
DA141 095 TE TRANSIENT GRAVIT WAVE CRITCAL LAEN U PHYSICAL I/I
DYNAMICS INC BELLEVUE WA I d DUNKERTON 09 APR 84
PD NW 84 A3OR AFOSR-TR-84 0334 F49620-83 0061

UNCLASSIFIED F/G /5 NL

EEEEEEnhh.E.I
|nIIIIIIIEND
lnllllllllllu....nuuuunuunu



I1 211111111 ij~140 .JJJJJ 1.2 [J 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



IaS=eTR- 84-0334 AP, R 1 1984

= I
physical dynamics, inc.

- , PD-NW-84-310R

In
1THE TRANSIENT GRAVITY WAVE CRITICAL LAYER

Timothy J. Dunkerton
I l Physical Dynamics, Inc.

0 300 120th Ave. NE, Bldg. 7
Bellevue, WA 98005

[
S89 April 1984

Annual Report[ Contract #F49620-83-C-0061

r

L Prepared for c 4

I AIR FORCE OFFICE OF SCIENTIFIC RESEARCH l
Bolling AFB Iprve

rs Washington, DC 20332 jb 0

84 05 15 234



[ PD-NW-84-310R

1. THE TRANSIENT GRAVITY WAVE CRITICAL LAYER

Timothy J. Dunkerton

Physical Dynamics, Inc.

V 300 120th Ave. NE, Bldg. 7

1. Bellevue, WA 98005

9 April 1984

Annual Report

Contract #F49620-83-C-0061

Prepared for

I. AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Bolling AFB

[ Washington, DC 20332

bD5A D Ii~O

C~t bI1 I'



SCCURITV CLASSIFICATION OF THIS PAGE (Men Deom ,9., !4C

REPORT DOCUMENTATION PAGE BEFORE COMPLONG FowM

[4 0rGOVT A P S CATALOG NUMDERs~4-0334.o
4. TITLE (and IRA8ue0o) S. TYPE OF REPORT & PERIOD COVERED

Annual Report covering
THE TRANSIENT GRAVITY WAVE CRITICAL LAYER 10 Feb 83 - 10 Feb 84

6. PERFORMING ORG. REPORT NUMUER

PD-NW-84-310RL7. AUTHOR(q4 S. CONTRACT OR GRANT NUMER(J)

Timothy J. Dunkerton F49620-83-C-0061

1. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Physical Dynamics, Inc. AREA I WORK UNIT NUMNERS

300 120th Ave. NE, Bldg 7, Suite 220 L-lloap 2310/A1
Bellevue, WA 98005

i1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research /JCA 9 April 1984
Boiling AFB 13. NUMBEROFPAGES

Washington. DC 20332 .... C _ok

14. MONITORING AGENCY NAME & ADDRESS(i difIferent from Controllind Olflice) IS. SECURITY CLASS. (of thl report)

j UNCLASSIFIED
IS&. DECLASSIFICATION/OOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thil Report)

Ii
- 17. DISTRIBUTION STATEMENT (of the asract entered in Block 2.it different team Repoit)

App'ved for public relearn,
distribution unlimited

IS. SUPPLEMENTARY NOTES

Ii
I. KEY WORDS (Continue on r.er*s side. if nec*eay and ideuitify b block anmmb*r)

Gravity waves
Critical layers

20. A TRACT (Cmnltme en rBm °as aide if neceearr and Ideniltt by block nmmbe)

ANNumerical simulations of gravity wave, critical layer interactions are
presented, which confirm theoretical predictions of critical layer behavior
and explain important features of gravity wave observations in the atmosphere,[ including momentum deposition and convective wavebreaking.

D " 1473 almTO" or 1 Nov os is OsS.TE
SECURITY CLAMPICATION OF ThI PAGE (Rhe. Dae tantere@



[p

I

Summary

[The research supported under Contract F49620-83-C-0061 represents an

effort to understand, both theoretically and observationally, the role of

gravity waves in the general circulation of the atmosphere. Gravity waves

4 redistribute momentum and trace species through the atmosphere, operating at

all scales of motion from equatorial planetary waves down to the mesoscale.

,. Our current research examines the propagation and nonlinear breakdown of

these waves, as well as the ensuing redistributive effects.

In this report, numerical simulations are described which reveal how a

transient gravity wave packet behaves when encountering its critical layer,

where phase speed equals mean flow speed. The critical layer becomes a focus

of wavebreaking, where momentum is deposited and convective turbulence

occurs. The numerical solutions afford important checks on theoretical

predictions of critical layer behavior, as well as explaining the

* observational evidence obtained from the MST radar. Importantly, the

redistributive effects at the critical layer are also seen in more general

circumstances in which gravity wavebreaking is attributable to the mean

1. density profile rather than shear.

The inviscid gravity wave critical layer is inherently turbulent since
overturning rapidly develops in the potential temperature field. Negative

local Richardson numbers (Ri) are contemporaneous with the development of the

internal shock in the monochromatic wave events, are coincident with

Lagrangian zonal perturbation velocities exceeding the intrinsic phase speed,

Land occur very soon after the appearance of regions with RI < 1/4. To account

for convective wavebreaking a simple, local turbulence parameterization is

advanced, which is not based upon turbulent eddy diffusion. Instead, the

total wave + mean flow profile, when required, is frictionally relaxed to a

[convectively neutral equilibrium which conserves potential temperature and

total vorticity, analogous to the familiar "convective adjustment" procedure

[in general circulation models. Despite being a local adjustment within the

wave, this turbulence parameterization seems to confirm the qualitative

features predicted by Lindzen's (1981) global amplitude balance model in the

relatively simple case studies presented here.
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I. STATEMENT OF PROBLEM

[a. Gravity waves in the atmosphere

Atmospheric gravity waves are increasingly being recognized and studied

Sas an important dynamical mechanism by which horizontal momentum is trans-

ported upward over many scale heights, resulting in significant mean flow

accelerations in the stratosphere, mesosphere, and lower thermosphere

(Lindzen, 1981; Matsuno, 1982; Holton, 1982; Dunkerton, 1981, 1982a,b). The

operational network of MST radars is beginning to provide important glimpses,

here and there, of the magnitude and distribution of this momentum transport

process (Balsley et al, 1980; Balsley and Gage, 1980; Vincent and Reid, 1983;

Balsley et al, 1983). In the winter mesosphere in particular, gravity wave

momentum deposition, or some other mechanism, seems required to balance the

1. mean Coriolis torques driven by radiative cooling in the polar night (Leovy,

1964; Mahlman and Sinclair, 1979; Lindzen, 1981; Matsuno, 1982; Holton, 1982;

11 Dunkerton, 1982a,b). Preliminary estimates of gravity wave momentum fluxes

confirm their ability to retard the mean flow in this manner, although this of

course does not exclude the possible role of other mechanisms such as the

i. unstable breakdown and/or radiative decay of planetary scale waves (e.g.

Lindzen and Schoeberl, 1982).

-. b. Relevance of wavebreaking

Because transient, conservative waves have no permanent effect on the
mean flow (Eliassen and Palm, 1960; Charney and Drazin, 1961; Andrews and

rMcIntyre, 1976, 1978; Boyd, 1976; Dunkerton, 1980, 1981, 1982a), irreversible
mixing and mean flow acceleration must ultimately be attributed to wave

dissipation. For atmospheric gravity waves, the relevant dissipative process

[seems to involve their unstable breakdown via convective and/or dynamical

instabilities (Lindzen, 1981; Holton, 1982; Weinstock, 1982; Fritts, 1982b;

[ Dunkerton, 1982a; Lindzen and Forbes, 1983). In this paper, attention will be

focused on the mean zonal wind accelerations due to wavebreaking; however, the

[simultaneous irreversible mixing is likely to be important for trace species
concentrations in the middle atmosphere (M.R. Schoeberl, S. Solomon, personal

communications, 1982).

t ,21
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c. Linear critical level

p] The gravity wave excitation mechanisms have been studied extensively,
and are thought to include shear instability (Davis and Peltier, 1979; Lalas

-- and Elnaudi, 1976; Lindzen and Rosenthal, 1976; Patnaik et al, 1976; McIntyre

and Weissman, 1978; Fritts, 1979, 1982a), topography (Klemp and Lilly, 1978;
Peltier and Clark, 1979; Blumen and Dietze, 1981; Durran and Klemp, 1982), and

convection (Curry and Murty, 1974; Balachandran, 1980; Larsen et al, 1982).
What happens to those propagating waves able to radiate large distances from

their source regions, however, is less well understood. Until the last decade
our understanding of atmospheric gravity wave propagation was built around

classical linear wave theory. Propagating waves, if steady and conservative,

do not accelerate the mean flow anywhere, except where

u =c (1.1)

the so-called "critical level", where the mean flow equals the horizontal wave

phase speed (Eliassen and Palm, 1960). At this point the vertical group
velocity of slowly-varying waves vanishes (Bretherton, 1966) and for finite

Ri the wave is attenuated by the factor exp 21in, where

I= Ri - 1/4 (1.2)

The singularity (1.1) implies, for example, an infinite momentum flux con-

vergence at the steady-state critical level (Booker and Bretherton, 1967).

d. Deficiencies of linear theory

In more recent years the Booker-Bretherton solution has been cross-

examined by a number of theoreticians and experimentalists who have sought to

i. determine to what extent this linear solution is relevant to geophysical
critical layers. As a barrier to wave propagation their solution has stood

[ the test of time quite well. Nevertheless, three possible shortcomings of the
linear solution have been uncovered, having to do with the fact that Booker
and Bretherton (1967) neglected convective wavebreaking, the quasi-linear
mean flow modification, and wave, wave interactions.

Ii
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First, if the critical level (1.1) is an absorbing barrier to wave
propagation, then any incident wave packet in a conservative fluid will occupy

a finite vertical domain bounded by the critical level. Now conservation of
wave action integrated over the entire wave packet (Bretherton, 1966;

[( Bretherton and Garrett, 1968) implies that local values of A, the wave action

density -- which for a constant horizontal wavelength is related to the wave

energy density E as

Ek-C- (1.3)

-- increases indefinitely with time as wave action "piles up" beneath the

initial critical level. This increase in A due to shear is of course
analogous to the amplitude growth with height experienced by vertically-

[ propagating waves in a compressible atmosphere (Dunkerton, 1981). But as

noted by Lindzen (1981) and Dunkerton (1982a), when

kA = i(c-i) (1.4)

for waves propagating in the direction of the mean flow, the wave is

' marginally stable to convection in the sense that at some point

ez8 z +i z =0 (1.5)

L within the wave, e being potential temperature. Because when ez < 0 the

convective instabilities will have an initial growth rate

W eg (g - 9.8 ,-2) (1.6)

which is large relative to the intrinsic frequency of the wave as the critical

level is approached, convective breakdown of the wave is expected to occur
(Thorpe, 1981; Koop, 1981).

Second, an upward propagating wave packet induces mean flow accelera-
tions due to wave transience (Dunkerton, 1981 Fritts, 1982b). But on account

E 'of irreversible wavebreaking these transient accelerations will include a

permanent component well below the initial critical level (Dunkerton, 1982a).

[This feature was observed several years ago in the numerical model of Jones

3



and Houghton (1971) but went unexplained until a quasi-linear theory was

advanced by Grimshaw (1975), Dunkerton (1981, 1982a) and Coy (1984).

Incidentally, this mean flow evolution does not require an initial critical

level, since atmospheric compressibility also leads to wave growth as noted

above. In either case there may be significant, permanent mean flow accelera-

tions well below an initial critical level (1.1).

Third, the importance of wave, wave interactions has become the keynote

in the recent advent of "nonlinear critical layer theory," and the discovery

of nonlinear steady-state critical layers (Benney and Bergeron, 1969; Davis,

1969; Haberman, 1971; Beland, 1978; Warn and Warn, 1978; Maslowe, 1973, 1977).

Although the transient development and hydrodynamic stability of these analy-

tic solutions needs to be examined further, it must be admitted that (1.5) is

not a necessary condition for instability of the wave, nor is the K-H condi-

tion Ri < 1/4. Resonant triad interactions, for example, might cause a

dynamical "breakdown" of the incident wave (McComas and Bretherton, 1977;

Weinstock, 1982; Lindzen and Forbes, 1983). Once wave, wave interactions

become significant it is no longer obvious that the critical layer is simply

an absorber of the incident wave; it may act as a reflector (Brown and

Stewartson, 1980; also evident in Thorpe, 1981) or, with perhaps considerably

greater difficulty, allow some wave action to be transmitted. Thus a more

general scenario of transient gravity wave critical layer interaction than

that proposed by Booker and Bretherton (1967) would include the following

ingredients:

dynamical breakdown reflection

wave amplitude permanent mean flow
growth accelerations and turbulent
growth decay

convective breakdown (transmission)

It is expected that dynamical breakdown will ultimately lead to convective

breakdown (e.g. Lindzen and Forbes, 1983). Also, allowance has been made for

reflection and transmission caused by either dynamical or convective

instability.

I



e. Research problems

This theoretical scenario is still somewhat tentative, having several

unanswered questions associated with it. As already noted, it is uncertain

whether convective instability will preclude furmation of the nonlinear

steady-state critical layer in the inviscid case (which, unfortunately, is

difficult to examine experimentally). The occurrence of nonlinear reflection

could, for example, significantly reduce the mean flow modification predicted

by quasi-linear theory, although it will certainly not eliminate it.

Irrespective of this, there are some outstanding questions regarding the

accuracy of the quasi-linear solutions themselves and their dependence on the

WKB approximation (see Dunkerton, 1981). Perhaps the most difficult question

of all is whether or not there exist circumstances in which critical layer

transmission is possible to a much greater extent than predicted by Booker and

Bretherton (1967).

f. Progress summary

In an attempt to resolve some of these issues, and to stimulate further

experimental work in this area, the author's research seeks to investigate the

transient gravity wave critical layer interaction with the help of a deter-

ministic numerical model developed by Fritts (1979; 1982b). In this annual

report attention will be focused on two aspects of this problem. First,

except for the pioneering work of Jones and Houghton (1971), the semi-analytic

model of gravity wave, mean-flow interaction advanced by Grimshaw (1975),

Dunkerton (1981, 1982a), and Coy (1984) (hereafter GDC) has not been tested

numerically. The properties of this model are reviewed in Section 2, and

after describing the numerical model in Section 3, the accuracy of the GDC

'1 solution method is examined numerically in Section 4.

Second, recognizing that inviscid gravity wave critical layers are con-

vectively unstable, a successful attempt has been made to introduce a turbu-

lence parameterization scheme which eliminates superadiabatic regions while

conserving potential temperature and total vorticity. Turbulence parameter-

* - ization in unstable gravity wave motion has been used by several previous

authors, but what is unique about the convective adjustment scheme used here

5



is its computational efficiency and physical appeal, being designed with high
Reynolds and high Rayleigh number flows specifically in mind and avoiding any

reference to artificial eddy diffusion. This convective adjustment scheme is

described in Section 5 and some preliminary results are presented in Section

-. 6.

A discussion of the role of wave, wave interactions in gravity wave
critical layer interaction is reserved for the coming year, in which the
numerical simulations will also be generalized to include more complex flow
profiles and forcings.



2. THE SEMI-ANALYTIC MODEL OF GRAVITY WAVE, MEAN-FLOW INTERACTION

When a single linear plane wave, or a set of such waves acting

independently of one another, interact with the mean flow, with wave, wave

interactions neglected, the model is said to be "quasi-linear". When in

I. addition the waves are accurately described by the WKB approximation, i.e. if

the wave amplitude and mean flow vary slowly over a vertical wavelength, the

V model waves are "quasi-linear and slowly-varying." The mathematical problem

then reduces to a mean flow evolution equation together with a pair of equa-

tions for each wave, viz. a wave action conservation equation and a "conserva-

tion of wavenumber" equation. For two dimensional flow,

ut + o (P u wi)z + "'" = 0 (2.1)
01

where u' and w' are horizontal and vertical perturbation velocity and po =

PSexp -z/H, the basic state density. For each wave,
7-

A + (PoWgA)z = 0 (2.2)
0

mt + Wz = 0 (2.3)

where Wg is the vertical group velocity, m is vertical wavenumber, and w is

frequency relative to the ground. Grimshaw (1975) solved Eqs. (2.1-3)

numerically for a single wave propagating towards its critical level.

Dunkerton (1981, 1982a) obtained analytic solutions by reduction to a single

SL equation

At + [PoWg(oA)] z =0 (2.4)

where 5o is the initial mean flow when A = 0. The crucial approximation

involves setting w= constant in (2.3). Kelvin's circulation theorem implies

[ -A+ a0  (2.5)

Recently, Coy (1984) has tested the accuracy of Dunkerton's (1981) approxima-
tion by numerically solving Eqs. (2.1-3) for a variety of initial profiles.

..7



It turns out that the approximation is quite accurate in cases where an
incident wave packet encounters a critical level within a few scale heights of

I. its forcing level; in these cases the acceleration of wave frequency implied

by (2.3) is largely suppressed by the presence of the critical level. On the

1. other hand, with no initial mean flow, Dunkerton's (1981) approximation

yields the correct level of wavebreaking, but fails to predict the twofold or

I more increase in at the front of the wave packet even when the global

saturation limit (1.4) is imposed (without which there seems to be no asymp-

totic limit to the attainable phase speeds and mean flow speeds at the leading

edge of the wave packet).

The semi-analytic solutions calculated by the GDC method have at least

five interesting features for wave packets of finite duration. First, as the

wave group propagates vertically, insofar as the forcing remains steady, an

equilibrated solution is traced out beginning at the level of forcing. In

this region a small but temporary mean flow change has occurred (Dunkerton,

1981). Second the "radiating" solution in the wavefront region increases in

amplitude with height, soon becoming convectively unstable in the sense that

(1.5) is satisfied locally within the wave (Dunkerton, 1982a). Third, after a

finite time a mean flow and wave action discontinuity develops between the

equilibrated and radiating solutions due to the overlapping of character-

istics. This "internal shock" descends gradually with time so as to conserve

momentum (Dunkerton, 1982a). Fourth, if the wave forcing decreases abruptly,

a second discontinuity, or "trailing shock", forms at the rear of the wave
packet (Grimshaw, 1975; Dunkerton, 1982a). Fifth, the leading edge of the

1. wave packet tends to separate from the lower solution due to its increasing
vertical group velocity (Grimshaw, 1975; Coy, 1984). This effect, however, is

Ilargely suppressed when a critical level is encountered close to the forcing

level.

[ &To illustrate the GDC solution method, Eqs. (2.1-3) were solved on a

finite difference grid with the ions written in nondimensional form

following Dunkerton (1981): d if 'eight is scaled by H, dimensional

wave action, mean flow, and phasc E scaled by the forced phase speed5 I c(O), and dimensional time is s , NH/kc 2 (O), where N is the static

I8



stability and k is zonal wavenumber. Fig. 1 displays the nondimensional wave

action density A* and percent increase in phase speed for the case

z*-1.93 +1.00
1.03 tanh + (2.6a)

0

4 wrt
A*(O) = .0092 sin (t 14.2) (2.6b)2I
W* = (c* - U.) (2.6c)
g

corresponding to a numerical simulation performed during the course of this

investigation. The initial critical level is at 1.93 scale heights. (For the

numerical simulation corresponding to this solution, the scale height is
-1

9.333 km, c(O) = 39 ms , and the time scale is 864 s.) The initial critical

level acts as a complete barrier to wave propagation even though c* is locally

accelerated by 30% in the front of the wave packet; the reason is that at the

leading edge of the wave packet no acceleration has occurred, so c=c(O),

whence W =0 at the critical level at all times. This is some evidence ofg
splitting of the wave packet as found by Grimshaw (1975) although this effect

is slight due to the initial critical level.

* The saturation limit (1.4) originally suggested by Lindzen (1981) has

been imposed on this solution, and is quite crucial to the asymptotic

behav.ior. The procedure is simply to set kA-kAs V(c-u) whenever superadia-

batic values appear (Dunkerton, 1982a; Coy, 1984). In Fig. 1 saturation first

occurs near the onset of the A* = .15 contour; asymptotically the entire

critical layer (A* > 0) is marginally stable. Because irreversibility is

j implicit in (1.4), a permanent mean flow change remains after the wave packet

has decayed to zero. [Grimshaw (1975) recognized a permanent mean flow change

in his solutions, but for an arbitrary damping not directly related to supera-

diabaticity.] Moreover, the permanent mean flow change includes a discontin-

uous "residual shock" at the lowest level of wavebreaking (Dunkerton, 1982a).

This feature also appears in our numerical model, as'discussed in Section 4

below.

[ 9
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p 1*Ii
Ii Without the saturation limit (1.4) or some other damping, the critical

layer in this case would evolve to an unrealistic delta-function shape beneathIi the initial critical level. Clearly, saturation and wave absorption plays an
important role in the asymptotic behavior of the critical layer.
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3. MODEL DISCUSSION

Fritts (1979, 1982a,b) has investigated gravity wave excitation and

propagation with a two-dimensional, Boussinesq, nonhydrostatic numerical

1. model using a streatfunction-vorticity-density representation. The same
numerical code is used here to study atmospheric gravity waves, but with two

simple modifications: potential temperature replaces density as the

conserved variable, and all nonlinear Jacobians in the wave equations are

density-weighted. The vorticity and potential temperature equations for the

perturbations from the zonal mean are:

+ '+ w'6 - g -- + exp o [ ,rn') - J(P',n')] D(n) (3.1)

+ 0 e'+ wou + exp - J(*',e') - =D() (3.2)

where *' is the wave streamfunction

n' V24,1 (3.3)

and D(i), D(e) represent sub-grid scale diffusion and convective adjustment.

(Without convective adjustment, D = vV2/ z 2, where v = .01 m 2s-1 exp z/H and

is physically almost negligible.) The primed variables are not the physical

wave fields; rather

pyial wave ~ = model wave~ x exp Z (3.4)
(h fields fieldsN

from which originates the density weighting in the Jacobian terms. (These

I1 terms are set to zero in quasi-linear simulations.) This is the only effect

of compressibility on the wave fields allowed in our model. Compressibility

in general will have other effects, including a contribution to the solenoidal
-1term (p8) " ve x Vp and a divergence vorticity contribution nV'u. These other

effects, however, are small when

for the model waves, and this requirement is satisfied in the model simula-
[tions described here.

[ 12



4v.

- The mean flow represents the physical zonal mean wind, and therefore

satisfies the evolution equation

at + ')z = vzz (3.6)

noting that u'w' is actually the density-weighted Reynolds stress.

Eqs. (3.1-3) and (3.5) are solved by a Fourier transform in the hori-

zontal and finite differencing in the vertical, resulting in 6N eddy equations

where

° z) N In(Z)
e+ e(x, z) e n(z) exp inkx

'(x,z) n-n I * n(Z)

Unless specified otherwise, the basic state and wave parameters are as

follows. The grid is 30 km high having 401 grid points (Az = 75 m). The

horizontal width is 50 km and periodic boundary conditions are imposed. (This

choice of grid size is well-suited to middle atmospheric gravity waves; how-

ever, the numerical code is nondimenslonal and can be used to study waves of
any length scale.) A canonical initial mean flow is used of the form

5W - 5H tanh D (3.8)

where 5() = 40 ms- , zc = 18 kin, and D = 8 km. The static stability is

assumed constant in height and time:

[ N H! .0003 ( E 2/7) (3.9)

[ noting that w'O' -0 for the Boussinesq plane wave.

The vertical boundary conditions assume a rigid upper boundary (in cases

where a critical layer absorbs the incident wave) and a vertical velocity

perturbation at the lower boundary representing a stationary wave:

[
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I1.

w'(x,O,t) = W(x)f(t) (3.10)

Jl In the experiments reported here, W(x) is a sinusoidal wave of horizontal

wavelength 50 km. Three case studies are presented:

Case I: f(t) - sin 2 t t < tf 3000 s. (3.11a)
tf

t
Case III: f(t) = t f t < tf 12000 s. (3.11c)

i 1 t>tf

and the forced wave amplitudes are

V 1 -1
3.0 ms (Case I)

I W(x)l = 1.5 ms-1  (Case II) (3.12)
S.75 ms-1  (Case III)

The model time step is

At - 12.5 s. (3.13)

equal to approximately 1% of the intrinsic period of the forced wave. Other

details of the numerical method appear in Fritts (1979) and will not be
repeated here. Discussion of the convective adjustment contribution to D(n),

D(e) is deferred to Section V below.
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4. COMPARISON OF SEMI-ANALYTIC AND NUMERICAL SOLUTIONS

Nonlinear critical layer theory has highlighted the fact that critical

levels in reality take the form of critical layers of finite thickness.

However, even in linear theory the critical layer is of finite extent by

virtue of the Uncertainty Principle

AwAT 2 n (4.1)

The Booker-Bretherton (1967) solution unrealistically requires forcings of

infinite duration AT to achieve a singularity in the steady-state, i.e. Aw =

0. Under more realistic circumstances the uncertainty in wave frequency leads

to a critical layer of finite thickness (Fritts, 1982b); therefore, for large-

amplitude transient-impulse forcings, wavebreaking and mean flow accelera-

tions can occur large distances above and below a supposed initial "critical

level".

Case I illustrates this effect. Fig. 2 shows the mean flow in a quasi-

linear simulation at t = 1000 and 12000 s. The critical level is very poorly

defined in this case. Mean flow accelerations are observed well above (z/z )

- .6, the initial critical level of a monochromatic stationary wave. There is

no evidence of the specific features of the GDC solution corresponding to this

case other than the overall positive acceleration of the mean flow. Instead

the mean flow behaves as if the wave packet contained a wide range of phase

speeds in accordance with (4.1). This experiment and others like it suggested

that the relevant value of AT in (4.1) is the time duration for which f(t) >,

112.

The shape of the evolving wave packet in u' for Case I is shown in Fig. 3

at 8000 s. The vertical wavelength decreases with time, and the wave

j amplitude initially increases, rapidly causing overturning in the 8-field.

The region of overturning is shown as a vertical bar to the left of each

[ *figure; note how it approximately coincides with

u'I > Ic-5l (4.2)

I

. . . .. ... . .... --= -- mL-i $' O, . ... - . . .. 1 5t
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Figure 2. Zonal mean wind at t-O and 12000 s. for Case 1. (In this and the

Sfollowing figures z0 is the domain height, 30 km.) Unts:ms-1.
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Figure 3. Perturbation zonal wind for Case I at t=8000 s. Also shown are

estimated intrinsic phase speed (dashed line) and region of over-

turning (vertical bar at left). Units: ms'l
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(dashed line), where c-5 has been determined by visual inspection of the

vertical wavelength in Fig. 3 and the linear dispersion relation

m N2  k (4.3)

(Orlanski and Bryan, 1969). A kinematic explanation of (4.2) is obtained by

translation to a frame of reference moving with the wave (in this case

stationary); for conservative motion the 0-surface is also a material surface

along which air parcels move, therefore an overturned 0-surface requires

backward parcel motion relative to the mean flow in this reference frame.

Note that the disturbance parcel motion is determined by ut, the Lagrangian

perturbation zonal velocity, which for small vertical shear is approximately

the Eulerian value u' (Andrews and McIntyre, 1978; Dunkerton, 1981). Of

course, although the region of overturning in Fig. 3 is quite broad compared

to the GDC solution (which is qualitatively similar to that of Case II below)

it is correct to speak of the overturning as a critical layer instability,

keeping in mind the somewhat imprecise nature of this terminology due to

(4.1). As noted in the Introduction, this critical layer effect is a specific

case of wave saturation, which in general does not require an initial critical

level.

The GDC solution is much more accurate when f(t) satisfies the slowly-

varying approximation, i.e.

tf >> forced wave period (4.4)

Case II illustrates a nearly "monochromatic" quasi-linear example of this

type. Fig. 4 shows the mean flow evolution at t = 8000 and 12000 s compared to

its initial value (dashed line) and the saturated GDC solution (triangles).
Even in this example there is still a small transmission through (z/z ) = .6

in accordance with (4.1). This is entirely a non-WKB effect as the GDC

solution indicates; in the latter there is no evidence of critical level
transmission. (A similar remark would seem to apply to the numerical simula-

tion of Jones and Houghton, 1971). There is, however, no evidence of

splitting of the wave packet as the GDC solution predicts.
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Figure 4. Zonal mean wind for Case II at (a) t=8000 s, (b) t=12000 s, compared
-1

to the initial mean flow and nonsaturated GDC solution. Units: ms

* (Short dashes indicate convectively unstable solution.)
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Potential temperature fields for Case 11 are shown in Fig. 5. The time

scale for wave amplitude growth, and hence for overturning of potential

temperature surfaces, is of order unity in the GDC nondimensionalization
(Section 2), or about 1000 s. This is long compared to the local convection

time scale

tc 2r IT 0
* g-j (4.5)

for the values of 60 and 6z characteristic of the overturned regions; there-

fore, convective breakdown is expected. But this quasi-linear model does not
"see" the local regions of unstable lapse rates; as a result, the overturning

continues to intensify as the vertical wavelength decreases, until the fixed-
resolution model cannot resolve the vertical scale of motion any longer.

Convective adjustment, as discussed in Sections V and VI, greatly
affects the critical layer behavior once the overturning begins, as might be

anticipated from Fig. 5 and Eq. (4.5).

We conclude this section by noting that a highly transient forcing is not
the only way to violate the slowly-varying assumptions of the GDC model.

Steep mean wind shears relative to a vertical wavelength also cause a non-WKB

effect. As Dunkerton (1981) noted, even the GDC solutions with their mean
flow discontinuities eventually violate the WKB assumptions on which the
solutions themselves depend, implying, for example, partial reflection from

the internal shock. To attain downward reflection in a single wave event,
wave momentum flux must be incident on the mean flow discontinuity; that is,

it must be an internal, not trailing, shock. Case III illustrates a sustained

forcing resulting in partial reflection. Fig. 6 displays the mean flow and

eddy kinetic energy profiles for this case at t = 22000 s. The steep shear
zone at (z/z 0) = .46 implies a mean flow RI of 0(.8), which continues to
decrease with time. A small reflected component is evident in Fig. 6b below
the critical layer. This appears to be a real feature in view of the high
vertical resolution employed. Some internal reflection is also evident
within the (albeit unstable) critical layer. The occurrence of partial down-
ward reflection from the critical layer seems to be a secondary effect; in
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Figure 5. Potential temperature fields O(x,z) for Case 11 at (a) t=6000 s, (b)

t=7000 s, (c) t=8000 s, and (d) t=9000 s. Contour interval is .025
in nondimenslonal units normalized by i(0).
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Figure 6. Partial reflection from the internal shock in Case III at t.22000 s.,

(a) mean flow profile in ms 1 ; (b) eddy kinetic energy showing

i. reflected wave component below the critical layer.
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this case, the internal shock is not prevented from descending on account of
reflection. At t - 3000 s, for example, the critical layer has descended to
(z/z 0 .41, even though the minimum RI is still decreasing.

While in this experiment partial reflection is strictly a quasi-linear

effect, nonlinear theory also predicts reflection even without taking into
* account the mean flow modification (Brown and Stewartson, 1980), which would
I. in reality probably enhance the total amount of reflection (Thorpe, 1981)

while possibly reducing the net mean flow modification.

Finally, note that there is some evidence of partial reflection in
* equatorial Kelvin waves (Salby et al, 1983). To the extent that the data is

reliable, these observations might very well be the first evidence of critical
layer reflection in the atmosphere. Considerably more investigation will be
necessary to determine the cause c this reflection, whether it is quasi-
linear or nonlinear, and asso ciated with any well-defined critical layer.

7 -
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5. A LOCAL CONVECTIVE ADJUSTMENT PARAMETERIZATION

The saturation limit (1.4) is a global convective adjustment parameter-

ization, acting to restrain the forced wave amplitude independently of the
7' wave phase

0Hk(x-ct) + mz (5.1)

Quite correctly, however, it could be objected that since unstable breakdown

occurs locally within the wave where 0z< 0, the resulting turbulence will be

I phase dependent, possible resulting in other effects besides wave absorption.
Now in principle the Boussinesq equation set (3.1-3.3) could be used,

j with arbitrarily high horizontal and vertical resolution, to explicitly model

turbulence due to convective instability (Fritts, 1982b). However, there are
I certain practical and computational limits which prevent us from modelling

the fluid motions at ever-smaller scales, towards which convective instabili-
ties will inevitably cascade. Therefore a turbulence parameterization of the

sub-grid scale motion is required.

Towards this end we have developed and successfully implemented a con-

vective adjustment scheme which is built on the simple premise that convective
instability acts to eliminate superadiabatic lapse rates. A novel feature of

Iour scheme is the avoidance of any reference to "eddy diffusion". Instead it

is assumed, appropriate to all the specific examples we are currently

I studying, that convective instabilities are rapid, steady, and efficient in
their "neutralization" of unstable flow profiles. This assumption is
identical to that underlying the saturation limit (1.4) and its use in the GDC
model. The essential difference, however, is that convective adjustment is

I now applied locally within the wave.
The purpose of this and the following section is to describe the adjust-

I ment procedure and to show how it dramatically affects the critical layer
evolution in the case studies cited earlier. These examples are quite
idealized and of limited interest; nevertheless, the convective adjustment

I parameterization has been successfully implemented in very complex flow
profiles with 64-harmonic resolution, and later reports will present some
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examples of its use in more complex and realistic wave, mean-flow interaction

problems.

*. a. Earlier turbulent adjustment schemes

Previous authors have attempted to account for dynamical or convective

breakdown in unstable gravity wave motion (e.g. Orlanski and Ross, 1973; Klemp

and Lilly, 1978; Peltier and Clark, 1979; Fua et al, 1982; Durran and Klemp,

1982). These suggested turbulence closure schemes have little in common

except to enhance the turbulent eddy diffusion within "dynamically unstable"
1

(Ri < 1/4) or convectively unstable (Ri < 0) regions. An exception is the

isentropic coordinate model of Klemp and Lilly (1978) in which an instantan-

eous turbulent adjustment procedure was applied when Ri < 1/4.

It is beyond the scope of this paper to review each scheme in any detail.

- However, it is worthwhile to note that in each case the adjustment is local;

e.g. local turbulent diffusion is of the form

D = V.v(x)V (5.2)

In a longitudinally-dependent flow, v(x) acts to scatter wave energy among all

Fourier harmonics, in a manner analogous to that of the advectively nonlinear

Jacobians, which (5.2) is intended to parameterize at sub-grid scales.

Following Fua et al (1982), this scattering process will be identified as

wave-turbulence interaction.

b. Convective adjustment

- For several years, convective adjustment has been employed in general

circulation models to neutralize convectively unstable lapse rates due to

radiative heating in the lower troposphere. Climate modellers working at long

time scales seek to avoid both explicit calculation and diffusive parameter-

ization of convection effects. Instead, the quite reasonable assumption is

•I. made that convection quickly acts to eliminate superadiabatic regions.

In adopting this approach, which actually bears a slight resemblance to

j that of Klemp & Lilly (1978), we regard the gravity wave critical layer

breakdown as a problem eminently suited to convective adjustment, provided

1The quote marks indicate our understanding that Ri < 1/4 is not a general

dynamical instability criterion for gravity waves.
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that certain simple criteria are satisfied. First, the Reynolds and Rayleigh

numbers must be adequately large such that diffusion plays no role at the
resolved scales of motion. In the calculations presented here v =.01 m 2s -

and is practically negligible at the model scales. Second, the overturning

must occur slowly relative to the rate of growth of convective instabilities
(4.5) -- a criterion with which surfers are personally familiar. 2This condi-

tion is, of course, quite easily satisfied in inviscid gravity-wave critical

layer evolution and for the long horizontal scales employed here.

Convective adjustment, when appropriate, has at least three important
advantages over enhanced turbulent diffusion. First, it efficiently replaces

large eddy diffusivities and their large gradients which might be required to

maintain near-neutral lapse rates. Second, the effect of convective adjust-

ment immilediately extends outside the unstable region, unlike all turbulent
diffusion schemes written in the form v(Ri) or v(Ra) which incorrectly ( or at
best, inefficiently) identify regions affected by instabilities as satisfying

some local instability criterion. Third, a convective instability parameter-
ization applied in a nonlinear code allows the model itself to determine
whether a gravity wave is dynamically unstable, including K-H modes of
instability,

Initially it was thought that convective adjustment would be unsuitable

in a dynamical model, possibly acting to "shock" the numerical wave fields.
In general, however, this problem was not at all severe. Nevertheless, to

eliminate any potential problems of this sort, it was found that Partial
convective adjustment was virtually as efficient as a total adjustment injmaintaining near-neutral lapse rates within the wave. This procedure also

allows a convection time scale to re-enter the problem when desired.

2 The breaking surface wave manifests large horizontal parcel accelerations

relative to gravity (Baker et al, 1982) and therefore the heavier fluid can

temporarily find itself suspended over the lighter fluid. The pall of water
swung in pendulum fashion over one's head is (hopefully) convectively stable

also; in (4.5) it is the gradient parallel to the net acceleration which is

relevant (Drazin and Reid, 1981).
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c. Relaxation to neutral equilibrium

The convective adjustment procedure begins with an FFT to physical space
E

to examine where (1.5) is satisfied. An adjusted 0 (z) column is then

returned to the main program as shown in Fig. 7. This procedure is repeated

for each column until a convectively stable OE(x,z) field is created. The new

field 6E is regarded as an equilibrium field which has conserved total poten-

tial temperature (cf. Fig. 7).

Following the vorticity diffusion approach of Orlanski and Ross (1973),
E

an equilibrium vorticity profile n (z) is also calculated, column by column,

mixing together the values of q at each vertical group of grid points affected
Eby the e-adjustment in Fig. 7. In such regions n (z) is set equal to the

E
average of n over these points. Other, more complicated nE profiles were

constructed similarly (by weighting the average relative to the distance from

the endpoints, for example) but with little observed effect. This procedure

is analogous to the vorticity diffusion used by Orlanski and Ross (1973).

Convection will of course create vorticity locally, but the integrated effect

between any two stable isentropes is zero by Kelvin's circulation theorem.

Like Orlanski and Ross, we assume that whatever sub-grid scale structure is

created in the vorticity field is not relevant to the larger-scale dynamics.

Incidentally, since to within the approximations of the model, density is

nearly constant over a vertical wavelength, no attempt has been made to

conserve the mass-weighted variables p, 0 n r although in general this should

be done.

Finally, the new vorticity and potential temperature fields are deter-

mined by the frictional re'iyation formulas

new t t old (5.3a)

1 E
,n' = 0 , - t (5.3b)

new old
The inverse convetion time scale could be regarded as the single floating

parameter in this "closure' scheme. Although in general could be calculated

explicitly as
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Figure 7. Illustration of how a unique equilibrium potential temperature

profile OE (z) is created from an unstable B-column. The shaded

regions represent equal mass (mass-weighted in general) thus

Fconserving potential temperature. The equilibrium vorticity

profile nE(z) is set equal to the average value of n in the

mixed region; outside this region, 8E= and TE=7.
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CL 0(tj') (5.4)

for our observed values of tit seemed desirable to instead work with a fixed

value, e.g.

at~t = 0.125 (5.5)

* because calculated values of cL~t would be near unity, possibly causing

spurious numerical effects. Interestingly, the partial relaxation (5.5)
seems able to stabilize the flow in the examples discussed here, without

* causing numerical side effects.
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6. IRREVERSIBLE ABSORPTION AND MEAN FLOW ACCELERATION AT THE CRITICAL LAYER

Both the transient-impulse (Case 1) and nearly monochromatic forcing

(Case II) provide excellent case studies for convective adjustment. Because

Case II compares especially well to the GOC solution, it is of interest to
first compare the "isaturated"l numerical and semi-analytic solutions for this
case.

Fig. 8 displays the potential temperature fields for the quasi-linear

Case II with partial convective adjustment according to (5.3) and (5.5). Note

that in Fig. 5d the convection time scale is 0(110 s.) so that (5.5) actually
represents a somewhat slower time scale of 0(250 s.) which, nevertheless,

virtually eliminates the superadiabatic regions. Small regions of over-

turning in Fig. 8d are probably the result of the horizontal truncation used
in this case (N=8). A companion experiment with aAt=1, but with the adjust-

ment applied once every 8 time steps, yielded very similar results but

including a significant, and possibly spurious, wave 1 component reflected

from the critical layer.

Fig. 8d (t=12000 s.) is characteristic of the asymiptotic state,

including an undisturbed flow at low levels, a turbulent critical layer
bounded underneath by a steep gradient in wave amplitude and mean flow, and an
almost undisturbed flow above the critical layer. Curiously, comparison of

the "saturated" and unstable solutions suggested that convective adjustment
acts to slightly reduce the amount of transmitted wave energy in this case,

which is in both cases associated with the transient switch-on of the forced

wave.

What is of most interest in Fig. 8d is the reduction in wave amplitude

clearly evident in the weakening of the "braids", or dense-contour regions,

which up to this point have been intensifying and would otherwise continue to
do so in the absence of convective adjustment. Fig. 9 confirms that the
domain-integrated eddy kinetic energy is at this time down by a factor of 3
from the unstable case. Wave action conservation implies a reduction in wave
energy in both cases as the critical level is approached, but the critical
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Figure 9. Zonal mean wind at (a) 8000 s., and (b) t=12000 s. for Case II with

convective adjustment, compared to the initial mean flow and satu-

rated GDC solution. Units: ms. (Short dashes indicate margin-

ally stable solution.)
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layer absorption is now dramatically enhanced due to convective adjustment.
Most of the wave energy has gone to the mean flow; in Fig. 9 only a small

fraction has been transferred via parameterized wave-turbulence interactions

to the higher harmonics. It is likely that more energy would have found its

way to the higher harmonics had the wave-wave interactions been included;
however, for near-stationary waves all but waves 1 - 3 are evanescent away
from the critical layer in this mean wind profile when the horizontal scale is
50 km.

Inasmuch as the results of this particular case seem to confirm Lindzen's
(1981) global amplitude balance model, it is not surprising that the mean flow
evolution to a large extent also proceeds in accordance with the saturated GOC
solution. Fig. 10 indicates that the discontinuity in mean flow coincides
with the residual 'shock of the GOC solution at (z/z 0) = .41. To suppress

sall scale noise in 5, a 1-2-1 smoother has been applied to the mean momentum
correction p (5-5 ), equivalent to an enhanced global eddy diffusion of 0(44
M2 -1 ).0

Comparison of Fig. 10 with Fig. 4b shows larger (smaller) accelerations
at the bottom (top) of the critical layer in Fig. 10, consistent with theory

(Dunkerton, 1982a). There is a qualitatively similar mean flow change in both
cases, but the fact must not be overlooked that in Fig. 10 this change
approximately represents the asymptotic effect, whereas Fig. 4b does not
since no dissipation has occurred there. A permanent change in u- has now
occurred, over a finite height interval, due to convective adjustment.

Continuing the numerical simulation to t=20000 s. did not reveal any

change in the thickness of the critical layer in agreement with the semi-
analytic theory, and asymptotically the entire critical layer seemed to
remain marginally unstable.

Case 1, the transient-impulse experiment, was also repeated with convec-
F tive adjustment applied, and with similar results (not shown). In this case

overturning occurs more rapidly due to the larger wave amplitude; however,
convective adjustment once again eliminated the superadlabatic regions.
There is considerable transmission through the initial critical level in this
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case, but this is entirely the effect of the impulsive forcing, not convective

adjustment. However, in this case convective adjustment did effect a

permanent mean flow change well above the initial critical level due to the

over turning observed there (cf. Figs. 2 and 3). The magnitude of this mean

flow modification above the initial critical level was found to be slightly

reduced by convective adjustment, as we would expect, but the vertical extent

of the transmitted component remained about the same.

The effect of convective adjustment on Case III, the experiment with

sustained forcing, is shown in Fig. 10. Saturation has increased the strength

of the internal mean flow shock, resulting in a slightly larger reflected

component, and has severely reduced the reflection within the unstable

critical layer. Fig. 10a provides perhaps the best comparison to Coy's (1984)

monochromatic slowly-varying results, with the formation of a secondary mean

flow maximum beneath the initial critical level.
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7. CONCLUSION

The author's research has attempted to test the accuracy of the semi-
analytic GDC method along two lines; first, with regard to the accuracy of the
WKB approximation; and second, with regard to the validity of the global
amplitude balance model of Lindzen (1981) as a "saturation" criterion in the

GDC model . On both counts the numerical model results have seemed quite
predictable. Because in the GDC model the WKB approximation is invoked in
time and height, violations of this approximation in either dimension will
produce non-WKB effects, notably critical layer spreading and partial

reflection.

Section V has introduced a convective adjustment parameterization which

is intended to serve as a local, multi -dimensional generalization of
Lindzen's (1981) one-dimensional global amplitude balance model. The simple

case studies presented here, in which a single Fourier harmonic interacts with
the mean flow in the vicinity of its critical level, seem to confirm the
underlying assumption of Lindzen's (1981) model, viz that convective

instabilities primarily act to restrain the amplitude of the overturning wave
so as to prevent further overturning. Perhaps the reason for this agreement

is largely geometrical; the difference between Lindzen's neutral single wave

and the neutral configuration returned by our convective adjustment scheme
is, after all, not great.

These case studies are of somewhat limited interest due to their simplic-
ity, but perhaps the most significant feature of our local convective adjust-

ment scheme is its appl icabil1ity to more complex wave, mean-f low prof iles. It

is to these more interesting, multi-harmonic case studies that our attention
will turn in the coming years. Moreover, the transient development of the

nonlinear solutions has not yet been addressed here, but the turbulence
parameterization introduced in Section V will enable us to determine whether

or not, or under what circumstances, these solutions are attainable, and if
nonlinear reflection is important.
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