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1. Introductionj_

e--.hall be interestJ'herexin finite element discretizations of

problems involving an incompressibility condition. As model problems we

consider the Stokes equations for the flow of a viscous, incompressible fluid

and the equations of linear plane-strain elasticity for the deformation of

an isotropic, nearly incompressible solid. In both cases the incompressibility

condition takes the form of a divergence constraint. Although this is the

most simple formulation, the proper understanding of how an approximate

method satisfies the constraint represents an important step towards the

understanding of more complicated situations, involving e.g. the Navier-

Stokes equations or the equations of nonlinear elasticity. The finite

element methods we study have the property that the approximations to the

velocities, respectively to the displacements, are continuous; such methods

are generally referred to as conforming.
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2. The Stokes equations

Let 1 be a bounded polygonal domain in the plane, and let U and

P solve

-AU + VP - F in 9,

(2.1) V.U - 0 in Q , and

U. 0 on 3a.

Here U = (UIU 2) represents the fluid velocities and P the pressure; the

viscosity has been set to 1 . To simplify the exposition we are assuming

homogeneous boundary data on .9 . For the linear problem (2.1) we can

convert inhomogeneous boundary data into an external force term F . However,

for a nonlinear problem one must deal directly with the inhomogeneous

boundary data, cf. Gunzburger & Peterson [17]. Other t-. ble boundary

conditions could involve the normal fluid stresses
4

V + - ,

j ~ + f, n x - Pni, i = 1,2,j~l[ Jaxi I

but since stress boundary conditions are physically much more frequent when

dealing with solids, we shall reserve these for our formulation of the boundary

M value problem for the equations of elasticity. For regularity results con-

cerning the solution to (2.1) on a polygonal domain see Kellogg & Osborn (20] and

Osborn [29]. Note that P is determined only up to an additive constant.
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3. The equations of linear elasticity

As before let 9 be a bounded polygonal domain in the plane and

consider the problem

S-AU V(V-U) = F in Q and
(3.1) 2 -2v

I Q1 ij()nJ + V-U ni - on a , i = 1,2

n - (nl,n2) here denotes the outward unit normal to 0 , and e (U) is

the usual symmetric strain tensor

ei(U) +

The equations (3.1) are the equations of isotropic, plane-strain linear elasticity

corresponding to the domain Q. 0 < v < 1/2 is a material-dependent con-

stant, the so-called Poisson's ratio, which describes the compressibility.

The other constant, the shear modulus, that is needed in order to characterize fully

an isotropic material has been absorbed into the external load F and boundary

load g • If U is a solution to (3.1) then the vector

- (UlU 2,0)

solves the equations of 3-dimensional isotropic elasticity on the domain

a x R,

with external load F - (F,0) , independent of x , and boundary load

- (j,0) , independent of x3 , on the vertical boundary 90 x IR . This

is the reason for the notion of "plane-strain' In connection with (3.1).

Values of v near 1/2 correspond to a nearly incompressible material.
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Both the problem (2.1) and the problem (3.1) can (on a simply connected

domain) be reduced to the solution of the biharmonic equation with

Dirichlet boundary conditiono. For (2.1) this follows through the

introduction of a stream function such that U = V y p ; the corresponding

boundary conditions for T are homogeneous Dirichlet. For (3.1) one first

subtracts a particular solution corresponding to the external load F so

that the resulting system has a vanishing external load. For such a system

one may introduce an Airy stress function P ( t = 0) so that

( 2)2 2
022 = 2 a(a] 2  =011
22 ' axlax2  =1

where

a E C U+ V.U

oij l+ i ()+6 ij 1-2v

denote the stresses corresponding to the displacement U (E is the so-called Youngs

modulus) . The boundary conditions for D are in this case (inhomogeneous) Dirichlet.

Regularity results and a priori estimates for solutions to (3.1) (as

well as (2.1)) may thus be derived from the properties of solutions to the

biharmonic equation on a polygonal domain (cf. Grisvard [15]).

I
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4. Variational formulations

In order to introduce finite element discretizations of the equations

(2.1) and (3.1) we have to cast them in a variational (or weak) form. This

is done following the standard 3-step recipe:

1) multiply each differential equation by a suitable

test function

- 2) integrate the result over Q

3) integrate by parts (to taste).

By multiplicatiua of the first equation in (2.1) by v (vanishing on 30) the

above three steps lead to

a(U,v) + b(v,P) = (F,v)

where (F,v) is the usual [L2(62)] inner product,

(4.1) a(Uv) = 2 r C (U) ij (v)dx , and

(4.2) b(v,P) = - V-vPdx

Multiplying the second equation in (2.1) by a suitable function q and

integrating over Q , we get

b(U,q) = 0

The appropriate spaces of "test" functions v and q are given by

01 6
(4.3) H (62) x H (6) and L2(61)

Here, Hl (6) is the standard Sobolev space of functions whose gradients are

square integrable and whose traces vanish on Q . With these spaces our
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"variational form" of (2.1) is

Find U E [;I(Q)] 2 and P E L2(S() such that

_~ _ 
1 2

(4.4) a(U,v) + b(v,P) = (F,v) for all v E [H (0)]

b(•Jq) - 0 for all q E L2(S()

In order to find the variational formulation of (3.1).we multiply the first

equation by v E [H ()2 (not vanishing on DO ) and integrate by parts.

Because of the form of the boundary conditions this leads to

a(Uv) + b(v,- _ V-U) = (Fv) + 2<.a,v> ,
-,2

2.1' where <-,> is the [L2 (asl)]2 inner product. The differential equation (3.1)

therefore has the weak form

Find U E [Hi (a)]2 such that

1 2

a(U,v) + b(v,- 2V V-U) = (F,v) + 2<.,y>

This may be rewritten as

Find U E [H1 (0)]2 and P E L (0) such that

a(Uv) + b(v,P) = (F,v) + 2<1,v> for all v E [H (a) 2

l-2v
- 2v (Pq) + b(U,q) = 0 for all q E L2(Q)

Setting v = 1/2 this gives "formally" a Stokes equation of the form (4.4)

only, of course, with different boundary conditons. Indeed the equations of

% -
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elasticity for v near 1/2 may be viewed as a penalized version of a

Stokes problem (for more details, see e.g. Temam [35]). Note that the

equation (4.5) only has a solution provided the loads F and & are

statically admissible, i.e. provided

(F,R) + 2<&,R> = 0

for any rigid motion R . The solution U is also only determined modulo a rigid

motion; whenever we discuss the problem (4.5) we shall avoid this non-uniqueness

by thinking of functions as equivalence classes modulo rigid motions.

(remember, a rigid motion is one for which c (R) = 0 , or R(x1 ,x2) = (-Yx2 +a,

ij 2

Yx1+8) In this paper we shall always assume that 2 is connected and for

the Stokes equations we make P unique by imposing

I P dx = 0

° r
This replaces L2(£() in (4.4) by L2() = L2(£) n {q Jq dx-- 0}

.-
6
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5. Stability of finite element approximations

Given a variational formulations such as (4.4) or (4.5) the finite

element method consists of choosing finite dimensional subspaces

V [h  ()] Rh TI L()

or Vh c (H
1 ( ]2

h_ I
and replacing everywhere the infinite dimensional spaces by their finitF

dimensional counterparts.* The spaces Vh 9 ;h and TIh are typical ade up of

piecewise polynomial functions on some triangulation 1h ; h denoti :he

mesh size. For the Stokes problem the discrete version thus becomes* 0
Find U EV and P E Ih such that-h h h h

(5.1) a(U v) + b(vPh) = (Fv) for all v E Vh

Ub(,q) -0 for all q E Ih

and for the equations of elasticity (4.5) it reads

Find ( V such that

(5.2) a('v) + b(v, 1-2v V-Uh) - (F,v) + 2<1,1>

for all v E Vh .

Indeed Vh shot be a subset of [H (9)2 /{Rigid motion,, jut this is not

explicitly menti : our convention is to identify a finc -. n with its

equivalence clas lulo rigid motions, whenever appropriate.

o"

* *- . 4 .5* . 4 . . c . . . . .- , *8 C "- .i ." S ., - ',' 'v -. "~% - -. -- -
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As an example we consider a uniform triangulation which locally is as shown in

Fig. 1. Perhaps the simplest finite dimensional subspaces are

Vh = [C0 piecewise linear functions]2 , or
h

0 0
(5.3) Vh = [C piecewise linear functions that vanish on a§2]

and correspondingly

11h = piecewise constants having integral zero (over Q).

One reason why finite element methods for the equations of elasticity

(near incompressibility), or the Stokes equations, are intriguingis that the

choices of spaces (5.3) do not work for the mesh in Fig. 1! In the case of

the discrete equations of elasticity (5.2) the relative error as 'd - 1/2 for

fixed h approaches a constant, which is bounded away from 0 independently

of h . For the discrete Stokes equation (5.1), U E 0 for any h . Below

we give an explanation of this phenomenon in the case of the Stokes equations.

Since the Stokes equations are the "limit" as ,j 1/2 of the equations of

elasticity this also intuitively explains the lack of uniformity in V of

the accuracy of the approximation (5.2) to the equations of elasticity. (Note,

however, the difference in our boundary conditions.)

The second equation in (5.1) requires that U lies in the subspace
-=h

* (5.4) Zh = IV E Vh : b(,q) 0 Vq E }

and part of (5.1) may thus be restated

Find U E Z such that

(5.5) h

a(Uhv) = (F,v) for all v E Zh

The reason for the deficiency of the choice of spaces Vh and 1h' given by
4

h..
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Figure 1

Uniform triangulation of size h h

l..,.

S.'/



(5.3) is that the corresponding Zh on the mesh consists of the zero

element only. This can be seen as follows: we first observe that

Zh = V x {C piecewise quadratics all of whose first

derivatives vanish on O},

with the curl operator V x given by

V x
VxP=[;x2 1ax

A C1  piecewise quadratic whoose first derivatives vanish on DO can be

extended by constants onto IR2 \P. By subtracting the constant which is attained¢ 2 CI

in the unbounded component of R\ 0 we thus obtain a C piecewise quadratic

with compact support. On the mesh shown in Fig. 1 there is only one piecewise

quadratic with compact support (cf. Morgan & Scott [26], Chui & Wang [7 1)

-: namely the constant 0! Consequently it follows that

Z = V x (constant function}
"?" --{0}

The formulation (5.5) mimics the following equivalent version of the Stokes

problem

Find U E Z such that

~(5.6)
a(U,v) (F,v) for all v E Z

where Z denotes the subspace

IV [H (Q) b(v,q) 0 vq E L2(Q)}

01 2

J(){v EVv 01

.. {.. . .. V... .* . . *- . .. .. . ..
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Note that (5.6) represents the well known Hodge decomposition (cf. Temam [35]).

The space Zh , as defined in (5.4), is of course not necessarily contained in

Z , but in many interesting cases this inclusion holds, i.e. Z n Z
h h

Since a(-,-) is a positive definite symmetric form that coerces the H -norm

(on H (Q)) it follows in this case that

llu-. 11 1 C inf 112-511
H () ZEZh H ()

. We would thus obtain a quasioptimal velocity approximation, U if the follow-

ing condition were to hold:

For any U E Z ,

(5.7) inf II1-_II 1 < C inf IIU-xVII 1

IEZ h H M2 vEV h H (2)z-h - h

with C independent of U and h

Definition I

A family of closed (not necessarily finite dimensional) subspaces

1 2
Wh C [H ()] is called divergence-stable if

i) the spaces V.Wh are closed in L2 (0)

ii) 3c > 0 , independent of h , such that

b (3Z, q)

sup b g c lljqjj( )
wEW\~ T  &w 2W h\{} 11 1~lla

*LI H (Q)

for all q E V.Wh

P..
-- ,,*s-.a..',, .4 ;,': : " '-,:. .,,',,:.. .-.;',, :..,- -:'.';.; . .. ',,- .., '..':,.'.,'
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Remark 5.1

The definition of divergence-stability as given above is equivalent to

the requirement that there exists a uniformly bounded maximal right inverse

for the divergence operator on the spaces Wh , i.e. there exists a family

of linear operators

such that h:VWh +Wh

i) V.(Lhq) = q, eq E VWh and

ii) IL hqlll, . Cjlq~jjo,2

with a constant C that is

independent of h and q

The condition (5.7) and the concept of divergence-stability are

intimately related as shown by the following result.

Proposition 5.1

The spaces Zh = Vh n Z and V*h satisfy (5.7) for any U E Z ,with a
0

constant C that is independent of h and U , if and only if Vh is

divergence-stable.

Proof:

0 0

Assume that Zh . Vh n Z and Vh  satisfy (5.7). For any

q E 7-Vh there exists

v E [H(0)],

such that

V v - q and Ivil 1 ( ) C jq L
HL(()

~(cf. Temam [35]).
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P... Since q E VV there also exists v E V such that
h -h E h

- q.
:,"

-A Hence

Sv-Yh EZ,

* and therefore there exists Eh E Zh with

(5.8) llv-y-_ lhl .C inf 1l--l
H B (9) _!EO h  H1 (Q)

.,

U. .<C llvll il(a

C H 1(2)

The estimate (5.8) immediately leads to

(5.9) IIY+ht ll Hl(a) .C lv II l
< c Iqll

Since also

.(5.10) V-*(h+Z) = q

the field h - (h + Eh) E Vh satisfies

Z ' b (Lh) Vh qsatisfies

(5.11)q) cjjq11L 0

HI 
H (2

. As a consequence of (5.9)-(5.11) we conclude that Vh  is divergence-stable.

¥%Y,'.% ,. , V ., 4,.+w, ,... ., %..'.% .. .... ,*~ •' ,.; . .
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The proof in the opposite direction is a simple consequence of the

results of Babuska [ 2 ] and Brezzi [ 6 ]; for completeness we include

the details of a proof here. For each v E V, let EhE Vh n Z be its

orthogonal projection with respect to the inner-product a(-,*) , and define
0

qh E 1.Vh  via

Sb(w,qh)- a(v-zw) for all w E V
_ h -h - h

Since Vh is divergence-stable, % is well defined and satisfies

ikhIL2(Q) HG()

Now by definition of z hand %

H 1 2)

,-, a (v- h,v)

q.

= b (v,q ft

- b (v-U,q h )

H 1() L2 (fl)

c IIz.-g!I.I 1 II- ll 1
H W) =hH (S)

for any U E Z . Thus we have, for any E ZIIlhi < C Ilv-tl' 1(

Il- lH 1(2) H(CI~7 2)I

N% By the triangle inequality, this means that, for U E Z and v E Vh

. - ". Nj . .. *. *. -. * *. ... |%. N '..NN"'N~' . **-,-.V
.".
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(5.12) IILu-,1 II . I-v I +II(..) " II ('.) III (.,2)

~CII.E7I 1

provided is the projection (relative to the inner product a) of

v onto Z h h 0 Z . The estimate (5.12) clearly implies (5.7). (Note that at

no point in this proof did we use that V is finite dimensional).
h

Remark 5.2

Proposition 5.1 does not assert that divergence-stability is alwas

necessary in order to get optimal-rate velocity approximations. Indeed optimal-

rate velocity approximations are in certain cases achieved with piecewise polynomial
0

spaces Vh that are not divergence-stable (cf. Remark 6.1).

We now suppose that U E Z is known through the solution of (5.5), and
-h h

we consider determining Ph E Ih from the first equation in (5.1)

(.I J ) MVP 1  (F,v) - V(V) For -II _v V

In order for Ph to be unique it is necessary and sufficient that there exists

c > 0 Reu h that

M0 1YH (101)

for all q E 1th . If we furthermore want "IPh1 L2 (Q) uniformly bounded by

C(I PIIL2(Q ) + 11 H I (Q)) independently of Ii then it suffices to

require that the constant c in (5.14) is independent of h .

We note that although it is mathematically simple to describe it is in

practice not always obvious how to tise the equations (5.5) and (5.13) to solve

for 1 h and Ph (cf. Glowinski [14 J).

- ".;; ' "",",:-,' ' ., ". ' ' .. ' ' ".i' * -.. '.'.. " .'. i . ... ; ",.'.: ". ""-,'',-'''-
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Definition II

Let W and Q, be two families of closed subspaces of [Hl()] 2

h 1

and L2 () respectively. Tne family Wh is said to be divergence-stable

relative to Qh if 3c > 0 , independent of h , such that

i! tb(w,q)

sup q IIwEWh\{O} I I llW a
h ~ H I(Q)

for all q E Qh *

Remark 5.3

By comparison of the definitions I and II we note that a family of

closed subspaces Wh C [H1 (9)]2  is divergence-stable if and only if it is

divergence-stable relative to the family V-W

Using the concepts of divergence-stability introduced in definitions I

and II the question of stability of finite element approximations to the

Stokes equations (2.1) and the equations of elasticity (3.1) is well understood.

Proposition 5.2
0 0

Suppose that the family of spaces V h c I(S)]2 is divergence-stable

relative to the family R h C L2(Q) . Let (U. 1)2 2 and E Vh x

d note~ ilt' 4slut. i u (.'i. ) . d 0s.1) respectiveLv; thoni

Il. -i- -h 1 H 1 + IIP-PhII L2(Q)

C ( inf II U-vI + inf lIP-q11L M)
YEOh Hi(Q) qEl1h  2

and C is independent of h (and F).

Proposition 5.2 follows directly from the results of Babu~ka [2] or

Brezzi [6]. It reduces the question of convergence to one of approximation theory

and this inherently leads to contradictory requirements: on one

'n 
l'

. . . ' ".. . .. ,' " ".- " .5- . , ,,..., ... .- ".. . .,...'r d d ' '.." ' -. / ... '?£ / . .' '.";;' '" '," " " "" " '.- ::" ;.-'-' -"-, '
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hand the spaces T1h should have good approximation properties - on the other

hand they should not be too big, since that would jeopardize stability. One
0

very natural choice of h seems to be Hh V'Vh

Proposition 5.3

% a1 2
Suppose that the family of spaces Vh C [H (&)] is divergence-

0 0stable, and choose H  V.V Let (U,P) E ['1]2 Ls L,, and E Vh h

be the solutions to (4.4) and (5.1) respectively; then

i) lI!-U11 1 C iif IlU-vI1 and
H (2) -V Hh (Q)

ii) IIP-Ph h Iz IiU-vIl + inf 1IP-41L2(QL2 () _E( h -- H1 () q Ell h 2  )

and C is independent of h (and F).

Proof

This follows immediately from Prop. 5.1, Prop. 5.2 and the analysis

leadinqo to the definition I.

V 1 2 thsluin
In the following we shall denote by UV E [HI . Vh  the solutions

to (4.5) and (5.2), thus emphasizing the dependence on 0 < v < 1/2 of the

solution to the problem of elasticity.

Proposition 5.4

Suppose that the family of spaces Vh c [H ()]
2  is divergence-

stable. Then

in(Z) +_ - 2(q LI C(ir 11ev11 H1(Q) + qf 11~ L2  )

with a constant C that is independent of h and v (and F and &[)

* . - . J .. * " •,' .- '-..' ,, " *"* : 
+
.' ,r,* ,b . . .".,q " ,.-,. ',• ..
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.4 For a fixed 0 < v < 1/2 this estimate with a constant C

- possibly depending on x , follows directly from the results of Babu~ka [2 ].

The fact that C may be chosen independently of v , provided the family Vh

is divergence-stable, is e.g. proven in Vogelius [36].

Several ways to remedy the deficiency of the spaces in (5.3) have been

suggested and analyzed in the literature. A non-conforming, piecewise linear,

triangular element was proposed by Crouzeix and Raviart [10] which, together

" with the Rh in (5.3) yields optimal approximation (second order). For

computational experience with this element, see Pritchard, Renardy & Scott [31]

and references therein. Increasing Zh can also be achieved by choosing a

special triangulation, as shown in Figure 2, although this is by no means

obvious. The mesh consists of squares with diagonals drawn in; the inter-

sections of the diagonals are special examples of what we shall denote "singular

vertices" (the exact definition of a singular vertex will be given in the next sectio.

Figure 2

Special mesh 1, with "singular vertices"

h" .. . ."" "



- . . . .-- 7..-... . -.. -...- .. ...'-. - - - - j .. i ., .I t

20

It was discovered by Powell [30] that the space of C piecewise

quadratics on the mesh in Figure 2 has good approximation properties - there

is roughly one degree of freedom per singular vertex. One must reduce Rh

in (5.3) appropriately at singular vertices, cf. later in this paper. For

computational experience with, and analysis of, this method see Fix,

Gunzburger & Nicolaides [13], Malkus & Olsen [22], and Mercier [24]

and references therein.

From the definition II it follows that a possible method to achieve

divergence-stability of Wh relative to Q (if it is not already there)
h h

is to increase Wh , or decrease Qh (or both). The well-known Hood-Taylor

[18] element is obtained from continuous piecewise quadratic velocities,

piecewise linear pressuresexactly this way by requiring the pressures also

to be continuous. The element analyzed by Arnold, Brezzi & Fortin [ 1 ] has a similar

flavor: for velocities the continuous piecewise linears are enriched by cubic bubble

functions (the pressures however are taken to be continuous piecewise linear).

In the context of the equations of elasticity it has been proposed to

use "reduced integration" on the term involving b , while maintaining

simple choices for both the meshes and Vh . We refer to Zienkiewicz [38], Malkus

*& Hughes [21] and references therein for computational experience with reduced

integration methods, and an account of their relation to mixed methods.

An obvious question at this point seems to be:

"are the problems thnt we encountered with conforming

piecewise linear elements also present for conforming

piecewise polynomials of degree p + 1 , p > 1 ?"

This question is the focus of the next two sections.
p

p.

.. *4..*.*..*. %
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6. Divergence-stability of high-order conforming spaces

Let us consider the spaces

Vh = [P p'l], = [C O piecewise polynomials of degree p+l]

(6.1)

[h 2 = 1v E [pPl] v 0 on 90 }

on an arbitrary family of triangulations 1h of 0 . We have already seen that

for p - 0 these spaces are not in general divergence-stable. Results due to

de Boor, Htlllig and Jia [111, [19] show that these spaces are not in general

divergence-stable for p = 1 or 2 ; this lack of divergence-stability is well-

documented by computational experience (cf. section 7 for more details). We

now turn our attention to the case p 3. In order to state rigorously a

result concerning the divergence-stability of the choice (6.1) for p 3 we

need some notation. A singular internal vertex [25] is one where precisely

four triangles meet through the intersection of two straight lines, as shown

in Figure 3. A singular boundary vertex is a vertex on aQ where 1 k 4

triangles meet through the intersection of two straight lines. There are

T2

Figure 3

Singular internal vertex.

four such possibilities as shown in Figure 4.

• , . . , . ".% -• " , ° ., .. •• . ,• ., • . . . • . . ° . . . . °
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Figure 4

Singular boundary vertices.

Theorem 6.1 (32]

Suppose that ~his quasi-uniform and that no nonsingular vertices

degenerate towards singular as h tends to zero. Then for any fixed p >, 3

.4. the spaces (6.1) are divergence stable (in the sense of Definition 1).

Furthermore the constant c entering into Definition I is bounded from below by



4. 23

c , c > 0

with c' and k independent of h and p

Remark 6.1

By quasi-uniform we mean that each triangle T E 1h contains a

ball of radius ph , where p > 0 is independent of h . Whether this

restriction is essential to guarantee divergence-stability of the spaces4,
m
.

(6.1) for p , 3 , we do not know. It is easy to see that the spaces (6.1)

cannot be divergence-stable if a nonsingular vertex tends towards becoming

0

singular (as seen later the dimension of the space V*Vh or -Vh decreases

by one when a vertex becomes singular). This does not imply that we will

.. observe sub-optimal convergence-rates when discretizing the Stokes

problem or the equations of elasticity, V - 1/2 , using a mesh with nearly-singular

(nonsingular) vertices, however, the ratio between the error in the finite

element approximation of the velocities (or displacements) and the error

of the best (H'-) approximation may be arbitrarily large depending on the data. As

stated in Theorem 6.1 the lower bound in the estimate of divergence-stability

may approach zero algebraically in p as p + , we do not know whether

this is indeed the case or whether the lower bound is uniform in p also.

Note that divergence stability of Vh  requires only that nonsingular internal

vertices do not degenerate to singularity as h 0.

For the proof of the theorem, as well as more details concerning the

results, we refer to Scott & Vogelius [321 and Vogelius [37 1. In case of

the equations of elasticity (4.5) Theorem 6.1 in combination with

Proposition 5.4 leads to the fact that the spaces (6.1) give quasi-optimal

finite element approximations to (U , y V-jV) for fixed p 3 The

question of convergence properties thus becomes one of approximation theory,

and in addition to understanding the approximation properties of Vh it is

, .
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important to understand the character of the spaces -Vh  The fact

that the lower bound in the stability estimate approaches zero at most

algebraically in p 1  as p t - was used in Vogelius [36] to prove "almost"

optimal convergence rates for the so-called p-version of the finite element

method. Using an interpolation trick it was shown (on a smooth domain, with

curved elements at the boundary) that the p-version converges at "almost" optimal

rates in the energy norm, uniformly with respect to Poisson's ratio. "Almost"

.optimal here means that it converges at any rate strictly less than optimal. A

slight variation of the present result (permitting for curved elements at

* the boundary) could likewise be used to verify a similar result for combina-

tions of the h- and p-versions (i.e. when simultaneously changing mesh size and

degree of the polynomials).

For the case of the Stokes problem it is clear from both Proposition 5.2

and Proposition 5.3 that in addition to divergence-stability and good approxi-
- 0

mation properties of the spaces Vh  it is important to have good approximation

properties of the corresponding pressure-spaces R h Since Theorem 6.1

0

guarantees divergence-stability relative to any subspace of V.Vh  this

naturally leads to the question of finding a characterization of the spaces V-Vh

Part of this characterization (its necessity) is implicit in the work of Nagtegaal,

Parks & Rice (27J and that of Mercier [231.

Let x be an internal vertex where four triangles meet with the common

edges lying on either the xl-axis or the x -axis , as shown in Figure 5.
- 2
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x 2

,,.,.-.

, .10

3 e4

Figure 5

Let v E Vh and set v i = v IT i l,...,4 . Since v is continuous

v v1  vanishes identically on the edge el ,consequently

a 1 a 4(6.2a) a a vT on eIx- X vI  on e .

Similarly we get

a 3 a 2(6.2b) v - v 2
Fa.-j ax vl  on e3 ,

E %4.,., ., ,..,. - ., ..-,- ,. .-, ...,, .. ...•,. . .- - - .. --. • • - . . .. . . . . . .
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(6.2c) av 2  v2 on e2 , and
2x 2 an

__ 3 a 4

(6.2d) a V2  3 v2  on e
ax 22  ax 2 24

The vertex 20 is common to all the edges e, through e4  and by summation

of (6.2a-d) at 0 we get

(6.3) Vv() + V-v3(HO_  V v2 (AO1 + V'v_4(2)

which, by introduction of * = V.v , may be restated

4(6.4)il(-i i(O- 0.

The chain rule of differentiation gives that

(6.5) V.(TI veT)(x) = (V.v)(Tx)

2 2for any invertible affine map T : R . If v E Vh then so is T v(Tx)

(on the corresponding triangulationland it thus follows immediately from (6.5) tha

(6.3) (or (6.4)) must be satisfied at all internal vertices which can be obtained by

an affine transformation of one as in Figure 5. These vertices are exactly the

singular internal vertices.

This simple calculation thus shows that for any p , 0

(6.6) V.V C PP],-, {(discontinuous) piecewise
h- h

polynomials, , of degree < p

that satisfy (6.4) at singular

internal vertices}

For the spaces Vh , with homogeneous Dirichlet boundary conditions, we find

two additional sets of contraints, namely with -= Vv:
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(6.7) (-1) Cxi

at any singular boundary vertex 0

where 1 < k < 4 triangles meet as in

Figure 4, and

(6.8) J dx =0

If we define

S[p],-l = {(discontinuous) piecewise polynomials,
h

*, of degree< p, that satisfy (6.4) at singular

internal vertices, (6.7) at singular boundary

vertices and furthermore satisfy (6.8)}

then this shows that for any p >. 0

0
#., (6.9) V PIP],

h h

It was shown in Vogelius [37] that (6.6) is indeed an equality provided p > 3

By a similar combinatorial argument it is proven in Scott & Vogelius [32]

that (6.9) is also an equality for any p >, 3 (remember, 2 is connected). This

characterizes the spaces V.Vh and V.Vh on an arbitrary triangulation for any p >3.

Remark b.2

From the characterization nf V.Vh given above it follows that

the space

(6.10) (continuous piecewise polynomials of degree p

that satisfy (6.8)}
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is a subspace of V.Vh provided p >, 3 . Selecting the pressure space Uh

to be as in (6.10), p >, 3, generalizes the methods studied by Hood & Taylor

(18] for p - 1 and 2 . Tiaeorem 6.1 shows that these generatized Hood-

Taylor elements, p > 3 , lead to quasi-optimal approximation. Bercovier

& Pironneau [ 3] proved the same to be the case for the Hood-Taylor element

for p - 1 . It would be natural to conjecture that the case p = 2 also

*i leads to quasi-optimal approximations.

Remark 6.3

If one uses the approach (5.5) to compute the finite element approxi-

mation to the velocity U in the Stokes problem then it is important to have

. a local basis for Zh . Assuming that H h has been selected so that

Zh C Z it then follows that, for all p >, 0

(6.11) Zh {vEV h :[= = p+2 , 1

where

-[p+2],l {CI piecewise polynomials of degree <
h

p + 2 all of whose first derivatives

vanish at the boundary}.

Note that elements of p[p+ 2 ],l are constant on each connected component
h

of 30 , however the constants need not be the same; if aQ is connected then we

shall always pick the constant to be zero for functions in -h
h

JhA basis for . p , 3 , (with no boundary conditions) was constructed
[p+2],1

in Morgan & Scott [25]; the corresponding basis for P p > 3 , is not

altogether obvious, but is described in Scott & Vogelius [32]. The finite

0 h

element method corresponding to the spaces Vh and h- V'Vh in the case

p - 3 is currently being tested numerically for the full (nonlinear, time-

dependent) Navier-Stokes equations.

WA A !..
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7. Results concerning lower-degree spaces

There are really three aspects of the finite element approximation to

the Stokes-equations or the equations of elasticity addressed in the previous

sections.

a) Bounds for a maximal right inverse for the divergence
o

operator on Vh and Vh , or estimates for the

divergence-stability of these spaces relative to

families of pressure spaces Hh *
o

b) Characterization of the spaces V.Vh or VVh

c) Determination of the approximation properties of the

spaces Vh n {v:V.v=0} (or Vh n {v:V.v=0}).

For the equations of elasticity (4.5) we are as indicated by

Proposition 5.4 mainly concerned with a) and b) whereas the aspect c) is also

of importance when solving the Stokes-problem (4.4). As pointed out in

sectiors5 and 6 (particularly in Remark 5.2 and Remark 6.1) c) may be of independent

interest even though a) and b) do not have satisfactory answers. We shall now

discuss the aspects a)-c) for the spaces

(7.1) Vh [P+liIo 1
2  and V [p+l],O]2  p 0,1,2

h h h

We know of very few results that are valid on a quite arbitrary triangulation

for these low degree spaces; as a consequence we shall restrict our attention

to the triangulations, a local picture of which are shown in Figure 1 and

Figure 2 (we denote these 11and 1.2 respectively). On these triangula-

tions the dimension formula conjectured by Strang [33]

(7.2) dim(P[ 2  ) = (p+3)(p+4)T-(2p+5)Eo+3Vo+a

(7.2) 0h0
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is known to hold also for p - 0,1 and 2 (cf. Morgan & Scott [26]). Here

T denotes the number of triangles, E0  is number of internal edges, V0

is the number of internal vettices and a0  is the number of singular

internal vertices. On a simply connected domain the null space of the

divergence operator acting on Vh [P h ],O]2  is the curl of P h=h

it thus follows as in Vogelius [371 (or Scott & Vogelius [32]) that whenever

(7.2) holds V-Vh must have the same dimension l(p+2)(p+l)T - a0 as the

space p[p]- (cf. (6.6)). Since V.Vh c P[p],- we conclude that
h h -h

(7.3) V*Vh = PIP -i

whenever (7.2) holds for a given triangulation, and in particular for p = 0,1

and 2 on the triangulations and 2 (For p = 2 we could indeed

have derived (7.2) for much more general triangulations, cf. Morgan & Scott

[26].) By a hole-filling procedure we can extend our argument to verify

(7.3) even though the domain is not simply connected. The characterization

(7.3) for the case p 0 and the triangulation Z2 was also noted by Fix,

Gunzburger & Nicolaides (cf. [13]).

In contrast the relation between the spaces V h and hp]-d is not

nearly as simple for p = 0,1 and 2 as the characterization given in the

J_% previous section, for p > 3 , might lead one to believe. Let us start by.

S.' considering the piecewise linear case, p = 0 If a denotes the total number

of singular vertices, including singular boundary vertices, then we have for

the triangulations 11and 1

dimVh = 2V and dim = T-o-l

(excluding the trivial case of a rectangle divided into two triangles by the

9 . .49o o , • o . .
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diagonal, when both V and PItL'1 consist of 0 only). Using the relationsh h

E-E0 a V-V0  E+E 0 3T

and Euler's formula

T+V-E - 1

(assuming 9 is simply connected), we get

(7.4) dim P - dim Vh = (E-E a 3
h h)--0

T , E0 , V0  are as before and E denotes the total number of edges, V the

total number of vertices. From (7.4) we immediately conclude that if
0 0h ],-

a < E - E0 -3 then dim Vh < dim j[39-1 and consequently V.Vh is a

proper subspace of Ph0 ]'-  (see Nagtegaal, Parks & Rice [27] and Malkus &

Hughes (21] for a similar constraint-counting method). If Q is a rectangle

and 1 is used for a triangulation then there are exactly 2 singular vertices
ha

(one in the upper-left and one in the lower-right corner of Q ); thus V.Vh

is a rop r subspace of P[0],-I except for the trivial case that Q is

divided ift only two triangles. Since V n Z = {vEVh  .v-=O} = {0} on theh -

mesh it follows that V. is injective on V and hence we get from
h ;h

(7.4) that

dim p[O],-l - dim V.V; (E-E0)-5
h h (- 0)-

on a rectangle triangulated by the mesh 1h (excluding the trivial case of only

2 triangles).

In the case that 0 is a rectangle divided into triangles by the

mesh h then the dimension of a [ {p2 : L = 0 onh h h a

&A'~%. U.. *~~.-
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has been calculated by Chui, Schumaker & Wang [8 1 to be

dim PIh l a - (E-EO ) + 4
h0

provided Q has at least two boundary edges on each side. As a consequence

of this and (6.11) it follows that

0 0

dim Vh - dim V.Vh + a (E-EO0 + 4

and thus, using (7.4), we find that

(7.5) dim - dim V.Vh - 1

h ,

for the choice (7.1), with p - 0 , on this mesh z2

Now consider the case of piecewise quadratic fields , i.e. the choice

Vh (pL'h21) 2 ' on the mesh ?h . The dimension of 0[3],1 p[3] ivn{ o
h hh h h .

- 0 on al} on a rectangle triangulated by this mesh has been determined

in Chui, Schumaker 4 ang [ 9 ], and via calculations simular to those just

given we find that

I0

(7.6) dim P' 1]-'1 - dim V.Vh  3
h h

*Note that this agrees with the results of Malkus & Olsen [22 ]. For the space

( [2 1,0) 2-1h 2 h on the situation is different. Mercier [23] observed

that in this case 3] has a local basis given by the FraeiJs de Veubeke-h

Sander cubic macro-element. Using calculations similar to those above one

can show that 'I

(7.7)
Vh h

on a rectangle triangulated by the mesh Lh (p-I).

For the case p a 2 , that is piecewise

, ~............................... , ,, , . ......-......... ' ,....:•.-.. .-. .. ,... .
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cubic fields, Vh - (p[3JO)2 , with homogeneous boundary conditions on a

12 0 [4],l
rectangle triangulated by the mesh h tone can use the local basis for 4h

given via macro-elements in Douglas et al. [12], to show that

(7.8) p[2],-l
7h -h

To the best of our knowledge, no result is known for the mesh 1 for p = 2

although it seems clear that one would not expect (7.8) to hold in general.

Whenever, as in (7.5) and (7.6), the codimension of V.V in P p],-i
h h

is non-zero but independent of the mesh size, it is reasonable to conjecture

that the orthogonal complements consist of global modes. For an explicit

calculation of the global constraint on V'Vh in the case corresponding to

(7.5), see Olsen (28].

The previous discussion centered on the characterization of V.Vh or

. V.Vh for low degree polynomials; we now turn to the aspects a) and c) listed

at the beginning of this section. Proposition 5.1 shows that there is a close

connection between approximation properties of the spaces Vh 11 {v : 7.v=O} (or

Vfh {v V.v=0}) and the divergence stability of Vh (or Vh 9 respectively).

In the following we shall for simplicity assume that Q is simply

connected. Then V n {v : V.v_0} _ V x (p+21,l and V n {V : V.V- 0}
r +2 i h -- h h - -

- V x fp'+2], , and this in combination with Proposition 5.1 shows that there is ah
pfp+21,1 0 [p+2],

close connection between approximation properties of h ] and P h2 and'-h an han

divergence-stability. The next proposition elaborates more on that connection.

Proposition 7.1

Let p - 0,1 or 2 and assume that there exist E H p+3(

c>O, and 0 < a:p+3 suchthat

inf h-[Iza c p+ 3- a

,:* ~ * .'.~ ... . . U .•. . . .... . .*... . . .. . ,-. ... ., .-., .. .~, . U *..



34

where the inf is taken over 0 E P h+ 2 Il (for some quasi-uniform family of

triangulations). Then

b(v,q)
inf sup . Ch

qEV.V- {0 vEV h{01 I1 H 1 GO)lhllL2(SI

for the subspaces V - (p[p+llO)2 , with B - a
*h h p4.3

Proof:

By contradiction let us assume that

b (v, q)

Ch = h
-  inf sup

qEV'Vh\{O} vEVh\{O % llIH 1 () llq lL2()

is unbounded as h - 0 . Using the same argument as in the proof of Proposition 5.1

we get directly from the definition of Ch  that

(7.9) inf IIlu-iII 1 < CCh h-a inf IIj-vII 1

C ZEVhfl{v:V.v-O - H (Q) vEVh  H (Q)

for any U E [H1 (( 2 0 Iv : V-v = 0} . For any 4 E Hp+3 (Q) we get that

V x 4 E [H p+2 (9)] 2 {v : V.v = 01, and by insertion into (7.9) it follows

that

inf Cc I cclh-  inf lIVxllx1I i
hp+2],1 H (0) vEV H (P)

* EP - h

< C hp ' Clh -  p+3

From this we conclude that, for any @E Hp+3(S) ,

in: 2I- Cc hl1h p+ l - B ll lp+3

is p21,1 H (2Q) H (Q)

,.'



777777_7.W 
7-171: .1 7- 777jj 7 76: 7 7-*. , :.:-j- - .**: U, *7 -y-

'.p

35
Using the results of Bramble and Scott [5] (these results are valid if we require

44 that all corners of Q have interior angles < 2 i ) we thus get

i.. h inf ] 1 p -f 11 L 2 (0) -< cch (P+3) /(P+I) h P+3-A 11,P11 p+ 3()

which due to the fact that Ch is unbounded as h - 0 produces a contradiction

to the assumptions of this proposition.

Proposition 7.1 could just as easily have been verified for

p+3( f) 2 (0) fp+2,l pEPP+2], 1- = 0 at }' h h a n

andV =(ptp+l],O)2and Vh h

In the light of Propositions 5.1 and 7.1 we shall center our discussion

of the aspects a) and c) on known results concerning the approximation rates

of P Cp+ 2 1,l and .[p+ 2 ],l on the meshes El and
h h h Lh

First, suppose p - 0 , the case of piecewise linear fields. On the

mesh 11 we know as previously stated that

h

,this space obviously has no approximation rate associated to it and the

assumptions of Proposition 7.1 are thus satisfied with a = 3 , i.e. the

"best" constant in the "divergence-stability" estimate is .< C h , cf. Gunzburger

& Nicolaides [161. We do not anticipate that relaxing the boundary conditions

would lead to any approximation rates for the spaces p [2 1 , on the meshh
thuh edo not know this for a fact. On the mesh [hFix, Gunzburger &

Nicolaides (131 give a construction of a uniformly bounded inverse for the

divergence operator ( lP [0] -l Vh _ [-, uniformly bounded that

is in S(H-1 ;L2) , not 8(L2 ;H
1 ) as we are con:erned with. Powell 1301 and

cocre4ih oel[0 nI
q. ,.i .r " , ¢:" '._ 2'- € '< ' .' .". .,%" -".' .-'.-- .- '.:.- .-<'. -V---'.'''V..''',-'',
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Mercier [23] both show that p12],l has optimal approximation rates on this
h

mesh. Malkus and Olsen [221 conjecture that optimal approximation properties
holdas ell or [2],

hold as well for p1 21 1  on 12 although this has not been proven.

"[21,1
(Because of the local basis for P given by Powell [30], one would have

a at worst.)

Now consider piecewise quadratic fields, i.e. p = 1 On the mesh

de Boor and Htllig [11] show that approximation by pE3],l is suboptimal

by precisely one order of h in LC, . This result (adapted to L2) accord-

ing to Proposition 7.1 leads to the conclusion that the "best" constant in the

"divergence-stability" estimate for the piecewise quadratic spaces Vh is

1/2
C h . Malkus and Olsen [22] report numerical evidence that the corresponding

constant for the piecewise quadratic spaces Vh (with boundary conditions) is

O(h) on the mesh On the mesh the sit-uation is quite

different since both P[31'2 and P 3 J~' are long known to have optimal
h h

approximation rates, cf. Mercier [23]; indeed, the recent results of

Boland and Nicolaides [4 1 together with the result (7.7) show that the

corresponding spaces Vh and Vh are divergence stable on the mesh for

p = 1 . (For macroelement, one takes simply the quadrilateral surrounding

each singular vertex. Local stability is then guaranteed by (7.7) applied to

each macroelement. The reason that these macroelements are locally stable

"- in the sense of Boland and Nicolaides [ 4] is that the boundary vertices of

each macroelement are nonsingular.)

For piecewise cubic fields (p = 2) on the mesh Y numerical exper-
F h

• ience (e.g. Szabo et al. [34]) had indicated that neither Vh nor Vh was

divergence-stable. Moreover, the results of Jia [19], similar to those of

de Boor and H6llig [11] quoted above, also lead to this conclusion via

Proposition 7.1. For the mesh 12 and p = 2 , the results of Douglas, et al. [12]

hP
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prove that (7.8) holds and consequently that both Vh and
0h

Vh are divergence-stable, in the same fashion as for the case p 1

described previously. Finally, note that all the results for p = 1 and

2 for the mesh 12 hold as well for a mesh based on the macroelement of

Clough and Tocher, cf. Mercier [23].

To summarize the previous discussion:

6 1) The characterization of the range of the divergence operator

on spaces of continuous piecewise polynomials of degree at most p + , p 3,

given in section 6, is widely valid also for p < 2 , provided no boundary

conditions are imposed. With boundary conditions imposed this characterization

fails on the most natural triangulations.

2) The divergence stability of the spaces [p[p+l]0]2  or [ [p+i,1 2

is intimately connected to the approximation properties

of the spaces p+ 2]il or V[p+2],l Since these spaces of C1 piecewise

polynomials have essentially one additional degree of freedom for each singular

vertex, it is only natural that the spaces [p+l],0]2 or [ r[p+l],O]2 , p $ 2 , are

much more likely to be divergence-stable, the more singular vertices the

triangulation has. In this sense singular vertices are desirable when working

with piecewise polynomials of degree 3.

• .U-"-'---.. '' / '-'' -'-.- ' " , ., '.- * ".T.
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