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integrcal stoozing ceriterion was compared to & stopoin~ ceriterion that
uses the displacement betieen itsrations to adporoximate the error
oetween the iterative solution and the exact solution. The variational
intesral was found to be less effective as a stopzin~ criterion than
the error estinmate.

The variational intesrel was examined as a method of determining

Q vhether the finite-difference teciinicue or the Tinite-element techniicue
rave a more accurate solution. It was found that the variationsl in-

damy - 2 Pal 3 4 - PR Ry S A - ~ 4 -y o~
~e.ral failed, in some cases, to gredict th2 rore accuraie Tz,

T

RS viii

-q.v -( -._‘-',.-'. " “‘ - .*. L e Y ' AT, )-vr" -'...r:.. e -I.-:...-._\.‘_~~ .

NN

« @ 8. 8 v v . -

LR

3NN e SEL s

.

ey

‘9 "3 g e ") T 0

v
o




i At N ok ppi SR LU B KRS et A AAAradl Aol eI d A St LA A Sl AR A M . ..,-,-..s.-:!'FT
3
N

Pu

a X
s I Introduction
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f:J Background

¢d
*i.* In practice, the mumber of boundary value problems that can be
W solved analytically is quite limited. Consequently, mumerical techni-
:f.: ques are used to approximate the partial differential equations associ-
i::i ated with the boundary value problems. These numerical techniques

at often lead to large sets of simultaneocus equations. These ec .iuns
:-’ are usually sparse (they contain few non-zero elements in the ‘oeffi-
gﬁ cient matrix).
i Iterative techniques are often used to solve large sets of simul-
é?, taneous eguations. These techniques have two major advantages over
: 2:5.: methods that solve the simultaneous equations directly. First, itera-
\ v @ tive methods avoid calculations with the many zero elements in the
o ; V coefficient matrix while direct methods perform calculations on every
$ j element of the coefficient matrix. Secondly, iterative methods are not
hats as susceptible to the accumulation of round-off error.
E" An inportant difficulty with the iterative techniques is

::::: determining when a sufficient number of iterations has been capleted
.. to ensure an accurate solution. This thesis addresses the problem of
f_; when to stop iterating.

;EE Many boundary value problems can be expressed as variational
integrals to be minimized. Accordingly, one possible test for conver-
:E‘: gence of the numerical solution to the boundary value prcoblem is

.",:: whether it minimizes the associated variational integral.
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SR, Freblen
i _ o The primary purpose cof this thesis is to determine the usefulness
2:3' of the variational integral as a test for termminating the iterative
.‘ ; process.
R . . .
The seccndary purpose is to determine the usefulness ori the

f:-s variational integral as a means of determining which numerical method
tf;‘ gives a more accurate solution.
_ 2\ This thesis is limited to the study of stationary (time-inde-
._ pendent) heat equations in one and two spacial dimensions. The numeri-
‘ cal approximations to the boundary value problems consist cof the
.:: finite-difrerence and finite-element techniques. The iterative scheme
EEE used is the Gauss-Seidel method (method of successive displacements).
. @ Approach and Presentation
',:_: Section II introduces the theory necessary to understand the

?,,:-::E variational integral, the finite-difference method, and the finite-

- element method. The Gauss-Seidel iterative technique is discussed.
; :{ The concept of nomms is introduced and is applied in exanmining stopping
ﬁ: criteria.
Section III introduces the three stationary heat equations con-
\ sidered in this thesis. The variational integral formmulations of the
}:é prablems are given and the numerical approximation techniques are

= applied.
_; Section IV presents the results of the study. First, errors
"‘i caused by approximating the variational integral are examined. Next, |
é the utility of the variational integral as a stopping criterion is
RS
T
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discussed. Finally, the usefulness of the variational integral as a

)
AL

means of determining which numerical method gives a more accurate

-

solution is analyzed.

PP A

Section V draws conclusions and gives recamendations for future

<

o

studies.
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E‘:‘sa Variational lutegial
)
0
’H:i: Many problems in the physical sciences can be solved in two ways.
a’,‘
i First, they can be written as differential equations subject to given
: ',.Ej boundary conditions. Secondly, they can be written as variational
S
.}:{2 integrals to be extremized (maximized or minimized). The two formula-
R
=k tions are equivalent because the function that will extremize the |
o variational integral will also satisfy the differential equation. This
;’E equivalence ia demonstrated by the fact that the variational integral
N
““ is extremized only when an equation, called the Euler-Lagrange
) !
;;2 equation, is satisfied. This Euler-Lagrange equation is precisely the
C}
"% same as the differential equation formulation of the problem
33
.. @ (Ref 8:67). In general, only elliptic differential equations can be
,}‘:‘3 written in variational form (Refs 8:117; 5:164) but some exceptions
o
:,’.::1 have been found (Ref 7:252-256).
e
’ In variational calculus, one looks for the function t(x,y) with
"a-:f continuous second partial derivatives, that extremizes I(t) on region R
f".q
\'-;:: of the x~-y plane:
W I(t) = ffRF(x.y,t,tx,ty)dxdy (2.1)
3
f.\\q where
-P\’
oy t = t(x,y) (2.2)
2%y
N 2
o = -2 2.
!‘,‘3 tx th(X,Y) ( 3)
& )
| ty = -@t(x,y) (2.4)
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To find t(x,y), examine the set of functions
te,y) = tlx,y) + entx,y) (Z.5)

where € takes on some value close to zero and N(x,y) is an arbitrary
function with continuous second partial derivatives. At this point, an
important assumption is made. It is assumed that t is given on the
boundary as a constant or as a function of x and y. As a consequence,
t is not subject to variation on the boundary and n(x,y) rust equal
zero on the boundary.

Swbstituting Eg (2.5) into Eg (2.1) gives
J(E) = I(t+en) = ffRF(x,y,t+€n,tx+€nx,ty+€ny)dxdy (2.6)

Anecessaxyconditionforltohaveanextramnnat;:=tisthat

J{g) must have an extrerum at € = 0, So
23 =0 2.7)
ae ( )'€=0 - ( .
DizZferentiating Eq (2.6) with respect to € gives

3F | 3¢t BF._-’E+3.§_._Y)dxay (2.8)

3
= = ¢ — + ——
3l (&) ”R(aE B 8%, "B et e

or
] JaF aF oF
= o ——— —— d)d 2-9
ggJ(e) ffR (nat+nxat +r'yat) y (2.9)
X Y
By the chain rule (Ref 1:92)
'a(ar)_ 5F a(ap)
o {Ne— = =N, + N—| — (2.10)
9x th atxx 9xX atx
5
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":3 i therefore

Y ':.\“

{ w_a(ar) a(ap)

: Ny S ag N |~ Nag | == (2.11)

e p)

.‘§. X3 " X atx X 3,.3{

.

g

o and

le F _ 3 ( ar) 3 (aF

SR Nyaz~ = 5wl =)~ ns')',' BT (2.12)
o Yoty T\ Py ty

3

A Substituting Eqs (2.11) and (2.12) into Eq (2.9) gives
%:r

. 3 I K 5F

: EJ(E) = fJR"\ [‘g-' r(ai 3y Bty] dady
.

3 3 3 [ aF
r FN+2 (e 2.
R + R K(“S'E;)*ay(“aty)d’dy (2.13)
':3 By applying Green's Theorem (Ref 1:197), the second integral in Eg
N,
N (2.13) can be transformed into a line integral
4!2_
" ] oF 3 oF
) (E) oF —(—:—)- _("T“) dxdy
: 'EJ [Bt X atx oy aty |
|
\] |
EA
R + r(n:}“ \)dy - (ség‘_)d% (2.14)
¥ AT
NG
T“ But since nNix,y) = U .« boundary, C
%
% 3 sr o [aF \_ 5 [9oF
= —=-— =] == ]| (2.15
33 —EJ(e) ffRn 3%~ 3w (th) BY(aty) y )
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R Recall that
el 3 =

xi%; 3@ g = 0 @.7)
§},~ if I is to have an extrenum at ¢ = t. Therefore
] JF ) oF 3 JF

R — - - =

2N IR |5E ’&(’at—x ’ay(sg) ey = 0 (2.16)
-_ﬂ\

J4A

} Since n is an arbitrary function of x and y then
S ap_a(ap)_a(ap)_o (2.17)
A . —— — ~mr— a— - .
‘-21 ot x ot oy ty
‘.“ \ Eq (2.17) is the Euler-Lagrange egquation and it must be satisfied for t
: to extremize I(t). In the derivation that lead to Eg (2.17), it was

assumed that the function, t, was specified on the boundaries (Dirich-
let boundary conditions). Other boundary conditions could produce a
change in the integral that is to be extremized. A method of determining

the variational integral for other boundary conditions is given in

Mikhlin (Ref 12:116-121). For all the problems considered in this

thesis, the Euler-Lagrange equation given as Eg (2.17) will give us a

1}
%, function, F that extremizes I(t) as given in Eq (2.1).
"?1 Finite-Element liethod

( : The finite element method involves extremizing the variational
;-3 formulation of the problem. The solution region is divided into
interconnected subdamains — the finite elements. The elements in
. one—dimensional problems are line segments. The nost versatile ele-
Z'S{: ments in higher dimensions are triangles rfor two—dimensional problems
: and tetrahedrons for three~dimensional problems (Ref 8:86). Next,
"z ;::;,' iterpolation functions are chosen to represent the tenperatures
fa 7
‘u).

'
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over each element. These interpolation functions are often poly-

nanials. Suppose the function being integrated under the variational
integral contains derivatives up to the (r+l)th order. Then, the
interpolation tunctions must have rth order continuous derivatives at
the element interfaces and (r+1)th order continuous derivatives within
each element (Ref 8:124). When these criteria are met, the variational
integrali for the entire solution region can be written as the sum of
the variational integrals of each element (Ref 8:78).

An interpolation function for the temperatures on an element is
written in terms of the nodal values associated with that element. The
variational integral is evaluated over the element ard the integral is
differentiated with respect to the nodes and set equal to zero in order
to extremize the variational integral on that element. The equations
for each element are assembled to give the equations governing the
temperature over the entire region. In this manner, a set of equations
is created which can be suived simultaneously to find the temperatures
at the element nodes. This set of simultaneous equations can be

written in matrix form

At =Db (2.18)
vhere
A = a coefficient matrix
£t = vector of unknown nodal temperatures
b = vector of knuwn constants

Rather than go into the details of the process here, an example is

given in Appendix A.
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A . Finite-Difference Method

bk R
f ) e A differential equation can be converted into finite-difference

D Kﬁ LY
‘\ form by approximating the derivatives in the equation by differences.
1

WA The elementary definition of a derivative is (Ref 3:54)

..{

¢4 dat 1li t + | -t

R

:'. The derivative is approximated by a divided difference

31, .t bx) -
;; % ~ t(x A}A()){ t(x) (2.20)
1339

R

ﬁj In one-dimensional problems, the solution region is broken into
;\ line segments and a nodal point and its neighboring nodal points are
3‘ used to approximate the derivative at that nodal point. In this

1N

) @ manner, a linear difference equation is created for each nodal point.
'r ‘\ d

"& The equations for the individual nodal points can be assembled to give
oA

% a set of algebraic equations to be solved simultaneously. Linear

Y. h

canbinations of Taylor series expansions give several difference

JeN

BT, formulas with their associated truncation error (Ref 3:55-59):

iﬁ. First forward difference

3N

::‘3 Eotxrh t® o (2.21)
..&2;1

N First central difference
T

.. ;_1

.:1 dt - t(x + h) - t(x - h) + O(hz) (2.22)
\;' dx 2h

4 .-’ |
4L 41 “
v |
w S o~ ‘
" '; 3

N

O




o {_ First backward difference

dt _ t(x) - t(x - h)
== m + O(h) (2.23)

3 ' Secord forward difference

;":é d2t = t(x + 2h) - 2t(x + h) + t(x) + 0O(h) (2.24)
2

3 ::’ ax h2
1

Second central difference

)
ASAY
“ORX 2 _
::;3 da 12'— - t(x + h) - 2t()2() + t(x h) + O(hz) (2.25)
iy{q dx h
o Secand backward difference
1%
b2 &%t _ t(x) - 2t(x - h) + t(x = 2h)
aN dt _tx + O(h) (2.26)
= dx n? -
N ©
A where h is the distance between nodal points. Truncation error is a
Wi
::f result of ignoring higher order terms in the Taylor series. The
X
finite—difference method is also subject to samething called round-off
A,
‘ii.: error. Round-off error is the result of the tact that a computer can
A
25y store a limited number of significant figures. The total error due to
MY
h both truncation and round-off error will be referred to as the discreti-
PRI,
:i‘ ) zation error. It is the difference between the analytical solution and
1,
'S;‘,z the finite~difference solution at a particular nodal point.
e
o For two-dimensional problems, a rectangular mesh is imposed over
'.\.I
= the solution region in order to find approximate terperatures at the
Y]
:{E nodal point of the mesh.
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b Figure 2.1. Mesh for a Rectangular Region
'a'
N .q Solution of Simultaneous Equations
Y
Both the finite—elenent and finite-difference methods lead to a
set of simultaneous liner algebraic equations. There are two methods
B of solving for the unknowns in these equations -- direct methods and
"" indirect methods. Direct methods lead to an exact answer, excluding
~ round-ozf error, after a finite number of arithmetic operations.
5 Direct methods tend to be time consuming since each element in the

coefficient matrix must be operated upon. In general, N3 operations

are required where N is the number of equations (kefs 3:111; 5:209).

- \agtas

Same examples of exact methods are Gaussian Elimination and the Thonas

method (Ref 3:9-12; 44-48). K

- -
TR W e

Indirect iterative methods require an infinite number of opera-

tions to solve the equations exactly, but an adequate solution can

LSRN AN
.
L ]

11

S S, S YR I
SRR

..............
.................

Ty ".Bl'[“:"'r O R A SR AR L Wi N I I St R TG T R A e I I
L \ N N AT W AN ACA VN P St aea s e

/)
‘.




»

usually be achieved in a finite number of steps. These methods usually

require less than N3 operations, especially if there. are many zeros in
the coefficient matrix as is the case in the finite-element and finite-
difference equations. Furtherrore, cumlative round-off error does not
grow as in the direct methods (ket 3:111).

The matrix equation

At = b (2.18)
can be re-written
t=Gt+¢c (2.27)
An iterative solution can be written in the form
[ (2.28)
where
t (n) = nth iterated vector

[
"

iteration matrix
€ = known constant vector
The three most comonly used iteration methods are the Jacobi,
Gauss-Seidel, and successive over-relaxation rmethods. They are derived
by factoring the coefficient matrix into strictly upper triangular,
diagonol and lower triangular matricies denoted by U, D, and L respec-

tively (Ref 3:46-47):

(U+D+L)t=b (2.29)

The Gauss-Seidel Method (also known as the mmethod of successive

displacements) is used in this thesis. It expresses the (n+l)th

12
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iterative vector in terms of both the nth iterative vector elements and

the (n+l)th iterative vector elements as soon as they become available:

@+t = g™ 4y (2.30)
or written in a fomm similar tc Eq (2.27)
") - v ™ut™ s L+ (2.31)
Translated into a camputational algorithm:
(n+1) 1 |[¥ @y, P (n)
t; =5 z a, st + I a, .t - bi (2.32)
ii | 3=1 ) =i+l 1)

whereaij is the element in the 1th row and the jth colum of the

coefficient matrix. One begins the process by choosing some arbitrary
initial trial vector, t'0),
Norms

in the following sections, we will be concerned with measuring the

difference between exact temperatures derived analytically and the

terperatures found from the iterative process. The error vector is

defined as
E(n) =t- E(n) (2.33)
where
e (%) - tne error vector for the nth iteration
t = vector of exact nodal temperatures

t (n) vector of nodal temperatures fram the nth iteration
The displacement vector (also known as the "residual vector") is

defined as
13
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{n)

$ ORI 28 t (2.34)
“ ‘ whe
, re
L
9 (n+l) _ . .
QY t = vector of nodal temperatures from the (n+l)th iteration
o
t (n) _ vector of temperatures from the nth iteration
:*.‘; It is often more convenient to measure the size of these vectors
>
3 L . :
::3 as scalar quantities. A nomm, symbolized by || « ||, will allow one to
LA
e do just that. A vector n-norm can be defined by
3
sty 1
: lell, = cle DD (2.35)
) i
=3
3%
. where
t = vector
ti = ith element of vector t
The norm used in this thesis is
el =zl (2.36)
i
Stopping Criteria
f\ Standard Method. One of the fundamental difficulties with itera-
g“: tive methods is detemmining when to stop iterating. Some cammon
pYRM
~ criteria are (Ref 4:227)
X
o [e® - (=D} ¢ (2.37)
‘*‘- - -
P or
N t(rl) _ t(n—l)
Vo = = <e (2.38)
N t(n) l
<< L
¥ Y

for some prescribed € or
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n >N {(2.39)

for same given N.

The problem with the above criteria is that

(n) _

(V) .
=l (2.37)

e hd

does not imply that

(n)

e - t]] <« (2.40)

Figure 2.2 illustrates this fact (Ref 9:5). %hus, for problems where

convergence is slow, t (n)

may be far from the exact temperature even
though it would have eventually been reached. However, choosing an
iteration limit that is to stringent might lead to a considerable waste
cf canmputer tine.

A simple technique has been found that will allow one to use the
displacement vector, Hc_i_(n) || to estimate the error, Hg(n) i| (rRef 14).

Recall that the matrix equation can be written as
t=Gt+c {2.27)

And an iterative solution can be written as

E(n+1) - Et_(n) ‘e (2.28)

By subtract Eq (2.28) fram Eq (2.27), the error vector can be written

e(n+l) -

(n)

Ge (2.41)

The following discussion holds for all real symmetric and some

real nonsyrmetric matricies (Ref 3:27). Assume that the initial error

15
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Figure 2.2, Iteration Limit.
vector can be expanded in temms cf eigenvectors y—i of the iteration
matrix G (Ref 14:236)
m
e - s cuv, (2.42)
= e B
i=1
where Ci are scalars and m is the dimension of the square coefficient
matrix. Fram Eq (2.41)
e - ge!? (2.43)
where _(}_n is G raised to the nth power.
e
\:_-
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2
.
)
AT, m
SR A e™ Py (2.44)
(' ' i=1 171
5 ‘l
0ds (n) -
080 e = rc.gv, (2.45)
:i i=1 v
1058
! But GV, = A,V. by the definition of en eigenvalue where ). is an
:', eigenvalue corresponding to yi. Then
NG (n) m
o e'™ = g cixi"x_/i (2.46)
) i=1
.
R A,\n A \n
N n) _,n ( 2\ ( m}
= e =1y @1‘—’1 + . CoVy + oot # % C¥y (2.47)
e .
‘“_ If |A1| > !>\2| > l)\3l > . > lxml
4
\‘.'j then for large sufficiently large n
‘\3'-
"%
(n) ., n
) Q e )\1 C\vy (2.48)
L -
:;’-:3
-.::: (n+l) . , n+l -
o e A0y (2.49)
o
so

% . e )‘19- (2.50)
In order for the error vector to vanish
‘* in] <1 (2.51)

i < .
\* )\1
ANY
I |A1| is called the spectral radius. Eg (2.50) shows that if A is
.\_, small, convergence occurs rapidly. In general, A 1 increases for a
'.‘:'j: larger number of unknowns (kef 3:116; 16:87). Thus, a problem takes
}_. nore iterations to solve as one increases the mmber of nodal points

3o used in the finite-difference and finite-element methods.
‘-}N’

-l
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Fram Eq (2.33)

3 J'.J
+

“

" =™ 4™
.l;.‘; and from Eq (2.50)
A € =~ E(n+l) +

e (n)

e (2.53)

s {n)

i eliminating e between Eq (2.52) and Eg (2.53) gives

E(n+l) _ >\lg(n)
= (2.54)

It
]

or

-,
fet
T
r-f

£ 2= (2.55)

Fram Eq (2.55), it can be seen that, if )\1 is close to one, then small
X differences between successive iterations does not imply that the
iterative solution is close to the exact solution. But, given the
definition of the error vector and the displacement vector, the error |

vector can be approximated by
-':‘- g ‘n)

".:__. g(l"!) - =

(2.56)
1

R
[} l'

N
4

or

*7 00

».

!" I»

le®™ ] = (2.57)
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Dyt
i}:’; g For most praoblems )‘l will not be known but can be approximated in
X \-: -:. c':.
( - ) the following manner (Ref 14:241). For sufficiently large n
o e =yl (2.58)
'.‘-_.'f
:.:; 1 -
) )
_’:_::: E(n+1) - E(n) ~ )‘I(E(n) - E(n—l)) (2.60)
?-.':1
j',-: .
: a® <y gl (2.61)
)
"~
_3:: or
-~
NN
4§ -
= a*™] ,
A = — .
35 Uy .
T =
",‘-\:\.
b ’-&'
N Therefore
.,,_-:.
* @. ! ld(n) I [
(n) ~ =
W e 1 ] (2.63)
. }n“ l - - |
-\.': i (n-'l)
Ha™ 11
Y
'.:;::j One now has a simple means of estimating the error between the
WAl
:-;Z_:j true solution and the iterative solution at the nth iteration and,
.‘.:1
therefore, a criterion for stopping the iterative process. The
.-::::Z variational integral will be judged against this criterion. Young
e e
-'::::: provides a more refined version of this error approximation stopping
O
~ criterion (kef 17:226-227). Warren gives a more detailed analysis of
3
q“-:: this and related error estimates (Ref 16).

Variational Integral. Since the variational integral is

extremized for the exact solution to the boundary value problem, it is
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thought that the nodal temperatures fram the iterative method can be
substituted into a numerical approximation of the variational integral.
As the nodal temperatures approach the exact values at the nodal
points, the variational integral should be extremized. Thus, an error

criterion might be

[z _ gl (2.64)

tor same prescribed €, This criterion might not have the difficulty
that the standard criteria had for slowly converging problems as

illustrated in Figure 2.3.

\I(n)

i

veriational
Integral
Iteration

3 e i~
JiTrererce

Stanadard
Iteration
Difference

Iteration Imber

Te W LT e, W B Y W e
el asatdl e lal A

Figure 2.3. Hypothetical Iteration Limit Camparison
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It is also thought that the variational integral can be used as a

stopping criteria for a special case of problems where the temperatures
fram the iterative technique are either mostly above or mostly below
the exact values. Suppose the initial trial solution for nodal tempera-
tures is above the exact values but the iterative method converges to
temperatures below the exact values; then, at saome iteration, the
iterative solution will pass through the exact solution and the varia-
tional integral will be extremized. In practice, one will not know the
exact values but an initial trial solution can be chosen that is known
to be above the true solution and then an initial trial solution can be
chosen that is known to be below the true solution. One of these trial

solutions will pass through the exact solution.
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II1 Procedure

In this section, the three heat equations used in this thesic and
the camputer codes used to evaluate the problems are exanined.

One-Dimensional Heat Equation

The prablem to be examined is shown in Figure 2.1. The equation
to be solved is

2
d—%—mzt=o (3.1)
ax

where m is a constant. The boundary conditions are

t(0) =1 (3.2)
d ) (3.3)
d—x‘t(L) = 0
it o dt _
t=1 thir roc ax = 0]

i
i
| >
L

Figure 3.1. Heat Conduction in a Thin Rod.
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i
?.\': The equation is easily solved (Ref 11:21):

. - Soshim(y, - x)]
= * oS (mL) (3.4

R0 Variational Integrai. The variational integral for the
one-dimensional heat equation can be developed by camparing the
governing differential equation (Eq (3.1)) with the Euler-Lagrange

N equation in cne dimension:

S F d (aF )= 0 (3.5)

RN 3T & ’5'1;'
The result of the comparison is that

R 2

N F = nt? + %(g;) (3.6)

sl Q Thus, the integral to be extremized can be written

..l
' I(t) = %—fo [(g;) + mzt?‘:l ax (3.7)

¢ !
:f In order to use the variational integral when only the nodal
whN
oy > temperatures are known, the derivative in Eq (3.7) is approximated by a
forward difference and the integral is approximated by a sum (Ref
:‘./" .
DN 10:235):
1‘5:_‘-
.r:‘
1N (ti+1‘ti)2 2, 2
. I(t) =52 /] +mt. 7| (x; - x;) (3.8)
N 2i=o|\ *¥in1 ~ %4 o B
3
%
»} ' One can use the boundary condition given in kg (3.3) and the forward
;,&a," Y difference approximation given by Eq (2.21) to show that for i =N,
A &,
' '
", 23
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A
-'V:
NI
N =
R 1 = (3.9)
o «‘\1'
; ‘ For the purpose of validating the camputer code, the variational
\',ﬂ.:
:.;: integral was soived analytically in Appendix A:
Lagad
N
e I(t) = tanh(mi) (3.10)
- Finite-Difrerence Formulation. The thin rod shown in Figure 3.1
‘ is divided with a number of equally spaced nodes as shown in Figure 3.Z.
@ L 1 1 i 1
T ¥ \J L
2t T i-1 ioder "t I
24 B
:E:':: Figure 3.2. Nodal Divisions for Thin Rod.
’- [ ]
50%4
o The differential equation is approximated using Eq (2.25):
s 39
2N
)
(Y t. - 2t + t,
i+1 1 i-1 2,
o 7 +mt; =0 (3.11)
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where

h =x - X, (3.12)

Eq (3.11) can also be written as
-t.
i

_ *Dt -t =0 (3.13)

where

D=2+ (mhL)? (3.14)

Using the boundarv condition given as Eg (3.3) and the central
difference approximation given by Egq (2.22),
o1 = a1 .15

thus Eq (3.13) for i = N is given by

-2t ) + Dty =0 (3.16)

and using the boundary condition given as Eg (3.2)

Dt, - t, =1 (3.17)
1 <

Therefore, for a problem with four unknown nodal temperatures, the

simultanecus equations can be written in matrix form as shown in Figure

3.3. ‘aad d 1 I~ ]
D -1 0 0 | t 1
-1 D -1 0 t, 0
0 -1 D -1 ty = 0

i 0 -2 D | |t i 0 |

Figure 3.3. Matrix Equation for Finite-Difference Approximation, Four

Nodes,

25




LM In order to validate the camputer code, m=2 and L =1 so
N
(’, that the terperatures could be campared with those given in the
g literature (Ref 11:243).

' Finite-Lienent Formmulation. The finite-element method is more

involved than the finite—difference method and the derivation of the
\*}‘ matrix equation is given in Appendix B. The matrix formulation of the
M problem twrns out to be identical to the finite—difference formulation

(Figure 3.3) except that

_ 12 + 4(mhn)?

D
. 6 ~ (mhL)

(3.18)

Y . . . .
§ Two-Dirmensional Poisson's Ecuation

: \ The problem to be examined is a square plate with uniform energy
; @ generation across the plate. The equation to be solved is
3 2

_f+
X

r'-

e 2, .2
.:,‘.'

(23

+ % =0 (3.19)

N

A
e )

oy

N where g and k are constants. %he boundary conditicns are

i X =0 (3.20)

|
o

at
TN -é—l-,-(x,O) = (3.21)

= t(L,y)

1]
o

(3.22)
¥ t(x,L) =0 (3.23)

o
W o
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The analytic solution is rather involved and is aeveloped in Appendix
C. For the validation purposes, g, k, and L were set equal to one so
that the numerical solutions could be campared with the literature (Ref
11:260,384).

Variational lntegral. The variational integral is develcped by

camparing the differential eguation with the Euier-lagrange egquation in

two dimensions (BEqg 2.17)). The integral is given by

2 2
_ 1, ifet at) _2gt
I(t) ZHR (ax) +(E = dxdy (3.25)
The integral is appraximated by sums over both the x and y directions.
The derivatives are approximated by backwards differences in order to
take advantage of the derivative boundary conditions in the same way
that the forward difference was used to take advantage of the deriva-

tive boundary condition in the one~dimensional problem (pg. 23):

2
N (ti,j ti—l,j)
. Ax
=0 J=O

I(t) =

N =

1

t -t 2
i'j irj-l _ 29
+ ( iy ) Kti,j AxAy (3.26)

In addition, the variational integral was solved analytically for
camputer code validation. The derivation is very similar to the
derivation for the one-dimensional problem given in Appendix A.

Finite~Difference Formulaticn. The square plate is overlayed by a

system of square meshes each of dimension h by h.
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The heat equation Eg (3.19)) can be approximated using Eq (2.2z5):

1
At I e T I P U LA T 1 Bl T Il W L =0 (3.27)
where

x = ih (3.28)

y = jh (3.29)

The subscripts must be combined before the function, t, can be repre-
sented by a vector. This is easily done by increrenting the subscript

j through its range of values while, for each j, incrementing i through
its range of values. A matrix equation is found for the two~dimensional
problem in a manner very similar to that of the one-dimensional problem
discussed on page 24.

Finite-Element Formulation. Triangular elements are used in the

two—dirensional problem. If one uses the same nodal points as used in
the finite-~difierence scheme, then the elements can be oriented in two
cifferent fashions. The orientation in Figure 3.4 will be referred to
as "Case One" and the orientation in Figure 3.5 will be referred to as
"Case Two." The two arrangements lead to different matrix equations
and, consequently, different solutions.

Two-Dimensional Laplace's Ecquation

The prablem to be considered is a square plate

—t—3= 0 (3.30)
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Figure 3.5. Finite-Element Arrangement (Case Two).

The problem is a rather standard boundary value problem. Theretore,
the analytic solution will not be derived in this thesis. The soluticn

is given by (Ref 6:107):

o 200(1 - cos(nm) sinh (27 ) sin (22 )

t(x,y) = L .
n=1 nTsinh (nm)

(3.35)

Variational Integral. The variaticnal integral is developed by

camparing the differential equation with the Puler-Lagrange egquation.

The integral is given by

2 2
_1 ot ot
1(6) = 217, (ax) + (Z) | aay (3.36)
%
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The integral is approxirmated by sums over both the x and y directions.

The derivations are approximated bv central difrferences.

2 2

N M |{fti,q o=t . . ..q = ts .l

I(t) = J‘—Z v i+1,3 1 l,j) + i,3+1 i,3-1 h2 (3.37)
2j=0 3=0 2h / 2h

Finite-Difference Formulation. %he square plate is overlayed by a

system of square meshes and the problem is solved in the same way as
the Poisson problem. Due to time constraints, the problem was not
solved using finite-element techniques.

Caputer Codes

All cocdes were written in Fortran-77 for a DEC Vax 11/780 camputer.
The camputer programs were quite similar for all three heat equations.

For each of the boundary value problems, a program was developed
that calculated the exact temperatures at the nodes and then varied
these temperatures by a given percentage. These temperatures were
substituted into the variational integral approximation to determine
vhat effect errors in the temperatures had on the value of the varia-
tional integral.

Another code was written for each problem that was used in the
analysis of the variational integral as a stopping criterion and as an
accuracy criterion. The matrix equations from the finite-difference
and finite-element methods were solved iteratively using the Gauss-—
Seidel method. The exact solution at the nodal pcints was calculated

using the analytical solution. After each iteration, the difference

31
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o
-}:-’:
:.,..:-_E: o between the exact and iterative temperatures was used to calculate the
. o percent difference between the exact and approximate temperatures
; ':\ (n)
f ‘\. ~({n ’t - t ,
N IR I|=—E—!i (3.38)
b 3
\' The difference between successive iterations was used to calculate
‘\!'
::‘-j the percent change in temperature
Y
“~
" -
~ - D) _ o))
%(n
D Ha™ 1 = || | (3.39)
SNy ! t
o
:z:':j; The reason for these new relationships is that when one actually
_.--_”‘\ uses a stopping criteria, the percent error in a solution is usually
L)
f.':-f.j more useful than the absolute error. This also allows a camparison
‘r.:a:,
;:'ffj between the standard stopping criterion and the variational integral
()
: o Q criterion by eliminating the magnitudes of the temperatures and varia-
_."::2 tional integrals. Note that Egs (3.38) and (3.39) are very similar to
U
'\7-: the error vector and displacement vector previously defined. 1In the
. following sections the terms "error norm" and "displacement norm" will
\"
2 refer to Eqs (3.38) and (3.39). The relationship
-u"':'
e,
%5 = (n) |
e d
2™ I N(n,'| (3.40)
T d
A ~ (-
o [a®=by
.,:. is assumed to hold although it cannot be rigorously developed as was LEq
é
g (2.63).
.
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The variational integral was computed after each iteration by

DS
Fg
I's
AgA
I N

(‘.‘ substituting the temperatures fram the iterative process into the
NN variational integral approxination. To campare the variational inte-
S gral as a stopping criterion to the stopping criterion defined in Eq

y (3.40), the percent change in the variational integral is defined as

(n) _ I(n—l)]

(n)l = lI
fax¥™! = (n'l)l

(3.41)
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IV Numerical Results

Variational Intearal liinirama

Recall that to calculate the variational integral based on the
nodal temperatures, the integral had to be appruxdimated using differ-
ences for the derivatives and sums for the integrals. These approxima-
tions lead to the concemm that the variational integral approximation
might not be extremized at the exact nodal temperatures.

This was found to be the case for all three problems considered.
The exact temperature for each node was varied by a given percentage of
the exact temperature and the variational integral was calculated.
Figures 4.1, 4.2, and 4.3 illustrate that the integral for the one-
dimensional heat equation had a minimum for same given values of
temperature and that this minimum occurred closer to the exact tempera-
tures as the number of nodes increased. Figures 4.4 and 4.5 illustrate
that, for the two-dimensional problems, the variational integrals are
minimized and these minima occur at temperatures other than the exact
values. Table I summarizes the results for all three problems. For
the purpose of this thesis, one variational integral approximation will
be said to be more accurate than another if the minimum in the varia-
tional integral occurs ror temperatures closer to the exact values.
Thus, Table I shows that the variational integral approximation becames
more accurate as the nuber of nodes increase. In practice, one will
not know the exact temperatures and will have no way of determining the

accuracy of an integral approximation as was done in Table I.
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The exact value of the variational integral is calculated using

the analytical solution as shown in Appendix A. It can be seen, in
Table I, that the value of the variational integral approximation does
not approach the value of the exact variational integral in the Poisson
problem even though the accuracy of the integral approximation improves
for an increasing number of nodes (using the definition of accuracy
given above). Thus, relating the value of the integral approximation
to the exact value is of little use. Furthermore, one will not be able
to calculate the exact variational integral in "real-world" prcblems

since the analytic solution will not be known.

Table I

Variational Integral Approximation

Exact 1 Integral Percent
Problem Integral Nodes Approximation Deviation

4 1.260 -0.80

One-Dimen, 0.964 8 1.105 -0.21

16 1.033 -0.05

32 0.993 -0.01
Two-Dimen. 4x4 -0.1070 +13
Poisson -0.1406 6x6 ~0.0947 +9
8x8 -0.0884 +7
Two-Dimen. . 4x4 4.35x103 -53
Laplace 1.04x10 6x6 5.92x10 3 -45
8x8 7.21x10 -39

1. Value of variational integral using analytic solution.
2. Value of variational integral approximation at its minimum.

3. Percent deviation from exact nodal temperatures where the
minirum in the variational integral occurs.
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Stopping Criteria

Fecall fram Section II, that for a problem with sluw convergence,
the difference between tenperatures for successive iterations coula be
small even though the difference between the iterated value and the
exact value was stili quite large. It was thought that the variationai
integral might give an alternative evaluation for termination since the
integral is extremized as the iterated nodal temperatures approach the
exact nodal temperatures. Figure 4.6 shows that as the sum of the
iterated temperatures approaches the sum of the exact temperatures, the
variational integral converges to a constant value.

Figure 4.7 campares a cammon stopping criterion, Hﬁ(n)H with the

variational integral stopping criterion, |AI (n) L

It can be seen fram
Figure 4.7 that, past a certain iteration, Hé(n)}] and |bI (n)l
qecrease at the same rate.

One can easily explain the linear decrease in ! !5‘“’! ! (keeping in

mind “hat the y-axis in Figure 4.7 is a logarithmic scale). The slope
of Ha(n)ll is given by
_ log[1da™ || - 109]a"7 D} .1
n - (n-1) )
Recall that for large n
||a(n)
I --——U—-~ (4.2)
(n-1)
|ld N
log|h,| = logl1d™ || - 10g]]at® V| (4.3)
41
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By camparison of Lg. (4.1) and (4.3), it can be seen that

LN
R
a4,
.

n = log[klf (4.4)

'n '. ‘l

More importantly, Figqure 4.7 shows that for suificiently large n

LA

Clar®

|’\1I N ’AI(n—l),

(4.5)

Eg. (4.5) was found to hold tor all three heat problems and all nodal
densities considered. Thus, the variational integral does not provide

a better stopping criterion because |AI (n) ! decreases at the same rate

as |1d"™ 1.
Furthernore, the standard method can provide an estimate of the
error while the variational integral cannot. Figure 4.8 shows the

error norm and the error norm estimate. The error estimate approxi-

9

mates the error once the spectral radius approximation has converged to
its final value. Figures 4.9 through 4.11 show that the spectral

radius approximation rapidly reaches a given value and that this value

LA NS

increases as the number of nodes increase. ILeturning to Figure 4.8, it

can be seen that the estimate of the error norm continues to decrease

L4 S
LR

b

even though the error norm has stopped decreasing. This is due to the
fact that the error norm estimate depends only on temperatures from
successive iterations. The error norm decreases until, at some itera-
tion, the discretization error prevents any further decrease.

In Section II, it was predicted that the variational integral
could be useful when the iterative temperatures passed through the

exact values. Fiqure 4.12 shows the sum of the nodal temperatures fram
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the iterative method passing through the sum of the exact nodal temper-~

atures after thirty-seven iterations. Thus, one would expect the
variational integral to be extremized at the thirty-seventh iteration.
Ficure 4.13 shows that the variational integral was actually minimized
after nineteen iterations. This is understandable in light of the
previous discussion in which it was found that the variational integral
approximation is minimized for tenperatures other than the exact
values. The results fram Figures 4.12 and 4.13 can be represented more
concisely using |AI (n)l and Ilé(n) ||. Figure 4.14 shows that the
variational integral stopping criterion, IAI(n) | has a "cusp" or local
minimum where the variational integral is a minirum (nineteenth itera-
tion) and the error nomm, ||e (n) || has a cusp where the iterative
solution passes through the exact solution (thirty-seventh iteration).
In Figure 4.14, the initial trial solution was greater than the exact
solution. The finite-difference equations converged to temperatures
below the exact vaiues. Figure 4.15 shows that when the initial trial
soiution was below the exact solution, the iterative temperatures did
not pass through the exact values and no cusps were observed for either
| AT (n)l or IIé(n) ||. Table II campares the iteration number where the
integral approximatior. is minimized to the iteration number where the
error norm is minimized. Appendix D shows that the results of the ;
stcpping criteria study hold for all three problems and all nodal

densities considered.
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Table II

Integral and Error Norm Minima

Problem’ Nodes T_ntegra12 el |2
4 6 9
6 15 26
One-Dimen. 8 30 53
10 31 90
16 150 280
Two-Dimen. 4x4 20 38
Poisszon 6xh 43 96
8xR” 74 185
Two—-Dimen. 4x4 7 32
Laplace 6x6 18 66
8x8 35 111

1. Using the finite-difference method

2. Tteration number where the minirmm occurs

Accuracy Criterion

Since the variational integral is minimized for the exact solu-
tion, it was thought that the variational integral approximation
could be used to determine which numerical method would give the best
approximation to the true solution. Two methods were considered--the
finite difference method and the finite-element method. Due tc time
constraints, only the one-dimensional prublem and the Poisson praoblem
were considered. fTable III shows the results for the one-dimensional

problem.
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Integral and Error Norm fcr 1-D Problem
N
i
SR 1 -
e Nodes Method Integral rell
) ',.- .-
o 3 FD 1.3720 0.0759
RS FE 1.3695 0.0812
Y 4 FD 1.2606 0.0549
FE 1.2594 0.0569
\
;:::2: 5 FD 1.1967 0.0429
<o FE 1.1960 0.0436
i\:b
O 6 FD 1.1553 0.0351
o FE 1.1550 0.0352
e
=32 7 FD 1.1264 0.0298
L FE 1.1262 0.0295
.-:‘.f:
el 8 FD 1.1051 0.0259
.104 .0253
« @ FE 1.1049 0
oy
}_ 1. FD: Finite-Difference Method
Ry FE: Finite-Element Method
o
N lNote that for nodal densities of less than six, the tenperatures
‘.~'l
f‘\": from the finite—element method minimize the variational integral even
)
ALY
N though the finite-difference method minimizes the error nom. MNodal
e J
densities greater than eight were considered but they gave the same
" results as densities six through eight and, consequently, were not
M
B,
-."»j.;: included in the table. The discrepancy between the integral and error
norm for nodal densities less than six can be explained. Table IV
ot shows that the temperatures for the finite-element method are less than
'O
LA
0203 the exact temperatures while the temperatures from the finite-dif-
ori
RO ference method are greater tham the exact termperatures.
-_"- .'.-\_'.
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Table IV

Nodal Temperatures for 1-D Problem (Four Nodes)

Node Exact Finite-Diff. Finite-Elem.
1l 0.6252 N.6289 0.6215
2 0.4102 0.4150 0.4051
3 0.2998 0.3049 0.2943
4 0.2658 0.2710 0.2604

Figure 4.16 is based on Figures 4.1 through 4.5 and shows how the
variational integral could fail to predict which method is most accu-
rate, For nodal densities greater than or equal to six, the finite-
element method gives more accurate temperatures and, therefore, the
variational integral approximation correctly predicts the more accurate
method.

The results for the Poisson problem are surmarized in Table V. It
was found that one finite-element case gave the most accurate tempera-
tures while the other finite-element case gave the least accurate
answers. For all nodal densities considered, the variational integral
correctly predicted which method gave the most accurate solution. The
difficulty that occurred in the one-dimensional prcoblem did not occur
for the Poisson problem because the majority of temperatures for all

three methods gave temperatures below the exact values.
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Table Vv

Integral and Error Norm for Poisson Problem

Nodes Method' Integral el
FE-2 -0.1632 0.4147
2x2 FD -0.1680 0.1891
FE-1 -0.1710 0.0844
FE-2 ~0.1806 0.3966
44 FD -0.1815 0.2143
FE-1 -0.1821 0.1024
, FE-2 -0.1940 0.3961
i 8x8 FD -0.1942 0.2366
j FE-1 -0.1944 0.1223
1. FD: Finite-Difference Method
FE-1: Finite-~Element Method (Case One)
FE-2: Finite-Element Method (Case Two)
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R Conclusions and Recarmendations

conclusions

The variational integral approximation for each of the three

y boundary value prcoblems was minimized for temperatures other tium the
-r exact values. As the number of nodes was increased, the approximations
3
?.:;.: were minimized at temperatures closer to the exact values,

"-{.l.
N

As a stopping criterion, the variational integral was found to be

\:t less effective than the error estimate criterion. For a sufficiently
A

:"2 large number of iterations, the variational integral stopping criterion

decreased at the same rate as the error norm estimate criterion. But
J'E the error norm estimate provides an estimate of the actual error nomm
3

*-“:-}' for a limited number of iterations while no such error estimate is

--.' @ available fram the variational integral stopping criterion. Further-

T_'_‘J-r; more, the error norm estimate is easier to calculate.

'_ For the special case where the temperatures fram the iterative

E rmethods passed through the exact temperatures, it was found that the
error norm was minimized at a different iteration than was the varia-
tivnal integral approximation. This was expected since the variational
integral approximations were not minimized for the exact tenperatures.
Thus, the utility of the variational integral as a stopping criterion

for this special case depends on the accuracy of the variaticnal

integral approximation.

S
‘.‘ .. I3 » > v . - .
:..ja: The variational integral approximation did not correctly predict
N
EAA . .
'.-"_-::f which method gave the most accurate solution in «ome of the cases
I
e 3 . . .
or studied. It is believed that this failure is due to the variational
SN
‘ o ."..

.": 5 9




integral approximation being rinimized at temperatures other than the

"( . exact values.

Recamendations

= Many of the difficulties of using the variational integral as a
stopping criterion or an accuracy criterion are believed to be due to

the fact that the variational integral approximation is minimized at

temperatures other than the exact values. Thus, attention should be

focused on reducing or, at least, predicting this error. Better

o methods of approximating the derivatives and integrals under the
J'_:
_.::'_ variational integral may exist.

For the accuracy criterion, consideration should be given to using

-\.;. linear interpolation functions to transform the nodal temperatures into

‘::: a piecewise continuous function. These functions can be substituted

{ Q into the variational integral and the integral can be solved analyti-

ar cally. Other techniques that solve the boundary value problem over the

.

W, ) . . . . . :

, entire solution region such as the Rayleigh-kitz and Galerkin methods
can also be substituted into the variational integral to determine

b which method gives the most accurate solution.
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N 4
&t(L) =0 (A.5)
‘ the integral can be written as
A 1 [.at
< I(t) = - 3 ta—x— (A.6)
' L ' x=0
X ERR
:
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Appendix A

Exact Variationzl Integral

The variational integral for the one-dimensional heat equation is

. -E»L( %)2 * -"‘"ztzJ dx (A.1)

Inteyrating the first term by parts allows Eq ({A.,1) to be written

1 L d fat\ _ 2
-_fj;<=0[td'—x-(&?) mtiﬂx (A.2)

— -mt=0 (A.3)

Eg (A.2) reduces to

L
T(t) = %[tg—;’- (. 4)

x=0

Using the derivative boundary condition

e T e AL e Jie 4
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Substituting the exact temperature at x equal to zero gives

I(t) = tanh(mL)

(A7)
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Appendix B

Finite-Element Derivation for the 1-D Heat Equation (Ref 11:332-339)

Use linear interpolation functions on the elements for the

one-dimensional heat equation as shown in Figure B.l.

t A
t (e)
L ; +(E)
4 t
ié £ 5
————
L
$ } } + + 4 >
x2 x3 X4 e o o xi xj « o o x[\{ = L

Figure B.l. Finite-Element Temperature Interpolations

Therefore, the temperature within element e is given by t(e) = C{e) +

Cée)x. The constants may be determined by evaluating at X, and xj:

cle) - .J_l;_l_l (B.1)

=3 1 (B.2)
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Consequently
x.t, - X, t. -
34 j "1
and
t. - t.
ac_ 3 1 (B.4)
dx xX. - x,
j i
The integral for a given element can be written
X. ft. =t 2
(e -1 3f3 1
I 5 L dx
X, | X. - X
1 1
X x.t, - X.t t. -t 2
+%fx3m2(Jx1_xli+x3_xlx\) ax (B.5)
i j i J 1
After I(e) is integrated, it will be a function of t, and tj only. To

(e)

minimize I'"', it rust be differentiated with respect to both t and

tj' One can arbitrarily do the differentiation first and then the

integration:
(e) x. t: - t. X 2
i X5 (xj - xi) Xy (xJ - x5)
+ (%x.t. - 2x.t +xt)x+(t.-t)x2dx (B.6)
it ) R R i T 5%

The integration is carried out to give

p1® & Y

b m Rty + 26 03 - 3%k, + 3xxl - x31 (B.7)
7 U3t gty %y 7 ooxgxy 4 3xgxy = x50 A8
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which can be sinplifiea:

3I(e) _ t. - t. (x. - x.)

i j 3 i
i Jj i
Similarly
(e) t. - t, (x. - x.)
a1 J 1 3 i
= o= + (t. + 2t.) (B.9)
atj }‘j X5 6 i J

Assembling the integral of the elements, we find

E
I(tl' t2, "'tm' "'tM) = eill

te) (B.10)

To find the minimm of I, differentiate with respect to each m and set
each derivative equal to zero. Since there are M nodes, there will be
M equations. BEach equations will of the form

3 A A 1@ 31 ® 51 ‘E)

+ + ... + + + vee +——=0 (B.11)
atm atm atm atm 'c)tm

The only two elements that will contain te in their integrals are the
elements irmediately adjacent to node m. If the elements denoted (a)
and (b) are the elements on either side of node m, then Eq (B.1l1)

reduces to

(a) (b)
2 S ) S (B.12)

Btm E)tm

For element (a), use Eq (B.9) and let i =m=~1and j =m

51 (@) - th” tel . meAx t
Btm Ax 6 m=1

+ Ztm) (B.13)

67

.............
*, -

.........
.................




< e For element (b), use Eq (B.8) and let i =nand j=m+ 1

el ¥

- o ]
BI(b) _ tm trn-l-l + moAX
atm AX 6

(Ztm + tm+1) (B.14)

Dhar 2

B 'n‘ ‘U"A Y

where

Ax = X, - x, (B.15)
Substituting kEgs (B.14) and (B.13) into (E.12) gives

) -t +Dt -t

n -1 m+l=0 {B.16)

2 2
D= 12 + 4m” (Ax) (B.17)

% 6 - m2 (Ax) 2

Eg (B.16) holds for all interior nodes. For the rfirst node, the p

boundary condition can be used:

ty =1 (B.18)

kel e

For node M, the temperature appears only in element {(E). Setting i =

M~-1and j =M and using Lg (B.9)

. (E) t.-t 2
~ oI I Ot 11-1 | m7AX
” 5t - ax ¢ 6 (yat ) (B.19)

% or
2ty + D =0 (B.20)

X vihere D is as in Eq (B.17). One now has the M linear aligebraic

equations to solve sumltaneously.

s
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s Bppendix C

Derivation ¢£ an Analytical Solution for Poisson's Egquation

, .
P
(I

The equation to be solved is

?t+3_E=-% (C.1)

P, 2Ll
‘o:;/xx [N

ﬁ
¥
e
'
o

(C.2)

ot

3

o
"
[an)

(C.3)

XA AN

WA

=—(0,y) =0 (C.4)

0

NENE
|
%

0) =0 (C.5)

[~

Assume that the solution can be written as t(x,y) = vix,y) +

w(x,y) where v is the particular solution of Poisson's Equation and w

REANINS

is the solution of the associated hamogeneous equation (Ref 16:239):

2

'.‘.\
N

5%v . 2
oy

<

;
|

= - % (C.6)

»
o~ 4
QL
3
38,

@
5
+
2>
ol
W
o

DAY | 1(;'._ /

(C.7)

N Y
l"‘i"

with

)

wix,L)

- vi(x,L) {C.8)

AN [N ‘-'.

N

wi(L,y) - viL,y) (C.9)

.
4

[

L4
a

P4

DY) 3 3
S -a—-xw(o,y) = = W(O'y) (C.10)

|
|
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{ m

S AL

5 A a 3 (C.11)
( ’é?’](xlo) - = WV(XIO)

'_E.':j:: Assume v is of the form

N

(A ya 2

S vi{x,v) = A+ Bx + Cy + Dx" + Ixy + Fy (C.12)

N Substituting Eq (C.12) into Eq (C.6) gives
R
o 2D+ 2F =-3 (C.13)

H let

¢

"‘-* g
N F=- % (C.14)
!‘-.OJ

~

s A

and

D=0 (C.15)

The other coefficients are arbitrary so let

. 2

=g _ 9.2
¥
'n.'_-
NS
so that v reduces to zerc on the sides y = (G and y = L.

o Now solve for w using separation of variables:

SOy wix,y) = X(x)Y(y) (C.17)
This gives

5< Xx) = 2X{x) =0 (C.18)

2

- / 2
15 (9L _ @ 1
N X(L) 5K 5K ) ) (C.19)

N . =
N X7 (0) 0

] R
s
v
a"s

o 4 ‘r,'a K
Y
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Y¥(y) + AY(y) =
Y(L) =
Y (L) =

Try
Y = Acos(/X y)+ Bsin(/)T y)

Apply boundary conditions:

Y*(0) =

therefore
B=20

and

Y(L) =
consequentiliy

A= ({2n + l) )

and

Y(y) = ocos [(Zn + l)%]
Fram Eq (C.15)

2
X %) - [(Zn + 1)2%] X(x) =

71

=90, 1, 2..

------

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)
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P
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(A
A}
Uit

X(x) = Ce™ + De (C.31)

i
-~

el
'r'-:
k'.n

oY)
»
(4

where

3
‘s by
LA

<

¢
[

r=[(2n + 1)2—2] (C.32)

B e

.
Ve

Applying boundary ccndition

‘l
.

)
. el
'.-.'...I.'a

DA RLREY
)
A

X°(G) =0 (C.33)

-
ca

Thererore

-
'S

-Ix

N4
NENN

X(x) = Ccle™ + &% (C.34)

ROLAS
o
A

L)
»
«

b
=

or

Pl

X(x) = cosh[(zn + 1)%] (C.35)

F

N
IO

Cd
'y

By superposition (Ref 15:7)

9

N wix,y) = nEocncos [(Zn + l)%’-:l cosh [(Zn + l);—';{[ (C.36)

X Applying the last boundary condition (Eq (C.19)):

..,.E 9L X _ _ 7§ C cos [(Zn + 1)%] cosh &2;1 + 1)1;-] (C.37)

>

»

Pt )
B

IS
D & s

Multiplying both sides of Ig (C.37) by the tem cos|(2m + 1)12’%]

ni
£

+§i

and then integrating with respect to v:

L .2 L 2
3 s [(2m+1)-12%}—j6 L cos [(2m+1)%]dy

YA

'y

S Y

0 2

P XXX

,ﬂ

.l ‘l

L x
= Jy nZoCnoos |}2m+1)‘%} cos [(2n+1)%] cosh [(2n+l)%] ay (C.38)
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) 3
) s
A (¥
. ]
5 5
N : For m # n, the right-hand side equals zero. Therefore 1
[.}

., 2 n+l .
c = 9L (-1) ~ 32 (C.39) -]
- N2k on 4+ 1)33cshi(2n + H3 >
! 3
3 . _}
A 2 o w (1™ loos2nt1) Wycoshi (2n+1) I ¥
o _aLf 32 2L 2L 5
wix,y) = 5= 1 3 - (C.40) :
., n=0 (2n+1) “cosh [ (2n+1) —'2—]
A

N Since

<

N t(x,y) = vix,y) + wix,y) (C.41)

- then

N L2 2

\ t(X,Y) = % - gz}];
q{ &

p n+l Ty X

- + jRaS
. E&kz 32 of (-1) cos [ (2n 1)2L]cosh[(2n+1)2L 7 c.12)

: ™ n=0 (2n+1) cosh [ (2n+1) ]

N 4
¢ )
o ' d
g ;
. 4
- 1
" 1
-.; X
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Appendix D
Storping Criteria
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The following figures show the error norm, the error norm esti-

_’l, _<

} mate, and the variational integral stopping criterion for all three
e heat equations solved by the finite-difference method. The figures
'F"j show that for a sufficiently large mumber of iterations:, the error norm
{ approximation and the variational integral stopping criterion decrease
< at the same rate.

The figures also show that when the iterative solution passes

through the exact solution, the variational integral achieves a local
minimm at a different iteration than does the error norm. In the case

- of laplace's problem, the error nomm achieves a local minimm but it is

( @‘ not pronounced enough to be visible on the graphs.
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