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‘. ~ s 3 L - L
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0

% linear optimization. Except whére the theorems are specifi-
3:& cally annotated, the work presented is my own.
g .
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a0
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g&j successes and failures. I also wish to thank LtCol Peter Bobko
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This thesis extends the work of Leighton and Jones

P which takes functions that satisfy special types of diff-
29 . . i . .
AYS erential equations and determines an interval on which the

functions either have zeros or attain bounded values.
Theorems for locating zeros are proved for functions of a

. single variable and functions of several variables with

o illustrative examples. The applications of matrix equations
A to constrained optimization problems are described. An

" algorithm for random search technique for the general

< optimization problem is presented with a FORTRAN V program

and test problems.

RN
s o
Fa'e L‘\f&f

4

NN

- e ’
JJI'}‘}

. vii
LAY

S8 St
a s " a"e
Ry
I’

o
L e ]

ot

ey AA R R R T T T 'b'.\ 'h's-'\- SN ) '5‘-} \.'-' . - ~pur -- P "“&{' a4 . -.-




‘E’ on the simplex method, usually) have long been able to solve

e

5 SPECIAL NONLINEAR

OPTIMIZATION TECHNIQUES

I. Introduction

For the past twenty years, consideratle effort has been
expended on the developmeht of nonlinear programming theory
and algorithms for solving nonlinear programming problems.
Some of these algorithms have been implemented on digital
computers. It is fair to say, however, that solving a comp-
licated nonlinear programming problem by a computerized non-
linear programming algorithm is an automatic process. Unlike

linear programming, where computerized algorithms(variations

problems of large size, nonlinear programming is still in its
infancy as regards its ability to guarantee solutions to
problems of even moderate size.

A major barrier for solving nonlinear programming problems
is the lack of a computationally oriented way of representing
nonlinear functions of n varjabdes. The algorithms are often
not as efficient as they could be because of the inability to
compute automatically quantities related to the complicated
nonlinear functional relationships that describe the models.
For example, the accurate and speedy computation of first

derivatives is a usual requirement for algorithms which solve

system of nonlinear equations.
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There is a basic dichotomy in programming algorithms:
they may be designed to converge to local or global minima.

A necessary condition for a point to be a local minimum of a
differentiable function subject to constraints is due to Kuhn
and Tucker (1) and might be considered the fundamental theorem
of mathematical programming.

Assuming that the problem to be optimized is defined in
some way, the various general methods of optimization can be
conveniently classified as follows:

1. Analytical methods: which make use of the cla ical tech-
niques of differential calculus and the calculus . ¢ iriations.
These methods seek the extremum of a function f(X) by finding |
the values of X that cause the derivatives of f(X) with respect
to X to vanish. When the extremum of f(X) is sought in the
presence of constraints, techhiques such as Lagrange multipliers
and constrained variation are used. For the application of
analytical methods, the problem to be optimized must be desc-
ribed in mathematical terms, so that the functions andlﬁariables
can be manipulated by known rules. For large, highly nonlinear
problems, analytical methods prove unsatisfactory.

2. Numerical methods: which use past information to generate
better solutions to the optimization problem by means of ite-
rative procedures.

A general summary of computer codes for mathematical prog-
ramming that have been tested, documented, and are available

to the public occurs in (2). Somewhat earlier there appeared

a collection of FORTRAN 1listings of optimization codes, along




with brief descriptions of the algorithms and their operations
(3). The potential user is left to make his own choice as to
which method will best serve his purpose.

This thesis investigates new methods in nonlinear opti-
mization theory. The importance of this study is to be able
to use these new methods in making decisions congerning modles
for which classical techniques do not provide sufficient
information. The overall.objective is to address and resolve
the new methods and apply them to some special problems.

Chapters 2 and 3 deal with objective functions of oune
variable or several variables. Application of given theorems
provides a domain of good starting points for iterative methods.

Chapter 4 describes the applications of matrix equations
to constrained optimization problems. Use is made of matrix
equations to obtain solutions of certain c.asses of nonlinear
equations.

Chapter 5 gives an algorithm for random search technique
for the optimization problems of continuous variables or integer
variables.

Chapter 6 gives conclusions and directions for further

work in the areas covered by the thesis.
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e IT. One Dimensional Unimodal Objective Functions

( A

% The main objective of this chapter is to obtain infor-
!'x:

= mation as to the zeros, relative maxima,relative minima and
o

I . . . .
- bounds for one dimensional objective functions. The objective
o  functions treated in this chapter are assumed differentiable
Qﬂ and defined on an interval [a,b] . An objective function f(x)
" ¢

will be required to be a solution of the differential equation

3% of the form:

N [A(X) £ (x)]+C(x)£(x)=0 (2.1)
:i where

i; (i) A(x) and C(x) are both continuous functions on [a,® ]
;‘ and A(x) >0 on [a,b],

'r‘l

(ii) f'=df/dx

N

“d AN Use will be made throughout this chapter of a class of
:.'4

- trial functions defined by definition 2.1.

(“.

= Definition 2.1

o A trial function u=u(x,h) is a real valued function }
o :

2{ of x and h, where h is a parameter, h>0 and u satisfies these |
o conditions:

N (1) u>0

5

’ (2) u(a,h) = u(b,h) = 0 and’

= (33 u has at least one derivative with respect to x.

E: For example, on [0,h] , h>0 , one trial function (and
e ) )

X the one used predominantly in this chapter) is of the form:
.‘::: ~

v u = x(h-x)

-~ ‘. - Other trial functions which might be used on [0,h] are

?:.. '*;) .

o * 4

"

u

»
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A A R O G R L N L R N R N Gy " S S S S vk, S S, Sy,



7
g
[~ u = sin (axx/h)
PCH RS or
{ \ Y4
u = xP(h-x)? »P,q 21
;Ej Corresponding trial functions may be adapted to fit
X any interval [a,b] or h,kh ,h>0 and K>1, to extend the
o domain of these trial functions.
;iﬂ Associated with the given function f(x), the trial
',:
. function u and the differential equation (2.1) will be a
}, functional J(x,a,b) defined by
-
> a
: 2
3 J(x,a,b) =-f (Auy -Cu® ) ax (2.2)
o b x .
5 where,
32 u = du/dx
£ X
< Definition 2.2
Q.
\ﬁ - The functional J(x,a,b) above is a function defined
e
j; on functions.
ii For example,the functional J(x,a,b) is a function defined
! on both f(x) and the trial function u.
23 Lighton (4) proved the following theorem to show that,
iﬁ whenever J(x,a,b) can be made negative by varying the para-
- meter h, then at least one zero of f(x) must exist on the
:f interval [0,h].
N
w7 Theorem 2.1
R . .
o If £f(x) is a function which satisfies the linear diff-
Eﬁ erential equation (2.1), and if u is a trial function on
:‘ [0,h] such that J(x,0,h) <0 for the J(x,0,h) defined by(2.2)
o P
n 5

4
¥

a
.
<




then f(x) has at least one zero on [0,h] .

The idea here is to make use of ‘this theorem and the
similar theorens in chapters 2,3 in optimization. If f(x)
is the derivative of the objective function, then the zeros
of f(x) correspond to the extreme points of the objective
function. The range [0,h] for which J(x,0,h) is negative
gives the range for these extreme points. For the unimodal
functions it will be useless to search for the extreme points
outside the range [0,h] . In most iterative methods which
require a starting point, the range [0,h] is the recommended
range of the starting point instead of searching over all
the domain of the variable x. The choice of the starting
point in [0,h] will decrease the computational time and the
number of iterations. The following examples illustrate
the application of theorem (2.1) for different functions that
satisfy equation (2.1).

Example 2.1

The function y = sin(x) is known to be a solution of
the differential equation
y'"+y =0
A comparison with equation (2.1) gives
Ax) = C(x) =1
then, with the trial function
u = x(h-x)

and varying h untii J(u,0,h) becomes negative, i.e

h 2 2
Ju,0,h) = § { (h-2x)° - (hx-x )} dx < 0
0
6
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o
!

g solution of this inequality gives
i‘ tj h>VlO
s thus the function y has at least one zero on (O,JIO ).
‘\'-.
- NOTE: the actual zero occurs at x=K= 33,1416

LS

~a- Example 2.2

f; The function f = Pn(x) is the Legendre polynomial which
N is a solution of the differential equation
R
:".-

DR (1-x2)£'" - 2xf' + n(n+1)f = ((1-x2)£')" +n(n+1)f = 0

“ Now, A(x) = 1-x2 is positive for all \x\< 1,

Y.
fﬁ C(x) = n(n+1)

o

choose

$£ﬁ u = x(h-x) ,then

s

e h

<o 2 2 2

1 J = j{(l-xz)(h-Zx)Z- (n"+n)(xh - x) }dx <0

) 0

v \‘_\
ot the solution of this inequality gives
o h >J10/(n2 s n+a) (2.3)
v Table I compares the values of h calculated from equation
v

53 (2.3) with the smallest positive zero of Pn(x) calculated
-"O.

1 from equation (2.4) of the generaliged Rodrigues formula
§3 for diffe-~nt values of n.
f:_;_;" 1 (n) (n) 2 n

- Ly = (d /dx ) (x - 1) (2.4)
o & n n

. 2 n!

‘.
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5 TABLE 1
l ¥4 Comparisons of h with zeros of P (x)
"y n
's‘;:
i
2 n h zeros of Pn(x)
;~
t} 3 .7906 .7746
..E
4 .6455 .3400
o 5 .5423 .5385
D
N
-~ Example 2.3 Mathews (§)
;ﬁ Let y be the objective function given by the solution
'
. N
;: of the ordinary differential equation (2.5)
B
= y'' +xy =0 (2.5)
:f 'fa In this example we are to approximate the first zero of Airy's
;ﬁg function y(x) shown in Figure 1. Matching of equations (2.5)
e and(2.1) gives
N Ax) =1 , C(x) =x
\ “
§~ Let u = x(h-x)
o
¥
= b ) ;
¥ J(u,0,n) = J {20 - x(hx - x5 }ax < 0
3 6
‘{:If
3 The solution of this inequality gives
A
s h o> (20013
) . 1/3
,g then there is at least one zero for y on [0,(20) ].
%
Y Komkov ( 6) developed theorem (2.2) that is a generali-
:& s zation of theorem (2.1). In the general case we will consider
ORI .
‘{t
AL A AERNEANNRITRTATRTY 1§, Py I T8 Py PRt TS ST |
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S the nonlinear equation

u

33 L A ‘A ' 4 = .

f o [ A(X)V' ] C(x)f(V) =0 (2.6)
D where

J:‘Q (1) XC[XQ)OO) ’

¢ (ii) A(x) >0 for all xcfa,b] and A(X)ECZ [x,,)
R (iii) C(x) € C [x,,00) , and '
b (iv) f(V) is of the form f(V) = vk ,» k is a positive integer
W and k > 1.

'{\ Theorem 2.2
>

-Sf Let u be a C2 [Xese2) trial function, and G(u) be Cl(-ee ,
+e)such that G{ﬁ(a)} - G{u(b)}= 0, 6{uex}>o0 for

o all a<x<b. Let g(u) denote g(u) = G'(u), and let

o~ gz(u)/G(u) be a bounded function of x on the intervalfa,b] ,
and m denotes

3 g(u)

7y m = max (
% x€ [a,b] 4G(u)

(2.7)

o . let
b 2

Ju,a,b) = J (Au'" -C6) dx < 0 (2.8)
a

then any solution V(x) of equation (2.6) , with f(V) = Vk

’

D7 |00

k >1 which satisfies V(a) ® 0 will satisfy the inequality

1

m 1/(k-1)
|vcx)|<(k—)

A n’." S
LR NN S

on some subinterval of [a,b] .
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z% - The following examples illustrate the applications of
s theorem (2.2) for different objective functions.

o Example 2.4 -Komkov(5)

;g The Emden's equation (2.9) occurs in astrophysics. It
ii arises in the discussion of a simplified thermodynamic model
o of a contracting nebular cloud.

o8 't +2/x)y" 4y =0 (2.9)

When equation (2.9) is reduced to the form of equation (2.6)
it gives

2

Py« xfyt = o

In the special case which occurs in physics, n=5, the follow-

ing solution is known

3c 1/2
y = ( ) - (2.10)

where,c is an arbitrary nonnegative constant.

A complete solution to the Emden's equation is not
known.

Application of theorem (2.2) allows us to estimate
how close the so}utions approach zero on a given interval.
Let the objective function y be given by equation (2.10).

This function satisfies the differential equation (2.6) with

. 2
A(x) = x? and C(x) = x
2
choose G(u) = 4u and u = x(h-x)
o
7
11
N e e e e e e e S e e N N
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The technique is to use equation (2.8) to find the smallest

iﬁs positive h for which J is negative,i.e

o

v

(3N
]

h 2
J (a'f - co) ax
0

h
Of {xz(h-2x)2 - 4x2(h-x) } o dx

The solution of this inequality gives

h > 1.8708
Komkov (6) solved the problem for h = 2 and found that m = 4.
Hence every solution V(x) of equation (2.9) with n = 5 will

attain a value

1/4
| vix)| < (4/5) /% = 945
4T
oy on some subinterval of [0,2]
Example 2.5 -Komkov(6)
Consider the equation
y'"'+ (n+1/2 - x2/4 ) y=290 (2.11)
with n = 6.
A solution of this equation is given by the parabolic cylinder
function y6(x), which may be expressed in terms of the Hermite
polynomial H6(x)
- (x2/4)
e
V(X)) = === H (X (2.12)
‘,6!/‘[_2_1( 6
where
. He(x) = x® - 15x* + asx? - 15
o
N 12

......
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n

.62 and at x

n

y6(x) vanishes at x 1.90
Komkov (b) proved that every solution of equation (2.11)
vanishes on [0,1.8 J. He used fixed h = 1.8. If we use h
as a parameter and let

u =fx/h

sinzu

choose G(u)

then g(u)

2sin u.cos u
Hence
gz(u)/4 = sinzu.coszu € G(u) = sinZu
then theorem (2.2) can be applied. Comparison of equation

(2.11) with equation (2.6) gives

A(x) =1,
C(x) =n + 1/2 - x%/a
h 2

0 >J,0,h) = J (A'°-c6) dx
0
h

df{ ( ﬂ/h)z - (13/2 - x2/4)sin2(1x/h)}dx

solution of this inequality gives

x2/h - 13h/a - h>/16K < 0

using some experimental values of h we have

J(u,0,1.77) 0.01941 ’

J(u,0,1.78) -0.041074

Thus, choosing h = 1.78 indicates that the function y has at
least one zero on [0,1.78] which improves on Komkov's result.
The improvement in the result is due to varying h as a para-

meter instead of choosing constant value for h = 1.8,

13
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Theorem 2.3

ifg Let the objective function V(x), or it's derivative be
a solution of the ordinary differential equation (2.13) on
x€fa,bl
{ A(x).D(V).V! } '+ 2B(x).D(V).V' + C(x).f(V) = 0 (2.13)
where, (') indicates differentiation with respect to x.
If the following conditions are true
(1) the function A is continuously differentiable with res-
pect to x and A>0 on [a,bl ,
(2) the functions D and f are continuously differentiable
with respect to V,
(3) the functions B and C are continuous on [a,b],
(4) £ =0 only if V = 0,

(5) Q(x) is positive definite for some continuous function

T E(x) on [a,b] where
A -B
Q(x) = [ ] (2.14)
-B E
(6) J(u,a,b) <0 with
J(u,a,b) = Ef{.Au'z - 2Buu' + (E - C)u2 } dx
a
then, either
(i) f and V have zeros on [a,b] , or
(ii) p? > D(df/dV) on some subinterval p,q < [a,b].
Proof:
Let u(x) be given as a trial function with u(b) = 0
R and u(a) = 0. If V has a zero on [a,b]then the conclusion
~ 14
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g‘ follows immediately.
o
i" @4 Suppose that V # 0 on [a,b]l and hence f # 0 also on
P
(a,b]. Since u(a) = u(b) = 0
:, then
A b , 2 _
J AV wiQ/f) dx =0 (2.15)
a
2 ‘ Also, since Q is positive definite, then, by equation (2.14)
K]
S it follows that
>
A -B|lu'-ubv'(1/f)
0< [u'-uDV'(l/f) , u] (2.16)
K4 -B E u
v
‘ From equation (2.15) and equation (2.16) the following inequ-
N
::E: ality holds:
o
b
12 ubVv’ 2
e 0<af{A(u'—u¥V) - 2uB(u' - ¥3) + Eu
o x S
LY
-}; + (ADV'ul/f) } ax
o~
‘ b 2 22 2 2
= J{a? - 2mvip/e) « DV /%) - 2Bu
a
. 2 2 2
W) + 2Bu’DV' (1/£f) + Eu® + (ADV')'u”(1/f)
A)
+ ADV' (u?/f)" } dx |
~
‘:.- b 2 ' z [ []
- I{Au' - 2Buu’ + Eu® - 2Auu'V'D(1/f)
a
R + AulD?v'2(1/£2) + 2BulDV'(1/£) - 2BDV'u’(1/f)
' 2
X +2ADV'uu' (1/£) - ADV'u’V' (d£/dV) (1/£2) - Cfu”(1/£) | dx
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)
1‘ .
X,
- b
DU - f{Au'2 - 2Buu' + (E - C)uz}dx
' < a
+ bf audvi2yedy o - pdfy  ax
- a dv
4
) b2 2.2 2 df
. =J(u,a,b) + f Au°V'7(1/£7)(D° - D-3: ) dx
A dav
wh a
e
i~
o Since J(u,a,b) <0
‘, then, it follows that either
“,\
1{} (i) V=0 and £ =0 , or
g
]
e (ii) D2> D-—g-‘-/f— on some subinterval p,q < [a,b].
; Example 2.6 -Mahfoud (7)
)
N Let V(x) = (sin x)1/3 be a given function that satisfies
\‘
b the ordinary differential equation
~'4 = 2 3
. (Ve vyt + VO3 =0 (2.17)
'.I
- A comparison of equation (2.17) with equation (2.13) gives
Lo

A=1, D=V?, c=1/3, £=V° and B =0
oy
.,,3 : Let u = x(h-x) be the trial function for h >0, then
’ h 2 2

0 >J(u,0,h) = f (Au'" - Cu” ) dx
~ 0
'.r: h 2 2
= = f{(h-Zx) -(1/3)(hx-x)}dx
- 0
".
..
)

Solution of this inequality gives

- 2
= h> 300
then, either
@ (1) V has at least one zero on | 0,(30)1/2], or
| 2
'3 a7 (1i) D% = v*> v% (df/av) = v .3v" = 3v? which is impossible.
-\ e
0
) 16
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2
Then, V has at least one zero on [0,(30)1/ ].

i}% Example 2.7

Let V(x) be an objective function which satisfies the

ordinary differential equation

2n+1

"
(]

(VZV')' + (k/x)V (2.18)

where n is a positive integer and k is a real constant.
A .comparison of equation (2.13) with equation (2.18)
gives

2n 2n+l
A=1, D=V", Cc=%/x, and £ =vVvT"

Let u = x(h - x) be the trial function. Then

x h 2 2
) 0> J(u,0,h) f (au'“~ cu” ) ax
0

<in
R h 2.2
= { (h - 2x) - (k/x)(hx - x“) } dx j
Pt 0 |
h"; |
Solution of this inequality gives (
. hy 4/k :
-’:- 1
X Then, either

(i) V(x) has at least one zero on [0,4/k ], or

4n (2n°+1) which is impossible

(ii) D = v40's D(df/av) = V
for positive values of n.
Then, V(x) has at least one zero on [ 0,4/k]

Example 2.8

Consider the Cebys&v polynomial function which is a

solution to the éebysév ordinary differential equation ‘

17
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(~ . {(I-XZ)Y'}'+X>"+n2y=o

[ where, n is a positive integer.

Here we have

A=1-x* D=1, B=x/2 and C = n?

=n

c

;i: Let u = x(h - x) be the trial function and choose

-

i< E(x) = constant

; such that

X ,

S A -B 1-x -%/2

N v

-~ -B E -x/2 E

'

o is positive definite.

fa Assume n = 2 , then to find hy» 0 such that y has at least one
<y zero on [0,h ], compute
) ﬁ ’ ’ P

N

- h 2 2

- 0>J(u,0,h) = f{ Au'“ - 2B w' + (E- Cu”} dx

'::1' 0

v h 2 2 2
- = J{@-x“( - 2x)° - 2(x/2) (h - 2x) (hx-x%)
0! 0

X | + (E - 4)(hx - x%)?} ax
X Solution of this inequality gives
_:::,

-7 1/2 .

& hy 203) - (2.19)
S (15 - 2E)

" o,
;v then, for a suitable choice of E<15/2 that makes Q(x) posi~-
;ﬁ tive definite, we have either, '

»

- (i) y(x) has at least one zero on [0,h ], or
e .. (ii) D? = 1 » D(d£/dV) = 1 which is impossible.
l;: ) Thus y has at least one zero on{0,h], h is given by (2.19).
K2
B
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Algorithm for Numerical Solution

Tf% This algorithm determines the extreme point of a uni-
modal function (the zero of the derivative) numerically.

The inputs of the algorithm are:

1- The derivative of the objective function.
2- The limits of the variable x¢(a,b).
3- The accuracy required to determine the extreme point.

The output of the algorithm is the value of h that makes
the functional J negative. The value of J is calculated by
the Romberg integration algorithm.

" Step 1: Initialization.
535 Step 2: Choose initial value h = a + d where d is the step
-féf size for the increment in h.

= - Step 3: Calculate J by Romberg algorithm for the limits a
o B and h.

L) x-‘l

fkf Step 4: If J is negative go to step 8.

b Step 5: If J 2 0 put h = h + d.
:%é , Step 6: If h 2 b go to step 10.
5%1 Step 7: Go to step 3.
g Step 8: Print h and h-d.
g%f Step 9: Go to step 11.
Efj< Step 10: Print "No zero between a,b.

}i Step 11: Stop.
Z?? The zero of the derivative of the objective function
Eﬁé‘ lies between h-d and h. The accuracy of determining the zero
o depends on d. The computer program of the above algorithm is

19
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e written in FORTRAN V and is attached in appendix A.
L. < The numerical solution of Example 2.3 by the algorithm
is:
2.700 £ h £2.701

for d = .001

The case of multimodal functions of one variable is just
an extension of the case of unimodal function. The idea is the
transformation of the origin to the first h that makes J nega-
w tive. Following the same steps as in the case of unimodal
functions but with the new origin at h the algorithm can locate

the second extreme point. Other extreme points can be located

ol &

RSN

by further transformations of the origin.
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ITII. Special Objective Functions

of Several Variables

In this chapter objective function W(X) = W(x1l,x2,..,xn)
will be considered where the variables x1,x2,..,xn are bounded.
The notion of an n-dimensional trial function u(x1,x2,..,xn,hl,
h2,..,hn) will be used and is an extension of the u(x,h) used
in chapter 2. The theorems are presented for the general case
of n variables. Proofs will be given only for the case of two
variables for simplicity (see Figure 2); however, they can be

extended to.apply to functions of sevegral variables.

3.1 Objective Functions that Satisfy First Order Partial

Differential Equations

The objective function W(X) is required to be a solution

of the first order differential equation

N
2 [ AL(X).BOW.W(X) ] + COOLEIWEO] = 0 (3.1)
wgz;e '
X = (x1,x2,..,xn), withen the region R defined by
R ={ (x1,x2,..,xn):0¢x1€al, 0%x2%a2,...,0%xn%an } , (3.2)
[A]xi denotes the derivative of A with respect to xi

Theorem 3.1

Let W(X) be a given objective function which satisfies
the differential equation (3.1) where
(1) Ai(X) » 0 and continuously differentiable over R defined
by (3.2), i = 1,2,...,n.
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Figure 2. A Function of Two Variables
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(2) B(W) is continuously differentiable function of W.
(3) f[W(X)] = 0 whenever W(X) = 0.

(4) C(X) is continuous on R.

Let
#} ﬁf §? n 2

J = ors [ Ai.ul: - C.G(u) ] dX < 0 (3.3)
0 0 0 :E: xi )

where

(i) u = u(x1l,x2,...,xn,hl1,h2,...,hn) is a trial function
differentiable on R and is zero on the boundry of R, and
positive in the interior of R.

(ii) G(u) » 0 in the interior of R and vanishes on the bound-

ary of R.

(iii) dX = dx1 dx2 ....dxn.

then, either

(a) W(X) has at least one zero on H, where

H ={ (x1,X2,...,xn) : 0€x14hl, 0€x2<h2,...,0%xn¢hn } (3.4)

or
n
(b) lz:l Ai[(1/4)g%(u)B%W? - BG(u)W,; (df/aW ] > 0 (3.5)

on some subregion H & R, where
g(u) = dp(u)/du
Proof:
To prove theorem (3.1) we will use a special case for
n = 2 and the proof can be extended for the case of n-variables.
Assume W(X) does not vanish on R and consequently f[W(X)] will

not. For simplicity weshall use A,u,g,B,f,¥ and G without

23
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arguments. Also derivatives will be represented by subscripts
(du/dx1 = uxl)'

By Green's Divergence theorem (8) we have

"
o

hl. h2
o-[ 0f[(ALB.W.G/f)x1 + (A2.B.W.G/f)_, ] dx2 dxl

then, the following inequality holds:

h2- hl 2 5
0 ¢ 0./. ./k Al(uxl - gBW/2f) + A2(uxz - gBw/2f)
0

+

(AlBWG/f)xl + (AZBWG/f)xz ] dx1 dx2

h2, hl ) 2 2 2 )
A./. .[ [Al.ug) - Al.gBWu,,.1/f + Al.g”.B“.W“(1/4£%)
0/ o

2

+

Az.ul, - AZ.g.B.W.u_,(1/f) + AZ.g

2 .02 2
5 LB% W4 (1/4£%) | q

+

(AL.B.W) (f.g.uyy - G.W_,.df/dW)(1/£2) + (A1.B.W),, (6/)

+

(A2.B.W) (f.g.u_, - G.sz.df/dW)(l/fz)

2

+ (AZ.B.W)xz(G/f)' ] dx1 dx2

h2. hl 2
_f .f [Al.uil + A2.ui2 - C.G] + [ E:(Ai/fz)(ngZW2/4
0 0 i=1

A O
NANNN

B.W.G.Wxi.df/dw )] dx1 dx2

. B
. -
-
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NI hz- hl. 2 2y 002 R2 12

L £ =J(u,hl,h2) + of J [Z(Ai/f )(g®.B*.W°.1/4

o 1=\
"
.:E: - B.W.G.hxi.df/dW) ] dx1 dx2

Since J(u,h2,h1) < 0 by hypothesis, then, either

' (a) W(;() has at least one zero on H, or

&N L2002 2 ,

- (b) ;\ Ai[g”.B°. W°/4 - B.G.W_..df/dW ] > 0

. on some region H & R

Z':;:: Theorem (3.1) says that: if a region H S R can be found
:::S;: for which a trial function u makes J(u,hl,h2) <0, then, W will
~

- either vanishes somewhere on R , or, the inequality (3.5) is
\"‘ satisfied on some region of R.

< {s

::_,:

15 3.2 Objective Functions that Satisfy Elliptic Partial

P > Differential Equation

) e

f{{ Theorem (3.1) applies to certain functions that satisfy
‘

,-_\j the first order partial equation (3.1). For other class of

» ,, functions that satisfy the elliptic partial differential equ-
YA

Wl ation we have to use the following theorem:

=

~.;"3 Theorem 3.2

- Let the objective function V(X) satisfy the elliptic
/,f.:‘

"_.‘ partial differential equation

R n

:,.\ E.“ [aij (x)'B(V)’in ]Xj + bX).f[V(X)] = 0 (3.6)
‘.‘:‘ whelx? i}

-\Q\

)

3;?, (1) ai3 (X) is an element of a symmetric positive definite
matrix A, and has continuous partial derivatives with respect
7

(O 25
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oo T to X.

§\~ (2) X = (x1,x2,x3,...,xn) is a point belonging to a smooth
.i closed bounded region R; R is defined by equation (3.2).

» (3) B(V) and f(V) are nonlinear functions of V(X) such that
oy f(V) # 0 when V # 0.

ﬁ%' Let the functional J(u) associated with V(X) and equa-
o 4ion (3.6) be of the form

-3 hn h2. h1. B 2

3 J(u) = of.... of of[Zaij(X)uxiuxj - b(X)u® ] aX

.4, \s]

A 4

e where

o (i) dX = dx1 dx2...... dxn i
< .

R Q (ii) the trial function u(X) has continuous partial deriva-
{

- tives with respect to x1,x2,....,xn and it is also zero on

‘.

- the boundary of R and positive in the interior of R. '
2 Y

a2 then, for J(u) < 0, either

. (a) V(X) has at least one zero on some region H = R,and H is
-

;; defined by equation (3.4), or

. .

e (b) BZ/fZ(V)> B(df/dV) for H & R.

o Proof:

-

o We will use the same methodology as in proof of theorem
I'.‘

(2.1) with the same simplicity assumptions for n =2

Assume V(X) does not vanish on R, and consequently

4

o
A 4

f[V(X)] will not. Since A is a positive definite matrix, let

all a
- A = [ L2
. azy az2

then

«®

2 ]

a I’l’l'l"l '.l
v
[N

:
v,
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u - uBvV .1/f
(uyy - uBvV,;.1/f , u,, - uBVxl.l/f)A[j x1 x1 ] >0
Uy, - uBVxZ.l/f

(3.7)

Also by Green's theorem (8) we have
h2. hl 2
0/. &/ﬂ{[u (allBVxl * a12Bvx2)'1/f]x1
¢ [0l (ay BVyy *+ 7,8V, ,) . 1/£] ,  }dxl dxz = 0 (3.8)
Combination of equations (3.7) and (3.8) gives the following
inequality:

hz. hl 2 252,2 2
0<I = o-[ Of{alluxl - 2a)quBug Vg 1/F ¢ 2 ufBAVZ L1/f

+a12ux1ux2 - alz“B“szxl'l/f - alZUBuxlvxz‘l/f

y/

+

2 2 -
B Vxlvxz.l/f + aZquzux1 a21uBux2Vx1.1/f

2.2
a21uBux1Vx2.1/f + azlu B

2 2
Vxlvxz.l/f + azzuxz

2.2.,2 2
2322“B“xzvx2-1/f *+ a,,u B sz.l/f

2
[u (auBVx

+

1 * alZBsz).l/f ]xl

2
+ [uS(agy BV, ¢y, BV )/ ] } dx1 dx2

1 2
h2. hl 2
= OJ‘ Oj.{ (:z:aijuxiuxj) + (-2alluBux1Vx1.1/f
1233t
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2.2,,2
+au B™Vyy - alzuBuxzvxl.l/f - ajuBu .V _,.1/f

uzBZV
X

+

2
a12 1sz.l/f - azluBuxzvxl.l/f - a uBux Vx 1/f

u?B2v_v__.1/£% - 2aj,uBu

azy x1Vx2 -1/%

2Vx2

222 2
+ a,,u B sz.l/f )

+

2 2
(allexl + a BVXZ)(quux - u .df/dV.Vxl)(l/f )

12 1

+

BV + a

(321 x1 ZZBsz)(quux

2 2
5 u .df/dV.VxZ)(l/f )

+

2
(u“/€)[(ag BV, + alszxz)XI + (2, BV + azszxz)xz]}dxmxz

y Y

%

-~ and by equation (3.6) we have

’ 2
h2. hl
_ 2
0>1 = ' of [(E:aijuxiuxj) bu

125=0

2
2 2
* >0 agu v,V /£ 6% - BLdf/aV)) dx1 dx2
P il )
1,j=1

= J(u,hl,h2)

h2. hl. ) ) 2
+ f f Z 338 VyiVoy /ED (B” - B.aE/AV) dxl dx2
o/ 0

xi xj

Since a, V_:V__. is positive because A 1s positive
‘ ij X1 xj
izl

definité: nd since J <0 by hypothesis, it follows that either

N
S
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(i) V has at least one zero on R, or
<= (ii) B%/£%> B. Af/dV on a subregion H S R.
The following example illustrates how to apply that
theorem for a practical function.

Example 3.1

Let V(x,y) be a function which satisfies the different-
ial equation:

3
V. +V o+ KV +k,V =0 3.9
yy * RV T g (3-9)

XX
choose the trial function:

u = sin(ﬁx/hl) sin(ﬂy/hz)
a comparison of equations (3.9) and (3.6) gives

a11 = a22 =1 and

a12 321 =0

which satisfies that A is a positive definite matrix. Also,

we have

h h
J = 3’ 1‘"(u2+u2-u2)dxdy
0 X Y

h, h
i ozf ol.f{ [(¥/hy) cos(rx/h;) sin(xy/hj) N

+

[("/h3) sin(ax/h;) cos(ﬂY/hz) ]2

[sin(xx/h,) sin(xy/hy) 1° }dx dy.

calculatin of the double integration gives

o 2,2
X J = (hhy/4) (n2/mi + #%/m5 - 1)
29
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Since J ¢ 0 and hl’ h2 are positive, then
(n2/nd) + (@/n2) < 1 (3.10)
By theorem (3.2), either
(a) V(x,y) has at least one zero on H & R defined by
H = {(X,Y): 0 £ x ¢ hl’ 0 £y % hz} , where, h, and h,
satisfy the inequality (3.10), or

(b) B2/f%> B.df/dV which gives

342 2
1/(k1V + koVO) > kp o+ 3k2v
i.e.
2 2.2 2
\' (k1 + k2V ) (ky # 3k,V7) <1 (3.11)
for kl = 0, the inequality (3.11) gives
3kdv® < 1
which gives an upper bound of V
-1/8
v <(3k§ )Y/
for k2 = 0, the inequality (3.11) gives
vzxi <1
which gives an upper bound of V
-1/2

3
<
\'f (kl )
1f for some values of kl and k, the inequality (3.11)

does not hold, this makes case (a) true and there will be at

least one zero on H.

Algorithm for Numerical Solution
This algorithm finds values of hy and h, that make the
functional J negative. Since J is a double integral (for the

case of two variables), that can be defined by

30
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AC
then the idea is to find the values of the parameters hy and

h, that make J negative.

Step 1: Initialization.
Step 2: Input: lower bounds A and C and upper bounds Uy and
U, for x and y respectively; initial values
hl and h,; incremental values dj and d, for
x and y respectively.
Step 3: Find the approximation of J by any multiple integ-
ration aitgorithm for the lower bounds A and C and
the upper limits h1 and h,.

Step 4: If.1>>(hthen let hy = hy + d; and h; = hy + d,,
otherwise, go to Step 6.

Step 5: If h; £ Uy and h, ¢ U,, go to Step 3, otherwise, go
to Step 7.

Step 6:. If J < 0, print hy and h;.

Step 7: Stop.

[y

If the value of J will be hegative for x = hy and y = hZ’

then, the extreme point of the function will be in the range

i~

hl - dl x £ hl and

in

The algorithm is written in FORTRAN V and is attached in

Appendixf . The double infegral is approximated using the

31

B N R R ) T *\d
B A AN AT S ST L 1S I N



A S N R Aot A s gl LA S R A A U AR A A R e h et el B S 0e T Tvie et e 4l e ) Sn-Siur A A e T Yt
R L L NE 2 R D N N i 2 A L I e ] R -

Wb

e AT T et N
1 U 5P AT N A ST L FC S PR

Id

Composite Simpson's Method.

For the case of multimodal functions, the idea is just
the transformation of the axés to the point (x,y) = (h,;,hsy),
where (hj,h;) is the point detérmined by the previous routine.
The first transformation is used to locate the second extreme
point, and so on.

Figure 3 shows the first extreme point in region A. The
origin is shifted to 0y(Hy,H;). The second extreme point is

located in region B.
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3.3 Use of the Generalized Inverse Technique in Optimization

Now we consider a general matrix A of order mxn and
rank k which may be less than min(m,n) and raise the question
whether an inverse exists in some suitable sense. This nat-
urally depends on the purpose for which such an inverse is
used.

If A is a nonsingular matrix of order m, the solution
of the linear equation

AX = B
where B is a mxl column vector, is given by

X =A"B
where A*1 is the inverse of A (i.e., ant - 1). We ask the
question whether a similar representation of the solution,
that is , of the form

X = GB

is possible when A is a singular square or rectangular matrix.
If there exists a matrix G such that X = GB is a solution of
AX = B for any B such that AX = B is a consistent equation,
then G does the same job (or behaves) as the inverse of A,
hence may be called a generalized inverse of A.

Definition 3.1

Let A be an mxn matrix of arbitrary rank. A generalized inv.
of A is an nxm matrix G such that X = - is a solution of the
equation AX = B for any B which makes the equation consistent.

Lemma 3.1

G exists iff

AGA = A (3.12)
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‘ﬁi Rao and Mitra (9) proved the following theorm:
-
(. T Theorem 3.3
35 Let A be of order mxn and G be any generalized inverse
N
o of A. Further let H = GA. Then the following hold;
o
: (a) A general solution of the homogeneous equation AX = 0
.':J .
S is
;\q X = (I - H)Z
~, ‘j‘
\ where Z is an arbitrary vector.
‘ig (b) A general solution of a consistent nonhomogeneous equa-
Nt
iﬂ tion
'l'..‘
o AX = B (3.13)
)_‘.:
.i:: is
3 X =GB + (I~ H)Z (3.14)
( (c) A necessary and sufficient condition that AX = B is
\‘_r_*. ":".':' . .
iy consistent is that
%
oo AGB = B (3.15)
S 3.3.1 Common Zeros of Nonlinear Functions
N . :
N The idea here is to use the generalized inverse technique
-
fﬁt in constrained optimization problems. The following two exam-
;;; ples illustrate this technique.
‘%? Example 3.2
g
"2 Given the nonlinear function
i F(x,y) = xy2 + y3 - x2 =0 (3.16)
.‘_:.-
25 with the constraint
N
S V(x = x + -1=20 (3.17)
. (x,y) y
;ﬁ . the problem is to find common zeros of both F(x,y) and V(x,y)
f.: 5 Cly
X >
o 35
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N L i
i Writing equation (3.17) in the matrix form given by
o )
SN (2.13) gives u
{4 '
-'::‘"; X
o Vi) = 1)[] - (3.18)
i ¢
\"' where,
5 A=(1,1, B=(1),andx=r]
X Y
“ The generalized inverse of A (see(10) for calculation of G)
S is
- .5
Y G =
o -5
This can be checked by applying lemma (3.1) as follows:
- .5
N AGA = (1, 1) (1,1)=(1,1) =A
e .5
o Applying the consistency condition (3.15) gives

B .5

AGB = (1, 1) [ ](1)=(1)=B

o .5
- " Then by theorem (3.3), the general solution of equation(3.14)
o .
TR 1s
oy
q‘.:j X =GB + (I - H)Z
o
== where
ool .5 S]
P, H = GA =
e [ 5 .5
‘ot
}':;:- then, if we assume

L9

NN we have

or

-.'_:: ':-:'4 '
~ RAD
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.5+ 5u - ,5v

[ ] (3.19)
.5 - .5u + .5v

A Taylor series expansion of F(x,y) gives

F(x,y) = F(0,0) + [x.F (0,0) + y.F,(0,0)]

+(1/2!)[x2.Fxx(U,0) * 2xy.Fy (0,0) + F (0,0 ]

+(1/3)[x7 B (0,00 + 3xy B (0,0) + 3xy2.E, (0,0)
3
.F S
+y yyy(0,0) ]
-2 0 rx‘
= (1/2)(x , ) ] J
' 0 0J Ly
0 6y[x
+ (1/6)(x , y) [ ] ] (3.20)
0 ' 6yJL

Substituting in equation (3.20) by the general solution given
by equation (3.19) gives

F(x,y) = -(.5 + .5u - .Sv)2 + y(.5 - .5u + .5v) = 0 (3.21)
Since the general solution given by equation (3.14) is valid

for all values of Z, [theorem (3.3)(b)], then choosing

u 0
Z = =
v 0
and substituting in equation (3.21) gives
-.25 + .5y = 0 or,
y = .5
Using the constraint (3.17) gives

Xx = .5

Then the common zero of equations (3.16) and (3.17) is

37




(x,y) = (.5,.5)
e The next exampl® illustrates the same technique but for
equations of four variables.

Example 3.3

Find the common zeros of the pair of nonlinear functions:

x2 - Zy2 - u2 + w2 = 4 (3.22)

F(x,y,u,v)
V(x,y,u,v) = x - 2y + u +w = 8 (3.23)
Writing equation (3.23) in the matrix form given by
equation (3.13) gives
Vo= (1,-2,1,1) (x,y,u,w) ] = (8)
where T denotes the transpose of the matrix.

Assume we know the genheralized inverse G of A to be

T
G= (38, -1/8, 2/8, 1/8 ) (3.24)
which satisfies lemma (3.1) and the consistency condition.

L2
R By theorem (3.3), the general solution of equation (3.23) is

X =GB + (I - H)Z
where

3/8 -6/8 3/8 3/8

H=0A=|"3/8 2/8 -1/8 -1,4
2/8 -ay8 2/8 2/8
1/8 -2/8 1/8 1/8

Assume

Z = (z1, z2, 23, z4)T

then
3 5/8 6/8 -3/8 -3/8 21
= -1 1/8 6/8 1/8 1/8 22
X 2| *1-278 478 678 -2/8 23 (3.25)
1 -1/8 2/8 -1/8 778 z4
g 38
B S L R G At g T A SRR k1, G NS, A
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fﬁ Writing equation (3.22) as a quadratic form gives

>N

“ . f1 0 0o o0

s - F =X 0 -2 0 0 = (4 (3.26)
: AR o o -1 ol X (4)

o 0 0 0 1

oA Substituti T . . ;
e ubstituting for X and X from equation (3.25) in equation

(3.26) gives the general solution in terms of z1, z2, z3, z4.

- Since the vector Z is arbitrary, then for a special choice of

,§{

.-; Z= (0, 0, O, O)T, the common zero is

‘ (X,y,U,W) = (3"1’2’1)-

-

WY

ﬁ% 3.3.2 An Application in Iterative Methods
X Fall in

‘.-'

One of the best-known methods for solving a single

[

L
N

nonlinear equation in a single variable, say

~
.l
.

g
< f(x) = 0 (3.27)
‘* is Newton's (also Newton-Raphson) method

in

S Xea1 = X - [ E(q)/£(x ) 1 k= 0,1,... (3.28)
,} Under suitable conditions on the function f and the initial

=

'. -

- approximation Xg» the sequence (3.28) converges to a solution
,23 of (3.27); see,e.g., Ortega and Rheinboldt (11) , for itera-
ig tive methods in nonlinear analysis, and in particular, for
e
{-

-3

the many variations and extensions of Newton's method.

Newton's method for solving a system of m equations in

n-variables

fi(x1,x2,....... ,xn) = 0
fz(xl,xz, ....... ,xn) = 0
(3.29)
fo(x1,x2,,...... ,Xxn) = 0
o
N+ 39
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is similarly given, for the case m = n, by

xk+1 =X, - [f(xk)/f'(xk)] ,k = 0,1,... (3.30)

where f'(xk) is the derivative of f at x represented by the

k,
matrix of partial derivatives (the Jacobian matrix)

£'(x,) = dfi(xk)/axj (3.31)
If the nonsingularity of f'(xk) cannot be assumed for

every X and in particular, if the number of equations (3.29)

K’
is different from the number of unknowns, then it is natural
to inquire whether a generalized inverse of f'(x,) can be
used in (3.30), still resulting in a sequence converging to
a solution of (3.29). '
Ben-Israel (12) illustrates the use of generalized
inverses in a modified Newton method for solving the nonlin-

ear equations. Other applications of generalized inverses

in the iterative methods of nonlinear analysis are in (12).

40
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IV. Applications of Matrix Equations

to Constrained Optimization

The nonlinear programming problem can be defined as
follows:
min £ (X)
subject to
g; (X)
hj(X)

where X = (xl,x2,....,xn)T and all functions f, g3 and hj are

o ,i=1,2,...,m<n,

(%4

0 ,3j=1,2,...,r

differentiable. Note that m, the number of equality constraints
(m) , must be strictly less than n, the number of variables.

If m = n the problem is termed cverconstrained, since there

are no degrees of freedom left for optimizing. Note that the
inequality sign in hj(X) 2 0 can be reversed by multiplying
through by -1 without changing the mathematical statement of

the problem.

In this chapter we will consider only the case of equ-
ality constraints. Note that the inequality constraings can
be changed to equality ones by adding (subtracting) slack
(surplus) variables. The solution first proposed by Lagrange
in 1760 was to form a new unconstrained problem by appending
the constraints to the objective function with Lagrange mul-
tipliers Wi i=1,2,...,m. The new objective function
L(X,w) is called the Lagrangian. It is defined on Em+n’
which is a higher-dimensional problem than the original, since

it has m + n unknowns. The price paid for disposing of the

41
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constraints is this higher problem dimensionality. Since
the problem defined by
m
L(X,w) = £(X) + 2: W, g; (X)
is now unconstraineéjlwe can apply the necessary conditions

for stationarity given by:

m
dL/dxj af/dxj + %& wo dgi/dxj =0 ,j=1,2,...,n,

1

dL/dwi gi(X) =0 ,i=1,2,...,m.

which yield a set of m + n equations in m + n unknowns (X,w)

. x %
to be solved for the optimal values (X ,w ).

4.1 Riccati-type Matrix Equations

This section deals with the solution of the set of non-
linear algebaic equations related to the Riccati-type matrix
equations. The use of matrix equations will avoid the itera-
tive procedures. To obtain these solutions we use results of
Jones (13) to obtain solutions of matrix equations of the

following quadratic form:

XDX + AX + XB + C =0 (4.1)
in which X,A,B,C and D are nxn matrices having elements
belonging to the field C of complex numbers, and X is unknown.

Let R and F(R) be defined by

-B D Uu M
R = [ ] , F(R) =[ ] (4.2)
-C A V N

where R is 2nxZn matrix and U,V,M and N are polynomials in
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A,B,C and D. Let also U be the generalized inverse of the

- o matrix U. The following theorems are from Jones (13).

L =
Ol.
)
._s"

v e
o« 8

€ ¥

Theorem 4.1

s €
.

s
)
L

Let F(q) be any polynomial of degree n ® 1 in q with
coefficients belonging to C such that R and F(R) are given

by (4.2). Then a solution of

(X, 1}F(R) = (0,0)

with U"1 or M~1 existing, or a solution of

][]

1 or N1 existing is also a solution of (4.1).

with M
Theorems (4.2) and (4.3) establish other sufficient
conditions for the existance of solutions of equation (4.1).

e Theorem 4.2

Let R and F(R) be given as in (4.2) where M-l exists

vuu |,

v = Ml

<
"

then, X = -NM is a solution of equation (4.1).

Theorem 4.3

Let R and F(R) be given as in (4.2) where M_1 exists and

V = NNV , U = mMNV

1

then, X = M "U is a solution of equation (4.1).
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the following system of nonlinear equations:

Example 4.1

Solve
-yz - 6x - 2y - 2z =
-yw - 2y - 2w + 2x =
-wz + 2x - 2z - 2w =
~wl o+ 2y + 2w + 2z =

This system

by equation

of equations can

(4.1) as follows:

0
0
(4.3)
0
0

be put in the general form given

o B 3 R R I B O W

This gives

Let

OO MNW

5,
Il
| nemm—|
N X
E AN
——d

0 0
0 -1
-3 -2
2 1

the characteristic equation is

det(R - qI) = (@ - Di@ + =0

Table II shows that there are 3 combinations of the

characteristic roots to be checked.

TABLE 11

Combinations of the chacteristic roots

root 1 -1
1 (q-1)(q-1) €q+1) (q-1)
-1 (q+1) (q-1) (q+1) (q+1)




(a-1)(q-1) = q%-2q+1
R2

F(q)

F(R) -2R+1

0o 0 0 2 U M

_to o -2 2| _ (4.4)
0 0 12 8 V N
0o 0 -8 4

Since M1 exists, then by theorem (4.1) the solution of

(X , I)F(R) = (0 , 0)
will be a solution of equation (4.3). Using equation (4.4)

gives,

u M
(X, DFER) = X, I) [ ] = (0, 0)
vV N

which gives the following pair of equations:

XU + V=20, (4.5)

XM + N

0 (4.6)
Since equation (4.4) gives
U=vs=2~0
then equation (4.5) can be satisfied by any solution of equa-
tion (4.6) given by
-1 -10 6
X = -NM = (4.7)
- 5 4

Also, since N1 exists, then by theorem (4.1), the sol-

-]

will be a solution of equation (4.3). But

ution of
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:I gives the pair of equations
U-MX =0, (4.8)
V-NX=0 (4.9)
since
L U=V =20

then the solution of equation (4.8) and equation (4.9) is

2 % Y e
WAt Vet e
L &
LRI IALPL L

X =0

Case 2:

F(q)
F(R)

]
~
'
—

I"'
]
o O &~ 0~

]
o N
]
N )
s o

u
—
< o
z =
[ SRS

e

L~ WININI .
(\-"_.‘A_-‘.-f_ﬁ_ .

Following the same steps as in case 1, we obtain the solution

Case 3:
F(a) = q° + 2q + 1
L F(R) = R + 2R + I
’%ﬂ 12 -8 0 2
?3 8 -4 -2 -2 U n&]
y I [ DA ;
2 0 0 0 0

AN YA AN TR
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g P
Sl

G
‘;j By following same steps as in case 1,gives
.9
A - -10 6
( |~ X = (4.10)
A 6 -4
N
v Thus the solutions of the system of equations given by
'E equation (4.3) are the valies of X obtained from the three
5 cases.
:; 4.2 The General Matrix Equations
A In the case of the Riccati-type matrix equations, it 1is
I‘ easy to find all the solutions by direct application of theorem
'? (4.1). For the case of the general matrix equations of the
- form:
:i AX + XB + C + XDX + XEXFX = 0 (4.11)
‘I
%2 in which X, A, B, C, D, E, and F are nxn matrices, it is diff-
{ n icult till now to find all the solutions. This section deals
if - with the problem of finding only some of the solutions of
= the system of equations given by (4.11).
1y
_ Theorem 4.2
o
- Let F(q) be any polynomial of degree n 2 1 in q with
fﬁ coefficients belonging to C such that R and F(R) are given
kg by equation (4.2). Then, X is a solution of the pair of
= .
RN equations:
N
4
~ DV - DNX - UEXFX = 0 and
N (4.12)
e U = MX ]
S iff it is a solution of equation (4.11), provided that M
f exists.
-
X Proof:
. Let X be a common solution of equation (4.12), F(R) is
-, -
R
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given by equation (4.2) and M™l exists. Since F(R) is a

iéa polynomial in R and F(R) commutes with R [see (14)], then

R.F(R) = F(R).R

that gives
-B DrU M U M -B D
IS | M O Y | S BCE
-C AdJdLV N \Y N -C A
Matching the corresponding elements in the product of
the matrices gives

-BU + DV = -UB - MC

-BM + DN = UD + MA
(4.14)

3

-CU + AV -VB - NC

-CM + AN = VD + NA

Using the identities (4.13) the following is obtained:

o
L]

-a

.\‘-‘

DV - DNX - UEXFX

L

BU - MC - UB - DNX - UEXFX

n

BMX - MC - MXB - DNX - UEXFX
= BMX - MC - MXB - (UD + MA + BM)X - UEXFX

1

-UDX - MC - MXB - MAX - UEXFX
= -MXDX - MC - MXB - MAX - MXEXFX
= -M(XDX + C + XB + AX + XEXFX)

Since M1 exists, then

AX + XB + C + XDX + XEXFX = 0 (4.15)

Starting with equation (4.15) and reversing the steps

‘\_‘

EN 4

using

Y

s

i@

£l
Y
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we get the system of equations given by (4.12) which com-

pletes the proof of the theorem.

Theorem 4.3

Let F(q) be any polynomial of degree n21 in q with
coefficients belonging to C, such that R and F(R) are given

by equation (4.2). Then X is a solution of the pair of equa

tions:
-XMC + XEXFX - NC

"

0 and

(4.16)

XU + Vv 0

iff it is a solution of equation (4.11), provided that u-l

exists.
Proof:

Let X be a solution of (4.14), F(R) is given by (4.2),
and U'1 exists. Since F(R) is a polvnomial in R and F(R)
commutes with R, then (4.12), (4.13) and (4.14) hold. Using

the identities (4.14) with (4.16) gives:

o
L}

-(XM + N)C + XEXFV

= -XUB - XMC + XUB -NC + XEXFV

= -X(UB + MC) + XUB - NC + XEXFV

= -X(BU - DV) + XUB -NC + XEXFV

= -XBU + XD(-XU) + XUB - NC + XEXFV

= -XDXU AXU - XBU + AXU + XUB - NC + XEXFV

= -XDXU - AXU - XBU - AV - VB - NC + XEXFV

= -XDXU - AXU - XBU - CU +XEXFU

-(XDX + AX + XB + C + XEXFX)U

. -1 .
Since U exists, then
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i
Nty AX + XB + C + XDX + XEXFX = 0 (4.17)
. ;;; Starting with (4.17), conversing the steps and using
XU + V=0

we get the system of equations given by (4.16) which completes

the proof of the theorem.

Example 4.2

Find the common solutionsof the system of equations:

AX + XB + C + XDX + XEXFX = 0

where

0 0 1 0
C =[ ] and F = [ ]

0 2 -2 1
— Solution:
o -2 0 -1 -1
N -B D o 1 -1 -1
\. R = [ ] = (4.18)
-c A o 0o 2z 0
’ 0 -2 0 -1
(A
e the characteristic function is
|R-q1| =(q2-3)(q2-4)
B, 1/72 1/2
1 = @-3"H@+ 3@ - @2
;}‘ Table 111 gives the all possible combinations of roots
;ﬁ?ﬁ . for the polynomials in q of degree 2.
I\:: * '
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TABLE

Combinations of characteristic roots

i diard
a® e

——

T

q-V3 q+Vv3 q-2 q+2
a-v3 | q2-2v3q+3 q’-3 a2-(2+vB)a+2 3 | a°+(2-¥3)q-2v3
q+V73 q2+2v3q+3 q2-(2+3)q-2 3 QN+AN+<®vn+N<m
q-2 a%-aq+a nm;
q+2 qZ+aqes
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Let us try one of the combinations. Choose

F(q) =q2 -4

Since M™1 exists, applying theorem (4.2) gives

U = MX

[ AL o)

which gives the solution

0 1/3
x -
[0 1/3]

Since X given by equation (4.19) satisfies

DV - DNX - UEXFX = 0
then this solution is a solution to the given problem.

Trying other combinations can lead to some other

t

» s
0

a

Dt A
LARNOMN

solutions of the problem. The difficulity here is that

or
o'

(4

this technique does not guarantee to find all solutions

5

: #4

for the general matrix equations.

s “
OO

!?1

19 %% %8N
[AAA c'-.’-f:

e

- . p - v e ™ L . - - e e - LA Al Nl
..;...... o, s, -‘.-\. . PR e -}q‘. e '.- -t r.-\:. 'h'l( o .(\-"‘-.'"q_.-’ « * (SRAE LY DR \ .\ .



V. A Random Search Algorithm

The essence of this chapter is the development of a multi-
dimensional random search algorithm. The technique will solve
both integer and continuous nonlinear optimization problems.
There are many optimization procedures which enable one to find
the minimum of a unimodal function in n-space. If the function
is differentiable, global minimum may be obtained through the
use of derivatives. However, the problem of global optimization
of multimodal function has received comparatively little atten-
tion, more so when the function in question is non-differentia-
ble. .

As a general principle, the accuracy with which a proced-

¢£! ure locates optima improves with the number of functional
evaluations. In principle, however, one seeks a balance bet-
ween a degree of certainty and the cost of implementation. A

procedure which locates optima with great precision and cer=

ALg

tainty would be practically worthless if it requires economically

- .‘l.:.,- »

unfeasible number of calculations.

i WY

There are several search methpds presently utilized to
seek global optima. Borah (15) compared ‘the method of random
search with the method of systematic search and concluded that
the random search method is better. His conclusion was based
on the fact that the systematic search suffers from the stand
poiht of being computationally uneconomical in that the number
of evaluations increases geometrically with an increase in the

number of variables. Also the method of systematic search
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does not, in general, obtain all the local minima. This, in
turn, may lead to some doubt as to where the actual global
minimum occurs. Among the random search methods, are those
suggested by Brooks (16), Becker (17) and Price's CRS method
(18). The simple random method accepts the optimum function
value as global optimum after making a specified number of
trials randomly selected from the domain. The stratified
random search method divides the domain into a number of sub-
domains of equal size and selects, at random, a trial point
from each subdomain and each time keeps the optimal function
value. The procedure is repeated many times. Some improve-
ment on the simple random search is provided by Becker (17).
His procedure begins with a simple random search over the
domain. Instead of retaining the single point with the opti-
mal function value, he retains a predetermined number of points
with optimal function values in each trial. 1f the number of
trials is sufficiently high, the retained points tend to cluster
around some optima. Then a mode seeking algorithm is used to
group the points into discrete clusters and to define the
boundaries of the subregions each embracing a cluster. The
clusters are graded, by searching in each for the retained
points with the lowest function value and then rated accor-
ding to the relative values of the cluster minima. The entire
procedure is then repeated using as the initial search region
that subdomain, defined by the mode seeking algorithm around
the best cluster. The user may choose to examine also the

second best cluster, or indeed all clusters, according to the
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extent of his doubt as to whether or not the global minimum
will be found in the subdomain defined by the best cluster.
Price (18) suggested the controlled random search (CRS) that
combines the random search and mode-seeking algorithm into a
single continuous process.

This chapter studies the problem of obtaining global
optima of the general functions (differentiable or not) of
several variables. The procedure begins with evaluating the
given function at pre-determined number of voints selected
randomly over the closed bounded domain. Suppose M points
are selected randomly over the domain and the function is
evaluated at each of the M points. The minimal functional
value and the point at which the minimum occurs (if the prob-
lem is one of minimization) are saved. This step is carried
out N times. The resulting N points will cluster around the
minima. An illustration of this aspect is shown in Figure (4).
Suppose there are many cluster points, then there is a poss-
ibility that around each cluster point, a local minimum may
exist. We develop a single program to find all the cluster
groups as well as cluster points. Using a local optimization
routine gives the exact minimum of each cluster. Thus the
global minimum is obtained by simple comparison of the obtained
exact minima.

If some of minima lie near to each other, this procedure
cannot separate the clusters, because the radius of the hyper-
sphere which embrace these cluster points should be very small

and therefore many points still remain outside of any of the
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Formation of Clusters

Figure 4.
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hyperspheres. These points which are outside, give false
cluster groups and thereby increase the function evaliuations
later tremendously.
After separating the cluster, the next task is to find
the actual minimum in each cluster group. Any local optimi- |
zing method may be used. However, Nedler and Mead Simplex
Search Method (19) is the most efficient one for the nondiff-
erentiable functions. This simplex algorithm requires n+l

points for n-dimensional space.

S§.1 The Nonlinear Simplex Method

The nonlinear simplex method,not to be confused with the
simplex algorithm of linear programming, is a direct search,
descent method. It is based on a geometric construct referred
to,in the case of an n-dimensional space, as an n-dimensioﬁal
simplex. The simplex method for minimization may be summarized
as follows:

1. Construct a regular simplex in the parameter space of the
variables of optimization and evaluate the objective function
at each vertex.

2. Find the centroid of the simplex without the worst vertex
(worst vertex being the vertex with the highest objective
function value). .

3. Define a new simplex by eliminating the worst vertex and
adding a new vertex obtained by reflecting the worst vertex
through the centroid. Evaluate the objective function at the
new vertex and return to step 2.

The elegant simﬂicity of this algorithm has led to a large
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PN number of variations on the basic method. In 1964 Nelder and
e
e o Mead extended the simplex technique by allowing irregular
S
1ﬂl simplices (line segments not necessarily all of the same length).

This provided both a degree of scale invaring and allowed for
a form of acceleration in the search. Their modifications to
the simplex rules include:

(a) 1If the reflected vertex is the best vertex (best vertex
being the vertex with the lowest objective function value)
then try an expansion step to another vertex that is
further along in the same direction that yielded the
reflected vertex.

(b) If the reflected vertex has the worst objective function
value, then try another vertex that is retracted towards$
the centroid.

Ton (c) If the retracted vertex has the worst objective function
value, then contract the entire simplex by moving towards
the best vertex.

(d) Stop the procedure when the simplex shrinks to a suffic-

iently small size.

5.2 The Nonlinear Integer Search

The development of methods for integer variable progra-

mming was initiated in the field of linear programming, and

most work has continued to the general application within this
area. In the field of nonlinear integer programming substan-
tially less seems to have been done. The majority of the work

that have been proposed in the literature to date are centered

.
v
.
.
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around one of the following four basic concepts:

(a) Rounding-off the continuous optima: The most common
approach to nonlinear discrete-value programming problems

is to treat the variables as continuous; then, once the
continuous optimum has been determined, an additional search

is executed to find a feasible set of discrete-valued varia-
bles. The most basic procedure is to select the feasible set
of variables nearest to the optimal point. It is well known
that this procedure can lead to undesirable answers and the
point selected may not represent the discrete optimum.

(b) Adaptation of nonlinear optimization techniques: 1In

many cases, nonlinear discrete valued programming problems are
considered as a class of nonlinear programming problems in
which the discreteness of variables is one of the restrictions.
Many nonlinear programming techniques of this type have been
devised, mostly for solving engineering design problems.

(c) Linear approximation and binary representation: Another
class of approaches considers the discrete nonlinear problem

as a primarily integer programming problem with nonlinear
characteristics that may be linearized. Some of the approaches
use techniqﬁes involving piecewise linear approximation. Others
involve the transformation of a nonlinear function into a poly-
nomial function of binary variables and then the transformation
of the polynomial function into a linear function of binary
variables. Several integer linear programming techniques have
also been devised for solving nonlinear integer problems direc-

tly, usually after conversion to binary variable problems.
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1 :-",:4
7&5 '?ﬂ Some of these techniques, assume separable functions with

;. ’ certain monotonicity properties.
Eyg (d) Direct search methods: Nonlinear discrete search methods
Ff represent another class of approaches which are different from
;} all the methods stated before. Since nonlinear discrete search

;E occurs only over the set of points, it requires the function
f{i values at these points only. A reliable discrete search tech-
{ ; nique, however, is not easily devised due to resolution ridge
fﬁ; difficulties and no procedure demonstrated to be reasonably
‘;ﬁz reliable has appeared in the literature.
$§ 5.3 Problem Formulation
Eﬁ The new search technique, to be presented will consider
-~
[ﬁ' {3‘ the functions defined on a closed and bounded domain. The
AE; constraints are of the type which serve to bound the individual
‘S;, variables. That is:

‘; aj < Xy < b1
é;; where, x; is the ith decision variable.
i}{ A unique feature of this algorithm is its ability to handle
:ii problems of either continuous variables or integer variables.
Sﬁ; The algorithm has, therefore, been naméd COIRS, an acronym for
%é Continuous Or Integer Random Search. Most of the existing
Sa: techniques for solving nonlinear integer variables programming
S;E problems were desigﬁed to solve only some particular problems

with specific structures. The objective i:nction must be ex-

- Prcssed analytically and, in addition, many techniques contain
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several special requirements on the nature of the function
such as continuity, differentiability or concavity. Moreover,
the procedures are often exceedingly complicated which make
them difficult to understand and to program for the computer.

The formulation of the optimization problem to be solved
by the presented algorithm requires the objective function to
be expressed analytically. The problem of V variables, P
equality constraints and Q inequality constraints could be
stated in one of the following forms:

(a) For continuous variables:

Minimize: F(X)

3 . £ r'4 LE
subject to: a; £ x5 ¢ bi 1 =1,2,...,V
Gj(X) =0 »j = 1,2,...,P
H (X) =0 yk =1,2,...,Q

where, X = (xl,xz,...,xv)
(b) For integer variables:
The same objective function and constraints as in (a) are used

in addition to the constraint
X3 integers, i =1,2,...,V

If bounds on some variables are not given in the problen,
"artificial" bounds are supplied in a way that reflects the

user's guess of these bounds.

51




[ R i)
B Y
Xy L
. 4 W
l'! LAY
A s

'
"‘,l"..' ," AR

)

&

1

-
. ‘l

.l ‘,‘.‘

P
1
0,

.
]
.«
L
i

gy e, 2,
A

8
.
'l.l s e

‘.

—1.;1,4, iy 0, 1, 4 v, v
AN .
a”s TR
FARRARIN "3 "

/o
.

)

ol

B 7
[ .‘0 :‘ "1 :r

.
"l‘ l_ -

" ] " -

R

3
LN

B
L

R v‘t“ff‘
”

.

» 'r'- ) .l:- .

) . e
A D I,

.l .l'f

-----------

5.4 The COIRS Algorithm

Step 1: Initialization.

Step 2: Input data.

Step 3: Generate predetermined number of random points M
(inside the domain) for one random search.

Step 4: Evaluate the function at all the generated points.

Step 5: Find the minimum of the evaluated functions.

Step 6: If the number of the random searches done is 1less
than the predetermined number of random searches N,
go to Step 3.

Step 7: Find the lowest minimum of the N minima determined
in step 5.

Step 8: Form a cluster from some of the minima determined
in Step 5 inside a hypersphere with center at the
lowest minimum not yet included in any cluster.

Step 9: If the number of points in the clusters formed is
less than M, go to Step 8.

Step 10: Use a local optimization technique to find the exact
minimum near the center of each cluster.

Step 11: Find the global minimum by comparing the minima in
Step 10.

Step 12: Stop.

Remarks:

(1) The generation of points in Step 5 is done by a random

generator for both continuous and integer numbers inside the

domain of the problem.
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N (2) The local optimization technique used in Step 10 is the
_Q i;* Nelder and Meads Simplex technique that gives a continuous
N "
5 minimum. For the case of integer problems the technique is
&E modified to find the lowest value of the function at integer
i: hypercube around the continuous verticcs. The number of verti-
}3 ces of the hypercube are 2v, where V is the number of variables.
~
ﬂ: For example, if the continuous vertex exists at
E::

X =(1.2, 3.7, 4.9)
"
“
" the vertices of the hypercube will be
N
¢ X1 =(1, 3, 4)
w X, = (2, 3, 4)
= Xz = (1, 3, S)
a X, = (2, 3, 5)
_\4 '~-;":‘
.': XS = (1, 4, 4)
::' X6 = (2) 4) 4)

X, = (1, 4, 5)
I Xg = (2, 4, 5)
-
P The vertex with the lowest value of the function will enter
- the simplex in the place of the point that has the worst value
- of the function.
2 (3) The constraints are supplied by the user in a subroutine
~ that determines if the generated points in Step 3 satisfy the
i: constraints or not.
>~ \
‘3 The program is written in FORTRAN V and is attached in 1
-7 . Appendix 3
::' ..\:; . |
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'i 5.5 Testing the Algorithm

AN

[ % The procedure of testing a new search technique is to

f: demonstrate that the new technigue will solve the test problems
,Eﬂ solved by the established techniques. To demonstrate .the

ability of the new technique one may then present a test prob-

f_'-

- lem that can not be solved by the established techniques but can
?% be solved by the new COIRS technique, or one may instead solve
A the established test problems using fewer objective function
ﬁ; evaluations.

?i The following three examples are from Borah (15):

f; Example 5.1

&

.._:. 2

. Minimize f(x,y,z) = (x - y + z) + (-x +y + 2)

2
{ P + (x +y - z)
subject to: -1 € x,y,z €1

- The actual solution of this problem is:

"

::,: f=0

‘#.

ﬁ; at X =y=12=20

}:, The solution by the COIRS algorithm after 1962 functional

W .

,% evaluations is:
b 7
% f = .4466x10

b at X = .000113
"J‘_'.

;-;: y = .0001585

~|

= z = -.00002563
o .":-
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Example 5.2
< Minimize f(x,y,z) = 9 - 8x -6y - 4z + 2x% + Zyz + Zz2
+ 2xy + 2Xxz
subject to: 0 € x,y,z £ 1.5
The actual solution of this problem is:
f=0
at X =y =12-= 0
A comparison of the solution given by COIRS algorithm
and Borah's solution (15) is shown in Table IV.
TABLE 1V
Comparison of COIRS with Borah's Results
- COIRS Borah
Number of functional evaluations 1826 14144
£ .6537x10" | .953674x10-4
x 1 1.013671875
y 1 .9921875
z .999 .986328123
Example 5.3
o 2 2 2
Minimize f(x,y,z) = 9 - 8x - 6y - 4z + 2x° + 2y + 2z
+ 2xy + 2xz
subject to: 0 £ x,y,z £ 1.5,
X,v,z integers
o 65
e et T e e Nt T N T T T T e T T e T T T e e B T T e T e e e T e e e e e




......................

if: ’ The actual integer solution of this problem is:
L]
e £=20
:’Q at x =y =2z =1
)
:ﬁf Using the COIRS algorithm for the case of integer variables,
e the solution after 800 functional evaluations is:
..‘:_.
_. f =0
\.'.\
,_\-': at x=y=z=|
R
N
" el %
. Example 5.4

Minimize f(x,y,z) = 100[z-(x+y)2/4]2 + (l-x)2 + (l-y)2

subject to: 0 € x,y,z € 1.5 ,

o X,Y,2 integers

\.:f.

20N

kfﬁ: The actual solution for this problem is:

L

e f =0

N

x...‘ = = =

';ﬁt at X y z 1

:i: Using the COIRS algorithm for the case of integer variables,
::: the solution after 540 functional evaluations is:

N

'o:\

o £=0

N at x=y=12z=/1

a8 .

| ,\ To complete the testing of the algorithm, many other
*\

;ii problems have to be solved and compared with the solutions

B .y

o by other algotithms. This may indicate additional features
A e

oh of the COIRS algorithm.

)-:e
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VI. Conclusions and Directions

for Further Work

There are several computer applications of iterative
techniques which will iterate towards zeros of a function.
The initial starting value for these schemes must be chosen
carefully. If the initial point is not close to an actual
zero, the iterative techniques often diverge.

The ease of performing the calculations given by the
functionals on the trial functions makes these techniques
for determining whether a function vanishes or is bounded
in a certain region attractive. Other choices of trial
functions could be made, perhaps giving better results in
certain situations than other trial functions.

The theorems and examples presented in this work in
chapters 2 and 3 can be used to locate intervals on which
a function has a zero. If the given function can be paired
with one of the special differential equations given, and
if a trial function u is found which makes the corresponding
functional J negative on a certain interval, then a zero of
the function f does exist on that interval. These techniques
have a possible use in determining an tnitial guess for a
starting point in iterative search techniques.

Examples of common functions from different engineering
sciences were chosen to demonstrate the breadth of applications
possible. Perhaps this method can be applied to indicate the

existance of zeros of other functions before valuable computer
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time is wasted to find these zeros. In fact, the techniques
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obtained can themselves be implemented using numerical methods

on a computer of reasonable size.

t
1,

s,
U

- There is no doubt about the results of techniques presen-

N

o SRR

>y

ted in chapters 2 and 3 for the unimodal functions. For the
e case of multimodal functions further studies and analysis is
:ﬁj required. Application of given theorems for the case of

:51 multimodal functions will result in dividing the region of the
NG function into subregions with at least one zero on each sub-
region. A comparison of this technique with the known search
techniques 1is an area for further study.

" Analysis presented in chapters 2 and 3 is limited to some
- functions that satisfy special classes of homogeneous differ-
ential equations. The case of nonhomogeneous differential

\ X ‘53 equations and other classes of differential equations needs
23: further analysis and effort. Other remaining aspect in this

. area is to compare our techniques with other approaches that

- can be used to solve the problem of finding good initial point
for iterative methods.

> For the case of constrained optimization, the technique
of generalized inverse was given with illustrative examples

in chapter 3. The generalized inverse deals with the special

case when the problem is ill conditioned. This technique is

applied to one of the best-known methods for solving a system

Y
s

. of nonlinear equations in n-variables. The problem appears

[}
ty
L

when the matrix of partial derivatives (the Jacobian matrix)

190

is singular.
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N
: Applications of matrix equations to constrained opti-
. mization problems is presented in chapter 4. For the special
.;. a case of the Riccati-type matrix equations there is no problem
Ei for finding all the solutions of the problem by applyving the
;g technique of matrix equations. The difficulity appears in
the case of the general matrix equations where only some of
the solutions can be obtained by this technique. The problem
of finding all the solutions in the general case is a wide
Y area for further study and analysis. Some theorems have to
? be developed to guarantee finding all the solutions.
%5 The general optimization problem for continuous or integer
:i variables is covered in chapter 5. The COIRS algorithm is
:E tested by some examples. Still, it needs further testing with
fif different problems. The case of mixed integer problems using
?., .?2 the COIRS algorithm is a recommended area of further study and
a; research. An algorithm that solves the general mixed integer
7 problem without any restrictions on the objective function will
; be a superior one in optimization.
o
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Appendix B

Computer Print Out to Find
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