the high resolution

screen. It first sets up memory locations for the (x,y)

..- coordinates from the user's pen placement on the tablet.

28
44., ;: ': - ~ .e ., .. , - '. ' L . . e ' ' .,.' -,.." -.-. ' ." , ,-.-,: . " . ,-," . - '. ." .' : . .'

.4.'U Through procedure READPAD, the coordinates a re read and

. stored; then, checked to de term i ne i + a ,. .)l i d 1o,:at ion i s

selected. If the user presses the per in the menu rows., the

boolean variable VALIDXY is set false. If, on the other

hand, the user, by pressing the pen in the active area,

designates a position to place a symbol, VALIDXY is set

4... true. Regardless of the coordinates saved, the program

exits GETXY and enters MYPLOT. The logic flow of procedure

* GETXY fol lows:

* ini tial ize
uariables

READPAD

set X,Y

Key-
press yes VALIOXY .--- O0

=falsel I :U-10o EX

'I'O
no

on
PEN yes- activ* yes -- VALIDOXY
=2 area t tru

no no set Y

SLIDXY

Figure 10. Logic Flow of Procedure GETXY.

29

,,".

!. .. ,: d.
.

.:v ,%- .-. -- -'- ' .- • *. -- .. . -' .. . , - -• ," '-
*. * - -- - . - - " - . .. - - ° . - -. .. . - . ° -. - , - -

In procedure MYPLOT, all the drawing and

development of the linked lists is accomplished. Prior

to entering MYPLOT, the boolean variable VALIDXY is set;

q- false, if the user selected a command; or true, if the

pen was pressed in the active area. If VALIDXY is false,

MYPLOT calls the procedure MENU. From within MENU, the

program executes the selected command or, if a drawing

N command was selected, returns to MYPLOT.

Having chosen a drawing command, MYPLOT draws the

symbol on the high resolution screen positioned by the

user's pen press in the active area of the tablet. If

the pen is positioned outside the active area, VALIDXY

is set false and the command terminates returning the

user to MENU. When a symbol is drawn, a record of

information is also generated for the symbol. As the

network grows, each record is created and added to the

applicable linked list by procedures SOUREGINFO for

source and regular nodes, STASININFO for statistic and

sink nodes, QUEINFO for queue nodes, or ACTINFO for

activities and parameters. The following is the logic

flow for MYPLOT.

4 .4.-

$
o

.

.4. • , - •

_ -.
• • ° . , • , . o

beg in

VAL IDXY f alse

does yes
* D=YPLO

no

.'-: - true

no

VALIDXY true SFT s

1,2 DRAWBLOCK ISOUREGINFO

false 3 .,- 1o --- STSNNF

5-.

5 DRAWIBLOCK QUEINFO

-'.

[6
LITSD

Figure 11. Logic Flow -or Procedure MYPLOT.

31

i,• , ,,, '-,. ..," .,€ ,t ",'" _-.." ,,
' ,

" ¢,, " .,.,, '," ".," " -".- " ",' , ". .","" -" ..- .' ",,""-" """"'"" -:-"".''---''." ' -" . '

'; ' : t-: ' r ' . . . -, :- t 1 h t ' ,:": " " ' "1 '".*.* ". * . ."
-
- , -. -

U pon en terng i n g PLOT., '.Q LI i S checked. If -..,'Y LI ,"E'

is false, indicating a command 'was selected, procedure MENU

is executed. MENU, first, determines the exact command

block selected from the (x,x) coordinates passed by GETXY

and transforms them into integers XPOS and YPOS. YPOS is the

row of blocks and XPOS is the command block within the row.

Below is a brief description of the programmed functions in

the bottom row.

CLR CODE ILOAD SAVE EXT LISTJ EDIT[CR LOCK LOCK
6CR GEN 6CR 6CR LOCK Y ...

)Figure 12. Bottom Row Menu.

CLRSCR : clears the high resolution screen and empties
the linked lists

CODEGEN : chains the program CODEGEN to generate
source code

LOADSCR : loads the linked lists from disk into the
computer memory then draws the network

SAVESCR : saves the current linked lists to disk

EXT : exits the program

LIST : lists the available Q-Gert symbols

EDIT : enters the editing procedure

CLR LOCK : clears the x and y locks
LOCKX : locks the x axis

" LOCKY : lock the y axis

32

a ,..'- [' ' ' ' , ' , ' -' , K ,
-
- , " • • - ' _ ' ' ' , . " , ' L ' ' . ' " . " " " " ' ' " " .' . . ' ,

If the row selected is either the second or third, MENII

,-se .. ts the integer variable D to identi fy the s.mbol , then ,

calls procedure GETYPE. GETYPE display's the symbol s=-.elected

on the text screen employing procedure PRINTYPE. Upon MENU's

termination, MYPLOT is exited and the program returns to the

main program loop. GETXY is executed again so the user can

position the symbol on the high resolution screen by

pressing the pen in the tablet's active area. This sets

VALIDXY true and re-enters MYPLOT to draw the symbol. Below

are the drawing commands available to the user.

'S
,.CURRENTLY UNUSED . . . ROW I

"w SOU REG SITAT ACT QUE SIN . . . ROW 2

Figure 13. Rows I and 2 of Tablet's Menu.

SOU : draws a source node and creates a SOUREG record

REG : draws a regular node and creates a SOUREG record

STAT : draws a statistics node and creates a STASIN record

-A ACT : draws an activity line and creates a ACT record

, QUE : draws a queue node and creates a QUE record

SIN : draws a sink node and creates a STASIN record

The logic flow for procedure MENU follows.

,?""** ,...-- -t, " " " " • "" " ' ' " " " " "" \
"" ""' -. L ,''-. , ,,.,'.'" ''''"',."' "". . . "-"""""-""°

set 0=0'

• "., setYPOSI':V.

4. CASE of 1 or 2 PGETYPE

3 [PR IMNTY

Figure 14. Logic Flow of Procedure MENU.

4 . ~SOUREST ~EO-p SISTI.NbED., acITbLE14 IUEINED.

.

After the user selects a symbol and indicates its

intended position on the high resolution screen, MYPLOT

draws the symbol by combining the necessary shapes, then,

calls a procedure to build a record of information about the

*. symbol. Record building for source or regular nodes is

accomplished by SOUREGINFO; for statistic and sink nodes by

STASININFO; for queue nodes by QUEINFO; and for activities

and parameters by ACTINFO. Regardless of the procedure, if

the information is available, the program automatically

del fills the fields within the record else the user is asked

.34

e""34

* - ~~~~. - - - -. . - - - - -,.- - - - -

Ja.

$, to input the information. As the network is developed, all

source and regular node records are linked together forming

a linked list which grows as the number of source and

regular nodes increases. This is also true for statistic and

sink nodes, queue nodes, activities, and parameter linked

lists. Records within the linked lists can later be saved

to disk, edited or deleted.

In procedures SOUREGINFO, STASININFO, and QUEINFO the

fields device (D), xlocation (X), ylocation (Y), and tipe

('Sou', "Reg', 'Sta', 'Sin', 'Que') are all automatically

filled with information obtained from MENU, GETYPE, and

GE Y. User solicited information fills the remaining

fields, such as, node number, initial number of transactions

to' release the node, subsequent number of transactions to

release the node, capacity of the queue, marking, type of

statistics to gather, and comment, if any. The fields

pertaining to intermediate or advanced Q-Gert concepts are

o set to the default values, for instance, branching ('D')

and attribute choice criterion ('L'). Figure 15 lists the

fields applicable to each 0-Gert symbol available in this

program.

In the procedure ACTINFO, both the information for

activity and parameter records is obtained. These features

were combined since the designation of a parameter set in an

activity record necessitates the generation of a corres-

ponding parameter record. If the activity's service time

°4distribution is constant or the user designates a duplicate

parameter set, ACTINFO will not request information to

* 35
1

., e

",,,,

________Fields*
1 2 3 4 ' 5 6 9 8 [9

REG Node number Initial number Subsquent Brancrhing Mrking Chnir I
or to release number to criterion

_ SOU release (D,P,F,A) (M.. tF..S,.Bi Lj
Attribute ;.M

! [%I if SOU,
__ __ [1] [D] [D]no N1 if REG]

:__SIN Node number/Ini number Subsequnt i Statistia Upper limit Width of Choice
or label to reMM number to desired of first histogram cell criterion

STA release (DP, n) cell (F ..Lj. I. I
:F'.BJD) Attribute [M]

_ _ _ [1) 0, s[D] [N]
QUE Node number! timal num Cap citya Buanching "Raking Block t node Upper limit Width of Following

label in qu)as Q-nod. number for of first cell histogram S.nodes or
(DP) (FJ.) balkers cell match des

Attribute [M or allo te
nodes

[01 [[D []1 (B) IN]

destroyed]
PAR Parameter set Parameter I Parameter 2 Parameter 3 Parameter 4 StrI

aumber number
[01 E-t l [10-1 ([Ol 1 [101

ACT Start node End node Distribution Parameter Activity Number of Probability- Condition code
or function set or number/ parallel or attribute
type constant labe servM number or

order [Ni.R!
[COI [0.01 - t] [i=start node

, field set to default [14]

[1 Default values

Figure 15. Available Q-GERT Symbol Input.

Distribution and
Function Types Parameter Values

Code Key 1 2 3 4

AT Attribute - - -

BE Beta A a b u
BP Beta PERT m a b
CO Comtant - -

ER Erlang a/ b k
EX Exponential a b
GA Gamma a b u
IN Incremental ...

LO Lqna J a b a
NO Normal A a b
PO Poison 9-a a b
TR Triaular n a b
UF Usr Function
UN Uniform a b

A-- MeaMa + standard deviation;
m -# mode; a -# minimum or optimistic time;

"~ ' b -, maximum or pessimistic time.

Figure 16. Distributions and Parameter Values.

36

.;4 : ' 2 ""' ,-. ' "" . "' ."'" "" " " "" "
.. , . .. * ., o . .. - . . .- o. " " . .. " . , " .. " ,, .

generate a parameter record. To create an activity record,

' .. the program asks for the start and ending nodes. ACTINFO

searches the node 1 inked 1 ists by call ing SEARCH to locate

the two records and get the (x,y) coordinates from the nodes

xlocation and ylocation fields. These coordinates are placed

in the activity record fields SX and SY for the start node

and EX and EY for the ending node. Turtlegraphics' MOVETO

command draws a l ine on the high resolution screen

connecting the two sets of coordinates. The user must also

answer the prompts to fill the fields pertaining to service

distribution, parameter set number, activity number, number

of servers, and comment. As indicated previously, if a

distribution other than a constant or redundant parameter

set is specified, ACTINFO will ask the user for the four

, parameters for the specified distribution. Figure 16 depicts

A the distributions available in Q-Gert and the parameter

values that must be specified.

As the information is entered into the symbols' record
'I.

fields, the same information is written to the high resolu-

tion screen within the symbol or centered along an activity.

4 - Procedure WRITEONSCREEN uses the (x,y) coordinates of a node

as a bases for placing the text in the proper locations.

Activity information is displayed by centering the text in

'>4 both the x and y directions along the activity line

connecting the two nodes.

Below is a depiction of a regular node and the place-

. " \ ment of text within it.

437

'Initial number Choice Criterion Node number
S to release xxxxxxxxxxxxxxxx xxxxxxxx'

xx x x X
x x x x

x x x x

x x x x

xx x x
x x x

XXXxxxxxxxxxx x x x

N Sbsqunt xx x x xxx

numbe toxxx xxxxxx xx x x xx

release
Marking

Figure 17. Text Location Within a Regular Node.

The following are the logic flows for procedures SOUREGINFO

and ACTINFO which represent two variations of the INFO

procedures.

eine-
AlSto-

.XJ ocat ionXy

A

Figure 18. Logic Flow for Procedure SOUREGINFO.

'S 38

A

X- sYe X-30
D- Y++
VALLIDXYttuu

VVALIDXY~true

node / -- WRITENSCREEN[-{ X-2

VALIDXY~true

iubitialn WRITEONSCRENYY2

numbe to VLIDX~ttue

ret:s
WR TE

F Iuen.Lopulwto rcdreSUEIFO(o')

oquo39

asbF

WIENSRE

nu be to 4 J'....'..

B

Input
coHment

jtresets

pointers

Figure 18. Logic Flow for Procedure SOUREGINFO (con't).

bev i ceD

.T i p='Ac t

satFINDER-false SEARCH SX,SYq! node EX,EY

distri-/
bution

no PARINFO

Figure 19. Logic Flow for Pr'ocedure ACTINFO.

44

yes

Input
constant

Inpt

rparameter

I~i

activity

number

I
0 I

_ servers

4// enter
com ;ents

reset.
pointens

CnD

Figure 19. Logic Flow for Procedure ACTINFO (con't).

41

P. nUYESCREEU.

. '--" In order to save a re twork . procedure SA'vESC EEN ,.ga._

developed. It may be called directly by the user from the corr-

mand row, or indirectly by updating changes made during editing.

When saving a network, only the records within the link lists

are retained. The user must indicate a filename for the network

which becomes the prefix to the files which will contain the

records of each linked list.

SAVESCREEN is a single command procedure that calls pro-

cedure OUTDATA and passes record type parameters representing

- the different types of records contained in the link lists.

OUTDATA opens a file for each type of record created and puts

each record from the respective linked list into the file before

closing. A file is built for source and regular nodes, statistic

and sink nodes, activities and parameters. A file is built even

if no records of that type exist. Also in OUTDATA, the boolean

variable SAFETY is set true indicating that the network has been

saved which facilitates exiting the program. Below is the logic

flow of procedure OUTDATA.

4- begin

I @ame
open doels linked l ist Pt

*.. filename - contain another yes in file
. " SOURES I record ,

"" I

Figure 20. Logic Flow for Procedure CUTDATA.

42

* ".'. -,-t* - . ""." "~ . %." %*-". . "."-."% -"
" " ' " ' ."'' ' ' " "-..".'-.

* *. . -...
.. . .. * A 4

A...

.o

c 1 ose
filename.
SOUREG

lename. contain another yes in filesSTASIN I record /

no
cl ose

filename.
STASIN

Iici: osopen does linked list Put record
filename. contain another yes in files.QUE record ,

___no

clIose i
file a...I

pEA.E

open . Ldoes linked l ist Put recordfilename. . contain anothert yes: finfile
ACT I \ record: /

r -no

f il1ename .J
ACT

f ilenam .- -- conta in another" y--- y s in il e s
PAR \record ,

"t .11%Figure 20. Logic Flow for" Procedure O TDATA (con't).

43
9. -L' ' -".

"
. . " '" " ,o ,.' -... .' '. -' ' "; , , =' ,> "". o ""'" , , '... .'v,., € ,

...-"" . """v v ,". " ' ' ' ."

".W IF -
Ci ose

filename.
PAR

SAFETY
=true

Figure 20. Logic Flow for Procedure OUTDATA (con~t).
N-.

L-O&DS.CREEU.

Procedure LOADSCREEN can be called from MENU or program

CODEGEN. If the command to load a network is selected from

the tablet's bottom row, then MENU calls LOADSCREEN

directly. Program CODEGEN calls LOADSCREEN when the user

wants to generate source code on a previously saved network.

LOADSCREEN's only command calls procedure INDATA. The para-

meters passed to procedure INDATA are the files of records

created when the network was saved.

INDATA asks the user to input the filename of the

. network to load. The procedure checks to see if the files

exists, and if so, opens the files prefixed by the filename

given. The records within each file are read, then either

procedure GRAFNODE or GRAFACTIVITY are called to draw the

corresponding symbol. GRAFNODE accesses each node record or

the the (x,y) coordinates to position and draw the -. rnbd or,

Sthe high resolution screen. GRAFACTTYVITy ,draims the t t'i t
N),

". 44

, .j .,L ,
. ,

,.,:,. , , , ,-. ,.-. .. - . -. . . . -...--- L. -

1ine access i nr the start and end ,> coordinate ie elds

- prev i ou si I stored wi thin the acti t) i ty records. The te: t

*.-., associated with the symbols is retrieved from the particular

' fields within each record and written to the high resolution

screen using procedure WRITEONSCREEN.

GRAFNODE and GRAFACTIVITY follow a similar logic flow

to MYPLOT for drawing the symbols, and, the logic flow of

SOUREGINFO, STASININFO, and ACTINF for writing the text to

1 ~ the screen except the inputs are obtained from the records

rather than the user. The logic flow of INDATA follows:

Load
what
file?

LENGT
=0o or yes EXIT

>10 INIATA

no

;."f ilIename. Read G1RAFNODE ef
'- '.S O U R Er e c o r d

no

::.:...:yes
.
,..., ::}:

Figure 21. Logic Flow for Procedure INDATA.

9'.'

"-A 45

ope

m. yes

en

The eaablit toedi a prviouslIy dee oe ntwr
CTreo

is~~~~~~~~~~~~~~ esetanoa nayt h blt tooiytent

work dsplay nd sorce coe to es ltrtie or cae

op4n

fieaeRedef

4- . . .- .. - -. J,.. - : ... - - - - --. ,• L,-.. - -. - -. ... -... -

U.

parameters allows sensitivity analysis of the sy.stem to be

- . accomplished quickl. The user can save the or i g i ral model

then modify it and generate the new source code needed to

evaluate the changes.

The editing function is selected from the tablet's

command row. The current network can be edited directly or a

"- previously saved network can be loaded for editing. Upon

selecting the edit command, procedure MENU invokes

procedure EDITOR. After identifying the network to edit

through prompts, the EDITOR calls procedure LISTER to

vdisplay the available options shown below.

A) Quit the editor
B) Source node
C) Regular node
D) Statistics node
E) Activity

0 F) Sink node
G) Parameter card

, H) Update - to same filename

Selecting 'B' thru 'H' will call procedure OTHERWISE,

while selecting 'A' will call SAVESCREEN to save the changes

under the current filename then exit EDITOR. Based on the

user's choice of options, procedure OTHERWISE prompts the

user to identify the particular record in which the change

' will be made. Associated with each type of record is a FIND,

GOT and CHNG procedure. Depending on the option selected,
".d7-

either FINDSOUREG, FINDSTASIN, FINDQUE, FINDACT, or FINDPAR

search their respective linked list to find the record and

.C display its contents on the text screen through the

respective GOT procedures.

The FIND procedures first ask if the record will be

47

, " - - - -A. -, , , i, , s '., , ",\-.. ., , . . - -

.-- - .. a ... :. - - - -"- A , 'o - ,'" o . . - -. * -o .° - - - 1 . .- - .- .- .

. del eted. If 'yes", the record is el imi nated from th e

respective linked list by directing the pointers around the

specified record. When the linked list is saved, the deleted

record is not read into the file. If the delete response is

'no', the respective CHNG procedure is invoked. The CHNG

procedures present a list of options to the user regarding

the fields that can be changed. The options available,

however, only include fields that will not effect the layout

of the network. Fpr instance, the user cannot change the

position in the network of a node, he must first delete the

old node and redraw it in the new position. He must also

delete the activities that may have been associated with the

S.node since the SX, SY, EX, and EY fields may no longer

coincide with the new position of the node. Once a change

has been made, selecting option 'H/ will update the network

by saving the records (SAVESCREEN) under a specified

filename and displaying the updated network on the high

resolution screen (LOADSCREEN). The logic flow of procedure

EDITOR follows.

begin
a-.,

SAFETY false EIT to

true

i, . 7 Figure 22. Logic Flow +or Procedure EDITOR.

I 48

.6

ength o
filena no E EDITOR to

> oad network

yes

. ." SELEC ="B'

I LISTER I______________

.1~Doe
s

SELEC no OTHERWISE

< -A

yes

_....SAVESCREEN]

%G

end

-.

S - ~ Figure 22. Logic Flow for Procedure EDITOR (con't).

49

Er-jgam CODEG EU

"i'' -Program CODEGEN culminates the development o+ the 0-

• :Gert network. This program uses the records developed in

GGERTNET to produce a text file containing the G-Gert source

code. CODEGEN is a separate program because of it's size and

and the timing that the user would invoke the program. The

user normally generates source code upon completion of a

network, therefore, CODEGEN can be called from GGERTNET to

provide uninterrupted source code generation. The user can

also enter CODEGEN as his first command selection; whereby,

a previously saved network is loaded into memory and the

. source code generated.

CODEGEN is chained to OGERTNET by using the procedure

~cal l SETCHAI N(NEXTF ILE) in MENxU. Since CODEGF-N is a

separate program, QGERTNET must be exited before invoking

it. As soon as GGERTNET] is terminated, the operating system

will execute the file whose name is the value of NEX(TFILE.

NEXTFILE in this case is the program CODEGEN.

To generate the source code, the network's record files

must first be reloaded into memory using L(OADSCREFN which

also redraws the network on the high resolution screen.

Following the initial setup, a series of administration

questions is asked regarding the network in procedure

I!GENERALrARD. Similar to generating the symbols' records,

any data that can be obtained from previous inputs is

~automatically inserted into the general card. For instance,

' . procedure STATSEARCH counts the statistic and sink nodes in

-F- -. -* - . - . -. - - *- % * -*.~ 50

the network. After the general card is completed, procedures

SOURCESEARCH, ACTIYSEARCH and PARSEARCH are sequen ti l lY

cal 1 ed to access the 1 inked 1 ists' i nformat i on to create the

rest of the input cards representing the Q-Gert network.

Each record type contains all the information necessary

for generating its corresponding 0-Gert source code. The

SEARCH procedures step through their respective link lists

building a string variable containing the complete source

code for each node, activity or parameter. The order in

t which the strings enter the text file is important. The

source node strings must come first; the start node string

of an activity must precede the corresponding activity

ml.' string; and, sink nodes must come after all other nodes and

activities. The parameters strings can be placed either

4 before or after the sink node strings. With these

.4.4 restrictions in mind, the source node strings are generated

. first, followed by all regular node strings, then statistic

node strings. Next, all activity strings are generated

,4.7 followed by parameter strings, and lastly, the sink node

strings. Figure 23 depicts the logic flow for CODEGEN's main

program.

As a cross check, the source code is presented on the

text screen. When the CODEGEN is finished, QGERTNET is re-

executed using the SETCHAIN procedure allowing the user to

begin work on a new network or modify an existing one.

51

L - ..
°

" ° "
"

" " ' %
°

"
°

- " - "" "
° '

i . . • ... i

'/v.beg in

INDER false CODEGEN
e turnto .QGERTr ETJ

4T
true

open
f il ename.

text

GENERALCRD

SOURCESEARCH

.4 GUESEARCH

4I
4

ACTIVSEARCH

PAR SEAR CH

PRINTCODE-

I

4filenaine.
text

I

.

#,turn to
" QGERTNET

Figure 23. Logic Flow For CODEGEN's Main Program.

52

. ,.

,. -S 5 2 52. * . 2.- -- & - *

.

One of the major reasons for selectirng Apple Pascal as

the programming language for this project was units. Units

allow a large program to be divided into smaller parts which

are entered into the computer memory as they are needed.

This is a similar process to overlaying found in FORTRAN.

This capability allows a compiled computer program to be

several times larger than the available computer memory

allowing increased processing and display capabilities. In

addition, the variables common to all procedures are

immediately available, which is not the case in other

programming languages, such as BASIC.

4Related procedures were combined into units. When

QGERTNET or CODEGEN calls a procedure within a unit, the

entire unit enters memory. Using the compiler's 'noload'
-..

option (*N+*), the unit stays in memory only as long as a

procedure within it is being acted upon. The units were

built so that procedures that called other procedures were

grouped together to minimize the memory needed to execute

the program. Below is a listing of the procedures comprising

each unit.

Unit GLOBAL Unit WRITE Unit NODEINFO

all global Writeonscreen Soureginfo
... variables Getshapes Stasininfor

Que info

Figure 24. Listing of the Procedures Comprising
Each Program Unit

53

Unit INN IUni t OUT Unit ACTPAP

Grafnodes Outdata Parnio
Grafactivity Savescreen Actinfo
Indata Search
Loadscreen

Unit EDITSR Unit EDITSS Unit EDITQUE

Chngsoureg Chngstasin Chnqque
Gotsoureg Gotstasin Gotque
Findsoureg Findsoureg Findque

Unit EDITACT Unit EDITPAR Unit EDIT

Chngact Chngpar Otherwise
Gotact Gotpar Lister
Findact Findpar Editor

~ Unit LOADER

Indata
Loadscreen

Figure 24. Listing oi the Procedures Comprising
% Each Program Unit (con't).

-. 54

V

~V_. V'.

IV. EzDrami La.rbiii.LtiL.s andLL z

This pr ogram wi 1 1 enabi e the anal .-st t: 0 Ce a.te a

1 imi ted network using the basic concepts of O-Gert.

Available to him are source nodes, regular nodes, statistic

nodes, queue nodes, sink nodes, activities, and parameters.

These symbols can be used in any manner subject to the Q-

Gert Analysis program limitations and the limitations of

this program. Figure 24 is an example of a network display

and the associated source code that can be created.

Some major limitations for the O-Gert Analysis program

that could effect the size of a network are as follows [5):

1) Maximum number of nodes in the network is 100.
2) Maximum number of source nodes is 20.
3) Maximum number of queue nodes and select nodes is 50.
4) Maximum number of servers for an activity is 50.
5) Maximum number of activities in the network is 100.
6) Maximum number of concurrent transactions is 400.

Besides these limitations, this program is further

restricted due to the limited graphic display capability.

The user can only create small networks that will fit on the

high resolution screen. A scrolling capability was not

incorporated in this program; therefore, the network can

not expand beyond the 40 column display. As a resulti the 0-

Gert Analysis program limitations above should not pose any

size constraint on the network that can be built using this

program.

4Another limitation exists regarding the positioning of

nodes relative to each other if an activity connects them.

* .%-', The program is capable of looping an activity where the

start and end nodes are the same. However, care must be

'3

55

s .,

2 (1 1

co, 1.

EX, 3GA, 5

1 B

GEN,USER, NETv1, 1 1984,1,1 ,1O,50,5,E*
-~SOU,l,O,1,D,M,L* SOURCE NODE

REGp2p1t1tD,,L* REGULAR NODE
STA,3,1,1.D,B,N,N,L* STATISTIC NODE
QUE,4J,2,,D,F,N,N* QUE NODE
ACT,1,1,CO,1.5,1,1* ACTIVITY #1
ACTr,1,2,NO,2,2,1* ACTIVITY #2
ACT,1,3,EX,3,3,1* ACTIVITY #3
ACT,2,4.UN,14,4,1* ACTIVITY #4
ACTt3,4,GAP5,5,1* ACTIVITY #5
ACTLi,5,LO,6,b,2* ACTIVITY #6
PAR,2,3.O,O.O,,O-b* NORMAL DIST

9 PAR,3,2.j,* EXPONENTIAL DIST
PAR,L&,,1.O,3.O* UNIFORM DIST
PAR,5,3.OO.1O.OO.5* GAMMA DIST
PAR06,4.O,2.O,..O,.2* LOGNORMAL DIST
SIN,5,1lsD,I,N,N,L* SINK NODE

* -. ~FINISH*

.4-iFigure 25. Sample Network Display and Associatedi Source :ode.

- . a- . V - -" .w - - . * a w .

exercised .t h e n p - i t i on i ng c o n n e c t e d n o d e s e au se th e

- .ctivities are dra n based on str . i ,h t 1I ne- oe:, D t r ti, ,o

points4 if an ending node is posi tioned too far behind the

start node, the line connecting the two will pass through

the boundaries of both nodes.

Since the size of the network is restricted by this

program, the symbol sizes were kept as small a possible

'commensurate with the size of the text displayed within the

nodes' boundaries. The following minor limitations are

further imposed on the users of this program:

1) Node numbers available are between 1-99.
2) Initial number of transactions to release a node must be

between 0-9.
3) Subsequent number of transactions to release a node must

be between 0-9 or infinity.
4) Infinity is displayed within a node as " .

Since the program is oriented more to analyzing small

PERT networks and straight forward queuing systems, some

analysis capability that would normally be available have

been set to the default values. Such as, there is no

probabilistic branching nor choice criterion within the

nodes for selecting transactions. These analysis

capabilities are necessary for more complex simulations,

S but, this program's development has only incorporated the

basic concepts of Q-Gert simulation.

7:-7

• S'

U.Coaac.lIuston arid Egczrmmaa arzi

SA ll the quest i ons rai sed by th I F-. r -I r --I

beer, answered affirmatively. Usicrg both -r . ple r -r- -------

and the Apple Graphics Tablet, computer de-l :e on

techniques were used to generate a Q-Gert network . Wi th

Pascal's dynamic linked list data structure. recor,-ns

containing information about each symbol are created ;n,

stored on disk. The records can be accessed for ed t j r. or t-r

generating the computer source code representino the u-'ert

network.

To use this program, the analyst selects from a menu, the

symbol he wishes to draw, then, positions it in the network.

V-:. Answering the questions asked by the program about the use -.

the symbol, fills a record representing the symbol. From the

-information contained in the records, the program will display,

the symbols making up the network on the high resolution

graphics screen and, if desired, create a text file containing

the computer source code. The source code can be sent to

mainframe computer as input to the Q-Gert Analysis progriLm

giving the analyst statistical inferences about the system

simulated.

Presently, the 0-Gert network can consist of source,

regular, statistic, queue, and sink nodes; activi ties; ann

parameters. These symbols comprise the basic concepts of 0-

Gert and can be used to develop small simulation models to

both analyze the system and present a graphical representation
* 4

-"of the system to portray the relationships- within the s-ystem.

9%

58

%-,.-.." :..." -v v."4v - ,. ".- " - -- 4" . 4. . -. ' ." {-.. . '- ~ %. -.-. -- .- -.

. - . . .- . - . 7 . _ - --- -

4N

- user's manual is con tai ned in &ppendi:x F. it gi .)es

* ' br i ef dJe sc r i p t i on c- eac h ,:omm -.d r, d -tE p , t hr-,ugh :x a.p

to help the user learn the e- xisting capabil iti Ies. c,# the

program.

- . This program has made a giant stride in easing the burden

of creating a 0-gert network and manually translating the

graphical symbols into computer source code. But, there is

still much that can be done to further this programs

capabi I i t i es. The fol I ow i ng are some suggested areas of

improvement.

1. The foremost problem that needs to be solved is the

network display size l imi tat ion. Presently, the network is

-limited to the size of the high resolution graphics screen.

To increase the display capability, a scrolling function is

0 needed, preferably in both the up/down and l eft/right

directions. This would allow the network to expand up to the

Q-Gert Analysis program limitations.

2. An analysis of the Pascal program may suggest programming

refinements which may be more efficient and thereby able to

free more memory to expand the programs capabil i ties.

3. Additional Q-Gert symbols and functions can be added

following the same logic as presented in the program develop-

ment section of this thesis. In general, to add another

- symbol, the follow-on programmer must add the fol lowinr:

-. shapes, to draw the symbol, to program INITLOGIC linked list

variables to unit GLOBAL; an INFO procedure to gather

.- information to fill the symbol's record, assoc iat ed FIND.
V.-

SEARCH, and GOT editing procedures, additions to _tCTIHF ; and

U,. 5

1-t lI', a 'BEARCH procedure in progiram CODEGEN to gener ate the

. -•appropriate source code. Care must be taken w .hen :::parnd na' the

program to contin ue the memor:Y, conservat i on pr inc i pI es al readly

in the program.

4. Sokol, in his electrical schematics program, had a

printing routine that required saving the graphics display on

the screen to a file before the display could be printed.

Since our program does not save the graphics display to disk,

we could not use his routine to print the network created.

Therefore, a follow-on benefit of a printing function would

give the analyst a hard copy of the Q-Gert network he created.

5. A final addition that would benefit the display capa-

bilities is a better drawing procedure to loop back to a

- previously drawn node. Currently, the program can loop

.. 9 backwards only so far as the start and end node are the same.

If a node is positioned too far behind the start node, the

activity line will cross through the nodes boundaries

degrading the presentation. Using Turtlegraphics and a

geometry oriented function, curved lines could be used to

connect the nodes when the activity's ending node is well

'C, behind the start node.

One final word, as the program is expanded to include

select nodes, match nodes, vas cards, etc., the order in which

the source code is entered into the text file will become

4' important. This would require a more sophisticated search

routine in program CODEGEN to ensure the proper order is

:- : maintained.

- . . *
. ".

i. "
45%

ADDendix A
Procedures SETUPAD and READPAD

assembly language linkage
to APPLE GRAPHICS TABLET

20 Mar 80 - Dan Sokol

; procedure SETUPAb; external;

procedure READPAD; external;

CFFF .EOU OCFFF ; TURN OFF ALL ROMS
MSLOT .EOU 7F8 ; ACTIVE SLOT = Cn
PADAT .EOU OC500 ; SLOT ADDR FOR PAD
MREAD .EQU OCEF9 ; READ THE PAD
CURSOUT .EOU OCSFO ; XOR CURSOR AND SCALE PAD OUTPUTS
GWAIT .EQU OCCAI ; MIDEAST COUNTRY WITH MUCH OIL
DEFAULT .EQU OCE90 ; SETUP PAD
DEF4 .EOU OCEEA ; SETUP PAGE AND MPAGE FOR SCREEN 1
DELAY .EQU so ; DELAY FOR OWAIT (CURSOR ON)

* PROC SETUPAD, 0;

CDFLT LDA CFFF ;ALL RUMS OFF
LDA #OC5
TAX
STA MSLOT
LDA PADATv LDA PADAT ; TURN PAD ON
JSR DEFAULT

-e LDA #20
%4 TAY

JSR DEF4 ; TURN SCREEN I & STREAM ON
LDA CFFF
LDA #0C3
STA MSLOT
TAX ; RESET SUP'R TERM
RTS

SPROC READPAD,0;

READIT LDA CFFF ; ALL ROMS OFF
LDA *oC5
TAX
STA MSLOT
LDA PAAT
LDA PAAT ; PAD ON

-- JSR MREAD ; READ PAD
W0 .j , JSR CURSOUT ; FLASH CURSOR & SCALE X & Y

NW
I.'-

"" .' g. ""'2''¢' ..2".,, .2'c:''"2", -,<.-. €. '+ , - ,''-'- -'-. ' °.-' '.-' '.-,-..' '.-. '-' -.".- - -.6'1°

,=- ", , , + .? .3~t *i 't a. Ta=Tm. .~~ j. .'m .$i*$; -Q - 2 --... --..... * .A.. +

LDA #DELAY
JSR OUAIT
JSR CURSOUT
LDA CFFF
LDA #0C3
STA MSLOT i RESET SUP'R TERM
TAX
RTS

ON EXIT >)) PEN UP/DO!PN - 640
SCALED X (HIGH BYTE) - 646
SCALED X (LOW BYTE) - 645
SCALED Y (HIGH BYTE) - 648
SCALED Y (LOW BYTE) - 647

,'262

..

4%

.-.-
*+4

"4 "'" " " " :;".,." ' ," " '' ," ' . " " " ' """ • " " "" . " """""""""" " " "" " " "" . . . ""

,'p

rill

Appendix 8
Unit PEEKPOKE

(H********** PEEKPOKE ********************
* Adds the commands PEEK and POKE to Pascal. *
* Intrinsic unit in System.Library *
* Dan Sokol 3 Dec 79 *

(*SS+*)

unit PEEKPOKE; intrinsic code 23 data 24;
interface
procedure POKE(yar ADDR,DATA: integer);
function PEEK(var ADDR:integer):integer;

4-. implementation
type

PA-packed array[O..1 of 0..255;
AGIC=record case boolean of

true:(INT:integer);

false: (PTR: 'PA);
end;

var
CHEAT:MAGIC;

" procedure TEST(var DATA:integer); forward;
procedure POKE;
begin

TEST(DATA);
.* CHEAT. INTu:addr;

CHEAT.PTR ACO] ,,OATA;
end;
function PEEK;
begin

CHEAT. INT:-ADDR;
PEEK:"CHEAT.PTR[] ;

end;
procedure TEST;
begin

DATA,-abs(DATA mod 256);
end;
begin
(* dumy progra *)
end.

".. ,6
: 4.

""" Appendi x C

Pr ooram INITLOGIC

* - - a - - - - - . - - - -*****H*****H*H***

* This program creates the file ILOOIC.CHARSET" which is *
* used by QGERTNET. Each character is a 21 by 21 array *
* (of boolean .. i.e. true or false .. I or 0) which is *
* used to draw the GGERT symbols.

S Dan Sokol - 2 Apr 80
Modified by, Anderson and Comeford

program INITLOGIC;
,. type SHAPE - packed arrayE[O..20,0..20] of boolean;
Svar NODEL, NODER, ARROW,
%',f, NODEL GNODER : SHAPE;

SHAPEFILE : fi le of SHAPE;
19 J, ROW : integer;

P T : boolean ;

* Converts strings to boolean arrays. This procedure is *
* usred rom ERaFDEhO.TEXT on arPLE3:y*

Cal led from .: NITI THRU INIT.

procedure acKESPES(var BITMP:sh p ;ST:str ng)l;
JRbegin

for 3i"! to length(ST) do

BIT:=(STEJz)b e)an
S~ITIM P[ROWJ-3i]=BITs

end;
RObl :R014-1 ;

end;
(**.******.**. PNKESHAPES annannneaeaaaananae.
* Saves the arrays in a disk ale. *
* Called from : Main program loop. *
procedure MKVESHAPESa Bflt'*P*shape;ST*string);

begin

or i te(SHPEFILEL C. CHRSET');

. SHAPEFILEA :-ARR0OW1 put(SIAPEFILE) ;
= SHAPEFILE'%t=NOEL; put(SiAPEFILE) ;

- HPEFILE^ :NOERI pu (SPEFILE)

' ~~SIHApEFI It -ONDEL I pu t (SIPEF] LE) l
SIHAPEFILE ^ ,,OER; put(SHAPEFILE) ;

€ lose (SRAPEFI LE, Iock) ;
end;

S* Creates arrays from strings. The arrow for sourc*/sinK** nodes. Called from : Main program loop. *

, 64

u ccannnannnnanan.*a *a
, , " " procedure S#l" . IE" t W "" " " f""%" . ," . •PES; ", ". • . i "• .". ."
j * '.", '". ,'''S , - ',,, ". . ."," " - ,," ," ," ,r , 'begin' " . , .' " . ", . " . ".. '

* -,procedure INITs;
begin
write('.');

p ROW:=20;
'S. flAKESHAPES(ARROW9'
.4' tVMAKESHAPES(ARROU,'';
A AKESWAPES(ARROW,' J-)

I'AKESHAPES(ARRCIJ,'
-:A*KESHAPES(ARROW,' J
N IW(ESIYAPES(ARROJ,' X
A tMESHAPES(ARROW,' X

MAI(ESHAPES(ARROU,' X
-MAKESeAPES(ARRow,' X X X

WAKESHbAPES(ARRW,' X X X

W'iKESWAPES (ARROW,' X)00000 XJ)

MA PKESHAPES(ARROW,' X ;
MAKESAPES(ARROU,' X

IIAKESHAPES(ARRCW,'
'MAKESHAPES(ARROIJ,' ;

PflKESHflPES(ARRCU,' ;
* IiKESHflPES(ARRO,' 0

procedure (ARl JNIT2

KW(ESHflPES(NROE,')O)

4' I*AKESIAPES(NROEL' XX)

MAKESHAPES(NROEL'X X ;
end; 1PS(OEL' X

IW(E~~PESNDLX
Createsarras(fom srigs.O6Left lf3of nodes

M.Ki. WESHAPES(NODEL,' XX X 000(1;

MAEHPS(OE,)0)
MIESAESNDES 651

MAEHPE(OE ?' ,.0. X '\;

MAKESHAPES(NODEL,' X0X X')
t'AKESHAPES(NODELo' XX)

MAKESHPES(NODELl' X00X X If)
1*AKESHAPES(NODELI' Jc30tco:o:')

end;
(****C*****INIT3 **e***~***********

*Creates arrays from strings. Right half of nodes.
* Called from j Mlain program loop.

procedure INIT31
begin
write('.,);
RW:i20;

MA(ESHAPES(NODER9, '1300 300
frAKESHAPES(NODER9' X XX(

* IMW(ES&APES(NODER9' x)CO(')

MAKESHAPES(NODERI' X XX ')

MAKESHAPES(NODER9' XX);
MAKESHAPES(NODER9' x X)

t'AKESHAPES(NODERI' X);
MAKESHAPES(NODER9' x X');
MW(ESHAPES(NODERy' x X)
MAKESHPES(NODER, X WO=X)
MAKESHAPES(NODER9, 'XOOO X');
MAKESHAPES(NODERI' X X)
MAKESHAPES(NODER1' X V
MAKESHAPES(NODER9' X XX)
MAKESHAPES(NODER9' ')

* fbKESHAPES(NODER,' X 0
MAKESHAPES(NODER,' x XX ')

* IiAKESIAPES(NODER9' X)O);
MKESHAPES(NODER9' X If)(
I'W(ESHAPES (NODER j'XOSIGOOO(=J

* end;
p..' (************ INIT4 ******************

*Creates arrays from strings. Left half of queue node.
* Called from : Main program loop.

#1 procedure INIT41
begin

MAKESfAPES(ONODELI')OC033300301');
MKESHAPES(ONODEL,' X)O(X 1);
M41KESlAPES(WIODEL,' oc X ')I

MAKESHAPES(WIODEL,' X0X X I);
MAKESHAPES(WOOELI, XX X ');

MAKESHAPES(ONODELl' X0X X ');

I'W(ESHAPES(ONODEL9' X X -)j
MAKESHAPES(ONODEL,'XX(X')
MAtKESHAPES(ONODELv'X X ');

66

f2~~ - 4:t Z N'

- ~ ~ AEHPE(NDL' e .a X~*.....'. . - --

MAEHPS*4EX*00000000

430 4 WAKESHbAPES(GNODEL,'X X';
A P~~~MKESHAPES(G4ODEL,1')O333O33O3O3 ')

MW(ESHkAPES(ONODEL,' X X')
PW(ESI*WES(QNOOEL,'X)0 X')

'4 WKESHflPES(WIODEL,'XX0 X ');
PAKESHAPESGJNODEL,' X0 X 0
IWKESmPESG4ODEL,' X 00 X 0
PW(ESIAPES(G4ODEL,' X O X ')

IW(ESI*PES(BIODEL,')(X 00 ');

end;
s**u~~n** INIT5*****n*********a*

Creates arrays from strings. Right half of queue node.
* Called from : Main program loop.*

procedure INITS;
begin
write('.,);
RGWa=20;
PbIKESIAPES (W4ODERI'100000000C
MKES*APES(ONODER,' X XX

1 PKESfAPES(WOOER,' X WX ');

I'W(ESIAPES(ONODERg' X XX ')Z MAKESMAPES(ONODER,' X XX ')
- IW(ESl-APES(BODERg' X X ')

t*KESMAPES(BIDDER,' X X';
PWI(ESMAPES(GIODER,' X V

MW(ESMAPES(GBODER,' X X)
MAKESHAPES(ONODER,' X X)
IMSIMPES(GIODER,' X X)
MAKESHAPES(B4ODERj,' X X)
MAKWESHAPES(GINODER,' X);
IMW(ESHAPES(W4ODER,' x X X')
MtKES1APES(ONODER,' x XX X);
MAKES1PESCQNODERI' X XO)
IW(ES1*PES(CIODER,' X XO)
MAKESHAPES(BIDDER,' x X)O(XX')

KeKESHAPES(B4ODER9' X XXX X);
lMAKESHAPES(ONODER 9 S3OSOOOO[X)

* end;
(*****u**nMAIN PROGRAM ********ana***

begin
write('initializing array');
INITI; INIT2; JNIT3; INIT4;INITS;

writein; writeln('Writing OGERT symbols to disk');
SMIESI*PES;

end.

67

4-4-a -.-. - -. . --

Appendi x D
,,..-. ~Program Q](i=RTNE"T

+ .. : (.4,,+. ,unit GLOBAL; (*saved as USLOBAL.TEXT *

intrinsic code 26 data 27;

.+.. interface

*~ Link lists to store inforamtion for GGERT

" source code generation.

,. type
" SHAPE =, packed array [0..20,0..201 of boolean;

(**** ~~Source and Regular nodes * ~,e**

LINK A ̂SOUREG;
SOUREG - record

NEXT : LINK;
DEVICE : integer;

.. XLOCATI ON : integer;
-'': . YLOCAT] ON : integer;
1TIrE i string(3] ;
!.: NODENUH : string(2] ;
.,INITIAL : string(l] ;
... ,SUBSEQUENT : str in9[13];

%.%..;BRANCHING t string(IJ ;
;-'-,MARK : str i ng(I] ;
-- CHOICE : string(l];
. COMMENT : str ing(25] ;

. . end;

"+ " (.,H **. Star and Sink nodes *********)
"_' -=LINK2 - ASTASIN;
_ STeeSeN - record

NEXT i LINK2;
.- DEVICE I integer!lx .oCATION : integer;
. .YLOCATI ON t integer I

-- TIPE : string[3];
mNOI)ENUH t string(2] ;

INITIAL : stringt13;
; .- ,SUBSEQUEN4T : stringII];
",. ,BRANCHING : str i ng[1]
,STAT i string(J] ;
" UPPER t string(4] ;

... .WI DTH : string[4] ;
-' ,CHOICE : string(l];

%4%

4-k'+l
" Il" lnn o-*

I I
-4i " I " e + k 1 i * 1 t i".+ , 1 i " i;I I" I" I" 1

I
" " 1 *" I m . * q i

* *-COIENT tig21
* .* .. end;

(*****Act i vit ies **************
LINK3 - AACT;
ACT -record

NEXT : LINK3;
DEVICE : integer;
SX : integer;
SY integer;
EX integer;
EY ainteger;
TIPE :string[3];
START : stringC2j;
IND : stringl2];
DISTR :stringl2];
PARAM stringC43;
ACTNH~j : string[2J;
SERVERS 2 stringE23;
C " IIENT : stringC25];

end;

(****** Parameter Sets****e********
LINK4 - APAR;
PAR - record

NEXT : LINK4;
TIPE : string(31;

PAR1 :stringc43;
PAR2 :stringC4l;

PAR4 :stringC43;
CQIENT :stringC25l;

end;

(***** Queue nodes *********5***)
LINK5 - AGUJE;
QUE - record

NEXT 2 LINK5;
DEVICE : integer;
XLOCATION t integer;
YLOCATION : integer;
TIPE : stringC3];
NODEI3 : stringC23;
INITIAL : stringl;
CAPACITY : string[1J;
BRAN4CHING : stringl;
RANIKING : string~l];

6?

end;
SOUREGFIL = file of SOUREG;
STASINFIL = file of STASIN;
ACTFIL = file of ACT;
PARFIL = file of PAR;
QUEFIL = file of QUE;

* integer variables *

var
PEN, (* pen switch (up or down) a)
X,Y, (* pen position on pad *)
D, (* device being plotted *)
LASTXLASTY, (* last DeviceX,&Y)
DMODE (* mode used for plotting *)

integer;

• QGERT shape names, used to draw QGERT symbols *

ARROWNODEL ,NODER, NODEL, (NODER : SHAPE;
(a***a***aa**********aaaaaa*********a******

• disk file of OGERi' symbols *

SHAPEFILE : file of SHAPE;

,* booleans *

4, UPDATE, (* checks for SAVE in EDITor *)
LOCKX,LOCKY, (* contains the LOCKed x or y coord.)
SAFETY, (a checks for SAVE on exit 0
VALIDXY, (* true if X & Y are on screen
HELLFREEZESOVER,, (never true - for infinite repeats a)
ItPJERSE9
FINDER

boolean;

.* strings and things *

FILEBWE, DLtI4Y, (* for LOAD and SAVE names)
IDENT, (a for names of plotted devices)
ACTSTRING, (* builds Activity data structure*)
STRSELEC,ELEMEBT, (a used in EDITor searches *)
ST (a used in WRITEONSCREEN)

string;
CHSELECANS (a for inputs and control *)

char;
NEXTI,SASE1 :LINK; (a SOU/REG node pointers a)
BASE2,NEXT2 :LINK2; (* STA/SIN node pointers *)

: .'.. BASE3,NEXT3 :LINK3; (a ACT pointers *)
.'...y DASE4,NEXT4 :LINK4; (* PAR pointers *)

,70

-. , . .. ,' , .,. . . , ,,, . , 70,," , , - " . . , . " . , , '

BASE5,NEXT5 :LINK5; (" QUE node pointers
.RF :SOUREGFIL; (* files of the records *
SSF :STASINFIL;
AF :ACTFIL;
PF :PARFIL;
OF :QUEFIL;

procedure STUPID;

implmen tation

procedure STUPID; begin end;

begin end.

: 71

i '

'.

4.. .'-./ ;'i%.;.:i.- .;.F':.;.:.2....5...i.5: ..::......... -?. ;.2..?..2'..; . . ;. * . : .N :

* This unit is linked to QGERTNET. It contains the *
* graphics screen text writer and the OGERT shapes *
* loader. *
"* Both procedures written by : Dan Sokol *

* WRITEONSCREEN modified by : Anderson & Commeford *

-*.-::(*$S+,)
unit RITE; (* saved as LARITE.TD(T*)

intrinsic code 17;

interface

uses TURTLEGR, GLOBAL;

procedure WRITEONSCREEi;
procedure GEfSIAPES;

implementation

2 '" (****************** WRITEONSCREEN *******************

-.- * Overlays strings on HIRES screen 1. *
"-'- * Text can be horiz or vertical. *

* Called by : Units NODEINFO,ACTPARUINN *

.- - procedure WRITEONSCREEN;
var I : integer;

C1 : char;
beg i n

DMODE := 6; if INVERSE then OMODE := 5;
char type(DMODE);
pencolor(none);
while VALIDXY do begin

case CH of
"h','H': begin moveto(X,Y); wstring(ST); end;
'v','V': begin for 1:=1 to length(ST) do

begin moveto(X,Y); CI:=ST[1J; wchar(CI); Y:=Y-9; end;
end;

end;
VALIDXY:=false;

-0 end; (* of while loop *)
end;

72

9-N

_/" . . ,' ,':, _,*

- - (*******************GETSHIAPES *************
Loads the shapes from the file 'LOGIC.CHARSET'

* Called from: Main program loop.*

- -' procedure GETSHAPES;
K begin

reset(SI-APEFILE, 'LOGIC.CHARSET'>;
ARRW:=SPEFILEA; get(SIAPEFILE);
NODEL:inSWAPEF1LEA; get(SHAPEFILE);
NODER:=SI*WEFILEA; get(SfAPEFILE);
Q4ODEL:=SIAPEF1LEA; get(SIAPEFILE);
Q4ODER :=SHAPEFI LEA";
close(SKAPEF1LE);

- - end;

-begin end.

73

Vt .. -

* This unit is linked to QGERTNET. It contains the *
* the procedures which build the data structure by ask- *
* ing the user questions. It has procedures for the *

* source/regular nodes, stat/sink nodes, and queue nodes*
* Written by : Andersoi & Coameford *

(*$S+*)
unit NODEINFO; (* saved as LNODEINFO.TEXT *)
intrinsic code 25;

interface

uses TURTLEGR,GLOBAL,RITE;

procedure SOUREGINFO;
procedure STASININFO;
procedure QUEINFO;

implementation

(*************** SOURESINFO ***************************
* Builds the data structure for a source or regular node*
* Also writes text to the graphics screen. *

%, * Called by: KYPLOT *

procedure SOUREGINFO;
' -begin

new(NEXT1);

-*. Y:iY+10;
:6 NEXTIA.DEVICE:-D; NEXTIA.XLOCATION:=X;
-"" NEXTI ^ .YLOCATION:=Y;
" if D = I then

$5 begin NEXT1^.TIPE:=ISOU";
X := X+40; Y := Y+1

end else begin
NEXTIA .TIPE:z'REG';
X:=X+30; Y:=Y+1

end;
write(chr(12)); CH:='V'; writeln;
write('Enter node number (1 to 9M) ---) ');

readln(NEXT1^ .NODENUM);
ST:#NEXT1^ .NODENUJM; WRITEONSCREEN; Y:=NEXT1A^ .YLOCATION41;

2.:, X:=X-20; CH:='H'; VALIDXY:=true;
write('Initial number to release (0 to 9) --->);
readln(NEXT1 .INITIAL);
ST:#NEXTI .INITIAL; WRITEONSCREEN;
Y:=Y-10; VALIDXY:=true;
write('Subsequent number to release, (<CR> ');

" 74

S r.--

-~~~~~~~~~- .. ' -- V -* *. 7-. %. . ---- *

)..4 t. ~ write('for infinity or 1 to 9) --- >)
Sreadln(NEXTI^.SUBSEQUENT); ST:*JEXT1JA.SUBSEQUENT;

if length(ST) = 0 then ST := '-';
WRITEQ'4SCREB4; NEXTIA .BRflJCHING:='D';
X:=X+10; VMLIDXY:=true;
write('Enter M to mark, otherwise just press <CR) -- >');

readln(NEXT1^.A RK); ST:4IEXTI A .MARK; WRITEONSCREEN;
.5 Y:=Y+10; VALIDXY:=true;

write('Enter choice criterion (F,L,S,B,K) ---))
readln(NDCT1A.CHOICE); ST:44JD(TIA.CHOICE; WRITEONSCREB4;
write('Enter a node comnent. (CR) for none --)

- I readl n(NEXT1A. COfENT)
NEXTiA .NEXT :- BASE1; BASEl := NEXT!;

end;

(****n*******STASININFO ea*******~***
" Builds the data structure for a stat or sink node.*
* Also writes text to the graphics screen.*

* Called by: MYPLOT*

procedure STASYNINFO;
begin

new(NEXT2);
Y:Y10;

I P-W~ftNEXT2A%.DEVICE:inD; NEXT2tXLOCATION:=X;
__ NEXT2A .YLOCATION:=Y;

if D - 3
then ND(T2 A .TJPE:-'STA'
else
NEXT2 A .TIPE:'ISINI;

X:sXl30; Y:Y41;
write(chr(12)); CH:='V';
write('Enter node number (1 to 99) ---))
readln(ND(T2AM.ODBJLII);
ST :ND(T2A .NODB4LRI; WRY TEONSCREEN; Y :*EXT2A .YLOCATIOtN. 1;
X:-X-20; CH:'*H'; VALIDXY:-true;
write(elnitial number to release (0 to 9) ---) >;
readln(NEXT2A.INJTIAL); ST:=tJEXr2A.INJTIAL;
UR ITEONSCREEN;
Y:-Y-1O; VMLIDXY:-true;

- - write('Subsequent number to release, (<CR))
write('for infinity or I to 9) --- > 0

readl n(NEXT2A .SUBSEOUDIT); ST:4IEXT2A .SUBSEQUENT;
-K ~if length(ST) - 0 then ST:=';

- WRITEONSCRESI;
t.NEXT2 A .BRA4CHN:'D';

X:sX+10; VALIDXYtrue;
write('Enter statistics desired (F,AI,,Jor D) --)

irreadln(ND(T2 A .STAr); ST:448(T2 A.STAT; WRITEOt4SCREO'4;
* * *x* write('Enter upper limit 1'4 first cell')

write('(N if histogram not wanted) ---))

75

. 4 4-- ..~ 4- . - . - a T

readi n(NEXT2A .UPPER);
if (NEXT2A.UPPER-INI)

then NEXT2A.WIDTH:=1N'
* else begin

write('Enter width of histogram cell --)

ruadi n(ND(T2A .bIDTH);
end; (*of else 0)

Y:-Y+10; YALIDXY':true;
write('Enter choice criterion (F,L,S,B,M) --)

4- readln(NEXTA.CHOICE); ST:mIEXT2A.CHOICE; WRITEONSCREEIN;
.4- writt('Enter a node comment. <CR) for none --- > 1);

readln(NEXT2A.C " ENT);

enNXT2NX := BASE2; BASE2 :- NEXT2;

(************QUE]NFO **e******ee****
*Builds the data structure for a queue node.
Also writes text to the graphics screen.

* Called by: IIYPLOT

procedure QVEINFO;
* .- :begin

new(NEXT5);
Y:Y10;

NEXT5A .DEYICE:inD; NEXT5^.XLOCATION:inX;
NEXT5A YLOCTI I:Y;
NEXT5A .TIPE:-InQUE';
X:-X*30; YIYti;

write('Enter node number (1 to 99) ')

re#ad I n (NEXT5A . NODENLI) ;
* ~~, ST :-NEXT5A .NODENMJ; URITEONSCREEN; Y:-NEXTS~A .YLOCATI ON. 1;

X:u'X-20; CH:'H'; VALIDXYitrue;
write('lnitial number in queue (0 to 9)--)

readln(NEXT5A.INITJAL); ST%-NEXT5A INITIAL;
WRITEONSCREEN;
Y:inY-10; VALIDXY:-true;
write('Capacity of queue node, (<CR>)

write('for infinity or 1 to 9) --)

readln(NET5A.CAPACITY); ST:=NEXT5A.CAPACITY;
if length(ST) - 0 then ST -';
WR ITEONSCREEN;
NEXT5A .BRANCIN:'D';
Xz-X+1O; Y:-Y+5; VALIDXY:itrue;
write('Enter type ranking desired (FLgSjor 8) ---));
rvadln(NEXT5A.RM4KING); ST:=NEXT5A.RA4KIN6; WRITEONSCREEN;
write('Enter balking node number (<CR) to destroy)

write('balkers -) 1); readln(N(T5A.BALKERS);
write('Entor upper limit of first cell 1);
writo('(N if histogram not wanted) --)

readln(NEXT5A.UPPER);

76

4- .' 14 * *- 4 1* * * 4 -. **.' -

Si f (NEXT5A UPPER='N ')
then NEXT5 .WIDTH:='N"
else begin
write('Enter width of histogram cell ---) ");
readl n(NEXT5A .WIDTH);

end; (* of else C)
write('Enter a node comment. <CR) for none ---) ");
read1 n(NEXT5A .COEIBET);
NEXT5A.NEXT 3- BASE5; BASE5 : NEXTS;

end;

begin end.

.7

S.'
I

.-

S.°

U.r 4 ,r . , . " . , , . . ",_" ' . . *, . , . . .' ,

* This unit is linked to QGERTNET. It contains the *
* procedures to build the data structure for activities *

* and parameter sets. *

.* Written by : Anderson & Commeford *

(*$S+*)

unit ACTPAR; (* saved as UACTPAR.TEXT C)
intrinsic code 29;

interface

uses TURTLEGRGLOBALRITE;
procedure ACTINFO;
procedure PARINFO;

implementation

mm(,e*****. ** PARINFO **********************
* Builds the data structure for a parameter set. *
,.. Called by : ACTINFO *

procedure PARINFO;
A4begin

writeln;wIiteln(" Building Parameter Card');writeln;

write('Enter parameter set number ---) ");
readl n(NEXT3. PARAM)e,
ST.:-IEXT3*.PARAM; ACTSTRING:=oncat(ACTSTRING,ST,')');

NEXT4:=BASE4; FINDER:,,false;
* while (not FINDER) and (NEXT4 () nil) do begin

if (NEXT4A.PARA4 - ST)
then FINDER:,,true
el se NEXT4:=NEXT4 ^ ,NEXCT;

end; (* of while *)
if (not FINDER) then begin

NEW(NEXT4);
NEXT4A .TIPE s"'PAR';
NEXT4.PARAHi:ST;
write('Enter IST parameter --->);readln(NEXT4 ^ .PARI);
write('Enter 2ND parameter --) ");readln(NEXT4^.PAR2);
write('Enter 3RD parameter --- > ");readln(NEXT4^ .PAR3);
write('Enter 4TH parameter --- > /);readln(NEXT4 .PAR4);
write('Enter your parameter card comment. ');

write(' (CR) for none --- > ');

r*adln(NEXT4A.C"IIENT);writeln;
NEXT4A .NEXT :,BASE4; BASE4 :NEXT4;

end (* of FINDER if C)

else begin writeln;
*writeln('There's already a parameter set ',ST);

: .'.'" writeln('Therefore, a parameter card will not be built');

* 78

. ...rC ' m' , ; ; ' " ""< ,.""," " " " " " '-" ''' ' -. ' - . ,--', "" '" "" " '

writeln; end;
,.y., end;

(*************** SEARCH ******************************
* Finds the start and end node of an activity. *
* Cal led by : ACTINFO *

procedure SEARCH;
begin

NEXTI :=BASEI;
while (not FINDER) and (NEXTI 0> nil) do begin

if (NEXTIA.NODMUl = NEXT3A.START) then
begin FINDER :- true;

case NEXTI^.DEVICE of
1: begin NEXT3^.S(:=NEXT1.XLOCATI0N + 53;

NEXT3A.SY:=NEXTIA.YLOCATION; end;
2: begin NEXT3 . (:=NEXTIA.XLOCATION + 42;

NEXT3A.SY:-NEXTIA .YLOCATI0N; end;
end; (* of case strmt *)

end
else NEXTI :-NEXTI A.NEXT;

end; (* of while *)
if (not FINDER) then begin

NECT2: BASE2;
while (not FINDER) and (NEXT2) nil) do begin

if (NEXT2A.NODBENi = NEXT3A.START) then
begin FINDER:.true;

case NEXT2A.DEVICE of
3: begin NEXT3A.9X:-NEXT2A.XLOCATION + 42;

NEXT3A .SY:-NEXT24.YLOCATION; end;
6. begin write(chr(12));

write('A sink node can not start a act,');
write(' press RETURN');

__'. read(CH) ;ex i t(ACTINFO) ;end;
end; (* of case strut *)

end
else NEXT2:,NEXT2A NEXT;

end; (* of while *)
end;
if (not FINDER) then begin

NEXT5 :-SE5;
while (not FINDER) and (NEXT5 () nil) do begin

if (NEXT5A.NODEJh - NEXT3A.START) then
begin FINDER:-true;

NEXT3^.SX:,.NEXT4 ^XLOCTION + 42;
NEXT3^.SY:"NEXT5.YLOCATION; end

else NEXTs:=NEXT5A .NEXT;
end; (* of while *)

end;
. if (not FINDER) then

',,

4 79

.

. 4 5 5 .* -.-__, i j im~ ia : f~ ._. * ,*' .;.5..'. S, ,: .. ,- :'. ,,: , - -• ... 4 '.

* .. begin write~cnr(12));
~~ write('Start node not found, press RETUR4N')i

read(CH); ex it(ACTINFO);
end;

pencolor(NONE); moveto(NEXT3A.SX,NEXT3*%.SY);
writW(End node number -- > '); readln(NEXT3^.IND);
FINDEM-false; NEXTI1:BASE1;
while (not FINDER) and (NEOM () nil) do begin
I f MOMXTA NODENUP4 = NEDCT3%. IND) then

begin FINDER:-true;
'-4 ~NEXT3A M-~NEXT1^A.XLOCATI ON;

edNEXT3A .EY:-NEXT1A .YLOCATION;

else NEXTi144NEXTIA .NEXT;
end; (* of while *)
if (not FINDER) then

begin NEXT2:inASE2;
while (not FINDER) and (NEXT2 0> nil) do begin

if (NEXT2A.NODENII NEXT3A.IND) then
begin FINDER:-true;

case NEXT2A.DEVICE of
3,6; begin NEDT3A.EX:-NEXT2^.XLOCATION;

ND(CT3A .EY:=NE(T2A .YLOCATION;end;
end; (aof case stmnt

end
else NEXT2:=NEXCT2A .NEXCT;

end; (aend of while C
S end;

if (not FINDER) then begin
NEXCT5:-ASE5;
while (not FINDER) and (NEXT5 <)nil) do begin

if (NEXCT5A%.NODENWI = NEXCT3A.IND) then
begin FINDER:intrut;

NEXT3A .EXEXXDT5A .XLOCATI ON;
NEXT3A .EY:NODT5A .YLOCATION; end

else NE(T5:24E(T5A .NEXCT;
end; (* of while a

end;
if (not FINDER) then

-4. begin write(chr(12));
write('End node not found, press RETURN');
readln(CH) ;exit(ACTINFO);

end;
pencolor(JHITE);

-. if (NEXT3A4.START 0NEXT3 AND) then FINDER:afalse;
end;

48

p% <**************ACTINFO**************

* * Builds the data structure for an activity.*
Also writes text to the graphics screen.

* Called by : MYPLOT*

procedure ACTINFO;

yap TBIPX a integer;
begin

new(NEXT3); NEXT3A.DEYICE:SD; NEXT3A.TIPE:I'ACT/;
write(chr(12)); write('Device type)) ACTIVITY');
writeln; writein; writeln;
write('Start node number --- > '); readln(NEXT3t.STARZT);
FINDER:-faJ so; SEARCH;

* if (not FINDER) then
begin moveto(NDCT3A.X,ND(T3A.EY);

X:=(ND(T3A.SX + NEXT3A.) div 2;
Y:-(ND(T3A.SY + NDCT3A*.EY) div 2;

end else
* begin moveto(ND(T3A.S(,NEXT3A.SY425);

moveto(NEXCT3A .SX(-42,NEXT34 .SY425);
move to(NEXT3A .SX-42,NEX(T3A .SY);
X:.NEXT3A.SX-21; Y:#4EXT3A.St+25;

end;
-% ItJERSE:-true;

writs('Enter distribution type ---) 0);

readln(ND(T3A .D)ISTR);
ACTSTRIN6:-concat(' ,NEcT3A .DIS'rR,',');
if (ND(T3A.DISTRCOI) then

C begin write('Enter constant value ---) >)
readl n(NEXT3A .PARNI);
ACTSTRINGI-concat(ACTSTRIN6,NEKT3A PARNI ')');

end else PARINFO;
ST:=ACTSTRING;-TEMPX:sX;
X -X - ((ength(ST) div 2)*7);

z. CH:-'H'; WRITEOI4SCRES4;
write('Enter activity number (I to 99) --- >;
readln(NEX(T3A.ACTLI)
ACTSTRING:mconcat(/C1,N(T3A.ACTNi1,II ");
write('Enter number of parallel servers (1 to 99)--> ;

readl n(NEXT3A .SERYERS);
ACTSTRING:iconcat(ACTSTRINGC-(' ,NEXT3A.SERYERS,i)i);I
ST :ACTSTRING;
Y:inY - 9;X:-TE3IPX - ((ength(ST) div 2)o7);

* CH:'H'; VALIDXY:-true; WRITEONSCREEN; 11&ERSE:-false;
write('Enter activity card comment. <CR) for none--) ;

readn(NEXT3A .C"tElT);
NEXT3 .NEXT:-BASE3 ;BASE3:-NEXr3;

end;
5.begin end.

81

* This unit is linked to QGERTNET. It loads a network's*
* data structure from disk and simultaneously draws the*
* the network on the graphics screen.

.4. * Written by : Anderson &Coimmeford

unit INNI; (* saved as UIt4N *

interface

.4' uses TURTLE6RgLOBAL,RITE;

procedure INDATA(var SRFF: SOUREGFIL;
var SSFFt STASINFIL;
var AFF : ACTFIL;
var PFF : PARFIL;
var OFF : GUEFIL);

procedure LObADSCREEN;

4. implemntation

* (*is******e*I***GRAFNODES ****~***~~e**
* As each node record is read in from disk, this draws*
* the node on the graphics screen.

*Called by : INDATA

'4procedure GBANODESeq
begin pencolor(white); OHODE :- 10;

case 0 of
1,2: begin D3- NEXTIA%.DEVICE;

X :NEXTIA.XLOCATION;
Y *NEXTIA.YLOCATION - 10;

end;
-~ 3,61 begin Di- NEXT2A.DEVICE;

X amNEXT2A.XLOCATION;
Y ,mNEXT2A.YLOCATION - 10;

end;
5 : begin D:mNEXT5 4 .DEVICE;

X,44EXCT5A .XLOCATI ON;
YI-NEXTSA.YLOCATION - 10;

* end;
end; (* of case stmnt
case D of

1. begin drawblock(ARRCIJ,4,0,0,21,21,XYC*IODE);
drawblock(NODEL,4,0,0,21 ,21,X*11 ,YOIODE);

~~ drawblock(NODER,4,O,0,21 ,21 ,X+32,Y,OtIODE);

82

-.7 177

2,3: begin drawblock(NODEL,4,O,O,21,21,X,Y,DIODE);
drawbi ock(NODER,4,O ,O,21 ,21 ,X+21 ,Y,DMODE);

end;
5: begin drawbiock(ONODEL,4,0,O,21,21,X,Y,DMODE);

drawblock(QNODER,4,O,O,21 ,21 ,X+21 ,YDtIODE);
end;

6: begin drawblock(NODEL,4,0,0,21,21,X,Y,IIODE);
draw'bock(NODER,4,O,0,21 ,21 ,X+21 ,Y,IXIODE);
drawblock(APROW,4,0,0,21 ,21 ,X+42,Y,D0IIDE);

end;
end;-, of cast stint

X :- X 4 30; Y :- Y + 11; CH :'V';
if D - 1 then X :- X + 10;
case D of

1,2: ST :- NE(T14.NOD4LtI;
5 : ST:=NEXTS' .NODENUN;
3,6: ST :- ND(T24.NODEttl;

end; (aof case stmnt
VALIDXY :- true; WRITEONSCREEN;
X :- X - 20; CH :'H4';
case D of

1,21 begin Y NETIA.YLOCATION + 1;
ST := NEXT1A.INITIAL;

end;
5 : begin Y:=NEXT5A.YLOCATION + 1;

ST :--ND(T5. INITIAL;
end;

*3,6: begin Y :- NEXT2A.YLOCATION + 1;
ST :- NEXT2A.INITIAL;

''I end;
end; (aof case stint
VALIDXY :-true; WRITEONSCREEN; Y :Y -10;
case D of

1,2: ST := NE)(TIA.SUBSEQUENT;
5 : ST:.NEXT5A%.cAPACITY;
3,6: ST :- NEXT24.SUBSEQUENT;

end; (* of case stmt *)
if (length(ST)nO) then ST:i'-';
VALIDXY :- true; WRITEONSCREEN; X :X + 10;
cast D of

192: ST :- NDKTIA.MARK;
5 : begin Y:inY 4 5; ST:-NEXT5A.RAdIKING; end;
3,6: ST :- NEX(T2A.STAT;

end; (aof case stmnt
VALIDYY t- true; WRITEONSCREB!;
case D of

1,2: begin ST:mNED(T1ACHOICE,
Y:-Y+10; VALIDXY:-true;
WRITEONSCREEN;

3,6: begin ST:=NEXT2A.CHOICE;

83

Y:=Y+1O; VALIDXY:=true;
WRITEONSCREEN;

end;
end; (*of case stmnt

end;

(**I*********GRAFACTIVITY************
*As an activity record is read in, this draws the *

activity on the graphics screen.
Called by : INDATA

procedure GRAFACTIVITY;
var TEMPX : integer;

begin DMOOE:=1O; pencolor(none);
movjeto(NEXT3A .SX,NEXT3A .SY);
pencolor(wh it.);
if (ND(T3A.START (> NED(T3A'.IND) then

b*;in moveto(NEXT3A.EX,NEXT3A.EY);
X:in(NEXT34.SX+NEXT3A.EX) div 2;
Y:=(NEXT3A.SY4NEXT34.EY) div 2;

A" end else
begin moveto(NEXT3A.SX,NEXT3A.SY + 25);

moveto(NEXT3A .SX(-42,NEXT3^ .SY+25);
move to(NEXT3A .SX(-42,NEXT3A .SY);
X:41EXT3A.SX(-21;
Y:=NEXT3A .SY+25;

end;
ST:=concatC/(',NEXT3.DISTR,J ,' ,NECT3A.PAR,)J);
TEMPX:inX;
X:uX-Ulength(ST) div 2)*7);
ltFERSEt-true; VA1LIDXY:=true; CH:W;
WRITEONSCREEN;
ST:inconcat('I',NEXT34.ACT1LtM,1 (/,NEXT3A.SERVERS,));
Y:-Y-9; X:-TEIPX-((length(ST) DIV 2)*7);

VALIDXY:-true; WRITEONSCREEN; It'UERSE:false;
end;

(************ INDATA I**********

*Loads a file into memory as link lists. *

Called by : LOADSCREEN

procedure INOATA;
var DLIIY : string;

AGAIN : boolean;

begin write(chr(12));
*71if (not UPDATE) then begin

.~. write('Load what file ---) '); readln(FILE'WIE);
* if length(FILENWIE) 0 then exit(INDATA);

84

if Iength(FILB'WIE))10 then
begin writeli writeln('Filenaie too longfl',chr(7));

ex it(INDATA);
end;

end; (*of then *
DUMMY :=concat(FILEi*MI,.SOUREG'); D := 1;

reset (SRFF9DUtIY);
if (IORESULT 0 0)

then begin writein;
writeln('File called ',DUMMIY,' not found');
writeln('(CR> to continue');read(CH);

oxi t(INDATA) ;cnd;
writeln;writeln('Reading ',DLIY,' from disk');
BASE! gflfl ;
while not eof(SRFF) do begin

newMNEXT 1);
NEXTIA :- SRFr^;
GRAFNODES;
NEXTIA .ND(T:=BASE1; BASE! :=NEXT1;
get(SRFF);

end;
close(SRFF);

DUMMY %= concat(FILEI'WIE,'.STASIN'); D *3;
writelrqwriteln('Reading ',DLMtIY,' from disk');
r ese t(SSFF,9DUttl) ; BASE2:n il;
while not eof(SSFF) do begin

new(NEXr2);
NDCI2A :- SSFF';
GRAPHODES;l
NEXCT2A .NEX(T:6BA5E2; BASE2:=NEXT2;
get(SSFF);

end;
close(SSFF);

DUMMY := concat(FILEt'AlE,'.OUE'); D :5;
writeln;writeln('Reading ',DLIII,' from disk');
reset(OFFDLMIY); BASE5:-ni 1;
while not eof(OFF) do begin

new(NEXTS);
NEXTSA :- OFF";
GRAFNODES;
NEXTSA .NEX(T%:BASES; BASES t=tC(TS;
get(OFF);

end;
close(OFF);

DUMlY :- concat(FILENflIE,'.ACT');
- writeln;writeln('Reading ',DUtIIY,' from disk');

reset(AFFDUllY); BASE3:n ii;

85

-- ,n - - - -- - -,r rr

while not eof(AFF) do begin
new(NEXT3);
NEXT3A := AFFA;
GRAFACTIY ITY;
NEXT3A .NS(T:=BASE3; BASE3:4JEXT3;
get(AFF);

end;
close(AFF);

DUMMlY := concat(FILEIWIE,'.PAR');
writuln;writeln('Reading ',DUMMlY,' lrcmm disk');
reset(PFF,DUttlY); BASE4:=n ii;
while not eof(PPF) do begin

new(NELXT4);
NET4A ;= PFF'4;
NEXT4A.NEXT 1= BASE4; BASE4: NEXT4;
get(PFF);

end;
ciose(PFF);

end;

(************ LOADSCREEN**********

Called by : MENU

procedure LObDSCREB4;
- begin INDATA(SRF,SSF,AF,PF,QF); end;

begin end.

D-R141 127 AUTOMATED G-GERT SOURCE CODE GENERATION USING COMPUTER 2/2
AIDED DESIGN(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFB OH SCHOOL OF ENGI. G M ANDERSON ET AL. DEC 83

UNCLASSIFIED AFIT/GOR/OS/83D-2 F/G 9/2 N

EEEEEEEEEEliE
EEEEEEEEEEEEEE
EhEEEEmhEEEEEE
EmEEEoEEEE

1.0

QL 4 20

' 111IIII i'.-
1.25 .1~4 11.6

MICROCOPY RESOLUTION TEST CHART I.t
NATIONAL h# J(AU O " S lrA11 i 0S - i163- A

4

" This unit is linked to QGERTNET. It saves a network *
* to disk by writing the link lists to different files *
" which have the same prefix as supplied by the user. *

" Unit UINN uses these files to load the data structure
" into memory and draw the graphics *

* • Written by i Anderson & Cameford *

unit OUT; (* saved as UOUT.TEXT a)

interface

uses BLOBAL;

procedure OUTDATA(var SRFF: SOUREGFIL;
var SSFF: STASINFIL;

Avr AFF : ACTFIL;
var PFF : PARFILI
var OFF : OUEFIL);

procedure SAVESCREEN;

implamentation

(aaau~aaaauaaaOUTDATA **************

* Writes the link lists in memory to disk with user's *
" *i I enume. Called by : SJESCREEN •

procedure OUTDATA;

begin
if (not UPDATE) then begin

write(chr(12)); write('Save with what name --) ');

' readln(FILENIIE)i
if length(FILENAIE) -0 then exit(OUTDATA);
if Iength(FILBENAE)) 10 then

begin writeln; writeln('Filename is too long!!',chr(7));
exi t(OUTDATA);

end;
- end; (* of then a)

Di1MY t, concat(FILEIA1,'.SOUREG');
writelnlwriteln('Writing ",DU1MHY,' to disk');
rowr lte(SRFF,DtUtY); NEXTI s" BASEl;

. . while (NEXTI () nil) do begin
SRFF to NEXTIA; put(SRFF); NEXTI s- NEXT1.NEXT;

endl (* of while a)
close(SRFF,LOCK);

DUMMY :- concat(FILEINME'.STASIN');

87

writeln;writein('Writing ',DLMtYg' to disk');
rew ite(SSFF,DLtSIY)l NEXT2 : BASE2;
while (NEXT2 () nil) do begin

SSFF4 :- NEXT24; put(SSFF); NEXT2 :- NEXT2A.NEXT;
end; (* of while *
close(SSFF,lockc);

DUMMY in concat(FILEWE,'.ACT');
writaln;writoln('rriting ',DItLMY,' to disk');
rewite(AFFDUNtIY); NEXT3 in BASE3;

V while (NEKT3 () nil) do begin
AFFA 3-n NEXTr ; put(AFF); NEXT3 :- NEXT3^.NEXT;

end; (* of while C

close(AFFlock);

DIUlY :- concat(FILENWIE,'.PAR');
.4 writeln;writelnC'Writing ',DIRIIY,' to disk');

row ite(PFF,DUtff); NEXT4 :- BASE41
while (NEXT4 () nil) do begin

PFFA := NEXT4A; put(PFF)l NEXT4 in NEXCT4A.NEXT;
end; (* of while C
c Iose(PFF 9l1ock) I

* writtinjwriteln('Writing ',DUI'tff, to disk');
row Ite(GFFDLIMMYl; NEXT5 in BASE5;0 while (NOCT5 () nil) do begin

OFFA zNEXT5A; put(GIFF); NEXT5 :-NEXT5A.NEXT;
end; C'of while C
close(OFP,locC);

SAFETY in true;
end;

(*C*C**C**C*SAYESCREEd********C***

* * Called by:t MENU

procedure SAJESCREE4;
begin OUTDATA(SRFSSFAFPF,QF)j end;

begin end.

'99

* to change or delete source/regular nodes.*
WrIitten by : Anderson & Comeford

unit EDITSR; (* saved as UEDITSR.TEXT a

interface

uses BLOMAL;

procedure FINDSOUREG;

implementation

(************CHI46SOUREB ***************
*All lss changes of certain fields to source/regular nodes

* Called by i FINDMOUREG

procedure CI4BSOUJREB;
begin

writeli write('To change a field above, type in the I);4 ~ writeln('first letter ');
writeln('of the field you want to change.');
writeln('A blank field means the default value.');

* writo('You may type a Q when you are done with ')I
writelm('this node.');
while UM4 0 '0') do begin

repeat
gotoxy(30,14)1 writeC'J)
gotoxy(20,16); write('J.
gotoxy(O,14)1 write('Enter your choice 1);
writ('(N,I,9,M,H,C,G) --) ')I
read(*9) I

until ((O*m'N')or(AN4o'I')or(*4NS'S)or(*4N'wI)

if (01So'Q') then exit(C*OSOUREO)i

'N write('Enter new value -) ')I
cast AM9 of

'N's a eadln(NEXT14.NOOE4U);
'Ile readln(NEXTIA.INITIAL);
'9': readin(NEXTIA .SU3SET);
I's' readl n(NECTIA .tRK);
'N' a readin(NEXTIA.CHOICE);
'C': readln(NEXT1^.C~t4MT);

.. ~*end; (* of case stmnt 0)

9

- -~ - :-uj y- - V% "k- im - ~ *.~.

wr i tW(0
gotoxy(392)1 writo(NEXTI1A7!PE);
gotoxy(992); write(NEXTIA.NODENLI);

gotoxy(26,2); write(NE)CrIA .SUBSEQUENT);
gotoxy(39,2)1 write(NETIA MARK);
gotosey(46,2); vp!-emNE)CTIA.CHOICE);
gotoxy(3g4)1 wrIt(NECTI^.CG9INT);

end; (* o4 while *
end;

" After finding selected node, displays information
" o4 that node and asks if deletion Is desired.

* Called by i FINDSOUREB

procedure BOTSOWRES;
begin

wri te(chr(12));
writeln('Here is your node');
write(' TYPE M(ODE I(NITIAL S(UBEOUGIT N(ARK ')I
wi te(C(H)OICE')i

if FINDER then
begin
gotoxy(3g2)1 wrlt@(NEXTI*.TIPE);
gotoxy(9,2)l wr ite(NEXTVA NOENIII);
gotoxy(16,2); write(NEXTI^.INITIAL);
gotoxy(2692); writt(NEXT14.SUB9EQUENT)i
gotoxy(3992)1 write(NEXTI^.tARK);
gotoxy(4692)1 wrIto(NE)CTIA.CHOICE);

end else
begin
gotoxy(392); write(NEVl1A.NEC.TIPE);
gotoxy(992)1 wri te(NEXT1AMNeTA.ODENL91);
gotoxy(216,2)1 wrlt(NEXTI^.NEXT^.INITIAL);
gotony(26,2)1 wrlt(NECTIA.NEXTA.SUBSEGUB4MT);
gotoxy(39$2); wi t*(NEXTV.N MC A IRK);
gotoxy(4692)1 write(NEXTIA.NXT A CICE)i
gotoxy(314)1 wr~I tv(NEXTI A.NOT .CCI'HT)j

end;
repeat

gotoxy(46,7)1 writeC' ')I
gotoxy(O,7);
wrlte(ODo you want to delete this entire node?)

read(*S) I
until ((*4.'YO) or (ft4.'N'));

end;

.~*. aaea~aa~a****FINDSOURE6 aaaaaaaaaGaa
*4 '-\ * Finds the selected node and then either deletes thea

* node or calls CIHGSOUREG.
* Called by : unit EDIT*

4. procedure FINDSOIJREO;
N begin

if (BASEI m nil) then
begin writeln('Cangt find 'qSTRSELEC9ELEMIENT);

writeln('(CR) to continue'); read(ANS);
exi t(FINDSOUREB);

and; (* of then a)
FINDER:mtrue;
if (NEXTIA%.N006415 - ELEMENT) then

begin OOTSOUREG;
if (AM8 - 'Y') then BSEl:=BASEIA.NEXCT
else C14I6SOUREG;

end
else begin

FINDER:nf &I so;
* repeat

if (NEXT IA.NEXT*% NODELIM 0 ELEMENT) then

* until ((NEXTlA.NEXTmnil)
or (NEXTI A NEXTA .NODENtRIELEMENT))I
if (NOCT1A.NET-nil) then

begin writeln('Cant find ',STRSELEC,ELEMNT)i
wrlteln('(CR) to continue'); read(*IS);
exi t(FINDSORE3)i

end; (* of then a
OOTSOUREB;
if (AM8 a 'Y') then NEXTI A NEXT iNEXT V NEXTA NEXT

else begin NOCT imNEXT1 -. NEXT; CHNGSOUREB; end;
A end; nd; (a of else a)

begin end.

-P~~ ~ ~ -- 1-P I P .P-. -.P _J7.W-Ahj y .%,-

* This unit is linked to GBERTNET. It allows*
* the user to change/delete a stat/sink node. *

Wiltten by i Anderson & Cawieford

unit EDITSS; (* saved as UEDITSS.TEXT 0)

Interface

uses GLOBAL;

procedure FINDSTA9INI

implementation

(**********se I#JSTASIN eaaaassss*
" Allows changes of certain fields to stat/sink
" nodes. Called by : FINDSTASIN

procedure CIIIBSTASIN;
begin

writein; write('To change a field aboveg type in the ');0 writeln('flrst letter ')I
writeln('of the field you want to change.');
writeln('A blank field means default value.');
write('You may type a Q when you are done with this');
wrlteln(' nods.');
while (A45 () '(F) do begin

repeat

gotoxy(O,I4)1 write('Enter your choice ');
write('(NISTqUIdHqC;Q) ---) 1);
read(*49) ;

until ((*4AN'N)or(AN4o'I')or(*t4S'S')or(A*4w'T')
or(*4'.'U')or(*4N""U')or(*48-'H')or(AI4Bm'C')or(*dNI-'Q'));
if (0l45i='0) then exit(CI#4BSTASIN);
gotoxy(O,16)1 wrlto('Enter now value* -)
c as@ *41 of

'N's readln(NET2^.MOD9tH)j
'Ilia readl n(NEXT2A.*INITIAL);
'9': readln(NE(T2.SUSEGIJEHT);
'T': readlnU(1EX2^.TAT);
'U's readln(NEXT2A.UPPER);
'Wa: readln(NEXT2A.IJIDTH)l
'N': readin(NEXT2A.CHOICE);
'C's readln(NEXT2A.CM4IWT);

end; 0C of case stint 0)

92

gotoxy(O,2);writ#,('
write (,
gotoxy(392); wri te(NEXT2^.TIPE);
gotoxy(992)1 wr ite(NEXT2AM.ODB4Rl);
gotoxy(16,2); wr ite(NEXT24.*INITIAL);
gotoxy(26,2); writv(NEXT2'.SUBSEQJENT);
gotoxy(3912); write(NET24.STAT);
gotoxy(47,2)I ar i te(NEXT2A UPE)
gotoxy(5512); tar ite(NECT2A 4MIDTN);
gotoxy(d3g2)l tar i t(NEXT24 .HOICE);
gotoxy(3,4); write(NEXT2.CC.116T);

end; S* of while 0
end;

(*eeeeeee BTSTASIN ***,*****.e***
" After finding the selected node, displays information*
" of that node and asks 14 deletion is desired.*

-7' * Called by : FINDSTASIN*

procedure 61OTSTASIN;
begin

write(chr(12));
writvln('Here is your node');
write(' TYPE N(ODE I(NITIAL S(UBSEQUEIT SMTAT 1);
wrilt(IL(PPER W(IDTH C(H)OICE');

if FINDER then

gotoxy(3,2); write(NEXT2A.TIPE);
gotoxy(9,2); write(NETrM.OO94U1M),
gotoxy(16,2); ar i te(NEXT2A .INITIAL);
gotoxy(2692)1 write(NECT2^.SUSSEOUENT);
gotoxy(39j2); ar i te(NET2A~.STAT);
gotoxy(47,2)1 writt(NEXT2A.UPPER);
gotoxy(5592)1 write(NEXT2,4MOTH);
9otoxy(63,2)I writ(NEXT2^.CHOICE);
gotoxy(3#4)1 tar It#(N1DCT2^.CQ9I'T);

end else
begin
gotoxy(392)1 tan te(NEXT2A.NECTAMTPE)l
gotoxy(992)1 wr ite(NEXT2AMOMCT .NDDEBtM)l
gotoxy(1602)1 wrIt#(NEXT2,4.NEXT^.INITIAL);
gotoxy(26,2)1 tar i t e(N2 MOM"CMO .SUBSEQUNT);
gotoxy(39,2); tar It*(NEXT2' .NEXTA .STAT);
gotoxy(47#2); write(NO(T2A.NO(TA.UPPER);
gotoxy(55,2); tar It*(NECTf2,4 NEXTA .WIDTN);
gotoxy(63,2)1 wnite(NEXT2A.NECT.CHOICE);
gotoxy(3g4); tar it@(NEXT2A SNEKTA .C " ET)l

endl
repeat

gotoxy(49,7); write(');

93

gotoxy(O,7);
write('Do you want to delete this entire nod#? ;

read(018);
s1 until ((ANS-'Y') or (ANS-'N'))l

end;

(**.******e**FINDSTASIN ********.*
" Finds the selected node and then either deletes*
" the node or~ calls CH4BSTASIN.

* Called by : unit EDIT*

procedure FINDSTASIN;
begin

if (BASE2 - nil) then

begin writeln('Can't find ',STRSELEC,ELEMENT);
writeln('(CR) to continue'); read(ANS)i
exi t(FINDMTASJN);

end; (* of then 0)
FINDER :ntrue;
if (NHEXT2A.1NODS4I - ELEMENT) then

begin GOTSTASIN;
if (ANS m 'Y') then 9ASE2:=MASE2A.NEKT
else CI46BTASIN;

end
else begin

FINDERsinfal se;

if (NEXT24.NETA.NOD4I1 () ELEMENT) then
NEXT2 .4dEXT2A.NEXT I

until ((NEXT24.NEXT-nil) or~ (NEXT2A'.tNECT.NODE9I3-ELEMENT));
If (NET2A.1NETmnll) then

begin writtin('Cant find ',STRSELEC,ELEIENT);
wuitoln('<CR> to continue'); read(A4S);
exi t(FINDSTASIN);

end; (* of then 0)
GOTSTAS IN;
If (ANS - 'Y') then NE(T2A .NEXTrNEXT24 .4EXT .NEXT

else begin NEXT2sa4EXT2A.1NET; CHt4BSTASIN; end;
end; (* of else 0)

end;

begin and.

9'4

" This unit is linked to QGERTNET. It allows
" change/deletion of queue nodes.

WrIitten by : Anderson & Com..ord

unit EDITGUE; (* saved as UEDITGUE.TEXT 0)

interface

uses GLOBAL;

procedure FINOGUE;

2] implmentation

" Allows changes of certain fields to queue
" nodes. Called by : FINDQUE

procedure CHIGQUE;

0 writtln; write('To change a field above, type in the ');
writtln('first letter 1);
writoln('of the field you wvant to change. A blank');
writln('field mans default value. You may type a');
writoln('Q when you are done with this node.');,
while (AIS () '0') do begin

repeat
gotoxy(30,14); write(' J
gotoxy(20,16); write('
gotoxy(Ol14); write('Enter your choice I);
write('(N,I,A,R,B,U,d,C,Q) --) 1);
road(Ad4S) I

until ((4AN'N)or(AN4oI')or(MiSmInA')or(AN~'R')
our(AN4=B')or(M4S='U')or(M4~m'W')or(ANJw'C')or(M4S' 0'));
if (ANm4IG0) then exlt(CH#489U);
gotoxy(O,16); write('Entor new Yalue -- > ');
cast Mdl of

IN': readl n(NEXTSAMODS4M);
'Ili readln(NEXT5A.INITIAL)i
'A':a readi n(NEXTS4 .CAACIY);

1% R'a readln(NEXT5A.RM4KINS);
'B': readl n(NOMTA. BLKERS);
'U' a readln(NEXT5A.UPPER);
IW': readln(NEXT5A.WIDTH);

* 'C': readin(NEXT5A.CM4IEN);
'- . end; (* of case stint 0)

915,

gotoxy(O,2) ;wri te('
writeC'
gotoxy(3,2); write(NEXT5A.TIPE);
gotoxy(9,2); wr ite(NEXT5A .NODENLIl);
gotoxy(16,2); writ(NEXT5A.INITIAL);
gotoxy(26,2); write(NEXT5,4.CAPAITY);
gotoxy(38,2); wr ite(NEXTSA .IWING);
gotoxy(48,2); write(ND(T5A.BALKERS);
gotoxy(58,2); write(NEXT5^.UPPER);
qotoxy(d6p2)l wr ito(NET WDTH);
gotoxy(3p4)1 writ*(NET5.C.HBT);

end; (* of while *
end;

(*.e****** BOQUE************
" After finding selected queue node, displays*
" information of that node and asks if deletion
" is desired. Called by : FINDQUE

procedure GOTGUE;
begi n

wri te(chr(12));
writoln('Here is your node');
wr ite(' TYPE N(ODE IM(ITIAL C(A)PACITY R(O4KING)

writt(B(ALKING U(PPER WIDTH');
gotoxy(O,3); wrlte(' C(C"tWi');
if FINDER then

begin
gotoxy(3,2); wr itt(NEXT5A .TIPE);
gotoxy(992); write(NEXT5A.NOENII);
potoxy(16,2); wr I to NEXTSA.INITIAL);
gotoxy(26,2); wr ite(NEXT5' .CAPACITY);
gotoxy(38,2)1 wr i t(NEXT54 .MMK1NB);
gotoxy(48,2); writ(NEXT5A.BLKERS);
gotoxy(58,2); wr i to(NEXT5' .IPPER);
gotouy("6,2; wr It*(NEKT5^ MIDTH);
gotoxy(3g4); wr Ite(NEXT5A .COtIBIT);
end else
begin
gotoxy(3,2)1 wr ite(NOCTAMSEXTA .TPE);
goto,,y(9,2); write(NEXT5^.NEXTA.NDS4L1M);
gotoxy(16,2)1 w'i t*(NEXT5a.NEXTA1.INITIAL);
gotoxy(26,2); wvrite(NEXT5^.NEXTA.CAFAC ITY)l
gotoxy(39,2); wr ito(NEXTSAMEX0TAMM~KING);
gotoxy(48,2)1 wr Ite(NEXTSA .NEXTA .MUCERS);
gotoxy(5S,2); wr Ite(NEXTSA .NEXTA .UPPER);
gotoxy(66,2); wr ite(NE)XTSA.NEXTA .IIDTII);
gotoxy(3,4); wri te(NEXT5AMOEXTA .CMwI194);

end;
repeat

gotoxy(48,7); wrlte(' ')I

96

gotoxy(O,7);
P write('Do you want to delete this entire node?');

write(' Y/N-)';
read(*4S);

until ((*4S='Y') or (ftIS-'N));
end;

FINOGUEnes *a n***
* Finds the selected queue node and then either*

-V *" deletes the node or calls CWIBOUE.*
Clebysunit EDIT*

procedure FINOQUE;
beg In

if (MASES - nil) then
begin writeln('Can't find ',STRSELECELIIENT);

writeln('(CR> to continue'); read(l'S);
exi t(FINDQJE);

end; (* of then 0)

if (NEXTSA.NODENIM - ELEMENT) then

begin GOTQUE;
if (ANS - 'Y') te AE:BS5.EC

el se CIHdOGE;
end0 else begin

FINDER:fal se;,
repeat

If (NEcT5A.NEXTA%.NODBN3I () ELEMENT) then
NEXTSS4IEXT5A .NC(T;

until ((NEXTr^.NEXT-nil) or (NEXTSA.NEXTA.NODENIM-ELEIIENT));
if (NDCTSA.NEXThnil) then

begin writeln('Can't find ',STRSELECELEMENT);
writeln('(CR) to continue'); read(*IS);
cxi t(FINDQIE);I end; (* of then 0)

GOTGUE;
If (ANS - 'YV) then NEXCTSA.NEXTI#IEXTSA.NEXTrA.NEXT

- I else begin NE(T5:4i4C(T5A.NEXT; CFIIQUE; end;
end; (* of else 0)

;< end;

begin end.

4 97

.4 k 4.7

* This unit is linked to GGERThET. It allows *
* the user to change/delete an activity. *
"'. * Written by : Anderson & Comueford ,

unit EDITACT; (* saved as UEDITACT.TEXT)

interface

uses GLOBL;

procedure FINDACT;

implementat ion

(*****e******CH#I6ACT ************
* Allows changes of certain fields to activities. *
* Called by : FINDACT *

.1*.

procedure CHNGACTI
begin

writeln; write('To change a field above, type in the ');

writeln('first letter ');
write('of the field you want to change. A blank);
writeln('field means the');
writeln('default value. If you want to change the');

- . write('START or END node you must delete the ');
writeln('activity and then');
write('add the new one in the main program. ');
writeln('You may type a Q when');
writeln('you are done with this activity.');
while (ANS () '0') do begin

repeat
gotoxy(30,14); write' ")
gotoxy(20916); write('
gotoxy(0,14);
write('Enter your choice (D,P,A,S,C,Q) -- > ');

read(ANS);
until ((ANS,"D")or(ANS,"P)or (ONS'A")or (AISS')

i ~or(ANS,,"C")or <ANS=" g"))
if (NlS.,'Q') then exit(CHNGACT);
gotoxy(0,16); write('Enter new value -) ');
case ANS of

'D": readln(NEXT3".DISTR);
'P': readln(NEXT3^ .PARAM);
'A': readln(NEXT3A.ACTNU)I

. IS': readln(NEXT3A.SERVERS);
'C': readln(NEXT34.COItIENT);

98

end; (*of case stint

write(-*
gotoxy(3,2); write(NEXTATIPE);
gotoxy(9,2); write(NEXT3A.START);
gotoxy(16,2); write(NEXT3A.IND);
gotoxy(2112); writt(NEXT3A.DISTR);
gotoxy(29,2); whito(NEXT3A PARPM);
gotoxy(3712); wr ite(NEXT3,%.ACTNUM);
gotoxy(44,2); write(NEXT3A.SERVERS);
gotoxy(394); write(NEXT3A.CQIIENT);4: end; (* of while *

end;

(******4*****GOTACT ****'***e**e***
" After finding selected node, displays information of*
" that node and asks if deletion is desired.*
* Called by : FINDACT*

procedure GOTACT;
begin

write(chr(12));
writain('Here is your activity');
writeln(' TYPE START END D(ISTR P(ARAM A(CT# S(ERYERS');
gotoxy(O,3); write(C(Qtl5'I);
if FINDER then
begin
gotoxy(3,2; write(NEXT3A.TIPE);>1 gotoxy(9g2); wri te(NET3A.START);
gotoxy(16,2); write(NEXT3A.IND);
gotoxy(21 ,2); wr ite(NEXT3A .DISTR);
gotoxy(29,2)1 wr i t(NEXTA .PARAM1);
gotoxy(37,2); wr i t(NEXT3A .AC TNL1M);
gotoxy(4412); wrlte(NEXT3A.SERVERS)i
gotoxy(394); write(NET3.COMhI1BT);

end else
begin
gotoxy(3,2); write(NEXT3A.NEXT%.TIPE);
gotoxy(9,2); wr ito (NEXT3A%.NEXT%. START);
qotoxy(16,2); write(NEXT3A4.NEXT*%.IND)1
gotoxy(21 ,2)i wr i t(NEXT3A .NEXTA .DJSTR);
gotoxy(2912); wr ite(NE)(TA SNEXT,^.PQW~);
gotoxy(37,2); wri t9(NEXT3A.NEXTA.ACTNL#4);
gotoxy(4412); wr it#(NEXT34 eNEXTA .SERVERS);
gotoxy(394)1 writo(NEXT3A.NEXTA.COtIB4T);

and;
repeat

gotoxy(52,7); write(' ')
gotoxy(O 17) ;

Nilwvlto('Do you want to delete this entire actiyity?)

writ('Y/ ---) 1)

/. *, read(AlS) ;
~until ((ANS'Y') or (AtNS-N'));

end;

(e~e*~se*****FINDACT ********.***I**
* Finds the selected node and then either deletes the *

* node or calIs C ACT. *
* Called by * unit EDIT

procedure FINDACT;
begin

if (BASE3 - nil) then
begin writeln('Can't find ',STRSELECELBIENT);

writeln('(CR) to continue'); read(ANS);
exit(FINDACT);

end; (* of then *)
FINDER:,,true;
if (NEXT34.ACTNUI1 - ELEMENT) then

begin GOTACT;
if (ANS - 'Y') then BASE3:sBASE3".NEXT
else CMGACT;

end
else begin

FINDER:isfal se
repeat

if (NE r3.NWMTA.ACTN(1 () ELEMENT) then
NEXT3 sNEXT34 .NEXT;

until ((NEXT3.NEXT-nil)
or (NEXT3A .NEXTA .ACTNLI4ELEBMET));
if (NEXT3 .NEXT-ni) then

begin writeln('Can't find ',STRSELEC,ELEIENT);
writeln('(CR) to continue'); read(ANS)!
oxi t(FINDACT);

end; (* of then *)
GOTACT;
If (AMS - Y') then begin

gotoxy(0,16);
writeln('Remeomber to delete any parmeter sets');
write(" if necessary');
write('(CR) to continue'); readln(NAS);
NEXTr3 .NEXT -NEXT3^ .NEXT^ .NEXT; end

else begin NEXT3:sNEXT3A.NEXT; CHNGACTi end;
end; (* of else)

end;

begin end.

100

1,-

" This unit is linked to QGERTNET. it allows
" the user to change/delete parameter sets.

*Written by : Anderson & Ccuumeford

unit EDITPARI (* saved as UEDITPAR.TEXT *

interface

4 uses GLOBALI

procedure FINDPAR;

imp 1 tmentat ion

(************CHIJGPAR ***********
" Allows changes of certain fields to parameter
" sets. Called by : FINDPAR

procedure CHtI6PAR;
begin

witemn; write('To change a field aboue, type in the ');
wrionfis letter 1);
writoln(Ifr numbr of the field you want to change.');

writoln('A blank field is the default value.');
writoln('You may type a Q when you are done with this 1);
writo('parameter set.');
while (AM9 0) 10) do begin

repeat
gotoxy(30,14); write('J-
gotoxy(20,16); writ#(
gotoxy(0,14); write('Enter your choice ')I
write('(P,1,2,3,4,CqQ) ---) 1);
read(*4S)l

until ((ANSwInP)or(AN~m'1')oes(ANSi2)or(M4S='3')
or(*45-'4')or(AN49'C')or(ANS-9'Q));
if (*IS-'0') then exlt(C1446PAR);
gotoxy(0916); wrlto('Enter new value-)';
case *49 of

'P'i readln(NEXT4.PAV*;
'Ili readln(NEXT4A.PARI);
'2'1 roadin(NEXT4A.PAR2);
13's readln(NEXT4A.PAR3)j

\pw. 4's readln(NEXT4A.PAR4);
'C'. readln(NEXT4A.CQIENT);

end; (* of case stint

101

gotoxy(3,2); writeCNEXT4A.TIPE);

~ r..* gotoxy(292); write(NEXT4A.PARlI);

gotoxy(22,2); write(NEXT4A.PARI);
* gotoxy(30,2); writ(NEX(T4A.PAR2);

gotoxy(36,2)1 write(NEX174A.FAR3EN);

A end; (0 of while 0)
end;

(*aee**aaaa OTPAR aaaae.aaeaa
" After finding selected parameter, displays
" information of that parameter set and asks, if
" deletion is desired.
a Called by FINOPARa

procedure GOTPAR;

writln(~er isyour par me ter set');

write(' TYPE P(ARA1 SET# PAR(1 PAR(2 PAR(3M)

if FINDER then
begin0 gotoxy(3,2); wr ite(NEXT4A .TIPE)l
gotoxy(9,2); wri tv(NEXT4A.PAAW);
gotoxy(22,2)1 w i te(NEXT4A~.PAR1)i

gotoxy(39g2); rt(ET.P3)

gotxy(.4) wrt@(NEKT4A .CQIB'4T);
end else
beg in
gotoxy(3,2); wr It#(NEXT4A .NEXTA .TIPE);
gotoxy(9,2)1 wr'Ite(NEXT4A.NEXTA.PARAM);
gotoxy(22,2); w i te(NEXT4,*.I4EKTA .PARI);
gotoxy(30 ,2); w i t#(NEXT4A .NE)(TA 6 PAR2);
gotoxy(38,2)1 w i te(NEXT44 .NEXTA .PAR3);
gotoxy(46,2)1 write(NEXCr4A.NECTA.PAR4);
gotoxy(314)1 writ, 'T4ANEXTA.CsIEf);

end;
repeat
gtoxy(57,7); wri'e
gotoxy(, 7) 1
write('Do you want t. . let* this entire paruieter)

wrlte('set? Y/N --) ');

read(ANS)i
until ((ANS=InY') or (ANI4SN'));

.. y~ end;

102

a-~7 13 47 7 a7- -- a-

. (**u~e-ee******FINDPAR ***e'****e*
* Finds the selected parameter set and then
* either deletes the sot or calls CI346PAR.

* Called by i unit EDIT

procedure FINDPAR;
beg in

If (BASE4 - nil) then
begin wrltoln('Can't find ',STRSELEC,ELEIBIT);

writuln('<CR) to continue'); read(ANS);
exi t(FINDPAR);

end; (* of then C
FINDER:intrue;
if (NEXT4A.PAPI - ELEMENT) then

begin GOTFAR;
if (ANS - 'Y') then BSE4,.BSE4^.NEXT

edelse CIHGMR;

else begin
FINDER:-fal se;
repeat

if (NEXT4A.NEXTA.PAPA4 *> ELEMENT) then
NEXr4:uNEXT(4A.NEXT9

until ((NEXT4A.NEXT-nil) or (NMEXT4A.NEXTA.PARAMELEM1ENT));
if (NEXT4A.NET-inl) then0 begin writain('Canlt find 19STRSELECELMET);

ws'itoln('(CR> to continue'); read(ANS);
a-ex xI t (FINDPAR);I

end; (* of then C
BOTPAR;
if (A48 - 'Y') then
NEXT4A tEXT ,w4EXT4A NE S ^NEXT

else begin NECT4:u44EXT4Af.NEXT; CHt4BPAR; end;
end; (* of else C

4,,. end;

begin end.

103

a.~~~. %% % .14'ap% V V

* This is the main editor unit and is linked to *
* QGERThET. It presents a main menu which asks *
* the user what kind of symbol needs to be
changedldeleted. It then calls the appropri- *

* ate unit; i.e. UEDITSR, UEDITSS, ... *
* Written by i Anderson & Cammeford *

unit EDIT; (* saved as UEDIT.TEXT a)

interface

uses TURTLESR, GLOIAL, RITE,
(*SU 1tMUIl.CODE a) INN,
(*$U 14UOUT.CODE a) OUT,
(a$U t4iUEDITSR.CODE a) EDITSR,
(*$U I4:UEDITSS.CODE a) EDITSS,
(aSU 05:UEDITOUE.CODE*) EDITQUE,
(U$U 04:UEDITACT.CODE a) EDITACT,
(SU H4:UEDITPAR.CODE a) EDITPAR;

procedure EDITOR;

implementation

(aaHaaHaa-aaaaa OTHERI SE
" Depending on what user wants to edit, sets up
" appropriate link list and calls FIND procedure*
* Called by i EDITOR *

procedure OTHERWISE;
begin

case SELEC of
BI,'C': begin NEXTrIBSEl;

STRSELEC:-node number'; end;
."D",'F"s begin NEXT2SASE21

* C STRSELECi-'node number'; end;
"'E"' t begin NEXT3sAMSE3;

STRSELECt'activity number'; end;
'6' i begin NEXT4MISE41

STRSELECo-,'parameter set number'; end;
"H" a begin NEXTSMaSE5;

STRSELEC:-'node number'; end;
endl (a of case stat *)
if (SELEC () 'I') then begin
writelnl write('Edit which ',STRSELEC,' ---));
readln(ELB4ENT);

.•* endl (* of then a)

104

SAFETY:-false;
cast SELEC of

ISB'PIC': FINDSOUREG;
'D','F': FINOSTASIN;
'E' FINDACT;

11 FINDPAR;
'H' FINDGUE;
'I' z begin UPDATE:-truel MAIESCREEN; INITTURTLE;

LOADSCREEI; UPDATE i-fal se;
end; end;
endl of cast 0)

end;I

" Lists the main menu of the editor and gets the*
" answer. Called by : EDITOR

procedure LISTER;
begin

write(chr(12)); writein; writein;
writtln(OIhich of the following do you want to edit:');

TIwriteln(' A) Quit the tdl torO);
writeln(' B) Source node');
writtin(' C) Reglular node');
writeln(' D) Statistics node');
writoln(' E) Activity');
wrlteln(' F) Sink node');
writaln(' 13) Parameter card');
writtln(' H) Queue node');
writtln(' 1) Update - to same filename');
repeat

writoln; write('Enter your choice --) ')I
read(sel ec);I

until ((SELEC > chr(64)) and (SELEC (chr(74)));
end;

(******o*****ED ITOR aaaaaaaeaa.
" Main proc of the editor. Stays in editor *
" until LISTER returns an A, then before leaving*
" makes sure that edited network has been saved.*

* Called by iMENU

procedure EDITOR;
(#W+ 0
begin

wri te(chr(I2));
If (SAFETY-false) then

begin writoln('SAVE the network first''');
writaln('(CR) to continue'); read(AI45);
exit(EDITOR);

105

O- W, W - - .

end;
if (length(FILEWIE)-0 then

begin writeln('L0D your network first!!');
writeln('(CR) to continue'); read(ANS);
exit(EDITOR);

endl
SELECI B"';
while (SELEC) A') do begin
LISTERI
if (SELEC a ,A,) then

begin 14 (not SAFETY) then SAVESCREI;
exit(EDITOR); end;

OTHERWISE;
end; (of while 0)

end;

begin end.

0

106

9%

'a

* Calls the initialization routines, loads shapes, loops
* in MYPLOT till the EXT routine is called. As MYPLOT *
* draws the network, a data structure (made up of link
* lists) is built from the information supplied by the
* user in xxxINFO procedures. This data is used by the

A* program CODESEN to generate GOERT source code. From *

* this program networks can be SAVEd, LOADed, created,
... and EDITed. Also, the program CODEBEI can be executed

* to generate QGERT source code of a network. *

*i : Idritten by : Anderson & Calmeford *

* odification of a program written by Dan Sokol. *

program QGERTNET;

uses PEEKPOKETURTLEGR, CHINSTUFF GLOAL ,RITENODEINFO,
ACTPAR,
(*$U 04:UINN.CODE*) IN4,
($U 04:UOUT.CODE*) OUT,
(*SU #4:UEDITSR.CODE*) EDITSR,
(*$U 04:UEDITSS.CODE*) EDITSS,
(e$U V5:UEDITOUE.CODE*) EDITBUE,
(*U 04:UEDITACT.CODE*) EDITACT,
(* *41UEDITPAR.CODE*) EDITPAR,
(*U 05:UEDIT.CODE*) EDIT;

jr var HEAP : Aintegerl

(s*.meu*..**e.*.** KEY ****** t*************-e ****
* Replaces applestuff KEYPRESS function which doesn't work

A. * if there is a card in slot 3, Called from: GETXY •

function KEY * boolean;
var CLEARKEYBOARDTEMP : integer;
begin

CLEAR i--16368;KEYBOARD in-16384;
sT-P:PEE(KEYBOARD);

I4 TEMP) 128 then
* begin KEYe-true; POKE(CLEAR,TBIP); end

else KEY:nfalse;
endl

(e***H*euH*ee SETUIPAD & READPAD **********I*

• Assembly language procedures to setup and •
*.. read the Graphics Tablet. *
• Called by : GETXY and Main program loop *

procedure SETUPADI external
' ..% procedure READPADI external;

107

L~~~~~~~~~~~~F 7... F . • .•k" ° , .,.*

ECC

* The only legitimate exit from OGERTNET ,
• Called by: MENU .

procedure oxti
- begi n

write('Do you want to save the screen? '); read(CH);
if (CHI.'y') or (CI*'Y') then SMPESCREEN;
i4 SAFETY then exit(PROGRAM);
begin writeln; writeln;
write('The screen was NUT saved. ');

write('Do you want to exit anyway? ');
read(C4);
if (C4I'Y') or (CI4.'y') then exit(program);

end;
end;

(*************e GETXY *************************
* Read tablet and get the X & Y coordinates. Deter- ,
* mine if X & Y are on screen (VALIDXY). *
* Called by: MENU, Main program loop *

procedure GETXY;
var BIB6,B7,BB,BP: integer;
begin

81 :w640; M :648;
B6:. 645; B7:-6461 B8:"647;
repeat REAOPAD;

PB4:-PEEK(BI);
X:'256*(PEEK(87))+PEEK(B6);

4 Y:"256(PEEK(B9))+PEEK(88);
If KEY then
begin

VALI XY: uf-al se;
XI-100 Y:-180;
exit(OETXY);

endl
4' until PE4.2;
A :: if '(X>=O) and X(290) and (Y)eO) and (Y<1?2) then
V , begin VALIDXYsitrue; Y:-l1-Y; end

else VAL1DXY:fals.;
end;

(-**a*ea*n- PRINTYPE *ne**** ***e*****
* Prints out the name o4 the device that will be *
" plotted. Determined by the value of D. *
* Called by: LISTALL, GETYPE *L procedure PRINTYPE;

• beg in

108

.r 4 *'~cast D of
0:IDET:='** INVFALID **;
") IDWT:-'SOURCE NODE';
2:ID4T:i'REGULAR NODE';
3iIDENT:"'STATISTICS NODE';
41]DEIT:"'ACTIVITY';
5:IDBJTsI,'OUE NODE';
6]DE.IT-I'SINK NODE';

end; (* of case stnt)
write(1D-IT)l

end;

(*e•41tee***taHl**5*lt*** LI STALL **e********
* List all the names of all the devices that *

* can be plotted on the text screen. *
* Called by : MENU *

procedure LISTALL;
var I : integer;

begin
writt(chr(12));
for I:-1 to 6 do

begin rite(I, ' ; D:-I; PRINTYPE; writeln;
end;

gotoxy(0,22)j writ('(CR) to continue'); read(CH);
end;

(**•**l***" FO ARD REFRENCES **u.••)
procedure LISThODE; forward;
procedure MENU; forward;
procedure CANCEL; forwardl

(***1******** SETYPE ****.e• **e* -* ****
* Sets up text display to show what is being *
• plotted and the status of the X & Y locks. *

* Called by MENU

procedure (ETYPE;
begin

rite(chr(12)); gotoxy (0,19);
write ('Device type)) 1); PRINTYPE; CM:,,'P';
LISTIODE;

end;

(*-I-I ***IHI P.MYPLOT ****H******

, Plots a device i4 X & Y are valid, •
• calls MENU If not. *
* Called by I Main program loop. *

procedure MYPLOT;
-< begin

(*$R TURTLEGR*)

109

L '4 7 n '1.z --

$**:plencolor (white);
if not VALIDXY then begin write(chr(7)); MENU;end;
i4 0-0 then exit (MYPLOT);
i4 (D - 4) then VALIDXY s- true;
if LOCKY then X:-LASTX;
1f LOCIOC then Yi-LASY
if VALIDXY then

begin SAFETY:inlalse;
case D of

13 begin drawblock(ARRCIJ,4,O,O,21 ,21 ,XY,DHODE);
draaeblocl(NODEL,4,OO,21 ,21,X411 ,Y,DMODE);
drawblock(NOOER,4,OO,21 g21,X432,Y,VHODE);
SOIJREBINFO;
end;

21 begin drawblock(NODEL,4,O,O,21 ,21 ,X,Y,CMODE);
drawblock(NOER,4,O ,O 21 ,21 ,X+21 ,Y,DMODE);
SOUREGINFO;
end;

3: begin drawblock(NODEL,4,O,0,21,21,X,Y,DMODE);
drawbloclc(NOOER,4,0OO21 ,21 ,X+21 ,Y,DtlOOE);
STASININFO;
end;

4: ACTINFO;
5: begin drawbloclc(S'ODEL,4,0,0,21921,X,YDMODE);

drawbloclc(WIOER,4,O,0,21 ,21 ,X21,Y,DIIODE);

and;
6: begin drawblock(NODEL,4,OO,21 ,21 ,X,YIDMODE)I

draaeblocl(NODER,4,0OO21 ,21,X.21 ,Y,DtIODE);
drawblock(ARRCIJ,4,0,0,21 ,21,X442,Y,DHODE);,
STASININFO;
end;

end; (* of case statement U
CANCEL ;LI BThODE;
end;
CIIODE:in14;

end;

(e**eeu~e**.ueeLI SThODE ********ue**
* Mre info for the text screen.
* Called by : MENUgGETYPEOMain programn loop

procedure LISTMODE;
begin

gotoxy(O,15); wrlte('Mode -

c ase CHI of
'P'i begin write('Plot devices'); gotoxy(17,5)1

If LOCKY then
begin write(ii(((X AXIS IS LOCKED AT ')I
writeCLASTl,)>>')I

A end;
If LOCIOC then

110

*.~. ~ ~ *~ *- .. * * .-'Jill.

begin write('((< Y AXIS IS LOCKED AT

beinwrite(lSTX,' > A;

end;
if (not LOCKX) and (not LOCKY) then write

'V... (I)

end;
'B','C','D1 : write('setup lock');," "ZI: write(' ?.??????? ");

end; (* of case stit)
gotoxy(17,5);
if (not LOCIOC) and (not LOCKY) then write

" . ,);

end;

(H~****e** * CLEARSCREEN ***eee********
Clears Hires screen 1. Called by: MENU *

procedure CLEARSCREEN;
begin
write(chr(12));
write('Clear the screen - Are you sure? 1);
read(CH); if (CH,'Y') or (CHI'y') then

begin initturtle; reloase(HEAP); BASEI:,nil;
BASE2:,nil; BASE3:unil; lSE4:-nil;

end;
end;

(********CANCEL ***************
* Fixes text screen on leaving any command. *

C Called by: MENU, MYPLOT, Main program *

procedure CANCEL;
begin
write(chr(12));
gotoxy(27,12); write('*** NO MODE ACTIVE CC');

write(chr(7));D:i"O; CH:"'Z";
end;

-(CC*CC**C*C** SETLOCK tt*****ttt**t***C******
* Locks the x or y coordinate; or clears the lock.
_ttCalled by : MENU)

procedure SETLOCK;
begin

case CH of
IC': begin writeln; writeln;

write('Use pen to select row');
repeat GETXY; until VALIDXY; LASTX:-X; LASTY:-Y;

'. r LOCOXitrue; LOCKY:nfalset end;
•01 .begin writeln; writeln;

,11

'p.l

'p , ., i , , ., ,, ., , ., , , ,. . ,.. : '_ .. : .v .,.,. .'_'_':'..... -,.'..',.'..'.,'

write('Use pen to select column');
- . repeat GETXY; until VALIDXY; LASTX:=X; LASTY:=Y;

LOCIO(:-alse; LOCKY:=true; end;
'B': begin LOC1X:,false; LOCKY:=false; end;
end; (a of case a)

.. endl

A ~~(*****aa MENU aaaaa~aa*aa~
Mode selection happens here. a

* Called by: MYPLOT a

procedure MENU;
const STR,'CODEGEN';
var XPOS, YPOS : integer;
begin

(a actual value of the divisor may a)
(a vary from tablet to tablet a)

XPOS:trunc((X+65)/16.O);
YPOS:trunc((Y-224)/16.0);
case YPOS of

3: case XPOS of (a Bottom row, left to right a)
0: begin CLEARSCREEN; CICEL;LISThODE;end;
1: begin SETCHIN(STR);EXT;end;
2: begin LOADSCREEN; CANCEL;LISThODE; end;
3: begin SAYESCREEN; CANCEL;LISTODE; end;
4: EXT;
5: begin LISTALL; CANCEL; LISTMODE; end;
6: begin EDITOR; CANCEL; LISThODE; end;
7: begin CH-'B'; LISThODE;

SETLOCK; CANCEL; LISThODE; end;
8: begin CH:i'D'; LISThODE;

SETLOCK; CANCEL; LISThODE; end;
-. 9: begin CH:'C'; LISThODE;

SETLOCK; CANCEL; LISThODE; end;
10: begin write(chr(7)); gotoxy(0,22);

write('mtmory available is ",memavail);
end;

end; (* of YPOS-3 a)
(* 2nd row from the bottom a)
2: begin D:-XPOS+I;

if D>6 then D:-01 BETYPE;
and;

(a 3rd row from the bottom a)
1: begin D:-XPOS+20;

"" ~., if D)20 then D:O; GETYPEI
endl

end; (a of YPOS case strmt *)
end;

..- 2
. .,' '' ; Pe ; % ? ..-. ?.y, .,.-"' ;;. '"".-?, . .;;':

~ (**************tMN PROGRM1 LOOP *********e*

begin
(*$N+*)
(*$R PEEKPOKEgREADPAD*)
(* initialize booleans *
SAFETY:intrue;
HELLFREEZESOVER:fal st;
UPDATE:=f al so;
BASEI:in ii;
BASE2:nn il;
BSE3inn il;

BASE5:-n ii;

INVJERSE :- fal se;
LOCIO(:i- falIse;
LOCKY:- false;
(* initialize plotting mode *
write(chr(7)) ;wri te(chr(7)) ;write(chr(7));
DIIODE:i14;wri te(chr(12));
qotoxy(25,12); writt('loading the GGERT symbols');
GETSHAPES;*
(* setup pad and screen C

SETUPAD; INITTURTLE;
(* setup text screen *
CANCEL; LISThODE; mark(H4EAP);
(* let's doit C
repeat

GETXY;
MYPLOYT;

uint il HELLFREEZESOVER;
end.

. .

~; 113

L7.1 ILk 77

ApDendix&

" This program is the sawe as the unit UINN
" except that it does not have any graphics. *

" It was not considered necessary to have *
" graphics to generate source code. It loads
" the data structure of a SAVEd network into *
" link lists. *
* Called by i CODEGME
*} Written by : Anderson & Cagmeford

(1*5*)

unit LOADER; (* saved as ULOADER.TEXT C)

interface

uses GLOBAL;

procedure INDATA(var SRFF: SOUREGFIL;
var SSFF: STASINFIL;
var AFF : ACTFIL;
var PFF : PARFIL;
var OFF : OUEFIL);

procedure LOADSCREEN;

implementation

procedure INDATA;
var DUIMIY a string;

AGAIN i boolean;
ANS : char;

begin write(chr(12));
writeln(" GENERATIN6 OGERT SOURCE CODE');
writeln;
write('Benerate source code for what file --> ');

readln(FILENAIE)I
If length(FILEMWE) - 0 then exit(INDATA)l
If length(FILENIE) > 10 then

begin writeln; writeln('Filename too long!!',chr(7));
exi t(INDATA);

_end;

- ' DIIY m concat(FILEIWIEI'.SOURE')l

114

-N
r "- 4,, .,

~ reset(SRFF,DUMMY);
if (1ORESUILT 0) 0)

then begin writein;
1~~ weiteln('File called ',W.ItIY,' not found');

writeln('<CR) to continue'); read(A4S)i

FINDERt-fals*;*xit(INDATA);end;
writeln;wuittln('Reading ',DUMMY,' from disk');
BASE t-inl;
while not sof(SRFF) do begin

NEXTIA m SRFF4;
NEXT 1A NDXT:=4ASEI ; BASEI :=NEXTI;
get(SRFF);

end;
clIose (SRFF);

DUMMIY :- concat(FILENAME,'.STASIN');
writeln;writoln('Reading ',DIEIIY1' from disk');
reset(SSFF,DUMMY); BASE2inni 1;
while not eof(SSFF) do begin

new(NEXT2);
N NEXT24 s-n SSFFA;

NEXT2A .NEXTt-BASE2; BASE2:=NEXT2;
get(SSFF);

end;
clIose (SSFF);

DUMMIY am concat(FILENAME,'.QUJE');
writeln;writeln('Reading ',DLRIY,' from disk');
reset(OFF,DLM'tY); BASE5:-ni I;
while not sof(QFF) do begin

new(NEXT5);
NEXTSA : OFFA;
NEXT5A .NEX(T:BASES; BASE5.iNEXT5;
get(QFF);

end;
close(OFF);

DUMM1Y t- concat(FILDE,'~l.ACT');
writaln;writoln('Roading ',DUMMIY,' from disk');
reset(AFFqDIIIY); BASE31-nnil;
while not eorf(AFF) do begin

new(NEXT3);
NEXT3A m AFF";
NEKT3A .NEXTiBABE3; BASE3:.NEXT3;
get(AFF);

end;
close(AFF);

DVW cna(IeM'PR)

writeln;wuitoln('Reading ',DLUtt,' from disk');
resot(PFFIDUMtl); BASE4:-nil;
while not **l(PFF) do begin

NEXT4 A j=PFFA;
NEXT4 A NEXT :- BSE4; BASE4 *NEXCT4;

-. .t(PFF)i

end;
* clost(PFF);

end;

a (************ LOADSCREB4***********

procedure LOADSCREEN;
begin INDATA(SRFqSSFqAFqPFQF); end;

begin end.

p..

a CODEGEN
* This program first LOADs a SAVEd network, then*
* builds and writes a General card to the source*
* cnde text file. The source code for Source
* nodes follows. Then source code for Regular, *
* Stat, and Queue nodes; Activities; and Par- a
a smeter Sets. After the complete source code
* is written and reviewed, GGERTNET is automat-
a ically executed with the chain comand.
a Called by i MENU of GGERTNET
a Written by : Anderson & Ccoimeford •
aaaa• aaaaaaaaaaaaaaaaaaaaaaaaamaaaaaaaaaaa•aaaa)

program CODEGENI;

uses CHAINSTUFF, GLOBAL,
(*$U 35:ULOADER.CODE*) LOADER;

const STW40-'O9BERT1ET"; (a used in chain command)
type LINKA - ANODECODE;

NODECODE - record
NEXT : LINKA;
CODE : string72);

end;
LINK - ASINKCIDE;
SINKCODE - record
NEXT : LINKS;
CODE : string(72l;

end;

var NEXTA,BASEA : LINKAI; (stores the source code a)
NEXTBBASEB : LINKB; (stores the source code a)
DIFFK : integers (a used to tab comment field)
IORKST : string; (a used to generate code a)
STIjST2 : string2]! (0 counts stat/sink nodes a)
SOURCECODE : text; (a text file for source code a)

(aaaaaaaaaaaaaaa STATSEARCH aaaaaaaaaaa•aaaa**
a Searches for and counts stat and sink nodes *

a in the link list. a
e*<, a Called by : GENERALCARD a

procedure STATSEARCH;
var MqN a integer;

begin
NEXT21"BASE2; M:"Oi Nt"O;
BASEA3-nII; 6RSEs,,nil;
while (NEXT2 <) nil) do begin

117

oS.

,%%," ", *% . ',,, 4 . "''' . ' .%... ... :"' ""-""" "' . . '''''" ,.

46h WUORIST:COncat(NET2.TIPE,,,NEXT2A.NODENLIM,I,');
WORKST:-concat(IORKSTNEXT2A. INITIAL,',');
WORK(ST:-concat(WORKST,NEXT2A .SUBSEQUBJT,',");
WORKST:conat(jORKST,NEXT2.BRPNtCHIN6,i ,');
WORK4ST:-concat(WORKST,NEXT2A.STAT,/,/.;
WORKSTi-concat(WORKST,NEXTr2A .UPPERp,,
IORK4STi-concat(WORKST,NEXT2A .IIDTH,-',');
WORiSTconcat(WORKST,NEXT2A%.CHOICEI*1);
DIFF:-30 - longth(WORKST);
for Ku-I to DIFF do
begin UORKSTi-concat(JORKST,' ')I end;

UORIKST:-concat(WORKST,NEXT2A .COMMtIB4);III if (NE)CT2A.TIPE - 'STA')
then begin Ms41*I; ntw(NEXTA);

NEXTAA . CODE z4JORKST;
NEXTAA .NEXT :-BSEA; BASEAtmNEXTA;

end
V #lse begin Ni4141; new(NEXTB);

NEXTB . CODE :ItORKST;
NEXTB^~.NEXTi-BASEB; BASED :NEXTB;

end;
NEXT2 344EXT2A .NEXT;

end; (* of while *)
str(MqSTI); str(N,ST2);

end;

(************ EllRALCARD *e.ee*eee
* Buldsthe General card and writes it to the

* source code text file.
* Called byz: CODE8EN

procedure ODIERALCARD;

begin

wri te(chr(12));
writeln(' BBERATING QOERT SOURCE CODE');
writeln(' Heviory available is ',memavail);
writeln;write('Enter your name -) ')I readin(WORKST);
STi-concat(GN,',IORKST);
write('Enter project name--)

r~~~, eUORnKST);S)

writo('Enter date as MtlDDYYYY -- 1);
readi nWORKST);
STui-concat(STp,',,IORKST);r STATSEARCH;
STe-concat(9T#,9 ,TIp ,' , T2) ;
writt('Enter number of sink node releases to I'
write('end a run--)
r ead Ia WORKSl);
STzinconcat(STq',',UORKST);

l18

writt('Enter tiff* to end oernof the network 1);

readln(WORKST);
ST:-concat(ST,' ,',IJORKST);
writ*('Enter number of runs of the network -- 1);
r 9ad In WORKST);I
STzinconcat(ST9',',WDORKST);
write('Enter type of output reports desired)
write('(FIE9C or 9)--)
read n(WORKST)i

N STuiconcat(ST,',' ,IORKST,'*'*);
writtin(SOURCECODEpST);

* end;

(**a********SOURCESEARCH *eaaa.aa
" Searches for Source nodes and immediately
" write% then to source code text file. Also
" finds the Regular nodes, builds their source*
" code and writes it to the source code texta
" file after all Source nodes are written.

aCalled by :COOEGEN

procedure SOURCESEARCHI

begin
NEXCTI :=BSEI I
while (NEXTI 0) nil) do begin

UORKST:mconcat(NEXTIA.TIPE,/ ,' ,NE*TIA%.NODBILII,,I);

IORKST:iconcatWORKST,NEXTI1AaINITIALII);
4 UORKST:nconcatWORKSTNEXTIA .SUBSEQUGIT,'l,');

IJORKSTiconcat(WORKSTgNEXTIA .B 4CH1NB,',1'q
WIORKST :ic oncat (IORKST ,NEXCT1A IARIC ',');
WrORKST-concatWORKSTNEXT1A OCHOICE,' a');
DIFFsu3O - longth(WORKST);
for Ku-I to DIFF do

begin IORKSTticoncatWORKST,' 1); end;
WORKST smconc a t (ORKSTyNDCIA .COMMEW);
if (NEXT1A%.TIPE=InSOIJI)

then begin writein(SOURCECOOE,UORKST); end
else begin new(NEXTA);

NEXTAA .COEr4IORKST;
NEXTAA .NEXT t-BSEA; BASEA u-EXTA;

end;
NEXTI 244EXT1A .NEXT;

end; (of while 0)
is' end;

119

#., ,.. (C************QUESEARCH **********

~~% * Searches for Queue nodes, builds source code,*
* and immediately writes to the source code
* text file. Called by aCODEGEN

procedure QUIESEARCH;

beg in
NEXT5 :inASE51
while (NEXT5 0> nil) do begin
WORKST:-concat(NEXT54 .TIPE,JI,NEXT5A4.NODEBIH,',i);

* IdORKST:-concat(IORK(ST,NEXT5A.INITIAL,/,/*);
*1 IdORKSTaiconcat(WORKST,NEXT5A.CAPACITY,I ,');

IJORKST~iconcatWORKiST,NEXT5A .BRANCHING,',');
IJORKST:-concat(WrORKSTNEXT5.RWUNG,l ,');
bORKST:-concat(W0RKSTNEXT5A .BALKERS,',');
IORKST:-concat(bORKSTNEXT5A.UPPER,/,');
WnORKS:=concat(IORKST,NEXT5AM.IDTH,Ja');
DIFFiin30 - longth(bIORKST);
for Ku-I to DIFF do

begin IORKSTi-concat(IJORKST,' 1); end;
WORKST -c onc at (WORKST ,NEXT5A."Y4)
wri teln(SOJRCECODE,IJORKST);
NEXT5:=NEXT5A.NEXT;

end; (of while a
and;

(aaaaaaaaaaaACTIVSEARCH aaaaaaaa
" Builds the source code for Activities, and*
" writes it to the source code text file.*
a Called by : CODEGEN

procedure ACTIVSEARCH;

begin
NEXT3 a-BASE3;
while (NEXT3 0) nil) do begin

LJORKST-concat(NEXT3.TIPE,J ,' ,NEXT3.START,',I);
IORKST3-concat(IORKSTNEXT3.ND,,);)-
WORKST:-concat(WORKSTNEXT3A.DISTR,,91);
WJORKSTi-concat(IORKST,NEXT3APARAM,iI);
UORKST-concatWORKST ,NEXT3Ar ChR,,)
WORK9ST:-concat(U0RKST,NEXT3.SERVERS*)I
DIFF:in30 - longthWORKST);
for K:aI to DIFF do

begin WORKST:-concat(dORKST,' '); end;
WIJRSTaconcat(UORKST,NEXT3.C"ENBT);
writtn(SIJRCECODE,WORKST);
NEXT3 :NEXT3,A.NEXT;

end; (of while a
end;

* 120

17a. 74-

* (***************PARSEARCN H e***e*e**
" Builds the source code for the Parameter Sets*
" and writes it to the source code text file. *

*Called by : CODEGEN

procedure PARSEARCN;

begi n
NEXT4t-BSE4;
while (NEXT4 0> nil) do begin

UORKST:iconcat(NEXT4.TIPE,,J,NEXT4A%.PAtAN,I,');
IJDRKST:mconcatUJORKST,NEXT4A .PAR1);
if (length(NEXT4t.PAR4)-0) and (lengthCNEXT44.PAR3)sO)

then begin if (IengthCNEXT4N.PAR2)OO)
then bORKSTs-concat(WORKST,' ,',NEXT4t.PAR2); end

else begin IORKST:-concat(WORKST,',' ,NDCT4A.PAR2);
IUORKST:concat(LJORKST,',' ,NEXT4t.PAR3);
if (length(ND(T4A.PAR4M)<0

then bOAKSTs-concat(dORKST,' ,' NDCT4A.PAR4);
end; (* of else *)

-; IJORST-concat(IJORKST'*');1
D!FFs-3O - length(tiORKST);
for K3-1 to DIPF do

begin UORKSTs-concat(WDRKST,' '); end;
UORKST3-concat(JDRKST,NEXT4A .CCflENT);
wr itel n(SOAJREECODE,UORKST);
NCCI4 i#40cr44 .NEXT;

end; (of while 0)
end;

(**ffl****~flPRJNTCODE **********

* After the source code is completed and written*
* to the text file, displays the source code on*
* the screen for review.*

*Called by : CODEGEN

procedure PRINTCODE;
begin

reset(SOUmCECODE) ;wr ite(chr(12));
.9 gotoxyll0,1);

writeln('This is what was written to ',DLR*IY);
writeln;
Ks-3;
repeat

Ks-K + 1;
if (K) 20) then

* begin gotoxy(0,23); write('<CR) to see some more');
* -2-read(CN); K:sI; writeln;

end; (* of then 0)

121

* readln(SOURCECODEWORKST) ;wri teln(WORKST);
until (WORKST ' FINISH*');
writein; wuite('(CR) to continue 1);
read(CH);

end;

(**~* MAIN PROGRPh ***u

beg in
(*$N+*)

* wiite(chr(12));
writt(chr(7)); write(chr(7)); write(chr(7));
FINDER i-true ;LOADSCREE4;
if not FINDER

then begin setchain(STRNB); exit(PRO6RM);end;
* DLUWoconcat (FILENAE, .TEXT');

rew i te(SOURCECODEDLWIY;
* GENERALCARD;

SOURCESEARCH;
while (NEXTA () nil) do
begin writeln(SOURCECODE,NEXTAA.CODE);
NEXTA :=NEXTAA NEXCT;

end; (* of while 0)
QUESEARCHI
ACTIVSEARCH ;PARSEARCH;
while (NEXTB 0 nil) do

begin writeln(SOURCECODE,NEXTSA.CODE);

end; (* of while 0)
wuiteln(SOUJRLECODE,'FINISH*'); PRINTCODE;
close(SOURCECODELOCK) ;setchain(STRN6);

and.

12

S
o
.

if.

USER " S fI IJNUAL

AUTQMrTED OGER;T SOURCE CODE GENERATI ON

SCAPT. 6. * IDERSON AN4D CAPT.* C.* COMMIEFORD

if

::"

4.2

" '. "Table of Contents

.Page

" ' Introduct ion 125

*

w What You Wil Nee . . .d 126
! Initial Setup 12

\2Using the Software Package . . 129

C .:

InrBootup . n.... 129
Main rted. 129Wha You Wl Ned. 130

LOAD Setp. 130S E 131

9EXT P 132

Exercise #1 132>:.LI ST 134

SOU, REG, STA, QUE, SIN . 134
ExerCTse #2.. 136

F; i EDIT 137

LOCK X, LOCK Y, CLR LOCK. 138
Exercise #3 138

:>G EN 139

Exercise #4 140
Conclusion 141

124

-'N

In troduc t i on

This is the operation manual for the Apple Graphics Tablet

as used with QGERTNET. The Tablet itself is a hands-on

product, meaning the best way to learn how to use it is to

experiment with it. Of course, this manual is designed to

make that experimentation less painful. Therefore, the best

results will occur if as you read about the capabilities in

this manual, you also attempt them on the tablet.

The first chapter describes how to set up your Tablet. It

closely follows Chapter 1 of the operation and reference

manual of the Graphics Tablet. The difference being that

this manual is written specifically for the Pascal program

QGERTNET, not for Applesoft programs. Chapter 2 describes

the various Pascal procedures used by the tablet. They

allow you to draw QGERT networks on a high-resolution

graphics screen, input information on a text screen, edit

existing networks, and generate GGERT source code. You

don't need to know too much about the Apple computer or

Pascal to run this program. You will have to know OGERT.

This manual is not intended to be a text on GERT, although

It could be useful to someone learning QGERT in class or

from a text book.

125

*, .-

V e IFr-.r -

Gettina Started

What You Will Need

In order to use this software package you will need the

following:

1) An Apple 11+, 64K RAM

2) Sup'R" Term 80 column board in slot #3

3) Graphics Tablet board in slot #5

4) Two monitors

5) Two disk drives

6) Modem

i The above configuration is the recommended one. Minor

modifications will work at a degraded level. For instance,

only one disk drive is necessary to run the program.

However, making back-up copies of your disks is extremely

.difficult with only one drive. Also, one monitor will work,

but you find yourself switching constantly from 40 columns

to 80 columns and vice versa. This can get confusing and

tiring. The majority of this software package was developed

with only one screen, but a toggle switch was used to go

from screen to screen. Finally, the Apple Ile should work

with this package with no degradation at all.

126

Initial Setup

If your graphics tablet is not hooked up to your Apple ye

then refer to the Graphics Tablet manual, pages 5-12. On(

the tablet is connected to your Apple and aligned, you neq

to set up your own menu rows. This can be done with

grease pencil. The last two rows on the tablet should 1oc

like:

ISOU I REG I STA I ACT I QUE I SIN I I I
I I I I n I I I I I
I CLR I 6EN I LOAD I SAVE IEXT ILIST I EDIT I CLR I LOCK I LOCK
! I I I I I I LOCKS I X I Y

The following is a brief explanation of the abo%

commands/symbol s.

SOU - Source node

REG - Regular node

STA - Statistics node

ACT - Activity

QUE - Queue node

SIN - Sink node

CLR - Clear the screen

GEN - Generate Q-GERT source code

127

d

d3

J, %

LOAD - Load network from disk

SAVE - Save network to disk

EXT - Exit the program

LIST - Lists the available Q-GERT symbols

EDIT - Invokes the editor

CLR LOCKS - Clears any coordinate that has been locked

LOCK X - Locks the x coordinate

LOCK Y - Locks the y coordinate

You are now ready to use GGERTNET to help you with QGERT

simulation.

%% %

4, -,

- .

Usin the Software Package

.i .11 Boot- up
• -

To start the program, simply put the disk called "AUTO" in

disk drive 01 and turn on the computer. Soon you see a

title page with the name of the software package, authors,

etc. At the bottom of the screen you will see a question

asking whether or not you want instructions. These are just
V;.

a condensed version of this manual. If you ever need a

quick review, just type "Y" after the question. After the

a,; review (or if you typed ONO to the review question) the main

program automatically starts execution.

Main Prooram

The main program is called GGERTNET. Through this program

all actions are accessible. Along the bottom two rows of

the tablet you should see the menu (if you don't, go back to

Initial Setup of the first chapter). By placing the
a..

graphics pen in one of these blocks, you can select one of'.:

many commands or GGERT symbols.

To select a command/symbol, touch the point of the graphic's

pen anywhere inside the corresponding square and press down.

129

%S1k

,'< .'.%

-.•* *4. . - .A

. - u. ..- . 0 R - . .- -% - -

Hold the pen down until you hear a beep. If you don't hear

a beep, check the text screen to see if your selction was

activated anyway. If it wasn't try depressing the pen

again.

The following pages describe each command and symbol. As

you read about each command or symbol, locate it on the two

bottom rows of the graphics tablet.

.4

This is the first of the commands we will describe. It

allows you to clear the graphics screen. This command would

be used after you've finished a network and want to start

0 another one. Be careful! This command does ask you if

you're sure, but once you clear the graphics screen, any

network and its data structure that was there is gone.

Therefore, always make sure that you SAVE your network

before using this command. After using this command the

graphics screen will be completely blank, and the text

screen will tell you that no mode is active.

By selecting this command you can load a network and its

data structure which you previously saved. Before you

130

select this command always make sure that your graphics

screen is cleared by using CLR. The main use of this

command would be so you can bring a network into the Apple's

memory and add to it. We will talk about deleting or

changing a network later.

NOTE a When you load a network, more than one file will be

opened and read. However, every file that is read will have

the same prefix which you supply in response to "Load which

file". Therefore, the data structure actually comes from a

group of related files. In this manual the word file is

used to designate this group of related files.

,SAVE

This command allows you to save a network and its data

structure to disk so that you can work on it again in the

future (remember the LOAD function?). You can use this

function any time you want or need to. You can save a

network several times during one session. However, you must

realize that only the last version saved will be in any

particular filename. When the text screen asks for a

filename, type one in like NET, NET3, or whatever you feel

is appropriate. The program does the rest.

131

. a

IT ll . 77 7 77-0 T- .- '-- -b -. 1 I- --U

•E..

Q''

One more command before you get to play. This command is

the recommended way to exit QGERTNET. It will make sure you

have saved the present network if it was changed before

quitting the program.

Exercise #1

By now you are probably anxious to do something. Remember,

experimentation is very important in learning to use this

tool. So let's use some of the above commands. First,

follow the Boot-Up instructions at the beginning of this

chapter. Once you get to the question *Do you want

f.~ instructions?', type N since you are reading this manual.

Those instructions are only there if you want a quick review

1 of this manual. You now see a statement at the bottom of

the screen asking for a carriage return. Press the return

key (hereafter denoted by <CR>) and soon you will see the

text screen clear and tell you that it is loading

LOGIC.CHARSET. This is a file that contains the OGERT

symbols. Then you will hear 3 beeps. This denotes the

beginning of any program in this software package. And

finally you see:

4. NO MODE ACTIVE

132

4.*--I, %.

device >> ????7???
..

Whenever you see this on the text screen, it means the

computer is waiting for you to select a command or symbol.

Now, let's try the LOAD command by pressing the graphics pen

in the LOAD block. For the file name type NET <CR>. As

soon as you press the return key, the computer will begin to

read a file called NET which was previously SAVEd to your

disk. As it is read in, the text screen lets you know which

part of the file is being read, and the graphics screen

starts to fill up. As soon as the file has been read in

completely, you will see the ONO MODE ACTIVEm message on the

text screen. That means the computer is ready for another

e selection.

4 Use the pen to select the SAVE command. For a filename use

your first name, then (CR>. The graphics screen will not

change, but the text screen will tell you which part of the

file it is currently writing. As soon as the network's data

structure is completely written to the file, you will see

the ONO MODE ACTIVEU message. You now have two files on

your disk containing network data.

Let's next try LOADIng the file you just SAVEd. But, what

must we do first? Select the CLR command and answer the

4 133
'.II

, . : -. :: ' .:,: ; . '.- -. - ,- : ; L s. . . ., . o ,. ., - -WI. L
,

. '--. -. . , -. - ' . . '

question with Y. Notice how the graphics screen is

cleared and you are returned to no mode active. Now select

the LOAD command and enter your first name as the filename,

then <CR>. The network reappears on the grahics screen.

Feel free to experiment some more with these commands. When

you want to quit this program, select the EXT command. By

answering the questions that follow you will easily and

naturally end the session.

LM

Before we look at the actual GGERT symbols, we'll describe

the LIST command. By selecting it you can see a list of

'. available OGERT symbols on the text screen.

New, let's look at the GGERT symbols.

SOU. REB. STA. QUE. SIN

These are the nodes that you can select. They are

respectively, SOUrce, REGular, STAtistics, QUEue and SINk

nodes. Upon selection of any of these, the text screen will

notify you of the type node you have selected. At this

point the computer is waiting for you to depress the

graphics pen a second time. If you depress the pen in the

134

graphics area of the tablet, then the node you selected will

appear in that spot on the graphics screen. If, however,

you depress the pen outside of the graphics area on the

tablet, you may lose the present node selection. For

example, if you depress the pen in another menu block, you

will obtain that command/symbol. As soon as the symbol is

drawn on the graphics screen, the text screen will start to

ask you various questions. As you answer these questions,

some of the answers will appear on the graphics screen in

the appropriate spot to further define your node. Other

answers will not appear on the graphics screen but will be

included in the data structure for later use. When you have

answered the last question, you are returned to the familiar

no mode active screen.

NOTE: The character file available for writing text on the

graphics screen does not Include the infinity symbol.

Therefore, you will see a "-" on the graphics screen if your

answer to a question is infinity.

ACT

The ACTivity symbol is slightly different. After selecting

it you are told that you are in the activity mode. You do

not have to depress the pen a second time in the graphics

area of the tablet as you did with the nodes. You will

.. I135

S!9 1 E .W4 ,7:

.W . . , ,. - -1.II.r A - .-. /, .U . .-s . .L . j.. , U . W WW -. , J .,.- .- .,* .- , .

immediately be asked some questions. As you answer them,

you will see your activity drawn between the nodes indicated

by your answers. Again, only that information usually seen

on a network will be drawn on the graphics screen, but all

answers will be placed in the data structure to be used

later. After the last question is answered, you are

returned to the no mode active screen.

NOTE: Activities on the graphics screen are drawn only as

straight lines. So, keep this in mind as you position the

start and end nodes of an activity. Also, before attempting

to draw an activity, be sure you have drawn BOTH the start

and end nodes of the activity.

C IExercise #2

In this exercise, you will make up your own network. Don't

worry if you don't have a real system in mind to model. All

you want to do is to get familiar with placing some symbols

on the graphics screen. Start by placing at least two nodes

(one at a time of course) on the graphics screen. Answer

"th. questions anyway you want within the indicated

limitations. Then, connect these two nodes with an

activity. Continue this until the graphics screen begins to

U. get full. At this point you would have to quit. If you

want, use the SAVE command to save this network. Then,

4.0

136

V'

whether you SAVEd or not, use CLR to clear the graphics

, screen. Make as many networks as you need to get familiar

with the tablet and these symbols.

Now that you can create your own networks, you probably want

to be able to change or correct a network you have SAVEd to

disk. This is done with the EDITor. It allows you to

change parameters in a node or activity, or you can delete

the symbol entirely. Notice the editor is not used to add a

OGERT symbol; this is done by LOADing the network and then

adding the wanted symbols to the existing network.

(. Before you select the EDITor command, make sure that you

have LOADed the network that you want to change. If you

want to EDIT the network you are currently working on, you
'5

must SAVE it before entering the EDITor. You will be guided

through various menus to make your corrections/deletions.

.A In the main menu of EDITor, there is an option called

UPDATE. After you have made several changes you can update

the graphics screen to reflect these changes. However, if

you choose this option, the changed network will be SAVEd to

the filename from which it was LOADed/SAVEd. Therefore, do

'V an UPDATE only if you don't mind replacing the original

network with the changed one. Upon leaving the EDITor, it

137

:' : '',,' ;N ' . , , :-, - .. ,. -',.- ,S** 5.d*, , *," ' <., . . -. ,.*5:.... . 5..,..' ,"

makes sure you na,,. saved the network to some filename and

then returns you to the no mode active screen.

LOCK X. LOCK Y. CLR LOCK

LOCK X and LOCK Y allow you to lock the x or y coordinate

for subsequent graphing. For instance, you may have several

nodes which you want to line up in the exact same column.

This is easily done by locking the x coordinate. No matter

where the pen is positioned in the graphics area, the node

Son the graphics screen will have the x coordinate that was

locked. In the same way, a horizontal alignment can be

accomplished by LOCK Y. Although these two commands are for

cosmetic purposes only, it's a good idea to learn how to use

them. They are extremely useful in positioning a new node

in place of a deleted one. After you are finished using a

LOCK X or LOCK Y, you clear the lock by using CLeaR LOCK.

Exercise #3

This exercise will get you familiar with the EDITor and

LOCK's. You need to start with a network. So, either LOAD

a previous on* or create a new one. Now select EDIT. When

you get to the main menu, decide if you want to change a

node, acitivity, or parameter set. Indicate your decision

by typing in the appropriate letter. You then indicate

138

which symbol # you want to change. The EDITor will then

find your particular symbol and display the information for

that symbol. Your first option is deletion. Type N for

now. Since you indicated you do not want to delete the

entire symbol, you must want to change some piece of the

symbol. You are given some instructions which explain how

you can make these changes. Notice as you make these

changes, the information displayed at the top of the screen

is immediately updated; the graphics screen is not. When

you are through changing this particular symbol, type "Q to

indicate quit. You will be returned to the main EDITor

menu. You can quit the EDITor, change another symbol, or

UPDATE your graphics screen with the changes you have

already made. Before you quit the EDITor, delete one of the

. nodes (REG, QUE, or STA), and UPDATE the graphics screen.

Quit the EDITor and try to replace the empty spot left by

the deletion with a new node by first locking x or y and

then selecting a node symbol (REG or STA).

Experiment with the EDITor and LOCK commands. The more you

do, the better you will feel about this program.

You have now been introduced to all the commands/symbols

that will enable you to draw a network. Once you have

4. 139

-,p,,.< ," .. - - .. ,. .. - . . •'-: --- . -.-. .. ,.'. .. ,. .. ,,-. ,,., :, ~ ,, , ,-

completed a network to your satisfaction, you can GENerate

the OGERT source code. This is where the real savings (time-.. ...

" and frustration) appear in this software package. By

• selecting the GEN command you enter a new program
N',.

,. automatically. It starts by asking you which file you want

to load. Respond by typing the name of the network for

which you want to GOBerate source code. The program loads

- the named network, and then begins asking you a series of

questions. You will recognize these as fields in the

General card. After these questions, the program writes the

source code to a text file with the same prefix as your

network's name and shows you exactly what was written to

this file. Finally you are automatically taken back to the

graphing program (OGERTNET) where you can draw another

1 fr network, GENerate more source code, or quit the session.

Exercise #4

."

For this exercise, practice any of the commands/symbols you

1%J want. Above all, try the GENerate command on several

networks. You might want to draw a network, SAVE it,

GENerate source code, EDIT the"network, SAVE it, GENerate

41 source code, etc.

h.', 140

-I.

-2.. ' ' ,_'.'. " " . . . """""""-" .. '• ' ," , . . , """"""' ' ' ' .". .". . " , ." , . . """'''''' ...- ' . i
"

Conclusion

In order to make back-up copies, delete unwanted files,

perform other general Apple Pascal disk operations, you w

have to know a little about the Apple Pascal Operat

System. Since this manual is not designed as a text

Apple Pascal, you are referred to the following manuals:

1) Apple Pascal Operating System Manual

2) Apple Pascal Language Reference Manual

Don't get discouraged if you're not familiar with APi

Pascal. As stated in the Introduction of this manual,

K" don't need to know Apple Pascal to draw OGERT networks

generate source code with this software package.

You have now been introduced to the full range of commani

and symbols of this sosftware package. Remember to pract

with your tablet. As you do, you will become more skillfi

and simulating will become easier.

4'1

.-.-

- .%4. 4

.---0.- - - - - ' -. - - - * -

1. "AlI About Personal Computers". D'Datnn. DataPro
Research Corporation. Delran, N.J. (April 1981).

2. &ppla Rasczal Ianguaga Rsis sna tdanaals. Ap pI e C omp u t e r,
Inc. Cupertino, California, 1980.

3. apila Plascral OQparaJing L .xstam Ra.1iaraaa tLiaual. Apple
Computer, Inc. Cupertino, California, 1980.

4. Bylinsky, Gene. " A New Industrial Revolution Is On The
Way," Eon±una: 96-104 (Oct 1981).

5. Clark, Thomas, Lt Col. L-.tc±aa n SU 4 ., S.tasm
Simulai _on. School of Engineering, Air Force Institute
of Technology, Wright-Patterson AFB, 1983.

6. Conway, Richard, David Gries, E.C. Zimmerman. Q Eaimar-
an Raral. Cambridge, Mass.: Winthrop Publishers, 1981.

7. "Desk-top Computer Aided System Designs Any DigitalSystem or Component," t±LII.aax Elac±nonic.-CYnntaa

maamsLas: 60+ (Oct 1982).

8. Dorce, Lawrence A.. "Bringing CAD Closer to the Elec-
tronic Designer." COMPCONS, IEEE. pp 255-259
(Spring 1982)

9. Ellison,David, Irma Herschdorfer, Jean Tunnicliffe
Wilson. "Interactive Simulation on a Micro Computer."
.Simjn. nn,, k.L 32: pp 161-175 (May 1982).

10. Gapbizs labialt Dx-aations ad Rsipaaanz.&a fAnual.
Apple Computer Inc. Cupertino, California, 1979.

11. KellerJames H.. " A System Design Tool For
Automatically Generating Flowcharts and Preprocessing
Pascal," Wright-Patterson AFB,Ohio: Air Force Institute
of Technology; 1979. Master's Thesis.

12. McKenney, J. L. "A Clinical Study of the Use of
a S i mu I at i on Mode I." Iha Juona. n1 Lnzas.tria.L
Eng.iaarLng.L .nJ. XL.L. No. 1, (Jan 1967) .

13. McLeod, John. £imula~inn. McGraw-Hill Book Company.
New York, 1968.

14. Pritsker,A. Alan B.. Uodaliag aad SaaLs.Ls Us.Lag 12=
?. Gart Nalwoaks(Second Edition). New York: Halsted Press,

1979.

142
.--

,* 2

a- 15. ScalIon, G.M.,J. A. Grupe. "Functionall- riented -. tern

Simulatior for Computer Ai ded De i -ri of Sof twar...
,-1.j' .' .; Hardware Systems." .-LmI l ±_.t.ta IYol 2,:.3,4: pp 51-6

(Winter,Spr i ng,Summer 1978'.

16. Schoderbek, Charles G.,Peter P. Schoderbek, Asterios G.
Kef+al1as. tiaagamantl Sxstams ConcapLItuai Conas.Ldanat.Loa
(Revised Edition). Dallas,Texas: Business Publications,
Inc., 1980.

17. Shannon, Robert E..a ysars S&Lmfla.Ln.za- ±ba Sat and
Saciana. Englewood Cliffs, N.J.: Prentice-Hall Inc.,
1975.

18. Sippl , Charles J. tinn £nmpu.an hdbmk. Mason

Charter Publishers, Inc. 1979.

19. Sokol , Dan. "Computer-Aided Drafting with Apple Pascal."
-BLY-E. pp 388-429. (July 1981).

20. ------- "Notes on Absolute Location Interfaces to Apple
Pascal." BYTE. pp 324-325, (September 1980).

21. Spoonamore, Janet, Kenneth Crawford, Edgar Neely, Jr.
"Computer Aided Engineering and Architectural Design,"
Tha U1bLLtaz. EnEgLnaar_,74: (Apr i l 1982) .

22. Sutherland, Ivan E. "Computer Displays." Scientific
American. (June 1970).

4%143

-- II

-F W7 P .- - . .- '-i V

I. I TA

Captain Gary M. Anderson was born on 24 December, 1952

in Mt. Pleasant, Iowa. He graduated from high school in

Wichita Falls, Texas in 1971. He attended Parkland Junior

College and the University of Illinois, studying Electrical

Engineering. In 1977 he received a Bachelor of Science

degree in Accounting. On May 18, 1978 he was commissioned

into the USAF through OTS. He was stationed at Hanscom AFB

as a Budget Officer and Program Analyst for ESD. He then

spent three years at Eielson AFB as the MWR Financial

Management Officer. In June 1982 he entered the School of

Engineering, Air Force Institute of Technology.

Permanent address: 2410 Carrelton
Champaign, IL 61820

144

•,, i; .¢.i ,'.,,,,,'. ', * . - . " I,. . - - - - - - - - - - --v- - 4',4<4r . .< .,, " < r .V:c(Ct? .V'V.W ; " ,. :;"-,,

Captain Chris R. Commeford was born on 3 January 1952

in Honolulu, Hawaii. He graduated from high school in

Kailua, Hawaii in 1970 and attended the United States Air

Force Academy. After graduating in June 1975, receiving a

Bachelor of Science degree in Engineering Management, he

entered pilot training at Columbus AFB, Mississippi.

Receiving his wings in September, 1976, he became a B-52

44

pilot sCa ingChrs Rt Momtm Fd ws orno at 3 Janu ar 1

inB Honoulu Hawaii Hoenern gated frmhgSchool ofEgneig in

Force Academy.e AfTecgrauatgy in June 1975eciin.

enteredPilteranng atdes ColumbusAS MissPpace

Kaneohe, Hawaii 96744

145

jt'

4t"
Si

Nit

N
01*1.

"r'- mr,

'4 A

Tj

lip,

X

4.

Ail

i

41

"PIP

1-7

