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Preface

My studies in mathematics and operations research are

combined in this thesis to develop some techniques for non-

linear optimization. Except where the theorems are specifi-

cally annotated, the work presented is my own.

- This thesis would not have been possible without the

guidance and interest of Dr. John Jones, Jr., whose unflagging

optimism and cheerful help inspired and guided me through the

successes and failures. I also wish to thank LtCol Peter Bobko

and Dr.Dan W. Repperger for their professional comments. A

word of thanks is also owed to the staff of the library of the

School of Engineering for their efforts in making refrences

available.

Ali M. Ragab
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Abstract

This thesis extends the work of Leighton and Jones

which takes functions that satisfy special types of diff-

erential equations and determines an interval on which the

functions either have zeros or attain bounded values.

Theorems for locating zeros are proved for functions of a

single variable and functions of several variables with

illustrative examples. The applications of matrix equations

to constrained optimization problems are described. An

algorithm for random search technique for the general

A_ optimization problem is presented with a FORTRAN V program

U.., and test problems.

U. vii



S. .

? 'SPECIAL NONLINEAR

OPTIMIZATION TECHNIQUES

I. Introduction

For the past twenty years, considerable effort has been

expended on the developmeht of nonlinear programming theory

and algorithms for solving nonlinear programming problems.

Some of ttese algorithms have been implemented on digital

computers, It Is fair to say, however, that solving a comp-

licated nonlinear programming problem by a computerized non-

linear programming algorithm is an automatic process. Unlike

linear programming, where computerized algorithms(variations

on the simplex method, usually) have long been able to solve

problems of large size, nonlinear programming is still in its

infancy as regards its ability to guarantee solutions to

problems of even moderate size.

A major barrier for solving nonlinear programming problems

is the lack of a computationally oriented way of representing

nonlinear functions of nvartibles. The algorithms are often

not as efficient as they could be because of the inability to

compute automatically quantities related to the complicated

nonlinear functional relationships that describe the models.

For example, the accurate and speedy computation of first

derivatives is a usual requirement for algorithms which solve

system of nonlinear equations.

M1



There is a basic dichotomy in programming algorithms:

.s- . .they may be designed to converge to local or global minima.

A necessary condition for a point to be a local minimum of a

differentiable function subject to constraints is due to Kuhn

and Tucker (1) and might be considered the fundamental theorem

of mathematical programming.

Assuming that the problem to be optimized is defined in

some way, the various general methods of optimization can be

conveniently classified as follows:

* 1. Ahalytical methods: which make use of the cla i.cal tech-

niques of differential calculus and the calculus £ iriations.

These methods seek the extremum of a function f(X) by finding

.* the values of X that cause the derivatives of f(X) with respect

to X to vanish. When the extremum of f(X) is sought in the

0presence of constraints, techniques such as Lagrange multipliers
and constrained variation are used. For the application of

analytical methods, the problem to be optimized must be desc-

ribed in mathematical terms, so that the functions and variables

can be manipulated by known rules. For large, highly nonlinear

problems, analytical methods prove unsatisfactory.

<. 2. Numerical methods: which use past information to generate

better solutions to the optimization problem by means of ite-

..- 2rative procedures.

A general summary of computer codes for mathematical prog-

ramming that have been tested, documented, and are available

to the public occurs in (2). Somewhat earlier there appeared

a collection of FORTRAN listings of optimization codes, along

2

.9.-, 2

-% 4

V- . - o•. o o o . o . -. , . . . °. • . . • . . .



with brief descriptions of the algorithms and their operations

(3). The potential user is left to make his own choice as to

which method will best serve his purpose.

This thesis investigates new methods in nonlinear opti-

mization theory. The importance of this study is to be able

* to use these new methods in making decisions conCerning modles

for which classical techniques do not provide sufficient

information. The overall objective is to address and resolve

the new methods and apply them to some special problems.

Chapters 2 and 3 deal with objective functions of oile

variable or several variables. Application of given theorems

provides a domain of good starting points for iterative methods.

Chapter 4 describes the applications of matrix equations

to constrained optimization problems. Use is made of matrix

equations to obtain solutions of certain classes of nonlinear

equations.

Chapter 5 gives an algorithm for random search technique

for the optimization problems of continuous variables or integer

variables.

Chapter 6 gives conclusions and directions for further

* work in the areas covered by the thesis.
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II. One Dimensional Unimodal Objective Functions

The main objective of this chapter is to obtain infor-

mation as to the zeros, relative maxima,relative minima and

bounds for one dimensional objective functions. The objective

functions treated in this chapter are assumed differentiable

and defined on an interval [a,b]. An objective function f(x)

will be required to be a solution of the differential equation

of the form:

[A(x)f(x) +C (x)fx)=0 (2.1)

where

(i) A(xJ and C(x) are both continuous functions on [a,o ]

and A(x) >0 on [a,b],

(ii) f'=df/dx

.'u.- Use will be made throughout this chapter of a class of

trial functions defined by definition 2.1.

Definition 2.1

A trial function u=u(x,h) is a real valued function

of x and h, where h is a parameter, h>O and u satisfies these

conditions:

(1) u>0

(2) u(a,h) = u(b,h) = 0 and'

(3) u has at least one derivative with respect to x.

For example, on [O,h] , h>0 , one trial function (and

the one used predominantly in this chapter) is of the form:

u = x(h-x)

Other trial functions which might be used on [O,h] are

I',,.C: 4



u = sin (rx/h)

or

u = xP(h-x) q ,pq -l

Corresponding trial functions may be adapted to fit

any interval [a,b] or h,kh ,h >0 and K>l, to extend the

domain of these trial functions.

Associated with the given function f(x), the trial

function u and the differential equation (2.1) will be a

functional J(x,a,b) defined by

J(x,a,b) - (Au2 -C u2  dx (2.2)

where,

u = du/dx
x

Definition 2.2

The functional J(x,a,b) above is a function defined

on functions.

For example,the functional J(x,a,b) is a function defined

on both f(x) and the trial function u.

Lighton (4) proved the following theorem to show that,

whenever J(x,a,b) can be made negative by varying the para-

meter h, then at least one zero of f(x) must exist on the

interval [O,h].

Theorem 2.1

If f(x) is a function which satisfies the linear diff-

erential equation (2.1), and if u is a trial function on

[O,h] such that J(x,O,h) <0 for the J(x,O,h) defined by(2.2)

%°,5
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then f(x) has at least one zero on [O,h]

-'* The idea here is to make use of this theorem and the

similar theorems in chapters 2,3 in optimization. If f(x)

is the derivative of the objective function, then the zeros

of f(x) correspond to the extreme points of the objective

function. The range [O,h] for which J(x,O,h) is negative

gives the range for these extreme points. For the unimodal

functions it will be useless to search for the extreme points

outside the range [O,h] . In most iterative methods which

require a starting point, the range [O,h] is the recommended

range of the starting point instead of searching over all

the domain of the variable x. The choice of the starting

point in [O,h] will decrease the computational time and the

Qnumber of iterations. The following examples illustrate

the application of theorem (2.1) for different functions that

satisfy equation (2.1).

Example 2.1

The function y = sin(x) is known to be a solution of

the differential equation

y ''t + y = 0

A comparison with equation (2.1) gives

A(x) = C(x) = I

then, with the trial function

u = x(h-x)

and varying h until J(u,O,h) becomes negative, i.e

h 2 2
' J(u,O,h) = 5 (h-2x) (hx-x) dx < 0

0
~6
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solution of this inequality gives

thus the function y has at least one zero on (Oi ).

NOTE: the actual zero occurs at x=K= 3.1416

Example 2.2

The function f = P (x) is the Legendre polynomial which

n

is a solution of the differential equation

(-x2 )f ' ' - 2xf' + n(n+l)f = ((i-x 2)f')' +n(n+l)f = 0

2
Now, Ax)= 1-x is positive for all Ixl< 1,

Cx) = n(n+l)

choose

u = x(h-x) ,then

Ji'i2l 2 2 2 22 d
-- f = (I x )(h- 2x) (n +n)(xh x) dx < 0

0

the solution of this inequality gives

h >410/(n2 + n + 4) (2.3)

Table I compares the values of h calculated from equation

(2.3) with the smallest positive zero of P (x) calculated
n

from equation (2.4) of the generalized Rodrigues formula

*for diffe--nt values of n.

(n) (n) 2 n
(dn/dx ) (x - 1) (2.4)

n
2 n!

I°°#
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TABLE I

Comparisons of h with zeros of P (x)
n

n h zeros of P (x)

3 .7906 .7746

4 .6455 .3400

5 .5423 .5385

Example 2.3 Mathews (5)

Let y be the objective function given by the solution

of the ordinary differential equation (2.5)

y + xy = 0 (2.5)

*.C In this example we are to approximate the first zero of Airy's

function y(x) shown in Figure 1. Matching of equations (2.5)

and(2.1) gives

A(x) = 1 , C(x) = x

Let u = x(h-x)

5'..J(u,0,h) hf 2 2 x(hx -h22 2 dx < 0f -(-x xxjx .  d

0

The solution of this inequality gives

h > (2011/3

then there is at least one zero for y on [0,(20)l/31.

Komkov(6) developed theorem (2.2) that is a generali-

zation of theorem (2.1). In the general case we will consider

8
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Figure 1. Airy's Function

4,%.9
,,,° 9



the nonlinear equation

[A(x)V' ]' + C(x)f(V) = 0 (2.6)

where

i) x C [x.,oo) ,

(ii) A(x) > 0 for all xC[a,b] and A(x)CC [x0,)

(iii) C(x) C C [x*,,o) , and

(iv) f(V) is of the form f(V) = v k , K is a positive integer

and k >1.

Theorem 2.2

2Let u be a C [x,,o) trial function, and G(u) be CI(-,

+rw)such that G u(a) = G u(b)= 0 , G u(X) > 0 for

all a<x<b. Let g(u) denote g(u) = G'(u), and let

2
g (u)/G(u) be a bounded function of x on the interval[a,b]

and m denotes

m =max g (u) (2.7)
xC [a,b] 4G(u)

let
bf 2

J(u,a,b) = (Au' - CG ) dx < 0 (2.8)
a

then any solution V(x) of equation (2.6) , with f(V) = V I

k >1 which satisfies V(a) 1 0 will satisfy the inequality

m 1/(k-l)

k

on some subinterval of [ a,b]

'p1



The following examples illustrate the applications of

6P' theorem (2.2) for different objective functions.

0t Example 2.4 -Komkov(5)

The Emden's equation (2.9) occurs in astrophysics. It

arises in the discussion of a simplified thermodynamic model

of a contracting nebular cloud.

y'' +(2/x)y' +yn = 0 (2.9)

When equation (2.9) is reduced to the form of equation (2.6)

it gives

(x2y ')' + x2yn . 0

In the special case which occurs in physics, n=5, the follow-

ing solution is known

3c 1/2
- 2 + ( 2  (2.10)

wlere,c is an arbitrary nonnegative constant.

A complete solution to the Emden's equation is not

known.

Application of theorem (2.2) allows us to estimate

how close the solutions approach zero on a given interval.

Let the objective function y be given by equation (2.10).

This function satisfies the differential equation (2.6) with

A(x)= x2  and C(x) = x 2

choose G(u) = 2 and u = x(h-x)

-'S 11
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The technique is to use equation (2.8) to find the smallest

positive h for which J is negative,i.e

0 >J= f Au' - C G ) dx

J Ij 2 (h-2x)2  4x2(h-x) dx
0

The solution of this inequality gives

* h > 1.8708
..

Komkov (6) solved the problem for h = 2 and found that m =4.

Hence every solUtion V(x) of equation (2.9) with n = 5 will

attain a value

4./4

JV(x)j < (4/5) 1/4 94

on some subinterval of [0,2]

Example 2.5 -Komkov(6)

Consider the equation

y'' + (n + 1/2 x 2/4 ) y =0 (2.11)

with n = 6.

A solution of this equation is given by the parabolic cylinder

function y6 (x), which may be expressed in terms of the Hermite
a6

polynomial H6 (x)

-(x2/4)
e

y 6 (x) =
6 H (x) (2.12)

where

6 Isx 4 + 45X 2  isH6 (x)=x -x

12



y (x) vanishes at x - .62 and at x 1.90

Komkov (6) proved that every solution of equation (2.11)

vanishes on [0,1.8 ]. He used fixed h = 1.8. If we use h

as a parameter and let

u =rx/h

choose G(u) = sin 2u

5. then g(u) = 2sin u.cos u

Hence 2 .2
g (U)/4 = sin 2u.cos 2u d G(u) = sin 2 u

then theorem (2.2) can be applied. Comparison of equation

(2.11) with equation (2.6) gives

A(x) = 1,

C(x) = n + 1/2 - x2/4

.0 0 > J(u,O,h) nf (Au' CG dx
h. - - CiG/h dx,, 0

= hf- I/ h) 2 (13/2 _ x 2 /4)sin2 (jjx/h) dx

solution of this inequality gives

7f 2 /h - 13h/4 - h 3/169 < 0

using some experimental values of h we have

J(u,0,1.77) = 0.01941 ,

J(u,0,1.78) = -0.041074

Thus, choosing h = 1.78 Indicates that the function y has at

least one zero on [0,1.78] which improves on Komkov's result.

The improvement in the result is due to varying h as a para-

meter instead of choosing constant value for h - 1.8.

13
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Theorem 2.3

Let the objective function V(x), or it's derivative be

a solution of the ordinary differentil equation (2.13) on

xC[a,b]

tA(x).D(V).V' 1' + 2B(x).D(V).V' + C(x).f(V) = 0 (2.13)

where,(') indicates differentiation with respect to x.

If the following conditions are true

(1) the function A is continuously differentiable with res-

pect to x and A>0 on [a,b]

(2) the functions D and f are continuously differentiable

with respect to V,

(3) the functions B and C are continuous on [a,b],

(4) f = 0 only if V = 0,

(5) Q(x) is positive definite for some continuous function

E(x) on [a,b] where

rA -B1
Q(x) = L(2.14)Q = -B El

(6) J(u,a,b) <0 with

J(u,a,b) = a iAu'2 _ 2Buu' + (E - C)u 2  dx

then, either

(i) f and V have zeros on [a,b] , or

(ii) D2 > D(df/dV) on some subinterval p,q _ [a,b].

Proof:

Let u(x) be given as a trial function with u(b) = 0

and u(a) - 0. If V has a zero on [a,b]then the conclusion

14
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follows immediately.

SSuppose that V 0 on [a,b] and hence f € 0 also on

[a,b]. Since u(a) = u(b) = 0

then

f A.D.V'.u 2 (1/f) dx = 0 (2.15)
a

Also, since Q is positive definite, then, by equation (2.14)

it follows that

0< [u'-uDV'(l/f) , u (2.16)

.

From equation (2.15) and equation (2.16) the following inequ-

ality holds:

0 <-- -2 uB(u - + Eu 2

a fa

S+ (ADV u 2 /f2 dx

. = Au' 2 _ 2Au'V'D(l/f) + Au 2D V (1/f2) - 2Buu'
*- a

+ 2Bu 2DV'( l /f) + Eu 2 + (ADV')'u 2(1/f)

+ ADV'(u 2 /f)' } dx

bf tAu' 2 
- 2Buu' + Eu 2  2Auu'V'D(1/f)

a

" Au2 D 2V2(1/f2 ) + 2Bu2 DV'(l/f) - 2BDV'u 2(1/f)

+2ADV'uu'(1/f) - ADV'u 2V'(df/dV)(1/f 2 ) - Cfu 2 (1/f) dx

_... .. ..

is

P



= Au 2 - 2Buu' + (E- C)u 2 dx

bf Au2 2/2 +2 df

+ A 2 ' (1f)D-Da.- ) dx
a

b 2 2 2 df
=Jfu,a,b) + f Audv' (1/fx)(D -D--- ) dx

a

Since J(u,a,b) <0

tnen, it follows that either

(i) V = 0 and f = 0 ,or

(ii) D> d on some subinterval p,q _ [ab].., > D dV'

Example 2.6 -Mahfoud (7)

N Let V(x) = (sin x) 1/3 be a given function that satisfies

the ordinary differential equation

(V2 V')' + V /3- 0 (2.17)

A comparison of equation (2.17) with equation (2.13) gives

A = 1, D = V 2, C = 1/3, f = V 3  and B = 0

Let u = x(h-x) be the trial function for h >0, then
h 2 2

0 >J(u,0,h) = f (Au' - Cu ) dx
0

2 2f (h - 2x) -(/3)(hx x dx

0

Solution of this inequality gives
1/2

h > (30)

then, either

(i) V has at least one zero on [ 0,(30)1/2], or

._V(ii) D2 = V4 7V 2 (df/dV) = V .3V = 3V which is impossible.

16



-., - ,* " .- , .* ." . . . . '- -

Then, V has at least one zero on [0,(30) 1 / 2

SExample 2.7

Let V(x) be an objective function which satisfies the

ordinary differential equation
%" : '?2n*' 1

(V 2 V')' + (k/x)V = 0 (2.18)

where n is a positive integer and k is a real constant.

A comparison of equation (2.13) with equation (2.18)

°. gives
". 2n 2n+ 1

A =1 , D = k/x and f = V

Let u = x(h - x) be the trial function. Then
SI

h 2 2

0 J(u,0,h) f S (Au' - Cu ) dx
0

." h
4.S{(h 

-2x) - (k/x)(hx -xL dx
0

Solution of this inequality gives

h > 4/k

Then, either

(i) V(x) has at least one zero on [0,4/k ], or

2 4n 4n
(ii) D V 4 n> D(df/dV) = V (2n +1) which is impossible

for positive values of n.

.63Then, V(x) has at least one zero on [ 0,4/k]

Example 2.8.N.

Consider the Cebys~v polynomial function which is a

i solution to the Cebys~v ordinary differential equation

-.% .4.17 :.. -17
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(1- x2 )y' I + xyt + n y = 0

where, n is a positive integer.

Here we have

A -x, D = 1, B = x/2 and C =n 2

Let u = x(h - x) be the trial function and choose

E(x) = constant

such that

A B2 -ic/12Q-[ =

I- E I -x/2 E'

is positive definite.

Assume n = 2 , then to find h> 0 such that y has at least one

zero on [0,h], compute-O

h 2" 2
0> Ju,O,h) = fj Au - 2B uu' + (E u dx

0

h 1 - x2 )(h - 2x) 2 _ 2(x/2)(h - 2x)(hx-x2)
fI (1 4).-.xo2)2

+ (E - 4)hx x ) dx

Solution of this inequality gives

2> s1/2
h> (2.19)

(15 - 2E) 1/2

then, for a suitable choice of E< 15/2 that makes Q(x) posi-

tive definite, we have either,

(i) y(x) has at least one zero on [0,h ] , or

(ii) D2 = 1 > D(df/dV) = 1 which is impossible.

Thus y has at least one zero on[0,h], h is given by (2.19).

18
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77 7.7

* Algorithm for Numerical Solution

- This algorithm determines the extreme point of a uni-

modal function (the zero of the derivative) numerically.

The inputs of the algorithm are:

1- The derivative of the objective function.

2- The limits of the variable xC(a,b).

3- The accuracy required to determine the extreme point.

The output of the algorithm is the value of h that makes

the functional J negative. The value of J is calculated by

the Romberg integration algorithm.

Step 1: Initialization.

Step 2: Choose initial value h =a + d where d is the step

size for the increment in h.

Step 3: Calculate J by Romberg algorithm for the limits a

and h.

AStep 4: If J is negative go to step 8.

Step 5: If J 0 put h = h +d.

Step 6: If h bgo to step 10.

Step 7: Go to step 3.

Step 8: Print h and h-d.

Step 9: Go to step 11.

*Step 10: Print "No zero between a,b.

.4Step 11: Stop.

The zero of the derivative of the objective function

lies between h-d and h. The accuracy of determining the zero

depends on d. The computer program of the above algorithm is

19



written in FORTRAN V and is attached in appendix A.

The numerical solution of Example 2.3 by the algorithm

is:

2.700 g h 62.701

for d = .001

The case of multimodal functions of one variable is just

an extension of the case of unimodal function. The idea is the

transformation of the origin to the first h that makes J nega-

tive. Following the same steps as in the case of unimodal

functions but with the new origin at h the algorithm can locate

the second extreme point. Other extreme points can be located

by further transformations of the origin.
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III. Special Objective Functions

of Several Variables

In this chapter objective function W(X) = W(xl,x2,..,xn)

will be considered where the variables xl,x2,..,xn are bounded.

The notion of an n-dimensional trial function u(xl,x2,..,xn,hl,

h2,..,hn) will be used and is an extension of the u(x,h) used

in chapter 2. The theorems are presented for the general case

of n variables. Proofs will be given only for the case of two

variables for simplicity (see Figure 2); however, they can be

extended to.apply to functions of several variables.

3.1 Objective Functions that Satisfy First Order Partial

Differential Equations

The objective function W(X) is required to be a solution

of the first order differential equation

n
E [ Ai(X).B(W).W(X)]xi + C(X).f[W(X)] = 0 (3.1)
is'

where

X = (xl,x2,..,xn), withen the region R defined by

R -{ (xl,x2,..,xn):0cxl-al, 04x2-a2,...,0!-xn-an , (3.2)

[A] xi denotes the derivative of A with respect to xi

Theorem 3.1

4. Let W(X) be a given objective function which satisfies

the differential equation (3.1) where

(1) Ai(X) 0 and continuously differentiable over R defined

by (3.2), i - 1,2,...,n.

4 21
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(2) B(W) is continuously differentiable function of W.

(3) f[W(X)] = 0 whenever W(X) = 0.

(4) C(X) is continuous on R.

Let

hl h2 hn n 2
'J-- = f- * [ Ai.uxi C.G(u) ] dX < 0 (3.3)

0 0 0 i=

where

(i) u = u(xl,x2,...,xn,hl,h2,...,hn) is a trial function

differentiable on R and is zero on the boundry of R, and

positive in the interior of R.

(ii) G(u) ) 0 in the interior of R and vanishes on the bound-

ary of R.

(iii) dX = dxl dx2 .... dxn.

then, either

(a) W(X) has at least one zero on H, where

H =f (xl,x2,...,xn) : O-xlAhl, O&x21-h2,...,0-1xn-hn (3.4)

or

-(b) Ai[(/4)g 2(u)B2W2  BG(u)Wxi(df/dW (>) 0 (3.5)
|-'

on some subregion H c R, where

g(u) = dG(u)/du

Proof:

To prove theorem (3.1) we will use a special case for

n - 2 and the proof can be extended for the case of n-variables.

Assume W(X) does not vanish on R and consequently f[IV(X)] will

. .-.. not. For simplicity weshall use A,u,gBfW and G without

23

" .. .



~1 arguments. Also derivatives will be represented by subscripts

(du/dxl =u

By Green's Divergence theorem (8) we have

hi h2

of [(A.B.W.G/f~xl + (A2.B.W.G/f) Idx2 dxl 0

then, the following inequalfty holds:

~ -gB/2)2 2
0 I o A1(ux,-gB/f + A2(ux2  gBW/2f)2

+ (AlBWG/f)x + (A2BWG/f) Idxl dx2
xl x2

hoj of [Al-.ux 1 - Al.gBWux 1. 1/f + Al.g.B 2.W (1/4f)

A2.u - A2.gB.W ~u f + A2.. 2 B W (1/4 2

x2 - (l/f)

+ (Al.B.W)(f.g.u 1 - G.W 1 .df/dW)(l/f 2) + (Al.B.W)x1 (G/f)

X1 X.

+(A2.B.W)(f.g.u 2 - G .W~ df/dW)(l/f 2)

A +(A2.1) 2 (G/f) I dxl dx2

h2h 2 2 2 .2 22 2
=[Al.ui + A2.u 2 - C.G] + [ (Ai/f )(g B W/4

B.W.G.W . df/dW ) dxl dx2
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h2 h (Ah,2
=J(u,hl,h2) + [ (Ai/f )(g2.B2"W 2 1/4

- B.W.G.IV ..df/dW) ] dxl dx2
xi

Since J(u,h2,hl)< 0 by hypothesis, then, either

(a) W(X) has at least one zero on H, or
(b) 2 2 2
(b) Ai[g B . 2/4 B .G.Wxi df/dW ] > 0

on some region H C R

Theorem (3.1) says that: if a region H C_ R can be found

for which a trial function u makes J(u,hl,h2) <0, then, W will

either vanishes somewhere on R , or, the inequality (3.5) is

satisfied on some region of R.

3.2 Objective Functions that Satisfy Elliptic Partial

Differential Equation

Theorem (3.1) applies to certain functions that satisfy

the first order partial equation (3.1). For other class of

functions that satisfy the elliptic partial differential equ-

ation we have to use the following theorem:

Theorem 3.2

Let the objective function V(X) satisfy the elliptic

partial differential equation

":"2 n

A [aij(X).B(V).Vxi xi + b(X).f[V(X)] = 0 (3.6)

where

(1) aij(X) is an element of a symmetric positive definite

matrix A, and has continuous partial derivatives with respect

25
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to X.

(2) X = (xl,x2,x3,.. .,xn) is a point belonging to a smooth

closed bounded region R; R is defined by equation (3.2).

(3) B(V) and f(V) are nonlinear functions of V(X) such that

f(V) # 0 when V ' 0.

Let the functional J(u) associated with V(X) and equa-

tion (3.6) be of the form

hn h2 hl n 2

J(u).... o aij(X)uxiu. b(X)u dX

%where

(i) dX dxl dx2 ...... dxn

(ii) the trial function u(X) has continuous partial deriva-

tives with respect to xlx2 ..... ,xn and it is also zero on

the boundary of R and positive in the interior of R.

then, for J(u)< 0, either

(a) V(X) has at least one zero on some region H = R,and H is

defined by equation (3.4), or

2 2
(b) B /f (V) > B(df/dV) for H C R.

Proof:

We will use the same methodology as in proof of theorem

(2.1) with the same simplicity assumptions for n =2

Assume V(X) does not vanish on R, and consequently

f[V(X)] will not. Since A is a positive definite matrix, let

A = al 12]a :l.aa2

then

26
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(u.. uBV.l/f .f X1 1
SUx2 UBVx2.1/f

(3.7)

Also by Green's theorem (8) we have

h2 hi 2Sf{[u2 (alBVxl + a 2BV x2).l/f]X1

+ [u2 (a2 1BVxl + a2 2BV x2 ).I/f]x 2  dxl dx2= 0 (3.8)

Combination of equations (3.7) and (3.8) gives the following

inequality:

0<h I = 2  a aU2V2 f

0< = Jfalluxl - 2alluBUxlVxl .I / f + 2 i/f

+a12Uxlux 2 - a22UBUx2Vxl . /f - alzUBUxlVx2./f

+ a12 U2 B2VX1lV x2.1I/f 2 + a21Ux2 U X1 a 21uBu x2 Vxl . I/f

BV V .1 2B2Vx

a2 1uB x21/f + a21 2 22Ux2

2a22uBux2V 2 1/f + a22u2 B2V
2
2 1/f222 uxV 2 x2.1f

22

+ [u 1alBVxl + alBVx2)'I/f ]x

12 x2lx

i~ + [u(alBVx + a 2 BVxz).i/f ]x dxl dx2

Of =f aijUxiUxj + (-2alluBux1VX1.llf

27
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2 2 2

2a uBV .1/f al2UBU X1 V ux2 V 1/f

12 xl x2 .1/f - a2 1 UBUxlV x2 /f

+ a2 1u2B2VX1V 2. I/f 2 _ 2a2 2uBu 1/f

22 22 2
+ a22u B x2/ )

+ (a+BVx, + a12BV x2)(2fuuX  - u df/dV.V x)(1/f )

22

+ (a21BVx a 22BV x2)(2fuu x2- u .df/dV.V )(1/f 2 )

2x

+ (u2/f)[(a 11BVxl + a 12BV 2 ) xl + (a2 1BVx + a 22BVx2)x2]Idxldx2

., and by equation (3.6) we have

2
O> I= ( a uu . .) bu 2

2 S 2 2 2l
+ (a..u V V .1/f )(B 2  B.df/dVJ] dxl dx2

E i Vxi xj
i,j=I

= J(u,hl,h2)

h2 hl 2 2 2
+oJ 0f L aU 2 V .Vxj a/f)(B B.df/dV) dxl dx2

ij=l

Since a V .V . is positive because A is positive

definitej;and since J<0 by hypothesis, it follows that either

28
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(i) V has at least one zero on R, or
(ii) B2> B. df/dV on a subregion It q R.

The following example illustrates how to apply that

theorem for a practical function.

Example 3.1

Let V(x,y) be a function which satisfies the different-

ial equation:

V V + klV + k2V3 =0 (3.9)

choose the trial function:

u = sin(x/hl) sin(ry/h 2 )

a comparison of equations (3.9) and (3.6) gives

a a2 2  I and

a12 = a21 = 0

which satisfies that A is a positive definite matrix. Also,

we have

b = 1, B =1 and

f = klV + k 2 V3

h h (u 2 +u -u ) dxdy
0 0 x y

h 2 2

o h ho { (1 1  cos(v'X/hl) sin(i y/h 2 ) 2

+ [(n/h 2) sin(,ix/h 1 ) cos(ry/h2) 2

_ [sin(;rx/h,) sin(7ry/h 2) ]2 }dx dy.

calculatin of the double integration gives

.. J (h h + 7 2/h 2 1)
1 2/4) ( ,29
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*-'- Since J4 0 and hl , h2 are positive, then

2/h2) + (72/h2 ) < 1 (3.10)

By theorem (3.2), either

(a) V(x,y) has at least one zero on 11 C R defined by

H = (xy): 0 A x -h 0 £yAh 2 ,where, h1 and h
112

satisfy the inequality (3.10), or

(b) B2/f2 > B.df/dV which gives

1/(kIV + k2V3)
2 > k, + 3k2V2

i.e.

V2 + 2  + 3k2V2) < (3.11)(k +k (k1 +3

for k 0 = o, the inequality (3.11) gives

3k2V8 <1I
2

which gives an upper bound of V~v <(3k2 y-1 /
2

... for k2  0, the inequality (3.11) gives

-- k I< I

which gives an upper bound of VV~k3 )-1/2

1

If for some values of k1 and k2 the inequality (3.11)

does not hold, this makes case (a) true and there will be at

least one zero on H.

Algorithm for Numerical Solution

This algorithm finds values of h1 and hZ that make the

functional J negative. Since J is a double integral (for the

case of two variables), that can be defined by

30
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h2 hl

J f f f (xY) dy dx

A C
then the idea is to find the values of the parameters hl and

h2 that make J negative.

Step 1: Initialization.

Step 2: Input: lower bounds A and C and upper bounds U1 and

U2 for x and y respectively; initial values

hl and h2 ; incremental values dl and d2 for

x and y respectively.

Step 3: Find the approximation of J by any multiple integ-

ration algorithm for the lower bounds A and C and

the upper limits hI and h2.

Step 4: If J > O,then let hi = hl + dl and h2 = h2 + d2,

otherwise, go to Step 6.

Step 5: If h1 ! U1 and h2 L U2 , go to Step 3, otherwise, go

to Step 7.

Step 6: If J < 0, print hl and h2.

Step 7: Stop.

If the value of J will be negative for x h1 and y = h2,

then, the extreme point of the function will be in the range

6
hl - d1 ! x 4 hI  and

h2 - d2 L y 4 h

The algorithm is written in FORTRAN V and is attached in

AppendixB . The double integral is approximated using the

31
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Composite Simpson's Method.

For the case of multimodal functions, the idea is just

the transformation of the axes to the point (x,y) = (hlh 2),

*where (hl,h2) is the point determined by the previous routine.

The first transformation is used to locate the second extreme

point, and so on.

Figure 3 showS the first extreme point in region A. The

- origin is shifted to 01 (H1 ,H2). The second extreme point is

located in region B.

* 'f32
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y, yl

Y

H2 02
H2- d2 ... '

B

H 2  O01

":H 2-d2 H-d 1  H,

oA,

0I

Hj-dl Hl X

Figure 3. Location of Extreme Points
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3.3 Use of the Generalized Inverse Technique in Optimization

Now we consider a general matrix A of order mxn and

rank K which may be less than min(m,n) and raise the question

whether an inverse exists in some suitable sense. This nat-

urally depends on the purpose for which such an inverse is

used.

If A is a nonsingular matrix of order m, the solution

of the linear equation

AX = B

where B is a mxl column vector, is given by

X = A-1 B

where A- is the inverse of A (i.e., AA = 1). We ask the

question whether a similar representation of the solution,

that is , of the form

X = GB

is possible when A is a singular square or rectangular matrix.

If there exists a matrix G such that X = GB is a solution of

AX = B for any B such that AX = B is a consistent equation,

then G does the same job (or behaves) as the inverse of A,

hence may be called a generalized inverse of A.

Definition 3.1

Let A be an mxn matrix of arbitrary rank. A generalized imv

of A is an nxm matrix G such that X = ; is a solution of the

equation AX = B for any B which makes the equation consistent.

Lemma 3.1

G exists iffI
AGA = A (3.12)
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Rao and Mitra (9) proved the following theorm:

Theorem 3.3

Let A be of order mxn and G be any generalized inverse

of A. Further let H = GA. Then the following hold;

(a) A general solution of the homogeneous equation AX = 0

-N , is

X = (I - H)Z

where Z is an arbitrary vector.

(b) A general solution of a consistent nonhomogeneous equa-

tion

AX = B (3.13)

is

X = GB + (I - H)Z (3.14)

(c) A necessary and sufficient condition that AX = B is

consistent is that

AGB = B (3.15)

3.3.1 Common Zeros of Nonlinear Functions

The idea here is to use the generalized inverse technique
N,.%

in constrained optimization problems. The following two exam-

ples illustrate this technique.

Example 3.2

Given the nonlinear function

F(x,y) = xy + y 3 
- x 2 = 0 (3.16)

•F x'y)

with the constraint
VJ V(x,y) = x + y - 1 = 0 (3.17)

the problem is to find common zeros of both F(x,y) and V(x,y)
.,3,

.. - . . •
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% *- Writing equation (3.17) in the matrix form given by
.4'-

(2.13) gives

V(x,y) = (1 , I) = (1) (3.18)

where,

A= (1 , 1), B = (1) and X =

The generalized inverse of A (see(lO) for calculation of G)

is

This can be checked by applying lemma (3.1) as follows:?..,
AGA = (I 1, 1) 1 (1 , 1) = (1 , 1) = A

Applying the consistency condition (3.15) gives

AGB (1 , 1) (1) - (1) = B

_ Then by theorem (3.3), the general solution of equation(3.14)

is

.. X = GB + (I - H)Z

where

r.5 .5

then, if we assume

z

we have

....
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X = ](1) +[:

.5 I.V

+ . .5v,
-''(3.19)

L5,- .5u + .5v

A Taylor series expansion of F(x,y) gives

F(x,y) = F(O,O) + [x.F (0,0) + y.F (0,0)]
x y

+(1/2!)[x.F (U,O) + 2xy.F (0,0) + F (0,0) ]
x - yy

33
"" +(l/3!)[x.Fx(O,O) + 3x 2 y.Fxxy(OO) + 3xy 2 . F y(0,0)

3 * .F (0,0) ] .......
yyy

-2 0 x

[0 6y1U[x
= (l/6)(x , y) (3.20)- x1 0 6y y

Substituting in equation (3.20) by the general solution given

by equation (3.19) gives

F(xy) = -(.5 + .5u - .Sv) + y(.5 - .5u + .5v) = 0 (3.21)

Since the general solution given by equation (3.14) is valid

for all values of Z, [theorem (3.3)(b)], then choosing

.'..and substituting in equation (3.21) gives

- .25 + .5y = 0 or,

.y = .5

." s... Using the constraint (3.17) gives

x = .5
o4

Then the common zero of equations (3.16) and (3.17) is

'S.-3

S,

.4

'S.'.>:
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(x,y) (•s,.s)

The next example illustrates the same technique but for

equations of four variables.

Example 3.3

Find the common zeros of the pair of nonlinear functions:

2F(x,y,u,v) x 2  y2 - u2 + w = 4 (3.22)

V(x,y,u,v) = x - 2y + u +w = 8 (3.23)

Writing equation (3.23) in the matrix form given by

equation (3.13) gives

TV = (l,-2,1,1)(x,y,u,w) (8)

where T denotes the transpose of the matrix.

Assume we know the generalized inverse G of A to be

$. G : ( 3/8, -1/8, 2/8, 1/8 (3.24)

which satisfies lemma (3.1) and the consistency condition.

By theorem (3.3), the general solution of equation (3.23) is

X = CB + (I - H)Z

where

[ 3/8 -6/8 3/8 3/8

H = GA -1/8 2/8 -1/8 -1/8
2/8 -4/8 2/8 2/8
1/8 -2/8 1/8 1/8

Assume

Z = (zl, z2, z3, z4)

then

3 5/8 6/8 -3/8 -3/8 z1]

x 1i + 1/8 6/8 1/8 1/8 z2 (
2 -2/8 4/8 6/8 -2/8 z3 (3.25)1  L -1/8 2/8 -1/8 7/8 z4

• .' 38
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Writing equation (3.22) as a quadratic form gives

1 0 0 01
F = XT  0 -2 0 0 X = (4) (3.26)

0 0 -1 0
0 0 0 1

Substituting for XT and X from equation (3.25) in equation

(3.26) gives the general solution in terms of zI, z2, z3, z4.

Since the vector Z is arbitrary, then for a special choice of

Z = (0, 0, 0, 0)T, the common zero is

(x,y,u,w) = (3,-1,2,1).

3.3.2 An Application in Iterative Methods

One of the best-known methods for solving a single

nonlinear equation in a single variable, say

f(x) = 0 (3.27)

is Newton's (also Newton-Raphson) method

Xk+l = Xk - [ f(xk)/f'(xk) ] ,k = 0,1,... (3.28)

Under suitable conditions on the function f and the initial

approximation xo, the sequence (3.28) converges to a solution

of (3.27); see,e.g., Ortega and Rheinboldt (11) , for itera-

tive methods in nonlinear analysis, and in particular, for

the many variations and extensions of Newton's method.

Newton's method for solving a system of m equations in

n-variables

fl (xl,x2. ....... ,xn) = 0

f2 (xl,x2. ........ ,xn) = 0 (3.29)

...........................

fm(xl,x2,, .......,xn) = 0

oo 39



is similarly given, for the case m = n, by

"4 Xk+ i = Xk - [f(xk)/f'(xk)] ,k = 0,1,... (3.30)

where f' (xk) is the derivative of f at Xk, represented by the

matrix of partial derivatives (the Jacobian matrix)

f'(xk) = afi (xk)/ax j  (3.31)

If the nonsingularity of f' (xk) cannot be assumed for

every Xk, and in particular, if the number of equations (3.29)

is different from the number of unknowns, then it Is natural

to inquire whether a generalized inverse of f'(xk) can be

used in (3.30), still resulting in a sequence converging to

a solution of (3.29).

Ben-Israel (12) illustrates the use of generalized

inverses in a modified Newton method for solving the nonlin-

ear equations. Other applications of generalized inverses

in the iterative methods of nonlinear analysis are in (12).

40
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IV. Applications of Matrix Equations

to Constrained Optimization

The nonlinear programming problem can be defined as

follows:

min f(X)

subject to

gi(X) = 0 ,i = 1,2,...,<n,

h.(X) - 0 ,j = 1,2,...,r

T
where X = (xl,x2. ....,xn) and all functions f, gi and h. are

differentiable. Note that m, the number of equality constraints

(m) , must be strictly less than n, the number of variables.

If m = n the problem is termed overconstrained, since there

* 0are no degrees of freedom left for optimizing. Note that the

inequality sign in h.(X) - 0 can be reversed by multiplying

through by -1 without changing the mathematical statement of

the problem.

In this chapter we will consider only the case of equ-

ality constraints. Note that the inequality constraints can

be changed to equality ones by adding (subtracting) slack

(surplus) variables. The solution first proposed by Lagrange

in 1760 was to form a new unconstrained problem by appending

the constraints to the objective function with Lagrange mul-

tipliers wi, i = 1,2,...,m. The new objective function

L(X,w) is called the Lagrangian. It is defined on Em+n

,[ ,. which is a higher-dimensional problem than the original, since

it has m + n unknowns. The price paid for disposing of the
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constraints is this higher problem dimensionality. Since

the problem defined by

L(X,w) = f(X) + w. gi(X)i=l

is now unconstrained, we can apply the necessary conditions

for stationarity given by:

m
aL/dx. = af/dx. + w, agi/ax = 0 ,j = 1,2, nJ J i=l 1 j"' '

dL/dw i = gi(X) = 0 ,i = 1,2,...,m.

which yield a set of m + n equations in m + n unknowns (X,w)

to be solved for the optimal values (X*,w ).

4.1 Riccati-type Matrix Equations

This section deals with the solution of the set of non-

linear algebraic equations related to the Riccati-type matrix

i-' equations. The use of matrix equations will avoid the itera-

tive procedures. To obtain these solutions we use results of

Jones (13) to obtain solutions of matrix equations of the

following quadratic form:

XDX + AX + XB + C = 0 (4.1)

in which X,A,B,C and D are nxn matrices having elements

belonging to the field C of complex numbers, and X is unknown.

Let R and F(R) be defined by

] =,DF(R) 1 (4.2)
-C A V N

where R is 2nx2n matrix and U,V,M and N are polynomials in

42
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A,B,C and D. Let also U be the generalized inverse of the

matrix U. The following theorems are from Jones (13).

Theorem 4.1

Let F(q) be any polynomial of degree n -  1 in q with

coefficients belonging to C such that R and F(R) are given

by (4.2). Then a solution of

(X,I)F(R,) = (0,0)

with UI1 or M -1 existing, or a solution of

F(R) - [-
with M 1 or N-1 existing is also a solution of (4.1).

Theorems (4.2) and (4.3) establish other sufficient

conditions for the existance of solutions of equation (4.1).

Theorem 4.2

Let R and F(R) be given as in (4.2) where M - 1 exists

and

v = VUU

VU = NM 1

then, X = -NM is a solution of equation (4.1).

Theorem 4.3

Let R and F(R) be given as in (4.2) where M exists and

V= NNV , U = MNV

then, X = M IU is a solution of equation (4.1).

43
*-- - - * . ; L L.. *>.* .... "." - . .....- . *.



Example 4.1

- Solve the following system of nonlinear equations:

-yz - 6x - 2y - 2z = 0

-yw - 2y - 2w + 2x = 0
(4.3)

-wz + 2x - 2z - 2w = 0

-w2 + 2y + 2w + 2z = 0

This system of equations can be put in the general form given

by equation (4.1) as follows:XL 01+3  2] [ ] [0 o] [0 03
X [ 0 _O X + 3 2 X + X [ 3 2 + 0 ] = [ 0]0 - 2 1 -2 1 00 0 0

This gives

[3 -2 0 01
-1 0 -10 0-3 -2

0 0 2 1

Let

x [x y]

the characteristic equation is
2 2

det(R - qI) = (q - 1) (q + 1) = 0

Table II shows that there are 3 combinations of the

characteristic roots to be checked.

TABLE II

Combinations of the chacteristic roots

root 1 -1

I (q-i) (q-i) (q+i) (q-l)

-1 (q+l)(q-1) (q+l)(q+l)
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Case 1:

F(q) = (q-1)(q-1) = q -2q+l

F(R) = R-2R+I

= 0 0 -0 2 = (4 4
-2 2].M]

0 0 12 8 V N
0 0 -8

Since M - 1 exists, then by theorem (4.1) the solution of

(X , I)F(R) = (0 , 0)

will be a solution of equation (4.3). Using equation (4.4)

gives,

FU M
(X , I)F(R) = (X , 1 1= (0 , 0)

LV NJ

which gives the following pair of equations:

XU + V = 0 , (4.5)

XM + N = 0 (4.6)

Since equation (4.4) gives

U=V= 0

then equation (4.5) can be satisfied by any solution of equa-

tion (4.6) given by

X -NM 1  10 61
-NM (4.7)

5 4

Also, since N exists, then by theorem (4.1), the sol-

ution of

F(R) =X 0

will be a solution of equation (4.3). But
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I'., (R[ [U M] [-11il=W
gives the pair of equations

U - MX = 0 , (4.8)

V - NX = 0 (4.9)

since

U=V= 0

then the solution of equation (4.8) and equation (4.9) is

X =0

Case 2:

2
F(q) = q 1

2
F(R) R I: - i I

[4 -4 0 ]2:

0-, 0 4 4 V

0 0 -4 -4

Following the same steps as in case 1, we obtain the solution

x f
2  2

Case 3:
2

F(q) = q + 2q + 1

F(R) = R + 2R + I

-12 -8 0 2

8- 2 2j = M0 0 0 0 V N
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By following same steps as in case l,gives

[-10 6 1

X (4.10)
6 -4

Thus the solutions of the system of equations given by

equation (4.3) are the val'-es of X obtained from the three

cases.

4.2 The General Matrix Equations

In the case of the Riccati-type matrix equations, it is

easy to find all the solutions by direct application of theorem

(4.1). For the case of the general matrix equations of the

form:

AX + XB + C + XDX + XEXFX = 0 (4.11)

in which X, A, B, C, D, E, and F are nxn matrices, it is diff-

icult till now to find all the solutions. This section deals

' with the problem of finding only some of the solutions of

the system of equations given by (4.11).

Theorem 4.2

-:- Let F(q) be any polynomial of degree n 1 1 in q with

" coefficients belonging to C such that R and F(R) are given

by equation (4.2). Then, X is a solution of the pair of

equations:

. DV DNX - UEXFX = 0 and
(4.12)

U = MX
iff it is a solution of equation (4.11), provided that M-I

exists.

Proof:

Let X be a common solution of equation (4.12), F(R) is

47'a-4
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given by equation (4.2) and M 1 exists. Since F(R) is a

polynomial in R and F(R) commutes with R [see (14)], then

R.F(R) = F(R).R

that gives

-B DI [U M L L ] (4.13)
"'-C A V N V N C A

Matching the corresponding elements in the product of

the matrices gives

-BU + DV = -UB - MC

-BM + DN = UD + MA
(4.14)

-CU + AV = -VB - NC

-CM + AN = VD + NA

Using the identities (4.13) the following is obtained:

0 = DV -DNX UEXFX

- BU MC -UB -DNX- UEXFX

= BMX -MC -MXB - DNX - UEXFX

= BMX - MC - MXB - (UD + MA + BM)X UEXFX

= -UDX - MC MXB MAX - UEXFX

= -MXDX MC - MXB - MAX MXEXFX

= -M(XDX + C + XB + AX + XEXFX)

Since M exists, then

" AX + XB + C + XDX + XEXFX 0 (4.15)

Starting with equation (4.15) and reversing the steps.4"

using

0 U =MX

48
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.. we get the system of equations given by (4.12) which com-

pletes the proof of the theorem.

Theorem 4.3

Let F(q) be any polynomial of degree n_ l in q with

coefficients belonging to C, such that R and F(R) are given

by equation (4.2). Then X is a solution of the pair of equa

tions:
-XMC + XEXFX - NC = 0 and

(4.16)
XU + V = 0

iff it is a solution of equation (4.11), provided that U- 1

exists.

Proof:

Let X be a solution of (4.14), F(R) is given by (4.2),

and U-1 exists. Since F(R) is a polynomial in R and F(R)

commutes with R, then (4.12), (4.13) and (4.14) hold. Using

the identities (4.14) with (4.16) gives:

0 = -(XM + N)C + XEXFV

- -XUB - XMC + XUB -NC + XEXFV

= -X(UB + MC) + XUB - NC + XEXFV

= -X(BU - DV) + XUB -NC + XEXFV

.. - -XBU + XD(-XU) + XUB - NC + XEXFV

= -XDXU AXU - XBU + AXU + XUB -NC + XEXFV

- -XDXU AXU - XBU - AV - VB - NC + XEXFV

- -XDXU - AXU - XBU - CU +XEXFU

- -(XDX + AX + XB + C + XEXFX)U

.[': Since U-1 exists, then
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AX + XB + C + XDX + XEXFX 0 (4.17)

Starting with (4.17), conversing the steps and using

XU + V 0

we get the system of equations given by (4.16) which completes

the proof of the theorem.

Example 4.2

Find the common solutions of the system of equations:

AX + XB + C + XDX+ XXFX= 0

where

' .A 
= B 2

0 -1

0[ 0 1 0

C = _ ]and F 0- . . ,. 0 2 -21

*- Solution:

R = = (4.18)
-- C A 0 0 2 0

0 -2 0 -1

the characteristic function is

R- qIj = (q2  3)(q 2 _ 4)

= (q - 31/2 )(q + 31/2 )(q - 2)(q +-2)

Table III gives the all possible combinations of roots

, . for the polynomials in q of degree 2.

so
- "
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Let us try one of the combinations. Choose
2

F(q) q 2 4
then,

F(R) R 41

0 2 0 3

0 - -3 0 NI
.> 0 0 0 0 V N

0 0 2 -1

Since M 1 exists, applying theorem (4.2) gives

U MX

02 0 3>..v ir_- 1
0 l 11 1-3 0

which gives the solution

,X =(4.19)X ;. 0 /310 1/3

Since X given by equation (4.19) satisfies

DV - DNX - UEXFX = 0

then this solution is a solution to the given problem.

Trying other combinations can lead to some other

solutions of the problem. The difficulity here is that

this technique does not guarantee to find all solutions

for the general matrix equations.
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V. A Random Search Algorithm

The essence of this chapter is the development of a multi-

dimensional random search algorithm. The technique will solve

both integer and continuous nonlinear optimization problems.

There are many optimization procedures which enable one to find

the minimum of a unimodal fufiction in n-space. If the function

is differentiable, global minimum may be obtained through the

use of derivatives. However, the problem of global optimization

of multimodal function has received comparatively little atten-

tion, more so when the function in question is non-differentia-

ble.

As a general principle, the accuracy with which a proced-

ure locates optima improves with the number of functional

evaluations. In principle, however, one seeks a balance bet-

ween a degree of certainty and the cost of implementation. A

procedure which locates optima with great precision and cer-

tainty would be practically worthless if it requires economically

unfeasible number of calculations.

There are several search methods presently utilized to

seek global optima. Borah (15) compared *the method of random

search with the method of systematic search and concluded that

the random search method is better. His conclusion was based

on the fact that the systematic search suffers from the stand

point of being computationally uneconomical in that the number

• :.C. of evaluations increases geometrically with an increase in the

number of variables. Also the method of systematic search
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does not, in general, obtain all the local minima. This, in

turn, may lead to some doubt as to where the actual global

minimum occurs. Among the random search methods, are those

suggested by Brooks (16), Becker (17) and Price's CRS method

(18). The simple random method accepts the optimum function

value as global optimum after making a specified number of

trials randomly selected from the domain. The stratified

random search method divides the domain into a number of sub-

domains of equal size and selects, at random, a trial point

from each subdomain and each time keeps the optimal function

value. The procedure is repeated many times. Some improve-

ment on the simple random search is provided by Becker (17).

His procedure begins with a simple random search over the

domain. Instead of retaining the single point with the opti-

mal function value, he retains a predetermined number of points

with optimal function values in each trial. If the number of

trials is sufficiently high, the retained points tend to cluster

around some optima. Then a mode seeking algorithm is used to

group the points into discrete clusters and to define the

boundaries of the subregions each embracing a cluster. The

clusters are graded, by searching in each for the retained

points with the lowest function value and then rated accor-

ding to the relative values of the cluster minima. The entire

procedure is then repeated using as the initial search region

* that subdomain, defined by the mode seeking algorithm around

the best cluster. The user may choose to examine also the

second best cluster, or indeed all clusters, according to the
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extent of his doubt as to whether or not the global minimum

will be found in the subdomain defined by the best cluster.

Price (18) suggested the controlled random search (CRS) that

combines the random search and mode-seeking algorithm into a

single continuous process.

This chapter studies the problem of obtaining global

optima of the general functions (differentiable or not) of

several variables. The procedure begins with evaluating the

given function at pre-determined number of points selected

randomly over the closed bounded domain. Suppose M points

are selected randomly over the domain and the function is

evaluated at each of the M points. The minimal functional

value and the point at which the minimum occurs (if the prob-

lem is one of minimization) are saved. This step is carried

out N times. The resulting N points will cluster around the

minima. An illustration of this aspect is shown in Figure(L)

Suppose there are many cluster points, then there is a poss-

ibility that around each cluster point, a local minimum may

exist. We develop a single program to find all the cluster

groups as well as cluster points. Using a local optimization

routine gives the exact minimum of each cluster. Thus the

global minimum is obtained by simple comparison of the obtained

exact minima.

If some of minima lie near to each other, this procedure

cannot separate the clusters, because the radius of the hyper-

sphere which embrace these cluster points should be very small

and therefore many, points still remain outside of any of the
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Figure 4. Formation of Clusters
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hyperspheres. These points which are outside, give false

cluster groups and thereby increase the function evaluations

later tremendously.

After separating the cluster, the next task is to find

the actual minimum in each cluster group. Any local optimi-

zing method may be used. However, Nedler and Mead Simplex

Search Method (19) is the most efficient one for the nondiff-

erentiable functions. This simplex algorithm requires n+l

points for n-dimensional space.

5.1 The Nonlinear Simplex Method

The nonlinear simplex method,not to be confused with the

simplex algorithm of linear programming, is a direct search,

descent method. It is based on a geometric construct referred

to,in the case of an n-dimensional space, as an n-dimensional

simplex. The simplex method for minimization may be summarized

as follows:

1. Construct a regular simplex in the parameter space of the

variables of optimization and evaluate the objective function

at each vertex.

2. Find the centroid of the simplex without the worst vertex

(worst vertex being the vertex with the highest objective

function value).

3. Define a new simplex by eliminating the worst vertex and

adding a new vertex obtained by reflecting the worst vertex

through the centroid. Evaluate the objective function at the

new vertex and return to step 2.

.'. The elegant siwrlicity of this algorithm has led to a large
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number of variations on the basic method. In 1964 Nelder and

Mead extended the simplex technique by allowing irregular

simplices (line segments not necessarily all of the same length).

This provided both a degree of scale invaring and allowed for

'- a form of acceleration in the search. Their modifications to

the simplex rules include:

.. (a) If the reflected vertex is the best vertex (best vertex

. being the vertex with the lowest objective function value)

then try an expansion step to another vertex that is

further along in the same direction that yielded the

reflected vertex.

(b) If the reflected vertex has the worst objective function

value, then try another vertex that is retracted towards

the centroid.

(c) If the retracted vertex has the worst objective function

value, then contract the entire simplex by moving towards

the best vertex.

(d) Stop the procedure when the simplex shrinks to a suffic-

iently small size.

5.2 The Nonlinear Integer Search

* .:The development of methods for integer variable progra-

*- mming was initiated in the field of linear programming, and

most work has continued to the general application within this

area. In the field of nonlinear integer programming substan-

tially less seems to have been done. The majority of the work

that have been proposed in the literature to date are centered

S8
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* - around one of the following four basic concepts:

* (a) Rounding-off the continuous optima: The most common

approach to nonlinear discrete-value programming problems

is to treat the variables as continuous; then, once the

continuous optimum has been determined, an additional search

is executed to find a feasible set of discrete-valued varia-

* bles. The most basic procedure is to select the feasible set

of variables nearest to the optimal point. It is well known

that this procedure can lead to undesirable answers and the

point selected may not represent the discrete optimum.

(b) Adaptation of nonlinear optimization techniques: In

S. many cases, nonlinear discrete valued programming problems are

considered as a class of nonlinear programming problems in

which the discreteness of variables is one of the restrictions.

Many nonlinear programming techniques of this type have been

devised, mostly for solving engineering design problems.

(c) Linear approximation and binary representation: Another

class of approaches considers the discrete nonlinear problem

as a primarily integer programming problem with nonlinear

characteristics that may be linearized. Some of the approaches

use techniques involving piecewise linear approximation. Others

involve the transformation of a nonlinear function into a poly-

nomial function of binary variables and then the transformation

of the polynomial function into a linear function of binary

variables. Several integer linear programming techniques have

also been devised for solving nonlinear integer problems direc-

tly usually after conversion to binary variable problems.
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Some of these techniques, assume separable functions with

certain monotonicity properties.

(d) Direct search methods: Nonlinear discrete search methods

represent another class of approaches which are different from

all the methods stated before. Since nonlinear discrete search

occurs only over the set of points, it requires the function

values at these points only. A reliable discrete search tech-

nique, however, is not easily devised due to resolution ridge

difficulties and no procedure demonstrated to be reasonably

reliable has appeared in the literature.

5.3 Problem Formulation

The new search technique, to be presented will consider

the functions defined on a closed and bounded domain. Theie
constraints are of the type which serve to bound the individual

variables. That is:

ai - xi - bi

where, xi is the ith decision variable.

A unique feature of this algorithm is its ability to handle

problems of either continuous variables or integer variables.

The algorithm has, therefore, been named COIRS, an acronym for

Continuous Or Integer Random Search. Most of the existing

- techniques for solving nonlinear integer variables programming

problems were designed to solve only some particular problems

with specific structures. The objective i,:nction must be ex-

l pressed analytically and, in addition, many techniques contain
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several special requirements on the nature of the function

Ssuch as continuity, differentiability or concavity. Moreover,

the procedures are often exceedingly complicated which make

them difficult to understand and to program for the computer.

The formulation of the optimization problem to be solved

by the presented algorithm requires the objective function to

be expressed analytically. The problem of V variables, P

equality constraints and Q inequality constraints could be

stated in one of the following forms:

(a) For continuous variables:

Minimize: F(X)

subject to: a. x ,i 1,2,...,V

Gj(X) = 0 ,j = 1, ,...,P

.HK(X) H- 0 ,k =1,2,...,Q

where, X = (xl,x 2 ,...,Xv)

(b) For integer variables:

The same objective function and constraints as in (a) are used

in addition to the constraint

xi  integers, i = 1,2,...,V

If bounds on some variables are not given in the problem,

"artificial" bounds are supplied in a way that reflects the

user's guess of these bounds.

"" 61
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r. 5.4 The COIRS Algorithm

Step 1: Initialization.

Step 2: Input data.

Step 3: Generate predetermined number of random points M

(inside the domain) for one random search.

Step 4: Evaluate the function at all the generated points.

Step 5: Find the minimum of the evaluated functions.

Step 6: If the number of the random searches done is less

than the predetermined number of random searches N,

go to Step 3.

Step 7: Find the lowest minimum of the N minima determined

in step 5.

Step 8: Form a cluster from some of the minima determined

in Step 5 inside a hypersphere with center at the

lowest minimum not yet included in any cluster.

Step 9: If the number of points in the clusters formed is

less than M, go to Step 8.

Step 10: Use a local optimization technique to find the exact

minimum near the center of each cluster.

Step 11: Find the global minimum by comparing the minima in

Step 10.

Step 12: Stop.

Remarks:

(1) The generation of points in Step 5 is done by a random

generator for both continuous and integer numbers inside the

domain of the problem.
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(2) The local optimization technique used in Step 10 is the

Nelder and Meads Simplex technique that gives a continuous

minimum. For the case of integer problems the technique is

modified to find the lowest value of the function at integer

hypercube around the continuous verticcs. The number of verti-

ces of the hypercube are 2V  where V is the number of variables.

For example, if the continuous vertex exists at

X =(1.2, 3.7, 4.9)

the vertices of the hypercube will be

X1  (1, 3, 4)

X = (2, 3, 4)

x = (1, 3, 5)

.= (2, 3, S)

X = (1, 4, 4)

X6 = (2, 4, 4)

X = (1, 4, 5)

x 8 = (2, 4, 5)

The vertex with the lowest value of the function will enter

the simplex in the place of the point that has the worst value

of the function.

(3) The constraints are supplied by the user in a subroutine

that determines if the generated points in Step 3 satisfy the

%9 constraints or not.

The program is written in FORTRAN V and is attached in

Appendix
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5.5 Testing the Algorithm

The procedure of testing a new search technique is to

demonstrate that the new technique will solve the test problems

solved by the established techniques. To demonstrate .the

ability of the new technique one may then present a test prob-

- lem that can not be solved by the established techniques but can

be solved by the new COIRS technique, or one may instead solve

the established test problems using fewer objective function

evaluations.

The following three examples are from Borah (15):

Example 5.1

2 2
Minimize f(x,y,z) - (x y + z) + (-x + y + z)

2
+ (x + y- z)

subject to: -1 _ x,y,z - 1

The actual solution of this problem is:

f= 0

at x=y= z = 0

The solution by the COIRS algorithm after 1962 functional

evaluations is:
-7

f = .4466x10

at x = .000113

y = .0001585

z = -.00002563

-. 6
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Example 5.2

Minimize f(x,y,z) =9 -8x -6y -4z + 2x2 + 2y2 +2z 
2

+ 2xy + 2xz

subject to: 0 6 x,y,z 1.5

The actual solution of this problem is:

f 0

at x y=z = 0

-A comparison of the solution given by COIRS algorithm

and Borah's solution (15) is shown in Table IV.

4 TABLE IV

Comparison of COIRS with Borah's Results

__COIRS Borah

Number of functional evaluations 1826 14144

f.6537x10 7 .953674x1(V

x 1 1.013671875

y 1 .9921875

z .999 .986328123

Example 5.3

Minimize f(x,y,z) =9 -8x -6y -4z +2x
2  2y 2z2

+2xy +2xz

subject to: 0 xy,z 1.5,

x,y,z integers
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The actual integer solution of this problem is:

f =0

at x= y = z=1

Using the COIRS algorithm for the case of integer variables,

the solution after 800 functional evaluations is:

f 0

at x y =z=I

Example 5.4

Minimize f(x,y,z) = 100[z-(x+y) 2/4]2 (-x) (-y)

subject to: 0 - x,y,z - 1.5

x,y,z integers

. The actual solution for this problem is:

f

at x= y = z=

Using the COIRS algorithm for the case of integer variables,

the solution after 540 functional evaluations is:

f0

at x y = z

To complete the testing of the algorithm, many other

problems have to be solved and compared with the solutions

by other algotithms. This may indicate additional features

of the COIRS algorithm.
-.N%
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VI. Conclusions and Directions

for Further Work

There are several computer applications of iterative

techniques which will iterate towards zeros of a function.

The initial starting value for these schemes must be chosen

carefully. If the initial point is not close to an actual

zero, the iterative techniques often diverge.

The ease of performing the calculations given by the

functionals on the trial functions makes these techniques

for determining whether a function vanishes or is bounded

in a certain region attractive. Other choices of trial

functions could be made, perhaps giving better results in

certain situations than other trial functions.

4.. The theorems and examples presented in this work in

chapters 2 and 3 can be used to locate intervals on which

a function has a zero. If the given function can be paired

with one of the special differential equations given, and

if a trial function u is found which makes the corresponding

functional J negative on a certain interval, then a zero of

the function f does exist on that interval. These techniques

have a possible use in determining an initial guess for a

starting point in iterative search techniques.
.p[

Exampnles of common functions from different engineering

sciences were chosen to demonstrate the breadth of applications

possible. Perhaps this method can be applied to indicate the

. ."-', ~existance of zeros of other functions before valuable computer
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time is wasted to find these zeros. In fact, the techniques

obtained can themselves be implemented using numerical methods

* .on a computer of reasonable size.

There is no doubt about the results of techniques presen-

ted in chapters 2 and 3 for the unimodal functions. For the

case of multimodal functions further studies and analysis is

required. Application of given theorems for the case of

. multimodal functions will result in dividing the region of the

function into subregions with at least one zero on each sub-

region. A comparison of this technique with the known search

techniques is an area for further study.

Analysis presented in chapters 2 and 3 is limited to some

functions that satisfy special classes of homogeneous differ-

ential equations. The case of nonhomogeneous differential

equations and other classes of differential equations needs

*..- further analysis and effort. Other remaining aspect in this

area is to compare our techniques with other approaches that

can be used to solve the problem of finding good initial point

for iterative methods.

For the case of constrained optimization, the technique

of generalized inverse was given with illustrative examples

in chapter 3. The generalized inverse deals with the special

case when the problem is ill conditioned. This technique is

applied to one of the best-known methods for solving a system

of nonlinear equations in n-variables. The problem appears

when the matrix of partial derivatives (the Jacobian matrix)

is singular.
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Applications of matrix equations to constrained opti-

mization problems is presented in chapter 4. For the special

case of the Riccati-type matrix equations there is no problem

for finding all the solutions of the problem by applying the

technique of matrix equations. The difficulity appears in

the case of the general matrix equations where only some of

the solutions can be obtained by this technique. The problem

of finding all the solutions in the general case is a wide

area for further study and analysis. Some theorems have to

be developed to guarantee finding all the solutions.

The general optimization problem for continuous or integer

variables is covered in chapter 5. The COIRS algorithm is

tested by some examples. Still, it needs further testing with

different problems. The case of mixed integer problems using

the COIRS algorithm is a recommended area of further study and

research. An algorithm that solves the general mixed integer

problem without any restrictions on the objective function will

be a superior one in optimization.
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