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~ 1. Introduction .
i T here st 4
{ Me-ghall be interest hereA}n finite element discretizations of
o] -
:: problems involving an incompressibility condition. As model problems we
) consider the Stokes equations for the flow of a viscous, incdmpressible fluid
and the equations of linear plane-strain elasticity for the deformation of
‘J an isotropic, nearly incompressible solid. In both cases the incompressibility
p : condition takes the form of a divergence constraint. Although this is the
) most simple formulation, the proper understanding of how an appréximate
Jg method satisfies the constraint represents an important step towards the
& g
,” understanding of more complicated situations, involving e.g. the Navier-
N Stokes equations or the equations of nonlinear elasticity. The finite

element methods we study have the property that the approximations to the

velocities, respectively to the displacements, are cdntinuous; such methods

:'f';")

-
»

are generally referred to as conforming.
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X
b 2 2. The Stokes equations
A
X Let Q be a bounded polygonal domain in the plane, and let U and
N P solve
v A

W
-AU+ VP =F in @,
Ny (2.1) : VeU=0 in 9, and
k(N -

e U=0 on 3Q .

TG » =

!
A Here U = (Ul’UZ) represents the fluid velocities and P the pressure; the

S

325 viscosity has been set to 1 . To simplify the exposition we are assuming

(]
&~: homogeneous boundary data on 3R . For the linear problem (2.1) we can
gg, convert inhomogeneous boundary data into an external force term F . However,

.
§§= for a nonlinear problem one must deal directly with the inhomogeneous

L
.M
:3; boundary data, cf. Gunzburger & Peterson [17]. Other ,.. .ble boundary

1 .

. conditions could involve the normal fluid stresses

oy ,
K% 2 [au, au |

% J |=t+—L{q, -p 1=1,2

" n N, = 1,s,

. j=1 ij ax, | 3 i
::y but since stress boundary conditions are physically much more frequent when
Ao N
;Eg dealing with solids, we shall reserve these for our formulation of the boundary
o . value problem for the eguations of elasticity. For regularity results con-

‘it cerning the solution to (2.1) on a polygonal domain see Kellogg & Osborn [20] and

i
?i; Osborn [29]. Note that P is determined only up to an additive constant.
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3. The'equatiohs of linear elasticity

As before let  be a bounded polygonal domain in the plane and

consider the problem

1

-AU - 125 V(v.U) = F in @, and
(3.1) 2
. L . = = C
jzleii(!)ni +155 VUn, =g on 3, 1i=12,
n= (nl,nz) here denotes the outward unit normal to Q , and eij(g) is

the usual symmetric strain tensor

au au
e, . (U) = Ly £, 1
ij = 2 axj 8xi

The equations (3.1) are the equations of isotropic, plane-strain linear elasticity
corresponding to the domain Q. 0 < v < 1/2 1is a haterial-dependent con-

stant, the so-called Poisson's ratio, which describes the compressibility.

The other constant, the shear modulus, that is needed in order to characterize fully

an isotropic material has been absorbed into the external load F and boundary

load g . If U 4is a solution to (3.1) then the vector

U= (u,,0,,0)

solves the equations of 3-dimensional isofropic elasticity on the domain
QxR ,

with external load i_- (F,0) , independent of X3 » and boundary load
E_- (2,0) , independent of Xy 5 ON the vertical boundary 23Q x R . This
is the reason for the notion of "plane-strain' in connection with (3.1).

Values of v near 1/2 correspond to a nearly incompressible material.
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Both the problem (2.1) and the problem (3.1) can (on a simply connected
domain) be reduced to the solution of the biharmonic equation with
Dirichlet boundary conditionz. For (2.1) this follows through the
introduction of a stream function such that U =V x y ; the corresponding
boundary conditions for ¢ are homogeneous Dirichlet. For (3.1) one first
subtracts a particular solution corresponding to the external load F so
s that the resulting system has a vanishing external load. For such a system

one may introduce an Airy stress function ¢ ( A2¢ = 0) so that

where

c =

E \
1 = Tav (53 @8 —V'H]

ij 1-2v

denote the stresses corresponding to the displacement U (E is the so-called Youngs

modulus) . The boundary conditions for % are in this case (inhomogeneous) Dirichlet.
Regularity results and a priori estimates for solutions to (3.1) (as

well as (2.1)) may thus be derived from the properties of solutions to the

. biharmonic equation on a polygonal domain (cf. Grisvard [15]).

talatar, 4 4“
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é’{) 4. Variational formulations

L)

'\\
: In order to introduce finite element discretizations of the equations
2 A ‘
1:::::\ (2.1) and (3.1) we have to cast them in a variational (or weak) form. This |
A9\ |
g:{s is done following the standard 3-step recipe: |
.\_:.. 1

1) wmultiply each differential equation by a suitable 1

ah

.*a test function

R

:i:s : 2) integrate the result over @
. 3) 1integrate by parts (to taste).

NS
:"J{ By multiplicativa of the first equation in (2.1) by v (vanishing on 3Q) the

1’
£31% :
13508 above three steps lead to
Y

N hns
N a(U,v) + b(v,P) = (F,v)

0%
DY 2
N 2] where (F,v) 1is the usual [L2 ()] inner product,

f

A =

R (4.1) a(U,v) =2 J 12- e ;(We  (wdx , and
'\)\‘ »]
N

R r

(4.2) b(v,P) = - VevPdx .

Y/

Multiplying the second equation in (2.1) by a suitable function q and

integrating over £ , we get
>
A b(U,q) =0 .

ok The appropriate spaces of "test'" functions v and q are given by
°1 °1
X (4.3) H () x H(2) and L,(Q) .

-]
:‘-" Here, Hl(n) is the standard Sobolev space of functions whose gradients are

o square integrable and whose traces vanish on 3 . With these spaces our

» b
: 2%
3
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“"variational form" of (2.1) 1is
[ °1 oy 12
Find U € [H (Q)] and P € LZ(Q) such that

(4.4) { a@U,v) +b(v,P) = (F,v) for all v € [H (@)]°

L " b(U,q) = 0 for all q € L, (@) .

In order to find the variational formulation of (3.1) we multiply the first
equation by v € [Hl(Q)l2 (not vanishing on 032 ) and integrate by parts.
Because of the form of the boundary conditions this leads to

2v
1-2v

a(U,v) + b(y,- V) = (F,v) + 2<g,v>

5 | .
where <<,+> 1is the [LZ(BQ)] ~inner product. The differential equation (3.1)

therefore has the weak form

Find U € [Hl(Q)]2 such that’

(4.5)

2
aUw) +b(y,- 755 V0 = (F,v) + 2<g,v>

This may be rewritten as

( Find U € m(2)1% and P € L,(2) such that

1 a(U,v) + b(v,P) = (F,v) + 2<g,v> for all v € [Hl(fl)]2

_1-2y
g 2v

(P,q) + b(U,q) =0 for all q € LZ(Q) .

Setting v = 1/2 this gives "formally'" a Stokes equation of the form (4.4)

only, of course, with different boundary conditons. Indeed the equations of
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elasticity for v near 1/ may be viewed as a penalized version of a

Stokes problem (for more details, see e.g. Temam [35]). Note that the
equation (4.5) only has a soiution provided the loads F and g are

statically admissible, i.e. provided
(E,E) + 2<£,§> =0

for any rigid motion R . The solution U 1is also only determined modulo a rigid
motion; whenever we discuss the problem (4.5) we shall avoid this non-uniqueness
by thinking of furctions as equivalence classes modulo rigid motions.

(remember, a rigid motion is one for which eij (R) =0, or 3(xl,x2) = (—yx2+u,

yxl+8) . In this paper we shall always assume that Q is connected and for

the Stokes equations we make P unique by imposing

j Pdx =0.
Y]

This replaces LZ(Q) in (4.4) by LZ(Q) = LZ(Q) n {q : I q dx = 0} .
Q
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<] 5. Stability of finite element approximations

L%

( Given a variational formulations such as (4.4) or (4.5) the finite

“g element method consists of chcosing finite dimensional subspaces

3

¥,

g v. ¢ it 2 I c L.(@)

h — i h— "2

:.n

)i

- or v oo @i,

A

4

* and replacing everywhere the infinite dimensional spaces by their finitr

A o

.: dimensional counterparts.* The spaces Vh , Vh and Hh are typical wmade up of

F.¢

N plecewise polynomial functions on some triangulation Zh 3 h denoti che

1. mesh size. For the Stokes problem the discrete version thus becomes

i o

N Find !h € Vh and Ph € Hh such that

s ) o

3 (5.1) a(U,,v) + b(v,P. ) =(F,v) for all v €V

” _’"_ - h e ? - h

4

.d

b e L b(gh,q) =0 for all q € nh

4 and for the equations of elasticity (4.5) it reads

~ . Find Eh € Vh such that %
\ ) ;
- ' V -
: (5.2) ﬁ a(gh,y_) + b(v,- =0 7o) (F,v) + 2<g,v> :
. R
- p

for all v €V .,
g - h

’
, x

§ Indeed Vh shot be a subset of [Hl(ﬂ)]zl{Rigid motior- s>ut this is not

&

L explicitly menti : our convention is to identify a func' .on with its
T equivalence clas iulo rigid motions, whenever appropriate.

.
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ES As an example we consider a uniform triangulation which locally is as shown in
AN
9 ) 1
[ Fig. 1. Perhaps the simplest finite dimensional subspaces are (
= 1
-, O d
P:. Vh = [C" piecewise linear functions]? , oOr 1
- 4
oy ° 0 2 i
' (5.3) Vh = [C piecewise linear functions that vanish on 3¢] I
and correspondingly A
1
4
. Hh = piecewise constants having integral zero (over ().

One reason why finite element methods for the equations of elasticity
(near incompressibility), or the Stokes equations, are intriguing is that the

choices of spaces (5.3) do not work for the mesh in Fig. 1! In the case of

the discrete equations of elasticity (5.2) the relative error as v - 1/2 for

fixed h approaches a constant, which is bounded away from O independently

of h . For the discrete Stokes equation (5.1), gh 2 0 for any h . Below

we give an explanation of this phenomenon in the case of the Stokes equations.

Since the Stokes equations are the "limit'" as v > 1/2 of the equations of

PP T

elasticity this also intuitively explains the lack of uniformity in v of
the accuracy of the approximation (5.2) to the equations of elasticity. (Note,

however, the difference in our boundary conditions.) ¥

- L
!! - The second equation in (5.1) requires that yh lies in the subspace |
: (5.6) Z, = {v ¢ vy ¢ b(v,q) = 0 wvq € Hh}

a2 massm .t 4. N _2

and part of (5.1) may thus be restated

Find Hh € Zh such that :

H

(5.5) (
a(U,,v) = (F,v) for all v €2 . )

N

[-] \

The reason for the deficiency of the choice of spaces v, and i, given by !
(

s e P Te e et et et ave "
...... S

P TR \
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Figure 1

bR 1

i Uniform triangulation of size h , Zh .
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N (5.3) is that the corresponding Z, on the mesh Zh consists of the zero
¥ 'A:
[A element only. This can be seen as follows: we first observe that
AT
N
1 1
NN Z, =V x {C” piecewise quadratics all of whose first
JENEN
- derivatives vanish on 3Q} ,
f:
( with the curl operator Vx given by

0 )
) vV xvy [szz'w,- 5;; w} .

.1' ‘. _“ I{‘
et

4 3

s

A Cl piecewise quadratic whoose first derivatives vanish on 9Q can be

o

extended by constants onto RZ \@. By subtracting the constant which is attained

4

)

DEALE

Ay

in the unbounded component of ]RZ\Q we thus obtain a C1 piecewise quadratic

with compact support. On the mesh shown in Fig. 1 there is only one piecewise

> quadratic with compact support (cf. Morgan & Scott [26], Chui & Wang [7])
o~
<y
- namely the constant 0! Consequently it follows that
Rl
P
‘ Z, =V x {constant function}
’.? = {0} .
Ny )
) »
:; The formulation (5.5) mimics the following equivalent version of the Stokes
o problem
o
i
.r'; Find U € Z such that
N
" (5.6)
Sou a(U,v) = (F,v) for all v €2
o
:::: where Z denotes the subspace
"
X2 ) 2] oy 12 o
(20 z={y € [H(@] :b(v,q) =0 vq €L,(D)}
o
% 1y 12
2 = {v € (H(Q)] : vy =0} .
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\‘ Note that (5.6) represents the well known Hodge decomposition (c¢f. Temam [35]).
\‘\'

(. The space Zh , as defined in (5.4), is of course not necessarilyv contained in
-l:f: Z , but in many interesting cases this inclusion holds, i.e. Zh = 6h nz.

-‘\

;::-- Since a(e,+) 1is a positive definite symmetric form that coerces the Hl-norm

(on ﬁl(Q)) it follows in this case that

% lo-g, | ozl
N, X : U-u ¢ Cinf |(|U-z .
R = el z€2Z ul (@)
ey - h
‘.i' We would thus obtain a quasioptimal velocity approximation, Hh ,1f the follow-
’I ing condition were to hold:
=
Ad
'\s For any U € 2Z ,
2%
e
9 (5.7) inf |[U=zl ; < ¢ dpfflu-vll ;
: < Eezh Q) XGVh H(Q)
e
with C independent of U and h .
) Definition I
N A family of closed (not necessarily finite dimensional) subspaces
wh < [H]'(S'Z)]2 is called divergence~stable if

y 1)  the spaces V-W  are closed in L,(Q) ,
§ ii) 3¢ > 0 , independent of h , such that
uo sup bGz,9)

wew \{0} |lwl|
—""h Hl(Q)

e lall,

'01 for all q € v-wh .

" 'i'-?.'.'Q.-..-,c.‘n_'-_"-'
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Remark 5.1

The definition of divergence-stability as given above is equivalent to
the requirement that there exists a uniformly bounded maximal right inverse
for the divergence operator on the spaces wh » 1.e. there exists a family

of linear operators

P VW > W,
) such that Lh B n
1) ve(L,@) =q, V¥q€9W and
11) iLgally o s cllally g -

with a constant C that is

independent of h and q .

The condition (5.7) and the concept of divergence-stability are

intimately related as shown by the following result.

Proposition 5.1

The spaces Zh = %h N Z and Gh satisfy (5.7) for any U € Z , with
o
constant C that is independent of h and U, if and only if V, is
. divergence-stable,
Proof:

(-] o
Assume that Z = Vh NZ and V_ satisfy (5.7). For any

h h

L]

q € V-Vh there exists

v € @i,

such that

(cf. Temam [35]).
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L]
Since q € V-Vh there also exists v, € V. such that

" oy 5r~
"ot
AFLh

v ?fl

/3t 2
2
.; 'l g

Hence

¢~
"‘."‘A ‘L‘:
|<
]
m
N

and therefore there exists Eh € Zh with

ey
£ (5.8) | v-v, -z, |l $ C inf ||y-v, vl
2% =gl ) weh 0 ala)

The estimate (5.8) immediately leads to

X
-d_'.: (5-9) “V +z “ < C “V”
5 TR T rw

2 < Cllqll L,@)"

~ Since also

13

I

(5.10) V-(xh+zh) = q

DA
“»='s

SN

vy,

-]

= - €
the field W (yh + z) Vh satisfies

1N

s
o«
Boa e,

&

P,

2
b(w »q) Ilanz(Q)
(5.11) = zc”‘1”L @ °
w1l s, |l 2

1 (9) )

LA

e
LA

)

-'\. F'; .

-]

As a consequence of (5.9)-(5.11) we conclude that V

et

~ (U

h is divergence-stable.
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. The proof in the opposite direction is a simple consequence of the
results of Babuska [2 ] and Brezzi [ 6 ]; for completeness we include
° [
the details of a proof here. For each v € Vi s let _z_hé Z.n = Vh N Z be its

orthogonal projection with respect to the inner-product a(¢,*) , and define

o
€ VeV via

% h
-]
b(¥,q, )= a(v-z, ,w) for all ¥ €V, -
Q
Since Vh is divergence-stable, 94, is well defined and satisfles

{lg Il < Cllg-z |l .
b L,(9) " pla)

Néw by definition of z, and %

A

2
e llv=z, Il "y

a(v-z, ,v-z,)
gL q) — —h —h

a(v-z,,v)

b(y_,qn)

b (_Y_‘H_, qh)

A

¢ |lv-ull llq, il
Bh@ P Ly@

¢ ||lv-ull |
@ f

[/

1l ()

for any U € Z . Thus we have, for any ez,

<

ly=zy (I s Cle-t|f
LI (o)

[}
By the triangle inequality, this means that, for U € Z and v ¢ Vh .
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(5.12) [[u-z 4| < Jlu=vi| + lv=s Nl
"l ' ) W
sCllg-wll 4
H(Q)
provided 7 is the projection (relative to the inner product a) of

v onto Z =V 02. The estimate (5.12) clearly implies (5.7). (Note that at

no point in this proof did we use that 6 is finite dimensional).

h
Remark 5.2
Proposition 5.1 does not assert that divergence-stability is always
necessary in order to get optimal-rate velocity approximations, Indeed optimal-

rate velocity approximations are in certain cases achieved with pilecewise polynomial

apaces Vh that are not divergence-stable (ef, Remark 6.1).

We now suppose that gh € Zh is known through the solution of (5.5), and
we consider determining Ph € “h from the first equation in (5.1)
n
(h.13) h(v,Ph) = (F,v) ~ n(“h.v) for all v ¢V

In order for Ph to be unique it is necessary and sufficient that there exists

¢ > 0 such that

(5.14) gup - x> |y “
veUNoO} vl by
H™ ()

for all q € . . If we furthermore want [P, || uniformly bounded by
h h'L, (Q)

c el +||QH ) independently of h then it suffices to
LZ(Q) Hl(Q)

require that the constant c¢ in (5.14) is independent of h .
We note that although it is mathematically simple to describe it is in
practice not always obvious how to usc the cquations (5.5) and (5.13) to solve

for Eh and Ph (cf. Clowinski [14]).
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Definition II
Let Wh and Q“ be two families of closed subspaces of [Hl(Q)]2

and LZ(Q) respectively. Tue familv W_  is said to be divergence-stable

h
relative to Q if 3c > 0, independent of h , such that

b(w,q)

sup  ———— lall
wewN{o} lwll | L, (2)
H (R

)
for all q € Qh .
Remark 5.3
By comparison of the definitions I and II we note that a family of
closed subspaces wh E.[Hl(fz)]2 is divergence-stable if and only if it is’
divergence-stable relative to the family v-wh .
Using the concepts of divergence-stability introduced in definitions I
and II the question of stability of finite elemeqt approximations to the
Stokes equations (2.1) and the equations of elasticity (3.1) is well understood.

Proposition 5.2

o -] 2
Suppose that the family of spaces V_C [Hl(Q)]“ is divergence-stable

9 ; °1.2 ) °
relative to the family T, ¢ LZ(Q) . Let (U.p) € [H]" x L, and (gh,Ph) €V,
donote the solutions to (4.4) and (5.1) respect ively; then

llu-u, i +|lp-p |l
=@ H

LZ(Q)

¢ ¢ ( inf ||U-v|| + inf ||P-q| )
ved, H'@)  aen Ly (®

and C 1is independent of h (and F).
Proposition 5.2 follows directly from the results of Babudka [2] or

Brezzi [6]. It reduces the question of convergence to one of approximation theory

and this inherentlv leads to contradictory requirements: on one
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'\j hand the spaces Hh should have good approximation properties - on the other
X

::: hand they should not be too big, since that would jeopardize stability. One
o~ o

S very natural choice of Hh seems to be Hh = V-Vh .

A

: X Proposition 5.3

o °© o1 2

X Suppose that the family of spaces V_ < [H (R)]  is divergence-
I h =

.; = -° 01 2 e 0 °

stable, and choose nh v Vh . Let (U,P) € (H"] L?_ and ((_Jh,ph) € Vh * Hh

.:j pe the solutions to (4.4) and (5.1) respectively; then

a2

%)

XU 1) Jlu-=u |l ; s c 1gf (U]l , and

A H(R) vev, H (Q)

563

i :i

X ii) ||P-Ph|| s ¢l iof |Ju-vii 1 + inf ||P~q| L (2)

';‘;f LZ(Q) zEVh H(Q) qenh 2

Y and C is independent of h (and F).

,\"' -

:g Proof

S -

- This follows immediately from Prop. 5.1, Prop. 5.2 and the analysis
P, leadinge to the definition I.

™

N 1,2

A o ! =

" In the following we shall denote by U ¢ 1", U, = \'h the solutions
‘ to (4.5) and (5.2), thus emphasizing the dependence on 0 <v<1l/2 of the
W

$ solution to the problem of elasticity.

Py .
&

hoy Proposition 5.4
I 1 2

- Suppose that the family of spaces Vh c [H(@)] is divergence-
N

f‘ stable. Then
~

1 v .V
u”-u, || + 755 v @’-up)ll
NS =l A PP

1 v
C inf “H‘)—!” 1 + inf “1*2\) V.H -q” LZ(Q)

vev, H' () q€v-v,

A

with a constant C that is independent of h and v (and F and g).

-~ . ‘,*\. e -’\“\." ~. . "
LS S S RAM LT LR KDY T FaH




AR o e S SN2 A sl
ST PR PAS

Proof 19

For a fixed 0 < v < 1/2 this estimate with a constant Cv ,
possibly debending on’ Vv ; follows directly from the results of Babuska [2 ].
The fact that C may be chosen independently of v , provided the family Vh
is divergence-stable, is e.z. proven in Vogelius [36].

Several ways to remedy the deficiency of the spaces in (5.3) have been
suggested and analyzed in the literature. A non-conforming, piecewise linear,
triangular element was proposed by Crouzeix and Raviart [10] which, together
with the Hh in (5.3) ylelds optimal approximation (second order). For
computational experience with this element, see Pritchard, Renardy & Scott [31]
and references therein. Increasing Zh can also be achieved by choosing ;
special triangulation, as shown in Figure 2, although this 1is by no means
obvious. The mesh consists of squares with diagonals drawn in; the inter-
sections of the diagonals are special examples of what we shall denote "singular

vertices" (the exact definition of a singular vertex will be given in the next section)

Figure 2

Special mesh z: , with "singular vertices"

A S AR A S S L SRR RIS




LIPS

It was discovered by Powell [30] that the space of Cl piecewise
quadratics on the mesh in Figure 2 has good approximation properties - there
is roughly one degree of freedom per singular vertex. One must reduce Hh
in (5.3) appropriately at singular vertices, cf. later in this paper. For
computational experience with, and analysis of, this method see Fix,
Gunzburger & Nicolaides [13], Malkus & Olsen [22], and Mercier [24]
and references therein,

From the definition II it follows that a possible method to achieve
divergence-stability of wh relative to Qh (if it is not already there)
is to increase Wh , or decrease Qh (or both). The well-known Hood-Taylor
(18] element is obtained from continuous piecewise quadratic velocities,
piecewise linear pressuresexactly this way by requiring the pressures also
to be continuous. The element analyzed by Arnold, Brezzi & Fortin [ 1] has a similar
flavor: for velocities the continuous piecewise linears are enriched by cubic bubble
functions (the pressures however are taken to be contimuous piecewise linear).

In the context of the equations of elasticity it has been proposed to
use ''reduced integration'" on the term involving b , while maintaining
simple choices for both the meshes and V,, + We refer to Zienkiewicz [38], Malkus
& Hughes [21] and references therein for computational experience with reduced
integration methods, and an account of their relation to mixed methods.

An obvious question at this point seems to be:

"are the problems that we encountered with conforming
plecewise linear elements also present for conforming

plecewise polynomials of degree p+ 1 , p 21 ?"

This question is the focus of the next two sections.

*aly



6. Divergence-stability of high-order conforming spaces

Let us consider the spaces

{p+1],0,2
Ph ]

Vh = [ = [Co piecewise polynomials of degree < p+l]2

(6.1)

§h = [%£p+1],0]2 = {v ¢ [P£p+1]’0]2 :v=0 on 232}

on an arbitrary family of triangulations Zh of § . We have already seen that i
for p = 0 these spaces are not in general divergence-stable. Results due to

de Boor, H81lig and Jia [11], [19] show that these spaces are not in general
divergence-stable for p =1 or 2 ; this lack of divergence-stability is well-
documented by computational experience (cf. section 7 for more details). We
now turn our attention to the case p > 3 . 1In order to state rigorously a
result concerning the divergence-stability of the choice (6.1) for p > 3 we

need some notation. A singular internal vertex [25] is one where precisely

four triangles meet through the intersection of two straight lines, as shown

in Figure 3. A singular boundary vertex is a vertex on 3R where 1 < k < 4

. triangles meet through the intersection of two straight lines. There are

Figure 3
Singular internal vertex,

four such possibilities as shown in Figure 4,
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Singular boundary vertices.

y?* Theorem 6.1 [ 32]

Suppose that zh is quasi-uniform and that no nonsingular vertices
degenerate towards singular as h tends to zero. Then for any fixed p 2 3
the spaces (6.1) are divergence stable (in the sense of Definition I).

Furthermore the constant ¢ entering into Definition I is bounded from below by
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with ¢ and k independent of h and p .
Remark 6.1

By quasi-uniform we mean that each triangle T ¢ Zh contains a
ball of radius oh , where p > 0 1is independent of h . Whether this
restriction is essential to guarantee divergence-stability of the spaces
(6.1) for p 3 3 , we do not know. It is easy to see that the spaces (6.1)
cannot be divergence-stable if a nonsingular vertex tends towards becoming
singular (as seen later the dimension of the space V-Vh or V';h decreases
by one when a vertex becomes singular). This does not imply that we will
observe sub-optimal convergence-rates when discretizing the Stokes
problem or the equations of elasticity, v ~ 1/2 , using a mesh with nearly-singular
(nonsingular) vertices, however, the ratio between the error in the finite
element approximation of the velocities (or displacements) and the error
of the best (H;-) approximation may be arbitrarily large depending on the data. As
stated in Theorem 6.1 the lower bound in the estimate of divergence-stability
may approach zero algebraically in p_l as p 4+ » , we do not know whether
this 1is indeed the case or whether the lower bound is uniform in p also.

Note that divergence stability of V_  requires only that nonsingular internal

h
vertices do not degenerate to singularity as h =+ 0 ,

For the proof of the theorem, as well as more details concerning the
results, we refer to Scott & Vogelius [32 ] and Vogelius [37]. In case of
the equations of elasticity (4.5) Theorem 6.1 in combination with
Proposition 5.4 leads to the fact that the spaces (6.1) give quasi-optimal

finite element approximations to (EV, ljév V‘EV) for fixed p 2 3 . The

question of convergence properties thus becomes one of approximaticn theory,

and in addition to understanding the approximation properties of Vh it is

.......

- N S Y P e o T e Tt
R S RV W A et AT ST, Ve TSI R A5 16 Wy L i)




ERACH AR v A S L T A I A S M A AR C A ArCR A YA/l A A ol S S Al A e o D

24

important to understand the character of the spaces V-Vh . The fact
that the lower bound in the stability estimate approaches zero at most
algebraically in p-1 as p + » was used in Vogelius [36] to prove "almost"
optimal convergence rates for the so-called p-version of the finite element
method. Using an interpolation trick it was shown (on a smooth domain, with
curved elements at the boundary) that the p-version converges at "almost" optimal
rates in the energy norm, uniformly with respect to Poisson's ratio. ''Almost"
optimal here means that it converges at any rate strictly less than optimal. A
slight variation of the present result (permitting for curved elements at
the boundary) could likewise be used to verify a similar result for combina-
tions of the h- and p-versions (i.e. when simultaneously changing mesh size and
degree of the polynomials);

For the case of the Stokes problem it is clear from both Proposition 5.2
and Proposition 5.3 that in addition to divergence-stability and good approxi-

-]

mation properties of the spaces V. it is important to have good approximation

h

properties of the corresponding pressure-spaces Hh . Since Theorem 6.1

o

guarantees divergence-stability relative to any subspace of V-Vh this

naturally leads to the question of finding a characterization of the spaces V-%h .
Part of this characterization (1ts necessity) 1s implicit in the work of WNagtegaal,
Parks & Rice [27] and that of Mercier [23].

Let X5 be an internal vertex where four triangles meet with the common

edges lyving on either the xl-axis or the xz—axis, as shown in Figure 5.

R G R R P R T N
TR L S L SRR S G A -'.\'.\df
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Figure 5

Let v €V, and set x} = !JT i=1,...,4 . Since v 1s continuous
i
vi - v? vanishes identically on the edge ey » consequently

3 1 3 4
(6.2a) 7= V1 - V1 °n e .

1 1 .
Similarly we get
(6.2b) 3 a2 on e,




(6.2d) 33— v; - al 4
x2 Xz

The vertex X, is common to all the edges e through e, and by summation

of (6.2a-d) at X, Wwe get

(6.3) Vevt(xg) *+ T (xy) = Tevi(xg) + 9wtz

which, by introduction of ¢ = Vev , may be restated

s A s sl

4 .
(6.4) I D% (x,) =0 .
i=1 Ti =0

'

7

The chain rule of differentiation gives that

_ (6.5) V(T lveT) (1) = (Vov) (Tx)

: for any invertible affine map T : R? *-R? . If v €V, then so is T-lX(IE)

(on the corresponding triangulation\and it thus follows immediately from (6.5) thac

EA AT P Ly St R
T

(6.3) (or (6.4)) must be satisfied at all internal vertices which can be obtained by

. an affine transformation of one as in Figure 5. These vertices are exactly the

singular internal vertices.

-
B,y

-

This simple calculation thus shows that for any p 3 0

WS |- §

(6.6) Vth [ Pﬁp]’-l = {(discontinuous) piecewise

polynomials, ¢ , of degree < p

-4 9"

that satisfy (6.4) at singular

internal vertices} .

R Yty e

o
For the spaces Vh » with homogeneous Dirichlet boundary conditions, we find

X two additional sets of contraints, namely with ¢ = Vev:

R R L A R
- - L

o PR I ]
Aty o SRR RV Ay
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k
i
(6.7) I DYl (x) =0
i=1 i
at any singular boundary vertex X5 »

where 1 ¢ k £ 4 triangles meet as in

Figure 4, and

f
(6.8) J ¢ dx = 0
Q

If we define

ﬁﬁp],-l = {(discontinuous) piecewise polynomials,
¢, of degreeg p, that satisfy (6.4) at singular
internal vertices, (6.7) at singular boundary

vertices and furthermore satisfy (6.8)}

then this shows that for any p > 0
° -
(6.9) vev, ¢ P

It was shown in Vogelius [37] that (6.6) is indeed an equality provided p 2 3 .
By a similar combinatorial argument it is proven in Scott & Vogelius [32]

that (6.9) is also an equality for any p > 3 (remember, Q is connected). This

characterizes the spaces V-Vh and V-Gh on an arbitrary triangulation for any p 2 3.

Remark 6.2

o
From the characterization ~f V-Vh given above it follows that

the space

(6.10; {continuous piecewise polynomials of degree < p

that satisfy (6.8)}
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o
is a subspace of V-Vh provided p 2 3 . Selecting the pressure space Hh

to be as in (6.10), p > 3, generalizes the methods studied by Hood & Taylor

{18} for p=1 and 2 . Tieorem 6.1 shows that these generatized Hood-

> Bercovier

-

Taylor elements, p 3 , lead to quasi-optimal approximation.

& Pironneau [ 3] proved the same to be the case for the Hood-Taylor element

for p =1 . It would be natural to conjecture that the case p = 2 also

leads to quasi-optimal approximations.
Remark 6.3
If one uses the approach (5.5) to compute the finite element approxi~
mation to the velocity U in the Stokes problem then it is important to have

a local basis for Zh . Assuming that Hh has been selected so that

Z < Z it then follows that, for all p 2 0,

h
g . - [p+2],1
(6.11) z, = {veV, : voy = 0} = ¥ x p}EP L1
where
3ip+2],1 1
Ph *> = {C” piecewise polynomials of degree ¢

p + 2 all of whose first derivatives

vanish at the boundaryl.

p+21,1

. :
Note that elements of Pﬁ are constant on each connected component

is connected then we

(p+2],1
ple+2l.1

of 932 , however the constants need not be the same; if 30

shall always pick the constant to be zero for functions in

A basis for P£p+2]’l, p 2 3, (with no boundary conditions) was constructed

slp+2],1
Ph

in Morgan & Scott [25]; 3, is not

the corresponding basis for P 2

y >

altogether obvious, but is described in Scott & Vogelius [32]). The finite

o

o
element method corresponding to the spaces V and 1, = VeV

h

p = 3 1s currently being tested numerically for the full (nonlinear, time-

in the case

h h

dependent) Navier-Stokes equations.
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-~ F,
‘E 7. Results concerning lower-degree spaces 3
(' There are really three aspects of the finite element approximation to a
g the Stokes-equations or the =quations of elasticity addressed in the previous E
g sections. :
A. a) Bounds for a maximal right inverse for the divergence

'3 operator on Vh and Vh , or estimates for the

:3 ) divergence~stability of these spaces relative to

; . families of pressure spaces Hh .

.g b) Characterization of the spaces V-Vh or V';h .

X c) Determination of the approximation properties of the

)

spaces %h N {y:vey=0} (or Vv, 0 {v:vev=0}).
For the equations of elasticity (4.5) we are as indicated by
Proposition 5.4 mainly concerned with a) and b) whereas the aspect c) is also
of importance when solving the Stokes-problem (4.4). As pointed out in

sectioms 5 and 6 (particularly in Remark 5.2 and Remark 6.1) c) may be of independent

interest even though a) and b) do not have satisfactory answers. We shall now

discuss the aspects a)-¢) for the spaces

(7.1) v = (PPL02 aag - P02 pa01,2
- a
35 We know of very few results that are valid on a quite arbitrary triangulation
i; for these low degree spaces; as a consequence we shall restrict our attention
iﬂ to the triangulations, a local picture of which are shown in Figure 1 and
3 Figure 2 (we denote these Z; and Zi respectively). On these triangula-
‘ﬁ tions the dimension formula conjectured by St;ang [33]
&

(7.2) dim(Pl£P+2]’1) = 3(p+3) (p+4) T-(2p+5)E+3V o,
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is known to hold also for p = 0,1 and 2 (cf. Morgan & Scott [26]). Here
T denotes the number of triangles, EO is number of internal edges, V0

is the number of internal vertices and % is the number of singular

internal vertices. On a simply connected domain the null space of the

. plp*11,0,2 olpt2],1 |
[Ph ] Ph

divergence operator acting on is the curl of H

i
it thus follows as in Vogelius [37] (or Scott & Vogelius [32]) that whenever
(7.2) holds V-Vh must have the same dimension %(p+2)(p+l)T - 60 as the

space Pﬁp]’-l (cf. (6.6)). Since vev, € Pép]’-l we conclude that

. - [P]o-l
(7.3) Ve, = Ph

whenever (7.2) holds for a given triangulation, and in particular for p = 0,1
and 2 on the triangulations Zi and Z§ . (For p =2 we could indeed
have derived (7.2) for much more general triangulations, cf. Morgan & Scott
{26].) By a hole-filling procedure we can extend our argument to verify

(7.3) even though the domain is not simply connected. The characterization
(7.3) for the case p = 0 and the triangulation Zi was also noted by Fix,
Gunzburger & Nicolaides (cf. (13]).

5£p],-1 is not

In contrast the relation between the spaces V-%h and
nearly as simple for p = 0,1 and 2 as the characterization given in the
previous section, for p > 3 , might lead one to believe. Let us start by
congidering the piecewise linear case, p =0 . If o denotes the total number
of singular vertices, including singular boundary vertices, then we have for
the triangulations X; and Zﬁ

° -
dim V., = 2V. and dim pl0l,-1

h 0 h = T-g-1

(excluding the trivial case of a rectangle divided into two triangles by the
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(\J: ° N -
f,‘} diagonal, when both Vh and PtEO]’ 1 consist of 0 only). Using the relations
<&
1 ‘
:::::. E-EO = V-Vo , E+EO = 3T
'«3.‘:.,'
_:::-;:: and Euler's formula
SRS
~' T+V-E = 1
3
N
:" (assuming 2 1is simply connected), we get
'h ~ :
N 5[01,-1 ° ,
:‘\ (7.4) dim Ph dim Vh (E—Eo) -0 -3
™
:‘ T, Eo . V0 are as before and E denotes the total number of edges, V the
.
Pts
A total number of vertices. From (7.4) we immediately conclude that if
\j: v pl0],-1 v
el o <E-~- EO - 3 then dim Vh < dim ]h and consequently Vth is a
proper subspace of i’tEO]’-l (see Nagtegaal, Parks & Rice [27] and Malkus &
I‘ ;'
.-:: Hughes [21] for a similar constraint-counting method). If Q 1is a rectangle
>
:? and Z}]; is used for a triangulation then there are exactly 2 singular vertices
wPa °
(one in the upper-left and one in the lower-right corner of Q ); thus \7-Vh
Y -
E:'V . is a proper subspace of pt[‘O], 1 except for the trivial case that Q 1is
~ ° o ' ,
2 divided fo only two triangles. Since V, N 2 = {y€v, : Vev=0} = {0} on the
. °
- mesh Zl]; it follows that V. 1is injective on Vh and hence we get from
Y
0% (7.4) that
a
f\-
N, 50],-1 °
4 ’ - * = - -
ou dim [h dim © Vh (E Eo) 5
2 |
‘a
::} on a rectangle triangulated by the mesh Z:; (excluding the trivial case of only
2 A0
"
‘ Y 2 triangles).
f:: In the case that Q 1is a rectangle divided into triangles by the
L]
¥ [
(: mesh ztzt then the dimension of 1’}[121"1 = Pt[12]’l n{:9 = -g-lpr; =0 on 30}
,
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has been calculated by Chui, Schumaker & Wang [8 ] to be
plpl,1 _
dim P, o - (E-Ej) + 4 ,

provided Q has at least two boundary edges on each side. As a consequence

of this and (6.11) it follows that

L] (-]
dim V. = dim V.V

h h+o-(E-E0)+4,

and thus, using (7.4), we find that

(7.5) dim ?ﬁol"l - dim v-\‘;h =1

for the choice (7.1), with p = 0 , on this mesh Zi .
Now consider the case of piecewise quadratic fields , i.e. the choice
° ° .
vV, = (P[Z],O)Z on the mesh zl . The dimension of pl3l.1 | P[3]’1f1{w b=
h h h h h
%f = 0 on 3R} on a rectangle triangulated by this mesh has been determined
in Chui, Schumaker & Jang [ 9], and via calculations simular to those just

given we find that

~[1],-1 .° =
(7.6) dim Ph - dim V Vh 3.

Note that this agrees with the results of Malkus & Olsen [22]. For the space
L] ()

Vh =- (Plllzl’o)2 on 25 the situation is different. Mercier [23] observed
that in this case ¥£31’1 ‘has a local basis given by the Fraeijs de Veubeke-

Sander cubic macro-element. Using calculations similar to those above one

can show that

° '[lh-l
(7.7) vev, = Ph |

on a rectangle triangulated by the mesh Xﬁ (p=1).

For the case p = 2 | that is piecewise

Ctatae, s
-*" ‘e ‘e

ot - =
.'_,
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° -]
cubic fields, Vh = (P[3]'0)2 » with homogeneous boundary conditions on a

Q
rectangle triangulated by the mesh Zi pone can use the local basis for Pial’l .

given via macro-elements in Douglas et al. (12], to show that

(7.8) vev, = P

o ~[2]9-1
h

To the best of our knowledge, no result is known for the mesh Zi for p =2

although it seems clear that one would not expect (7.8) to hold in general.
o ~ -
Whenever, as in (7.5) and (7.6), the codimension of V-Vh in Pip]’ 1

is non-zero but independent of the mesh size, it is reasonable to conjecture

that the orthogonal complements consist of global modes. For an explicit

-]
calculation of the global constraint on V-Vh in the case corresponding to

(7.5), see Olsen ([28].

The previous discussion centered on the characterization of V-V_ or

h

L]
V-Vh for low degree polynomials; we now turn to the aspects a) and c) listed
at the beginning of this section. Proposition 5.1 shows that there is a close

connection between approximation properties of the spaces Gh N {v : 7.v=0} (or

Vh N {v : Vev=0}) and the divergence stability of Gh (or Vh , respectively).

In the following we shall for simplicity assume that Q is simply

(p+2],1 v : Ve
connected. Then V, N {v : Vev=0} = ¥ x P and Vv, N {v : Vev = 0}
-y x plPF2],1
h

» and this in combination with Proposition 5.1 shows that there is a

1,1 p+2],1

9 -]
close connection between approximation properties of P£p+' and Pé and

divergence~stability. The next proposition elaborates more on that connection.

1

Proposition 7.1
p+3
Let p=9,1 or 2 and assume that there exist ¢ € H « ,

¢c>0,and 0 < a ¢ p+ 3 such that

............

Pl
. RN
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!
where the 1inf 1is taken over ¢ € P£p+2]'l (for some quasi-uniform family of ]
4
'
triangulations). Then
b(v,q) 8
inf sup < Ch !

q€v-v, \(0} vev V(o) vll o IlqllL @
@ 2

- (P*E""l]’o)2 with 8 = EL g ‘

for the subspaces Vh b . ]

Proof:

By contradiction let us assume that

-8 b(qu)
C. = h inf

q€v+v, \ {0} v€V \’o} HVII o )lquILZ(Q)

is unbounded as h + 0 . Using the same argument as in the proof of Proposition 5.1

we get directly from the definition of Ch that

-1 -
(7.9) inf fu-zll ; < cc'h ® inf lu-vfl

26V, My:Vey=0} ~ 7 H () VeV, H (Q)
+
for any U € [Hl(Q)]2 N {v: Vey =0} ., For any ¥ € uP 3(Q) we get that
7 x y§ € [Hp+2(9)]2 N {v : Vev = 0}, and by insertion into (7.9) it follows

that

2,

inf I|wa_v,<¢|| L s cc}"lh’B inf || vxy=v]| L,

[p+2] H (2) vEY

0€P h

p+l -1, -8
schfrch wll
h w3 (q)

+
From this we conclude that, for any ¢ € HP 3(Q) R

Tl oo _h
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j Using the results of Bramble and Scott [5] (these results are valid if we require
,i that all co¥ners of  have interior angles < 2nv) we thus get
'\ ~(p+3)/(p+1), p+3-a ’
& (pt+2],1 HP7 7 () :
-, ¢ EP .
" h g
. :
- which due to the fact that Ch is unbounded as h > 0 produces a contradiction

w to the assumptions of this proposition. .
¢ .
3 Proposition 7.1 could just as easily have been verified for K

' 3, .02 s{ p+

@i @) , BIPRLL L gpeplpr2lnl Ly 20y o g
\ h on
L ° p(p+1],0,2

W and Vh (Ph )

& In the light of Propositions 5.1 and 7.1 we shall center our discussion :
': of the aspects a) and c) on known results concerning the approximation rates
.1 (p+2],1 Sip+21,1 1 2

; of P : nd P »

% h a b on the meshes [ and Zh .
.3 First, suppose p = 0 , the case of piecewise linear fields. On the K
o mesh Zﬁ we know as previously stated that

e,
Tol

» 5[2],1 _ .
a | Pa = {0} 5

ﬁ this space obviously has no approximation rate associated to it and the &
4 :
,3 assumptions of Proposition 7.1 are thus satisfied with a =3 , i.e. the -
“

~ "best" constant in the '"divergence-stability" estimate is < C h , cf. Gunzburger

. & Nicolaides [16]. We do not anticipate that relaxing the boundary conditions :
A 1 K
\‘ would lead to any approximation rates for the spaces Pﬁzl’l on the mesh Zh ’

5

A 2
z though we do not know this for a fact. On the mesh Zh Fix, Gunzburger & !
el Nicolaides (13] give a construction of a uniformly bounded inverse for the y
f: divergence operator (V-).lth[‘O]"l >V = [Pt[\]']’ol2 , uniformly bounded that :
\ .
- is 1in B(H-l;Lz) , not B(Lz;Hl) as we are concerned with, Powell [30] and

‘g

J p
N
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N ]
§ Mercier [23] both show that szl’l has optimal approximation rates on this Eé
(. mesh. Malkus and Olsen [22] conjecture that optimal approximation properties ;%
'E hold as well for ;[2]’1 on Zﬁ , although this has not been proven. ﬁ
é (Because of the local basis for $[2]’l given by Powell [30], one would have g
a =1 at worst.) E
g Now consider piecewise quadratic fields, i.e. p =1 . On the mesh :;
: Zi de Boor and H8llig [11] show that approximation by P£3]’l is suboptimal ph
sJ by precisely one order of h in L, . This result (adapted to L2) accord~ !‘
,j ing to Proposition 7.1 leads to the conclusion that the "best' constant in the i
3 "divergence~stability' estimate for the piecewise quadratic spaces vy is g
3 g C hl/z . Malkus and Olsen [22] report numerical evidence that the corresponding ;
E constant for the piecewise quadratic spaces Gh (with boundary conditions) is f
i 0(h) on the mesh Zi . . On the mesh ZE the situation is quite E
\ different since both Pﬁjl’l and 5{31’1 are long known to have optimal ;
G X
; approximation rates, cf. Mercier [23]; indeed, the recent results of .
}i Boland and Nicolaides [4 ] together with the result (7.7) show that the i
3 corresponding spaces Vh and Gh are divergence stable on the mesh Zi for .f
E p=1. (For macroelement, one takes simply the quadrilateral surrounding -
- each singular vertex. Local stability is then guaranteed by (7.7) applied to
S each macroelement. The reason that these macroelements are locally stable
E in the sense of Boland and Nicolaides [ 4] is that the boundary vertices of E
. each macroelement are nonsingular.) &
bi For piecewise cubic fields (p = 2) on the mesh Zi , numerical exper- .
E ience (e.g. Szabo et al. [34]) had indicated that neither Vh nor Gh was
¢ divergence-stable. Moreover, the results of Jia [19], similar to those of ‘
N de Boor and Hollig [11] quoted above, also lead to this conclusion via f
~

Proposition 7.1. For the mesh Zﬁ and p = 2 , the results of Douglas, et al. [12]

' X
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prove that (7.8) holds and consequently that both Vh and

o
Va
described previously. Finally, note that all the results for p =1 and

are divergence-stable, in the same fashion as for the case p =1

2 for the mesh Zi hold as well for a mesh based on the macroelement of
Clough and Tocher, cf. Mercier ([23].

To summarize the previous discussion:

1) The characterization of the range of the divergence operator 4
on spaces of continuous piecewise polynomials of degree at most p+ 1, p 2 3,
given in section 6, is widely valid also for p £ 2 , provided no boundary
conditions are imposed. With boundary conditions imposed this characterization

fails on the most natural triangulations.

2
2) The divergence stability of the spaces [P[p+l]’0]2 or [ﬁ[p+l]’0]"

is intimately connected to the approximation properties

-3
of the spaces P£p+2]’l or P£p+2]’l . Since these spaces of C1 piecewise

polynomials have essentially one additional degree of freedom for each singular

[p+1],0]2 or [p[p+l],0]2 ,

vertex, it is only natural that the spaces [P p <2, are
much more likely to be divergence-stable, the more singular vertices the

. triangulation has. In this sense singular vertices are desirable when working

with piecewise polynomials of degree < 3.
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