AUTOMATED Q-GERT SOURCE CODE GENERATION USING COMPUTER 1/2
AIDED DESIGNCU) AIR FORCE INST OF TECH WRIGHT-PRTTERSON

AFB OH SCHOOL OF ENGI.. G M ANDERSON ET AL. DEC 83
AF1T/GOR/05/83D-2 F/G 972

g
~>

u!

LR

2 e
o

g
¥
33,

A, e

L

D 2 P
AN

LA % b

o XD

e W

1

3

-
1

B

S LT e e A A A DR A b v e ik VRNV Vs Slaa

| A R . |
Y

| E53 22
m —

& 20
E—

o
FEEER

———

L]

——
EFEEE
re

1.8

E .
s s pe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS ~ 1963 - A

", N '- T, o w - - Y
AT IR I N N P X052 N A #0273

" - -
- -'-'.'-'.'.-.-.-.-.‘-‘

Soe, DR S SRS
NN NN -'j

Vou IS
O
Aty

A

AFIT/GOR/0S/83 -

s
s

poc

AD-A141 127

Y il? I.l‘ ;

X

@

X AUTOMATED Q~-GERT SOURCE CODE GENERATION
t;é USING COMPUTER AIDED DESIGN

| THESIS

’;; Gary M. Anderson Chris R. Commeford
b od Captain, USAF Captain, USAF
]

: AFIT/GOR/0S/83D~2

o

Py

-

o
2

-
o

n

LE copy
O
—
0O

MAY 1 & 1984 .o

Approved for public release; distribution unlimited

84 05 15 oosm

| Dol (e |
o

SRR _“'_.'-'\.'$q‘$ A \v\!\- < ,~‘ F'-"' ~

N LY s

Sl LA AL v

>

B A At 2

L

Pttt (RL
PRI YT N3

i

P s Sl
aTa"e"at

by
-

R - |

e e I~

Al14T 127

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

4 v ” g
AR AT GTARN AR R A M AR

TR

&1 REPORT SECURITY CLASSIFICATION
sl unclassified

1b. RESTRICTIVE MARKINGS
none

28 SECURITY CLASSIFICATION AUTHORITY

20. DECLASSIFICATION/OQWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AFIT/GOR/0S/83D=2

S5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
School of Engineering (I applicable)

Air Force Inst. of Tech. | AFIT/EN

7a. NAME OF MONITORING OARGANIZATION

6¢c. ADORESS (City, State and ZIP Cods)

Wright-Patterson AFB, OH 45433

7b. ADDRESS (City, State and ZIP Code)

8s. NAME OF FUNDING/SPONSORING

8b. OFFICE SYMBOL
ORGANIZATION (If applicable)

9. PAOCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)
See Box 19

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK UNI(IT
NO.

12. PEASONAL AUTHORI(S)
ary M. Anderson Capt USAF

Chr

is R. Commeford Capt USAF

TYPE OF R.EPORT 13b. TIME COVERED
MS Thesis

14, OATE OF REPORT (Yr., Mo., Dey) 18. PAGE COUNT

TAW IFR 190-I%,
Y ey Y

pmend

for Research and Professional De

FROM T0 1983/Dec/1
18, SUPPLEMENTARY NOTATION proved azmﬁﬁirm&a
%‘E‘ WOLAVER
COSAT) CODES 18. SUBJECT TEAMS (Continue on reverse if denily
GROUP SUB. GA. Automated Programming, 3omputer Abgd
02 Computer Graphics, Minicomputers, Simulation
Langquages

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

AUTOMATED Q-=GERT SOURCE CODE GENERATI
(unclassified)

Advisor: Lt Col Peter Bobko

ON USING COMPUTER AIDED DESIGN

} :ﬂ.\ DISTRIBUTION/AVAILABILITY OF ABSTRACT
’I

»

'WeLassisig/UNLMITED (X same as mer. O oTicusers O

L]
>,

21. ABSTRACT SECURITY CLASSIFICATION

unclassified

220. NAME OF RESPONSIBLE INDIVIDUAL
Peter Bobko Lt Col USAF

OD FORM 1473, 83 APR

AT O Y \\ PRI AN WA SR S SR

COITION OF 1 JAN 73 1S OBSOLETE.

22b. TELEPHONE NUMSBER
{Include Area Code)

(513) 255-3362

22¢c. OFFICE SYMBOL

AFIT/EN

unclassified

SECURITY CLASSIFICATION OF THIS PAGE

‘_.. ".-.'_- & "

5

e

unclassified
2548 SECURITY CLASSIFICATION OF THIS PAGE

N
vy Abstract

[N

t N

» The Pascal computer program developed within, uses an Apple s
N microcomputer and Graphics Tablet to allow an analyst to create a Q-GERT

; simulation network using computer aided design techniques. The analyst

I need only select commands from the Graphics Tablet's programmed memu and
hias answer questions regarding the symbels to be drawn. The program will

}2_ display the network on the high resolution graphics screen and generate

2 a text file containing the computer source code for input to the Q-GERT
Analysis program residing on a mainframe computer. The basic concepts

of Q-GERT are incorporated into the program. This includes source, regular,
queue, statistic, and sink nodes along with activities and parameters.

o The program was written to be expandable for further development to include
more complex concepts of Q-GERT,

’

ﬁflﬁ
Lt

sy

.
~

i AT

ot
W

Ay
ApLr

8313

4'

L—’—‘; —— p—
unclassified)

% SECURITY CLASSIFICATION OF THIS PAGE

R Y D N 2 N s N 2 I e A e g g e N NN e N L]

L X

A T
o LY A

8]

e 2
T R e &)

ApAriay

AL AR

o EBE iR

M e R

5 B e

Lo i e o -l i A) v <
RS G L AL LR SA TS tei X & VLN « Ve T dtuYa®s Ca AT aN T N N LRV,

AFIT/GOR/0S/83D-2

AUTOMATED Q-GERT SOURCE CODE GENERATION

USING COMPUTER AIDED DESIGN

THESIS

.............

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for a

Masters Degree

Gary M. Anderson Chris R. Commeford

Captain, USAF Captain, USAF

December 1983

Accession For
pr———

NTIS GRrasI
DTIC Tap

Unannounceq]
Justificnty on___

v ————

By. e
Disf:_zjibz:ti on/

Lt

Availability Colng

Approved for public release; distribution unlimited

Breface

6]
hd Accessibility of microcomputers has brought increased
é&l computing power to an analrst’s fingertips. The purpose of
5‘2 this research is not to teach Q-Gert, but, to give an
analyst familiar with @-Gert a useful tool making simulation A
e ' oo T >5/¢,-/2
T convenient and error free. For a complete description of Q- vee
;i; Gert we refer you to Modeling and dnalysis Using Q=Gert
i Natworks by A. Alan B. Pritsker. If an analyst has available
}ig to him an Apple computer and graphics tablet, using our
iik program, he can create basic Q-Gert simulation models. The
‘?j network diagram is displayed on a high resolution graphics
?ﬁ? screen and the program will generate a text file containing
Z%g the computer source code that can be sent via telephone to a
e mainframe computer to run the Q-Gert Analysis program.
f%; A major side effect of any thesis is the learning
‘E% proces§ of conducting research. We learned a great deal
;fi about the methodologr of research and, equally as important,
%jl how to work as a team. With the guidance of ocur thesis
%;' commi ttee, LtCol., Bobko and Professor Richard, we learned
t: more about the Apple computer and Pascal then either of use
%?% dreamed possible. Having no previous Pascal programming
Qﬁé experience, we spent many long hours agonizing over
:;j seemingly trivial problems. LtCol. Bobko was our quiding
é%; light helping to solve many undocumented peculiarities of
ég Apple Pascal; while, Professor Richard gave us valuable
;;: . insight to the available data structures we needed to store
SRS

ﬁ*% ' all the information to create the source code. Many thanks
Wy ‘4)

1A At RAng Gih 4 e, '~ - A SR RL AR A A T o W (T (v W W i A * ot i &\

5

%Q‘ to the both of them.

i§§‘ ﬁé} We must also thank our familiesy Pam and Tricia
Y Anderson, and Susan and Donald Commeford for their patience
;::: and endurance when we were immersed in our studies.

,;‘

Gary M. Anderson
Chris R. Commeford

PN RN AN 00 SN Y Y, G G G S (e N i

..

-

2
o Iable of Contents
. Page

Pl‘e“ac@ ® 2 8 0 8 0 9 8 858 E 8B OV e P E G AE S E S e EN 8 WS S80SV RNAPEE s il

List o* Figures 8 8 8 5 26 5 8 0 a9 58 ¢S 8 0B 0 8 sADNENSE RS SS0En NS SE vi

st Y
P
e

Abstl‘act l‘..l..l.llll.llllllll.llll;.lllll....lll.lll Vii
3 I. BaCkgPOUﬂd 2 8 8 58 0 8809 20808 PSSO S S S ARSI PEET GRS SRS 1

Graphics, Simulation and

: the Microcomputer "c.ciiersosncrsosessncnnnsa

7 Why Microcomputersccsvescsssscascaasaans
Simulation and Microcomputersccvesssee

= Graphics and Simulationciivvenrinnanns

NN

;L II. Statement of the Froblemiviiiiviiiinnenanans ?

e

H Regsearch QUestionNs ..iciervsrcesnsccansansasns 2?
Research Objectives c.ceecsvrencsscancseenesess 10

:'ﬁ; Materia]s S % @ 0 % & 2 % ® 0 & 0 9 0 0 8 2 8 T S % 8 & 3 P B B U 8 O 8 F 0 11

’{:.i; GpaphiCs Tab‘et @ 9% 8 8 9 ¢ ¢ ¢ 8 §F 9 ¢ 0 g 0 ¥ Uu B S 6 PSS 11

;ﬁf PasSCal ..cvevscsencosssnccnsscsnsasssesses 12

clb IIl. Program Developmentcvesveseserssesssnsansss 15

¥ Data Structurecvicreececistticietrennass 17
P Graphics Tablet Setup .iieeeeitercennssnsneses 23
ey Graphics Tablet Layout ...ccerennsncanceness 24
e Program INITLOGIC ...cvvevencscnsocnncnsaass 25

. Program QGERTNET .vveeeveeenececancanennnes 26
BETXY eoeneenncennennsnennssncsnnnnnees 28
MYPLOT eveeeecnneransonnseansanennasas 30
@ MENU & veennnerennsasensesonnaesnsnsens 32
+ SOUREGINFO,STASININFO,

) ACTINFO,QUEINFO +vvevreneensrnnsennnees 34
SAVESCREEN «oveveernnsnnssnoscensnncsnes 42
, LOADSCREEN +1vvveerenrecsensesseensnenes 44
g EDITOR tvvvevnesvostnsscnrscansannanens 46
e Program CODEGEN ...tcvestencsrsncnsncscsnrees S0

235 Units 2 ® B 5 9 0 5 0 0 2 0 8 0 B PP & TR S O SN ¢ P 8 AT 2 AR BB OO 53
P :

iy

R IV. Program Capabilities and Limitations 55

i V. Conclusions and Recommendationscececeeeeees 958

App.ndix B‘ Unit PEEKPOKE 8 e 8 0 00 ¢ 8200 2 e AT R OsDPDPEEQCDNRDE 63

AN

s T e

&%ﬁ Appendix C: Program INITLOGIC ..iiveeriesosstesansneess &4

o e

App.ndix D' Program QGERTNET 4 8 8 9 9 88 0 28R 0SSR S R8N e P 68

I3
-

::{w PR A
i
3 RO S

ot Sy i

Ry

o i
e

s e T e
e

PP
L

%
I
£~

AL

Appendix E: Program CODEGEN

Ar-endix F: User’s Manual ..

Bibliographyevevnnannns

Vita

e
I

TR

od™

s
*a
Yy
ik

e
1‘2
[

Fi
1.
2.
3.

4.

i1.
i12.
13.
14.
15.
16.
17.
18.
19,
20.
21.
22.
23.

24,

25'

List of Eigures

gure age
Macro View of Source Code Generation System 16
Record Fieldscovesvencsscsssusnsnscnsananeass 18
Adding a Record to a Linked List ..ccovcvvnseseaes 20
Traversing a Linked Listc.00cveerivecacsaass 21
Deleting a Record from a Linked List seveveenseas 22
Graphics Tablet’s Functional Areas ..c..cceeesaes 24
Combining Shapes to Form a Regular Node 25
General Structure Diagram of GGERTNETces... 27
Logic Flow of QGERTNET’s Main Program 28
Logic Flow of Procedure GETXY ...icoveinveransses 29
Logic Flow for Procedure MYPLOT ...ceicesrvsenses 31
Bottom Row Menu ...icivieseeenssenesancessssassanes 32
Rows 1| and 2 of Tablet’s Menu ...vesvecannnssenes 33
Logic Flow of Procedure MENU ...,.ccescessserannes 34
Available @-Gert Symbol Inputcoivcenencaess 36
Distributions and Parameter Values ...ccitveeeeee. 36
Text Location within a Regular Node¢cceve0e.. 38
Logic Flow for Procedure SOUREGINFO¢cc0c0.. 38
Logic Flow for Procedure ACTINFD ..iecevcnccecacs 40
Logic Flow for Procedure OUTDATA ..iccoesssseearss 42
Logic Flow for Procedure INDATA (ccisveeencncsnes 45
Logic Flow for Procedure EDITORccoressevsee. 48
Logic Flow for CODEGEN’s Main Program.....cesveee. 92
Lisiting of the Procedures Comprising
Each Program Unit ..cvevieecessnersassnsacasasaasrs 93
Sample Network Display and
Associated Source Code:coevevtencesssernanss w6é

LS ST 17 .
s, n‘lul".i-’*‘

AF1T/GOR/DS/83D~2

an abstract

*A The Pascal computer program developed within, uses an

Apple microcomputer and Graphics Tablet to allow an analyst

to create a Q-Gert simulation network using computer aided

design techniques. The analiyst need only select commands
from the Graphics Tablet‘s programmed menu and answer
questions regarding the symbols to be drawn. The program
will display the network on the high resolution araphics
screen and generate a text file containing the computer
source code for input to the Q-Gert ®Analysis program
residing on a mainframe computer. The basic concepts of G-
Gert are incorporated into the program. This includes

‘g’ source, regular, queue, statistic, and sink nodes along with
activities and parameters. The program was written to be
expandable +for further development to include more complex
concepts of Q-Gert.

D

A

2
P IANI L

;
%
A3
b

J"‘.‘ ';M‘.

ROAY

O
$..:.

AT BT RIF T FOL NS [t P AR P i it AU A RIS S] A T

AUTOMATED Q-GERT SOURCE CODE GEMERATION
USING COMPUTER AIDED DESIGN

I. BaACKGROUND

Simulation has been used for many years to understand
the behavior of systems. It has been applied to a wvariety
of manufacturing, service, and defense industries to
evaluate wvarious strategies for achieving goales or sclving
problems. Many times direct experimentation is inappro-
priate when trying to solve problems. It may be disruptive
to the organization, costly, time consuming, or impossible
to explore an alternative in real life experimentation.
Therefore, simulation may be appropriate if no complete
mathematical formulation of the problem exists, or the
analytica:. method needed is 80 complex that simulation is a
simplier solution method. Simulation models also allow the
exper imenter to develop an intuitive understanding of the
system and ‘feel’ for the problem. McKenney [12] had the
following to sar about using a simulation mode! to under-

stand the real system:

When the manager had achieved a viable wunder-
standing and began to manipulate the model, he

cortinuously gained new insights In* s opera-
tic He desired the mode! to tes* 5 ariety of
al: ‘atives 80 he could evaluate ~ .o new 1n-
8i . In essence, he was using tre model to
am v his manipulative sk:1' by explicitly
id- trying all important ramifications of a given
change., Because of the complexit- of the svstem

it may have been possible for him to do this on
the real system, but very tedious, and he probabiv

" Coaia.) . . . o . o Madal i et o 5
A it A k PA Yy B} '« P A A A A A e DAL " L R LA . LR S ST RO N KT _‘(.(_‘

would have made errors, Thus, he turnsd to the
model as an evaluator of his new inzights. It is
conjectured the model design will never be
. stabilized, but continue to develop in response to
- the manager’s new understanding.
b2
3 Schoderbek ,Schoderbek,and Kefalas (18] posed a systems
-'_‘-
J '.\
o science paradigm which can be used for problem solving with
N simulation. First, conceptualization, where the system being
0y
iy
2 studied is defined, boundaries set, restrictions applied,
W and measures of effectiveness identified. The system s
P~ analyzed as to its place and interaction within it’s
o
“~
iq environment. An output of the conceptualization phase of
.
i }‘
f¢ simulation iz a flow diagram linKing all the major pieces
A,

into an accurate picture of the working system. Next, the

‘5._

. sk B v 0
Ly
alal

analysis and measurement phase wherein the system is

" - expressed in quantifiablie terms enabling measurement of the
‘Qf CED changes that will occur when the system is manipulated. This |
‘fi phase also entails structuring the problem solving technique
5? to measure and analyze the changes under different
ﬁa conditions imposed on the system. Finally, computerization
;g involves describing the system using a simulation 1language,
;3 the source code, and running this code on a compatible
F; computer to generate results. These three steps, are
| 2 iteratively refined as the simulation model is developed.
;S For instance, while translating the model into a computer
EZ; source code, a problem may arise in the logic fiow of the
E original model. The analyst must go back to the conceptual-
}: ization phase and attempt to redesian or reformulate the
q~ Aﬁb model and go through the 3-phased process again (177,

iy
o~
4
23
"%ﬁ & popular simulation language is Q-Gert, deweloped by
5&3 gﬁgﬁ Or. @Alan B. Pritsker as a "network modeling wehicle and
i~‘ computer analyst tool [143." The language is a generaliza-
s§§ tion of PERT and an extension of GERT, two specialized
3?% simulation languages, enabling queuing and decision capa-
N bilities to be analyzed by computer simulation. Q~Gert has
,EE been successfully used in studying manufacturing, service
kﬁ% and defense systems. "It provides engineers, business ana-~
2k{ 1¥sts and operation researchers with a graphical vehicle for
Laﬁ modeling, analysis, and communicaticn [141." Q-Gert net-
,;% works are models of systems consisting of activities,
:t, services, and queues. Through computer simulation using G-
igg Gert, probiem solving and risk analrsis can greatly enchance
ﬁ?ﬁ e the accuracy and reliability of information available to the
«.'_« @ decision maker.
o)
;? @-Gert is wused in all three phases of the system
jﬁ% science paradigm. First, in the conceptualization phase, the
;E logic +flow layout of the system is represented using G-Gert
:3 symbols which specifies relationships between parts of the
;Zi s¥stems and the overall flow pattern through the system. The
&3: logic flow diagram is in a form enabling the analyst to
;3 communicate to others his concept of the system’s structure.
;E? Feedback from the decision maker and acquired Knowledge
?;' about the system, may necessitate a change to the madel.
é%: This change may entail redefining relationships, thus,
B:i changing the logic flow diagram to reflect the modified
:;5 fﬁl version of the srstem. 1In the analysis and measurement
i? - phase, the Q-Gert language allows specification of distribu-
sv"

~

.
I
w

- ' .
X

'l.f
-

«
v
U
s
’
s

£3
.

g

»3& tions defining the transaction flow patterns through the
;;a ii; svstem, ieg. rates of flows between serwvices, combinatians
;qﬁ of servers at activities, or queues space available prior to
!:é an activity. Finally, the graphical symbology of the net-
:éﬂ work is manually translated into Q-Gert computer source code
i:: to be run on a computer system able to handle the entire Q-
‘4? Gert Analysis program.

.ﬁ From the authors’ personal experiences, the transiating
l;; of the symbology to computer code is tedious, time consuming
;&; and often riddled with input errors. Through the refinement
 §3: process, even if the computer source code is accurate for
%;: the original model, incorporating any changes will again be
;§E susceptible to input errors and the resultant time spent
‘f‘ éga debugging the computer source code.

Geaphics, Simulation and the Microcomputer

: Computer aided design (CAD) has been used by engi-
neering disciplines since the middle 1940°s. Architectural
engineers use CAD to design building layouts incorporating
other computer analysis programs to evaluate layouts against

- existing regulations, and building codes (211. With the
;f ability to change layéuts, testing different room sizes,
*f window and door placements and even construction materials,

the designers can ‘optimize’ the layouts. Using CAD in

';‘ conjunction with analysis programs that compute material
;TS and labor costs enables the architectural engineers to

Ao accurately estimate the total cost of a design. Utilizing an

)

L editing capability, changes can be made to a design and the

3 2R
a3 }:‘?".1

&
SIS
P4

z

l"‘ 3
Ar L L7

v LA
%'.-A

e
g n

b 2]

®

oy

L} R
OO ORI AN

analysis accomplished in minimal time {41, Circuit
designing alsc prospered through the use of CaD. Electrical
engineers conceptualize circuits then simulate their poten-
tial capabilities with additional analysis programs [(81].
Time is a vital commodi ty saved by using CAD. Another advan-
tage that emerged by combining CAD and analysis programs is
the ability to construct and test complex structural designs
using only computers without having to actually build a
scale model or full scale prototype for testing, again
saving time and money [21]. The use of CAD in numerous
engineering disciplines is expanding rapidly; however, CAD"s
use by operation researchers is virtually nonexistent.

Use of computer graphics by operation analysts is
predominantliy the depiction of results of the analysis
consisting of graphs, charts and tables ([22]. Computer
Jraphics has not been used to develop the computer models in
the conceptualization phase. The c#pability to instantly
express visually the analyst’'s ideas would save both his
and the client’s time. Enhanced communications through quick
pictorial representation of the model being analyzed also
helps eliminate discrepancies between the <client‘s and
analyst’s concept of the system ([14])]., This interaction
enables a better model to be developed and helps the client
see how his system ‘really’ functions.

The front end use of computer Qraphics in operations
research techniques is limited although its potential use in
simulation is most pronounced. This research will develop a

useful tool for modeling systems using the symbolic Q-Gert

AW WO W -~ . RS T ',-_. R SO SRR LY RN '.,'-,' N N \ a,

simulation language. Though use of microcomputers, we will

make this %00l accessible to the analyst and sasy to use.

P
= Whx Miccacomputecs
WY
13 Today’s operations researchers must have access to a
R computer to effectively analyze complex problems. Often the
:ﬁ% ability to utilize mainframe computers is cumbersome, due
?§ partially ¢to limited terminal access, making modeling and
2 analryzing a slow process [(7]. With the advent of the micro
d% computer, the gap between simple calculators and mainframe
”% computers has been bridged [18]. The micro computer's flexi-
E;‘ bility allows the computer to be used as a stand-~alone
§§ system for solving small problems or as an intermediary to a
;3 _ mainframe computer acting as a terminal 1linked to the
o d" larger system. Used as a remote terminal, readr to run
{fﬁ ‘source’ programs developed on the microcomputer are sent to
:SQ the mainframe computer for execution. The main frame
yg computer with its large memory capacity can run the program
ség and send the results back to the microcomputer or print the
éﬁ output at a central site. The linkage between the micro-
:2; computer can be accomplished through telephone lines or a
iia direct connect system. With a microcomputer at his disposal,
j&: the analysts’ desk becomes a complete work station with the
i:; accessibility of a calculator and the power of a mainframe
E%E computer at his disposal [11].
:Rﬁ OQur purpose is to use the microcomputer as an inter-
EF .%E; mediary Dbetween the analyst and the mainframe computer in
%;: simulation applications. Advantages of using a microcom-
i
e é
b
: P P G G LY. £ LY G L N T R W S S RIS TR Y

-
Y

)

3 évq puter includes minimizing mainframe computer usage in the
;M‘ e designing, editing, and debugqging stages of programming
:g [18l1. A mainframe computer is not needed to process the
ﬁ? graphics and generate source code, a microcomputer can
= handlie this task. The computer source code can then be sent
Ej for execution to a mainframe computer when complete or at a
%

later time.

Simulation and Miccocomputers

*Simulation is the development and use of models to aid

Lo

in the evaluation of ideas and the study of drnamic systems

and situations [13)." Presently the use of microcomputers

S

P2

in simulation is 1limited to small repetitive analytical

cz’ problems. Each model developed is for a specific analysis
N and is composed of mathematical expressions and mani-
%% pulation [15]. There is not a powerful simulation analysis
b program such as Q-Gert’s available to run on a microcomputer
;ﬁ: because of the lack of memory capability that large simula-
;1 tion programs demand.
£
E% QA picture is worth a thousand words" has ample applii-
:ﬁi cability to engineering work.,. A schematic is certainly more
E;. meaningful for use in communicating ideas between engineers
jzﬁ and managers than a complicated mathematical <formula ex-

- a

plaining the same ideas. The schematic can focus attention

W

‘a-.'"; t ‘
;

on relationships and interdependencies more quickly. A

manager not familiar with the intricacies of model building

RS>
- LA A

7

I‘IO d

RN N 00 AT SR SV 28 0 AT SO I

ety

or s o e b

1

- L)
aigie

i&&

A A SR

-

- c"‘t’ !

R

i

Y,
.;:&,’,-

can visually comprehend the ideas being explained.

In simulation, computer generated graphics is used only
in the presentation of output [?]. Histograms, graphs and
bar charts are used to explain the results of the simula-
tion. Understanding the output of the model is paramount to
a decision maker, but a graphic representation of the system
being modeled is equally important to his understanding of
why the particular results were obtained. Computer graphics
incorporated as a means of input to the simulation program
will give the decision maker a schematic of the system as
well. Computer graphics can be used effectively for concep-
tualizing srstem designs, communicating with clients, as

well as, input to a computer analysis program.

NN O SN A SE NI SN,

BV C. W g e gb ! Ry 1

, @ 1. Statement of the Bcoblem

é» The Ffoundation of any Q-Gert simulation is the network
;f depiction of the flow of transactions through the system. As
?i changes or alternatives are considered, the analyst should
ﬁf modify the graphical representation of the network then
g& change the computer source code. The manual translation of
é@ Q-Gert symbology into the source code frequently results in
l% errors due to the rigorous input requirements of the GQ-Gert
;% language. The ability to develop and then change a network’s
:j . graphic display with automatic generation of the corres-
e ponding computer source code necessary to run analysis
gi programs would create substantial time savings for an
g& .. analyst.

| @

- . Research Quastions

i

75: This research effort will attempt to eliminate the
fi basic problems discussed above answering the following:

éﬁ i. Using computer aided design techniques, is there a way
ﬁ% of placing Q-Gert symbols on a microcomputer screen usingk a
- graphics tablet?

g% 2. Using an appropriate programming language, is it pos-
%ﬁz sible to automatically generate Q-Gert computer source code
;i from the graphical representation created in question 1?

?ﬁ 3. Is it possible to edit a previously drawn network and
i? incorporate the same changes to the computer source code?

,S 253

B A LA
A Sty)

a b PN
B AT
4 o

Y 4

,
i

% &
A

S w7 ne he WEW S .
e O
SRS

v e
o
P

BRI

R A ke,

A
P
AT

AR

4 s S A
< ',:x-"».: g i . PN
Pt 5. R ko

I I~ L
T et Pl

LI
B

e
> s

|
XX

A PR
o e - J
7 “?.f‘(:

Q 2 e S

i

& 4
1% 23 240

B N %

Reseacch Ohjectiues

The overall objective is to successfully execute a Q-
Gert model whose computer source code was automatically
generated wusing computer aided graphics. The source code
generated will be sent to AFIT’s CYBER computer system to
run the QG-Gert Analysis program,

The research sub-objectives are:

i. Using a graphics tablet with an Apple 11+
microcomputer, represent a G-Gert network on the computer
screen.

2. Using Pascal, convert the graphical represgsentation on
the screen into a text file containing the complete and
accurate Q-Gert source code.

3. Edit a previously drawn G-Gert network and update the
appropriate text file containing the source code
automatically. This will necessitate a save and reload
capability.

4. Send a text file to the CYBER and successfully execute
the simulation model.

It would be desirable to include the full range of Q-
§ort symbols in this effort. However, due to the complexity
of some symbols and the Timitation of time, not all of the
symbols may be included. It is the intent of this effort to
achieve all of the afore mentioned objectives on at least a

subset of Q-Gert symbols.

10

R e - v P il « LW e Wy M
T LW W e W WV V] Ve M T Ve Ve (WLTR WL, 8, T e P S R IR e U P P R R TP D i S A

Matecials

3¢g This research effort will use computer aided design to

draw a Q-Gert natwork on the high resolution screen of an
Apple II+ microcomputer. At the same time, Pascal is used to L
develop a data base which will be partially built by the

user answering questions presented on another screen.

Finally, the data base will be manipulated to produce the

finalized source code which can be sent via telephone lines
to the CYBER mainframe computer which will run the Q-Gert
Analysis program.
A listing of the equipment needed to run this program
is as follows:
i. Apple II+,464k RAM, two disk drives
2. M & R Enterprises Sup’r‘terminal board in slot #3
Q 3. Apple Graphics Tablet_in slot #5
4. Apple Pascal operating system
S. Two moni tors

é. Modem to communicate with a mainframe computer

Geaphics Tablet.

The Apple Graphics Tablet is a device that converts the
position and movement of a special pen into numbers which
the computer can understand. The software associated with
the tablet tells the Apple computer how to draw shapes,
lines, and 1Jletters on the high resolution graphics screen
using the information input from the tablet. These programs
turn the combined computer and tablet system into a

’ sKketchpad or engineer’s drawing board. This particular

e Ra®a Wy " N '\ L0 5% e Y Y '- e ?'- RS S "'5-\' "\l'.' ' ‘ “ Ay ,| f’ 7 ¥ .0| N ‘.‘ . .T.S'mv,&‘ﬁfﬂ‘_\,\.\.{;*d

e

?, graphics tablet is primarily designed to work in a B&SIC
; . 43‘ language environment wutilizing Applesoft programe for
s - displarying the drawings on the high resoclution graphics
:I gscreen [10). In this capacity, there can be no mixing of
,::j graphics and text needed to completely illustrate a Q-Gert
g network without additional software. Apple Pascal, however,
*: has this capability with Turtlegraphics.

\1:,‘

N Pascal.

‘::;“z In addition to the drawing functions inherent in Apple
' . Pascal, a sophisticated computer language is needed capable
E?«!:?., of handling the task at hand. Due to the anticipated size of
z the program and trype of data structure needed, Appie Pascal
':“: was considered the appropriate computer language to wuse.
AR Q Apple Pascal has two memory conserving capabilities that are
5" essential to execute large programs on microcomputers with
J..) a limited amount of memory available.

o After the Apple Pascal system is loaded into the
:Zli computer, the memory available to execute a Pascal program
*‘: on the Apple Il is 20k of random access memory (RAM). Apple
:L’: Pascal has structures available to the user called wunits
3 that need not reside in memory unless they are being used
"f. [2]. Each unit is a collection of procedures and functions
compiled separately from the main program. Unlike standard
:3?,‘ Pascal procedures or functions, a unit can exist separately
;;?E from the body of the main program text and still be 1inked
o to a Pascal program’s object code at run time. The power of
X "

;;‘ ."?QS‘ 2 unit lies in its ability to house multiple procedures or
.- 12

5

Y b iepea- o, w et T et e e et e, o e’ o A A AT A A\ . T A SRR
>, »’ ‘ -F " > m, PO °, .'e g "\ o * > ""} \f‘. s\-.\)‘-'-.‘ WAL N, '\f {' "“. S

A > .
r-'.'. -T',:

functions, built in Pascal or assembly lanquage, under one

roof., A1l of these procedurses and functiocns are available
from within a Pascal host program. Additionally, units mayr
be nested within each other. By developing the program in
parts, each part can be made a unit; and, when a procedure
or function within a unit is needed by the main program,
only then will the unit come into the computer’s memory thus
minimizing the memory required to run the program. When the
unit is no longer needed, it can be removed from memory
until it is needed again.

The other major reason for selecting Pascal is the wuse
of the dynamic data structure called linked lists used in
conjunction with record data types [4]. A record is similar
to an array in that they both can represent a group of
elements with a common name. However, while the elements of
an array must all be of the same data type; integer, real,
string, etc., the elements of a record may be a mixture of
data types. Within the same record, one field may be
designated real while another may be designated as a string
or even another record. Individual fields of a record can be
accessed and similar records can be linked together +for
sequential access through a pointer system.

The use of‘arrays, that are fixed in dimension, sets a
limit on the size of the network. Alleviating this limita-
tion, the 1linked 1list data structure is expandable as
needed. For instance, if a network initially had S regular
nodes the number of components in the linked list would only

be S. If the network was expanded, additional components

13

X

A

ARE;

- "
£ o

E

would be added to the linked list only az required. If

arrays were used, memory would be allocated at the outset of
program execution. IFf the dimension of an array were set at
S0 nodes but only S5 were used, the memory reserved would
still accommodate S50 noaes that the array specifies. This
may necessitate 1limiting the size of the program or wunits
called by the program during execution. The linked list data
structure is available in Apple Pascal and saves memory over

the conventional array structure.

L NN -:t j
RIS ', OO LT

ABNIPNY -
‘s

IR
sy
foe,

e
" [
XALAAIIL

XX)2

. J"J _1‘—
XY XNWN

19

% &
A

|
"y

L

EELGRely LEGELOENENT

—a
=

The concept of Joynti. using a graphics tablet asrd =
microcomputer 18 not new, Can Sokol s article [1?7] cutlines
his use of interactive graphics for developing electrical
circuit schematics. Our program goes beyond Jjust schematic
displays, it will create a Q-Gert network and generate Q-Gert
source code from the user‘s graphical selections and solicited
inputs. The first step involved interfacing the graphics
tablet and the Pascal operating system enabling information to
be passed between the two. Once accomplished, the proaramming
to accomplish the stated objectives was started.

The system was developed in three parts. First, the Q-
Gert symbols to be displayed were developed in program
INITLOGIC. Then, program QGERTNET was develaoped to draw the
network; and, create and edit the data structure. Finally,
program CODEGEN tranéfnrms the information contained in the
data structure to a text file consisting of the desired
computer source code. Figure 1 depicts the macro view of the
source code generation system. INITLOGIC creates a file of
shapes which QGERTNET accesses to draw the network on the high
resolution screen, Then, QGERTNET creates files of symbols”
recorde which CODEGEN accesses to generate the Q-Gert source
code.

Two programming concepts built into the system are
expandibility and user friendliness. The primary requirement

to permit Ffuture expansion is the conservation of computer

memory. #As the program grows, available computer memory

" e | > & DE DA

s
H
A
P
E
S
A
Progranm C:::>'
. QGERTNET
N YIE
. M|C
i BiO
:n\’. 0 R
ﬂﬁ? L{D High Resolution Screen
?‘:-f S
ol
bt EE: Program
o CODEGEN
GEN,USEHiNgT,l£1,1984,1,1,10,5263ég; NODE
sou,1,0,1,D,M,L*
REG:Z,I,I,D,,L* REGULAR NCDE
c—"> sTA,3,1,1,D,B,N,N,L* STATISTIC NODE
QUE,4,2,,D,F,N,N* QUEUE NCDE
ACT,1,1,C00,1,5,1,1% ACTIVITY #1
ACT,1,2,N0,2,2,1% ACTIVITY #2
ACT,1,3,EX,3,3,1* ACTIVITY #3
ACT,2,4,UN,4,4,1% ACTIVITY #4
ACT,3,4,GA,5,5,1* ACTIVITY #5
ACT,4,5,10,6,6,2* ACTIVITY #6
PAR,2,3,0,0.,0,,0.8% NCRMAL DIST
PAR,3,2,5% EXPCNENTIAL
PAR,4,,1,0,3,0% UNIFORM DIST
PAR,5,3.0,0.0,10,0,0,5%* GAMMA DIST
- PAR,6,4,0,2.0,6.0,0.2% LOGNORMAL
P ,’1:'3 sin, s5,1,1,D,1,N,N,L* SINK NODE
b7 FINISH*
O
S
S Source Code

Figure 1. Macro VYiew of Source Code Generaticn System.

16

AR AT A ¥ o e T

.,,.
HNENNSS

A

e
"

. & %

TaIE,
AR A

4 p- I XALE LN

s
()
v
[}
-

A. l. g
A
s a &

s
S
PN
»
/

o P
‘: k"v

s AN
My

o

T A AT

. . . - men e § " . . . B AP% B e & NS e s~
.. ANAS Lty AR P LRI A e e P R R .

decreases unless steps are taken to minimize the regquired
memory to execute the program, To conzerwse memory, most
procedures are contained in umits which remain in computer
memory only when a procedure within the wunit is being

executed. Also, the proaram is user friendly. Through timely
and informative prompts, the wuser can quickly develop a
network and generate the source code. For <convenience, an
editing capabilit; was written into prog;am GGERTNET. This
facilitates changing the network design, as well as,
correcting accidental input errors. When the user is satizsfied
with the network developed, the data structure can be saved on
diskette to redraw the network or generate the source code at
a later time.

The following discussion will briefly explain the data
structure, layout and setup of the aApple Graphics Tablet

followed by the the logic that went into developing each of

the three programs.

LData Stouctuce

Pascal has a mechanism for creating dynamic variables
which are defined at compile time but only created during
execution of the program. Program QGERTNET declares records as
dynamic wvariables. Different types of records are declared
corresponding to the different Q-Gert symbols. Source and
regular nodes require the same information to describe their
function and parameters to the Q-Gert Analr¥sis program; there-
fore, these symbols’ records are of the same type. Statistic

and <ink nodes are also similar to each other while queue

17

N

."-\\..'I.\t '.. \."-.:_ . -; . . ~ .“".-.". '.\"'_.-...- N) - ..A.'

T TL I AL AR L O Y
P T S Y8 W o ST W NI N)

-
L3
(3
”
.
»
.
>
.
.
3
o
[
.

LAA

s

[<.

. J'

o

f: nodes, activities, and paramsters require separate record
d'.-: L)

;: Cﬁx- types to store their information. Each record also contains
k:~ information to specify the srmbol and its location on the high
if resolution graphics screen. Figure 2 depicts the fields
;3 within each type of record.

vi; Record Type: SOUREG

o

'; NEXT | DEVICE| XLOCATION | YLOCATION | TIPE | NODENUM 4:}

j$§ :>INITIAL SUBSEQUENT | BRANCHING | MARK | CHOICE { COMMENT

.;:;:

3

o Record Type: STASIN

(Q: NEXT | DEVICE] XLOCATION | YLOCATION| TIPE | NODENUM | INITIAL))

s

SN
.v‘l

»
y 0
e

SUBSEQUENT | BRANCHING | STAT | UPPER | WIDTH | CHOICE | COMMENT

Record Type: QUE h

TSl
I ‘n(‘S

"L

.'3?

A,
,l

a,
:
(=)
2
—
0
m

XLOCATION | YLOCATION| TIPE| NODENUM | INITIAL :>

BRANCHING | RANKING | BALKERS | UPPER | WIDTH | COMMENT

oSN
i

>

o

—

3

Record Type: ACT

§ o
S

S
g
(=]
Z
=g
0
m

SX | SY]| EX | EY | TIPE| START | IND | DISTR | PARAM :>

R

XA

r
P
N
&
2
z

SERVERS | COMMENT

[X's

Record Type: PAR

LN -
\ff?

>

L
[’L\-‘.‘.'.'.\

NEXT | TIPE | PARAM | PAR1 | PAR2 | PAR3 | PAR4 | COMMENT

Figure 2. Record Fields

. 18

Y YN

I SN IR NOY WY

P

"‘ !‘(K . gt,{‘ a

\ RN

.
-~ 3

<

ry

. A ey LA A MRS AN AT AL A EACRE A A AR,

.................................

Associated with dynamic variables are pointerszs. Thesze
variables contain the address in memory of the drynamic
variable it referesnces. Records are accumulated into
lists by having each record contain a 1ink or pointer to the
next record in the list, Using these dynamic variables, a
data structure called a linked list is built that can expand
or contract as the program executes. The programer does not
have to Know in advance how long the list will be. The only
size limitation is the amount of available computer memory.
During program execution using this data structure, the user
can create new records when building a network, change
record fields when editing, or destroy records when
modifying the network.

Each type of record is Kept in a separate linked list.
Reference to a record within a linked list is not by name
but by a pointer. To keep track of the records, unique
pointers, BASE(i) and NEXT(i), are declared for each list,
NEXT(i>»~ is the record within the particular Jinked 1list
referenced by pointer NEXT(i)>. BASE(i) is alwars reset to
point to the first record in the list or has the value of
NIL, if the list is empty., NEXT(i) is used to traverse the
list to locate a particular record. Additionally, when the
program creates a new record, it is added to the
appropriate list and 1linked to the other records by a
pointer field (NEXTC(i)*~.NEXT> inherent in each record.
Figure 3 illustrates the addition of a new records to a

Tist.

19

AN

AT new(NEXT(i)): creates a new record with NEXT(i)
Yo L pointing to it

\ BASE(i)

record 2}°? record 1 [NIL

N NEXT (i)

<

aa

NEXT(Ci)*.NEXT1= BASE(i) 1 connects the new record with the
other record in the list

record 2 0-:>>1record 1{NIL

BASE(i) 1= NEXTCi)1 reset BASE(i) to the front of the list

%

i
O

AR

BASE(i)

L

AN

NEXT¢ i)

-::'(*~5 P ’ ’

o,

V-

g

h e

record 2j. record {]NIL

8

NEXT(i)

w
A ;

Al e,
-:.- _Al:".

»

]

NN Figure 3. Adding a Record to a Linked List.

[

Sk A To find a particular record within a linked list, the

v

y0Y user must specify the field and the field’s value to
identify the correct record. NEXT(i)> initially points to the
) first record in the list. If the specified field's value of
ﬁj\j this record is not equal to the desired record’s then
oS NEXT(i) is reset to point to the next record in the list. To
k3 ensure that the entire list is interrogated, after searching
) the first record, the second record is searched prior to

advancing the pointer. The search continues through the list

s until the desired record is found or the interrogated

P

”
'
[\]
o

.
b

¢

v, . s.',',h,,s‘ Ok '.‘-\ e Wt e " e N \:.'\’_\'.\','.‘_-.‘.-.'-_\‘ RN A R S AR O TR .‘-. NS AR . .

AR

'’ record’s pointer field is NIL. Figure & illustrates the
N e search routine to find record 2 whose field called "her2" 13

equal to =lement.

Does NEXT(i)*.here = elenent?

2; |;ocord 41 record 3|° record 2{* record [|NIL
A

NEXT (i)
it not then does NEXT(i)*.NEXT*.here = element or
NEXT(i) .NEXT = NIL

if not then NEXT(i) 1= NEXT(i)*.NEXT 1 set the pointer
NEXTCi) to the next record

s record 4)° record 3|* record 2|° record 1] NI
. @ NDXT ¢ 1)}

gzs and again NEXT(i) = NEXT(i)* .NEXT

record 4{- record 3{* record 2]* record 1] NIL|

> NEXT (i)}

Figure 4, Traversing a Linked List.

oY Pointers can also facilitate deleting records within
e the 1linKed list. To locate the record to be deleted, the
A same routine just described is used except the pointer
: - NEXTC¢i) is set to the previous record in the list. The

»on <+ pointer field of this record is reset to point to the record

AT R WV 0

- ..A' e) - PR S aw e e -th -" e . - Pl LSl R A S --‘. ATe TR T e T - et T .

::; following the record to be deleted (MEXTCi)™ . MNEXT™ . .NMERT),
* -
P NS
” J':: When the linked lists are saved to files, onl» the records
__ that are linked in succession are retained, circumwvsnting
N the record to be deleted. Figure S illustrates deleting the
L7 second record in a linked list.
.]
2«
< First, record 3 is found to precede record 2.
- NEXTCi) 1= NEXT(i)* .NEXT
o)
BASE(i)
e
‘C$ record §[~ record 2| record 1|NIL
.
-~ NEXT(i)
"‘ NEXT(i)* NEXT 1= NEXT(i)*.NEXT*.NEXT 1 record 3’s pointer
o field is reset to points to record |
"
o, >
3 BASEC)]
' a record 3. {record 1{NIL
2 record 2 'J/l ,
» NEXTCi)
-3 '
After the linked list is save:
s
2) | BASE(i)
~ v
N
f: record 3| record 1|NIL
», .
- NEXT(i) .
;
- Figure S. Deleting a Record from a Linked List.
‘_ The the linked list data structure was selected over an
1 array structure because it takes up only as much memory as
A
b needed to store the Q-Gert network information. The opro-
-"i‘ '
,J';: :":'\‘,. grammer does not have to specify a 1imit on the size of the !
" network, as in arrays. Also, this structure is convenient
’U
& 22
s
>

KA on

..........................

é{
L
:5 ‘ for accessing particular records and their associated fields
':ﬁ iES' when editing and generating computer source code.
?é Geaphics Tablet Setup
;;3 To use the Apple Graphics Tablet, it must be able to
o communicate with the Pascal operating system. Sokol
f? included in his article [19] the assembly language program
'ﬁ that made the two compatible. The reason that the tablet
would not interface to Pascal was the Pascal BIOS <(basic
; input/output subsystem) did not recognize the Graphics
jég Tablet’s existence., The program PAD.ASSY.TEXT (Appendix &)
:{ is the assembly language linkage routine which reads data
‘j from the pad and transfers it back to Pascal. The program
Qi contains two procedures: SETUPAD whicg sets the tablet’s
?‘ cz, default parameters; and, READPAD which reads the pad,
;‘: flashes the cursor, and scales the results. Additionally,
fﬁ SETUPAD initializes the int€r¥ace be tween the two screens.
- The symbolis are dislared on one screen using a 40 column
; display capability while all text is displayed on the other
ji, screen utilizing the sup’‘r‘terminal’s 80 column capability.
:; Internal to the procedure READPAD is.a requirement to store
:; x and ¥y coordinates read from the graphics pad in decimal
?:3 locations 645 thru 648. Pascal recovers this data wusing
Ei PEEK and POKE commands added to Pascal by a unit <(Appendix
;ﬁ B) also written by Sokol (20]. Once data could be read from
;ﬁ the graphics tablet, the main programs could be written,.
o
_J 2
P
L% 23
L.

v
5

>

AL

14
*
2
L

l

P 5

B

. m{('-‘. ‘{'\' -

RN

»

r

-' ¥,
5

N R R Ry A
MV

‘s#ﬂﬁ%ﬁ»t,?““‘“f‘w.
RARAAANS H N W

|

-y

o &\’1)"‘ ol 2 A
e 4‘5"‘

Geaphics Tablet Laxout

The Apple Graphics Tabliet has a mylar cverlay that is
placed on the surtace of the tablet. The overlay divides the
surface of the Tablet into different areas, each area having
a different meaning. The overlay is aligned using the
Graphics Tablet software’s MENU ALIGNMENT program which is
written in BASIC [10]l. Changing to Pascal necessitates
redefining the functional areas. This is done in SETUPAD.
The center of the overlay (Figure &), the active area,
represents the high resolution graphics screen. The bottom
three rows of the Tablet are programmed as a menu for

selecting symbols to draw or commands to execute.

N R A A

N I T T Y IO T R B
rrrrvyrvryryvirrrrrrryrrey BLOCK
[I A A A

ACTIVE

AREA

T T T T O S S O Y I R A

LAl Lt Ll L el i ittt

T O O I O O O O e B B
N A T O L T L T T T O T I IO
P11 1 I ROW3OFSYMBOLS | | 1} ||

b I 1 | ROW2OF SYMBOLS | | | 1 | |

P L1 I ROW 1T OF COMMANDS | 1 | | | |

Figure 4. Graphics Tablet’s Functional Areas,.

24

.....'. ... ‘.‘.' .- -'.- \. \!..- - - ".-."“'.‘

4

! . >~ b e - ® -
. . ¥ Tes. «® e, - e e . . e TN v TN - T T e T e T W . L -, .- . ~ P AR B - »

248 BPeogeam INITLOGIC
R
-\’. .}:;.,

The program INITLOGIC creates the shapes wused by
=3 program QGERTNET to draw the Q-Gert symbols. INITLOGIC
: converts groups of strings to boolean arrays and saves the
.

arrays on disk in a file called LOGIC.CHARSET. Each named
3
‘,;\ shape is a square array, 21 elements on a side. The symbols
i; must be large so text can be printed inside their
Iy
boundaries, therefore, each node is made up of more than one
N
,‘ stape. The main program of QGERTNET loads the symbols from
~
\l
,_ LOGIC.CHARSET into memory by calling procedure GETSH&PES,
P! When a drawing command is selected, procedure MYPLOT
v,
% combines the shapes to draw the desired symbol. Below is an
‘is: illustration of the shapes NODEL and NODER used to create a
" .
. @ regular node.
o,
o
W NODEL NODER
A, XXKXXXKXXXXX XXX XXX XXXXXX X
‘ XXX X X XXX
XXX X X X X X
») XX b X XX
o, XX X X X X
:f. XX X X XX
o4 x x X X
iniy X X x X X X
- X x X X
) X X X X
Y XX XK KX XXX K X K XXX X XXX X XXX XXX XXX X
.{‘: X X X X
X X 3 X x
R4 X X X X XX
X X X X
N XX x X X X
:}\ X X x X X X
.,s X X X X X X
>
b XXX X X XXX
-— X X X X X XX X
REY XXXXXXXXXHXX EXKKKX KK KKK KX
¥ N
N
N) Figure 7. Combining Shapes to Form a Regular Node.
g
25
%
‘l‘

_ , f o , I A _-‘, . AN LA \ " . \} ‘v\ b '\.. ~w T"..; N -q. 'f.:fq." ‘('{ -.P.‘.‘ o -_‘.'.',,-\-

Besides the shapes in LOGIL.CHARSET, the opraogram
utilizes Turtlegraphics’ MOVETOD command to draw activity
lines connecting the nodes in the network by moving between
two specified (x,¥)> coordinates. Turtlegraphics is alsoc used

to displar all text within the nodes and along the activity

o lines on the high resolution screen,

2

9% Brogeam GGERTNET

- Once the shapes had been saved, the program QGERTNET
;% was written. Depending on the user’s command selection,
iéf QAGERTNET will display the network on the high resolution
;é\ screen and gather information about each symbol as the
3&? network is built. Figure 8 depicts the general structural
& flow through GGERTNET.

Af: G:; The main program of GQGERTNET contains the highest level
]?S of operations. The program first initializes variables and
:f: retrieves the shapes from the file LOGIC.CHARSET. Next, the
5q: tablet is readied through SETUPAD, the graphics and text
:g; screens cleared, and then, LISTMODE provides the initial
?;; prompt to the user. The program then enters a continuous

loop between procedures GETXY and MYPLOT. Within the 1locop

ol g
7
Akl

the program awaits an input selection from the user. Figure

v,

'
(A

? contains the logic flow for the main program in

ot

QGERTNET.

- £ L
AR,
pave YY)
PRGBS A A A

e ¥ ’ s'
L,

' N
e,

2,

X)
. A

.
[\V]
18

¢}mtlz;}ﬂ? m :ﬁ:}:{tmmm‘“m;'& 3 . s AT IR AT \ﬁ'-':'.'_:_.' .Il\{h.':_!;.;;:._\':‘,::;p.‘:ﬁ.;\-_i

Frogram
GGERTNET

Initialization

-2
¥ o A

Dt

LR
satatat

* 4
2tats

__‘.1:" 8, 0By

]

(ol
-

b

-

"

TﬁﬁdeA

$F-

S8 GAS
AAAR

DA
N eﬁﬁ?}f&a

-

”

"
58

Figure 8, General

GETXY MYPLOT
READPAD MENU
GETYPE
Symbals
Source node
Regular node
Statistic node
Activity
lue node
Sink node
ORAWBLOCK Linked lists
. SOUREGINFO
Shapss L. STASININFO
L ACTPARINFO .
L NODEL - QUEINFO
. NODER
L ARROW
L GNODEL
L GNODER

[SRS S e Senn Suss suse SEe sa

PR R Y N e
RO

Commands

CLEARSCREEN
CODEGEN
LOADSCREEN
SAVESCREEN
EXT

LISTALL
EDITOR
SETLOCK(clear)
SETLOCK(l1ockx)
SETLOCK(locky)

Structure Diagram of QGERTNET.

.

Y

AN

» » o -
‘A:-t.‘.&: 4.'\,%]

-
o

« ¥ a s 8

LA T

.a

.."" B
-

TR

o 'l‘.p »
A

B/
a2,

E, J500

AN

X

s &
S

s't1[

m"'--

/s

- - ‘Sl P
";“i l*. ‘al

e 1

-
T

.

I N ERIPSL AN AR 'S A e R i i

(begin)

initialize
variables

GETSHAPES

SETUPAD

INITTURTLE

CANCEL

LISTMODE

GETXY

|

MYPLOT

false —

true

Figure 9. Logic Flow of GQGERTNET‘ s Hain Praogram,
GEIXY.
Procedure GETXY is called by QGERTNET s main proaram.
It is used to determine the command selected, symbol to be
drawn, or a symbols’ placement on the high resolution
screen., It +Ffirst sets up memory locations for the (x,»)

coordinates +from the user’s pen placement on the tablet.

)

.,
'y
P

SRRSO

“4
(AN
)

a e

_' .
RO NS
9

s .

LN AN
4 "~... i

) e ity
.l‘ :'. L 'J"Jit

=]
AN 2!
- I‘.v »

‘.I s

R

,fv":‘\-“ } Lol

»
P PN

f:

A vA ot

‘.
A

Through procedure READPAD, the coordinatesz ar read and

Dd

stored; then, checked to determine if a2 walid location is
selected. I+ the user presses the pen in the menu rows, the
boolean wvariable VALIDXY is set false. If, on the other
hand, the wuser, by pressing the pen in the active area,
designates a position to place a symbol, VALIDXY is set
true, Regardless of the coordinates saved, the program
exits OETXY and enters MYPLOT. The logic flow of procedure

GETXY follows:

@

initialize
variables

READPAD

set X,Y

ves -t VALIDXY :=-100| Exit
= false Y:=-100 GETXY

no
_ yes yes-—-—T VAL IDXY
= true

| — Y. no set Y
|

VAL 1DXY
= false

end

Figure 10. Logic Flow of Procedure GETXY.

...................

B
&
e
(e MxBLOT.
,ﬁ: In procedure MYRLOT, 211 the drawing and
%; development of the linked lists is accomplished. Prior
o to entering MYPLOT, the boolean wvariable VALIDXY is set;
‘;: false, if the user selected a command; or true, if the
%g pen was pressed in the active area. I+ VALIDXY is false,
?ﬁ MYPLOT calts the procedure MENU, From within MENMJ, the
:% program executes the selected command or, if a drawing
?Eé command was selected, returns to MYPLOT.
:ﬂ Having chosen a drawing command, MYPLOT draws the
.3 symbol on the high resolution screen positioned by the
é user’s pen press in the active area of the tablet. I+
:ﬁ ‘ED the pen is positioned outside the active area, WVALIDXY
f; is set false and the command terminates returning the
i; user to MENU., When a symbol is drawn, a record of
. information is also generated for the symbol. #As the
;Q network grows, each record is created and added to the
L: applicable 1linked 1list by procedures SQUREGINFOQ for
f; source and regular nodes, STASININFO for statistic and
s; sink nodes, GQUEINFO for queue nodes, or ACTINFQ +for
’Eé activities and parameters. The following is the logic
?L flow for MYPLOT.
%
e

o
A

e e

- LA
=P

.l‘.

‘.

.

.‘,“ » SR

f -\':
ATEERPUN (begin)
« ‘1 *1

._ : VALIDXY b false | MENU @

- does ves Exit
s D=0 MYPLOT
“

)
4\4‘ no
i)

. .;::" doe
\‘: D=4 . yes VAL IDXY ___.l ACTPARINFO -——-@

209 = trye

no
;3§§ VALIDXY true SAFETY | @
s =false D

1,2 DRAWBLOCK 1 SOUREGINFO

false -3 | DRAWBLOCK STASININFO}

= DRAWBLOCK QUEINFO ™

:
A | & DRAWBLOCK l—1 STASININFO

-3 | cANCEL

S LISTMODE

P |

A%
o DMODE=14 ’
1 AKN A
ALY
S

) eﬂd

A

5 Figure 1i. Logic Flow for Procedure MYPLOT.

b e e N R e N e e B LAY

» * Wy . - PR N O AN . Y . * N v, e v W TR .'-'T'.-L'.".-I‘J'.'.".'.'.f.f.t-.".'.
L IR A S AL S A L L e e S RN YN AAAL SR AT RAAARRAL AL Al Al S

.

"

" HMERNL .

" \.‘1\ Upon entering MVPLOT, MaLIDKY iz checked. LF sl I
‘_ is false, indicating a command was selected, procedurs MENU
)

ij is executed. MENU, +first, determines the exact command
/s

’j* block selected from the (x,r) coordinates passed by GETXY
~ and transforms them into integers XPOS and YPOS. YPOS is the
E% row of blocks and XPOS is the command block within the row.
- .

:ﬁ Below is a brief description of the programmed functions in
o the bottom row.

r

o

‘s

Y

N CLR {CODE{ LOAD | SAVE | EXT | LIST| EDIT | CLR LOCK | LOCK

o SCR | GEN | SCR | SCR LOCK X Y .

N

\':‘

.

»
¢ !; l‘

Figure 12. Bottom Row Menu.

-, CLRSCR : clears the high resolution screen and empties
the linked lists

)
‘51 CODEGEN : chains the program CODEGEN to generate
',;; source code

>

’
;5 LOADSCR t loads the 1linked lists from disk into the
: computer memory then draws the network
&: SAVESCR : saves the current linked lists to disk
iﬁ EXT t exits the program

LIST t lists the available Q-Gert symbols

~

v EDIT t enters the editing procedure

NS

N

$ CLR LOCK : clears the x and y locks

'

L . LOCKX ! locks the x axis

SV,

O LOCKY : lock the y axis

A

ﬂ-.
‘ :s:
.ﬁ 32

,A.-.'

Y

o
<>
! ::j
ék I the row selected is either the second or third, MEMU
*

-~ .

NN sets the integer variable D to identif» the swmbol, then,
k;. calls procedure GETYPE. GETYPE displars *the srmbol selected

:\d
;b on the text screen employing procedure PRINTYPE. Upon MENU’s

.,

}‘ termination, MYPLOT is exited and the program returns to the
2¢2 main program loop. GETXY is executed again so the user can
\':'

;;5 position the symbol on the high resolution screen by
o

Ny pressing the pen in the tablet’s active area. This sets
‘¢ VALIDXY true and re-enters MYPLOT to draw the symbol. Below

-
§} are the drawing commands available to the user.

i
a4
o
5:. CURRENTLY UNUSED e e ROW 1
;\:
ﬁs SOU | REG| 3TAT| ACT | QUE | SIN .o ROW 2
N &

N
;}i Figure 13. Rows | and 2 of Tablet’s Menu.

)

\ L]

::ﬁ SOU : draws a source node and creates a SOUREG record
li: REG : draws a regular node and creates a SOUREG record

.; STAT : draws a statistics node and creates a STASIN record
.

o ACT : draws an activity line and creates a ACT record
~52 QUE : draws a queue node and creates a QUE record
I
; SIN : draws a sink node and creates a STASIN record
iy

W]

£
ﬁ'%l

o
‘:‘

The logic flow for procedure MENU follows.

)

@ e a
@

Yoy

PRP IS VLN

VANAS
e & @&

i
03
[0)

.

[4
¢

B2, 5 8 %
LI I S
ot

W AT I AN ottt A e LT e

NP TS FO TS WA .\.,-.‘_'._‘;.:_\' -.‘x‘ "'\'.\') \',\‘-.'.\‘.\ LY \.‘_\'-,' A S LY

S .
%h; (begun)

set D=0

1, e
»

o &,

v &
4
r\'

set XPOS
0N YPOS
: LY

o,
e CASE of 1 or 2 ——— GETYPE
3 POS
Ay
~

- 3 PRINTYPE
}

™
d P
—

I3 CASE of
XPOS

. Y

]
LN}

N
prs

e
"y

.

3

SARY
-
*k: Figure 14. Logic Flow of Procedure MENU.
1‘.:‘\
Y
AN
.
_‘x SOUREGINEQD, STASININEQ, aCTINEQ, QUEINEQ.
e
::t After the wuser selects a symbol and indicates its
1
s
::: intended position on the high resolution screen, MYPLOT
—
i draws the symbol by combining the necegsary shapes, then,
l:u calls a procedure to build a record of information about the
et
‘¢g: symbol. Record building for source or regular nodes s
H'; accomplished by SDUREGINFO; for statistic and sink nodes by
WA
.*o
{ STASININFO; for queue nodes by QUEINFO; and for activities
Y
““ and parameters by ACTINFO. Regardless of the procedure, if
,1 e, the information is available, the program automatically
y l~'.' 5:.“..
A £i11s the fields within the record else the user is asked
e
>
4 {
fé;' 34
o~
! :.:." . . .’-)‘ L, '- ™ \.‘\- \.\ RN \-.‘n ‘." u '-.' v .\. LY .\.-.‘.. ., - R , '_--..l."-.’.__.._.: -. -._.~.,‘;‘_ - .- . -‘,... .

A

WO

A)
Cr

<3 «
3 A 8 5 4
- &8 i

>

* I

“
P
PRIFRPRIPRE Sl R

e
. s*

» 4 q
Vs

b
-

:‘h‘i‘,

»u\.«-.{-.":' b 1

YN

A

b I

.
h

p)
5.
{h)

to input the intormation. As the network is developed, all

source and regular node records are linked together forming
a linked - 1list which grows as the number of source and
regular nodes increases. This is also true for statistic and
sinK nodes, queue nodes, activities, and parameter linked
lists. Records within the linked lists can later be saved
to disk, edited or deleted.

In procedures SOUREGINFO, STASININFO, and QUEINFO the
tfields device (D), xlocation (X), ylocation (Y), and tipe
("Sou’, ‘Reg’, “‘Sta’, “Sin‘, ‘Que’)> are all automatically
filled with information obtained from MENU, GETYPE, and
GETXY . User solicited information +filis the remaining
fields, such as, node number, initial number of transactions
to" release the node, subsequent number of transactions to
release the node, capacity of the queue, marking, trype of
statistics to gather, and comment, if any. The <fields
pertaining to intermediate or advanced (Q-Gert concepts are
set to the default values, +for instance, branching (D"
and attribute choice criterion (L"), Figure 15 lists the
fields applicable to each QG-Gert symbol available in this
program,

In the procedure ACTINFO, both the information for
activity and parameter records is obtained. These features
were combined since the designation of a parameter set in an
activity record necessitates the generation of a corres-
ponding parameter record. If the activity‘s service time

distribution is constant or the user designates a duplicate

parameter set, ACTINFO will not request information to

Yy

L

. Fields*
1 2 3 4 5 8 B 8 9 I W
-) REG | Node number |Initial number|Subsequent | Branching® | Marking | Choire :
RO or torelease |numberto criterion
SRS sov Telease (DPFA) | (M (FLSBI L)
(s Attnibute (.
.y [MifSOL,
'S (1) {eo] JD] no M if REG}
W SIN Node number/} Initial number | Subsequent | Branching® | Statistics Upper limit | Width of Choice J
- or label to release pumber to desired of first histogram cell | criterion
- STA release (DPFA) cell (FLSB) LY
v, (FABLD) Attribate (M)
{1 foe (D} {Fl [N} {N]
N, QUE | Node number;/|Initial sumber} Capacity of | Branching | Ranking Block oz node | Upper limit | Width of Following ¥
P o label inquess |Q-node : pumber for |offistcell |histogram | S-nodesor
L D.p) (F.LS.B) [F}/| balkers cell match nodes
o Attribute [M] or allocate
* nodes
' (0l (] D} ®) (N] {N]
. [balkers
- destroyed)
v PAR | Parameter set | Parameter 1 | Parameter2 | Parameter3 |Parameterd [Stream €
$. aumber number
LY (01 [~10%] {107} (0l (10
. ACT Start node |Endnode | Distribution | Parameter | Activity Number of | Probability* |Condition code®
or function | setor number/ parallel or attribute
x . type constant label servers number o¢
b] or_der [Ni.R]
4,1 I {CO} [0.0] i {5 i=start node
**.
:: % field set to default (141
. c‘) [] Default values
2 Figure 15. Available G-GERT Symbol Input.
o Distribution and 3
. Function Types Parameter Values
3
N Code Key 1 2 3 4
-3 AT Attribute - - - -
:33 BE Beta " 2 b P
T BP Beta PERT m 2 b -
, co Constant M - - - .
boo ER Erlang ulk a b k
! '_:: EX Exponential ® a b .
-~ GA Gamma m a b g
& IN Incremental - - - -
LO - Lognormal u : b P
. NO Normal M a b a
et PO Poisson p-a a b -
K’ TR Triangular m a2 b -
i \: UP User Function - - - -
o UN Uniform - (] b -
: st=» mean; o-» standard deviation;
R m-»mo@e;a-omininfgn!:o.ropﬁmhtictime; [14]
» ‘\f;’ b - masimum or pessimistic time, '
>
:: Figure 16. Distributions and Parameter Values.
'1

;ga generate a parameter record. To create an activity record,
‘i: ig; the program asks for the start and ending nodes. &ITINFO
;f}\ searches the node linked lists by calling SEARCH to lccate
éi' the two records and get the (x,¥) coordinates from the nodes
§2§ xlocation and ylocation fields. These coordinates are placed
0 in the activity record fields SX and SY for the start node
:gé and EX and EY for the ending node. Turtlegraphics’ MOVETO
':;3 command draws a 1line on the high resolution screen
.3Q' connecting the two sets of coordinates. The user must also
E:§ answer the prompts to fill the fields pertaining ta service
Lo

distribution, parameter set number, activity number, number
of servers, and comment. As indicated previously, iif a
distribution other than a constant or redundant parameter
set is specified, ACTINFO will ask the user for the <four
parameters for the specified distribution. Figure 16 depicts
the distributions available in Q-Gert and the parameter
values that must be specified.

As the information is entered into the symbols’ record

fields, the same information is written to the high resolu-

tion screen within the symbol or centered along an activity.

T . Procedure WRITEONSCREEN uses the (x,y) coordinates of a node

o)
e,
v:ﬁ as a bases for placing the text in the proper locations.
Vil
ol Activity information is displared by centering the text in
fx: both ¢the x and y directions along the activity line
TN
?{- connecting the two nodes.
;qt '.-.;
ii_ Below 1is a depiction of a regular node and the place-
P " ¢ L ..'-n . . N
N Hx& ment of text within it.
37 ! |

R Y A R P AN B R ey SRERCY P
A ey S T A I T T A T TR f Y o K

;""° Aol A e t Y - L) - ~ A . . ATET T aTa¥e atu - ¥ . - A AR SRl '
#I::{

>7

e

"-.: Initial number Choicze Criterion Node number
.-?_.‘v ta release KXHAAKA LA AR LK LR KRN AR '
AR ASA ® KK % %
! - KKK ® ®
\e X x
! f % %

'f- X X

g X X
g X X

X X ; X

3 X X X

iy KEUXKXXXXXKXXHEXKKKXXXK XXX XX KKK X —

o, X X X
‘~"’: X X X

B XX X X

X X X X

A XX X X XX
"é" X X X X %X
-,'Q ® X % % XX
:" X R X ks X XXX
y Subsequent XXX X X XX K

' number to 7 HXXXHXX KKK KX KK KKK KKK KK KX X

™~ release 4
‘ '.L\ Marking

Ty

A “' .
: @ Figure 17. Text Location Within a Regular Node.
- ,
o
;{L‘ The <following are the logic flows for procedures SOUREGINFO
)
oy and ACTINFO which represent two variations of the INFO
;, procedures.
£‘2 i
WN -

‘a (bogm)
. '
Y
LN new

~ record

. 4

1.‘

A
* M .Device=D
——
et Xlocation=aX

o) Ylocation=Y

L]
v.
b4 |
3;”5

-~

N

3

L , '

Figure 18. Logic Flow for Procedure SOUREGINFO.
W
Vi

38
G

o
W

O A O A N, N S R A A S T i L T R A NN T N S RN A N P AN 0 .-,:."‘

LI S e o ey o e M AL A -GN M S p o it e St B Rt s g

A e R S RS ARG
%
i
v
v
-
‘-'.' - KA
AN
iﬁ. .Tipe=’Sou”
g is yes X=X+40
f ‘3 D= YaY+]
b VALIDXY=true
oy
’ no
; Tipe=‘Reg’
N X=X+30
o Y=Y+1
) VALIDXY=true
% .
N Input
L3 node WRITEONSCREEN X=X-20 —
2 number Y=.YLOCATION+1
\ VALIDXY=true
iy |
X
; ! Input
N initial WRITEONSCREEN PY=Y-20 :
ot = number to VALIDXY=true
@ release
‘-‘) o
\l
) “~

GA Y
ol A

Input :
subsequent NRITEUNSCREEN}-
number to

release N

T

—
Branching X=X+10 |
= ‘D’ VALIDXY=true
e I
5 .
- Input WRITEONSCREEN Y=Y+10
;3‘ Marking VALIDXY=true
»
- | s
Y Input
o Choice WRITEONSCREEN,
v Criterion -l .
r
N 1!' -
1 Sl ."\
RS
7 Figure 18. Logic Flow for Procedure SOUREGINFO (can’t).
-
o 39
:’u‘

"""" . NS Y . ‘.. N A N AT T - _,.-_.‘-.. R R N

L VR Pl] ht] i TR TS ST s N LA] TR T AT e T A TN AT T TR T T WA TR TN T
o

-
i
<.

o Input
N commen t
Y

) reset
pointers

l'. ".
AN

Rl s

-
SO

end

g

2,

o

.

Figure 18. Logic Flow for Procedure SQUREGINFO (con’t).

(begin)

159 new
‘59 recorg

.t -
S P,

o Device=D
X el ,
e .Tipe=‘Act '

oy Input | set
start | FINDER=false - SEARCH SX,8Y

N node EX,EY

Input
distri-
bution

no =] PARINFO

Figure 19. Logic Flow for Procedure ACTINFO.

i e
£ I'Lyb.’.

I LR

.

40

AR

..............

“ "'. ‘.‘n "

P N N G S O A N S A A M S A S T EVEHUAR S, CRCO S LRy

RAEMETR AR

Py
A
. P
{
& ves
%
=
<
- Input
- constant
- parameter
i _
-:: .
, (WRITEONSCREEN
. ——ap
N Input
b activity
. number
X
$'
"Q
b : Input
. Q number of
“) servers
M
)
¢ WRITEONSCREEN
'.;-: enter
) comments
Pa
i]
§ reset
¥ A "
pointers

l‘.
L
S *
< (Lend)
N
¥
%)
L]
Figure 19. Logic Flow for Procedure ACTINFO (con”t’.
-
q ""-.
YN

N
:,n
Ly
>
v

R o T R R R R R R L Rt A SO

2

DS

Mg

T

- -
‘. 3, .,

AL RARAAA - SRS

aw .

e,

RS

g

S i}

NN

2%a

RO 12

N0
\
»
%
) f'

“l‘. ‘.

S&VESCREEN.
In order to save a network, procedure SAVESCREEM was

developed. It may be called directly by the user from the com-
mand row, or indirectly by updating changes made during editing.
When saving a network, only the records within the 1ink 1lists
are retained. The wuser must indicate a filename for the network
which becomes the prefix to the fileg which will contain the
records of each linKed list.

'SAVESCREEN is a single command procedure that calls pro-
cedure QUTDATA and passes record type parameters representing
the different types of records contained in the 1link lists,
OUTDATA opens a file for each type of record created and puts
each record from the respective linked list into the file before
closing. A file is built for source and regular nodes, statistic
and sink nodes, activities and parameters. A file is built sven
if no records of that type exist. Alsc in OUTDATA, the boolean
variable SAFETY is set true indicating that the network has been
saved which facilitates exiting the program. Below is the logic

flow of procedure OUTDATA.

begin

lv
open does linked list Put record
filename. contain another yeg —— in file
SOUREG record
1
no

5

Figure 20. Logic Flow for Procedure QUTDATA,

.. .
.
. ".'I'

YO
\.‘.

Q"

U g

o
X X

* S WIIENENE Y

¥

.5

'\.

RS
N

7

(7

..-. - s...
Y

1

Put record
in files

Put record
in files

Put record

close '
filename.
SOUREG
open does linked list
filename. contain another yes ———i
STASIN record
- no
close
filename.
STASIN
]]
open does linked list
filename | contain angther ves
QUE record
[no
close
filename.
QUE
B |
open does linked list
filename.}— contain another vyes—1 in file
ACT record
c no
close
filename.
ACT
[|
open does linked list
filename .| contain another yesg i
PAR record
no

Put record
in files

Figure 20,

43

Logic Flow for Procedure OUTDATA (cen’ty,

N,
X

EN A
“"‘\‘l_‘:.;:

e
".lﬁ‘ -

F Rt |

':’('.' Iy

(4

‘t ﬂ-

'l
_!

Ay

~

,““ﬁ{f

) -

’
)
et

» S

)

[2
ATy

e

LA
P - 8

»

25

.

RO

a
.

*y

S
(PO
.'h,‘i

clbse
filename.,
PAR

SAFETY
=true

N end

Fiqure 20. Logic Flow for Procedure QUTDATE {conty.

LOaDSCREEN .,

Procedure LOADSCREEN can be called from MENU or program
CODEGEN. If the command to load a network is selected from
the tablet’s bottom row, then MENU calls LOADSCREEN
directly. Frogram CODEGEN <calls LOADSCREEN when the wuszer
wants to generate source code on a previcusly saved network,.
LOADSCREEN’s only command calls procedure IMDATA. The para-
meters passed to procedure INDATA are the files of records
created when the network was saved.

INDATA asks thé user to input the filename cof the
network to load. The procedure checks to see i+ the files
exists, and if¥ so, opens the files prefixed by the filename
given. The records within each file are read, then either
procedure GRAFNODE or GRAFACTIVITY are cailled to draw the
corresponding symbol. GRAFNODE accesses each node record #aor

the the (x,y) coordinates to pozition and draw the s.mbal on

the high resolution screen. GRAFACTIVITY draws the actiot.

et At A SN G A A AL S A A SR At A e M S e '.".'}
[N L . . AR - . ..

line accessing the start and end (x,») coordinate +ields
previcygslys stored within the activity records. The tet
. associated with the symbols is retrieved from the particuiar
: fields within each record and written to the high resolution
}ﬂ: screen using procedure WRITEONSCREEN.

}?' GRAFNODE and GRAFACTIVITY follow a similar logic flow
;5? to MYPLOT for drawing the symbols, and, the logic flow of
e SOUREGINFOQ, STASININFO, and ACTINFO for writing the text to

the screen except the inpute are obtained from the records

RO
Iy

rather than the user. The logic flow of IMDATA follows:

‘g
»a

a
"".I) <
Pt~) LS

L] 3 3
’
'-‘I'r > *.

PRI

.'.f s

S
1

o~
» ’
4
",
®

‘l.l l_.
TN

«'5’a s
B
A

el e Ny
E . SR

L
v
.

%

[y
.

»
PR
»

‘l

yes EXIT
INDATA

0“2 ¢" s
[

g v‘ 14
PR - I
YWy iek L

h 4 &

LAC

)
ts s
LA
Dt M

2 a
»

open
tilename. Read GRAFNODE
SOUREG record |

N yes
e
4 .‘_,- N

@

Figure 21. Logic Flow for Procedure INDATA,

| @y

.

LN
0
P

4

&5 []

e

*e .. .I ‘. '4 N
» s

€
8 A . "

; .

»

%
E]
[

t:.
p
()]

XX
Dy

v

L %] ‘*‘v‘v\ “» .‘\-.\ E‘- v :v.. BN -J,\-J.;, -(.;" A -‘_..: Nt . - - . ._.- . :‘_‘.._ T AT :. \'..-~;:::.\:.“-;'.-..\"_-.-..

-

3 R S i A e Tl o _,. ‘ AR AR LR “B AR IR IR A I A A A AL AN LI T R S '_'."".'.j_. '_-!!

‘l.
., ._“\..'r',

Mi

I

(RS
-

.
N
AP G
* .
‘l"-
S

gl » 77777
:“.1'-

[S

~ open
filename. Read GRAFNODE 4»
STASIN record

no

¢

» ‘l ".{ -l ‘l ..l

XX
.

i ves
open
filename. Read GRAFNODE] eot?
QUE record

| no

yes i

W, bt

WlAN

e

»

'., ElS e
A ‘."... '., . 'a.

i

open
filename Read GRAFACTIVITY| @
ACT record
) 7r no
; yes
| 0

open
- filename Read
IRy PAR record

GAL no

v
1

"v “l ;‘.

oS4

LU A

:

.
u

yes

~ (end)

:é Figure 21. Logic Flow for Procedure INDATA (con’t).

i ERLIOR.

The capability to edit a previously developed network

RO is essential to an analyst. The ability to modify the net-

My work display and scurce code to test alternmatives or change

K
et

S
[L N

S

s = ey
""lt

Ny

"l

-

2,
Py Yol

l’l‘ l'
ATl

N
s
~

X o,

St
Y

parameterz allows sensitivity analrsis of the s»stem to be
accomplished gquickly. The user can save the criginal mods)
then modifty it and generate the new zource code nzeded to
evaluate the changes.

The editing <function is selected from the tablet’s
command row. The current network can be edited directly or a
previously sauea network can be loaded for editing. Upon
selecting the edit command, procedure MENU invokes
procedure EDITOR. After identifying the network to adit
through prompts, the EDITOR <calls procedure LISTER to
display the available options shown belaow,

A) Quit the editor

B) Source node

C)> Regular node

D) Statistics node

E) Activity

F)> Sink node

G> Parameter card

H)> Update - to same filename

Selecting ‘B’ thru “H’ will call procedure OTHERWISE,
while selecting A" will call SAVESCREEN to save the changes
under the current filename then exit EDITOR. Based on the
user’s choice of options, procedure OTHERWISE prompts the
user to identify the particular record in which the change
will be made. Associated with each type of record is a FIND,
GOT and CHNG procedure, Depending on the option selected,
either FINDSOUREG, FINDSTASIN, FINDQUE, FINDACT, or FINDPAR
search their.respectiue linked list to find the record and
display its contents on the text screen through the

respective GOT procedures.

The FIND procedures first ask i+ the record will be

47

Y eyt em v, . AL Y T T I T T
AR -~ .N . ‘- L B A .qn‘n .

-
G

N L e et T - e St AT e
IO IR . e . R S, . "o

DA I S R Dl AL R R N N

-
e

o s A

s
(e

5

a2 a e

deleted,. I+ “‘wes’, the record iz eliminated from the

RO

"52 ;iiﬁ respective linked list by directing the pointers arocund the
{j‘ specified record. When the linked list is zaved, the deleted
' record is not read into the <file, If the delete response is
‘no’, the respective CHNG procedure is invoked. The CHNG
T procedures present a list of options to the user regarding
ZES the fields that can be changed. The options auai}able,
; however, only include fields that will not effect the lavout
!c of the network. Fpr instance, the user cannot change the
zé position in the network of a node, he must first delete the
'Ei old node and redraw it in the new position. He must alsc
fﬁ delete the activities that may have been associated with the
ig node since the SX, SY, EX, and EY fields may no longer
'ii . coincide with the new position of the node. Once a change
shf GED has been made, selecting option “H’ will update the network
;ﬁ; by saving the records (SAVESCREEN) under a specified
:&1 filename and displaring the updated network on the high
ﬁ: resolution screen (LOADSCREEN)>. The logic flow of procedure
% EDITOR follows.
2
> (begin)
~

Exit
EDITOR to
$Save notwork

o

'I "l

"‘ @ false
true

®

Figure 22. Logic Flow for Procedure EDITOR.

L

NN

!;:.?

h&?!ﬂ'

X
L]

g |
X

-~

" S

s nl
5
0

.
L}

)

>
hY
*
’
»
-..
[
-
29
Yy
h Y
a
-
a
b
.
2

I..’
A

e
4

A
b NS

e

»

SELEC =B

(X7

[‘_:..:' ‘w *‘tﬁ'ﬂr

EAAL

LISTER

A LA

. . ;' R
- "‘;‘9‘:"-J"’J“J“.‘

o P
‘."4-. >

|
1}
i T

o .

no it EDITOR
oad network
no OTHERWISE

N
A

SAVESCREEN

l."l

1%
.k

end

Figure 22.

Logic Flow for Procedure EDITOR

(con‘ty,

.

\j
4
i
:ﬁ Brogoam CODEGEMN
3)

AR S

o 4,

k I . Program CODEGEN culminates the developmernt of the G-
{

- Gert network. This program uses the records developed in

j: RGERTNET to produce a text file containing the (-Gert source

code. CODEGEN is a separate program because of it’'s size and
Egl and the timing that the user would invoke the program. The
;: user normally generates source code upon completion of a
"

* network, therefore, CODEGEN can be called from QGERTNET to
?} provide uninterrupted source code generation. The user can
X
) also enter CODEGEN as his first command selection; whereby,
»4%

;: a previously saved network is loaded intc memory and the
.¢£ source code generated.

4
5
- CODEGEN is chained to QGERTNET by using the procedure
A.f-'

N c:; call SETCHAIN(NEXTFILE> in MENU. Since CODEGEN is a
f:. separate program, QGERTNET must be exited before invoKing
i

$‘ it. As soon as GGERTNET is terminated, the operating system
”

) will execute the file whose name is the value of NEXTFILE.
AN

7‘# NEXTFILE in this case is the program CODEGEN.

oy
;QE To generate the source code, the network’s record files
- must first be reloaded into memory using LOADSCREEN which
ay Ly
ﬁb also redraws the network on the high resolution screen.
N Following the initial setup, a series of administration
I
- questions is asked regarding the network in procedure

) GENERALCARD. Similar to generating the symbols’ records,
‘l

<,

Eﬁ any data that can be obtained from previous inputs is
»

(MY)

' automatically inserted into the general card. For instance,
= S

ﬁp b procedure STATSEARCH counts the statistic and sink nodes in
R '

Py

L - 50

S e . T e Tt et et et a Vet Y e m N, L A L N T t e Wt B P N o ® s g 8, PN R
. ('(T IR RNES e el e s et e AN " 2 \'\\~\'\"‘.-.$\‘.~\! W .""

¢]

»
'

2.,

L
:,3
LER: the network. After the general card is completed, procedures
e, 7.
> .
;ﬁ {?ﬁ SOURCESEARCH, ACTIVSEARCH, and PARSEARCH are ssquentizally
{ . called to access the linked lists’ information to creats the
SN
‘3§ rest of the input cards representing the Q-Gert network.
v Each record type contains all the information necessary
e for generating its corresponding G-Gert source <code. The
E;; SEARCH procedures step through their respective link lists
e
ok .
o building a string variable containing the complete source
s code for each node, activity or parameter. The order in
1
"23 which the strings enter the text file is important. The
source node strings must come first;y the start node string
. of an activity must precede the corresponding activity
{i.-
’3§ string; and, sink nodes must come after all other nodes and
. activities. The parameters strings can be placed either
o GEQ before or after the sink node strings. Wi th these
o
AN restrictions in mind, the source node strings are generated
TN
YA first, followed by ail regular node strings, then statistic
o node strings. Next, &all activity strings are generated
i ..}
ﬁ{ followed by parameter strings, and lastliy, the sink node
47
ﬂﬁ strings. Figure 23 depicts the logic flow for CODEGEN‘s main
3: program,
.~\' .
:f; As a cross check, the source code is presented on the
'S, text screen. When the CODEGEN is finished, GQGERTNET is re-
>y executed wusing the SETCHAIN procedure allowing the user to
‘."JJ
~
vgg begin work on a new network or modify an existing one.
]
'l.-.4
‘-’?-
*ay
ﬂf‘v‘
e,
i
P 51
A
)
A
’,. s Lo N N - .. - . "-.' -‘., _"_- ", - ...'. £ '_-.'_'-'_'. - \\' -- _'- - .'--_.-. - \!\.'.'.’ff- \-h

\ “
| “
=
?‘ P
SR Aot (begin)
{
@ false Exit CODEGEN
return to GGERTNET
™
" true
3 |
Lot open
filename.
Q text
2 GENERALCARD
% SOURCESEARCH
;§ QUESEARCH
)
3) ACTIVSEARCH
;' PARSEARCH
-ii
- PRINTCODE
close
v; filename.
2 text
'~ return to
24 . QGERTNET ~
29
A
%)
- Figure 23. Logic Flow For CODEGEN’s Main Program.
»
N
o
'\v
- \'.
B
i
4]
 §
N
&
52
‘4
¥
s > 3O DT ITRPNIN SR RPN PSRN NI IS NI A RIS A PO

AP
LILLIO

X, PN
A A
EACR VIACS %,

-“.\l.l
[y

Upits

One of the major reasons for selecting Apple Pasc

the prograhming language for this project was wunits. Units

1 as

i

allow a large program to be divided into smaller parts which
are entered into the computer memory as they are needed.
This is a similar process to overlaying found in FORTRAN.
This capability allows a compiled computer program to be
several times larger than the available computer memory
allowing increased processing and display capabilities. 1In
addition, the wvariables commen to all procedures areg
immediately available, which is not the <case in other
programming languages, such as BASIC.

Related procedures were combined into wunits. UWhen
QGERTNET or CODEGEN calls a procedure within a wunit, the
entire unit enters memory. Using the compiler’s ‘noload’
option (#N+%*), the unit stays in memory only as long as a
procedure within it is being acted upon. The wunits were
built so that procedures that callesd other procedures were
grouped together to minimize the memory needed to execute
the program. Below is a listing of the procedures comprising

each unit.

Unit GLOBAL Unit WRITE Unit NODEINFO

all global Writeonscreen Soureginfo

variables Getshapes Stasininfor
Queinfo

AT AT AL

Figure 24, Listing of the Procedures Comprising
Each Program Unit

53

S L T S I T S
"\".:)

Y
[P e

&

S %

AR
PN

.y

(4

n’:.\‘

AKX
X L XX

..................

LR A

Unit INN

Grafnodes
Grafactivity
Indata
Loadscreen

Unit EDITSR
Chngsoureg

Gotsoureg
Findsoureg

Unit EDITACT

Chngact
Gotact
Findact

Unit OUT

Qutdata
Savescreen

Unit EDITSS
Chngstasin
Gotstasin
Findsoureg
Unit EDITPAR
Chngpar
Gotpar
Findpar

Unit LOADER

Indata
Loadscreen

Unit ACTPAR

Parinto
Rctinfo
Search

Unit EDITQUE

Chngque
Gotque
Findgue

Unit EDIT

Otherwise
Lister
Edi tor

Figure 24, Listing of the Procedures Comprising
Each Program Unit (con”’t).

AR

~

. e RIS -~
-“\- BOCRLN LY iy :\ $l .--"..
WY Ll

At
AR AR,

-
PR
a

\ Ao T
.

AKA

v .

s

o 0,8 4
lr;-r:‘./‘.ls-‘)

b

2

.

ot&s"l P s
qﬁi,n;jkﬁl{{{f’ﬂ*;

= XX

IV, PErogram Cagabilities and Limitations

This program will enable the analxst to create a
Timited networKk wusing the basic concepts of Q-Gert,
Available to him are source nodes, regular nodes, statistic

nodes, queue nodes, sink nodes, activities, and parameters.
These symbols can be used in any manner subject to the Q-
Gert Analysis program limitations and the 1limitations of
this program. Figure 24 is an example of a network display
and the associated source code that can be created,

Some major limitations for the Q-Gert analvsis program
that could effect the size of a network are as follows [S]:
1) Maximum number of nodes in the network is {00.

2) Maximum number of source nodes is 20.

3) Maximum number of queue nodes and select nodes is 50.
4> Maximum number of servers for an activity is 50.

S5) Maximum number of activities in the network is 100,
4> Maximum number of concurrent transactions is 400.

Besides these limitations, this program is further
restricted due to the limited graphic displar capability,
The user can only create small networks that will fit on the
high resolution screen. A scrolling capability was not
incorporated in this program; therefore, the network can
not expand beyond the 40 column display., As a result; the Q-
Gert Analysisjprogram limitations above should not pose any
size constraint on the network that can be built using this
program,

Another limitation exists regarding the positioning of
nodes relative to each other if an activ,ty connects them,

The program is capable of looping an activity where the

start and end nodes are the same, However, care must be

NO, 2
2 (1)
C0,1.5
1 (1)
0 1
1|m
EX, 3
3 (1)

(1)

10, 6
of v 62 (1 5

7)

GEN,USER,NET,1,1,1984,1,1,10,50,5,E*
sou,1,0,1,D,M,L*
REG,2,1,1,D,,L*
STA,3,1,1,D,B,N,N,L*

QUE,“,Z,.D.
ACT,1,1,C0,
ACT,1,2,NO,

F,N,N*
1.5'1 ’1*
2'2'1*

ACT,1,3,EX,3,3,1*

ACT.Z,Q.UN]
ACT,3,4,GA,

b4, 1%
5’ 5'1*
6,6’2'

PAR,2,3.0,0.0,,0,5%

PAR,3,2,5*

PAR,4,,1.0,3.0%

PAR, 5,3.0,0,0,10,0,0,5*
PAR,6,4,0,2,0,6,0,0,2%
SIN,5,1,1,D,1,N,N,L*

FINLISH*

SOURCE NODE
REGULAR NODE
STATISTIC NODE
QUE NODE
ACTIVITY #1
ACTIVITY #2
ACTIVITY #3
ACTIVITY #4
ACTIVITY #5
ACTIVITY #6
NORMAL DIST
EXPONENTIAL DIST
UNIFORM DIST
GAMMA DIST
LOGNORMAL DIST
SINK NODE

Figure 25, Sample Network Displar and Associated Source LCode.

......

18

s

;p exercised when positioning connected nodes becausze the
;EE ﬁg& activities are drawn based on straight lines conmecting twa
(" paints, if an ending node is positioned too far behind the
EE start node, the line connecting the two will pass through
kE the boundaries of both nodes.

:* Since the size of the network is restricted by this
.

:& program, the s»mbol sizes were Kept as small a possible

N

>

- commensurate with the size of the text displaved within the
}f nodes’ boundaries. The following minor limitations are
D .‘Q
yﬂ further imposed on the users of this praogram:

A
;‘ 1> MNode numbers available are between 1-?%,
QN 2) Initial number of transactions to release a node must be
}t be tween 0-9.
b 3> Subsequent number of transactions to release a node must
ooy be between 0-%2 or infinity.
X 4 Infinity is displared within a node as "-",
L ‘.)

‘ Since the program is oriented more to analyzing s=mall
r PERT nmetworks and straight forward queuing systems, some

analysis capability that would normally be available have

Rf been set to the default values. Such as, there i3 no
L)

-

-§: probabilistic branching nor choice criterion within the
Y

‘e nodes for selecting transactions. These analysis
.

L ‘capabilities are necessary for more complex simulations,
:2§ but, this program’s development has only incorporated the
L basic concepts of Q-Gert simulation,

~ -

A

&

AR

.l

w
~)

AhHhh

[N}
l“l'-d'A'

e

P
A

_‘-" .{'i

- f‘

-

;’-':’
e e

PR R

-

a s
e’

P4

LR il

LRt AN

.CD".‘ <
[APARRREL O

2

“a %

1S

TN

~11 the guesticns raised by thi:z

T rezea

been answered affirmatively. Using both an ~pple m
and the rfApple Graphics Tablet, computer arded Zez o gn
techniques were wused to generate a G-Gert rnetwcrk, Liith
Pascal’s drnamic linked 1list data structure, recaords
containing information about each symbol are crested ang
stored on disk. The records can be accesszed far editing or for
generating the computer source code representing the G-Gert
ne twork.

To use this program, the analyst zelects from a menu, ths
symbol he wishes to draw, then, positions it in the network.
Answering the questions askKed by the program about the use of
the symbol, +ills a record representing the symbcl. From the
information contained in the records, the program will displaxr
the symbols making wup the network on the high resolution
araphics screen and, if desired, create a text file containing
the computer source code. The source code can be sent to =

mainframe computer as input to the G-Gert aAnalrsi

]

3 proaram

giving the analyst statistical inferences about the szvstem
simulated,

Presently, the Q-Gert network can consist of sgurce,
regular, statistic, gqueue, and sink nodes; activities; andg
parameters., These symbols comprise the basic concepts of Q-
Gert and can be used to develop small simulation models to
both analyze the system and present a graphical representation

of the system to poartrar the relationships within the svstem.

a3

- " .'-.\- ..-.-.:.-.:'-" -y \._\iﬁ.}‘\‘\'.\.‘_\ \..‘\..'."’1 R et S
A s

AV HAS

A R Rk A S LS
> AP,

e e
. . ¢

.
o,

i

v
A

By

L)
‘s
P

St
< SRR A

LA

[
13
sl s

PR -

U M)
oS0
v N

B
. .
PPV

‘f

Y Y
PR

P U

1,

& wuser’s manual iz contaxined in Appendix Fo It giues 2
brief description of each command anmd zteps through exampiss
to help the wuser learn the existing capabilities o+ the
program.

This program has made a giant stride in easing the burden

of creating a G-gert networkK and manually transliating the
graphical symbols into computer source code. But, there i3
still much that can be done to <further this programs

capabilities. The facllowing are some sugoested arsas of
improvemsnt.
1. The <foremeost problem that needs to be zsolwed 13 the

network display size limitation. Presently, the rnetwork is

‘1imited to the size of the high resolution graphics screen,

To increase the display capability, a scrolling function s
needed, preferably in bkoth the wup/down and lett right
directions. This would allow the network to expand up to the

@-Gert Analysis program limitations.

2. An analysis of the Pascal program may suggest programming
refinements which may be more efficient and therebr able to
free more memory to expand the programs capabilities.

3. Additional 0Q-Gert symbolis and functions can be added
following the same logic as presented in the program develop-
ment section of this thesis., In general, to add ancther
symbol, the <follow-on programmer must add the <following:
shapes, to draw the symbol, toc program INITLOSIC: linked list
variables to wunit GLOBAL; an INFQ procedure to gather

information to +ill the svmbol ' = record, a

(1]

sociated FIMD,

SEARCH, and GOT editing procedures, additions to ACTIMFO: and

SO
--a '.l
NN

I

;,:

F3 .l
«

v~ o
l.L{L

2
T e
&

X
® A

L5
P o P
:.-.)ﬁ'_-.'_:',n.‘_é

0t R

= .l.;"-.‘ .‘ .‘ .. .'

Al N
« vw

SEShNNM

.

P .l-c.;'l‘l. D)
11 5 AN

e e e N
P
TR
PR

> 'y

e W

%3

[/

(.--‘..“_‘.'_‘.'_.- IS R (R W

lastly, a SEARCH procedure in program CODEGEM to generate the
appropriate source code. Care must be taken when 2xpanding the
program to continue the memory conservation principles already
in the program.

4. Sokol, in his electrical schematices program, had a
printing routine that required saving the graphics display on
the screen to a file before the display could be printed.
Since our program does not save the graphics displar to disk,
we could not use his routine to print the network created.

Therefore, a +oliow-on benefit of a printing function would

give the analyst a hard copy of the G-Gert network he created.

S. A <final addition that would benefit the dispiar capa-
bilities is a better drawing procedure to loop back to a
previously drawn node. Currently, the program can loop

backwards only so far as the start and end node are the

w
P
3
L J

If a node is positioned too far behind the start node, the
activity fine will <¢ross through the nodes boundaries
degrading the presentation. Using Turtlegraphics and a
geometry oriented function, curved lines could be wused to
connect the nodes when the activity’'s ending node i3 well
behind the start node.

One final word, as the program is expanded to include
select nodes, match nodes, vas cards, etc., the order in which
the source code is entered into the text file will become
important. This would require a more sophisticated search
routine in program CODEGEN to ensure the proper aorder is

maintained.

l" '0

AP SR

e
v,
L
*
’ T
TN
§ Appendix A

- Procedures SETUPAD and READPAD

- ; assembly language linkage

; to APPLE GRAPHICS TABLET

]

; 20 Mar 80 - Dan Sokol
> i

‘::-' i procedure SETUPAD; external;

: ; procedure READPAD; external;
\ CFFF .EQU O0CFFF ; TURN OFF ALL ROMS
Y MSLOT .EQU 7F8 ; ACTIVE SLOT = Cn
oae PADAT +EQU 0C500 ; SLOT ADDR FOR PAD
3 MREAD LEQU OCEF? ; READ THE PaD
'{ CURSOUT .EQU 0CSFO ; XOR CURSOR AND SCALE PAD OUTPUTS
e WAlIT .EQU 0CCA!l ; MIDEAST COUNTRY WITH MUCH OIL
o DEFAULT .EQU 0CE?0 ; SETUP PAD
. DEF4 .EQU OCEEA { SETUP PAGE AND MPAGE FOR SCREEN 1
- DELAY .EQU 80 § DELAY FOR QWAIT (CURSOR ON)
L .PROC SETUPAD,0;
._ @ DFLT LDA CFFF ; ALL ROMS OFF

Ny LDA #0CS

2 TaX

-7 STA MSLOT

:} LDA PADAT

) LDA PADAT ; TURN PAD ON

d JSR DEFAULT
o LDA %20
b TAY
o JSR DEF4 ; TURN SCREEN 1| & STREAM ON
o LDA CFFF
i LDa #0C3

STA . MSLOT

N _ TAX ; RESET SUP‘R TERM
.70 RTS

- «PROC READPAD,0;

-l

T READIT LDaA CFFF ; ALL ROMS OFF
’ ~ LDA #0CS
N TAX

i sTA MSLOT

~ LDA PADAT

@ LDA PADAT ; PAD ON
G T JSR MREAD ; READ PAD

R JSR CURSOUT ; FLASH CURSOR & SCALE X & Y

L
wel

61

AN d\'.’l':*n’

LDA
JSR
JSR
LDA
LDA
STA
TAX
RTS

ON EXIT >»

#DELAY

QUAIT

CURSOUT

CFFF

#0C3

MSLOT ; RESET SUP’R TERM
PEN UP/DOWN - 640
SCALED X (HIGH BYTE) - 444
SCALED X (LOW BYTE) - 445
SCALED Y (HIGH BYTE) - 448
SCALED Y (LOW BYTE) - 447

.....

S
RN
0y

{

.

a4
-

DN

i W ol - e
AL

RN - i
L AR
MU

»
a

A

_ § QA

', "
'l

LA A

ol

e .

N
>

..l "l ..\ *

CRARAREY

ey
e b .-’

“
s

Appendix B
Unit PEEKPOKE

(RBERRRRXERRERRE PEEKPOKE 36353833635 3 6330 363 36 9636 36 363 3 4 6 %
Adds the commands PEEK and POKE to Pascal, *
Intrinsic unit in System.Library *
* Dan Sokol 3 Dec 79 *
HRERBAFRRBFRRERRRRERFERXRFRRRRRER R SRR R R R R EREFEER)
(¥4S+%*)
unit PEEKPOKE; intrinsic code 23 data 24;
interface
procedure POKE(var ADDR,DATA:integer);
function PEEK(var ADDR:integer):integer;
implementation
type

PA=packed arrayl[0..1] of 0..235;

MAGIC=record case boolean of

true:({INT:integer);
false:(PTR:*PA);

end;
var

CHEAT :MAGIC;
procedure TEST(var DATA:integer); forward;
procedure POKE;
begin

TEST(DATA) ;

CHEAT . INT :=addr ;

CHEAT.PTR~[0] :=DATA;
end;
function PEEK;
begin

CHEAT . INT :=ADDR;

PEEK :=CHEAT .PTR*101;
end;
procedure TEST;
begin

DATA:=abs(DATA mod 236);
end;
begin
(% dummy program ¥)
end.

é3

ot

...................................
......................

.............

............
........
............

T
J'.'
2
12 A
"; EOAS:
l h Appendix C
Program INITLOGIC
N RIS I TN TN IR R E R R RS
- # This program creates the file /LOGIC.CHARSET’ which is #*
used by QGERTNET. Each character is a 21 by 21 array *
& % (of boolean .. i.e. true or false .. 1 or 0) which is *
g # used to draw the QGERT symbols. *
- #* Dan Sokol - 2 Apr 80 *
:'_: * Modified by Anderson and Commeford *
_ HHHRHERHEREHFRERERRR NI RHEREF RN RIREERRERRERRETEHEERRRRT)
. program INITLOGIC;
g type SHAPE = packed array(0..20,0..201 of boolean;
E var NODEL, NODER, ARROW,
. QNODEL, GNODER : SHAPE;
) SHAPEFILE : file of SHAPE;
1, J, ROW : integer;
N . BIT : boolean;
y (RRRRRRRHRRRXXEER MAKESHAPES 33631 HHH BT HEHFHEE1 1R B ¥
N3 # Converts strings to boolean arrays. This procedure is %
- # borrowed from GRAFDEMO.TEXT on APPLE3: *
oy * Called from : INIT1 THRU INITS. *
n HHBHHER RN EIE BRI RERRERRERRERRRERRRERERRSARE)
. Q procedure MAKESHAPES(var BITMAP:shape;ST:string);
Ny - begin
g for Ji={ to length(ST) do
W begin
e BIT:=(STLJI<)” ‘)3
¥ BITMAPLROW,J-1) :=BIT;
end;
' ROW:=ROW-1 3
3 end;
3 (RBRRERRXRREXE SOESHAPES #3600 0218138424 51X HHHHHR
__ # Saves the arrays in a disk fitle. *
#* Called from : Main program loop. *
H I I I 3 I IS OIS I 38 30 0 S S 3 2 2)
procedure SAVESHAPES;
) begin
X rewr i te (SSHAPEFILE,“LOGIC.CHARSET’) ;
) SHAPEFILE” :=ARROW; put{SHAPEFILE);
SHAPEFILE~ 1=sNODEL; put(SHAPEFILE);
SHAPEFILE” :=NODER; put(SHAPEFILE);
P SHAPEFILE” 1=ANODEL ; put(SHAPEFILE);
'ﬁ SHAPEFILE” :1=QNODER; put(SHAPEFILE);
e close(SHAPEFILE,lock);
» end;
o™ (R385 8308% INITL %¥EBRERNEEREHNREIEERFHEERRERERREE#
A # Creates arrays from strings. The arrow for source/sink#
: '{\: # nodes. Called from : Main program loop. *
N L3
':' 44
"
o
~ I PN A RN ""'-"'-’\"\"' ""-" - N

& i
o
N
LS
:..: e 636636 36 363 36 36 36 36 36 336 36 3636 26 3636 36 163 36 36 36 36 36 96 36 36 3636 36 3636 36 96 26 36 96 6 6 6 I ¥ I 6 KX XX %K)
ol J, procedure INIT!;

l begin

ye write(’.”);

N ROW:=20;

.- MAKESHAPES (ARROW, / ‘)3
u MAKESHAPES(ARROW, / ‘)3
T MAKESHAPES (ARROW,)3

MAKESHAPES(ARROW, / P

MAKESHAPES(ARROW, / ‘)3
SN MAKESHAPES(ARROW, / X)3

X MAKESHAPES(ARROW, / X ‘)3
. MAKESHAPES(ARROW,’ ° X ‘) ¥
o MAKESHAPES(ARROW,” X X X ‘)3
. MAKESHAPES(ARROW,’ X X X)3
X MAKESHAPES (ARROW , * X00000CCOCKK)4
% MAKESHAPES(ARROW,’ X X)3
.{) MAKESHAPES(ARROW, * X X ‘)3
e MAKESHAPES(ARROW, * X ‘)3
4 MAKESHAPES(ARROW, ’ X i H
\ , MAKESHAPES (ARROW, ‘ ° X)3
Lo MAKESHAPES (ARROW , / ’y;
% MAKESHAPES (ARROW, * Y
3o MAKESHAPES(ARROW, *)3

e MAKESHAPES(ARROW, ‘)3
2 MAKESHAPES (ARROW,)3
i @ end;

A CHERNBRRRRNEE INIT2 R R RN ERI RN EF N E NN 2N
T # Creates arrays from strings. Left half of nodes. *
N * Called from : Main program loop. *
T I IIITII TR R RN TR P LE P TR FEPP TR R P ST P ETY)
- procedure INIT2;

' begin

o write(’.’);

) ROW =20 ;

. MAKESHAPES (NODEL , / X00C0O0000CCK) 3
e MAKESHAPES(NODEL , / XK X 3
MAKESHAPES(NODEL , X0 X)
MAKESHAPES(NODEL ,* XX X)
.r::: MAKESHAPES(NODEL ,* XX X 7);
Y MAKESHAPES(NODEL ,* XX X)
- MAKESHAPES(NODEL ,* X X)
= MAKESHAPES(NODEL , * XX X)3
<% MAKESHAPES(NODEL , “ X X ‘)

L MAKESHAPES(NODEL , ‘X X ‘);

}'\- MAKESHAPES (NODEL , “ X0000CCOOCCOCOO0CO00X 7) 3
-:{c MAKESHAPES(NODEL , ‘X X)
o MAKESHAPES(NODEL , X X ‘)
N MAKESHAPES (NODEL , /XX X
.\' MAKESHAPES(NODEL,’ X X)3

~ . MAKESHAPES(NODEL ,’ XX X)
» E S MAKESHAPES(NODEL ¢ XX X);

3
24 65
Al
~$ﬂ ------ ‘m e e P -

T T B O B R

..:
«
\
{
>
]
N MAKESHAPESC(NODEL, XX X)i
‘,;. ; MAKESHAPES(NODEL , / XXX X ‘)
l MAKESHAPES(NODEL , / XXX X ‘)
oy MAKESHAPES(NGDEL , ’ COCOOOCOCKX’) 5
A end;
108 (HERBERREREEE INITI HHRBHHHRERH TR HHREEEEEEHFHHHEREERUEE
h; % Creates arrays from strings. Right half of nodes. #
* Called from : Main program loop. *
‘ BRI IR NI I T I 3 M R E)
procedure INIT3;
- begin
4 write(’.’);
s ROW:=20;
- MAKESHAPES (NODER, * X00CO0COCOCKX ‘)
. MAKESHAPES (NODER, / X XXX ‘)3
4 MAKESHAPES(NODER, “ X XK ‘3
;.; MAKESHAPES(NODER, / X XX)
w MAKESHAPES(NODER, ’ X XX)
g:, MAKESHAPES(NODER, ‘ X XX)
o MAKESHAPES(NODER, X X)
N MAKESHAPES(NODER, / X XX7);
S MAKESHAPES(NODER, ‘ X X3
<. MAKESHAPES(NODER, / X X);
) MAKESHAPES (NODER, / X00CO00XK X3
hy MAKESHAPES (NODER, / X X’);
“ MAKESHAPES(NODER, ‘ X X);
. @ MAKESHAPES(NODER, / X XX’ 3
” " MAKESHAPES(NODER, ’ X X ‘)3
,. MAKESHAPES(NODER, / X XX ‘);
N MAKESHAPES(NODER, ‘ X XX ‘)
:-'.’ MAKESHAPES(NODER, / X XX ‘)
v MAKESHAPES (NODER, / X XXX)3
MAKESHAPES(NODER, / X XX 3
e MAKESHAPES (NODER , “ X00000COOCKX)3
) end;
K CRBRUBARERERE INITE 3633836303638 336 36 153003030 3030 3030 9636 30 3630 30 363 36 430 36 36 34 36
2 # Creates arrays from strings. Left half of queue node. *
o » Called from : Main program loop. »
SRR I IR T I I 3 0 3 0 356 I 3 00 B 30 08)
4 procedure INIT4;
o begin
L write(’.’);
) ROW:=20 3
- MAKESHAPES(GNODEL , / 0000000000’)
s MAKESHAPES (GNODEL , “ X0 X ‘)
3 MAKESHAPES(GNODEL ,©)0 X)
) MAKESHAPES(GNODEL ,’ XX X)
u e MAKESHAPES(AGNODEL ,© XX X ‘)
; MAKESHAPES(QGNODEL ,’ XX X ‘)3
’ MAKESHAPES(GNODEL ,” X X ‘)
= . MAKESHAPES (GNODEL , / XX X)
N _.:f;}-. MAKESHAPES(GNODEL , “ X X ‘)3
DI
v
2 66
2.

«

R i T, L e L S LS
7, RN R

oKy N WL N
ey l! -

.‘l -

PR N

e

10X NS

Pl

Y

LNENE N W

a
3

-

AJoB

LX)

AT AT ITAY
A N %

MAKESHAPES(GNODEL , ‘X X ")
MAKESHAPES (GNODEL , * X0CO0CCOCCO0COCOOCK 7)) ;
MAKESHAPES(GNODEL , ’ X X)3
MAKESHAPES(GNODEL ,“X X)3
MAKESHAPES (GNODEL , “ XX X)
MAKESHAPES(GNODEL ,” X X ‘)
MAKESHAPES(GNODEL ,* XX X %)
MAKESHAPES(OGNODEL ,” XX X)
MAKESHAPES(GNODEL , ’ XX X)3
MAKESHAPES(GNODEL , “ 20X X ‘);
MAKESHAPES (GNODEL , /) .0 ¢ X)
MAKESHAPES (GNODEL , / 20000000000’) ¢
end;
CHERERBRERNEE INITS 8053620303 83023 36353 3336 3 3636 36 36 35 36 9636 36 63636 36 3 36 36 3 3

Creates arrays from strings.

* Called from : Main program |

336332 96 3 30 363 3 26 30 36 0 1636 36 3630 36 303636 363636 36 36 36 36 2636 36 36 3 36 36 36 36 36 96 36 36 36 26 36 36 36 36 363 3 36 34 26 3¢)

procedure INITS;

Right half of queue node.*

oop.

begin

write(’.”);

ROW:=20;

MAKESHAPES (GNODER , “ XCCO0COCO00K 3
MAKESHAPES(GNODER, / X XXX ‘)
MAKESHAPES (GNODER, “ X 20X N
MAKESHAPES (GNODER, * X XX ')
MAKESHAPES (GNODER, / X XX)
MAKESHAPES (GNODER, ‘ X XX);
MAKESHAPES (GNODER, / X X ’);
MAKESHAPES (GNODER, / X XX’y
MAKESHAPES (GNODER, / X X
MAKESHAPES(GNODER, ’ X X);
MAKESHAPES (GNODER, “ X X’
MAKESHAPES(GNODER, / X X);
MAKESHAPES (GNODER, / X X’y
MAKESHAPES(QGNODER, / X XX
MAKESHAPES (GNODER, / X X X ‘)
MAKESHAPES(GNODER, / X XXX)3
MAKESHAPES (GNODER, / X XX)
MAKESHAPES(GNODER, ’ X XX ‘)
MAKESHAPES (GNODER, “ X XX XX ‘)3
MAKESHAPES (GNODER, / X XX X3
MAKESHAPES (GNODER , “ XCO0CCCOCCOK X3

end;

CRBRRERUSRARE MAIN PROGRAM 3333538393633 55 33 54043 # 5% 8%)

begin '
write(’/initializing array’);
INIT1; INIT2; INIT3; INIT4;INITS;

writeini writein(’Writing GGERT symbols to disk’);

SAVESHAPES ;
end.

~\ N " . \.\‘\.\' _'-' '..\‘ NN

67

Appendix D
Program QGERTNET

(#$5+ %)

unit GLOBAL; (* saved as UGLOBAL.TEXT %)
intrinsic code 26 data 27;

interface

€ 63038 303638 363638 36 396 38 3636 36 363536 36 35 3 363536 36 3636 36 3636 36 3636 36 36 36 36 36 3636 36 36 3¢ 36 36 3 3¢ 3¢ 3

2 Link lists to store inforamtion for QGERT *
source code generation. *
FIBHRERHHERR R IERHIEHHH R RFHETE R RE R HRERR)
type

SHAPE = packed array (0..20,0..20] of boolean;

(xx#%x#% Source and Regular nodes F¥EEREEREFERLEE)
LINK = ~SOUREG;
SOUREG = record

NEXT : LINK;
DEVICE : integer;
XLOCATION ¢ integer;
YLOCATION : integer;
TIPE t stringl3];
NODENWM s stringl2];
INITIAL : stringlil;
SUBSEQUENT : stringlll;
BRANCHING t stringl1l;
MARK : stringlll;
CHOICE ¢ stringl1];
COMMENT t stringl23];
end;

(Ean%E% Stat and Sink nodes #HHIEENIEHNENHEENEENNEREE)
LINK2 = ~STASIN;
STASIN = record

NEXT : LINK2;
DEVICE : integer;
XLOCATION ¢ integer;
YLOCATION ¢ integer;
TIPE : stringl3];
NODENUM : stringl2);
INITIAL : stringl1];
SUBSEQUENT ¢ stringl1l;
BRANCHING : stringlll;
STAT : stringfll;
UPPER : stringl4];
WIDTH t stringl4];
CHOICE : stringl1l;

48

B S R PP P S S I R e
W YRTIPG PR I I PRI R PR Ny "

N M s il A iy AR A A A 2 A N A S A A i, B A S e it S SRR T T IR I Y

l' . l‘
'3 &'

RN COMMENT : stringl(251;

PO end;

E: (REane® ACtivities FRRERRFRRBERREREEREEHEERNEENE)
- LINK3 = “ACT;

{:;. ACT = record

> NEXT ¢ LINK3;

< DEVICE : integer;

X ¢ integer;

N sY t integer;

.4 EX ! integer;

o EY : integer; .
-~ TIPE : stringl3);

e START ! stringl2];

N IND ! stringl2];

~ DISTR : stringl2];

Y PARAM ! stringl4];
;}j ACTNUM ! stringl2];

AN SERVERS : stringl2);

-~ COMMENT t stringl25);

A end;

'(.\

i (#E2%EF Parameter Sets FEEX¥rEydERsERAS#NPEREEE)
bt LINK4 = ~PAR;
M PAR = record

- . NEXT t LINK4;
L @ TIPE t stringl31;

s PARAM : stringl4];

N PAR1 : stringfd];

o PAR2 : stringl4];
-::: PAR3 : stringld4];

PAR4 : stringl4];

. COMMENT : stringl(23);

N end;

::::; (HaxxEr Queue NOCES FHEXRFFEFRRFRERRRERNFRRERNR)
o LINKS = ~QUE;

- QUE = record

NEXT ¢ LINKS;
-~ DEVICE : integer;
'..Zj: XLOCATION ! integer;

" YLOCATION : integer;

-’ TIPE ¢ stringl3];
- NODENUM : stringl2);

- INITIAL : stringll1l;
o CAPACITY ¢ stringl1l;

IS¢ BRANCHING : stringlll;
'é RANKING t stringl1l;
N BALKERS t stringl2];
T] UPPER : stringld4);

PR WIDTH : stringl4];
_\"- ‘\';}) COMMENT : stringl25);
2

) 69

D A I e S A Ry L D S R S

Ralica-Ber

KSR end;

e SOUREGFIL
STASINFIL
ACTFIL
PARFIL

. QUEFIL

file of SOUREG;
file of STASIN;
file of ACT;
file of PAR;
file of QUE;

GBI RN R R ERRRFRERR RN RER R SRR ER R

* integer variables *

RFEBRFREFEREFEEFHFRREFREFR SRR FREFRRFRRFRRERRERN)

var
PEN, (*# pen switch (up or down) *)
X,Y, (% pen position on pad *)
D, (# device being plotted ¥)
LASTX,LASTY, (% last Device X, ,&Y *)
DMODE (# mode used for plotting ¥)

¢ integer;

i It S,
N AT

'3

CHERFERRFRREFRNFREEREFRRERRRRRARLREERRFRRERERERRBREF
QGERT shape names, used to draw GGERT symbols *
HRBRREFHERRBERERRRBRETNRERRERRERREFRERRBRREERERRE)
ARROW ,NODEL ,NODER ,ONODEL ,GNODER : SHAPE;
€ TIITIETI T ST FE R R A e R I R AT EY
* disk file of QGERT symbols *
HERHRAHR RTINS RN T I E R R FRETERF R NS R EEE TN
SHAPEFILE : file of SHAPE;
E ‘[!D [EIIIIIITITRITTIIRTIATR VLT A TNEL LTI ISR F TSRS)
* booleans *
HRBHRRERERRRRERREBRRFRREHNFRRRERRBERERRFRRBRXRERE)
. UPDATE, (% checks for SAVE in EDITor *)
o LOCKX, LOCKY, (* contains the LOCKed x or y coord. #)
SAFETY, (* checks for SAVE on exit *)
oy VALIDXY, (# true if X & Y are on screen %)
ol HELLFREEZESOVER, (#* never true - for infinite repeats %)
3 INVERSE,
o FINDER

AL -
AAANNAAS

: boolean;
CRBR NI IIE I I IR R R R R R ERNRE
* strings and things *
FRBHHRI IR F R HRNERRE RN ERR)
FILENAME, DUMMY, (% for LOAD and SAWE names *)
IDENT, (% for names of plotted devices #*)
ACTSTRING, (# builds Activity data structure®)
"G STRSELEC,ELEMENT, (% used in EDITor searches *)
O ST (# used in WRITEONSCREEN *)
N : string;
; CH, SELEC,ANS (# for inputs and control *)
¢ char;
- NEXT1 ,BASE{ tLINK; (% SOU/REG node pointers %)
o BASE2,NEXT2 tLINK2; (% STA/SIN node pointers %)
SN BASE3,NEXT3 1LINK3; (% ACT pointers *)
P BASE4 ,NEXT4 :LINK4; (% PAR pointers *)
4

&
.J'u
o 70

Lt e el T e s e R T R U B R Y SR T ENL I S SR SR . ge n . «, .
‘... ot ..-'_- DR _.". o e n. ._ R .':..‘ L \"'.-'\.-'.:.x \- _‘.. "\"ﬂ".. 's. » ‘.‘\' « ~.\- ‘.‘_‘-- LI ". LY

BASES ,NEXTS :LINKS; (* QUE node pointers *)

2 SRF :SOUREGFIL; (% files of the records *)
{ SSF :STASINFIL;

W AF tACTFIL;

N PF :PARFIL;

o aF 1QUEFIL;

procedure STUPID;
implementation
‘ procedure STUPID; begin end;

1* begin end.

y 4
PSSP S

ENNN

X!

»
i

(>

h AN

- PRI

R“

%

AL A A

‘/
RN

v
e
s e

Sy,
s
-

71

C
A
T

*

~ v e LT I S AL JL I . - et L At Y AT et TN T YAt At et T e L e
3 Y .'Q('-."‘(."'.' R R A AL T R e p e Mn‘ .’-‘- - 1' SACALCPC J'\- <.._\ -

J.;

»:

1
v

Pl
)

e
)

B

PRI S ‘-1

(RRRRREREERRERRRRRFRREEREERREXRRERFFRREREERRFARERRRRARRRR
This unit is linked to QGERTNET. It contains the *
graphics screen text writer and the QGERT shapes *
loader. *
*
*
)

W W ok Kk K

Both procedures written by : Dan Sokol
WRITEONSCREEN modified by : Anderson & Commeford
FRERRRRERERRERREERFRREFREFERERREERERRERRERFHEXRERXRERRER

(¥3S+¥)

unit RITE; (% saved as UWRITE.TEXT#*)
intrinsic code 17;

interface

uses TURTLEGR,GLOBAL ;

procedure WRITEONSCREEN;
procedure GETSHAPES;

implementation

(exrnnrrnrrinerresitr WRITEONSCREEN 3 3 36 96 36 3 3 3 3 3 3 3 3 2 % % % %

QOverlays strings on HIRES screen 1. *
*# Text can be horiz or vertical. *
* Called by : Units NODEINFU,ACTPAR,UINN *

REXREELRERRERREERFEREFRRFREEREEREELXLRXEXRERRERSLEXREFHEEN)

procedure WRITEONSCREEN;

var 1 i integer;
C1 : char;
begin

DMODE := 4; if INVERSE then DMODE := 5;
char type (DMODE) ;
pencolor{(none);
while VALIDXY do begin
case CH of
‘h’,’H’: begin moveto(X,Y); wstring(ST); end;
‘v’ ,’V’: begin for I:=1 to length(ST) do
begin moveto(X,Y); C1:=STI11; wchar(Cl); Y:=Y-9; end;
end;

end;

VALIDXY :=falge;

end; (# of while loop ®)
end;

72

. (REREXEXRREREREREXXEESE GETSHAPES AXXXXXXEXEXXEXEREXRRERXFXRRE
L . * Loads the shapes from the file ‘LOGIC.CHARSET’ *
g #* Called from: Main program loop. *
'.f-_.'- RELZRRRNEEREXRERREEREERLEREERREEEXEEXXRRXEERLEEERERXELXER)
o procedure GETSHAPES;

ol begin

reset(SHAPEFILE,’LOGIC.CHARSET');

N ARROW :=SHAPEFILE~; ge t(SHAPEFILE);

) NODEL :=SHAPEFILE*; get(SHAPEFILE);
-

S
N
o
A5
-\..
.-'._
-\ Q..

. NODER :=SHAPEFILE"*; get(SHAPEFILE);

N GNODEL :=SHAPEFILE*; get(SHAPEFILE);

: GNODER :=SHAPEFILE" ;
close(SHAPEFILE);

end;

begin end.

............ T e M WL e N T e e et T s

R L TSE DT AU A SRRV W SR WO e Y PR WP WO WS Wiy R L ORP ST PSP Y J gt et st . st atatat A
et oA s 8 L LA A A . A

Fadohe ‘
ll"'l
L]

 GAD
sy

PAraeradradr)

a
o . s
w8 T e e

-." "1:1 ".‘-"‘: " .n

R A
[NN N

P4

W “ ; .
N4 o
-T\..:. i ‘.. ‘!.“l g o

.?qﬂ?.

LS

Py - :‘_'._"_:'l
7 R

BRY. 4 MO SO

A5
Xy

(HERREFRXEERLERERREFREFREEREERFEREFRLEFXERERRREXEREXREERE

This unit is linked to GGERTNET. It contains the *
* the procedures which build the data structure by ask—- *
¥ ing the user questions. It has procedures for the *
* source/re%ular nodes, stat/sink nodes, and queue nodes¥

Written by : Anderscy & Commeford *

*********i**)

(¥3S+%)

unit NODEINFO; (% saved as UNODEINFO.TEXT #)
intrinsic code 235;

interface
uses TURTLEGR,GLOBAL,RITE;

procedure SOUREGINFO;
procedure STASININFO;
procedure QUEINFO;

implementation

CRBRREXXEANEEREE SOUREGINFO HEEXEXEEXXEXRXXREEREERXERER
Builds the data structure for a source or regular node#*
* Also writes text to the graphics screen. *
* Called by: MYPLOT *
209636 36 2696 96 36 36 38 36 0 3 36 360336 36 36 36 6 3636 36 3 36 363030 36 3630 6 96 30 36 30 30 36 036 36 3636 T D06 2 30 10 2 23)

procedure SOUREGINFO;
begin
new(NEXT1) ;
Yi=Y+10;
NEXT!* .0EVICE:=D; NEXT1~.XLOCATION:=X
NEXT1# YLOCATION'—Y,
if D=1 then
begin NEXT1~.TIPE:=/S0U’;
X 1= X440; Y = Y+i
end else begin
NEXT1~.TIPE:="REG” ;
X:=X+30; Y:=Y+1
end;
write(chr(12)); CH:="V‘; writeln;
write{’/Enter node number (1 to ?9) --=> “);
readln(NEXT1* .NODENUM) ;
ST:=NEXT1* .NODENUM; WRITEONSCREEN; Y :=NEXT1*.YLOCATION+1;
X:=X-20; CH:='H’; UALIDXY =true;
write(’ Inutlal number to release (0 to 9) --=> “);
readin(NEXT14.INITIAL);
ST:=NEXT1*.INITIAL; WRITEONSCREEN;
Y:=Y-10; VALIDXY:=true;
write(’/Subsequent number to release, (<CR> 7);

74

‘?

- '.".)4 PR
R

1]
»
4
.

" T
PP S
5 » .'\f..Jﬁ.’. y

. a. -'

s
.
4,

-,
OO
'l'

¥ "‘. .,
EA o oS
LR

§
.
P } '{ “'. Shvh

1

TN

A

write(’for infinity or 1 to 9?) —=> 7);
read] n(NEXT1+ .SUBSEQUENT) ; ST :=NEXTi*.SUBSEQUENT;
if length(ST) = 0 then ST := "-";
WRITEONSCREEN; NEXT1“.BRANCHING:=‘D";
X:=X+10; VALIDXY:=true;
write{’Enter M to mark, otherwise just press (CR> ---=))}
readl n(NEXT1* .MARK) ; ST:=NEXT1~.MARK; WRITEONSCREEN;
Yi=Y+10; VALIDXY:=true;
write(’Enter choice criterion (F,L,S,B,M) ——=)} “);
readIn(NEXT14.CHOICE); ST:=NEXT1~.CHOICE; WRITEONSCREEN;
write(‘Enter a node comment. (CR)> for none ---) “);
read! n(NEXT1+ .COMMENT) ;
NEXT1* ,NEXT := BASEl; BASEl := NEXTI;

end;

(RERRERRERXEXREE STASININFO HHHHHH%1HHEH %% EHK%%E%HE#%E

Builds the data structure for a stat or sink node. *
* Also writes text to the graphics screen. *
* Called by: MYPLOT *

3963636 36 336 3636 36 36 36 36 36 3636 36 3636 36 36 36 36 36 36 36 26 96 36 36 3638 36 3636 36 3636 36 6 I 36 I 963 3 6T I N W XXX)

procedure STASININFO;
begin
new(NEXT2) ;
Yi=Y+10;
NEXT2* .DEVICE:=D; NEXT2*.XLOCATION:=X;
NEXT2* ,YLOCATION:=Y;
if D=3
then NEXT2*.TIPE:=’STA’
else
NEXT2* . TIPE:=’SIN";
X:=X+30; Yi=mY+];
write(chr(12)); CH:="V’;
write(’Enter node number (1 to 99) ---) “);
read! n(NEXT2* .NODENUM) ;
ST :=NEXT2* .NODENUM; WRITEONSCREEN; Y :=NEXT2*.YLOCATION+1;
s=X-20; CH:="H’; VALIDXY:=true;
write(’/Initial number to release (0 to 9) --=>)
readln(NEXT24.INITIAL) ; ST:=NEXT2*.INITIAL;
WRITEONSCREEN
Yi=Y-10; VALIDXY:=true;
write(’/Subsequent number to release, (<CR>)3
write(’for infinity or 1 to ?) ——=> “);
read] n(NEXT2* .SUBSEQUENT) ; ST :=NEXT2*.SUBSEQUENT ;
if length(ST) = 0 then ST := “~’;
WRITEONSCREEN;
NEXT2” .BRANCHING:='D"’;
X:1=X+10; VALIDXY :=true;
write(’Enter statistics desired (F,A,B,I,or D) -——=> *);
readin(NEXT2*,.STAT); ST:=NEXT2*.STAT; WRITEONSCREEN;
write(’Enter uypper limit ~f first cell 7);
write(’(N if histogram not wanted) ~---> ‘);

75

readl n(NEXT2* .UPPER)
if (NEXT2*.UPPER='N‘)
then NEXT2*.WIDTH:='N’
else begin
write(’Enter width of histogram cell ---> “);
readln{NEXT2* .WIDTH) ;
end; (% of else %)
Y:=Y+10; VALIDXY :=true;
write(’Enter choice criterion (F,L,5,B,M) ~==> “);
readln(NEXT2* ,CHOICE) ; ST:=NEXT2*.CHOICE; WRITEONSCREEN;
write(’Enter a node comment, <(CR> for none ~--} “);
read]ln(NEXT2* ,COMMENT) ;
NEXT2* .NEXT := BASE2; BASE2 := NEXT2;
end;

(RBRREXRFFXRRXRE QUEINFO SHHBBRREHHERREREEEHERREFHEERES
Builds the data structure for a queue node. *
* Also writes text to the graphics screen. *
* Called by: MYPLOT *
ER YT IR STL I TSI LESTIIZEFITILIET R RT ST TR ST T T TS

procedure QUEINFO;
begin

new(NEXTS) ;
Yi=Y+10;
NEXT3* .DEVICE :=D; NEXTS*.XLOCATION:=X;
NEXTS” .YLOCATION:=Y;
NEXTS* . TIPE:=/QUE" ;
X:=X+30; Y:=Y+1;
write(chr(12)); CH:="V’;
write(’Enter node number (1 to 99) --=> “);
readln(NEXTS* .NODENUM) ;
ST :=NEXT3* .NODENUM; WRITEONSCREEN; Y :=NEXTS5*.YLOCATION+1;
X:=X-20; CH:="H’; VALIDXY:=true;
write(’Initial number in queue (0 to 9?) -—> “);
readin(NEXTS*.INITIAL); ST:=sNEXTS5*.INITIAL;
WRITEONSCREEN;
Y:=Y-10; VALIDXY:=true;
write(’Capacity of queue node, (<CR> “);
write(’/for infinity or 1 to ?) -==> 7);
readln(NEXTS* .CAPACITY) ; ST :=NEXTS*.CAPACITY;
if length(ST) = 0 then ST = /-/;
WRITEONSCREEN;
NEXT3* .BRANCHING :=’D” §
X:=X+10; Y:=Y+3; VALIDXY:=true;
write(’Enter type ranking desired (F,L,S,or B) --=));
readl n(NEXTS5* ,RANKING) ; ST :=NEXTS5*.RANKING; WRITEONSCREEN;
write(’Enter balking node number (<CR) to destroy ‘);
write(’balkers ——=) “); readln(NEXTS5*.BALKERS);
write(’Enter upper limit of first cell ’);
write(’(N if histogram not wanted) --~) “);
readl n(NEXT3* ,UPPER) ;

76

0

.
3
o, i (NEXT5*.UPPER="N‘)
’n e then NEXTS*.WIDTH:='N’
| - else begin
" write(’Enter width of histogram cell --~) ‘)3
- readl n(NEXT5* .WIDTH) ;
o end; (% of else ®)
- write(’Enter a node comment. (CR) for none ~--> ’);
" read] n(NEXTS5* .COMMENT) ;
NEXTS5* .NEXT 1= BASES; BASES := NEXTS;
Y end;
"J'
- begin end.
«
A
XN
Dy
-
_.:
“
:w

s VSN OLNY

Ay ;

77

Y AL

"
%

L

..................................

o

() (36369036 3635 30 330 36 36 3630 26 36 3636 3630 36 3636 36 963626 36 36 30 369636 36 3636 36 363 96 3006 30 96 36 36 96 26 30 96 36 36 6 3 3 %
]

od

*# This unit is linked to QGERTNET. It contains the *
.:. * procedures to build the data structure for activities #
e * and parameter sets. *
-2 * Written by : Anderson & Commeford *
. EIZ2 2T TS TSRS RS SRS B2 E TR PRI TR T T
(¥$S+#)

- unit ACTPAR; (* saved as UACTPAR.TEXT #)

’;_{I intrinsic code 29;

\ interface

AN
i uses TURTLEGR,GLOBAL,RITE;

procedure ACTINFO;

! : procedure PARINFO;
[~
’ S implementation
34 (RERRBREFHREEXEE PARINFO 3503032633363 436338 15 3 # 3 3% % ¥ % %%
;I-\-j # Builds the data structure for a parameter set. *
s * Called by : ACTINFO #
Y FREBRERREFHREEREF R ERRRFFHHHREF R R RN PR ERREERERE)
procedure PARINFO;
ey A begin
L @ writelnjwriteln(’ Building Parameter Card’);writein;
- write(’Enter parameter set number --=) ‘);
- read! n(NEXT3* .PARAM) ;
o ST :=NEXT3* .PARAM; ACTSTRING:=concat(ACTSTRING,ST,’)’);
- NEXT4:=BASE4; FINDER:=false;
while (not FINDER) and (NEXT4 <> nil) do begin
' if (NEXT4~,.PARAM = ST)
oY then FINDER:=true
o e1se NEXT4:=NEXT4*.NEXT;
oo end; (* of while ®)
0 if (not FINDER) then begin
e NEW(NEXT4) ;
e NEXT4* . TIPE:=/PAR’ ;
" NEXT4* .PARAM :=ST;
e write(’Enter 1ST parameter ---) ‘);readin(NEXT4*.PAR}Y);
- write(’Enter 2ND parameter --—)> ‘);readin(NEXT4*.PAR2);
g write(’Enter 3RD parameter ---)> ‘) readln(NEXT4*.PAR3);
- write(’Enter 4TH parameter ---> ’);readIn(NEXT4*.PAR4);
write(’Enter your parameter card comment., ’);
*» write(’ <(CR> for none ---=) ’);
. readi n(NEXT4~ .COMMENT) jwr i teln;
AN NEXT4* ,NEXT 1=BASE4; BASE4s=NEXT4;
S end (* of FINDER if #)
¥ else begin writeln;
= e writeln(‘There"s already a parameter set ‘,ST);
AR U writein(‘Therefore, a parameter card will not be built’);
e 78
04
A,
-+,
'

< i S > A "R R AR B R A IS Rl SR A A Y e A Ve Tmr et ar e N T N, RN

}-
b
(
-]
*2 . :
S writeln; end;
SR O end;
~
o CRERBRRNFRRERREE SEARCH 2653636363 30-16:30.36 36336 36363 36 96 36 96 3 35 36 3635 36 36 3 ¢ 3¢
:; # Finds the start and end node of an activity. »
v * Called by : ACTINFO *
'S U T 03T 36 23 0 0 T 6003 263330 36 2 3 AT MR)
¥ procedure SEARCH;
%] .
& begin

NEXT1 :=BASE1 ;

while (not FINDER) and (NEXT! <> nil) do begin
if (NEXT1* . NODENUM = NEXT3*.START) then

\ begin FINDER := true;

XM

» “L

o case NEXT1~.DEVICE of

}). 1: begin NEXT3*.SX:=NEXT1~.XLOCATION + 53;

o NEXT3%.SY:=NEXT14.YLOCATION; end;

- 2: begin NEXT3*,SX:=NEXT1*.XLOCATION + 42;
X NEXT3*.SY:=NEXT1*.YLOCATION; end;

Y end; (* of case stmt)

y end

e else NEXT1 :=NEXT1*.NEXT;

} end; (% of while *)

)8 i (not FINDER) then begin

‘:Eb NEXT2:=BASE2;
while (not FINDER) and (NEXTZ <) nil) do begin

g

< i if (NEXT2* .NODENUM = NEXT3*.START) then
I begin FINDER:=true;
! case NEXT2*.DEVICE of
by 3: begin NEXT3*.SX:sNEXT2*.XLOCATION + 42;
. NEXT3*.SY 1=NEXT2* .YLOCATION; end;
. é: begin write(chr(12));
. write(’A sink node can not start a act,’);
- write(’ press RETURN/);
"o read(CH) ;jexi t (ACTINFQ) ;end;
. end; (* of case stmt *)
- end
;. else NEXT2:=NEXT2* .NEXT;
’! end; (* of while #)
‘- end;
- if (not FINDER) then begin
oD NEXTS :=BASEDJ §

while (not FINDER) and (NEXTS () nil) do begin
if (NEXTS* .NODENUM = NEXT3*.START) then
begin FINDER:=truye;
NEXT3*,SX :=NEXTS* . XLOCATION + 42;
NEXT3*,SY 1=NEXTS5* .YLOCATION; end
else NEXTI:aNEXTS* .NEXT;
end; (* of while #)
S, end;
AN if (not FINDER) then

OGO AN V]

79

A

"
o
-

) e e e e, L L et e e N e et

U Y -
.........

N \-'\».‘\ .-.’_-_ _-_._..._~ t- ',’s.‘q-\-'.' SN -. ALY AT AT e

\.'...‘n$) pIAAIY

p—

v

aa e,

Y%~ (LIMAORNE) O

LAl

1 ".' \'...’-": iy

DR

Sy

A begin write(chr(12));
R write(’/Start node not found, press RETURN’);
read(CH); exit(ACTINFD);
end;

pencolor(NONE); move to(NEXT3*.SX,NEXT3*,8Y);
write(’/End node number --=)> ‘); readln(NEXT3*.IND);
FINDER:=false; NEXT!:=BASE];
while (not FINDER) and (NEXT1 <> nil) do begin
if (NEXT1~.NODENWM = NEXT3*.IND) then

begin FINDER:=true;

NEXT3* .EX:sNEXT14 . XLOCATION;
NEXT3* .EY :=NEXT14.YLOCATION;

end

else NEXT1:=NEXT1* . NEXT;
end; (% of while *)

if (not FINDER) then
begin NEXT2:=BASE2;
while (not FINDER) and (NEXT2 <> nil) do begin
if (NEXT2*.NODENUM = NEXT3*,IND) then
begin FINDER:=true;
case NEXT2*.DEVICE of
3,4: begin NEXT3*.EX:=NEXT2*.XLOCATION;
NEXT3* ,EY :=NEXT2*.YLOCATION; end;
end; (# of case stmt *)
end

E else NEXT2:=NEXT2* .NEXT;

end; (* end of while %)
end;
if (not FINDER) then begin

NEXTS :=BASES;
while (not FINDER) and (NEXTS <) nil) do begin

if (NEXT3* .NODENUM = NEXT3+.IND) then

begin FINDER:=true;
NEXT3" . EX:=NEXTS3* . XLOCATION;
NEXT3* .EY :=NEXTS* .YLOCATION; end
else NEXTS:=NEXTS” .NEXT;
end; (» of while #)
end;

if (not FINDER) then

begin writelchr(12));

write(’End node not found, press RETURN’);
readin(CH) jexi t(ACTINFO) ;

end;
pencolor(WHITE) ;
if (NEXT3*.START <) NEXT3*.IND) then FINDER:=false;

end;

.
N
DA

80

Ll SRS D A A S OAC A AR e

(HERRRERXERHRXXE ACTINFO 3836855363 63 3 3 5 3 % 36 3 3 3 3% 3 % % % % %

#* Builds the data structure for an activity. *
* Also writes text to the graphics screen. *
N * Called by : MYPLOT *
" FRRFREFREFRRFRRFRHEFRRFRFRRREEREERRFRRFRFERRFRRREREIR)
- procedure ACTINFO;
- var TEMPX integer;
» begin

new(NEXT3); NEXT3*.DEVICE:=D; NEXT3*.TIPE:='ACT’;
write(chr(12)); write(’Device type > ACTIVITY’);
writeln; writeln; writeln;
write(’Start node number ---> “); readln(NEXT3*.START);
FINDER:=false; SEARCH;
if (not FINDER) then
begin moveto(NEXT3* .EX,NEXT3*.EY);
X:=(NEXT3*,8X + NEXT3*.EX) div 2;
Y :=(NEXT3*.5Y + NEXT3*.EY) div 2;
end else
begin move to(NEXT3*.5X,NEXT3*,SY+23);
move to(NEXT3* ,SX-42,NEXT3*.5Y+25);
move to(NEXT3*.5X-42,NEXT3*.8Y) ;
o X:=aNEXT34.8X-21; Y:=NEXT3*,.SY+25;
= end;
AS INVERSE :=true;
write(’Enter distribution type ---) ‘)3
- : readln(NEXT3*.DISTR);
@ ACTSTRING:=concat(’(’/ ,NEXT3*.DISTR,",");
if (NEXT3*.DISTR='C0’) then
: begin write(’Enter constant value -~=> ‘);
e read) n{NEXT3* .PARAM) ;
- ACTSTRING:=concat(ACTSTRING,NEXT3* .PARAM, ")) ;
end else PARINFO;
ST :=ACTSTRING ; TEMPX :=X;
4 X=X - ((length(ST) div 2)%7);
S CH:=’H’; WRITEONSCREEN;
. write(’Enter activity number (1 to 99) ---> ’);
-~ read]l n(NEXT3" .ACTNUM) ;
e ACTSTRING:=concat(’[‘ ,NEXT3* .ACTNUM,’] ’);
—~ write(’Enter number of parallel servers (i to 99) --=> ‘)
2 read) n{NEXT3* .SERVERS) ;
jf ACTSTRING:=concat (ACTSTRING,’ (* ,NEXT3*.SERVERS,)’)}
e ST:=ACTSTRING;
- Y:=aY - 9:X:=TEMPX - ((length(ST) div 2)#7);

: CH:=’H’; VALIDXY:=true; WRITEONSCREEN; INVERSE:=false;
write(’Enter activity card comment. (CR) for none ---=) ‘);
readln(NEXT3* .COMMENT) ;

X NEXT3* .NEXT :=BASE3 ; BASE3 :=NEXT3;
N end;
> begin end.

EA P

DY

A i it & % A L AR A L I R T O A L R T R Tl Sl T Bt I S L P St S A A e

333 3 3 3 3 35 338 3 363 36 363 36 9636 96 3635 36 36 3636 369636 36 3636 96 96 3 36 3696 96 3636 3 36 9636 36 36 36 36 36 9 36 36 3 % %
This unit is linked to QGERTNET. It loads a network/s#
data structure from disk and simultaneously draws the *
the network on the graphics screen, *
* Written by : Anderson & Commeford *
2333353 3013036 03035230 9030 38 6B 90 0 0 3000 20 0600 00 36 T 06 0620 36 6 0606 36 6 3 96 96 3 16 696 36)

(¥$S+%)
unit INN; (% saved as UINN %)

interface
uses TURTLEGR,GLOBAL,RITE;

procedure INDATA(var SRFF: SOUREGFIL;
var SSFF: STASINFIL;

var AFF : ACTFIL;
var PFF : PARFIL;
var @FF : QUEFIL);

procedure LOADSCREEN;
implementation

CHERNERRNRRRHRRERE GRAFNODES 3683305338 3053 38 35 36 36 30 38 96 4636 36 163 36 26 3 2%
As each node record is read in from disk, this draws#*
the node on the graphics screen, *
*» Called by : INDATA *
FHE R R T2 30 00 0 T3 R 000 36 3 03 0 3 T T RN R)

‘J) X
"’.'.'J‘J

procedure GRAFNODES;
begin pencolor(white); DMODE := 10;
case D of

.
s 1,2: begin Di= NEXTi~.DEVICE;
I X 1= NEXT1~.XLOCATION;
AN Y 1= NEXT1~.YLOCATION - 10;
> end;
= 3,461 begin Di= NEXT2*.DEVICE;
= X 1= NEXT2*.XLOCATION;
‘o Y 1= NEXT2*.YLOCATION - 10;
I end;
= S : begin Di=NEXTS*.DEVICE;
Xs=NEXTS5* XLOCATION;
Y :=NEXTS5* . YLOCATION - 10;
end;
N end; (# of case stmt #)
case D of

i: begin drawblock(ARROW,4,0,0,21,21,X,Y,0MODE);

drawb1ock (NODEL. ,4,0,0,21,21 ,X+11,Y,DMODE) ;

-, drawb1ock(NODER,4,0,0,21,21 ,X+32,Y,DMODE) ;
-:;3." end;

LR [AR AL A2 s

82

...........

¥
o
\": A 2,3: begin drawblock(NODEL,4,0,0,21,21,X,Y,DMODE) ;
bos A drawblock (NODER,4,0,0,21,21 ,X+21,Y,DMODE) ;
& end;
'v,a.(, 33 begin drawbiock(GNODEL,4,0,0,21,21,X,Y,DMODE);
_«:::f drawbiock (ANODER,4,0,0,21,21 ,X+21,Y,DMODE) ;
L end;
"' é: begin drawblock (NODEL,4,0,0,21,21,X,Y,DMODE) ;
drawb1ock (NODER,4,0,0,21,21,X+21,Y,DMODE) ;
1 drawblock (ARROW,4,0,0,21,21 ,X+42,Y,DMODE) ;
end;
1o end; (% of case stmt »)
2 X 1= X ¢+ 30; Y =Y + 11; CH := 'V’
n if D=1 then X = X + 10;
\ case D of
NS 1,2: ST := NEXT1*.NODENUM;
-.j{ S 1 ST:=NEXTS5".NODENUM;
NN 3,6: ST := NEXT2*.NODENUM;
oy end; (% of case stmt %)
> VALIDXY := true; WRITEONSCREEN;
X =X - 20; CH := ‘H’;
case D of
1,2: begin Y := NEXT1~,YLOCATION + 1;
ST := NEXT1~.INITIAL;
. end;
. 5 : begin Y:=NEXTS5*.YLOCATION + 1;
(@ ST :=NEXTS*. INITIAL;
end;
oo 3,6: begin Y := NEXT2*,YLOCATION + 1;
| };;- ST := NEXT2*.INITIAL;
s end;
. end; (% of case stmt #)
- VALIDXY := true; WRITEONSCREEN; Y := Y -10;
. case D of
Y 1,2: ST := NEXT1~.SUBSEQUENT;
T S ¢ ST:=NEXT3".CAPACITY;
- 3,6: ST := NEXT24.SUBSEQUENT;
P end; (% of case stmt *)
T if (length(ST)=0) then STi=’-";
o VALIDXY := true; WRITEONSCREEN; X := X + 10;
o case D of
e 1,2: ST := NEXT1“.MARK;
e S : begin Y:mY + 5; ST:=NEXT3*.RANKING; end;
= 3,6: ST := NEXT2*.STAT;
—— end; (% of case stmt *)
e VALIDYY := true; WRITEONSCREEN;
T case D of
1,2: begin ST:=NEXT14.CHOICE;
ey Y:=Y+10; VALIDXY:=true;
o WRITEONSCREEN;
A - end;
o s 3,6: begin ST:=NEXT2*.CHOICE;
%
a7
A
._}‘ 83

“
A
)
e

)
)

Y:=Y+10; VALIDXY :=true;

R WRITEONSCREEN;
end;
R end; (% of case stmt %)
PO end;
YR YA
; ‘\::: (RERRERREXRERREE GRAFACTIVITY HERHEREEIHIEREREEEXEEN
N # As an activity record is read in, this draws the *
) # activity on the graphics screen. *
e * Called by : INDATA *
S REFHRFRRERRRRNFERNEREFRRERRERRRFRREREBRRERREEREEAETREE)
i procedure GRAFACTIVITY;
b var TEMPX t integer;
i
i begin DMODE:=10; pencolor(none);
o move to(NEXT3*,SX,NEXT3*.5Y);
o pencolor(white);
>y if (NEXT3*.START <) NEXT3*.IND) then
S beégin move to(NEXT3*.EX,NEXT3*.EY);
A X:=(NEXT3*,SX+NEXT3* .EX) div 2;
L7 Y :=(NEXT3* ,SY+NEXT3*.EY) div 2;
! :J:: end else
oy begin move to(NEXT3*.SX,NEXT3*.8Y + 29);
oy move to{NEXT3*,5X-42,NEXT3*.5Y+25) ;
oo move to(NEXT3*,5X-42,NEXT34.8Y) ;
C 6: X:=NEXT3".5X-21;
e Y :=NEXT3" . SY+23;
O end;
e ST:=concat(’/(’ ,NEXT3*.DISTR, ', ,NEXT3* .PARAM,) ’);
'-:.;;} TEMPX :=X ;
\ X:=X~-((length(ST) div 2)#*7);
~ INVERSE :=true; VALIDXY :=true; CH:="H’;
}-:::- WRITEONSCREEN;
h- ST:=concat(’/[’ ,NEXT3*.ACTNUM,’] (/,NEXT3*.SERVERS,’));
NG Yi=Y-9; X:=TEMPX-((1ength(ST) DIV 2)#7);
o VALIDXY :=true; WRITEONSCREEN; INVERSE:=false;
O end;
;_":: (eanngnnxdnitntd INDATA #3HHHHEHEF1HEE1EE%EE
L # Loads a file into memory as link lists. *
NI * Called by : LOADSCREEN *
7 RTINS H I F TR R NI LR TEN)

5
¥

procedure INDATAj;

/. ". E 5

var DUMMY s string;
NN AGAIN : boolean;
A

"-_;2_- begin write(chr(12));

o if (not UPDATE) then begin

o~ write(’/Load what file -—) “); readIn(FILENAME);
e it length(FILENAME) = 0 then exit(INDATA);

e if length(FILENAME)) 10 then
N begin writeln; writeln(’/Filename too long'!'’,chr(7));
ex i t(INDATA) ;
end;
end; (* of then %)
DUMMY := concat(FILENAME,’.SOUREG’); D := 1;
(¥$]-%)
rese t (SRFF ,DUMMY) ;
if (IORESULT <> O»
then begin writeln;
writeln(’File called /,DUMMY,’ not found’);
writeln(’/{CR) to continue’);jread(CH);
(¥$]+#)
exi t{INDATA) ;end;
writeln;writein(’Reading ‘,DUMMY,’ from disk’);
BASE1:=nil;
while not eof(SRFF) do begin
new(NEXT1);
NEXT1% := SRFF*;
GRAFNODES;
NEXT1* .NEXT :=BASE!1; BASE] :=NEXT!;
ge t{SRFF) ;
end;
close(SRFF);

DUMMY := concat(FILENAME,’.STASIN’); D := 3;
v writeln;writein(‘/Reading /,DUMMY,’ from disk’);
rese t(SSFF,DUMMY) ; BASE2:=nil;
while not eof(SSFF) do begin

new(NEXT2) ;

NEXT2*4 := SSFF*;

GRAFNODES;

NEXT2* .NEXT :=BASEZ; BASE2:=NEXT2;

ge t(SSFF);
end;
¢lose(SSFF);

DUMMY := concat(FILENAME,’.QUE’); D := §;
writelnjwritein{’Reading ’,DUMMY,’ from disk’);
reset(QFF ,DUMMY) ; BASES:=nil;
while not eof(QFF) do begin

new(NEXT3) ;

NEXTS* = QFF*;

GRAFNODES ;

NEXT3” .NEXT :=BASES; BASES:=NEXTS;

ge t(QFF) ;
end;
close(QFF);

DUMMY := concat(FILENAME,’ .ACT");
— writelnjwriteln(‘/Reading ’,DUMMY,’ from disk’);
reset(AFF,DUMMY); BASE3:=nil;

83

I ¢

while not eof(AFF) do begin
new(NEXT3) ;
NEXT3* := AFF*;
GRAFACTIVITY;
NEXT3* .NEXT :=BASE3; BASE3:=NEXT3;
ge t(AFF);

end;

close(AFF);

DUMMY := concat(FILENAME,’ .PAR");
writeln;writeln(’Reading ‘ ,DUMMY,’ from disk’);
reset(PFF ,DUMMY); BASE4:=nil;
while not ect(PFF) do begin

new(NEXT4);

NEXT4* := PFF~;

NEXT4* .NEXT := BASE4; BASE4 := NEXT4;

ge t(PFF>;
end;
close(PFF);

end;
(RERRERNEXXEEXEE LODADSCREEN FEXEERXERREEHEXNHERR
* Called by : MENU *

3363636 36 36 36 36 30 36 36 3636 36 36 3 36 3636 36 36 36 34 38 336 36 3636 36 363 36 36 26 36 34 H X N XXX HE)

procedure LOADSCREEN;
begin INDATA(SRF,SSF,AF,PF,QF); end;

begin end.

86

DI AT e Sad

PAD-A141 127 AUTOMATED @-GERT SOURCE CODE GENERATION USING COMPUTER
AIDED DESIGN(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON
AFB OH SCHOOL OF ENGI.. G M ANDERSON ET AL. DEC 83

UNCLASSIFIED RAFIT/GOR/0S/83D-2 F/G 9/2

PP i
3«.»-‘-&'

1.0
=

FEEER
EEEE
EE

FEEE

—-—
.
—
[4
e
re

I
[z Hie

il]
U‘I
==
I

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS - 1963 = A

TR

A N o™
L T W Vs Y0)

“~
3.:',5 , _:;f; (313030 30390 035 26 9636 36 36 303096 30 30000030 36 063030 0030 00 03000 36300046136 06 3000 3 0 0 H 006 305 0 36 0 3
: # This unit is linked to GGERTNET. It saves a network *
NN # to disk by writing the link lists to different files %
\):ﬁ: # which have the same prefix as supplied by the user. #
R # Unit UINN uses these files to load the data structure »
«{\j * into memory and draw the graphics *
D> s Written by : Anderson & Commeford *
BRI SRR IR I NI 300 00 36000 0 S M 2)

i

:;:f-j (#8S+%)

gf unit OUT; (* saved as UOUT.TEXT %)

b, .1 interface

S uses GLOBAL;

{5

e procedure OUTDATACvar SRFF: SOUREGFIL;
:}’.::- var SSFF: STASINFIL;

= var AFF : ACTFIL;

b var PFF : PARFIL;

> var @FF : QUEFIL);
{-\-'i procedure SAVESCREEN;

5

. t) implementation
. @ CHERRBRRRRARRNRE QUTDATA F3H3 5035 31303050090 31630 96 3096 9696
"'..s." % Writes the 1ink lists in memory to disk with user’s *
)

el * filename. Called by : SAVESCREEN *
"&.j; SRS S I 3)

procedure OUTDATA;

P

84 begin

Aoy if (not UPDATE) then begin

Y §q write(chr(12)); write(’Save with what name -—=> ‘)3
e readln(FILENAME) ;

— i Tength(FILENAME) = 0 then exit(OUTDATA);

if length(FILENAME) > 10 then
begin writeln; writeln(’Filename is too Tong!!’,chr(7));
exi t(OUTDATA) ;
end;
end; <(» of then %)
DUMMY := concat(FILENAME,’ .SOUREG’)

e

SR
WX A

ARF

o writelngweiteln(‘Writing /,DUMMY,’ to disk’);
Vo’ rewr i te (SRFF ,DUMMY) ; NEXT! 1= BASE!;

e while (NEXTI <> nil) do begin

XN SRFF 1= NEXT14; put(SRFF); NEXT1 1= NEXT1~.NEXT;
AR end; (# of while ®

S close(SRFF,LOCK) ;

<= N

o ‘32}’ DUMMY := concat(FILENAME,’.STASIN’);

"1’]

» "

g7 67

T SR A N - e e A T T NN N A A S DV NN S NN

.
B

< Long b gt A g-dt Lt S R Sk Sl i ir i i ARl Gl B G Al Bl Tl Sng el Seil Al S R Sl Ml N 1 Rt A0 R, |

&‘
1!
s
ol)
AL
_,..i
,ﬁ L writeln;writeln(’Writing / ,DUMMY,” to disk’);
N v rewri te(SSFF,DUMMY); NEXT2 := BASE2;
while (NEXT2 <> nil) do begin
i SSFF~ 1= NEXT2*; put(SSFF); NEXT2 := NEXT2*.NEXT;
e end; (% of while
N close(SSFF,lock);
' DUMMY := concat(FILENAME,’.ACT’);
writelnjwriteln(‘Writing /,DUMMY,’ to disk’);
T rewr i te(AFF ,DUMMY) ; NEXT3 := BASE3;
o) while (NEXT3 <> nil) do begin
23 AFF~ 1= NEXT3*; put(AFF); NEXT3 := NEXT3*.NEXT;
end; (& of while ¥
% close(AFF,lock);
i) DUMMY := concat(FILENAME,’ .PAR’);
"1. writelnjwritein(‘Writing /,DUMMY,’ to disk’);
i rewr i te(PFF,DUMMY) ; NEXT4 1= BASE4;
b while (NEXT4 <) nil) do begin
PFF~ 1= NEXT4”; put(PFF); NEXT4 := NEXT4*.NEXT;
- end; (* of while ®)
I close(PFF,1ock);
S?S DUMMY := concat(FILENAME,’.QUE’);
‘Eg writelnjwriteln(‘Writing /,DUMMY,’ to disk’);
«7 rewr i te(QFF ,DUMMY) § NEXTS 1= BASES;
@ while (NEXTS <) nil) do begin
.."2'5';) QFF~ 1= NEXT3*; put(GFF); NEXTS := NEXTS”.NEXT;
N end; (# of while ¥
Ry close(QFF,Tock);
NN
e SAFETY 1= true;
. end;
‘ (RERRBRRAARREEREE SAVESCREEN #33HEREERMEHEHEHHER 4R
RO # Called by : MENU *
Xyl RRRHRHHHHHHHEHHEHHHEHHHHHEH S A RS R R RS)
> procedure SAVESCREEN;
%&1 begin OUTDATA(SRF,SSF,AF,PF,QF); end;
1 .‘.
oy
E4,19 begin end.
‘
s
M
Py
RSN
N
R4,
N 88
&%

LR Cn i al o o s o Lo WY TS Y REGENEY e o ey Y

[y

Ty 2 o - < Tadv? B Bt P P W s € UL W TuW, - " L S A N Al - - '.—". -1-'4 o - A A “ .

d e
§:~
3 3Ny
} ‘.‘-_1
N
N3
TORS DA
NATERA I I I I I 0336 303003 S0 0 03 I 3030 030 0 S0 5 3 0
\ # This unit is linked to QGERTNET. It allows the user #
T # to change or delete source/regular nodes. #*
'{}: * Written by : Anderson & Conmeford #
,\3:.. S S S S I3 I 0 3 S I R 0 0)
3
N (#8S+#)
, unit EDITSR; (# saved as UEDITSR.TEXT #)
o,
§\$ interface
LA
Y " uses GLOBAL;
«*,
procedure FINDSOUREG;
\z-j implementation
"l'
§:§: (RBRRBRRERREEREE CHNGSOUREG 3839333538 538 M5 3 690 3363 30 330 30 331 30 94
i # Allows changes of certain fields to source/regular nodes #*
-y » Called by : FINDSOUREG #
" ; MM N33 I I 0 I 0 S)
-“é procedure CHNGSOUREG;
begin
@ writeln; write(’To change a field above, type in the ‘);
_ : writeinC(’first letter ‘); '
LA writeln(’of the field you want to change.’);
1‘;’.,{ writeln(‘A blank field means the default value.’);
ﬁ"\:ﬁ write(‘You may type a G when you are done with ‘);
Sy wreiteln(/this node.’)}
while (ANS () ‘Q’) do begin
o, repeat
@n gotoxy(30,14); write(’ ‘)3
DN gotoxy(20,16); write(’)3
4 gotoxy(0,14); write(’Enter your choice ‘);
‘f\" 'it.('(“,!,s.".",c.o’ ——) ')i
= read(ANS) ;
534 . until C(CANOS=’N’)or(ANS=’]’)or(ANS=’S’)or (ANS="M’)
28 or (ANS=’H’) or (ANS=C”) or (ANS="0")) §
o ZI if (ANS=’Q@’) then exit(CHNGSOUREG);
2o gotoxy(0,14);
e, write(’Enter new value ~—=) ’)j
o case ANS of
’N’1 readin(NEXT1~.NODENUM) ;
“25: ‘1’1 readIn(NEXT1*.INITIAL);
"o ‘8’3 readln(NEXT1*.SUBSEQUENT);
N ‘M’ 1 readin(NEXT1* MARK) §
N ‘W1 readIn(NEXT1+.CHOICE)
‘C’s readIn(NEXT1+,COMMENT);
et ;,.‘:‘? end; (# of case stmt #)
gy gotoxy(0,2) jwrite(”’ ‘)3
o
Ll
\

7S VAT AL L 3 RS S S SR G A R

-

R -
(o

i
P

...........

3% write(’ ‘);
: gotoxy<3,2); write(NEXT1+ .7 IPE);
gotoxy(9,2); write(NEXT1*.NODENUM) ;
gotoxy(16,2); write(NEXT1*.INITIAL);
gotoxy(26,2); write(NEXT1".SUBSEQUENT) ;
gotoxy(39,2); write(NEXT1*.MARK);
gotoxy(46,2); wriie(NEXT1*.CHOICE);
gotoxy(3,4); write(NEXT!*.COMMENT);
end; (% of while #)
end;

CHINNSRNSEREENES GOTSOUREG ##SNNHSNNEHAEEEEHIESNIENE
After finding selected node, displays information
of that node and asks if deletion is desired.
Called by : FINDSOUREG *
S EHHHHHHNEHHHEHHEHEHEHEEHHHEHHE N R)

procedure GOTSOUREG;
begin
write(chr(12));
writeIln(‘Here is your node’);
write(’ TYPE N(ODE I(NITIAL SC(UBSEQUENT M(ARK
write(’C(H)OICE’);
gotoxy<0,3); write(’ CC(OMMENT’);
if FINDER then

begin
@ gotoxy(3,2); write(NEXTI*.TIPE);

gotoxy(9,2); write(NEXT14.NODENUM) ;
gotoxy<16,2); write(NEXTI*.INITIAL)}
gotoxy(26,2); werite(NEXT1*.SUBSEQUENT) ;
gotoxy(39,2); write(NEXT!*.MARK);
gotoxy(46,2); write(NEXT1*.CHOICE);
gotoxy(3,4); write(NEXT1*.COMMENT);

end else

begin

gotoxy(3,2); write(NEXT1* .NEXT*.TIPE);
gotoxy(9,2); write(NEXT1~.NEXT* .NODENUM) ;
gotoxy<16,2); write(NEXT1* ,NEXT*.INITIAL)
gotoxy(26,2) 5 write(NEXT1* ,NEXT* ,.SUBSEQUENT) ;
gotoxy(39,2); write(NEXTI* .NEXT* .MARK) j
gotoxy(46,2); write(NEXT1* .NEXT*.CHOICE) 3
gotoxy(3,4); write(NEXT1*.NEXT*.COMMENT);
ends

repeat

gotoxy(48,7); write(’ ‘)

gotoxy(0,7)}

write(’Do you want to delete this entire node? ‘)j

writeC¢’Y/N —=) ‘)3

read(ANS);

until (CANS=’Y’) or (ANS=’N’))};

'@ end}

‘)3

N ‘ T
i}-‘:! '
ib",‘
-~

':{j_

o

;:: KR (annnnn sttt et FINDSOUREG 369333396 35 3 30 96 3 3 3 3596 30 330 3¢ 3630 3 6 3

b "i \:.* # Finds the selected node and then either deletes the

‘\ * node or calls CHNGSOUREG. * |
* Called by : unit EDIT * |
f.:. 0TI 0 T30 3T IE 300 30 100 600 30 30 200 36 3600 3 3600 36 36 3008 30 06 0 3090 36 90 3630 30 363 36 3) !
A

AN procedure FINDSOUREG;

KX begin

if ¢CBASE! = nil) then

N begin writeln(’Can*t find ’,STRSELEC,ELEMENT);

) writein(’<(CR) to continue’); read(ANS);

iy exi t(FINDSOUREG) ; j
253 end; (# of then)
kN FINDER:=true; |

if (NEXTI~.NODENUM = ELEMENT) then |

o begin GOTSOUREG;

if (ANS = “Y’) then BASE! :=BASE1* .NEXT

e else CHNGSOUREG;

723 end

F¢ else begin

: FINDER:=false;

e repeat

» if (NEXTi4.NEXT*.NODENUM <> ELEMENT) then

T NEXT1 :=NEXT1* .NEXT;

until ((NEXT1~.NEXT=nil)
or (NEXT1* .NEXT* .NODENUM=ELEMENT));
if (NEXT{* .NEXT=nil) then
begin writein(’/Can®t find ’,STRSELEC,ELEMENT);
writeln(’/(CR) to continue’); read(ANS);
ex i t({FINDSOUREBG) ;
end; (# of then #)
SOTSOUREG
if (ANS = “Y’) then NEXT14.NEXT :sNEXT14 . NEXT* .NEXT
else begin NEXT!:=NEXT1“.NEXT; CHNGSOUREG; end;
end; (% of else ®)
end;

8

TR
SRS

oS

B begin end.

AT 4

Y8 91

T A A A
WA l'} I

PR TR R TR
Ve 4 a0 .

g Pl

'3

o~

B

TAKE

€ 36303530 33030 33030 20 3030 30 3638 25 3630 36 3635 36 9630 36 36 390 36 3630 36 36 35 36 6 36 38 36 36 3 36 36 38 36 3 3
This unit is linked to QGERTNET. It allows *
8 the user to change/delete a stat/sink node. *

» Weitten by : Anderson & Conmeford »
BRI D T I3 0 3 33 S S)

(M48+3)
unpit EDITSS; (% saved as UEDITSS.TEXT »)

interface

uses GLOBAL;
procedure FINDSTASIN;
implementation

(R ARRRNBRRRRRER CHNGSTASIN #3388 8530589 B3 %
Allows changes of certain fields to stat/sink *

nodes. Called by : FINDSTASIN #*
FHBR IR I IS S THN 3 3 - 3 8)

procedure CHNGSTASIN;

begin
writeln; write(’To change a field above, type in the ’);
writeln(‘first letter ‘)3
writein(‘of the field you want to change.’);
writein(’A blank field means default value.’);
write(’You may type a @ when you are done with this’);
writeln(’ node.’)}
while (ANS <) ‘Q@’) do begin

repeat
gotoxy(30,14); write(’ ‘)3
gotoxy(20,16); write(’ 33

gotoxy(0,14); write(’Enter your choice “);

U‘it.('(N,l,S,T,U,U,H,C,Q) '--) ');

read(ANS) ;
until (CANS=’N’)or(ANS=’1’)or(ANS=’S’)or (ANS=’T’)
or (ANS=’ U’) or (ANS=‘W’) or (ANS=’H’) or (ANS=/C’) or (ANS=’Q“)) ;
if (ANS=’Q’) then exit(CHNBSTASIN);
gotoxy(0,18); write(’Enter new value -—)> ‘)3
case ANS of :

‘N’: readln(NEXT2*.NODENUM) ;

‘1’3 readin(NEXT2*,INITIAL)}

‘8’1 readin(NEXT2*,SUBSEQUENT) ;

‘T’s readIn(NEXT2*,STAT);

‘U’ readln(NEXT2*.UPPER);

‘Wt readin(NEXT2*.WIDTH);

‘H’s readin(NEXT2*,CHOICE);

‘C’: readin(NEXT2*.COMMENT)
end; (2 of case stmt #»)

92

. % o=

NN S0 Y SO SR RN \-'\-'l}\;':.iii-.‘ :
-t

OUROTORNRGRORNY |

1. o "i;

Pl

R 4

F

e
A
» x

Y bw BB S

£

gotoxy(0,2) swrite(’
write(’ ‘)3
gotoxy(3,2); write(NEXT2*.TIPE);
gotoxy(9,2); write(NEXT2*.NODENUM) ;
gotoxy(16,2); write(NEXT2*.INITIAL);
gotoxy(26,2); write(NEXT2*.SUBSEQUENT) ;
gotoxy(39,2); write(NEXT2*.STAT);
gotoxy<47,2); write(NEXT2*.UPPER);
gotoxy(33,2); write(NEXT2* .WIDTH) ;
gotoxy(43,2); write(NEXT2*.CHOICE);
gotoxy(3,4); write(NEXT2*,COMMENT);

end; (» of while)

end;

A

(RERRERRERHEINEE GOTSTASIN BHNHENHHEEREEEHEHHEE B E 3R 8S
After finding the selected node, displays information *
* of that node and asks if deletion is desired.]

bd Called by : FINDSTASIN *
FIE I HEEHE R R %)

procedure GOTSTASIN;
begin
wreite(chr(12));
writein(’Here is your node’);
write(’ TYPE N(ODE I(NITIAL S(UBSEQUENT S(T)AT ‘);
write(/U(PPER WC(IDTH C(H)OICE’);
gotoxy<0,3); write(’ CC(OMMENT’);
if FINDER then
begin
gotoxy(3,2); write(NEXT2*,.TIPE);
gotoxy(9,2); wri te(NEXT2* .NODENUM) ;
gotoxy(16,2); write(NEXT2*.INITIAL)}
gotoxy(26,2); write(NEXT2*,.SUBSEQUENT) ;
gotoxy(39,2); write(NEXT2*,.STAT)}
gotoxy(47,2); write(NEXT2*.UPPER);
gotoxy(335,2); write(NEXT2*.WIDTH);
gotoxy(483,2); werite(NEXT2*,CHOICE);
gotoxy(3,4); wito(NB(TZ“.CWBﬂ’);
end else
begin
gotoxy(3,2); write(NEXT2* NEXT*.TIPE);
gotoxy(9,2); write(NEXT2* .NEXT* .NODENUM) ;
gotoxy(16,2); write(NEXT2* .NEXT*.INITIAL);
gotony(26,2); write(NEXT2* NEXT*.SUBSEQUENT) ;
gotoxy(39,2); write(NEXT2* .NEXT* .STAT)
gotoxy(47,2); write(NEXT2* ,NEXT*.UPPER);
gotoxy(33,2); write(NEXT2* .NEXT*.WIDTH) ;
gotoxy(43,2); write(NEXT2* .NEXT* .CHOICE);
gotoxy(3,4); write(NEXT2* .NEXT*,COMMENT);
ends
repeat
gotoxy(48,7); write(’ “/);

?3

SN gotoxy(0,7);
R «&9 write(’Do you want to delete this entire node? “);
write(’Y/N ===))3

340 read(ANS);
until (CANS=’Y’) or (ANS='N‘));
and;
P CRannannannannns FINDSTASIN 31835 ESEESEEREHE

Finds the selected node and then either deletes #»
2y # the node or calls CHNGSTASIN. *
ol] Called by : unit EDIT *
}P 33 HHE N3 3 0 0)
Ao procedure FINDSTASIN;

begin
A% if (BASE2 = nil) then
:: begin writeln(’Can*t find ‘,STRSELEC,ELEMENT);
%) writeln(’/<(CR)> to continue’); read(ANS);
b exi t(FINDSTASIN) ;
= end; (* of then %)
= FINDER:=true}
I if (NEXT2* .NODENUM = ELEMENT) then
£y begin GOTSTASIN;
28 i (ANS = ’Y’) then BASE2:=BASE2* .NEXT
L . else CHNGSTASIN;

end
@ else begin
£ FINDER:=false;
¥ repeat
g if (NEXT2* .NEXT*.NODENUM (> ELEMENT) then
: &% NEXT2 1=NEXT2* .NEXT 3
" until ((NEXT2*.NEXT=nil) or (NEXT2*.NEXT*.NODENUM=ELEMENT));
if (NEXT2* .NEXT=nil) then
BN begin writeln(’Can"t find ’,STRSELEC,ELEMENT);
f{-:* writeln(’<{CR> to continue’); read(ANS);
o exi t(FINDSTASIN) ;
o end; (% of then ®)
— GOTSTASIN;
3% if (ANS = ’Y’) then NEXT2* NEXT:-NEXTZ‘ JNEXT* .NEXT
e else begin NEXT2:=NEXT2* .NEXT; CHNGSTASIN; end;
end; (& of else ¥
: end;
:i begin end.
g2
)
S
.
KA OGN HS CIARAS CRORRRS 54 A% CHEHILSIRAIA S A%, 0 5 0 SESURIBASARASASLN EL 1

008
i) \“‘-.
ATRBY,
, G653 010 000 306 30 I I 3300 0 3 I 36 0630 303 6 3
A * This unit is linked to QGERTNET. It allows »
% # change/deletion of queue nodes. »
B4 # Written by : Anderson & Commeford »
») FHHEHEHHEHEHEEHEHEHEEHEHHHNEHHEH N HEHEHHE)
'
(#3S+a)

unit EDITQUE; (# saved as UEDITQUE.TEXT #)
Rrs interface
s
RSy uses GLOBAL;
n procedure FINDQUE;
{23!
} implementation
X
R CRERRBHNHIHEEREE CHNGOUE 333333333 33 45111 H313
%5‘ # Allows changes of certain fields to queue *
#* nodes. Called by : FINDQUE *
g FHEHHHHHEHHHHHEHHEHHEHEHEEHEHEHHE HEHHEH R)
.
':\f;v:: procedure CHNGQUE;
. ‘ begin
o @ writeln; write(’To change a field above, type in the ‘);
g writeln(/first letter ‘);
s writeln(’sf the field you want to change. A blank’);
o weiteln(‘field means default value. You may type a‘);
V writeln(’Q when you are done with this node.’);
while (ANS <> “Q@’) do begin
e repeat
by gotoxy(30,14); write(’ ‘)3
oo gotoxy(20,14); write(’ ‘)3
o gotoxy(0,14); write(’Enter your choice ’);
write(’(N,1,A,R,B,U,W,C,Q) ~—>)3

' read(ANS) ;
L until (CANS=’'N’)or(ANS=’1’)or(ANS=’A’)or (ANS=‘R’)
e or(ANS=’B’ Yor (ANS=’U’) or (ANS=’W’)or (ANS=’C’) or (ANS=‘Q’)) ;
s if (ANS=’Q’) then exit(CHNGQUE);
o gotoxy(0,14); write(’Enter new value -——) “);
¥ case ANS of
- ‘N’: readl n(NEXTS* .NODENUM) ;
e ‘1’3 readIn(NEXT3*.INITIAL);
_;; ‘A’ readln(NEXTS".CAPACITY) ;
2 ‘R’: readIn(NEXTS*.RANKING) ;
'3,:):. ‘B’: readln(NEXTS*.BALKERS) ;
o ‘U’s readin(NEXTS*.UPPER) ;
o ‘Wi readin(NEXT3*.WIDTH);
A ‘C’t readin(NEXTS*,.COMMENT);
RO end; (% of case stmt #)
:f}-"';
X 95

AT o]

- TR R

e ot

.
_r e S,

v
&)

gotoxy<0,2) jwrite(’
write(’ ‘)3
gotoxy(3,2); write(NEXT3*.TIPE);
gotoxy(9,2); write(NEXTS* .NODENUM) ;
gotoxy(14,2); write(NEXT5*.INITIAL);
gotoxy(26,2); write(NEXTS".CAPACITY);
gotoxy(38,2); write(NEXTI* .RANKING) ;
gotoxy<48,2); write(NEXTS*.BALKERS) ;
gotoxy(38,2); write(NEXTS*.UPPER);
gotoxy<é4,2); weite(NEXTS*.WIDTH);
gotoxy(3,4) 3 write(NEXTS*.COMMENT) ;
end; (% of while ®)
end;

(RSRABRRBRNERRES GOTQUE HBHREFHERRRENEENRRERAFER
After finding selected queue node, displays
information of that node and asks if deletion *
* js desired. Called by : FINDGUE *
ARSI B SRR RN BN R ER R RS E RS

procedure GOTQUE;

begin
writelchr(12));
weiteln(’Here is your node’);

write(’ TYPE N(ODE I(NITIAL C(AIPACITY R(ANKING

write(’B(ALKING U(PPER W(IDTH’);
gotoxy(0,3); write(’ C(OMMENT’);
if FINDER then
begin
gotoxy<3,2); write(NEXT3*.TIPE);
gotoxy(9,2); write(NEXTS* .NODENUM) ;
cotoxy<16,2); write(NEXTS*.INITIAL);
gotoxy(26,2); write(NEXTS".CAPACITY);
gotoxy(38,2); write(NEXTS*.RANKING) ;
gotoxy(48,2); write(NEXT3” .BALKERS);
gotoxy<38,2); write(NEXTS*.UPPER);
gotoxy(66,2); write(NEXT3* .WIDTH);
gotoxy(3,4); write(NEXTS*.COMMENT);
end else
begin
gotoxy(3,2); werite(NEXT3* .NEXT*.TIPE);
gotoxy(9,2); write(NEXTI* .NEXT* .NODENUM) ;
gotoxy(16,2); write(NEXTS" .NEXT*.INITIAL);
gotoxy(24,2); write(NEXT3" .NEXT* .CAPACITY)
gotoxy(38,2); write(NEXTS” .NEXT* .RANKING) }
gotoxy(48,2); write(NEXT3* .NEXT*.BALKERS) ;
gotoxy(38,2); write(NEXTS* .NEXT* .UPPER) ;
gotoxy(46,2); write(NEXTS.NEXT*.WIDTH);
gotoxy(3,4); write(NEXT3* .NEXT~,.COMMENT);
end;
repeat
gotoxy(48,7); write(’ ‘)

- s L B
D Bl e A A e] Rl D

I);

3

Y

e o P PP

oy

A

gotoxy(0,7);
write(’Do you want to delete this entire node?’);
write(/ Y/N ===> ‘)3
read(ANS);
until (CANS=’Y’) or (ANS=‘N’));
end;

(uunaa*u‘au FINDQUE %3339 399 3 33 3 59 3 3 3 6 8 %
Finds the selected queue node and then either #*
deletes the node or calls CHNGGUE. »
* Called by : unit EDIT »
I I I3 0 0T 00 0000 J6 00 0 3600 36 3606 36 06 0536 06 330 6 -3)

procedure FINDQUE;
begin
if (BASES = nil) then
begin writeln(‘Can*t find /,STRSELEC,ELEMENT);
writeln(/<{CR> to continuye’); read(ANS);
exi t(FINDQUE) ;
end; (*# of then #)
FINDER:=true;
if (NEXT3* .NODENUM = ELEMENT) then
begin GOTQUE;
if (ANS = ‘Y’) then BASES:=BASES* .NEXT
else CHNGQUE;
end
else begin
FINDER:=false;
repeat
if (NEXT3* .NEXT*.NODENUM (> ELEMENT) then
NEXTS s=NEXTS* .NEXT 3
until ((NEXT3*.NEXT=nil) or (NEXT3*.NEXT*.NODENUM=ELEMENT));
if (NEXTS*.NEXT=nil) then
begin writein(’Can®t find /,STRSELEC,ELEMENT);
writeln(/<CR> to continue’); read(ANS);
exi t{FINDQUE) ;
end; (* of then %)
GOTQUE ;
if (ANS = “Y’) then NEXTS* .NEXT :sNEXTS* .NEXT* .NEXT
else begin NEXTI:sNEXTS* .NEXT; CHNGGQUE; end;
end; (% of else ®) ’
end;

begin end.

LS L Sl N N S e T TS e ATS TR I TS TS T AN
VW AR N, AR L, O AYY

.o
RS DL L

€ J69606 36 963536 93636 363030 36 630 0 698 0 160 96 36906 9636 96 36063696 36 96 96 630 36 36 36 6 2 X R X%
* This unit is linked to QGERTNET. It allows =
the user to change/delete an activity. *

* Written by : Anderson & Commeford *
369336 6590 6338 335 3 30 3 3 09698 36 9030 36 00396 30 06 906 3036 96 3636 36 36 3636 06 3 36 36 3636 26 3)

(#35+8)
unit EDITACT; (* saved as UEDITACT.TEXT #)

interface

uses GLOBAL;
procedure FINDACT;
implementation

CHRRRERRERUFRXEE CHNGACT HHI 6033636336 3353 36303 3 36 3 3 %3
#* Allows changes of certain fields to activities. #*
* Called by : FINDACT ¥
I3 390336 33303 006 36 3006 3 3 9033 96 36 3 2 S)

procedure CHNGACT;
begin .
writeln; write(’To change a2 field above, type in the ‘);
writeln(’first Tetter “);
write(’of the field you want to change. A blank 7);
writeln(‘field means the’);
writeln(‘default value. If you want to change the’);
write(’START or END node you must delete the ‘);
writeln(’activity and then’);
write(’add the new one in the main program. ’);
writeln(‘You may type a @ when’);
writeln(’you are done with this activity.’);
while (ANS <) ‘Q’) do begin
repeat
gotoxy(30,14); write(’)3
gotoxy(20,14); write(’ ‘)
gotoxy(0,14);
write(’Enter your choice ¢(D,P,A,S,C,Q) -==> ‘)
read(ANS);
until (C(ANS=’D’)or(ANS=‘P’)or (ANS=’A’)or (ANS=’/S’)
or(ANS=’C’)or(ANS=/Q’)) ;
if (ANS=’Q’) then exit(CHNGACT);
gotoxy(0,18>; write(’Enter new value -—> /);
case ANS of
‘D’: readIn(NEXT3*.DISTR);
‘P’: readin(NEXT3*.PARAM) ;
‘A’ s readln(NEXT3* .ACTNUM) ;
‘8’1 readIn(NEXT3*.SERVERS) ;
‘C’3 readin(NEXT3*,.COMMENT);

78

---------------------- R e ML T L _--‘.—‘

- et e T, AT
30T 5 PP TR P R PRI I, P

A e

Wy '$)>

s]
AL

> "l: Y P Fla
SRR

e
A AR

T
K

rx
f'ff'/_'f"

2

000G

'y
-

.‘ﬁ »

end; (* of case stmt %)
gotoxy<0,2);write(”’ ‘33
write(/ ’);
gotoxy(3,2); write(NEXT3*.TIPE);
gotoxy(?,2); write(NEXT3*.START);
gotoxy<16,2); write(NEXT3*.IND);
gotoxy(21,2); write(NEXT3*.DISTR);
gotoxy(29,2); write(NEXT3*.PARAM);
gotoxy(37)2); write(NEXT3*.ACTNUM) ;
gotoxy(44,2); write(NEXT3*.SERVERS);
gotoxy(3,4); write(NEXT3*.COMMENT);
end; (% of while #)
end}

CHBRRBRRRRRERNEE GOTACT HHHMEREEEHHH NI EHEE%0F
After finding selected node, displays information of =
that node and asks if deletion is desired.]
* Called by : FINDACT *
9038396936 369090 20 30 30 10 3038 36 363536 3646 36 3606 30 6 230 36 3030 36 363030 209096 060 3036 6 IHIEI 00 4 6 3 96)

procedure GOTACT;
begin
writel(chr(12));
writeln(’Here is your activity’);
writeln(’ TYPE START END D(ISTR P(ARAM A(CT# S(ERVERS’);
gotoxy<0,3); write(’ C(OMMENT’);
if FINDER then
begin
gotoxy(3,2); write(NEXT3*.TIPE);
gotoxy(9,2); write(NEXT3*.START)};
gotoxy<16,2); write(NEXT3*.IND);
gotoxy(21,2); write(NEXT3*.DISTR);
gotoxy<(29,2); write(NEXT3*.PARAM);
gotoxy(37,2); write(NEXT3*.ACTNUM) ;
gotoxy(44,2); write(NEXT3*.SERVERS);
gotoxy(3,4); write(NEXT3*.COMMENT);
end else
begin
gotoxy(3,2); write(NEXT3* .NEXT*.TIPE);
gotoxy(9,2); write(NEXT3* .NEXT*.START);
gotoxy(14,2); write(NEXT3* .NEXT*.IND);
gotoxy(21,2); write(NEXT3*.NEXT*.DISTR);
gotoxy(29,2); write(NEXT3* .NEXT*,.PARAM) ;
gotoxy(37,2); write(NEXT3* .NEXT*.ACTNUM) ;
gotoxy(44,2); write(NEXT3* .NEXT*.SERVERS) ;
gotoxy(3,4); write(NEXT3* .NEXT*,COMMENT) ;
end;
repeat
gotoxy(32,7); write(’ /)
gotoxy(0,7);
write(’Do you want to delete this entire activity? ‘);
write(’Y/N ~==) ‘)3

?9

RO P WINCWL CUR G CU LT P T (O Ve XY -, AL G S WL WL W Vet W B R T TR I

R?, 5 . read(ANS);
RS .,;-i until C(CANS=‘Y’) or (ANS=’N’));
. end;
g
2 ? CRBRRRRNRRRRNAE FINDACT 3331510503361 131 1E
,.‘ # Finds the selected node and then either deletes the
N # node or calls CHNGACT. . *
= # ° Called by : unit EDIT *
JHH MR 030 I 000 000 4000 36 33 I 0 S0 I 36 3)
o procedure FINDACT;
™ begin
i ' if (BASE3 = nil) then
o/ begin writeln(’Can®t find *,STRSELEC,ELEMENT);
writeln(’/(CR> to continue’); read(ANS);
oK exi t(FINDACT);
3P end; (* of then *)
N FINDER:=true;
A i¥ (NEXT3*.ACTNUM = ELEMENT) then
¢ begin GOTACT;
" if (ANS = ‘Y’) then BASE3:=BASE3* .NEXT
:&t‘ else CHNGACT;
’}j end
f’,«_.j else begin
oy FINDER:=false}
e repeat
- @ if (NEXT3* .NEXT*.ACTNUM <) ELEMENT) then
2 NEXT3:=NEXT3* .NEXT ;
'-. until ((NEXT3*.NEXT=nil)
P or (NEXT3*.NEXT* .ACTNUMsELEMENT));
o if (NEXT3*.NEXT=nil) then
¥ begin writeln¢’Can"t find ’,STRSELEC,ELEMENT) ;
-y writeln(’(CR) to continue’); read(ANS);
N exi t(FINDACT) ;
BN end; (# of then #)
B GOTACT;
‘s if CANS = “Y’) then begin
- gotoxy(0,16);
) writein(/Remember to delete any parameter sets’);
20 write(’ if necessary’);
-4 write(/(CR) to continue’); readIin(ANS);
203 NEXT3* .NEXT :=NEXT3* .NEXT* .NEXT; end
3 else begin NEXT3:sNEXT3*.NEXT; CHNGACT; end;
- end; (* of else ¥)
Yo end}
P "
;‘.':j begin end.
Y
-
N
P
34
&)
NN 100

.....

..........................
...............
................

- - L . . . -
39 \.i}.ill"?.‘[." RUDATUR T DRI YRR SR REA R S AR SRS

NG AL AN A AR NERLN -\- -_..‘ v

.................

B p
LI)

N
S
PR
Vet

1

o

; :l‘.

o

AN e

AR G NI I 06T 0T I I3 006 130 06 00 3 063 2

] # This unit is linked to QGERTNET. It allows *
#* the user to change/delete parameter sets. *
e * Written by : Anderson & Commeford *
i:j FIHEHEHHHEHHHEHEHERE I S R R R)
L]

~", (¥8S+3)
unit EDITPAR; (* saved as UEDITPAR.TEXT #)

Sy
‘ij' interface
% uses GLOBAL;
. procedure FINDPAR;
g implementation
Ny CRERRFRRERRRRRRE CHNGPAR 3 HHHIH 033554432
* Allows changes of certain fields to parameter *
Nl * sets. Called by : FINDPAR #*
.. , SRS I I)
“-4 procedure CHNGPAR;
5 begin
' writeln; write(’To change a field above, type in the ‘);
i @ writein(‘first letter “);
~ writein(’or number of the field you want to change.’);
A writein(’A blank field is the default value.’);
ok writeln(’You may type a @ when you are done with this “);
N write(‘parameter set.’);
A~ while (ANS () ‘@’) do begin
4 repeat
59 gotoxy(30,14); write(’ ¥
oy gotoxy(20,14); write(’ 733
f.,!: gotoxy(0,14); write(’Enter your choice “);
2L write(’(P,1,2,3,4,C,0) -—-) ‘)3
-—_— read(ANS) ;
‘i’: until (CANS=’P’)or(ANS=’1’)or(ANS=’2’)or (ANS=’3’)
My or(ANS=’4’)or (ANS=/C’)or (ANS=’Q’)) }
‘ if (ANS=’Q’) then exi t(CHNGPAR);
[gotoxy(0,14); write(’Enter new value -—=) ‘);
x‘ case ANS of
-— ‘P’ 3 readln(NEXT4*.PARAM) ;
/173 readIn(NEXT4*.PARI)}
oy 277 readln(NEXT4*.PAR2) ;
oy “3’: readin(NEXT4*.PARJ)
s ‘4’3 readIn(NEXT4”.PARS);
N ’C’1 readIn(NEXT4*.COMMENT);
T end; (* of case stmt #)
A gotoxy(0,2) jwri te(’ 3
:-:; ot writec 33

P 101

{ RAAS
“ale

AN
AN

T.ral

N
r _'/'«

>

gt)

52

gotoxy(3,2); write(NEXT4*.TIPE);
gotoxy(9,2); write(NEXT4*.PARAM) ;
gotoxy(22,2); write(NEXT4*.PAR1);
gotoxy(30,2); write(NEXT4*.PAR2);
gotoxy(38,2); write(NEXT4*.PAR3) ;
gotoxy(46,2); write(NEXT4*.PARS)
gotoxy(3,4); write(NEXT4~.COMMENT);
end; (% of while #)
end;

(BEanannssnannst OOTPAR SHHHEHISEEEHHHHHHHIN S
After finding selected parameter, displays
information of that parameter set and asks if
deletion is desired. &

» ‘Called by : FINDPAR *
SHHHHHHHHHHHHHHHHHHHHHHHHEHE HHHHHHHHH)

procedure GOTPAR;
begin
write(chr(12));
writeln(’Here is your parameter set’);
write(’ TYPE P(ARAM SET# PAR(1) PAR(2)
write(’PAR(4)’);
gotoxy(0,3); write(’
i FINDER then
begin
gotoxy(3,2); write(NEXT4*.TIPE);
gotoxy(9,2); write(NEXT4*.PARAM) ;
gotoxy<(22,2); write(NEXT4*.PAR1)}
gotoxy(30,2); write(NEXT4*.PAR2);
gotoxy(38,2); write(NEXT4*.PAR3);
gotoxy(46,2); write(NEXT4”.PARY)
gotoxy(3,4); write(NEXT4*,COMMENT);
end else
begin
gotoxy(3,2); write{NEXT4* .NEXT*.TIPE);
gotoxy(9,2); write(NEXT4* .NEXT*.PARAM) }
gotoxy(22,2); write(NEXT4 .NEXT*.PAR1) }
gotoxy(30,2); write(NEXT4* .NEXT*.PAR2);
gotoxy(38,2); write(NEXT4* .NEXT* .PAR3) ;
gotoxy(46,2); write(NEXT4* .NEXT* .PARS) ;
gotoxy(3,4>; writ-. T4+ NEXT~.COMMENT);
end;
repeat
gotoxy(37,72); wri'e
gotoxy(0,7)}
write(’Do you want (¢ uclete this entire paraneter ‘)
write(/set? YN =——=> ‘)
read(ANS) ;
until (CANS=’Y’) or (ANS='N‘))}
ends

PAR(3) ‘)

CC(OMMENT’)

102

R, VR YR L

NN NN

,.v.,
s, A
&

N
PN

FAr AN
A A A4 1

LA A
v e S ’

¢’
o, 2
Fd

CHERRATRRHFRRFRRE FINDPAR HEFHEHHEEHHHHEEHHERHEF

Finds the selected parameter set and then *
ejther deletes the set or calls CHNGPAR. *
* Called by : unit EDIT *

I3 20 I3 3 350830 630 36 303 36 30330 30 3035 36 3020 36 3635 20 96 3 30 36 3030 3 330 36 3)

procedure FINDPAR;
begin
if (BASE4 = nil) then
begin writeln(’Can"t find ‘,STRSELEC,ELEMENT);
writeln(’/{CR) to continue’); read(ANS);
exi t(FINDPAR) ;
end; (& of then %)
FINDER:=true;
if (NEXT4”.PARAM = ELEMENT) then
begin GOTPAR;
if (ANS = “Y’) then BASE4:=BASE4~ .NEXT
else CHNGPAR;
end
else begin
FINDER:=false;
repeat
if (NEXT4* .NEXT*.PARAM <> ELEMENT) then
NEXT4 :=NEXT4* .NEXT ;
until ((NEXT4* .NEXT=nil) or (NEXT4*.NEXT*,PARAM=ELEMENT));
if (NEXT4*.NEXT=nil) then
begin writein{’Can®t find /,STRSELEC,ELEMENT);
writeln(’<CR> to continue’); read(ANS);
exi t(FINDPAR) ;
end; (# of then ®)
GOTPAR;
it (ANS = ‘Y’) then
NEXT4* ,NEXT s=NEXT4* .NEXT* .NEXT
else begin NEXT4:=NEXT4* .NEXT; CHNGPAR; end;
end; (% of else ¥)
end;

begin end.

103

ATt At A AN g .*_‘..
EIE WA I A DTN

0
P ;;-,‘.ﬂ.
WY (E 1T ITITTTRTIE TS ET PR av TEAPE ¥ T e

. # This is the main editor unit and is linked to »

z * QGERTNET. 1t presents a main menu which asks #*

¥ # the user what Kind of symbol needs to be *

3 # changed/deleted. It then calls the appropri- #
ate unit; i.e. UEDITSR, UEDITSS, ... o

gf # Written by : Anderson & Commeford #
IS 0 0 I HHHHE R R 58)

g (#8S+%)

b unit EDIT; (* saved as UEDIT.TEXT #)

‘

: interface

#y uses TURTLEGR, GLOBAL, RITE,

(#8U #4:UINN.CODE %) INN,

(#8U #4:U0UT.CODE =) OUT,

(#8Y #4:UEDITSR.CODE *) EDITSR,
(#3U 84:UEDITSS.CODE #) EDITSS,
(¥$U #3:UEDITQUE.CODE®) EDITQUE,
(#8U 34:UEDITACT.CODE %) EDITACT,
(#8U #4:UEDITPAR.CODE #) EDITPAR;

LTl R ik

procedure EDITOR;

a implementation

CRBRRARRFRNERRRE OTHERWISE %3558 HHHEHHEE 1R
Depending on what user wants to edit, sets up
appropriate 1ink list and calls FIND procedure

» Called by : EDITOR »
SAHHHHHHHEHHHHHEHHHEE HHHHEHEHEHEHHHEHEHEH)

4 LIPS -

Y P LTS

procedure OTHERWISE;
begin
case SELEC of
‘B’,’C’:s begin NEXT1:=BASE1;
STRSELEC:=’node number’; endj
‘D’,’F’s begin NEXT2:=BASE2;
STRSELEC:=’node number’; end;
‘E’ : begin NEXT3:=BASE3;
STRSELEC:=/activity number’; end;
N ‘6’ 3 begin NEXT4:=BASE4;
STRSELEC:=’parameter set number’; end;
Y ‘H’ : begin NEXT3:=BASES;
v STRSELEC:=’node number’; end;
¢

yXNa c"_ P &

ety |

N end; (# of case stmt #)

by if (SELEC <> “I’) then begin

. writeln; write(’Edit which /,STRSELEC,’ --=))}
Al readIn(ELEMENT) ;

oy end; (% of then %)

104

d

;sh} o SAFETY :=false;
fat My case SELEC of
‘ ‘B’ ,’C’: FINDSOUREG;
b ‘D’ ,“F’: FINDSTASIN;
- ‘E’ s FINDACT;
2] ‘6’ 1 FINDPAR;
k3! ‘W 1 FINDQUE;
‘1’ : begin UPDATE:=true; SAVESCREEN; INITTURTLE;
LOADSCREEN; UPDATE:=false;
XY end;
4 end; (* of case ¥#)
30y end;
3.
& CHERRBRRBRNRSNEE LISTER 3R -
. # Lists the main menu of the editor and gets thes
, * answer. Called by : EDITOR *
21 SHIHHEHHHEHHEHHHEHHEHEHEHHEHHEHE)
3
procedure LISTER;
begin
o writelchr(12)); writein; writeln;
writeln(‘Which of the following do you want to edit:’);
£ writelnC’ A) Quit the editor’);
et writeln(’ B) Source node’);
33 writeln(’ C) Regular node’);
o @ writeln(’ D) Statistics node’);
oy , writeln(’ E) Activity’); ‘
b writeln(’ F) Sink node’); |
N writeln(’ G) Parameter card’); !
g writeln(’ H) Queue node’); ‘
N writeln(’ 1) Update - to same filename’);
' repeat
% writeln; write(’Enter your choice =—=> 7))}
G read(selec)};
;; until ((SELEC > chr{(é4)) and (SELEC < chr(74)));
!*;;! end;
B (2R nannsnnttnet EDITOR #31HRNAEE SRR
, # Main proc of the editor. Stars in editor #
i # yntil LISTER returns an A, then before leaving#*
o # makes sure that edited network has been saved.®
YEY) » Called by : MENU *
iy ‘ FHBHHHHHHEHHHHHHEHHEHEHEHHEH I HH R)
IZX procedure EDITOR;
-‘}’*35 N+ %)
g; N begin
S weitel(chr(12));
b if (SAFETY=false) then
-— begin writeln(/SAVE the network first!!’);
EA 9: writeln(’(CR> to continue’); read(ANS);
T S exi t(EDITOR);
::\
o3 105

p o
‘: Y .g,g) end;
A5 SERN L if (length(FILENAME)=0) then
begin writeln(‘LOAD your network first!!/);
SR8 writeln(’/(CR) to continue’); read(ANS);
:3'){* exi t(EDITOR);
NN end;
Ty SELEC:1=’B;
A while (SELEC <> ‘A’) do begin
LISTER;
:} if (SELEC = ‘A’) then
i begin if (not SAFETY) then SAVESCREEN;
‘. exit(EDITOR) ; end;
_.; OTHERWISE;
e end; (% of while #)
" end;
X
ggg begin end.
L0854

+)

&

o
b

P

4
¥

T

A ~I‘.';g:’,

“‘-\
7>

[

%

SR
X

. ’x

106

Q
i

=
. L.

{3

*aT ®

ot

oty

o o
boa
o

£

RN BRI I 30 I 0 30 0 00 00 30 30 00 0300 00 0TI 000 0 I
. # Calls the initialization routines, loads shapes, loops *
N * in MYPLOT till the EXT routine is called. As MYPLOT =
\5.\ % draws the network, a data structure <(made up of link
NN * lists) is built from the information supplied by the =
o # user in xxxINFO procedures. This data is used by the =*
o # program CODEGEN to generate GGERT source code. From #

. % this program networks can be SAVEd, LOADed, created, =
e # and EDITed. Also, the program CODEGEN can be executed #
N # to generate QGERT source code of a network. *
-4 # Written by : Anderson & Commeford #
N # Modification of a program written by Dan Sokol. *
ks B HFHE HHHNHHHNNEHMEHHHEHEHE HHHEHEHEEHE)
i program QGERTNET;

5:.4 (#8S++3)
Pt 4"

VoY uses PEEKPOKE ,TURTLEGR,CHAINSTUFF,GLOBAL ,RITE ,NODEINFO,

/ ACTPAR,
(#8U #4:UINN.CODE®) INN,
Lo (#8U #4:U0UT.CODE®) OUT,
“ (*8U #4:UEDITSR.CODE#) EDITSR,
zm _ (#$U %4:UEDITSS.CODE*) EDITSS,
. (¥$U WS:UEDITQUE.CODE®) EDITQUE,

b c (#8U #4:UEDITACT.CODE*) EDITACT,
< (#8U W4:UEDITPAR.CODE*) EDITPAR,

\S (*8U #3:UEDIT.CODE®) EDIT;
e

"'{’ var HEAP : “integer;

CRBRRARRRBRNFRRRHIINE KEY HHHHMHHHEHHHHEHEEHHHHEHHH HH HHHHHH

N % Replaces applestuff KEYPRESS function which doesn’t work #»
12N # if there is a card in slot #3, Called from: GETXY »
¥ :ﬁ* RRBRHEH TR RN)
zjw function KEY : boolean;
a0e) var CLEAR,KEYBOARD,TEMP : integer;
— begin
T CLEAR 1=-16348; KEYBOARD :=-1 46384 ;
¥’ ' TEMP :=PEEK(KEYBOARD) §
Py i$ TEMP) 128 then
"_;'- begin KEYimtrue; POKE(CLEAR,TEMP); end
else KEY:=false;
o end}

Y

"';:; (Rannannsansanns SETUPAD & READPAD #3%SRNEEREENIINEER

-.;: * Assenmbly language procedures to setup and L]
20 # read the Graphics Tablet. *
YA # Called by : GETXY and Main program 1oop #
— FIH SRR I I3 3 T I S 3 SO 0)
Ky X procedure SETUPAD; external;
‘ 4-‘5 'Q'f?" procedure READPAD; external;
Res

o 107

e PR S N I
LR ‘J.'_'.'.P::\':‘n :-t"‘.&:";ﬁ_‘l.&

R
et

A AN AN N

CHERRBRRRERXFEE EXT 6308383 35333833 5336 3336 36 3 36 3 363636 3690 36 36396 96 3 3¢ 3 %
% The only legitimate exit from QGERTNET *
* Called by: MENU *
33303023 30 T3 0T T2 30 336 30 0605 30 0600 360330303000 000 3 D030 66 36 009030 08 3600 06 0630 06 D0 0 6)
procedure extj
begin
wrjte(chr(12));
write(’Do you want to save the screen? “); read(CH);
if (CH=’y’) or (CH=’Y’) then SAVESCREEN;
it SAFETY then exit(PROGRAM);
begin writein; writeln;
write(’The screen was NOT saved. ‘);
write(’Do you want to exit anyway? ‘);
read(CH);
if (CH=’Y’) or (CH=’y’) then exit(program);
end;
end;

CHRRRBRRERRERHE GETXY HHHE NI 03980012 %
Read tablet and get the X & Y coordinates. Deter- »
mine if X & Y are on screen (VALIDXY). *
Called by: MENU, Main program loop *
I I S I I S I 3 T I 0 I 0 S 30 300 00 030 03 30 0 T 0 0 S)
procedure GETXY;
var B1,B4,87,B8,89: integer;
begin '
B1:=440; BY:=448;
Bé:1=443; B7:=644; BB:=447;
repeat READPAD;
- PENs=PEEK(B1);
X:1=254% (PEEK(B7)) +PEEK(BS) ;
Y s=2562(PEEK(B?)) +PEEK(BS) ;
if KEY then
begin
VALIDXY :=false}
X31=-100; Y:=-100;
oxi t(BETXY);
end;
until PEN=2;
it (X)=0) and (X(280) and (Y)=0) and (Y{(192) then
begin VALIDXY :=true; Y:=191-Y; end
else VALIDXY: 1=f3lse;

end;
CRBRRERRERRER PRINTYPE %8888 05503 353 551 50023 % 552 42
Prints out the name of the device that will be]
plotted., Determined by the value of D, *
] Called by: LISTALL, GETYPE *

RRRRHBRRIHRFRR BRI T 0B 90083 RN)
procedure PRINTYPE;
begin

108

“_vv.v
7 or 2 gy

)
%

ey

RNEARe

e a1

(7.2 2

e
s

Dol

e 2%

!

oot
Sl

i
L* 8

GOy VKRGO SRR |z

Dl
AP
-4

AR
f% R

W

* -«

1A

A~ 0 4 A rh R O PPN N R T N A .. - SEA 0~ A e S P i~ C "L e

case D of

0:JDENT :=/#% INVALID #x/;

1 : 1DENT :=/ SOURCE NODE’ ;

2:]DENT :=/REGULAR NODE’ ;

3:1DENT :=’STATISTICS NODE’ ;

43 1DENT :=ACTIVITY' 3

S:1DENT :=“QUE NODE’ ;

61 1DENT :=/ SINK NODE‘ §
end; (% of case stmat *)
write(IDENT);

end;

CRERRERHERNFRRFRRRERABRNE LISTALL 0363083006953 30 385 36 555 36 4 3 3¢

List all the names of all the devices that *
can be plotted on the text screen. *
Called by : MENU *

23033 3330300 I I 30 I 90 0630 06038 30 0 3690 06 300036 03 00 I 0 0 36 638)
procedure LISTALL;
var I : integer;
begin
write(chr(12));
for I:=1 to é do
begin write(l,’ - ‘); D:=1; PRINTYPE; writeln;
end;
gotoxy(0,22); write(’{CR) to continue’); read(CH);
end;

(aaunannsnn FORWARD REFRENCES #3iuaias)
procedure LISTMODE; forward;

procedure MENU; forward;

procedure CANCEL; forward;

BB R0 S R R0 GETYPE HERXRFRREREERRER BB REFREERRS

Sets up text display to show what is being]
» plotted and the status of the X & Y locks. *
» Called by : MENU #

SR M IS0 0 I 3 I I 0 3 I3 3)
procedure GETYPE;
begin
write(chr(12)); gotoxy (0,19);
write (‘Device type >) ’); PRINTYPE; CH:=’P/;

LISTMODE ;
end;
(HARRERRERREEREE MYPLOT S5R2%SSRRHERIRREREERRE
Plots a device if X & Y are valid,
calls MENU if not. L
Called by : Main program loop. *

JHIH I T 000 00 300 00 06 30 30 00 3 00 00030 90 30338 103300138 38 90 06 -8 38)
procedure MYPLOT;

begin

(#8R TURTLEGR®)

109

' ' 9 'p'v' 2y \ '\. Y T '.'\ - \._ '.'J'\-‘-F\ -_--'_\';. L RIS

s e " w
PRI

>

g

X

Y

RS

[(‘

N pencolor (white);

N it not VALIDXY then begin write(chr(7)); MENU;end;

‘ i¥ D=0 then exit (MYPLOT);

it it (D = 4) then VALIDXY := true;

A i+ LOCKY then Xi=LASTX;

’}’ if LOCKX then Y:=LASTY;

i VALIDXY then

N begin SAFETY:=false;

case D of

N 1: begin drawblock(ARROW,4,0,0,21,21,X,Y,DMODE);
N drawblock¢NODEL,4,0,0,21,21,X+11,Y,DMODE) ;
;: ‘1 &Mlmk(mﬁ,‘,o,o,ZI '2‘ ,X*32,Y,WODE);
. SOUREBINFO;

g end;

2t begin drawblock(NODEL,4,0,0,21,21,X,Y,DMODE);

32 drawblock (NODER,4,0,0,21,21 ,X+21,Y,DMODE) ;
g SOUREGINFO;

o34 end;

3: begin drawblock(NODEL,4,0,0,21,21,X,Y,DMODE);

drawbiock ({NODER,4,0,0,21,21,X+21,Y,DMODE) ;
STASININFO;
end;

4: ACTINFO;

3: begin drawblock(GNODEL,4,0,0,21,21,X,Y,DMODE) ;
drawblock (GNODER,4,0,0,21,21 ,X+21,Y,DMODE) ;
QUEINFO;
end;

6: begin drawblock(NODEL,4,0,0,21,21,X,Y,DMODE) ;
drawbiock (NODER,4,0,0,21,21,X+21,Y,DMODE) ;
drawb1ock (ARROW,4,0,0,21 ,21 ,X+42,Y,DMODE) ;

STASININFO;
end}
end; (* of case statement #)
B CANCEL ;L1 STMODE
ends
’% DMODE :=14;
”‘1{' .ﬂd'
- CRERRBRRRRAHRRARRRER LISTMODE S0 IHEEE I R 3
o # More info for the text screen. *
& # Called by : MENU,GETYPE,Main program loop »
o FHHHHHHHE I HHHEHHHHEHH NN HHHHEHR)
., procedure LISTMODE;
- begin
o gotoxy<0,13); write(’Mode = “)}
4 case CH of
p ‘P’s begin write(’Plot devices’); gotoxy(17,3)
if LOCKY then
:;" begin write(’¢({{ X AXI8 IS LOCKED AT “);
: write(LASTY,’ 2))/)i
RE o end;
s AN i$ LOCKX then
1%
o 110

0
& A e o &S

s&\
P

.

[

PoRat |

N
[S

g

-‘;’v
5

i

04

o

begin write(/<({ Y AXIS 1S LOCKED AT “);
write(LASTX,” »3>7);
end;
if (not LOCKX) and (not LOCKY) then write
(l I);
end;
‘B’ 4’C’,’D’: write(’setup lTock’);
end; (* of c;;;';iﬁi';)
gotoxy(17,3);
if <not LOCKX)> and (not LOCKY) then write
(l I);
end;

(RERRBRRERXBEREER CLEARSCREEN 353036 35338 3830 36 363530 36 38 36 36 330 ¢
Clears Hires screen i. Called by: MENU *
969690 16453 300030 0000 3096303033630 36 1030 36 30030 6 3 36 S5 90 0631 90 96 30 30 3636 36 6 6 B)
procedure CLEARSCREEN;
begin
write(chr(12));
write(’Clear the screen ~ Are you sure? ’);
read(CH); if (CH=’Y’) or (CH=’y’) then
begin initturtle; release(HEAP); BASEl:=nil;
BASE2:=nil; DASE3:=mnil; BASE4:=nil};
BASES:=nil; FILENAME:=’’;
end;
end;

CHuunnnenn CANCEL 3333035380553 33333
% Fixes text screen on leaving any command. *
* Called by: MENU, MYPLOT, Main program *
RN IHHE I I I I 0 3 30 2 30 3 R)
procedure CANCEL;
begin
write(chr(12));
gotoxy(27,12); write(’*#s NO MODE ACTIVE #%2/);
write(chr(7));D:=0; CHi=’2’;
end;

(RERHERNNBRRERXRE SETLOCK 3303030330 303030 309030 3606 36 96 3030 30 93 3 6.3 38 6
Locks the x or y coordinate; or clears the lock. *

4 Called by : MENU »
335530 3138 3 6 00 T I 06 030 300 000 30 303 30 06 903090 1630 9006 030 16 3000 030 0 - 0 68)

procedure SETLOCK;
begin
case CH of
‘C’: begin writeiln; writeln;
write(’Use pen to select row’);
repeat GETXY; until VALIDXY; LASTX:=X; LASTY:=Y;
LOCKX:=true; LOCKY:=false; end;
‘D’: begin writein; writein;

111

Ll

..............

'e 4 %5 %
l‘ ‘
~ Y N g%

o~ ol W 0 e
NS
a'a [¢ T". [’."‘; [y

4

\'.;&;:5‘,

Col
l')'
L

Hatel

5

s Al
L 5

;

M A MMM S AL e a L OB i) v Rl ool a TR L LA

write(’Use pen to select column’);
repeat GETXY; until VALIDXY; LASTX:=X; LASTY:=Y;
LOCKX:=false; LOCKY:=true; end;

‘B’: begin
end; (% of
end;

LOCKX:=false; LOCKY:=false; end;

case *)

(e MENU 313633553 %838 HH %55 % 552 %
% Mode selection happens here. *
* Called by: MYPLOT *
B I 3 34 3 3 336 3)

procedure MENU;

const STR=/CODEGEN’
var XP0S, YPOS : integer;

begin

1=0;

(* actual value of the divisor may %)
(* vary from tablet to tablet *)
XPOS:=trunc({X+635)/14.0);
YPOS:=trunc((Y-224)/16.0);
case YPOS of

3: case XPOS of (% Bottom row, left to right %)

0:
1:
2:
3:
4:
3
é
7:

8:
9?:

begin CLEARSCREEN; CANCEL ;LISTMODE;end;
begin SETCHAIN(STR) ;EXT;end;
begin LOADSCREEN; CANCEL ;LISTMODE; end;
begin SAVESCREEN; CANCEL ;LISTMODE; end;
EXT;
begin LISTALL; CANCEL; LISTMODE; end;
begin EDITOR; CANCEL; LISTMODE; end;
begin CH:=’B’; LISTMODE;

SETLOCK; CANCEL; LISTMODE; end;
begin CH:=“D’; LISTMODE;

SETLOCK; CANCEL; LISTMODE; end;
begin CH:="C’; LISTMODE;

SETLOCK; CANCEL; LISTMODE; end;

10: begin write(chr(7)); gotoxy(0,22);

end;

write(‘memory available is ‘,memavail);
end;
(* of YPOS=3 %)

(# 2nd row from the bottom #)
2: begin D:=XP0S+1;

if D> then Di1=0; GETYPE;

end;
{# 3rd row from the bottom *)
1: begin D:=XP0S+20;

if DX20 then D:=0; GETYPE;

end;

end;
end;

(* of YPOS case stmt *)

24
-
.
'J
’

v, (ReReEREEXXEXXEE MAIN PROGRAM LOOP 236539633 % 353 3 3.3 3 35 36 5 % 3 3)

,
> K
e
k]
L)

tj:j:

{. begin
2N {#SN+ %)
*-‘-.'-‘ (¥$R PEEKPOKE ,READPAD¥)
o (# initialize booleans #)
::f SAFETY :=trye;
" HELLFREE2ESOVER:=false;
UPDATE:=false;
BASEl :=nil;
BASE2:=nijl;
oy BASE3:=nil;
D] BASE4:=nijl;
- BASES:=nil;
FILENAME s=/ /3
INVERSE := false;
LOCKX:= false;
LOCKY:= false;
(# initialize plotting mode ¥*)
write(chr(7)); ;uwrite(chr(7)); ;write(chr(?));
DMODE:=14;write(chr(12));
gotoxy(25,12); write(‘/loading the GGERT symbols‘);
GETSHAPES;
(# setup pad and screen #)
SETUPAD; INITTURTLE;
@ (# setup text screen %)
CANCEL; LISTMODE; mark(HEAP);
(# let’s doit ¥
repeat
GETXY;
MYPLOT;
until HELLFREEZESOVER;
end.

113

e S T PR A S N LA AN IR A

Appendix E
Program CODEGEN

IS I B 3T 06 363 3000 T 30 3 60 0 06 3 3 30 3 3 003
This program is the same as the unit UINN *
except that it does not have any graphics. *
It was not considered necessary to have *
graphics to generate source code. It loads #
the data structure of a SAVEd network into *
#
*
*
)

link lists,
Called by : CODEGEN

Written by : Anderson & Commeford
66000 160030 06 3096 96 30 30 363030 690 3030 3000 J06 90 06003006 3630 30 3030 6 0 2 B2 B3

w ok R ok M

(#ES+#)
unit LOADER; (# saved as ULOADER.TEXT #)

interface

uses GLOBAL;

procedure INDATA(var SRFF: SOUREGFIL;
var SSFF: STASINFIL;
var AFF : ACTFIL;
var PFF : PARFIL;
var @FF : QUEFIL);

procedure LOADSCREEN;

implementation

procedure INDATA;

var DUMMY t string;
AGAIN ! boolean;
ANS s chary
begin writel(chr(12));
writelin(’ GENERATING QBERT SOURCE CODE’)
writelns

write(’Generate source code for what file -—) 7)3
readin{FILENAME) ;
if length(FILENAME) = 0 then exit(INDATA);
if Tength(FILENAME) > 10 then
begin writeln; writein(’Filename too long!!‘,chr(?));
exi t(INDATA);
end;

DUMMY := concat(FILENAME,’ .SOUREG’);

114

\-
I
SSGN (¥$1-#)
Moo reset (SRFF,DUMMY) ;
! if (IORESULT <> 0)
g then begin writeln;
i writeln(‘File called ‘/,DUMMY,’ not found’);
AN writeln(’/(CR) to continue’); read(ANS);
Lo (¥$]-%)
Lo FINDER:=false;exit({INDATA) ;end;
writelnjwriteIln(’Reading /,DUMMY,’ from disk’);
N BASE! :=nil;
2 while not eof(SRFF) do begin
S new(NEXT1) ;
s NEXT1* 1= SRFF~;
Rt NEXT14 .NEXT:=BASE1 ; BASE! :aNEXT];
« ge t(SRFF) ;
e end}
23 close(SRFF);
::3; DUMMY := concat(FILENAME,’.STASIN’);
2 writelnjwritein(’Reading ‘,DUMMY,’ from disk’);
. reset(SSFF,DUMMY); BASE2:=nil;
N while not eof(SSFF) do begin
\1 new(NEXT2) ;
:1:'_1 NEXT2* 1= SSFF*;
39 NEXT2* .NEXT:1=BASE2; BASE2:=NEXT2;
@ ge t(SSFF);
. end}
i close(SSFF);
2y
:':f DUMMY = concat(FILENAME,’.QUE’);
N wreitelnjwriteln(’Reading ‘,DUMMY,’ from disk’);
' rese t(QFF ,DUMMY); BASES:=nil;
T while not eof(QFF) do begin
) new(NEXTS) ;
N NEXTS* = QFF*;
T NEXTS3* .NEXT :=BASES; BASES:=NEXTS;
2 ge t(QFF) ;
W end;
close(GFF);
;jf;i DUMMY 1= concat(FILENAME,’ .ACT’);
S writelnjwritein(’Reading ‘,DUMMY,” from disk’);
% reset(AFF,DUMMY) ; BASE3i=nil
- while not eof(AFF) do begin
new(NEXT3) ;
>, NEXT3* 1= AFF*;
A NEXT3* .NEXT 1=BASE3; BASE3:aNEXT3;
2 get(AFF)}
o end;
FO close(AFF)
N
R

2"8"a

113

N
1ah

oy A e e g e g N e e A e s

PRLYN. SRUCPE AU N, PR O,

é; """
e
o
35
% ™ DUMMY := concat(FILENAME,’.PAR);
- :anb' writelnjwriteln(’/Reading ’/,DUMMY,’ from disk’);
' rese t(PFF,DUMMY) ; BASE4:=nil;
P while not eof(PFF) do begin
7 new(NEXT4) ;
o0 NEXT4* 1= PFF*;
3 NEXT4~ .NEXT 1= BASE4; BASE4 1= NEXT4;
s Qe t(PFF);
h end;
S close(PFF);
ygﬁ
\?3 end;
SJ (REnnEnninnntnned LOADSCREEN 3B HEH 4R EHRE22)
w5 procedure LOADSCREEN;
i begin INDATA(SRF,SSF,AF,PF,QF); end;
20
L o
L begin end.

A
A

P4
LN ';'35.:

AP A
. 0
AR RN

il

. ’.'u‘
AP AP

s s)
8 4,4, 9
P

s':‘}':'.-.

AN

114

-

s

S LV IEIENT Y NS SRR RN RIS A A O STRI SN I O I

N e A A N e e A NI N e

'

oW W S H L Y T T a0 T e TaT e T . [ad N W -

e

::::

Vo

NJ

::; P

el (HBRRRBRERRRHERE CODEGEN 43053535535 534 533535338 H4
. -’ # This program first LOADs a SAVEd network, then»
\ # builds and writes a General card to the source#

- # code text file. The source code for Source *

> # nodes follows. Then source code for Regular, #

~ # Stat, and Queue nodes; Activities; and Par- #

%, # ameter Sets. After the complete source code #

is written and reviewed, QGERTNET is automat- #»

o # ically executed with the chain command. #

:'.':: * Called by : MENU of GGERTNET *

Ly » Written by : Anderson & Commeford #

< T RIS I I 6306 000 0 00 62000 S 0 I 0 000 036 30 00 30 06)

s

' (#4S++3)

22 program CODEGEN;

o

Y‘; uses CHAINSTUFF, GLOBAL,

e (#8U N3S:ULOADER.CODE*) LOADER;

const STRNG=/QBERTNET ; (% used in chain command %)
5 type LINKA = ~NODECODE;

<o NODECODE = record
R0 NEXT : LINKA;

.3-,‘ CODE t stringl721;

g end;
. @ LINKB = ~SINKCODE;

oy SINKCODE = record
RN NEXT ¢ LINKB;

1'\ CODE : stringl?2];

‘_-. end;

. | var NEXTA,BASEA : LINKA; (% stores the source code ¥)
N NEXTB,BASEB : LINKB; (# stores the source code *)
~Zn DIFF,K i integer; (* used to tab comment field ®)
N WORKST : string; (# used to generate code #*)
N $T1,8T2 : stringl2); (% counts stat/sink nodes %)
SOURCECODE : text; (# text file for source code *)
(RERRBRRARRBRRRE STATSEARCH S3H#HHNBIEEEHEEREEN

j:.'-f # Searches for and counts stat and sink nodes *

o) #* in the link list. *

v, » Called by : GENERALCARD *
e IS I I I I S I 0 3 00 3 0 I I S N)
de

e, procedure STATSEARCH;

-£ var M,N : integer;
<«

o begin

Ph. o NEXT2:1=BASE2; M:=0; N:=0;

- . BASEAI=nil; BASEBimnil}

"z; G while (NEXT2 <> nil) do begin

v

2 117

[

\:_

;

NIRRT W g

~\‘.\ N \,\ ST DTS __-‘ Y -..-.. N \';.‘.-. e, B T A A A :_._-;-- -‘.'-'.;-'._'-'.:-‘.'f-_- ‘ot €y

A

7

[~
2

N ' WORKST :=concat(NEXT2*,.TIPE,‘,” ,NEXT2* .NODENWM, "’ ,) ;

L% ﬁ} WORKST :=concat (WORKST ,NEXT2*. INITIAL,”,);

; WORKST :=concat (WORKST ,NEXT2* .SUBSEQUENT,,”);
ol WORKST :=concat (WORKST ,NEXT2* . BRANCHING,’,’) ;
X WORKST :=concat (WORKST ,NEXT2~.STAT,’,”);

.{;. WORKST :=concat(WORKST ,NEXT2* .UPPER,’ ,”) ;

_1;4 WORKST :=concat (WORKST ,NEXT2* .WIDTH,’,)}

WORKST :=conca t (WORKST ,NEXT2* .CHOICE,’#) 3
DIFF:=30 - length(WORKST) ;
for K:=1 to DIFF do

begin WORKST:mconcat(WORKST,’ “); end;
WORKST :=concat (WORKST ,NEXT2* .COMMENT) ;
if (NEXT2*.TIPE = ‘STA’)

then begin Ms=M+1; new(NEXTA);

NEXTA” . CODE :=lJORKST ;

NEXTA* .NEXT :=BASEA; BASEA :sNEXTA;
<y end
\ else begin Ni=N+1; new(NEXTB);
XX NEXTB* . CODE :=lJORKST ;
NEXTB* .NEXT :=BASEB; BASEB:=NEXTB;
A s ends

_,3 NEXT2:=NEXT2* .NEXT;
z end; (* of while ®
e str(M,ST1); str(N,ST2);
fo end;
P . .

@ (A2 A2 RRARRRR NS GENERALCARD 3 330E 114854

s ' # Builds the General card and writes it to the #
N # source code text file. *
N7 # Called by : CODEGEN *
" AN R R)
- procedure GENERALCARD;
A0
y begin
2 write(chr(12));
Wi writeln(¢’ GENERATING QGERT SOURCE CODE‘);
— writeln¢’ Memory available is ‘/ ,memavail);
= writelnswrite(’Enter your name ===} ‘); readin(WORKST);

STi=concat(’GEN, ’ ,WORKST) ;
:§j write(’Enter project name -——> “);
X readln(WORKST) ;
poe ST:imconcat(ST,’,’ ,WORKST) ;
- write(’Enter date as MM,DD,YYYY ——=) ‘)3

_ read] nC(WORKST) §

N 8Ti=concat(ST,’,’ ,WORKST) ; [

) STATSEARCH; (
AR STi=concat<sT,”,’,ST1,/,/,5T2); |
W write(’Enter number of sink node releases to ’);
i write(‘end a run -==)> “); ‘
XA read]n(WORKST) ; -
A ST:=concat(ST,’,’ ,WORKST) ;
x
o8 118

R {hm h.&ilth.u..‘_:M \.Alb‘m‘ALl AN

"Mﬁ

SR e
et el te

S o4

AN NS

f4

2,

-*‘

rEHX, o

A

a¥a” 5

AR s g

) 2]

2

22X X\ b Ay

]
d
hd

write(’Enter time to end one run of the network ‘);
write(/===> ‘)3
readl n(WORKST) ;
ST:=concat(sST,’,’ ,WORKST) ;
write(’Enter number of runs of the network -—> “);
read! n(WORKST) ;
STi=concat(ST,’,’ ,WORKST)
write(’Enter type of output reports desired ’);
write(’(F,E,C or 8) -—> “);
read) n(WORKST) 3
STi=concat(ST,’,’ ,WORKST, %)}
writeln(SOURCECODE,ST) ;

end;

CRBRReERFRNERNEE SOURCESEARCH 33833355 1659 53 3 49 %
Searches for Source nodes and immediately *
writes them to source code text file. Also *
finds the Regular nodes, builds their source #*
code and writes it to the source code text »
file after all Source nodes are written. *

»*

)

Called by : CODEGEN
I I 0 S S0 00 0 003 0 T 0 I 6 B 0 R

oW ok sk kW

procedure SOURCESEARCH;

begin
NEXT1 1=BASE1 ;
while (NEXT1 <> nil) do begin
WORKST :=concat(NEXT1~.TIPE,”,’ ,NEXT1*.NODENUM,,’)
WORKST :=concat (WORKST ,NEXT14.INITIAL,,’);
WORKST :=concat (WORKST ,NEXT14.SUBSEQUENT,",“);
WORKST s=concat (WORKST ,NEXT14 .BRANCHING,’ ,“) ;
WORKST :=concat{WORKST ,NEXT1~ .MARK,’,“);
WORKST :=concat(WORKST ,NEXT1~ ,CHOICE, ‘' #/) ;
DIFF:=30 - Tength(WORKST);
for K:=1 to DIFF do
begin WORKST:=concat(WORKST,’ “); end;
WORKST :=concat (WORKST ,NEXT1+ ., COMMENT) ;
if (NEXT1~,TIPE=/SOU’)
then begin writeln(SOURCECODE ,WORKST); end
else begin new(NEXTA);

NEXTA* . CODE :=WORKST 3
NEXTA* .NEXT 1=BASEA; BASEA :=NEXTA;
end;
NEXT{ s=sNEXT1* ,NEXT 3
end; (* of while ®)

end}

119

................

Fe.c,0 800, 7

T A >
SR N

%’_4

IR

RS

‘1\"‘< A A

g s
Yy rxra

: '.‘.-%-:; ‘H

(RRaRNRRRERnen%E QUESEARCH 3553335538583 % 3
Searches for Queue nodes, builds source code, ¥
and immediately writes to the source code *

text file. Called by : CODEGEN *
FHHHEHHEHEHEEE R)

procedure QUESEARCH;

begin
NEXTS:=BASES;
while (NEXTS (> nil) do begin
WORKST s=concat (NEXTS* . TIPE,,’ ,NEXTS* .NODENUM, ', ‘) ;
WORKST :=concat (WORKST ,NEXTS5*.INITIAL,’,’);
WORKST i1=concat (WORKST ,NEXTS” .CAPACITY,’,’);
WORKST ;=conca t (WORKST ,NEXTS* .BRANCHING, ’,") ;
WORKST :=concat (WORKST ,NEXTS* .RANKING,’,’);
WORKST s=conca t (WORKST ,NEXTS5” .BALKERS,’,’);
WORKST :=concat (WORKST ,NEXT5” .UPPER,’,”);
WORKST ;=concat (WORKST ,NEXTS5* .WIDTH,’ %)
DIFF:=30 - 1ength(WORKST);
for K:=1 to DIFF do
begin WORKST:=concat(WORKST,’ “); end;
WORKST :=concat (WORKST ,NEXTS5* . COMMENT) ;
we i te 1 n{SOURCECODE ,WORKST) ;
NEXTS :=sNEXT3" .NEXT;
end; (% of while ®)
end;
CRRARERRERNAEREE ACTIVSEARCH S3H5330081H 114N
Builds the source code for Activities, and *
* writes it to the source code text file. *
*» Called by : CODEGEN *
SR B R I I II9 H0H0H 2 I I I I R N)

procedure ACTIVSEARCH;

begin
NEXT3:=BASE3;
while (NEXT3 <> nil) do begin
WORKST :=concat(NEXT3*.TIPE,/,’ ,NEXT3*.START,’,);
WORKST ;=concat (WORKST ,NEXT3* . IND,,“)}
WORKST :=concat(WORKST ,NEXT3* .DISTR,’,");
WORKST 1=concat (WORKST ,NEXT3* .PARAM,’,) ;
WORKST imconcat (WORKST ,NEXT3* .ACTNUM,’ ,’)
WORKST :=concat (WORKST ,NEXT3* , SERVERS, ‘' #/) ;
DIFF:=30 - 1ength(WORKST);
for K:=1 to DIFF do
begin WORKST:=concat(WORKST,’ “); end;
WORKST :=concat (WORKST ,NEXT3* .COMMENT) ;
wr i teln(SOURCECODE,WORKST) 3
NEXT 3 :sNEXT3* .NEXT }
end; (% of while ®)
end;

......................................

< ‘
) |
N

o0
.::' s
SR (HHRRHBHRBRNREHE PARSEARCH #HEHHEEREEREEHEEENES
{ # Builds the source code for the Parameter Sets *
) # and writes it to the source code text file. *

3 * Called by : CODEGEN »
\ :: MMM N HEEE I 3330 33 6 3 3)
N
N procedure PARSEARCH;

begin

X NEXT4:=BASE4 ;

while (NEXT4 <> nil) do begin
W WORKST :=concat(NEXT4~.TIPE,’ ,’ ,NEXT4* .PARAM, ',);
"3 WORKST :=concat (WORKST ,NEXT4* .PAR1) ;
. if (length(NEXT4~.PAR4)=0) and (length(NEXT4*.PAR3)=0)
. then begin if (length(NEXT4*.PAR2)(<>0)
) then WORKST :=concat(WORKST,’,” ,NEXT4~.PAR2); end
o else begin WORKST:=concat(WORKST,’,’ ,NEXT4*.PAR2) ;
'“d:{ WORKST :=concat(WORKST, /,’ ,NEXT4* .,PAR3) ;
v if (1ength(NEXT4* .PAR4)(20)
3ed then WORKST:=concat(WORKST,’,’ ,NEXT4".PAR4);
\:_' end; (# of else ®)
& WORKST :=concat (WORKST, ‘%) ;
o DIFF:=30 - 1ength(WORKST);

P, for K:=1 to DIFF do
iy @ begin WORKST:=concat(WORKST,’ ‘); end;
: WORKST i1=concat (WORKST ,NEXT4~ . COMMENT) §
Oy wr i te1n(SOURCECODE ,WORKST) §

:-.,'. NEXT4 :sNEXT4* .NEXT ;
'*,5 end; (% of while #)

o end}

y CRRRNBRNERRERNEE PRINTCODE 3333133335851 E1%
:4.’. # After the source code is completed and written®
) # to the text file, displays the source code on *
204 # the screen for review. *
i » Called by : CODEGEN *
-— 2RI N 3 R R)
N procedure PRINTCODE;
"&' begin
A reset(SOURCECODE) ;wri te(chr(12));
o0 gotoxy(10,1);
- writein(’‘This is what was written to ' ,DUMMY);
g writelny
Ta K1=33
ﬁ: repeat

. KisK + 13
L if (K> 20) then
L] begin gotoxy<0,23); write('(CR) to see some more’);
L o read(CH); K:=1; writeln;
RN end; (# of then %)
\%
S5
:', 121

»

-

pg

-
.

o’ P

4";{; ’: ". "ate

P LR ANPAI N bkt S

Y P Pt &2

readln(SOURCECODE ,WORKST) jwr i tel n(WORKST) ;
until (WORKST = ‘FINISH*’);
writeln; write(’'{CRY to continue “);
read(CH);
end;

€ II1T) MAIN PROGRAM #u%aas)

begin
(MIN+2)
write(chr(12));
write(chr(?)); write(chr(7)); write(chr(7));
FINDER:=true ; LOADSCREEN;
if not FINDER
then begin setchain{STRNG); exi t(PROGRAM) ;end;
DUMMY :=concat(FILENAME,’ .TEXT’);
rewr i te (SOURCECODE ,DUMMY)
GENERALCARD ;
SOURCESEARCH;}
while (NEXTA <> nil) do
begin writeln({SOURCECODE,NEXTA”.CODE);
NEXTA :=NEXTA” NEXT 3
end; (* of while ¥)
QUESEARCH;
ACTIVSEARCH ; PARSEARCH
while (NEXTB <> nil) do
begin writeln(SOURCECODE ,NEXTB*.CODE) ;
NEXTB 1=NEXTB” .NEXT 3
end; (# of while #)
wri teln(SOURCECODE, ‘FINISH®") ; PRINTCODE;
close (SOURCECODE,LOCK) ;setchain(STRNG) ;
end,

122

.......

1 Appendix F

USER”" S MaNUAL

AUTOMATED QGERT SUURCE CODE GENERATION
' BY
%

@ CAPT. G. ANDERSON AND CAPT. C. COMMEFORD

y
'
we $

-
.4.

.’.' ‘:'

ﬁ:' ;‘—iv' 7 t,..ﬁ"t'(i{\"_n: ’ ' [

La
DL

G . § AAARNIIA 1

123

F e ¥

b
),

-

WX

Fa
-
-

A DA R DA IS S &SI it S AP L Lt e a xR -'._r._r._ﬁ(_r,_r{r\r,_v-\(\ CANCERCNE A oS AN S e ol |

(
.
.:'f
.‘.’
-
Sl
l.“.. -
.‘.-f'.' EAC A
A T

£
-
[
=4
G
“+

Contents

o)

iu Page

v

.‘::‘é Intl‘OdUCtion - L) [3 [L]] L] [] L] [3 [] [3 [. [] . . 125
G.tting Start.dl - L] . L] L] L] L] . L] L] L] a L] . L] a 126

l..U’

00 What You Will Need. « « « . . v v . o o . . 126

53 Initial Setup . « & ¢ & ¢ ¢ ¢ ¢ ¢ o o o & 127

Using the Software Package « « + . & 129

DN Bootup. . . 129

> « ® s ® @& & 2 & s 8 8 8 € 8 83 = i
- 2- Main Program. . . . « &« & ¢« . 4 ¢ ¢ o & o & 129
':f CLR . & v v ¢ 4 ¢ ¢ o o 2 o o 2 s o« o o s & 130
’u; LOAD. . &« & & & o ¢ & « o 2 2 o o s o« s s = 130
N WE-.-----..--.-.--.--- 131
’%: Exercise #1 . « ¢« ¢« ¢ ¢ ¢ 4 ¢ s o s & & s« 132
\".:~.' LIST--.-.-.----..-.----- 134
f%: S0U, REG, STA, QGUE, SIN & « « & & 134
':‘u ACT....--...--....-..-- 135
o CEB EXercise #2 . . ¢ ¢ ¢« ¢ o o o 2 s ¢ 2 o s = 136
s EDIT. « ¢ ¢ o o « o o = o o s o o « o o« &« 137
302 LOCK X, LOCK ¥, CLR LOCK. . ¢« ¢« ¢ & o« « o« & 138
§$ Exercise #3 . « ¢ ¢ « ¢ ¢ « o o« s s 2 s o s 138
}:': Gm.-......--.........- 139
o Exercise #4 ¢ 4 ¢ ¢ o = s v s e 140
’ Conclusion. « ¢ « o« « ¢ o o« o« o« s & & s « 141
-

-

*

ML=

t , o ';‘?’f" ’

- - a

L)

Pld

?‘lxl‘::}\ J~

v 4 g

124

‘s
.

JLy

[
[
a
.
.
.
.
.
*
s
.
»
'y
)
.
»
[N
0
L4
]
]
5,
s
%
.
Y
°y
Il
s
‘
“
‘.

ﬂ
.<_<
O
Y
W
D $
e Ny
poy 33
{ Introduction
X2
-.::-.
oy This is the operation manual for the Apple Graphics Tablet
.‘J',.
as used with QGERTNET. The Tablet itself is a hands-on
5;2 product, meaning the best way to learn how to use it is to
?51 experiment with it. Of course, this manual is designed to
- make that experimentation less painful. Therefore, the best
»'.-i:.
5§| results will occur if as you read about the capabilities in
SN
3§ this manual, you also attempt them on the tablet.
of o
\ 4 '
%3 !
:a The first chapter describes how to set up your Tablet. It i
A ,
Zﬂ closely follows Chapter 1 of the operation and reference
- GE) manual of the Graphics Tablet. The difference being that .
< | :
:ZJ this manual is written specifically for the Pascal program !
"4 .
W e i
-?ﬁ GGERTNET, not for Applesoft programs. Chapter 2 describes :
J the various Pascal procedures used by the tablet. They |
N3 allow you to draw QGERT networks on a high-resolution
ﬁl graphics screen, input information on a text screen, edit i
|
e existing networks, and generate QGERT source code. You |
; :- _,.‘.
3Qﬁ don’‘’t need to Kknow too much about the Apple computer or
n
4‘ '\ﬂ h
ety Pascal to run this program. You will have to know QGERT. :
s This manual is not intended to be a text on QGERT, although |
e
250 it could be useful to someone learning QGERT in class or
SIS ;
LA I
'iﬁ from a text book. :
< 4-:' |
o 125
A% i
5:2 j
$'

-‘ *

...............

W O o b T T e T) “ AT R T e VR et . - AR N A T R MR R RO

N
A
e
X)
S QU
: L.
{. Getting Started
{ Y
;f
v What You Will Need
A
\~“
o In order to use this software package you will need the
SIS
-ﬁj following:
Ry W
. 1) An Apple 11+, 64K RAM
o
N 2) Sup’R’ Term 80 column board in slot #3
o 3) Graphics Tablet board in slot #S
‘2
S 4 4) Two moni tors
2y
2N S) Two disk drives
o
\ 5
N é) Modem
i CQD The above configuration is the recommended one. Minor
N
\2 modifications will work at a degraded level. For instance,
Ny
-:: only one disk drive is necessary to run the program. |
\ |
o However, making back-up copies of your disks is extremely |
)
j:a difficult with only one drive. Also, one monitor will work,
23
3}j but you find yourself switching constantly from 40 columns
<
ach to 80 columns and vice versa. This can get confusing and
“g: tiring. The majority of this software package was developed
';Q with only one screen, but a toggle switch was used to go
- from screen to screen. Finally, the Apple Ile should work
>
S
20 with this package with no degradation at all.
5S
A3
LYy
L
'J'-' _.’.:.‘
v# _._...
54
W,
N 126

Sy A

e Initial Setup
i)
it If your graphics tablet is not hooked up to your Apple yef
;s then refer to the Graphics Tablet manual, pages 35-12. On¢
N the tablet is connected to your Apple and aligned, you ne«
§ to set up your oOwn menu rows. This can be done with
i? grease pencil. The last two rows on the tablet should 1o«
f like:
¥
9
-4
:‘ | SOU | REG | STA | ACT | QUE | SIN | | I |
% I CLR : GEN | LOAD : SAVE | EXT | LIST : EDIT : CLR : LOCK : LOCK
i L |] JLOCGKS | X 1 Y
% The following is a brief explanation of the abo
§ commands/symbols.
§ sou - Source node
5 REG - Regular node
| STA ~ Statistics node
§ ACT - Activity
A QUE - Queue node
t SIN = Sink node
a CLR = Clear the screen
q GEN - Generate G-GERT source code

127

O o WK XYY,

LI

LOAD

el SAVE
EXT

ragr—

YN .

LIST

e 8ty

e
L4

EDIT

Sin)
()

: CLR LOCKS
TR LOCK X

o LOCK Y

Sl You are now

.o simulation.

«
LY
"
)
AP

L]
2.
R e

L . % -
- i?ﬁ?qqq
MR

ot
& & N

-

}(‘}\S
- <

R
AARARI

»

<

A4
A

Ko, At A e S AR L S VLA TN NS

- Load network from disk

— Save network to disk

- Exit the program

- Lists the available G-GERT symbols

- InvoKes the editor

Clears any coordinate that has been locked

Locks the x coordinate

— Locks the y coordinate

ready to use GGERTNET to help you with QGERT

128

N N S

N

s. ,\.l
AN
N
{ ¥
CY,
]
F
‘nf.ﬂ:‘
NI Using the Software Package
‘AT AR
-
o Boot-Up
A
RN
'.::\'
To start the program, simply put the disk called "AUTO" in
i
o disk drive #1 and turn on the computer. Soon you see a
Lo
;%ﬁ title page with the name of the software package, authors,
; etc. At the bottom of the screen you will see a question
2% v
%ﬁ@ asking whether or not you want instructions. These are just
D
;}g a condensed version of this manual. If you ever need a
ot
s quick review, Jjust type "Y" after the question. After the
‘-l review <(or if you typed "N" to the review question) the main
U
‘ ; program automatically starts execution.
|
NN
~n Main Program
2R
ho)
.;_‘ The main program is called GQGERTNET. Through this program
fS;f all actions are accessible. Along the bottom two rows of
N
i}i the tablet you should see the menu (if you don’t, go back to
e Initial Setup of the first chapter). By placing the
o '.: (‘ .
X graphics pen in one of these blocks, you can select one of
‘;i. many commands or GGERT symbols.
e
ot To select a command/symbol, touch the point of the graphic’s
v
*:: pen anywhere inside the corresponding square and press down.
;E R,
o 129
N
L
-,
2

RS WO AT AL AR YO A A S S S0 N TR Sl S R Y
fLi’L\’J&LMJA_{A’.'_ LfdJJJL’“S‘J"LJ:—fL‘.&

:..;- (. [-) e T WL W LA S L Y
o
':,: Hold the pen down until you hear a beep. [f you don‘t hear
':. .:":4 a beep, check the text screen to see if your selction was
"$/
. activated anyway. If it wasn’t try depressing the pen
o
ﬂ again.
AN
N
£
The following pages describe each command and symbol. As
’..
- you read about each command or symbol, locate it on the two
o
3‘_- bottom rows of the graphics tablet.
o
(.
e CLR
)
N
a4 This is the first of the commands we will describe. It
5
§ allows you to clear the graphics screen. This command would
‘ be used after you‘’ve finished a network and want to start
: @ another one. Be careful! This command does ask you if
\':';
:’.-: you’‘re sure, but once you clear the graphics screen, any
§ network and its data structure that was there is gone.
"-j Therefore, always make sure that you SAVE your network
5
before using this command. After using this command the
(]
Ld
X3¢ graphics screen will be completely blank, and the text
g
screen will tell you that no mode is active.
o
L0AD
e
':"E By selecting this command you can load a network and its
e data structure which you previously saved. Before you
N
.r;- S
e 130

Y

14

r $

o o

Y

Y

[y
[y

-

A

23

Vs

XA

o oy

LN

% %

RARY

O

0
.t

X

s W

N 1%

AN

Q.

RAERE

e S S

1.5 42

= 8. ap

~fetat

»

-

-’

A2

h]
.

W
.I',A.
°

.
Y

select this command always make sure that your graphics

screen is cleared by wusing CLR. The main use of this
command would be so you can bring a network into the Apple’s
memory and add to it. We will talk about deleting or

changing a network later.

NOTE : When you load a network, more than one file will be
opened and read. However, every file that is read will have
the same prefix which you supply in response to "Load which
file". Therefore, the data structure actually comes from a
group of related files. In this manual the word file is

used to designate this group of related files.

SaVE

This command allows you to save a network and its data
structure to disk so that you can work on it again in the
future <(remember the LOAD function?). You can use this
function any time you want or need to. You can save a
network several times during one session. However, you must
realize that only the 1last version saved will be in any
particular filename. When the text screen asks for a
filename, ¢type one in like NET, NET3, or whatever you feel

is appropriate. The program does the rest.

131

LT, St e A A .. RS | P T et '-;.* COy %
lap A PO TR T VS 2 S A P T R IACE A ‘.n'?.“.h}‘hl‘{;'?"?h:!)..}_‘&l_p*a ':A_..‘J‘l

One more command before you get to play. This command

is

the recommended way to exit GGERTNET. It will make sure you

have saved the present network if it was changed before

quitting the program.

Exercise #i *

By now you are probably anxious to do something. Remember,

experimentation is wvery important in learning to use th
tool. So let’s use some of the above commands. Firs

follow the Boot-Up instructions at the beginning of th

is
t,

is

chapter. Once you get to the question "Do you want

instructions?®, type "N" since you are reading this manual

Those instructions are only there if you want a quick review

of this manual. You now see a statement at the bottom of

the screen asking for a carriage return. Press the return

Key <(hereafter denoted by <(CR>) and soon you will see the

text screen clear and tell you that it is loading

LOGIC.CHARSET. This is a file that contains the QGERT

symbols. Then you will hear 3 beeps. This denotes the

beginning of any program in this software package. And

finally you see:

NO MODE ACTIVE

132

S SA SRS

ALY

1

AN

Y
A

e -
’ o

yp = P
%

g <7,

' Y e .

SN .
. o a Vot Y N H . " » : A a™ ! " aTe Lt KIS PN T P R
." ' 2 ~(L) d ¥ 5 l,"‘! \‘g 1 y.3 o, ‘.1 AL G TN '.~‘\‘l'l'- (A -W‘:LQ:M.L ekt e L{h{h{&f&‘_‘-{"‘-ﬁﬁh’&"j

device >>> ?2?2?2?27??7?

Whenever you see this on the text screen, it means the
computer is waiting for you to select a command or symbol.

Now, let’s try the LOAD command by pressing the graphics pen
in the LOAD blqck. For the file name type NET <CR>. As
soon as you press the return Key, the computer will begin to
read a file called NET which was previously SAVEd to your
disk. - As it is read in, the text screen lets you know which
part of the file is being read, and the graphics screen
starts to fill up. As soon as the file has been read in
completely, you will see the "NO MODE ACTIVE" message on the
text screen. That means the computer is ready for another

gselection.

Use the pen to select the SAVE command. For a filename use
your first name, then <CR>. The graphics screen will not
change, but the text screen will tell you which part of the
file it is currently writing. As soon as the network’s data
structure is completely written to the file, you will see
the °*NO MODE ACTIVE" message. You now'havo two files on

your disk containing network data.

Let’s next ¢try LOADing the file you just SAVEd. But, what

must we do first? Select the CLR command and answer the

133

question with °*Y", Notice how the graphics screen is

cleared and you are returned to no mode active. Now select
the LOAD command and enter your first name as the filename,

then <CR>. The network reappears on the grahics screen.

Feel free to experiment some more with these commands. When
you want to quit this program, select the EXT command. By
answering the questions that follow you will easily and

naturally end the session.

LIST

Before we 100Kk at the actual GGERT symbols, we’ll describe
the LIST command. By selecting it you can see a list of

available GGERT symbols on the text screen.

Now, let’s look at the QGERT symbols.

$0U, REG, STA, QUE, SIN

These are the nodes that you can select. They are
respectively, SOUrce, REGular, STAtistics, QUEue and SINk
nodes. Upon selection of any of these, the text screen will
notify you of the type node you have selected. At this
point the computer is waiting for you to depress the

graphics pen a second time. If you depress the pen in the

134

; o - 3 I P | AR - At 4 et
P kb Mg Ml N e MLy R My ..nluh .l’.lql (WX 4 Y “.' W AR NI AT AR

graphics area of the tablet, then the node you selected will

RS appear in that spot on the graphics screen. If, however,

a v s

“ &

-
5‘

you depress the pen outside of the graphics area on the

4 tablet, you may Jlose the present node selection. For

>

o

: example, if you depress the pen in another menu block, you
e

will obtain that command/symbol. As soon as the symbol is

aﬁ drawn on the graphics screen, the text screen will start to
fﬁ ask you various questions. As you answer these questions,
: some of the answers will appear on the graphics screen in
My the appropriate spot to further define your node. Other
b

fﬁ answers will not appear on the graphics screen but will be
‘o)

s included in the data structure for later use. When you have
5: answered the last question, you are returned to the familiar
Al

;3 no mode active screen.

) ‘.:} e

o NOTE: The character file available for writing text on the
) '\

‘f: graphics screen does not include the infinity symbol.
' %

- Therefore, you will see a "-" on the graphics screen if your
"'-

:Q answer to a question is infinity.
‘f: '

5

) acT

%3

¥

:2 The ACTivity symbol is slightly different. After selecting
s it you are told that you are in the activity mode. You do
<.

?ﬂ not have to depress the pen a second time in the graphics
;ﬁ area of the tablet as you did with the nodes. You will
1S

LY SN
A 135

s.

Y5

o’

£

:;;‘»"bl .-

¢ 5 TR IR

. S S AT N T N I Sl ML WL W W W W ~ e ey - oy . T P R A P - L
T W A \ “ ‘.'s'.\{; \- LAY \..\-.'..\,‘,\ AT, Py P e e - o™ *\

immediately be asked some questions. As you answer them,
you will see your activity drawn between the nodes indicated
by your answers. Again, only that information usually seen
on a network will be drawn on the graphics screen, but all
answers will be placed in the data structure to be used
later. After the 1last question is answered, you are
returned to the no mode active screen.

3

NOTE: Activities on the graphics screen are drawn only as

50

T
L4

straight lines. So, Kkeep this in mind as you position the

start and end nodes of an activity. Also, before attempting

to draw an activity, be sure you have drawn BOTH the start

XXl RGN

Vs
oy A g

and end nodes of the activity.

'y

-

AR

| !
-s\.'.'r

In this exercise, you will make up your own network. Don‘t

-

worry if you don‘’t have a real system in mind to model. All

you want to do is to get familiar with placing some symbols

on the graphics screen. Start by placing at least two nodes

(one at a time of course) on the graphics screen. Answer
“the questions anyway you want within the indicated
limitations. Then, connect these two nodes with an
activity. Continue this until the graphics screen begins to
get full. At this point you would have to quit. If you

want, use the SAVE command to save this network. Then,

w e e - B I PR N S TR e Sy Wy ‘at)
0 e \ \ - ‘* K) ARG ! \.\"' \~\‘o o ‘.-_\\'n\

.. ATy
VT e et @

'
o e

1\4.0."-
.
[l N N

L

ALl Y
»

whether you SAVEd or not, use CLR to clear the graphics

screen. Make as many networKs as you need to get familiar

with the tablet and these symbols.

ERIT

Now that you can create your own networks, you probably want
to be able to change or correct a network you have SAVEd to
disk. This is done with the EDITor. It allows you to
change parameters in a node or activity, or you can delete
the symbol entirely. Notice the editor is not used to add a
QGERT symbol; this is done by LOADing the network and then

adding the wanted symbols to the existing network.

Before you select the EDITor command, make sure that you
have LOADed the network that you want to change. If you
want to EDIT the network you are currently working on, you
must SAVE it before entering the EDITor. You will be guided
through various menus to make your corrections/deletions.

In the main menu of EDITor, there is an option called
UPDATE. After you have made several changes you can update
the graphics screen to reflect these changes. However, if
you choose this option, the changed network will be SAVEd to
the filename from which it was LOADed/SAVEd. Therefore, do
an UPDATE only if you don’t mind replacing the original

network with the changed one. Upon leaving the EDITor, it

137

-
b,

7

LY
ATt

-
.

o
)
_‘l“‘ .l‘l.-

[t] Dg ™~
A ""."4..‘,'."':"' 4

e

=,
LAAAAANL -

_ OO ANE

0, &
g4
s

LA

-

I

l'<l

A .;'t:~|’ 4 ‘]

t’ﬁu&ﬁb

-y Ay
T 2 AR

ﬂ;} 4

Lo
-..A

¢ &K

4

¢

g
o

makKes sure you nave saved the network to some filename and

then returns you to the no mode active screen.

K X OCK Y, CLR LOCK

LOCK X and LOCK Y allow you to lock the x or y coordinate
for subsequent graphing. For instance, you may have several
nodes which you want to line up in the exact same column.

This is easily done by locking the x coordinate. No matter
where the pen is positioned in the graphics area, the node
on the graphics screen will have the x coordinate that was
locked. In the same way, a horizontal alignment can be
accomplished by LOCK Y. Although these two commands are for
cosmetic purposes only, it’s a good idea to learn how to use
them. They are extremely useful in positioning a new node
in place of a deleted one. After you are finished using a

LOCK X or LOCK Y, you clear the lock by using CLeaR LOCK.

This exercise will get you familiar with the EDITor and
LOCK’s. You need to start with a network. So, eijther LOAD
a previous one or create a new one. Now select EDIT. When
you get to the main menu, decide if you want to change a
node, acitivity, or parameter set. Indicate your decision

by ¢typing in the appropriate letter. You then indicate

138

o -t DRSO T ,
L) A SRR T U

et et et T e i e T itaTes .%o
LY LA A T L PR . LI] LIPS N) " - . - v - -
PPNy P YR RS T U AT D e A DA DG SR, YR WA

~ . A A A AR et T A i U S A MO P N R AL I S) S

................

?E which symbol # you want to change. The EDITor will then
_Eg T find your particular symbol and display the information for
i- d that symbol. Your first option is deletion. Type N for

now. Since you indicated ryou do not want to delete the

entire symbol, you must want to change some piece of the

symbol . You are given some instructions which explain how

4, '!‘

X you can make these changes. Notice as you make these
Ej changes, the information displayed at the top of the screen
\ is immediately updated; the graphics screen is not. When
iﬁ you are through changing this particular symbol, type "Q" to
N

,? indicate quit. You will be returned to the main EDITor
A4 menu. You can quit the EDITor, change another symbol, or
°S
;;2 UPDATE your graphics screen with the changes you have
-.-;.J

;ﬁ already made. Before you quit the EDITor, delete one of the
f_ c;; nodes (REG, GUE, or STA), and UPDATE the graphics screen.
)
"ﬁ Quit the EDITor and try to replace the empty spot left by
}b the deletion with a new node by first locking x or y and
A then selecting a node symbol (REG or STA).

s, ‘:’:
:f.

-

2 Experiment with the EDITor and LOCK commands. The more you
. do, the better you yill feel about this program.

.

. "-

e

'-A

N GEN

A4
%

You have now been introduced to all the commands/symbols

)
Lo oA

'Ej that will enable you to draw a network. Once you have
“.

ST

AR AN
A 139
P ‘\,

\.,
P

A
("

>,

74

TR S O I I o A A L T T T R T R RO N e e e e N O N N LA A
o X > » e y At At et ataBlaPa i at ANt et e e e et T A e L!.L!.L(L'.L'..Ll’;f:f:‘ﬂ: l'-\'} -"} i’})

<

MY
'..

.
'.

X'
'.'c'"!.\'

(SN

Q-

X

lx

Lo
ﬁ?a

20t g SN AR S0ICu i ines it it Bl O A A AR A AR AT A R RO e

i e T e

completed a network to your satisfaction, you can GENerate
the OQGERT source code. This is where the real savings (time
and frustration) appear in this software package. By
selecting the GEN command you enter a new program
aytomatically. It starts by asking you which file you want
to load. Respond by typing the name of the network for
which you want to GENerate source code. The program loads
the named network, and then begins asking you a series of
questions. You will recognize these as fields in the
General card. After these questions, the program writes the

source code to a text file with the same prefix as your

network‘’s name and shows You exactly what was written to

this file. Finally you are automatically taken back to the

graphing program (QGERTNET) where you can draw another

network, GENerate more source code, or quit the session.

xercise #4

For this exercise, practice any of the commands/symbols you
want. Above all, try the GENerate command on several
ne tworks. You might want to draw a network, SAVE it,
GENerate source code, EDIT the network, SAVE it, GENerate

source code, etc.

140

L " " c e e .« e e e e e e e
.......................
.......................
................

...........

......................

2
j;i Conclusion
B
(; : In order to make back-up copies, delete unwanted files,
i: perform other general Apple Pascal disk operations, you w
:i% have to Know a 1littie about the Apple Pascal Operat
?; System. Since this manual is not designed as a text
i:&: Apple Pascal, you are referred to the following manuals:
"I
R
;“ 1) Apple Pascal Operating System Manual

-
¥$ 2) Apple Pascal Language Reference Manual
N
R
N
14‘ Don‘t get discouraged if you‘re not <Ffamiliar with Ap|
Cds Pascal. As stated in the Introduction of this manual,
is don‘t need to Know Apple Pascal to draw QGERT networks .
AN

generate source code with this software package.

You have now been introduced to the full range of commai

! and symbols of this sosftware package. Remember to pract

X

|..\’h.

with your tablet. As you do, you will become more gkill+fi

e g
»

and simulating will become easier.

SSYARRET.,
PORAR. 19N

P "
L e

; HhS
P

Q.

P4 A
'I

AI a

O

s
e,
,
‘

141

2000
| ! . l" l-’ 'I "

g
42 .

L4

P XA

D T T S € 1 G R S S e Ao D e Pt o ST !

AT

‘N Bibliographyx

] Lg

{

o 1 "All About Personal Computers". DataPro. DataFro

:{ Research Corporation. Delran, N.J. (April 1981,

:3 2. apple Pascal Language Befecence Mapuals., Aapple Computer,
Inc. Cupertino, California, 1%20.

fﬂ

jﬁ 3. apple Pascal Operating Sxsiem Refecence Manual., Apple

N Computer, Inc. Cupertino, California, 1980.

N

<

-~ 4, Brlinsky, Gene. " A New Industrial Rewvolution Is On The
Way," Eaoctune: 96-104 (Oct 1981).

fj; S. Clark, Thomas, Lt Col. Lecitures in 3M &.é8, Sxstems

2. Simulation. School of Engineering, Air Force Inztitute

'ﬁ of Technology, Wright-Patterson AFB, 1923,

‘; - Conway, Richard, David Gries, E.C. 2Zimmerman. & Bcimer

;: oo Bascal. Cambridge, Mass.: Winthrop Publishers, 1981.

-

fy)

}2 7. "Desk-top Computer Aided System Designs Any Digital

e System or Component," Militacy ElectronicsiCountec=

-

»

e
.
@

measuces: 40+ (QOct 1982).

A 8. Dorce, Lawrence A.. "Bringing CAD Closer to the Elec-
;A tronic Designer."” COMPCONS, IEEE. pp 255-259%

~ (Spring 1982)

P "o

N 2. Ellison,David, Irma Herschdorfer, Jean Tunnicliffe

Wilson., "Interactive Simulation on a Micro Computer."

;; Simulation, Vol 38: pp 181-175 (May 1982).

o

- 10. Graphics Tablet Dperations and Reference Manual.

e ~Apple Computer Inc. Cupertino, California, 197%.

~,

- 11. Keller,James H.. " A System Design Tool For
‘s Automatically Generating Flowcharts and Preprocessing
l: Pascal," Wright-Patterson AFB,0hic: Air Force Institute
" of Technologr; 1979. Master’s Thesis.

o 12. McKenney, J. L. "A Clinical Study of the Use of
; a Simulation Model." Ihe .Journal of lodusicial
jg Enginaering, VYol XUIIIl. No, 1, (Jan 1947).

29
}:: 13. McLeod, John. Simulation. McGraw-Hill Book Company.

AN New York, 12&8.

‘ . 14. Pritsker,A. Alan B.. Madeling and énalxsiz Using Q=
ST S Gect Netwocks(Second Edition). New York: Halsted Press,
) Y 197

‘s . 79.

12

N

Ii 142

N

o

. g S LR P NI LRI AL L] Ry AT AT A A L I A A M A
Far% Ak T A G T S VG S R i v o A A e A R N LS LT SO SAR L G

15.

l1s.

1?.

18.

1‘?.

22.

Scallon, G.M.,J.A, Grupe. "Functicnall»-Oriented Syatem
Simulation for Computer Aided Deszian of Softwares
Hardware Svstems." Simulestterc ‘Yol 2,2,4: pp S1-4%
(Winter ,Spring,Summer 17733,

3choderbek, Charles G.,Peter P. Schoderbek, Asterios 5.
Kefalas. Management Sxstems Cooceptual Considecations
(Revised Edition)., Dallas,Texas: Business Publications,
Inc., 1%80.

Shannon, Robert E.. Sxstems Simulatipn: +the &ct and
Science. Englewood Cliffs, N.J.: Prentice-Hall Inc.,
1975.

Sippl, Charles J. Micro LComputec Hapndbook. Mason
Charter Publishers, Inc. 197%.

Sokol, Dan. "Computer-Aided Drafting with Apple Pascal."
BYTE. pp 3823-42%. (July 1%81).

______ "Notes on Absolute Location Interfaces to wfpple
Pascal." BYIE. pp 324-325, (September 1730,

Spoonamore, Janet, Kenneth Crawford, Edgar Neely, Jr,
"Computer Aided Engineering and Architectural Design,”
Ihe Militacy Enginesr,74: (April 1982).

Sutherland, Ivan E. "Computer Displars." Scientific
American. (June 1970). -

AL

..‘
»
oL " 4

Ay 4
Pl

{d

ot

‘ol "

A

s B

w
©

1

F A4

j&&-WTTﬁﬁﬁﬂA

N

s
VA

YITe

Captain Gary M. #Anderson was born on 24 December, 1732

in Mt. Pleasant, Ilowa. He graduated from high school

Wichita Falls, Texas in 1971. He attended Parkland Junior
College and the University of Illinois, studring Electrical
Engineering. In 1977 he received a Bachelor of Science
degree in Accounting. On May 18, 1978 he was commissioned
into the USAF through OTS. He was stationed at Hanscom AFE
as a Budget Officer and Program Analyst for ESD. He then

spent three years at Eielson AFB as the MWR Financial

Management Officer. In June 1982 he entered the School

Engineering, Air Force Institute of Technoloay.

Permanent address: 2410 Carrelton

Champaign, IL 41320

in

of

o a”ag

W NS

. o e g s
" A A A

= e

-y

L LR WY,

Bt

AR AT -

XN

it

s

2]
-

»

Captain Chris R, Commeford was born on 3 January 1952
in Honolulu, Hawaii. He graduated From high school in
Kailua, Hawaii in 1970 and attended the United States aAir
Force Academy. After graduating in June 1975, receiving a
Bachelor of Science degree in Engineering Management, he
entered pilot training at Columbus ~FB, Mississippi.
Receiving his wings in September, 1974, he became a B-52
pilot serving tours at Minot AFB, North Dakota and Carswell
AFB, Texas prior to entering the School of Engineering, Air

Force Institute of Technology, in June 1982.

Permanent address: 45-120A Mololani Place
Kaneohe, Hawaii ?4744
1495
NS YSTRIRTRRE, o+ 5 T TR A RO AT S T i WL MR N S OO S R S NG

s AEII PP &, POAC N K A

- U A e M g e g Sugh St il S Angy Bna Begt S ol et S iealmieg Jead el So 20k MRAINA IR hc2hnge B A b b e gk-m as Memgt e e o g7 MJAEE gt I S Mies me e e N

b
&
b
b
4

B Zh0n

—g Y

”»T

