
,fD-Ri41 079 TOOLS FOR SPECIFICATION VALIDATION AND UNDERSTANDING ini
(U)) UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REV

U 1 INFORMATION SCIENCES INST R BALZER ET AL. DEC 83p NCLASSIFIED R DC-TR-83-292 F3 602-8i-I-886F/ 9/2 NL

Si

1 .IO & 0 U 1A U sTA O i - ------

LA

9r

* 11111 101111,g= -

1111112

MICROCOP RESOUTIO 1.8CAR

NATIONA _________ JilSTADARDS 1963

, :;,- .-..... ,-....-. -.-..11,

1kJ

~ 1% RADC-TRJS-2
o Fhnmi Tedinuimi Uspot

OnObr 1963

1 0TOOLS3 FOR SPECIFICA TION VA LIDA TION
AND UNDERSTANDING

University of Southern California

-, ~ tb f.~t 1. Doned Cohen anid Wilile.. Swurtout

APMFOR MA UUX AE d RM 1MU UMLER

-ftj ROME AIR DEVELOPMENT CENTER
:11 Air Force Systems Command

84 05 15 220

* -. .i• . "

.o V

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-292 has been revieed and is approved for publication.

APPROVED:\~L E $ -S
WILLIAM E. RZEPKA
Project Engineer

kv -S

APPROVED: -

RAYMOND P. URTIZ, JR.
Acting Technical Director
Comand and Control Division-

.....

FOR THE CO1MHODER:

JOHN A. RITZ
Acting Chief, Plans Officet'"-

If your address has changed or if you wish to be removed from the RADC.
mailing list, or if the addressee is no longer employed by your organization, .%

please notify RADC (COE) Griffiss APB NY 13441. This will assist us in
aintaining a current mailing list.

. ..•

.............

Dono etrncpis fths eor ulsscotactal obligations ofnoices,' -

• ~ a a' speyouriaddoshcenequire tha y ist be ren ed fo h RD ,O

UNCLASSIFIED Olt
SECURITY CLASSIFICATION OF THIS PAGE ("oen DataEntsred).

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUM10ER 1. GOVT ACCESSION NO. S. RECIPIENT*S CATALOG NUMBER

RADC-TR-83-292 .__ __."

4. TITLE (.d Subtitle) SIP O :I yaIER OEREO

TOOLS FOR SPECIFICATION VALIDATION AND 29 Jan 81 - 31 May 83
UNDERSTANDING S. PERFORMING OG. REPORT NUMBER

N/A A

7. AUTHOR(s) 4. CONTRACT OR GRANT NUMIER ,)
Robert Balzer
Donald Cohen F30602-81-K-0056 .
William Swartout

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERSUniversity of Southern California 62702F

Information Sciences Institute 55812207
Marina del Rey CA 90291 ._"_.-__-"

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Rome Air Development Center (COEE) December 1983
Griffiss AFB NY 13441 IS. NUMBER OF PAGES62

14. MONITORING AGENCY NAME A AODRESS(if different from Controling Office) IS. SECURITY CLASS. (ot this report)

a. Samne UNCLASSIFIED

Na. OCLASSif.ICATION/ oOWNGRADING
SCHEDULE

N/A
IS. DISTRIBUTION STATEMENT (of tAi Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: William E. Rzepka (COEE)

C.%

19. KEY WORDS (Contfnuae en reverse sids It necessary OWd Identfly by' block rnub~r) , *

Software Requirements Specification Language
Software Specification Executable Specification Language
Symbolic Execution Software Validation
Requirements Language %

20. ABSTRACT (Ce"nttn0e an reverse side If necessir md Identify by block number) %

Regardless of the specification language used, formal program specifica- , 4"

tions can be difficult to understand. Yet, because a specification is
frequently the means by which a customer communicates his desires to a
programmer, it is critical that both the customer and programmer be able
to examine and comprehend the specification. Experience with Gist, a
high-level specification language being developed at ISI, has indicated
that two of the major impediments to understandability are the unfamiliaA

DO JAN73 1473 EDITION OF I NOV 5so1 OiSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Ph" Date Etere4O

% -.. %*. *

.. * - , . . - .o-,. * .o-

~~~~~~~~..- . -.-,-., -.. ,-,-. .,--....-.--..--,....,...... . .. ,. ,..........

- - .. 44% 4. . .... i .. . .. . . . '1
:

% * l% % '. - i'' ' " 
l



7:1 .* - . . - - x.. . - : .. .P IY- *.

UNCLASSIFIED
SIRCUNITY CLASSIPICATION OF THIS PAOEK(Ihm Date Eto.-

syntactic constructs of the language and non-obvious interactions between
parts of the specification that are often widely separated. These inter-
actions may cause the specification to denote behaviors that were unin-
tended. This report documents efforts to overcome these impediments by
constructing tools to make specifications more understandable, both to
specifiers and to those unfamiliar with formal specification languages.
One tool, the Gist paraphraser, addresses the syntax problem by directly
translating a Gist specification into English. The paraphraser is use-
ful in both clarifying specifications and revealing specification errors.

* An English translation gives the specifier an alternate view of his
specification which highlights some aspects of the specification which

_. are easily overlooked in the formal Gist notation. A second tool ad-
dresses the more difficult problem of making non-local specification

tool interactions apparent by simulating the dynamic behavior implied
by the specification. The approach has been to discover non-local inter-
actions by using a symbolic evaluator to analyze a specification. A
symbolic evaluator does not require specific inputs. Instead it develops
a description of the range of possible responses to a given range of in-
puts. Due to this characteristic, it is possible to test a specifica-
tion symbolically over a range of inputs that would require many test
runs if specific inputs were employed.

'--a.'
,a,.'

a.-..

% %

'" a.,

UNCLASSI FIED
SIECuURITY CLASSIFICATIONI OF =AGE(Who" Date Evr,. .. *°

-<.-

V . . . ...

%I- %

%,

a. * ,. ,' ," #, , . ' ' , ' ' .,,,.,.,,. * . .. ..,., ' , ,,,. - . - .% ' . - . ' .. - .. . - .. ° - ,. - . - ...

..1* < .- .". -.. ,:.7- ..:,".,: -"-..":".. '....'. .. ' ""'"..."' . "".. - .. . "". "' . . -. - -:
a.. ,- ',a"', '''.'' .., '.: '"'. ";'" '""' " 4 -- -".-. -" .......- "" .'" -4 -- -." " " -" ". ," ''- -"



Table of Contents
1. Introduction 1

1.1 An Example 3
2. Results 9 Z I

2.1 Gist English Paraphraser 9 "A.
2.1.1 Paraphramer Organization 11
2.1.2 Translating Attribute Relations 12

2.1.2.1 Kinds of Attribute Relations 12
2.1.3 Translating Actions 13
2.1.4 Examples 14
2.1.5 Research Issues 17 J.-'J,

2.2 The Gist Symbolic Evaluator 18
2 2.1 Introduction 18
2.2.2 Constraints 19
2.2.3 Descriptive Reference 19
2.2.4 Primitives that Change the World 20
2.2.5 Changing a Relation 20
2.2.6 Changing the Type of an Object 21
2.2.7 Creating and Destroying Objects 22
2.2.8 Compound Statements 23
2.2.9 Loops 23
2.2.10 Atomic Statements 24
2.2.11 Summary 24

2.3 The Trace Browser 25
2.4 The Gist Behavior Explainer 26

2.4.1 System Organization 28
2.4.2 Issues in Explaining the Trace / 29

2.4.2.1 Selection and Summarization 29
2.4.2.2 Reformulating Proofs 30
2.4.2.3 Referring Expressions 30

2.4.3 Future Directions 31
3. Detailed System Structure ... I 33

3.1 Composition of the Symbolic Evaluator _ 33
3.2 Use of the Symbolic Evaluator 34

3.2.1 The Model of the Exploration Process --- ~35
3.2.2 Commands 2 35

&3 Using the Paraphraser and Trace Explainer. . 36 %..,-..

3.3.1 Translation Annotations ~ ' ~36
3.3.2 Grammatical Annotations ,37 .

4. Using the Interactive Evaluator: an Example 38
5. Appendix 52

*-.-," .,

%. %'

Nil- .,q,,..,, .. : ,- ... .' € .



List ofFigures
Figure 1-1: Package Router4
Figure 1-2: Formal Gist Specification for Package Router5

*Figure 1-3: Paraphrase of Package Router Type Structure 6
Figure 1-4: English Paraphrase of Possible Actionsa
Figure 1-5: English Paraphrase of a Test Action 7 i
Figure 1-6: Machine- Produced Description of Symbolic Evaluation of Test a
Figure 2-1: System Overview 10 j

Figure 2-2: Machine. Produced Description of Symbolic Evaluation of Test (continued on 27
next page)

Figure 3-.1: Symbolic Evaluator Organization 33
Figu re 3-2: System File Structure 34

.~~~~ .- . .



-- K w P ~ U dj* % 'JL . h- y y~. . . -. • - . .. . ...-.

1. Introduction .

Regardless of the specification language used, formal program specifications can be tough to. .

understand. Yet, because a specification is frequently the means by which a customer communicates

his desires to a programmer, it is critical that both the customer and programmer be able to examine

and comprehend the specification. Our experience with Gist, a high-level specification language ".

being developed at ISI has indicated that two of the major impediments to understandability are

the unfamiliar syntactic constructs of the language and non-obvious interactions between parts of the '.

specification that are often widely separated. These interactions may cause the specification to

denote behaviors that were unintended by the original specifier or not to denote behaviors that were ..

intended. This report documents our efforts to overcome these impediments by constructing tools to

make specifications more understandable, both to specifiers and to those unfamiliar with formal . .. .

specification languages.

One tool, the Gist paraphraser, addresses the syntax problem by directly translating a Gist -

specification into English. We have found the paraphraser to be useful in both clarifying

specifications and revealing specification errors. We expected that the English translation would be

useful to people unfamiliar with Gist, because it would make Gist specifications accessible, but we

were surprised to discover that experienced Gist specifiers found it helpful for locating errors. The

reason is that an English translation gives the specifier an alternate view of his specification which

highlights some aspects of the specification which are easily overlooked in the formal Gist notation.

P.'

The paraphraser deals only with the static aspects of a specification. Our second tool addresses

the more difficult problem of making non-local specification interactions apparent by simulating the .,.

dynamic behavior implied by the specification. Our approach has been to discover non-local

Interactions by using a symbolic evaluator to analyze a specification. The symbolic evaluator gathers

and integrates constraints from the different pieces of the specification. It discovers what sorts of -'-.'-.

behaviors the specification allows, and what is prohibited by constraints. A symbolic evaluator does

not require specific inputs. Instead it develops a description of the range of possible responses to a

given range of inputs. Due to this characteristic, it is possible to test a specification symbolically over-.

a range of inputs that would require many test runs If specific inputs were employed.

A specifier interested in the behavior of his specification may direct the evaluator to execute one of

the actions defined In the specification. As the evaluator executes the action, some apparently

possible execution paths may be eliminated due to constraints, and a more detailed description of the

inter.relationships within the specification is developed.

The symbolic evaluator produces an execution trace, which details everything discovered about the

specification during evaluation. The trace includes not only facts directly implied by the specification,

but also arwy further implications that the evaluator may have derived from those facts using its

dy* 4.



2

. theorem prover. In addition, the trace records the proof structures justifying the facts it contains.
Unfortunately, the trace is much too detailed and low-level to be readily understood by most people.

To overcome that difficulty, we have constructed a trace explainer that selects from the trace those O

aspects believed to be interesting or surprising to the user and uses that information to produce an ..

English summary.

The major observations that have emerged are:

* Good quality English translations of Gist specifications can be achieved without imposing
a burden on the specifier. In designing the paraphraser, we recognized that a specifier
would have to adhere to certain style restrictions and might have to provide a few
annotations to a specification to indicate how it should be translated, but we wanted the
style conventions to be as natural as possible and the annotations to be as few as
possible. This was donp for two reasons: 1) we felt that the paraphraser would be used
much more frequently if a specifier could employ it without making extensive
modifications to his specification, and 2) if a specification can be translated making only .'.

minimal use of annotations, the translation is more likely to accurately reflect the
specification. We have found that even specifications written before the creation of the
paraphraser can often be translated acceptably (though there is usually room for
improvement) because the stylistic conventions imposed by the paraphraser are close to
those that specifers follow normally.

* The paraphraser has also proved to be a useful tool for debugging specifications.
Originally, we thought the paraphraser would be useful mainly for making specifications
understandable to those unfamiliar with Gist. However, we discovered that the
paraphraser was also very useful in making specification errors more apparent, even to
experienced Gist users. Partly, this is because the English paraphrase is more
understandable in most situations, but perhaps more importantly, It gives an alternate
view of the specification that makes apparent some aspects of the specification that are
not obvious in the formal notation.

,-The Gist symbolic evaluator makes some fairly radical departures from the technology
that has been developed for symbolic execution of more traditional implementation
languages. The main motivation for this was the fact that Gist is based on a predicate ;I-
calculus view of the world, rather than the implementation view of storage locations
containing values. The major departure is the use of a general inference engine to derive
all results, rather than a few special functions that simplify expressions or recognize
particular cases of impossible paths. A smaller departure is that conditional executions
are described in terms of conditional results rather than a large (or infinite) set of

* separate paths. The main result of these departures is that the Gist symbolic evaluator
can discover (and report) many more results which may be of value to the user for the A-
purpose of understanding and debugging, even If they do not directly affect the

-i execution.

We have found that some of this information is useful in an unexpected way. Often a fact ,
appears which is surprising not because we would have expected it to be false, but _

*II because we would have expected a stronger result to be true. Of course, the symbolic -O0
evaluator does not say that the stronger result is false, but typically there is a good reason '.'.'
that it cannot be proven, and this points out some interesting (possibly unwanted) feature
of the specification.

*K . 2" .A.,* . C . . - C . .

. . . ..: . ... '/ .. -,..... . .:. . . "-. C. . ,. C_ . ,......., . ,' .'.' ,,. .... .. .- . .. .



ft - ft - .. - - t ft t f t . .f- ...t

3--

Producing English descriptions of symbolic executions is much more difficult than J
paraphrasing the specification. There are a number of problems that make the simple
direct-tranalation techniques (which worked well for the Gist paraphraser) unsuitable for
the trace explainer. These problems include:

• Detail suppression. The trace is much too detailed to be described in its entirety.
The trace explainer uses the structure of the specification and heuristics about 9
what the user is likely to find interesting or surprising in selecting what to describe.

Proof summarization and reformulation. The symbolic evaluator uses an
augmented resolution-based theorem prover in deriving the consequences of the
specification. While this approach is arguably attractive for its generality and
simplicity, its arcane proof structures could impose a hardship on the user. The
trace explainer attempts to reformulate resolution proof structures into more
familiar and understandable ones.

Referring expressions. With the Gist paraphraser, it was usually acceptable to
use the name given to an object in the specification as its referring expression in
the English paraphrase. The trace explainer cannot rely on this technique alone,
since there are objects in the trace that do not appear in the specification.
Moreover, depending on context, different referring phrases may be necessary
even though the same object is being referred to, and conversely, the same
referring phrase may be most appropriate for different objects.

The next section presents an example specification and a machine. produced description of its
symbolic evaluation. Chapter 2 describes the tools in detail. Chapter 3 gives an overview of how the
tools are used, and chapter 4 presents an extended example of the use of the interactive symbolic
evaluator. This report assumes some familiarity with Gist, although a detailed understanding is not
required.

1.1 An Example

The example presented here is a simplified version of a specification for a postal package router
(see [6, 10]). The package router is designed to sort packages into bins corresponding to their-f"
destinations. A package arrives at a locatign called the source and its destination is read there. A
binary tree of switches and pipes connects the source with the output bins. It is the job of the
package router to set the switches so that the package winds up in the proper destination bin (see
Figure 1.1). The simplified specification contains just one switch and two bins. In addition, a location
called the input has been defined, which is where all boxes are originally located. The formal Gist
specification appiars in Figure 1.2. It is not necessary to understand the formal notations, since an

English translation of the specification (produced by the paraphraser) is available: Figure 1-3 is the
English paraphrase of the specification's type structure and Figure 1.4 describes the possible actions
in this specification.

V,'

Having defined the type structure and actions, a specifier may wish to define some test sequences
of actions to see how the constraints of the specification interact to limit the behavior of the
specification in ways that are not obvious from the static specification alone. In Figure 1.5, the user

ft', . ~ . .. . .... .. t . . .t ,f '.J t ... ... .t.I
ft. - ft . ..f ft. ft-. -ft-.



4

Input1

Sourcel
A.O

~~Switch1 --

p'."

Bini Bin2

Figure 1-1: Package Router

has defined such a test sequence. The user has also given preconditions to define the initial state

and the structure of the switcling network and a postcondition to describe the final goal of the

system. Notice that in the action body, all operands are specified non.deterministically. For example.

the first action invocation states that a box is to be inserted, but it does not say which box. The intent

of such a statement is that any box may be inserted, as long as no constraints are violated. This

non-deterministic reference is one of the freedoms allowed by the Gist specification language which

gives the specifier greater expressive power and prevents him from having toever.specify behaviors.

Because the user does not have to explicitly select parameters, he can see with just one test action -'-

whether it is ever possible to achieve the postconditions using the particular sequence of action - -'-

invocations given.

After the symbolic evaluator runs, the specifier can use the trace explainer to se an overview of the

results of symbolic execution (see Figure 1-6). ,

% %.,'..",. '- .- ,,." .,',.,, ,.' .. 'v'.,','.,-.-q.,,. -. ,- ..- ,. ,. ,- .. -- -_- -.-.-- -.- .. . .-.-. - - - .. . . . . - ."P



begin
type box(Location Ilocation, DestinationI

type locationounique supertype ofbi)
(input() detinltion(inputi);
source(Source-outlet Iswitch)

deflnition(Sourcel}:
internal-locationounique supertype of

(switch
(Selected-outlet

*1 I internal-location.
Outleti internal-location -

:mul1t iple)
definition~switchl):

bin() definition~binl. bin2)>>;
agent PackageRouter() where

action Insert[box]
definition update :Location of box

from inputl to Sourcel;
action Set(switch)
precondition -S:L.ocationoswitch
definition update :Selected-outlet

of switch to switch :Outlet;
action Move~boxJ

precondition box:LocationaSourcel or
box :Locationsa switch

Nj definition
if box :Location-Sourcel

then update :Location of box
to Sourcel:Source-outlet

else update :Location of box
to box :Location

:Selected-outlet;
action Test[]
precondition switchi :Outletabinl-
precondition switchi :Outletabin2
precondition Sourcel :Source-outlets p..

switchi .
precondition for all box I

box :Locationsinputl
postcondition for all box I

box :Locationubox :Destination: *: definition begin
Insert[a box);
Move~a box);
Insert~a box];
Movefa box);
Set~a switch);
Move~a box);
Moveta box) *

end
endj

end
Figure 1-2: Formal Gist Specification for Package Router

As
4 

qt



6 AL-..

The re are boxes, locations and package. route rs.

Each box has one location. Each box has one destination which is a bin.
°S...

Internal-locations, sources and inputs are locations.
Bins and switches are internal-locations.

Bini and bin2 are the only bins. .0
Switch 1 is the only switch. The switch has one seloctod-outlot which Is an
Intornal-location. The switch has multiple outlets which are intornal-locations.

Sourcel is the only source. The source has one sourco-outlet which is a switch.
Inputi is the only Input.

Figure 1-3: Paraphrase of Package Router Type Structure 4,9.O

A package-router can Insert a box, set a switch, or move a box.
To insert a box:

Action: The box's location is updated from input1 to sourcel.
To set a switch:

Action: The switch's selected-outlet is updated to an outlet of the switch.
Preconditions:

The switch must not be the location of any box.
To move a box:

Action:
If: The box's location is sourcel,

Then: The box's location is updated to the source-outlet of sourcel.

Else: The box's location is updated to the selected-outlet of the switch
that is the box's location.

Preconditions:
Either:
1. The box's location must be sourcel, or
2. The box's location must be a switch.

Figu re 1-4: English Paraphrase of Possible Actions

* *b

,,,:,:,9 ...-. ,. . . .......- .- .-. .-..- -. -.. .- ,.- ... -. .. -..- ....--.--.. ,:- .- . ,..... .. .. . .. ....-.. ,. ..- ..:.,.< ..,..,., ,, ,......,... ..-..... ,. - .- . ...........-. . ......... . . . ....... -. - .. , .- . ... - . ... ...-. ... .. .
.:.-: .... : .... ,,.,,;.,'..:... .,.,:..;......o.-.. . ..-... ... ,........ .......... , .,..-%... ...-.. ,...,--....- -.-- --- -.-- - - - -.--.--. ,-.-- - - - - - - -- :



To test:
'A Action:

1. Insert a box.
%2. Move a box. *

3. Ins*ert a box.
4. Move a box.
5. Set a switch.
6. Move a box.
7. Move a box.

$ Preconditions:
For all boxes:

The box's location must be Inputi.
The sou rce-outiet of sou rce I must be switchi1.
An outlet of switch 1 must be bin2.
An outlet of switchi must be bini.

Postconditions:
For all boxes:

The box's location must be the box's destination.

Figure 1.5: English Paraphrase of a Test Action

% 1%I

)PJ



8

1. A box, call it box1, is Inserted.
Result: The new location of boxI is sourcel.

2. A box is moved. The box must be boxI since
2.1 For all boxes except box1, the box's location is input1, and
2.2 The precondition of moving a box requires that either: ?

2.2.1 The box's location must be sourcel, or
2.2.2 The box's location must be a switch.

Result: The new location of box1 is switch1.

3. A box, call it box2, is inserted. The box must not be box1 since -4
3.1 The location of box1 is switch1, and
3.2 The location of the box to be inserted must be input1 since the update in
inserting a box requires it.

Result: The new location of box2 is sourcel.

4. A box is moved. The box must be boxi since otherwise, at the start of step 5, the
location of box2 would be switchi but the precondition of setting a switch requires Z.IN
that the switch must not be the location of any box.

Result: The new location of box1 is the selected.outlet of switch1. Switch1 Is not the
location of any box.

5. A switch is set. The switch must be switchi since there are no other switches.
Result: The new selected-outlet of switch1 is an outlet, call it outlet 1, of the switch.

6. A box is moved. The box must be box2 since the precondition of moving a box
requires that either:

6.1 The box's location must be sourcel, or
6.2 The box's location must be a switch.

Result: The new location of box2 is switchi.

7. A box is moved. The box must be box2.
Result: The new location of box2 is outlet1. For all boxes, the box's location is the
box's destination.

Figure 1-6: Machine- Produced Description of
Symbolic Evaluation of Test

z.,

s.... ..-

'--s

C..s.

-. -0'r'

-C. .F• . . . . . . . . . . . . . . ° . ., . • % ,



- .. - . . .. .

.- . - o

2. Results .

An overview of our system is presented In Figure 2.1. To use any of the tools described In this

report, a Gist specification must first be translated into the SAFE representation using the Gist to

SAFE compiler. The user may then use the paraphraser (described in Section 2.1) to m an English

paraphrase of the specification. The symbolic evaluator (described In rction 2.2) may be Invoked to

evaluate the entire specification. It produces a history of the execution, called the trace which details

the results of symbolic evaluation. A user may examine the trace using the browser (decrbed In

section 2.3) or he may obtain an English summary of the results using the trace explainer (described

in section 2.4). In addition to the "batch" mode of operation, the symbolic evaluator can also be used

in an interactive fashion where the user can direct the evaluation process. This produces a trace tree.

Commands are available to the user that allow him to return to previous states and continue the .. -.

evaluation down different paths. Although most al our work on trace explanation has been directed

toward producing explanations of traces produced in the "batch" mode, a limited explanation

capability exists for describing the results of each interactive evaluation step. This capability is

presented in chapter 4.

2.1 Gist English Paraphraser

This section describes a prototype English paraphraser which can produce English descriptions of ",.7.

program specifications written in Gist. Such a facility is required because although Gist is a high level

specification language, specifications written in it, like those in all other formal specification

languages, are unreadable. There are several reasons for this unreadability: strange syntax;

redundancy elimination; lack of thematic structure; implicit remote interactions; no representation of-. '
. the motivation or rationale behind the specification; and a strict reliance on textual presentation. The

"-, current paraphraser deals with the first two problems and part of the third. Our plans for dealing with

the rest are outlined after a description of the current paraphraser.

Given a Gist specification and a small amount of additional grammatical information needed for

,N translation (detailed below), the Gist English Paraphraser produces an English description of the

specification. There are several reasons why such a capability Is important for Gist or any ".

specification language. First, since a specification is often used as a "contract" between a customer

and an implementor, it is important that all those concerned be able to understand the specification. .

Since customers will frequently be unfamiliar with the formal specification language, a capability for

-~ making such formal specifications understandable is needed. Second, an English translation

capability can provide an alternate view of a formal specification and, hence, be useful as a

debugging aid even for those familiar with the formalism such as the specifier himself. Although the '-A

'English paraphraser has been operational for only a short time, It has already made several -.

specification errors more apparent to us. Third, since good high level specification languages

embody constructs and make default assumptions that are unfamiliar to those trained to use

traditional programming languages, an English paraphraser can serve as a pedagogical aid by re-
. ~~.'|

"' '

. 5 .. . . . .

,"' h , . , - ,'--.- ',_".'-"-" ".% . , . . -.- 2''-.".-."."," -"% -". -" ''' " , -;.*."'''''''". , '% . ,

.,,5 :,,- , .. -.; . . .. - . , _ .. : • -. .. . U.. . .. .. .. .. . .. . .... , . .. ... . . . . .. . . ... o. .



10 .-

Gist -

Specification

-r---- AF epesnato
Compile of4

~hraserSymbolic Eval Evlato

English VieTre
of or Te

Specif ication Historyof Execution

Browser Explainer *4 '

StateEnls
Description Descri tion

9and O
Justifications Evlai

Figure 2-1: SystemOverview



11- - -

casting a specification In English, thereby shortening the time required for familiarization with both
the specification language and specifications written in it.

A goal for the paraphraser was to have It produce English directly from the specification as much as
possible, as opposed to requiring the specification writer to supply substantial amounts of additional
information about how the specification should be translated Into English. We recognized that to
achieve this goal, specifications would have to be written following a certain style. To aid us in
defining this style and to assure that it be as natural as possible, we examined existing Gist

specifications to determine how the constructs of Gist were being used, and what were appropriate
English translations for them. We found that most Gist forms could be mapped into English using the
information supplied by the specification alone, but that relations (particularly attribute relations) and

action declarations were used in several ways with differing English translations (described below).
The paraphraser uses heuristics to attempt to determine what translation should be employed for

these constructs. When the heuristics are insufficient, the user can indicate the proper translation by
providing additional information with the specification.
2.1.1 Paraphraser Organization

The Gist English paraphraser uses three passes and an intermediate case grammar representation
[4]. The first pass of the paraphraser examines the Gist specification and creates a case grammar

representation of the English to be produced. The second pass performs inter-sentence

transformations on the case grammar representation to improve the quality of the English description
that will be produced. For example, this pass conjoins sentences where possible to reduce the .

wordiness of the explanation. The third pass uses the transformed case grammar to produce actual '.
English. The third pass also performs some intra.sentence optimizations. One such transformation ,.

was motivated by the observation that sentences which mention a definite reference first followed by .

an indefinite are clearer than those in which the two are reversed. For example, "A pier of the
manager's port must be the pier p" is not as clear as "The pier p must be a pier of the manager's

port" .,'...

This organization has some distinct advantages. The multiple representations provide appropriate
points for making transformations. For example, transformations which are primarily concerned with

English, such as conjunction insertion, are most appropriately made on the case grammar. it would
be much more awkward to make such transformations during the first pass. Another advantage is

that the case grathmar and passes two and three of the paraphraser are independent of the particular
representation used for Gist specifications. Thus, the portions of the paraphraser that embody .-

Englist" knowledge can be exported to other applications.

Text generation has been Investigated by a number of researchers (see [8] for a current

bibliography). Boris Katz has produced a generator which is perhaps most similarly structured to the
one presented here [7]. He has concentrated more on pass two, that is, on transforming the primitive
English description formed in pass one into a more fluent explanation. In the Gist paraphraser, the

S-

..'. .. .- oO .



71 7.. , - o*

aa"" ,r

12

most difficult task has been forming the primitive explanation, since Gist and English are often quite ,--: '

different in terms of what they can represent easily.
2.1.2 Translating Attribute Relations

Attribute relations and action declarations require a richer set of translations than other Gist

constructs. This section and the next outline how their English translation is performed.

Attribute relations are binary relations declared as part of type declarations. For example, the type

declaration:
type ship (Destination I port);

declares the type ship and a relation Destination between ships and ports. When used elsewhere in
Gist, :Destination is used to indicate the mapping from ships to ports, and ::Destination is used for the
back-mapping from ports to ships. For example,

(1) ship:Destination
refers to the destination of a ship, and

(2) port::Destination
refers to a ship whose destination is the port.

2.1.2.1 Kinds of Attribute Relations
We have identified three major uses of attribute relations which have different English translations.

The first use is illustrated by the example given above. To translate the forward mapping, the relation
name may be used as a noun modified by a genitive form of the declared type. Thus (1) above

translates as "the destination of the ship" or "the ship's destination". To translate the back-mapping

we generate a noun phrase whose head noun is the type of object being referred to (in this case, ship) get
modified by a relative clause indicating the relationship. Thus, (2) translates as "the ship whose..

destination is the port". In the absence of other information, this kind of translation is employed by
the paraphraser. -6

Attribute relations are also used to indicate "part of" relations. In the specifications we examined, ,-

this type of relationship was usually indicated by giving the relation the same name as the attribute
type, as in:

type auto (Engine I engine);
This declares that every object of type auto has an attribute called Engine, whose type is engine. The
translation for part-of relations is similar to those described above, but the verb "have" or "belong" is

used in place of "is". Thus, the type declaration Itself would translate as "Each auto has an engine",
and forward mappings auto:Engine from autos to engines would translate as "the auto's engine",
while backmappings auto::Englne from engines to autos would translate as "the auto that has the , .a..

engine". The "part of" translation is used by the paraphraser whenever the name of the relationship
is the same a Its attribute type.

Finally, attribute relations are sometimes used a verbs, as in:

44 , .-[ q .1- - - . t ; . % ° . Z .•  " .' ' ,_.. ,. . ......... .. .. r,.-, ,, . -,. j ,. . , ..
:€'':',:,:.z,'4 z,'.'..,- , ". a_';t- ". " - -' " " "" "" ''" ....-% . " -.:.:.... . . '"""- " ""



type pier (Handle Jcargo);

The translation for this type declaration is "Each pier h anes a cargo". The type being declared is I]
taken to be the subject and the attribute type is the object. ::

pieriaandle
translates as "The cargo which is handled by the pier", and "'' -

cargo::Handle .'''2

translates as "The pier which handles the cargo". One problem with the verb form Is that the "

translation can be very awkward If it appears deeply embedded within other forms. The paraphraser

recognizes such situations and uses several sentences to describe these embedded forms,

automatically introducing intermediaries as needed (an example appears below). The specifier must

indicate that an attribute relation is to be translated as a verb by placing a verb property on the name

of the relation. This is one of the small grammatical additions required for natural language

generation. .- "

2.1.3 Translating Actions .*

Actions correspond to verbs. In the specifications we have encountered so far, the name given to

an action is either an English verb, or it is a compound name (e.g. MoveShip or ReplaceLine) where

the first element of the compound corresponds to the verb. If a name is not a compound, the

paraphraser assumes that it is an English verb. If it is a compound,' the paraphraser assumes that the

first element of the compound is the verb.

The parameters in an action correspond to cases in a case grammar. The paraphraser knows how

to map a fixed set of cases into English. The user must supply the paraphraser with annotations for

each action declaration telling it the action's parameter/case correspondences. This is the second

(and final) grammatical addition required for natural language generation.

Currently the paraphraser allows six cases for parameters. We expect this number to grow slightly

as we gain more experience with a wider variety of specifications. The current cases Include:

Agent, the thing or person performing the action. Becomes the subject of declarative
sentences. (The manager moves the ship.)

Object.the thing or person upon which the action is performed. Becomes the subject of
passive sentences. (John kicked the bell.) .-.'.

. Instrument, the thing used to perform the action. When translated to English, an
Instrument is preceded by the preposition "with". (I dug the hole with a shovel.)

* Dative, corresponds to the indirect object. When translated, the Dative case is preceded
by "to". (I gave the ball to the boy.) .

1The paraphraser knows about stylized ways of creating compounds, including separating by upper and lower case,

hyphene and underscores, and It can break these compounds apart.

- - .-. . . , " . .. . . ,- . . . .--. -. ' .- .. •.' .- .. ...-. . -. ' -. . . .- -. -. .- .. - ..



14

* Directional, indicates the object toward which the action Is proceeding. This case Is
also preceded by "to". (Move the ship to the pier.)

Locative, nouns in this case indicate the location of the action. The user supplies ther.0
appropriate preposition to be used with this case. (The ship sank ot the pier.)

a , ... -

For example, to transltethe action:
action MoveShip[s I ship, p I pier]

The user would inform the paraphraser that the first parameter was the Object and the second was -

the Directional. The action would then translate as:
"Move the ship s to the pier p."

2.1.4 Examples

This section presents some examples of English produced by the paraphraser. The first example is

a preliminary specification for a harbor manager. (The reader is not expected to understand the Gist
specifications before reading their English paraphrases.)
begin

type port(Pier I pier ::unique);
type pier(Handle cargo, Slip I slip ::unique);
type sl p(:
type ship(Carry I cargo, Destination I port,

berth I slip :optional ::optional);
type cargoO:

agent manager(Port I port :unique ::unique)
where action NoveShip[s I ship, p I pier] - -

precondition s :berth ::Slip ::Pier.
manager :Port

precondition manager :Port :Pierp -

definition update :berth of s to p:Slip;
action LoadShip[s I ship, c I cargo]

precondition s :berth ::Slip :Handle-c
precondition s :berth ::Slip ::Piers

manager :Port
definition insert s :Carry-c;

action AssignCargo[c I cargo, p I port] . .

definition LoadShip[p ::Destination, c]
end

end ... .

To create an English description for this spec, the specifier had to Inform the paraphraser that the
attribute relations Carry and Handle should be translated as verbs, and he had to Indicate the . ..

appropriate cases for each of the parameters of the action declarations. The English that resulted

appears below:

There are ports, ships, cargos and managers.

Each port has one pier. Each pier belongs to one port.

r V -.F

V..
.' .'.. ? /.J rL.4? -'...-r%'-'.% ' .. ''. o"? .""e "',-4-"' "' - .*"'"-"•"." •" "•"."-"' . . - "--*" . '". -



15 ..-

15

Each pier handles one cargo and has one slip. Each slip belongs to one pier.

Each ship carries one cargo, has one destination which is a port and may have a
berth which is a slip. A slip optionally Is the berth of a ship.

Each manager has one port. Each port belongs to one manager. A manager can .1 .,

assign a cargo, load a ship or move a ship.

To move a ship s to a pier p:

Action: The berth of the ship s Is updated to the slip of the pier p.

Preconditions: The pier of the manager's port must be the pier p. The
slip of the pier of the manager's port must be the berth of the ship s.

To load a cargo c on a ship a:

Action: Assert: The ship a carries the cargo c.

Preconditions: The slip of the pier of the manager's port must be the

berth of the ship s. The pier that has the berth of the ship s must

handle the cargo c.

To assign a cargo c to a port p:
Action: Load the cargo c on a ship whose destination is the port p.

When the person who wrote this specification saw the English description of it, he immediately

realized that he had made a mistake, because ports should have more than one pier and piers should

have more than one slip. This mistake had been hidden in the Gist spec because Gist defaults the

mapping for an attribute relation to unique in the forward direction (i.e. from ports to piers and piers

to slips). After correcting those bugs and making some additions, a new specification and English

description were produced:

begin
type port(Pier I pier :multiple ::unique,

harbor f ship :any ::optional);
. type pler(Handle I cargo :multiple,

Slip I slip :multiple ::unique); .,

- type slip();
type ship(Carry I cargo :anyDestination I port,

berth I slip :optional ::optional);
always required Berths__Are InPorts
for all s I ship II-0

s :berthmS->s ::harbor :Pier :Slips berth;
type cargooptional

Op % N.-

*, ** . * .- ,A, ,-,** ~ * ~ f -.-- .

,.' .- -..-.- -..... ...-.. .- .. ,-, ., -,,., ., ,, ,.,,_',,',.-.,, , , ,' ,'.,', -, ,.,., .,.,,,,;,, .- . .. .



... supertype of<grain);

- f () always prohibited FuelAndGrain
there exists s I ship, g I grain, f I fuel II ,,

s :Carry-g and s :Carry.f J
agent manager(Port I port :unique ::unique)

where action MoveShip[s I ship, p I pier]
precondition s ::harbor-manager :Port
precondition manager :Port :Pierap
definition update :berth of s to

p :Slip; .-
action LoadShip[s I ship, c I cargo]

precondition s:berth::Slip:H~andle-c
precondition s ::harbor-manager :Port
definition insert s :Carry-c;

action AssignCargo[c I cargo, p I port]
definition LoadShip[p: :Destination.c-

end
end

The English description for the above spec:

(Comments appear in italics.)

(The paraphraser "sets the stage" by first creating a summary statement of the top-level

types that will be described. Top-level types are those that are not either subtypes or part-of

some other type.)

There are ports, ships, cargos and managers.

Each port has multiple piers. Each pier belongs to one port. Each port harbors any

number of ships. Each ship may be harbored by a port.

(For each type, the paraphraser constructs a description of its attribute relations. Note the

change from the previous spec.)

*,-, Each pier handles multiple cargos and has multiple slips. Each slip belongs to one

pier. '

Each ship carries any number of cargo%, has one destination which Is a port and

may have a berth which is a slip. A slip optionally Is the berth of a ship.

(Wherever possible, the second pass of the paraphraser conjoins sentences. Before pass 2. "1

the above paragraph contained four sentences. After pass 2 the first three have been
conjoined into one.)"- "

Fuels and grains are cargos.

i-ft. Each manager has one port. Each port belongs to one manager. A manager can

-S, move a ship, load a ship or assign a cargo.

(The paraphraser gives a summary description of the actions an agent can perform before

describing them in detail.)

%.. . _.. ,- . . .. •. . . . .. ... .. .. . ...... ,.
-. , , ''-%,".. .'. ." ." . .... " ." ."... ..... "". °".."." ."."-'' '' ' "



17

To move a ship s to a pier p:
Action: The berth of the ship a Is updated to a slip of the pier p.

Preconditions: The pier p must be a pier of the manager's port. The
manager's port must harbor the ships. "i

To load a cargo c on a ship a:

Action: Assert: The ship s carries the cargo c.

Preconditions: The manager's port must harbor the ship s. The pier
that has the berth of the ship a must handle the cargo c.

To assign a cargo c to a port p:

Action: Load the cargo c on a ship whose destination is the port p.
(In describing actions, preconditions are described after the actions, because they represent

a more detailed level of description than the action Itself.)

Fuel And Grain:
A ship s must not carry a grain g and a fuel f. '..-

Berths Are In Port*:
If: A ship a has any berth,

Then: A port p harbors the ship s. The berth of the ship a is a slip of a pier of

P.
(Since this global constraint embedded the verb attribute relation "Harbor", the paraphraser

split the description up into multiple sentences and Introduced the intermediary "p" to make -p

the description clearer.)

2.1.5 Research Issues

While the generation capability described above has already demonstrated its usefulness in making

Gist specifications more readable, there is much that can be done to improve it. There are three
topics that we expect will substantially improve the quality of the explanations that can be offered.

These are: global explanation descriptions, presentational form, and level of abstraction.

One problem with the current English paraphraser is that it makes its decisions based almost
entirely on local information. That is, when translating a piece of a specification to English, decisions

about how that translation should be made depend just on the particular piece of specification.
Operations such as user modelling, choosing appropriate names for objects, and producing focused

explanations which describe a subpart of the specification In relation to the rest all require a more

global view of the explanation: the explanation itself must be viewed as a whole and manipulated

before being presented. Just as the es of a case grammar provides the English paraphraser with an
intermediate representation which is more appropriate for operations such as conjunction insertion

V.%.

M.. . P.. .. -. o. .

* .. * ~ ~ '5..- ~ ~vv.-~-& ~d%~*•* *, . °, .

".. . . ,.. .:." ?



that require a more global view than surface syntax provides, a global explanation description Is
required for the kinds of operations mentioned above.

Currently, explanations are only available in one presentational form: English text. Yet text is often

not the clearest way of presenting an explanation. For example, most machine-produced English

explanations of highly interconnected structures (such as a causal network) become rapidly

confusing. The same information is substantially clearer when illustrated by a drawing. This suggests

that an explainer will benefit from an ability to inter.mix multiple presentation forms, choosing the
most appropriate one given the nature of the information to be presented and knowledge of the

capabilities and preferences of the user. A preliminary graphic capability has been designed for Gist

and is currently being implemented. This will allow the user to display, enter, and modify some of the

information in a Gist specification. The next stage will be to integrate this capability with the English

paraphraser and a set of heuristics for choosing the most appropriate form, so that the explainer will

be able to integrate graphic and text explanations.

It is generally agreed that to give good explanations, it is necessary to be able to summarize the

information to be presented so that the listener is not overwhelmed by detail. The current

paraphraser has a limited ability to summarize. For example, the actions an agent can perform are

presented in an overview before they are described in detail. While such Gist-based heuristics can be

valuable, they will probably not be powerful enough to solve the summarization problem by

themselves. The problem is that such heuristics only examine the final version of the specification

and frequently, there is not sufficient information available to determine appropriate summarizations.

.-. A record of how the specification itself was developed would be very valuable, because it could detail

how the final specification was elaborated from a more abstract initial specification and give the

rationale behind those elaborations. This record could be used both in determining summarizations

and in justifying the specification. The Gist language itself has no special features for representing

these different levels of abstraction. We are currently designing a system for incrementally acquiring ,," .%"

specifications from the specification writer. This system will allow the writer to initially give a very

,* high-level, abstract specification. This initial description will usually be incomplete. The initial

specification will be repeatedly elabcrated until it is as detailed as required. This process will be
recorded. The record should give the explainer a needed additional source of knowledge for

providing good explanations.

2.2 The Gist Symbolic Evaluator

2.2.1 Introduction

Our approach .to symbolic execution regards a specification as a large set of domain axioms,
4 expressed in a first order temporal logic with typed variables. The axioms define the set of acceptable

behaviors, i.e., the specified behaviors correspond to the models of the set of axioms. Symbolic

execution is a process of forward inference, computing consequences of these axioms. Notice that a

specification need not determine the truth or falsehood of every relation, i.e., a relation may be true in

some behaviors and false in others.

.'_. ,. , - .,. . . . .> . . ., , . ,, - , . ., ,., -, , ,* -, , ,-.. . ,, * . . . . .. , . . ..' :.



*. . . . . . . . . . . .. . ..

This approach factors symbolic execution into two processes. First, each statement in the

specification is translated into axioms about successive world states. Second, these axioms are used _

to derive certain interesting conequences, e.g., hidden Interactions among different parts of the

specification. The success of this approach depends in large part upon the ability of the forward

inference engine to find interesting consequences and avoid uninteresting ones. However, the Li'

control of forward inference is outside the scope of this paper. The rest of the section describes how
various Gist constructs are treated as axioms. We start with 1:: ,mitive constructs and then show how

compound constructs are handled in terms of their components.

2.2.2 Constraints

Constraints are the easiest Gist construct to handle, in that they are already in the form of axioms.

For example, the constraint that the spouse relation be symmetric is expressed as

V steXpersonyperson (Spouse(x,y) D Spouse(y,x)) in a

Actually, in the current implementation, facts about different states are stored separately; more on

this later.

2.2.3 Descriptive Reference

Part of the meaning of a Gist statement like the constraint "require Contains(a box, a ball)" is that

there must be referents of the object descriptions. Symbolic execution creates a typed "symbolic

instance" for each such description. If we call these symbolic instances box1 and ball2, symbolic

execution simply proceeds by adding the axiom Contains(box1 ,ball2). The interpretation in which this

makes sense is that box1 and ball2 are not actually objects in the world, but rather names of objects. -

The distinction is that several names can refer to the same object. Thus we do not preclude the

possibility that bal12 is actually the same object as some other ball that was referred to earlier.

Descriptive reference is merely a constrained form of nondeterministic reference, e.g., requiring a

box to contain a red ball is modelled by adding the axioms Contains(boxl ,ball2) and Red(ball2).

One kind of consequence the symbolic evaluator considers interesting is that two descriptions must

(or cannot) refer to the same object. Specifications often contain constraints that imply the identity or

non-identity of such descriptions. The most common such constraint requires that a relation be a -

single.valued function of one of the arguments, e.g., Gender. Another common constraint specifies

that a relation describes an optional attribute, e.g., Spouse.

The consequences of uniqueness constraints are found by forward inference. For Instance, from

,-a.. Spouse(pl ,p2) and Spouse(pl ,p3) the system deduces p2 a p3. Conversely, from Spouse(pl ,p2) and -

-Spouse(pl,p3) it deduces p2*p3. The system also uses uniqueness constraints to find

consequences of facts with universally quantified variables or several arguments to compare, e.g.,

from Gender(pl,sexl) and Gender(p2,sex2) it deduces pi * p2Dsexl * sex2.

...................
- . . . . ,--

.. ,.:-.. -....... .-........ .... .... ... .. :,



20

2.2.4 Primitives that Change the World

The most direct effects of primitive changes are easy to axiomatize, e.g., In the state after "insert

Spouse(pl,p2)" it is required that Spouse(pl,p2). However, such constraints cannot completely 0

capture the effect of a change. In particular, first order predicate calculus cannot represent the

notion that the before and after states are the same except for the effects of the change.
* ' ,-°.--.

This notion is captured by predicate transformers [3]. The symbolic evaluator stores each state

explicitly along with the set of facts known to be true in that state. Facts are propagated between

neighboring states. Notice that propagating a constraint backward in time allows the symbolic

evaluator to identify its implications for earlier choices. We use Pre(S,F) to denote the consequences

our system derives about the state preceding execution of the statement S given that the fact F holds

afterward. Similarly, Post(S,F) denotes the consequences about the state resulting from S given that

F was true beforehand. For readability, we use the notation "F1 before S a> afterwards F2" for

"Post(SF) 2" f F2" for "Pre(SF) F2".

The computation of pre- and post-conditions is considerably simplified by the following

considerations. For any executable statement S and any propositions P and 0:
Pre(S,PAO)=Pre(S,P)APre(S,0)
Pre(S,PVQ)aPre(S,P)VPre(S,O)
Post(S,PAQ)-PostS,P)APostS,Q)
Post(S,PVQ)-Post(S,P)VPost(S,Q)

Ouantifiers are eliminated by skolemization. This reduces the problem of computing pre. and

post-conditions of general propositions to the special case of literals, i.e., positive or negative

instances of relations with constants, universally quantified variables, and function applications as

arguments. (In the rest of this section, "x" and "y" are universally quantified variables, 1" and "g"
are functions, and other unquantified symbols are constants.) The rest of this section describes how . .

this is done for different kinds of primitives. .,::
2.2.5 Changing a Relation

In Gist, the insert and delete statements add and remove relations. The relation is named explicitly,

but the objects may be named by description (and thus nondeterministically), e.g., "insert Red(a

ball)". Only one instance of a single relation is changed by each such statement; "insert Red(ball1) V

Green(balll)" has no meaning. An insertion results in a new state containing the inserted fact.

Deletion is treated as insertion of a negated fact.

"The problem of computing pre- and post-conditions of other facts with respect to insertion and

deletion is simplified by the following considerations. Gist is a first order language, i.e., there are no

variables ranging over relations. Thus any literal whose relation differs from the one being inserted or

deleted is unaffected. (Gist supports "derived" relations, whose values are changed by changing

other relations, but the handling of these is outside the scope of the present paper.) Also, if a positive
A"..,

'p ,-o

* _.*:J:* *. ~ ~ ~ A~' " ."'°



21

literal is true before an insertion or a negative literal Is true before a deletion, It will still be true

afterward:
Red(ball1) before insert Red(ball2) u >afterwards Red(balll)

Finally, if a positive literal is true after a deletion or a negative literal is true after an Insertion, it must

have been true before:
-Red(ball1) after insert Red(ball2) u >beforehand -Red(baill)

The only cases in which insertion or deletion changes an existing fact are those in which a literal

true beforehand is changed by the insertion or deletion, or a literal that is true afterward is made true
by the insertion or deletion. This happens just when the arguments of the fact all refer to the same

objects as the corresponding arguments of the relation being changed:
P(a,x,f(x))) before delete P(b,c,d) = >

afterwards P(a,x,f(x))V(a - bAx a cAf(x) = d) -..

Recall that all of the variables are universally quantified, so after deleting P(b,c,d), P(a,x,f(x)) is still

true for all x with the possible exception of c, and that is only an exception If a" b and f(c) ,d. 2

2.2.6 Changing the Type of an Object

Types in Gist may be thought of as unary relations. Thus "p is a person" corresponds to Person(p).

An object's type can be changed by a Gist reclassification statement, e.g., "Pinocchio becomes a

person", which corresponds to "insert Person(Pinocchio)".
"I." .p'

Ouantifiers in Gist always range over objects of a particular type. Therefore a universal statement

may have exceptions in neighboring states where more objects have the specified type, e.g.,

Vx 3ypon Mother(y,x) before
Pinocchio becomes a person = > afterwards
Vxe 3yn(Mother(yx) V x a Pinocchio)

This is exactly the effect that arises from treating types as unary relations:

Vx 3y Mother(y,x) means
J person person

Vx3y(Person(x)D(Person(y)AMother(yx))),

where x and y are now untyped variables. The symbolic evaluator would skolemize this to

(Person(x)D(Person(f(x))AMother(f(x),x))), 3 translate "D" in terms of "V" and "-", and apply the " -

rules for computing a post-condition:
- Person(x) V (Person (f(x)) A Mother(f(x),x)) before

insert Person(Pinocchio) = > afterwards

2Roders familiar.with unification will notice both similarities and differences For example, P(f(a)) would match with P(f(b))

giving the "substitution" (f(a) f (b)). i.e.., it is not necessary that a a b. lust that f(a) a f(b). Also, Its perfecly acceptable to uni y
x with f(x). In a snse we have a generalized version of unification which can be used for theorem proving, e.g., P(a,b)VO in

4 resolved with -P(cq4)VR to give alcVbcdVOVR.

3To maike skolemized axioms weI.defined, we treat skolem functions as immutable and defined over all obiects that ever
exist, but do not cornstrain the value of the ikolem function on objects outside tge original type.

J " '. I"

..

MCA Q ... **7



22

-Person(x)Vx * PinocchioV (Person(f(x))AMother(f(x),x))

This is equivalent to the post-condition above.

2.2.7 Creating and Destroying Objects 6

In Gist, objects are always created with a type. Creating an object is like Inserting a type relation

except that (1) the created object is different from any object that ever existed before and (2) this

object is in only those relations inserted since its creation. (Objects in the initial state may be in

arbitrary relationships as long as no constraints are violated.) Similarly, destroying an object is like 0

deleting a type relation except that (1') the destroyed object differs from any object that ever exists

after the destruction, and (2k) destruction deletes all relations in which the destroyed object

participated.4

These properties of creation and destruction cannot be expressed in first order predicate logic;

instead, they are embodied in the inference engine and the predicate transformers. For example, in

simplifying an equality the symbolic evaluator checks to see whether one object existed before the

other was created. The pre- and post-conditions of creation and destruction combine the effects of

reclassification with the requirement that non-extant objects cannot participate in relations.

Notice that the create and destroy statements are almost symmetric in the sense that each viewed

backward in time looks like the other. The only difference is that a destroy statement deletes all of the
relations involving the destroyed object, whereas the create statement is not empowered to insert

arbitrary relations involving the created object.

The following table summarizes the conditions under which creations and destructions invalidate

literals. We use P(x,a) as a representative literal, where "a" is a constant and "x" is a universal

variable. The occurrences of "a = c" represent the condition that the created or destroyed object (c)

is one of the parameters of the relation (we exclude variables since in one case they simplify out and

in the other case they are included by the other condition), e.g.,
P(x,a,f(g(x))) before destroy c a > afterwards

P(x,a,f(g(x)))Vc a aVc = f(g(x))

The occurrences of "x c" represent the condition that the created or destroyed object is

(instantiated by) any of the (universal) variables in the literal, e.g.,
P(f(x,y)) before create c - > afterward P(f(x,y))Vx . cVy i C ".

Additional detail is contained in notes " ) below.

*4
The equality relation can relate non.extant object and is considered to be immutable. The table below i suitably altered ...

for this case.

'..* o * °

" , ' ,- %, , ;%," - , "- " - . " "



. . -. . . - -. . -. . .. . . .. . ." .. . .

'4 " 4 - - . ... 4 ..- . 4 4=4.7.7

23

Pro. and post-conditions for create and destroy

P(x,a) before create c m> afterwards P(x,a)Vx =c L
P(x,a) after destroy c .> beforehand P(x,a)Vx c
-P(x,a) before create c a > afterwards -P(x,a) ' v

* -P(x,a) after destroy c a > beforehand -P(x,a)Va a cVx c
P(x,a) before destroy c a > afterwards P(x,a)Va. c "vi

P(x.a) after create c ) beforehand P(x,a) ,v"'s
-P(x,a) before destroy c - > afterwards -P(x,a)
-P(x,a) after create c .> beforehand -P(x,a)

i a= c is impossible unless the prior state was devoid of objects of the same type as x, i.e., the
quantifier was vacuous. In this case P(x,a)Vx z c still holds if a = c.

" If creations were allowed to Insert relations containing the new object, this entry would be
"-P(x,a)Va cVx a c".

x a c reduces to false here since the quantified x only refers to objects that exist.
'" Since creation does not insert relations, this case could only arise If Insertions were done at the

same time as the creation. See section 2.2.10. If creations were allowed to insert relations of the new
object, this would be "P(x,a)Va - c". The x a c reduces to false. See "' above.
'When P is the equality relation, x*a, the result is x*aVx ac.
v' When P is the equality relation, x a a, the result is x a a.,. •

2.2.8 Compound Statements

In order to save space we describe only a few problematical constructs. It should be obvious how
sequences and procedure calls can be handled. Conditionals are not hard, given a way to represent

4.1 the truth of the branch condition as of the branching state. It should be mentioned that the branches
are combined into a common state after a conditional, i.e., rather than producing a tree of behaviors,
the symbolic evaluator describes the state after the conditional in terms of which branch was taken.
2.2.9 Loops

We distinguish between "simple" loops, which can currently be handled and "non.simple" loops
which cannot. Simple loops are those in which the iterations are independent of each other, i.e., the
same thing is done to each of a set of objects, as in "move all old files off line".

Most loops in implementations are not simple, e.g.. "for each file, if age(file)>age(oldestfile) set
oldestfile to file": However, these loops tend not to appear In Gist apecifications. They are replaced
by descriptive reference, e.g.,

"a filel such that Vfile2 age(filel).age(file2)"

Simple loops are symbolically executed for the entire set at once. Basically, the loop variables turn
into universally quantified variables in the facts that are inserted. After "if filel Is old move it offline"
we know old(file1):)offline(flfel), whereas after "for all files F, If F is old move t offline" we know Vx, e  .
old(x):)offline(x). All of the symbolic instances that are generated in a loop are skolem functions of

,:.'%%-'.

' . .- 4_ , " "- ,." . ..". .." ,r. . . . . . . . . . ... .. ""



24

the loop variables. In general the computation of pre and post-conditions Introduces existential

,. • quantifiers, but is otherwise similar to the versions described above, e.g.,
-P(a,b) before insert P(c,d) -> afterwards

-P(a,b)V(c - aAd a b), whereas
-P(a,b) before insert P(x,f(x)) a> afterwards

-P(a,b)V(3x x a aAf(x) a b))

' 2.2.10 Atomic Statements

The Gist "atomic" construct combines the effects of several constituent statements into a ingle

state transition. An example is the marriage action that simultaneously inserts two spouse relations.
It would not have been sufficient to insert one at a time because this would have led to an

intermediate state of the world that violated the constraint that the spouse relation be symmetric.

(Actually, that specification would still have been consistent, but now t would be possible to marry

two people only if they were already each others' spouse -- another interesting result of symbolic

execution.) Of course, the constituent statements of an atomic must themselves cause no more than
one state transition.

The facts that become true because of the statements in the atomic must all be true In the final

state. e.g., if an atomic contains both insert P(a) and delete P(b), then a and b must be distinct. This

points out a difference between executing two statements atomically and executing them in either

.- order. There is no problem with inserting P(a) and then deleting It. A fact that is propagated through

an atomic can be affected by any combination of the statements In the atomic. The pre- or post-

condition of a fact with respect to an atomic statement is the disjunction of the pre- or post.conditions

of the fact with respect to each constituent statement.

2.2.11 Summary

We have described a system that characterizes the behaviors permitted by a formal Specification

containing such constructs as descriptive reference, nondeterminism, and constraints. It translates a

". ..~.specification into a set of axioms and uses forward inference to compute interesting consequences of

them. It uses predicate transformers to propagate facts between neighboring states; the computation

of pre. and post-conditions in the relational database model has, to the author's knowledge, never

been described before.

We have been pleasantly surprised to find that, although many problems that arise are very difficult

(or even impossible) to solve in general, the most common and useful cases tend to be the easiest.

We have also found that a high level specification can be easier to execute symbolically than a low

level program. In retrospect this is not surprising, since the characterization of low level

implementations Involves a lot of work that could be described as de-compilation.

The decision to represent each state explicitly imposes certain limitations. In particular, arbitrarily

long sequences of states cannot be represented. This precludes the description of non-simple loops

and certain types of historical reference. Historical reference (a special case of descriptive reference)

. '4,' ' ., ... .. ,, .. ' . ' '''q:. .#% ... -. .. , "'" . ,."""" "' ".' . . . ' . ' . . " . . . ." % .. . . ." ." . . . ." ." ." "



25

is not yet handled. We also currently do not attempt to handle the arbitrary Interleaving and merging

of lines of control provided by Gist. We hope to attack these problem, but a great deal can be done
without solving them. 0

2.3 The Trace Browser

This section describes the Trace Browser. An example of Its use is presented in the appendix. The

Browser is designed to allow a user to examine the trace generated by the symbolic evaluator. The
user can move around in the trace. examine the state at different points in the evaluation, and obtain -.0

justifications for facts in states. Since the total state of evaluation can become quite large, the

Browser also allows the user to indicate particular objects he is interested in, and display only the
information applying to them.

The browser is a relatively low-level tool that presents information about the trace in a form close to

its internal representation. For that reason, it is primarily useful for users willing to invest the time
required to gain a detailed understanding of the symbolic evaluator and its representations. Most

users will probably prefer the Behavior Explainer (described in the next section) which produces
natural language translations of the internal trace representation.

The browser's commands for moving about the trace work at the level of Gist statements, although
the actual trace is considerably finer-grained. The browser works at this coarser level so that there
will be a close correspondence between what the moves a user can make and his specification.

Commands for the browser are:

- In move into a compound statement (such as Begin or If).

* Out the opposite of In. "-

Next moves to the next statement in a sequence of statements. Remains at the same level
of embedding. That is, this command will not move beyond the last statement in a Begin
Block.

* Previous the oppositie of Next.

Run Step similar to Next, but if invoked at the end of a block, it will automatically perform • -
Outs until an executable step is found, then does a Next.

- Top returns to outermost statement 'SI

.Show State shows the state as of the current position. Asks the user whether the state
.- should be shown before or after execution of the current statement, and whether final or

* incremental knowledge should be displayed. If the user requests final knowledge, the
2%" display may include facts propagated back from states yet to come. Incremental will

display only the knowledge known to the Evaluator when it first entered the current state.



,Y
o

.7. -6- -

-Examine Single Object prompts user for t object to be displayed, and shows its
"- ' attributes, how it is used, and relations in participates in. ii

-Add Object to Monitored Objects This command allows the user to Indicate to the0

browser which objects he is interested in.

.UnMonitor Object removes an object from the list of monitored objects.

* Display Monitored Objects does what the name implies.

- Justify Fact displays a justification for a fact, that is, the reasoning the Evaluator went
,-' through in determining that a particular fact was true. Often, a fact may be justified by

other facts. In that case, the browser will display them, and the user may ask to see
justifications for those facts, too.

2.4 The Gist Behavior Explainer

Above, we described the Gist paraphraser. This addresses the syntax problem by directly
translating a Gist specification into English. We have found the paraphraser to be useful in both

clarifying specifications and revealing specification errors. But the paraphraser deals only with the
static aspects of a specification. This section deals with the more difficult problem of making non-
local specification interactions apparent by simulating the dynamic behavior implied by the

specification.

As the symbolic evaluator evaluates a specification, the trace it creates describes the dynamic
interactions we want to be able to describe to users. Unfortunately, the trace is much too detailed
and low-level to be readily understood by most people. To overcome that difficulty, we have".

constructed a trace explainer that selects from the trace those aspects believed to be interesting or

surprising to the user and uses that information to produce an English summary.

* . There are a number of problems that make the simple direct-translation techniques (which worked
A, well for the Gist paraphraser) unsuitable for the trace explainer. As stated in the introduction, these
*problems include:

- Detail suppression.

- Proof summarization and reformulation. -"

- Referring expressions. ,.

Figure 2-2 reproduces (with annotations) the example presented In Section 1. This example will be
•sed to illustrate the initial solutions we have found for the problems listed above.

%.'--

-' . -% ", - -, - % -- ° .. .. .. .... . - .. . . .. . -. .. . . .. . . .. . . . .-

% ... , . .-. .,.* .. *, -/ ; .. . . . .
,€: ,, =,. .- s s a -,,- .1 -,.- -S.- -. . -.- .- --. . - - .. ..-. ,.... . .. .. .-.-.- --. - -I..-. . _. .'...--.. . - ..



. . . . . . .7

27 .

1. A box, call It box1, Is Inserted.
Result: The new location of box1 is sourcel.

The explainer describes the action invocation as it was stated in the test case. It makes up the
name "box 1" for this box so that it can be conveniently referred to later. The explainer then
describes the result of this action Invocation.

2. A box is moved. The box must be box i since
2.1 For all boxes except box1, the box's location is Inputl, and
2.2 The precondition of moving a box requires that either:

2.2.1 The box's location must be sourcel, or
2.2.2 The box's location must be a switch.

Result: The new location of box1 is switch1.
Something surprising has happened. In the test case, the action invocation was made with a
non-deterministic parameter, but the constraints of the specification force the selection of
one particular box, namely box1. The explainer recognizes this sort of behavior as surprising
and describes not only the restriction on binding the parameter, but also the reasons behind

, '. it.

S..

3. A box, call it box2, is Inserted. The box must not be box1 since

3.1 The location of box1 is switchl, and
3.2 The location of the box to be inserted must be input1 since the update In
inserting a box requires it.

Result: The new location of box2 is sourcel.

-F.. 4. A box is moved. The box must be boxI since otherwise, at the start of step 5, the
location of box2 would be switch1 but the precondition of setting a switch requires
that the switch must not be the location of any box.
Result: The new location of box1 is the selected-outlet of switch1. Switch1 is not the
location of any box.

At the start of step 4, box1 is at the switch, and box2 is at source1. It would appear that either
one could be moved in step 4 since both satisfy the preconditions of the move. However, If
box2 moved, it would be impossible to execute the next step. So, as the explainer describes,
the non-local interaction with step 5 constrains the parameter binding.

...- ,.,

5. A switch Is set. The switch must be switch1 since there are no other switches.
Result: The new selected-outlet of switch1 is an outlet, call it outleti, of the switch.

Figure 2-2: Machine-Produced Description of
Symbolic Evaluation of Test (continued on next page)

.,% ',

.'..'..'..." , " ," ~~~~~.... ... .. .... '_. .. ;.,... .... , ........................... . ..... .......



•g" .°"

28

6. A box Is moved. The box must be box2 since the precondition of moving a box
;: requires that either:

6.1 The box's location must be sourcel, or
6.2 The box's location must be a switch.

Result: The now location of box2 is switch1.
The proof hat the box to be moved must be box2 is actually quite involved. The system
currently has no good way of summarizing proofs of this type, so it falls back on another
heuristic. The explainer examines the proof structure to find the statement In the
specification that was used specifically to constrain this choice and displays it. That is, rather
than showing a proof, we just display the parts of the specification that became relevant In .
constraining this behavior. This heuristic seems to work well, and it provides the explainer ..
with an "escape" so that it can convey some Information even If it can't reformulate the proof.
Although it's usually not too difficult to figure out how the specification statement constrains -*.

the behavior, we plan to add a facility to allow the user to ask for further elaborations when he
has trouble (see "Future Directions").

7. A box is moved. The box must be box2.
Result: The now location of box2 is outlet1. For all boxes, the box's location is the
box's destination.

Since the justification for this step is the same as for the preceding, the explainer omits it.

Figure 2-2, continued

2.4.1 System Organization

Like the Gist paraphraser, the trace explainer employs an Intermediate case frame representation

which is converted to English by a relatively straightforward English generator. The explainer Itself is

organized into individual explanation methods. There are two basic kinds of explanation methods. - "'
Trace-based methods can describe particular situations that arise in the trace, such as an action

invocation or the justification of a fact found by the evaluator. The other kind, structuring methods,
organize the output of the trace.based methods into higher.level explanation structures. For 4J

example, one such explanation method organizes two statements into a statement-reason

explanation structure of the form "P since 0" (see [13]).

There can be several explanation methods that describe the same object or behavior, but at

differing levels of detail or highlighting different aspects. it is up to the explainer to choose the most

appropriate explanation method for a given situation. Currently, much of this decision-making is
handled procedurally. While this organization has been adequate to handle the sorts of specifications

shown here, a more sophisticated explanation planning mechanism will probably be needed to handle

larger specifications.

7Z7

.S,:.,
S

-I.- . .• ,' 4. ,* .t~_ . . , . . ., . - . - . _ . _ _ , ,• . . . • . . . . . , . ° . . - - .

• J 4 ." ° * ° - • ° "° . • " • " '. - "•% - - , ° ' - " - . . •"



-- l

-4 2.4.2 Issues In Explaining the Trace

The chief problems confronting us in explaining the trace have been 1) selecting and summarizing

the most appropriate information to present to the user from the large number of Inferences produced 0-

by the symbolic evaluator, 2) reformulating the theorem prover's proofs into a more understandable

form and 3) dealing with changing referring expressions.

2.4.2.1 Selection and Summarization

Both the structure of the specification and heuristics about what the user wants to see are used to

guide the summarization of the trace. We assume that a particular specification has the structure It

has because it models to some degree the way the specifier thought about the problem. Some of the

explanation methods exploit this structure. Consider two explanation methods, both offering

descriptions of action invocations. One might use the structure of the specification and produce a

very summary description by just translating the invocation statement Itself and stating the results of

the invocation (similar to the example given above). Another explanation method could give a more

detailed description by actually describing the body of the action that was invoked as well. The

structure of the specification is a help in summarizing the trace, but it is not enough since many of the

facts the evaluator discovers (and the explainer must chose among) come from the interaction of

several pieces of the specification.

To decide which interactions to present, the system must have some idea of what the user will be

interested in. For example, a customer unfamiliar with the specification might want an overview that

described the "main line" or normal execution path. On the other hand, the specifier who wrote the

specification would want to see the parts of the specification that appear to be Incorrect because they

- use the specification language in a surprising or unusual way. Our current implementation has

concentrated on presenting these surprising behaviors, rather than the normal case.

What, then, is surprising? We consider things such as superfluous code, the use of an overly

general language construct, or, worst of all, a specification which Is inherently contradictory to be
surprising. More specifically, a conditional branch which must always follow the same path,

constraints which are never employed, and (as in the example presented here) the use of a non-

deterministic parameter that turns out to be deterministic are all surprising. The explainer's methods

recognize surprising situations and describe them to the user.

The kinds of surprises described above are language.dependent. Another kind of surprising

situation will arise as our work on incremental specification proceeds further. The incremental view

.f specification states that detailed specifications do not appear all at once, but rather are gradually

refined layer by layer from more abstract specifications. Each succeeding layer Is in a sense an

implementation of the one above t. Surprises will occur when the symbolic evaluator discovers that

one layer of a specification does not meet the goals set forth for It at a higher level e

*,' V .... . . . . .

'V . *. , _ _. o .*,. .. •......•. . . .. . .•. - .. . .- .~ '-' . -. **• . . - . . . , , . .. .

,.-..- .;,.,.. ...;.:. ......... ....: ... ..... ... -. : -... . ... .... *.-... .. .. ...
il - I" "m :' _ '.'.' , " " a• ta - "- . - ". *, " . , .', '.. . . .U ..,U,,' . .q -. ,



30I

2.4.2.2 Reformulating Proofs 2
While a resolution theorem prover may be attractive for many reasons, certainly the lucidity of its

proofs is not one of them. Our approach to this problem follows that suggested by Webber and Joshi
[12]: we attempt to reformulate the resolution proofs Into ones that seem more natural. Some of the

recognizers we have developed find simple proof structures like modus ponens, while others find
more complicated structures such as proof by contradiction or a version of the pigeonhole principle.
For example, the pigeonhole rule examined the proof that the box moved in step 2 is box1 and "
recognized that the proof has the form of successively eliminating possible candidates. Since one ,-:..!:

reformulation may cover several resolution steps, recognizers like this help both by reducing the -

amount of information that must be conveyed and by structuring it more appropriately.

At times the recognizers alone provide sufficient infori.iation to know how a proof should be
described. At other times it is necessary to consider how the proof description fits into the trace

description as a whole. For example, in describing step 4 in the example, a hypothetical construction
was used:

otherwise, at the start of step 5, the location of box2 would be switch 1
since the selection of the box to be moved was constrained by an event still In the future.

2.4.2.3 Referring Expressions

Because the symbolic evaluator dynamically creates symbolic instances of types as It reasons about "_"
them, the trace explainer must be able to create names for such objects, even though they never

appear in the original specification. For example, Box1, mentioned In line 1 of the trace description
never appears in the specification. It is a symbolic instance created by the evaluator to represent "the

box inserted in step 1". While the evaluator creates a new instance at each action invocation, the , , ,

explainer is more parsimonious, creating new names only when equivalence to previous names
., cannot be established. Thus, in step 2, no new name is required to describe the box to be moved

since it must be boxl.

While names like box? or box2 are often sufficient for naming symbolic instances, they can at times
be more confusing than helpful. Consider line 3.2. The box to be Inserted referred to there is in fact -

equivalent to box2. But substituting box2 In place of the box to be inserted results in a confusing
explanation. That's somewhat surprising, since one would expect that after naming an object in a
description one would be free to use that name to refer to it. The problem Is that the order of the
description does not correspond to the ordering of events. The reasoning about which box to insert
precedes its selection and naming, but In the description, things are reversed and the naming of

,objects is sensitive to the order of events. The explainer therefore generates the phrase the box to be

inserted rather than box2. ..

ea P

% %4 %

. .. i-

* % .4i.... a'.. %=4-



_V __' - '. '. -- -- .- - . . . - -.

31 *

2.4.3 Future Directions

Our current implementations of the symbolic evaluator and trace explainer produced the examples

contained in this paper. While our systems are still very much laboratory prototypes, we feel that they.0

have begun to demonstrate the utility of the techniques outlined here in debugging specifications.

Even so, we are aware that these techniques will not, by themselves, be sufficient for much larger

specifications. The four areas that seem to need attention are the symbolic evaluator, incremental
specification, allowing the user to ask follow-on questions about the summaries the explainer

provides, and a better mechanism for planning explanations.

. The current symbolic evaluator is not goal driven. Rather than having a model of what might be

interesting to look for in a specification, the evaluator basically does forward reasoning until it

reaches some heuristic cut.offs. In the process, it generates interesting as well as uninteresting '

results, which the explainer must sift through. While this works reasonably well for the small
*.-0* specifications we have been working with, larger specifications could prove overwhelming. One

solution may be to make the symbolic evaluator more goal-directed. By giving it, at least at a high

level, a model of what might be interesting, it could be more directed in its search. After narrowing

* the search using goals, the evaluator could then switch to forward reasoning to more completely

examine the smaller problem space. Such an approach would benefit both the evaluator because it

would run faster, and the explainer, because the goal structure would aid substantially in generating

explanations.

The notion of incremental specification has already been mentioned above. Aside from indicating

surprising behaviors, incremental specification could also improve the performance of the evaluator

through higher level abstractions [9], since a few reasoning steps at the high level could replace many

low level inference steps.

The current implementation of the explainer makes no provision for the user to ask further

questions about the descriptions it produces. However, such a capability is required because the

descriptions are produced heuristically. The system may assume that the user will readily understand

something that actually requires further description. For the near future, we do not envision allowing
,. the user to ask questions in natural language, but instead, we will let him point at the pieces of the

description he did not understand (using a mouse or other pointing device) and ask for further

description.

S 1
Finally, we are currently implementing an explanation planning mechanism that will allow us to

represent plans for presenting information. This mechanism will allow us to describe goals and the
capabilities of plans along multi-dimensional scales. The dimensions will be either categorical or I

ordinal. For example, some of the kinds of dimensions that seem to be important in explanation are:
the type of object to be described, the form the description is to take, degree of verbosity, and level of

detail. The planning mechanism will support matching goals and methods represented in this space,

,.'. .'. .. ' -; .. . ... s .'. . ... .S ... . A . ." ,. ... s .. .- . o . .- . ". j-. . -,. .' . -. _,. - .. " , . i ' '



arnd will provide a mechanism for selecting the moat appropriate method when only a partl match L I

." * *'.ll

. .". *o .

S1-.,.,.-l l

.(= m. -"a

!.' ,:,:

54 . . . '-:

.S.-. . .

* * . *." -- -

%~Ii' *%* .- ~- .2~ . *.* *'. '..*.. 4-



33

3. Detailed System Structure

This chapter presents a more detailed view of the system structure, and outlines instructions for S

using the symbolic evaluator, paraphraser and trace explainer.

3.1 Composition of the Symbolic Evaluator

The Gist symbolic evaluator makes use of several large (and complex) systems which are described

only briefly here for the sake of cor.ext.

Interlisp [11] is the programming language and environment in which all of the programs discussed

below are written. The Gist language is parsed by the POPART system [14], which also provides a

Gist editor. The "Gist to Safe compiler" reads the parse tree and produces an intermediate file (a a,1

"gcom" file) which can be loaded into the symbolic evaluator. The AP3 system [5] provides a

relational database, a type hierarchy, demon triggering and contexts. It is used by the Hearsay3

system [1], which is a tool for building "expert systems". A "SAFE system" (the name is of historic

origin and unrelated to safety) is obtained by adding programs for reading gcom files and translating

them into an AP3 database, called the "SAFE representation" of the specification. The symbolic

evaluator works from this representation of the original Gist specification and is built from a SAFE

system,

p interaction parse tree o C o r Ieil

Safe representation
User int o ,Symbolic Evaluator - (stored in gcom file)

.

Figure 3.1: Symbolic Evaluator Organization

The specification testing tool that was built for the present contract is the bottom part of Figure 3-1.

The symbolic evaluator itself is made up of several major parts. The English descriptions of theKspecification and behavior are generated from a case grammar by programs in the file "case". The

file "ENGCON" contains the programs that express information in the case grammar. For example,

there are programs to translate various Gist constructs and programs to translate the facts found in -0

symolic execution. The file "ETREE" contains programs that maintain the execution tree and accept "-'.

usei instructions for altering it, moving around in it and displaying it. The file "LOGIC" contains the

--. ,V..



-. .,... .-*. * *

h. .5 7 7

34

theorem prover that deduces new facts within a state. The file "MTRACE" contains the programs that
maintain the internal representation of the execution history (called "the trace") and compute
pre. and post-conditions. The file "MEVAL" contains the programs that understand how to ,
"execute" the SAFE representation of a specification in terms of building an execution history. The
file "TBROWSE" provides an interface through which the trace explainer (in "ENGCON") can
examine the execution history (recorded by "MTRACE"). These relationships are outlined in Figure
3-2.

:"0 :

*-, "Execute" Safe
='..',interaction Safemm-.nd-

I_-I.1 II ETREE comma MEVAL representation

"Supposecommands

English commands V commao ds'>" commancomands 2.::

MTRAC E J
C ASEI facts
" } i the trace.,.

case grammar

ENGCON explainable facts ::'T';'

Figure 3-2: System File Structure

3.2 Use of the Symbolic Evaluator

The symbolic evaluation system is meant as a toot for helping a user to understand a Gist
specification. The meaning of a Gist specification is the set of behaviors that it denotes. (A behavior
is -ined as a sequence of world states, where a world state is defined by the set of objects that exist
and ie relations among those objects. The symbolic evaluator helps a user to explore that set of .
behaviors. The current version does not allow concurrency as defined by the semantics of Gist. It
only handles behaviors that consist of a sequence of action and demon invocations. Furthermore,

_. the current system does not attempt to enumerate all such sequences, but forces the user to decide
ritwhich ones he wants to examine.0

The result of symbolically executing a sequence of action and demon invocations is a description of

the set of all behaviors containing that sequence of invocations with no other activities intervening. Itis possible to include constraints with the actions and demons, in which case the result is a
'*" description of the subset of those behaviors that satisfy the constraints. ii:)

-',.'-.."- ." -" -" ... . b.-"...".-:.....'.-.....-.. .-. ....-...... ].... .--. "-.--....""-:--'..
,..........'.-...-.......... .. . .............,. ........ ........ ..... :........-......-..-...•



35

3.2.1 The Model of the Exploration Process

Gist specifications tend to contain a number of "global constraints", facts that are required to be

true of every state in any allowable behavior. The first step in understanding a specification is to 0

understand the global constraints and their consequences (which are also global constraints by the
* - definition above). The global constraints define the set of all states that could be part of any allowable

* behavior. This is an appropriate set of states from which to start the exploration.

* The set of behaviors is explored by building an "execution tree", starting from the most general

" possible state. Every node in the tree represents a set of behaviors which has followed some

sequence of events, subject to some set of constraints. From any such node, it is possible to

generate a more specialized node, consisting of a subset of the behaviors of the original node. These

speciaiizations can take two forms. The first is a constraint. Given a set of behaviors, adding a 6

constraint (in the form of a statement in fi-st order logic) generates the subset that satisfy the

constraint at the last state. The other type of specialization is the addition of an event. This generates
the subset of the original set of behaviors that is followed by the added event. (Note that we consider

our descriptions of sequences of states to also describe, incompletely of course, longer sequences

that contain the described sequence.)

3.2.2 Commands

The most important command is the Help command. It allows you to find and find out about all the

other commands. Just typing "Help" will tell you what words the Help command can help you with.

Typing Help followed by one of those words will tell you about that word, e.g., if it's a command, then .

what does it do and how can you use it. The words that Help knows about include the following

commands. " ":-"

GetGlobalFacts processes the global constraints and describes any interesting

consequences of them. It also initializes the execution tree with the null execution.

ShowTree prints a representation of the execution tree.

ShowPath prints a representation of the path from the root to the "current execution",

the node in the tree where you are now. rC4

MoveTo allows you to move to another node in the execution tree.

Suppose Allows you to add a constraint to the current execution. It describes any

interesting consequences of the constraint and leaves you at the node after the
constraint. (Details of how to type in constraints are described under the Help for __ 6
ReadWff.)

Execute allows you to add the execution of a demon or action to the end of the current

execution. Actually, this will typically consist of many events. The symbolic evaluator will
keep you up to date on where it is executing. Every so often it will ask whether it should l-sp
keep going or stop. It would be too much trouble to ask at every event. However, you
can always MoveTo one of the events that it passed, add a constraint at that point and
then continue.



" 7 . . .- . .W. 7 W"+ -7 V. W

38

, Continue allows you to continue an execution that is not complete.

3.3 Using the Paraphraser and Trace Explainer

As mentioned in chapter 2, the user must supply a few annotations to achieve good translations with
the paraphraser. There are two kinds of annotations: translation annotations that indicate how a
particular Gist construct should be translated and grammatical annotations that indicate irregular - -

S".- verb forms, spellings, and so forth.

The trace explainer uses the same files and one additional one: T-TRACE. The annotations
required for the paraphraser are also sufficient for the trace explainer. The trace explainer is invoked

by the the function DESCRIBE-TRACE when the system is used in batch mode, and the explainer Is
automatically invoked in interactive mode.

.. v3.3.1 Translation Annotations

The primary annotations the user must supply are the case annotations for actions that Indicate
what cases the parameters of actions should take. The currently defined cases are:

-Agent, the thing or person performing the action. Becomes the subject of declarative
sentences. (The manager moves the ship.)

-Object, the thing or person upon which the action is performed. Becomes the subject of
passive sentences. (John kicked the ball.)

Instrument, the thing used to perform the action. When translated to English, an
Instrument is preceded by the preposition "with". (I dug the hole with a shovel.)

Dative, corresponds to the indirect object. When translated, the Dative case is preceded
by "to". (I gave the ball to the boy.)

- Directional, indicates the object toward which the action is proceeding. This case is .
also preceded by "to". (Move the ship to the pier.)

- Locative, nouns in this case indicate the location of the action. The user supplies the
appropriate preposition to be used with this case. (The ship sank at the pier.)

The record ACTCASES has been defined using the Interlisp record facility to aid the user in
supplying cases for action parameters. To indicate the cases for an action, the user replaces the
ACTCASES record of the action with a list, where each element of the list Is the case to be used in
translating the corresponding parameter of the action. For example, to annotate an action like: re

MoveShip[s I ship, p I pier]
the user would say: (replace ACTCASES of un:MoveShip with '(OBJECT DIRECTIONAL))

The LOCATIVE case requires that a preposition be supplied. This is using a dotted pair, where the

CAR is LOCATIVE and the CDR is the preposition.

•: .... ,
%.., 

-,"..,

• , - __ ..'
,''. ..,'s......,'.'..'.....'+.;',.'+.,'.. .+. , ." '-."_ ..' +.. . .,.. .'- ," ",. -".. -'.. -"-. ,. .. -" ..- -...-. .: .. - "I



-7VT

37 4

To indicate that an attribute should be translated as a verb, the atom corresponding to the lower-

case attribute name is given the VERBPROP property. Thus, in the port manager specification, the

paraphaser is told to translate the attribute "handle" as a verb by saying:
(PUTPROPS handle VERBPROP T)

3.3.2 Grammatical Annotations

The English generator has a limited automatic morphological component, but for irregular spellings

and verb forms the user must supply annotations. These notations are placed on property list of the

lower case singular form of nouns and the infinitive form of verbs. If the verb or noun Is regular, no

notation need be supplied. Current notations are:

- 3SINGULAR The third person singular form of a verb.

• SPAST The singular past form of a verb.

-PPAST The plural past form of a verb.

GERUND The gerund form of a verb.

* PLURAL The plural form of a noun.

% %-

IN

,1% %.

_.-,-~...

% N %

.'. - -. *% ---



I. -- - - -.- ". . . -

4... . .. . . . . . . . . . . . . . . .

4. Using the Interactive Evaluator: an Example
This appendix shows some transcripts of sessions with the symbolic evaluation system. '0

Commentary is inserted in itallic type.

We begin with a very small specification. The Help command is used extensively here to Introduce

the available commands. For reference we include the Gist specification:

begin
type sex()
definition (Male, Female);

type person(gender I sex, spouse I person :optional ::optional);
always prohibited Spouses*- of *-same- sex there exists person II

person :gender a person :spouse :gender;
always required Spouse,-is-Commutative for all x I person,

%y I personII" "

x :spouse a y a >y :spouse x;
agent bookkeeper()
where action Marry[pl I person, p2 I person]

definition atomic insert pl :spouse p2; :.t.
insert p2 :spouse w pl

end atomic
end

end

We now proceed to the terminal session. The user inputs are numbered by the underlying Lisp
system and extend to the end of the line.

24.-Help
Documentation exists for the following:

(Continue Execute Finalize General GetGlobalFacts Help MoveTo ReadWff
ShowCurrentState ShowFinalFacts ShowNames ShowPath ShowSpec ShowTree P
Suppose)

25,-Help General
(General NIL NIL) """

This symbolic execution system allows you to build and examine a tree of
executions. First you must LOAD the "gcom" files containing the specification.
Then do (GetGlobalFacts) to create the root node (named ExecutionTree) in
which the global constraints have been processed but nothing has happened.

At any point thereafter you may examine the current execution, continue the
current execution or start a new one, add new contraints to the current
execution or move to another execution in the tree. The Help command can "-
jDrovide more information.
NIL
26- LOAD(gcom/marry)

expanding LISTP, 65520 used, 2228224 before GC

..,..



These are storage allocation messages. The GCGAG below turns them off. They are turned off In
the other examples.

expanding LISTP, 131032 used, 2162688 before GC
/remote/don/gcom/marry
27.-GCGAGo)

28- Help ShowSpec
(ShowSpec NIL NIL)

(ShowSpec) prints an English translation of the currently loaded specification.
In the current system it is a bad idea to load more than one specification into

A the same system.
, NIL

29- ShowSpeco
There are sexes, persons and bookkeepers.

Male and female are the only sexes.

Each person has one gender which is a sex. Each person may have a spouse
which is a person. Each person is optionally the spouse of a person. -

A bookkeeper can marry.

Bookkeeper is the type of agent which can perform marriages. In this specification, bookkeepers "

are not people and can not be married but can only perform the marry action. In the next example,
-.* the English generator will be instructed how to describe actions other than simply naming them. ... :

To marry:
.4

Action:
Do atomically:
1. Add: The p2 becomes the pl's spouse.
2. Add: The p1 becomes the p2's spouse.

Here again, better English could have been generated by instructing the English generator (or
picking better names in the specification). The parameters of the action, p1 and p2, are identified as
parameter: by the article "the'.

Constraint (Spouse is Commutative):

Always required:

For all persons y and persons x:

If: The spouse of person x is person y, Then: The spouse of
person y must be person x.

Constraint (Spouses of same sex):

. ., .. . .. ... ..... ._ .. ; . ;. . _._ . ._ -.,....,,...........,.,......,......,......................".,..--



- . . .
77t 7.T I.

40 
-

-..

Always prohibited: %

There exists a person:
• I.o.

Where:

The person's gender is the gender of the person's spouse.

NIL
30- Help GetGlobalFacts
(GetGlobalFacts NIL NIL)

(GetGlobalFacts) initializes the execution tree by creating a root node in
which all the global constraints are collected, but nothing has been executed.
NIL

" 31 -GetGlobalFactso
(processing global constraint Spouse,-is'-Commutative)
(processing global constraint Spouses,-of*-same-sex)
(processing nonzero countspec for gender)
(processing uniqueness countspec for gender)
(processing uniqueness countspec for spouse)
(processing uniqueness countspec for spouse)
(processing definition of type sex) ,

(News about previous state)
Result: For all persons, pi, the spouse of p1 is not pl.
NIL

In general, the symbolic evaluator tries to tell the user what it's doing with the messages in
parentheses. In general, any step in symbolic execution may result in new information about the state
from which the step started and about a new state that was generated. Information about the state *

from which the step started is printed as "News about previous state" and information about the new
state prints as "News about current state." In this case, no new state was generated, but it did find
out something about the initial state. The current system does not attempt to justify its conclusions to
the user.

32* Help ShowPath
(ShowPath NIL NIL)

(ShowPath ExecutionNode) [LAMBDA SPREAD]
ShowPath generates a brief description of the path from the root to the
argument node. (ShowPath) is the same as (ShowPath CurrentExecution).
Nodes are named Ex # 1, Ex # 2, etc. These are atoms whose values are suitable
arguments for ShowPath, ShowTree, MoveTo, etc. The nodes from which it is

.- possible to Continue are shown in parentheses, and anomolous nodes are shown
as (Ex # 3 Anomolous). 9,'

"

NIL
. 334 ShowPath0 o. .

(Initialize Ex # 1)

We now proceed to a somewhat larger specification, demonstrating such features as the instruction
to the English generator and the execution of an action. Again we start with the Gist version.

".'J* ",."%.%-
- J

,J' "- '."



41

begin
typeportPierpier' :multiple ::unique, Harbor, ship :any ::optional);

type pier(Handle I cargo :multiple, Slip I slip :multiple ::unique);
type WOiO; '
type ship(Carry I cargo :any, Destination I port,

Berth I slip :optional.:: optional)
always required Berths--Are*- In-Ports for all s I ship I

s :Berth a $ a >s ::Harbor :Pier :Slip n s:
* Berth,

type cargoooptional
supertype of~graino; L

always prohibited Fuel- And'-Grain there exists s Iship,
g Igrain,

'-I s:Cary ~f fuel I
s Crr g and s :Carry at;

agent manager(Port I port :unique ::unique)
where action Move[ship, pier)

precondition ship ::Harbor a manager :Port
precondition manager :Port :Pier =pier
definition update :Berth of ship to pier :Slip;

action Load[ship, cargo)
precondition ship :Berth ::Slip :Handle a cargo
precondition ship ::Harbor amanager :Port
definition insert ship :Carry =cargo

2 action Assign[cargo, port]
Ni definition Load [port :: Destination, cargo]

end
end

Here is the terminal session.

33" LOAD(gcom/ships)
/remote/don/gcom /ships '"

34' LOAD(shipinit)
File Created:30-JUN-83 12:00:40
SHIPINITCOMS
/remote/don i 7riipi nit
35-'SHIPINITCOMS
((P (replace ACTCASES of un:Move with '(OBJECT DIRECTIONAL)))
(P (replace ACTCASES of un:load with '((LOCATIVE. ON)

* *. OBJECT)))
it (P (replace ACTCASES of un:Assign with '(OBJECT DIRECTIONAL)))

J(PROP VERBPROP carry handle harbor)
(PROP 3SINGULAR carry))

This shows what instruction the English generator was given:

-It was told how to use the parameters in describing the actions.

'JIv



42

It was told to use the the attributes carry, handle and harbor as verbs.
',..,

It was given the third person singular form of carry (carries). -

36- ShowSpecO"
There are ports, piers, slips, ships, cargos and managers.

Each port has multiple piers. Each pier belongs to one port. Each port
harbors any number of ships. Each ship may be harbored by a port.

.--A ,Each pier handles multiple cargos. Each pier has multiple slips. Each
slip belongs to one pier.

Each ship carries any number of cargos. Each ship has one destination
which is a port. Each ship may have a berth which is a slip. Each slip is
optionally the berth of a ship.

Fuels and grains are cargos.

Each manager has one port. Each port belongs to one manager. A manager
. .. , can move a ship, load a cargo or assign a cargo.

To move a ship to a pier:

Action: The ship's berth is updated to a slip of the pier.

Preconditions:

The pier must be a pier of the manager's port.
The manager's port must harbor the ship.

To load a cargo on a ship:

Action: Add: The ship carries the cargo.

Preconditions: W-M

The manager's port must harbor the ship.
The pier that has the ship's berth must handle the cargo.

To assign a cargo to a port:

Action: Load the cargo on a ship whose destination is the port.
.. '.. 2..

C.. Constraint (Fuel And Grain):

.5'..-: Always prohibited:

There exists a fuel f, a grain g and a ship s:

• 
"..N

""%

-..

- - - - - - - - - - - -- -...*. , ,*.. *S-. .;.,-*.--*.*,.d , , :? - : , .:,: ,.



~~1 ..- :. -.
.443

Where:

Ship s carries grain g and fuel f. '

Constraint (Berths Are In Ports):

Always required:

For all ships s:

If: Ship s has any berth,
Then: A port p harbors ship s. The berth of ship s must be a
slip of a pier of p.

NIL
37-GetGiobalFacts()

(processing global constraint Fuel *And+- Grain)
v (processing global constraint Berths' Are*- In- Ports)

(processing nonzero countspec for Port)
(processing uniqueness countspec for Port)
(processing nonzero countspec for Port)
(processing uniqueness countspec for Port)
(processing nonzero countspec for Destination) --

(processing uniqueness countspec for Destination)
(processing uniqueness countspec for Berth)
(processing uniqueness countspec for Berth)
(processing nonzero countspec for Handle) ,'..-

(processing nonzero countspec for Slip)
(processing uniqueness countspec for Slip) -v-
(processing nonzero countspec for Slip) -

(processing nonzero countspec for Pier)
(processing uniqueness countspec for Pier) 'V
(processing nonzero countspec for Pier) ...

(processing uniqueness countspec for Harbor) .-..

NIL
38- Execute(Load)
To load a cargo on a ship:

Action: Add: The ship carries the cargo.

Preconditions: ,.,.

The manager's port must harbor the ship.
The pier that has the ship's berth must handle the cargo.

The agent is some manager, call it manageri. The ship Is ship1. The cargo ..

is cargol.
(processing precondition)
The manager's port harbors the ship.

*4*. -4* *'%'. - . . .
• .,...'.'.'.' ,.,..-.,. ,..'.. -...-.... . ...... ..-. . . . .. . ... . . .'"



44

(processing precondition)
The pier that has the ship's berth handles the cargo.
(News about previous state)

Result: The berth of ship1, call it slipi, is a slip of some pier, call it
pieri. Pieri handles cargol. The port of manageri is some port, call it
porti. Port1 harborsshipl.

Continue with: Add: The ship carries the cargo.
(News about current state) -

Result: Shipi carries cargol.

- If: Cargol is any grain
Ship1 does not carry any fuel,

If: Cargol is any fuel
Shipl does not carry any grain,

Cargol can not be a grain and a fuel.
NIL
39# ShowPathO"
(Initialize Ex # 1 (Execute un:Load NIL)

(Ex # 2)
(Continue un:INSERT-77)
Ex# 3)

Notice that there are three execution contexts, one before the Load, one after the preconditions
have been processed and one after the load is done. The general goal was to provide an execution
context for every point that a user might want to examine or move to.

40 ShowNamesO
((Actions Move Load Assign)
(Demons)
(Agents manager)
(Types fuel grain cargo ship slip pier port State CHARACTER INTEGER ENTITY)
(Relations Port Carry Destination Berth Handle Slip Pier Harbor Branch RANDOM)
(Literals)
(GeneratedObjects (porti of type port)

(pieri of type pier)
(slipi of type slip)
(cargol of type cargo).
(ship1 of type ship)
(manager1 of type manager)))

At this point the user has access to such names as ship 1. These can be used either for adding
constraints with the Suppose command, or for passing parameters to new actions in the Execute
command. @*I

The next example features more execution, movement in the execution tree and some more
complexities in symbolic execution. Again, we start with the Gist version.

%,

a, 

. ° ° . . . . . . . • ° , .. % % - . % ,. . . ° . , % 
. . . " 

• - . .. ••• . . .

. . • .o 
• . • • . • . . . . . . o . . . . ,



45 *

begin
type box(Location Ilocation, Destination Ibin);
type locationounique0

supertypo of~input()
1%definition~inputl);

source(SourceOutlet switch)
definition (sourcel)
internal'- locationounique

supertype of<switch(Setting

internalk- location
Outlet I
internal'- location :multiple)

bino>

always prohibited multiple*- boxes*- at'- source there exists box.1, box.2
box.1 Location * sourcel
and box.2 :L-ocation a sourcel;

always required switches e-set'-to,- outlets for all si switch I
agent PackageRoutero
where action Insert(box]

definition update :Location of box from inputi to sourcel;
action Set[switch]
precondition-$ :Location uswitch 5
definition update :Setting of switch to switch :Outlet;

action Move[box]
precondition box :Location a sourcel or box :Location -a switch T
definition if box :Location w sourcel

V. then update :Location of box to sourcel :SourceOutlet
else update Location of box to box :Location :Setting

end
end

Here's the terminal session.

25o- LOAD(gcom/prtspec2)
* /remote/don/gcom/prspec2

There are boxes, locations and packagerouters. 7~
Each box has one location. Each box has one destination which is a bin.

Internal& locations, sources and inputs are locations.

A



46

Bins and switchs are internal- locations.V
Each switch has one setting which is an internal*-locatlon. Each
switch has multiple outlets which are internal-locations.

Sourcel is the only source. The source has one sourceoutlet which Is a
switch.

Inputl is the only input. :17.O

A packagerouter can insert, set or move.

--- To insert:

Action: The box's location is updated from input1 to sourcel.

• . . To set: .""

Action: The switch's setting is updated to an outlet of the switch.

Preconditions:

The switch must not be the location of any box.

To move:

Action:

If: The box's location is sourcel, .% ,, .

Then: The box's location is updated to the sourceoutlet of -

sourcel.
Else: The box's location is updated to the setting of the
switch that is the box's location.

5 - . "-

Preconditions: -

Either:
1. The box's location must be sourcel, or

2. The box's location must be a switch. ..

Constraint (switches set to outlets): ,%.. .

Always required: 7
For all switchs a:

The setting of switch a must be an outlet of switch a.

Constraint (multiple boxes at source):

r.'.".

Vi•" "



47,'.-

Always prohibited:

There exists a box.2 and a box.: 

Where:

1. The location of box.1 is sourcel, and
2. The location of box.2 is sourcel.

NIL
27,- GetGlobalFacts0-
(processing global constraint switches-set-too- outlets)
(processing global constraint multiple*-boxes-at4-source)
(processing nonzero countspec for SourceOutlet)
(processing uniqueness countspec for SourceOutlet)
(processing nonzero countspec for Setting)
(processing uniqueness countspec for Setting)
(processing nonzero countspec for Outlet)
(processing nonzero countspec for Location)
(processing uniqueness countspec for Location)
(processing nonzero countspec for Destination)
(processing uniqueness countspec for Destination)
(processing definition of type source)
(processing definition of type input)
NIL
28'- ShowNames0)
((Actions Insert Set Move)
(Demons) *- 1

(Agents PackageRouter)
(Types bin switch internal*- location source input location box State CHARACTER

INTEGER ENTITY)
(Relations SourceOutlet Setting Outlet Location Destination Branch RANDOM)

" (Literals (inputi of type input)
, (sourcel of type source))

(GeneratedObjects))
29,-Suppose((A (b box)(Location b input1)))

At the moment we can only pose constraints in the form of predicate calculus. This constraint
would be literally translated as "for all b of type box, the location of b is input 1",

" .,.- ..

4-i (News about previous state)
Result: The location of every box is input. j
NIL
30-Suppose((E (sl switch)(A (s2 switch)( = sl s2)))) ,

Again, the literal translation is "there is a switch si such that for every switch s2, sl and s2 are the
same object". In other words, there is exactly one switch. The explainer makes up the name switch1 .' 

*

for this switch.

(News about previous state)

.'". .,

.... , -. .••,-""". . ,"."""



* 48

Result: Switchi is the only switch.
NIL

*31sExecute(Insert) -0

To insert:

Action: The box's location is updated from inputi to sourcel.

- .. The agent is some packagerouter, call it PackageRouterl. The box is box 1.

* 'NContinue with: The box's location is updated from inputl to sourcel.
(News about current state)

-- '7if

* Result: The new location of boxi is sourcel.
A NIL

32- Execute(Insert)

To insert:

Action: The box's location is updated from inputi to sourcel.

The agent is some packagerouter, call it PackageRouter2. The box is box2.

Continue with: The box's location is updated from inputi to sourcel.
(Anomoly Encountered)

Again, the explainer does not currently justify the results to the user. The anomoly encountered is
that two inserts in a row would result in two boxes being at the source, which violates a constraint.

NIL
33- ShowPath()
(Initialize Ex # 1 (Suppose (A (boxx99)

(Location boxx99 inputi )))
Ex #2
(Suppose (E (switchxl 00) S

(A (switchxl101)
(uSwitchxl00 switchx101))))

* . Ex#3
(Execute un:Insert NIL)
(Ex #4)
(Continue un:UPDATE.67)
Ex#5
(Execute un:lnsert NIL)
(Ex #6)
(Continue un:UPDATE-67)
(Ex * 7 Anomolous))

34MovaTo(Ex #5)
P.



49

NIL *1
We see tMat from Ex #3 the first Insert ended up at Ex# 5, and from there another insert turned out

to be anomolous. We return to the situation after the first insert with the MoveTo command. O

35'- Execute(Move)

To move:

Action:

If: The box's location is sourcel,
. Then: The box's location is updated to the sourceoutlet of sourcel.

Else: The box's location is updated to the setting of the switch ,

that is the box's location.

Preconditions:

Either:
1. The box's location must be sourcel, or
2. The box's location must be a switch.

The agent is some packagerouter, call it PackageRouter3 The box is box3.
(processing precondition)

Either:
1. The box's location is sourcel or
2. The hox's location is a switch.

--. (News about previous state)

.* * Result: Box3 is box1.

Continue with:

If: The box's location is sourcel,
Then: The box's location is updated to the sourceoutlet of sourcel.
Else: The box's location is updated to the setting of the switch that
is the box's location.

(suppose branch condition is true)
The box's location is sourcel

Continue with: The box's location is updated to the sourceoutlet of sourcel. -

(News about current state)

Result:

O. If: The location of box1 was sourcel, O

Then: The new location of box1 is switch 1.

." .-. ."

.° . . . . . .



7ZW _77 W 4

50

(leaving conditional area)
(suppose branch condition is false - NOT the case that:)
The box's location is sourcel. 9

* (This Branch is Impossible)
* (leaving conditional area)
* (News about current state).

Result: The new location of boxi is switchi.
NIL
36-ShowPath()
(Initialize Ex # 1 (Suppose (A (boxx99)

(Location boxx99 inputi )))
Ex #2
(Suppose (E (switchxl00)

(A (switchxl01)
2 Ex3 ~-switchx 100 switchxl 01))))

Ex#3%

(Execute un:lnsert NIL)
* (Ex # 4)

(Continue un:UPDATE-67)
Ex #5
(Execute un:Move NIL)
(Ex #8) 9,

(Continue un:CONDITIONAL-55)
(Ex # 9)
(Continue un:UPDATE-47)
(Ex # 10)
(NextStatement un:UPDATE-47)

9 (Ex #11)
(Continue un:UPDATE-54)
(Ex # 12)
(NextStatement un:UPDATE.54) .-

'I Ex #13)

*Notice that there are actually a lot of execution contexts here. Some are inside an Impossible Lr
* branch--no state information was printed for those, In addition to contexts related by Continuation 'f' 1Y

- which we saw earlier, there are contexts related by "NexiStatement". Ex 08 Is the context In which
the preconditions of Move have been processed. Ex#9 is the context In which the branch condition
is assumed true, Ex# 10 is the context in which the branch condition Is assumed to have been true

- and the update has been done. Ex # 11 is the context in which the branch condition is assumed false.
Ex WV 12 is the context in which the branch condition is assumed false and the other update has been *.

done. Ex WV 13 is the context in which the entire conditional (and the entire Move) has been done.

,17*ShowTree()
(Initialize Ex # 1 ((Suppose (A (boxx99) -

(Location boxx99 inputi )))
Ex#2
((Suppose (E (swltchx 100)

(A (switchxl01)



L Ex #3 (a SwitChXl0O switchxl0l)))) 5
ftx#

((Execute un:Insert NIL)
(Ex #4)6
((ontinue un:UPDATE.67)
Ex#5
((Execute un:Move NIL)
(Ex #8)
((Continue un:CONDITIONAL.55)6
(Ex # 9)
((ontinue un:UPDATE.47)

ft~.(Ex # 10)
((NextStatement un:UPDATE.47)
(Ex # 11)
((ontinue un:UPDATE-54)
(Ex # 12)
((NextStatement un:LJPDATE-54)
Ex #13 NIL)))))

(Execute un:Insert NIL)
(Ex# 6)
((ontinue un:UPDATE.67)
(Ex # 7 Anomnolous)

.1 -~ ft. Z

f.Z



62

5. Appendix

The appendix shows how the trace browser can be used. As was mentioned In the text, the trace

browser is a very low level tool that will be most useful to those willing to invest the time required to

become familiar with the low level representations used by the symbolic evaluator.

88.-B R()

un :Test

To test:

--. Action:

1. Insert a box.
2. Move a box.
3. Insert a box.
4. Move a box.
5. Set a switch.
6. Move a box.
7. Move a box.

Preconditions:

For all boxes:

The box's location must be inputl.

The sourceoutlet of sourcel must be switchl.
An outlet of switchl must be bin2.
An outlet of switchl must be binl.

Postcondit ions:

For all boxes:

The box's location must be the box's destination.

The browser is started, and prints out the action to be executed.

>show State before or after execution of current statement?before
Final or Incremental knowledge?incremental

The user asks to see the incremental state before the current statement was executed. The
incremental state contains just those facts that could be found to be true when this statement was

* '. first encountered. That is, the incremental state does not contain any facts that have to be true
'* , due to statements that will be encountered in the future.

:I (OR (- bin2 (binlO0 boxx12)) (- bini (binQO0 boxx12)))

I... . . . . . .. . . . . . . . ..-- /



53

2 (SourceOutlet sourcex32 switchl)

3 (u switchl (switch104 sourcex32))

4 (Setting switchx27 (internal-locationlO3 swltchx27))

5 (Outlet switchx22 (internal4-ocation02 switchx22))

6 (Location boxx17 (location10; boxxl7))

7 (Destination boxx12 (binQO0 boxx12))

DisplayState ... -

>show State before or after execution of current statement?before
Final or Incremental knowledge?final

The user asks to see the "final" knowledge about the state before execution of the current state.
Final knowledge is like incremental, but it includes facts that the system will later discover have to

*J. be true now. In this example, facts 1, 2 and 3 are all true due to preconditions in the test action
,9 that will be evaluated shortly.

1 (Outlet switchi binl)

.4- 2 (Outlet switchI bin2)

3 (Location boxx38 inputl)

4 (OR (= bin2 (binlOD boxx12)) (z bin1 (bin00 boxx12)))

5 (SourceOutlet sourcex32 switchi)

6 ( switchl (switchl04 sourcex32))

1- 7 (Setting switchx27 (internal*-locationlO3 switchx27))

8 (Outlet switchx22 (internal-locationlO2 switchx22))

9 (Location boxx17 (location101 boxx17))

*10 (Destination boxxl2 (binO0 boxx12))

in

"in" moves the browser inside the action so it can be explored step by step.

un: LOGICALQUANT-40

For all boxes:

The box's location is input1.
)n~is

Ane t .-



54

4' "Next" moves to the next Step.

un:RELATIONSHIP-37
The sourceoutlet of sourcel is switchi.

~)next

* >next

un:RELATIONSHIP-35
Dm2l is an outlet of switchi.

>next

un:BLOCK-41 .-

1. Insert a box.
2. Move a box.
3. Insert a box.
4. Move a box.
5. Set a switch.
6. Move a box.
7. Move a box.

>show State before or after execution of current statement~before
4 Final or Incremental knowledge?incromental

I (Outlet switchi bini):? '

2 (Outlet switchl bin2)

3 (Location boxx3B inputl)

4 (OR (- bin2 (biniCO boxxl2)) (ubini (binlOO boxxl2))) <
5 (Souirce~utlot sourcox32 switchi)

a (. witchi (swltch2O4 sourcex32))

7 (Setting switchx27 (internal.-locationlO3 switchx27))

8 (Outlet swltchx22 (lnternale'locationlD2 switchx22))

9 (Location boxx7 (locatlonl01 boxxl7))

10 (Destination boxxl2 (biniCO boxx12))



-. V -V" . ... . - .U - - -

55

un:INVOCATION-42'I
Insert a box.

>in
un :UPDATE-91

. The box's location is updated from inputl to sourcel.

>show State before or after execution of current statement?after
Final or Incremental knowledge?incremental

. 1 (OR (a boxx38 boxci08) (Location boxx38 inputi))

* 2 (Location boxci08 Sourcel)

3 (Location boxx17 (locationil1 boxx17))

4 (Destination boxxl2 (binQO0 boxx12))

5 (Outlet switchx22 (internal-locationl02 switchx22))

6 (Setting switchx27 (internal-locationl03 swltchx27))

7 ( Switch1 (switch104 sourcex32))

8 (SourceOutlet sourcex32 switchi). _.

9 (OR (- bin2 (blnlO0 boxx12)) (- bin1 (binIO0 boxx12)))

10 (Outlet switchl bin2)

11 (Outlet switchi binl)

>Justlfy Fact
Enter fact number no> 2

The user asks for a justification of fact 2, and sees that It resulted directly from the update in the
Insert action. ,. "

Primitive
(Primitive (Update ( un:Location un:SYMBOLIC-108 un:Sourcel)

un:UPDATE-91 NIL NIL (NOT (un:Locatlon un:SYMBOLIC-08
un:inputl))))

,s,...
.14%

4, %



.....

on 56

References

1. Robert Balzer, Lee Erman, Phillip London, Chuck Williams. HEARSAY-Ill: A Domain-Independent
Framework for Expert Systems. Proceedings of the First Annual National Conference on Artificial
Intelligence, AAAI, August, 1980, pp. 108-110. A Manual is in preparation by Steve Fickas

2. Balzer, R., Goldman, N. & Wile, D. Operational specification as the basis for rapid prototyping.
Proceedings of the Second Software Engineering Symposium: Workshop on Rapid Prototyping, ACM
SIGSOFT, April, 1982.

3. Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

4. Fillmore, C. The Case for Case. In Universals in Linguistic Theory, Holt, Rinehart and Winston,
1968.
5. Neil M. Goldman. AP3 Reference Manual. USC Information Sciences Institute, 1983.

6. Hommel, G. (ed.). Vergleich verschiedener Spezifikationsverfahren am Beispliel einer
Paketverteilanlage. Kernforschungszentrum Karlsruhe GmbH, August, 1980. PDV-Report, KfK-PDV
186, Part 1

7. Katz, B. A Three-Step Procedure for Language Generation. Tech. Rept. Al Memo 599, MIT,
December, 1980.

8. Mann, W.C.,M. Bates,B Grosz, D. McDonaldK. McKeown, W. Swartout. Text Generation: The

State of the Art and the Literature. Tech. Rept. RR-81-101, ISI, December, 1981.

9. Sussman, G. SLICES: at the boundary between analysis and synthesis. Tech. Rept. Al Memo 433,
MIT, July, 1977.

10. Swartout. W. and Balzer, R. "On the Inevitable Intertwining of Specification and

Implementation." Communications of the ACM 25, 7 (July 1982), 438:440.

11. Warren Teitelman. Interlisp Reference Manual. XEROX Palo Alto Research Center, 1978.

. , 12. Webber and Joshi. Taking the initiative in natura; language data base interactions: justifying
why. University of Pennsylvania, 1982.

13. Weiner, J. "BLAH, A system which explains its reasoning." Artificial Intelligence 15 (1980),
19-48.

14. David S. Wile. POPART: Producer of Parsers and Related Tools. System Builders' Manual. USC
Information Sciences Institute, 1981.

%' % % % %

''4

, ;: -:::

• .. 4..



0

MISSION
* Of

Rawi Air Development Center
RAVC ptanz and execuwteA &e~eaLch, devetopment, .test and
.6etected acquizi6tion p/Logam~ in .6uppox.t o6 Command, Con.t'wZ

*Cormunication,6 and In-teULigence (C31) activtieus. Technicat
and enginee~ing .6uppott within a~ea.6 o6 .technicat compe.tence
i,6 p'Lovided .to ESP P~ogkam O66ice,6 (PO.6) and otheA ESV
etement6. The ptunecLo.Z .technica~t rnZ6,6ion a~ea6 aee
cornruncation4, etecttomagnetiLc guidance and cont'w, .6u%-
ved-tance o6 g4ound and aexo6pace objec-t6, intettigence data
cottecton and handeng, indo'ration .6yztem technotogy,
iono-3phvu..c p-'wpaga.tion, .6otid z5tate Z6cence.6, rflicAoukve
phyq6ic and etectronic tZabZLLity, maintainabitity and

* compa-tibZiity.



,A A 4. Q

V-7 "0' Y.4,
:i 4

'.~~ .bq11

U ~ ~ 4~4r

'4j.


