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1. INTRODUCTION

The tip vortex flow field plays a significant role in the performance of
a ship propeller. The low pressure region fourd at the center of a tip
vortex may lead to cavitation. The presence of cavitation in the flow field
has serious consequences in terms of structural, acoustic, and performance
considerations. A better understanding of the tip vortex generation process
and a method of analysing the tip vortex flow field would provide valuable
help in the design of the ship propeller.

The generation of a tip vortex can be found in a variety of hydrodynamic
and aerodynamic airfoil type configurations. Typical examples can be found
associated with the ship or submarine propeller, the submarine sail, the wing
tip of fixed wing aircraft, and the helicopter rotor blade. These flow
fields are characterized by a pressure differential across all inboard sec-
tions of the blade. Since at the blade tip a pressvre discoatinuity is not
possible, the pressure difference across the bl.4e : gradually relieved
towards the tip until the pressures on both sides are equal at the tip.
Associated with this pressure field is a secondary flow field outward on the
pressure surface, around the tip, and inward on the suction surface. The
secondary flow convects low momentum fluid from the pressure side around the
tip to the suction side. The low momentum fluid accumulates on the suction
side of the tip, rolls up and forms the tip vortex. The tip vortex is con-
vected downstream by the streamwise velocity.

The flow field in the tip region is complex, three-dimensional, and
viscous with large secoadary velocities. The large secondary velocities
preclude the possibility of using conventional boundary layer solution
techniques to compute the tip vortex flow. On the other hand, a solution of
the full Navier-Stokes equations that adequately resolves the tip vortex flow
field would require formidable computational resources. Thereforé, an
approximate set of three-dimensional viscous flow equations which is
applicable to the tip vortex flow field but which does not require the
resources needed for the solution of the full Navier-Stokes equations is
sought. The parabolized Navier-Stokes equations represent such a set. These
equations contain in them all the physical processes of tip vortex
generation and can be solved economically by forward marching procedures.
This report examines the attractive possibility of using a forward marching

procedure to compute the tip vortex generation process.
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T 1.1 Objectives

'.':\‘:

:HS- The overall objective of the present effort is to compute the tip vortex

——
”

generation process for ship propeller blades. This overall objective

~Si§j requires several stages of effort. The specific objectives undertaken
:;S in the present Phase I effort represented the first stage in the overall
:;S effort. These objectives were:

.:: (a) Extension of an existing analysis to rotating coordinate

%:ﬁ systems. A rotating coordinate system fixed to the rotating
;i;ﬁ propeller blade is a convenient coordinate system in which to
::?J describe the propeller tip flow field. Appropriate governing
‘ﬁ*hi equations for the flow were formulated in the rotating

:&;E coordinate system.

xié (b) Development of a geometry package to describe the propeller

2‘ blade geometry in the computer code. A computational grid

jfi: capable of resolving the tip vortex flow must be generated by
*izz the geometry package. This requires a grid generation
;:ﬂ? procedure flexible enough to cluster grid points in regions of
; b expected high gradients in the flow field.

:;;3 _ (¢) With the achievement of the above two objectives, the final
vji objective under Phase I of the program was computation of the
?’E tip vortex generation process for a rotating ship propeller

' blade.
™
? ?: The scope of the proposed objectives was to demonstrate the capability
'3%5 of computing the tip vortex generation process for ship propeller blades by a

A forward marching procedure. The accomplishment of these objectives are
NN documented in this report.
.gél An additional portion of the Phase I effort was the computation of the
%Eﬂs pressure field and the surface pressure distribution on the blade produced by
e the tip vortex flow. This computation provides the capability of identifying
_“:? low pressure regions in the flow that may be susceptible to cavitation.

:E?i Results from this effort are also documented in this report.

%

5;: 1.2 Outline of the Phase I Program

:Siz A step-by-step approach was adopted to accomplish the specific

jgj: objectives of the Phase I program detailed in the previous section. Specific
o
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tasks were identified to define the steps of the approach. These tasks were

the following:
(a) Addition of the rotation terms in the governing equations,
(b) Verification of the rotation terms by computing a known flow field,
(¢) Computation of the flow over a circular cross section tip,

(d) Development of a geometry package for the propeller tip flow field
computation,

(e) Computation of the tip vortex flow field for a straight blade with
a rounded tip,

(f) Computation of the tip vortex flow field for a rotating straight
blade with a rounded tip, and

(g) Computation of the tip vortex flow field for a rotating twisted

blade with a rounded tip.

Tasks (a) and (b) accomplished the extension of the existing forward
marching procedure to rotating coordinate systems. Task (c) verified the
ability of the forward marching procedure to compute the flow processes in
vortex generation without the additional complexities of the propeller
geometry. Task (d) developed a geometry package capable of describing the
propeller tip geometry in the computer code and the generation of a suitable
computation grid for the tip vortex flow field. Tasks (e), (£f) and (g)
computed the tip vortex flow field in stages of increasing complexity. A
detailed description of the tasks and the results of the tasks are documented

in this report.
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2. THE FORWARD MARCHING COMPUTATIO® PROCEDURE FOR SHIP
PROPELLER TIP FLOW i .I1LDS

The forward marching computstion procedure for the solution of the
parabolized Navier-Stokes equation provides an economical and accurate method
for computing many three-dimensional viscous flow fields. The procedure,
initially developed for internal flow fields, was extended to the computation
of the ship propeller tip flow field under the Phase I work plan. The
governing equations, the computation scheme, and results from the procedure
are presented in this section. The procedure is capable of considering both
fixed and rotating coordinate systems.

The governing equations are derived through approximations made relative
to a curvilinear coordinate system fitted to and aligned with the flow
geometry under consideration. The coordinate system is chosen such that the
streamwise or marching coordinate either coincides with or is at least
approximately aligned with a known inviscid primary flow direction as
determined, for example, by a potential flow for the given geometry.
Transverse coordinate surfaces must be approximately perpendicular to solid
walls or bounding surfaces, since diffusion is permitted only in these
transverse coordinate surfaces.

Equations governing primary flow velocity Up, and a secondary
vorticity, Q,, normal to transverse coordinate surfaces are derived
utilizing approximations which permit solution of the correction equations as
an initial-value problem, provided reversal of the composite streamwise
velocity does not occur. Terms representing diffusion normal to transverse
coordinate surfaces (in the streamwise direction) are neglected. Secondary
flow velocities are determined from scalar and vector surface potential
calculations in transverse coordinate surfaces, once the primary velocity and

secondary vorticity are known.

Primary-Secondary Velocity Decomposition

In what follows, vectors are denoted by an overbar, and unit vectors by
a caret. The analysis is based on decomposition of the overall velocity

vector field U into a primary flow velocity ﬁp and a secondary flow
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velocity ﬁs- The overall or composite velocity is determined from the

superposition

ﬁsﬁp+ﬁs (1)

The primary flow velocity is represented as

U =Ui (2)
vhere ;p is a known inviscid primary flow direction determined for example
from an a priori potential flow solution for the geometry under
consideration. A streamwise coordinate direction from a body fitted
coordinate system could be used as an approximation to this potential flow
direction. The primary velocity Up is determined from solution of a
primary flow momentum equation. The secondary flow velocity ﬁs is derived
from scalar &ad vector surface potential denoted ¢ and ¥, respectively. If
in denotes the unit vector normal to transverse coordinate surfaces, if o

is density, and if p, is an arbitrary constant reference density, then ﬁs
is defined by

U_=V_¢ + (p /p)Vxi ¥ (3)
where V; is the surface gradient operator defined by

vs =V - in(in-v) (4)

It follows that since ;n + Uy = 0, then Uy lies entirely within

transverse coordinate surfaces. Equation (3) is a general form permitting
bo’ rotational and irrotational secondary flows and will lead to governing
equations which may be solved as an initial-boundary value problem. The

overall velocity decomposition (1) can be written

U= Upip +V. ¢+ (polp)innw (5)
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‘:':-‘::- Surface Potential Equations !
"-\ Equations relating ¢ and ¥ with Up, p, and the secondary vorticity )
I L.
1\‘ component Q, can be derived using Eq. (5) as follows: From continuity,
!
% U=0 Ui +9-pV ¢ + p V-Vxi (6)
-j:-'j: V-pU =. Vep plp p s¢ Po x1n\b
’ and from the definition of the vorticity based on the secondary flow within
RN
0¥ the transverse surfaces, Q,
b
Ny - - - - - - -
i -VxUzn =i -V i i - vx i i -
A i xU Qn i -Vx Uplp + i Vx(polp) x lntp + i vV x Vs¢ (7
\
Vo
N Since the last term in each of Eqs. (6 and 7) is zero by vector identity,
:: Eqs. (6 and 7) can be written as
\:_\:
PR
" VepV ¢ = -V-pU i
w s PP (8)
RN
f:-f.“: ;. vx (p_/p) Vxi v=Q i -vx Ui (9)
' n o n n n PP
e
.-.’_-.'
A Note that the last term in Eq. (9) is identically zero in a coordinate system
Y
_.-‘_\J A a~ -
) for which i, and i, have the same direction, and would be small if ij
N and ip are approximately aligned. In any event, given a knowledge of Ups
}_:E:j: 1, and p, the surface potentials ¢ and ¥ can be determined by a
WA two-dimensional elliptic calculation in transverse coordinate surfaces at
AN
M each streamwise location. In turn, U; can be computed from Eq. (3), and
8 q
*':-\." the composite velocity U will satisfy continuity. Equations for Up and
.
AN , are obtained from the equations governing momentum and vorticity,
A
e respectively.
-
N The streamwise momentum equation is given by
_s:::.
A-:'qh" - - - - —- ~ —
- i [ (U-v)U + (vp =i «-F +1 %R (10)
o1 @-v)T + (op)/p) = i ;
\
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where P is pressure and pF is force due to viscous stress and terms in F
representing streamwise diffusion are neglected. PR is the additional force
due to a rotating coordinate system; where R = ~20 x U - ux(® x r), w is the
angular velocity of the coordinate system and r is the radius vector from the
rotation axis. The pressure term in the streanwise momentum equation (10)
can be taken from a simpler analysis such as a potential flow analysis.

While this results in a set of equations which can be solved by forward
marching, the surface pressures which are due to the pressure field imposed
upon the flow are the potential flow pressures. Since the actual surface

pressures are often of primary interest, a new estimate of the actual surf -

pressure which includes viscous and secondary flow effects can be compute
from the resulting velocity field in the following manner.

The momentum equations in the transverse surfaces are:

11- [(pU -V) U+ VP - pF - pR] = 0 (1)

12-[(pﬁ-V) U + VP -~ pF - pR] = 0

Equation (l11) represents components of the momentum vector in the transverse

surfaces:

1) (1,°[(pU - V) U+ VP - oF - R+ 1, (i, [(pU V) U + VP - oF - oR])
(12)

The divergence of this vector can be written as a Poisson equation for the

pressure P at each transverse surface:

2 2 e ,° - R
V.P=V (PI+PC)=--— (11 [(pU- V) U - pF - pR))

ax
1
] < = = = R

- 3% i, - [(pU- V) U -pF - pR]) (13) 91
X, ]
where P; is the imposed pressure, P. is a viscous correction to the ffi
pressure field and x; and x7 are coordinates in the i} and i, :ﬂ
directions, respectively. Equation (13) can be solved for the pressure ;;}
correction, P., at each computational station using Neuman boundary ;?
Y
conditions derived from Eq. (12). The use of Neuman boundary conditions ;fq
7 é"
R
_..;..&.l-‘.—':‘.-\.-' ...A...-C‘."._A-.‘-".“-."’..'~.“'. "- ‘.‘.-_A-;"L..‘:;:\" ,'.q" “‘A' N “ \. u" .‘ ‘J" -"‘ --'A ":‘. I-' - :.. ‘l.:A.;A‘ . A._.L- .A' -l' i‘ -l. 0.. .‘n:..AM.




requires an additional parameter which is only a function of the normal

direction, P,(x3), in order to set the level of the pressure field. For
internal flows P,(x3) can be set to ensure that an integral mass flux

condition is satisfied

i -pUdA = CONSTANT
A n (14)

For external flows P,(x3) can be set to match the imposed pressure at an

appropriate far field location.

Secondary Vorticity

The equation governing Q, is obtained by cross differentiating each of
the transverse momentum equations (J1). Eliminating the pressure in the two
equations results in a single equation for the transport of the vorticity

normal to the transverse surface. This equation has the form
U-9va -9 -9V =6 +C+1_. (VxR (15)
n n n n
where G, is the normal component of
C=VxF (16)

and C is a collection of curvature terms arising from changes in orientation

of the transverse surfaces as a function of streamwise coordinate,

Governing System of Equations

A complete system of four coupled equations governing Up, 5, ¢
and ¥ 1is given by Eqs. (8), (9), (10) and (16). Ancillary relations are
given by Eq. (5) for composite velocity and Eq. (14) for mass flux. 1In
reference 1, these equations are given in general orthogonal coordinates and

in reference 2 in nonorthogonal coordinates,

Numerical Method

Since techniques for obtaining the basic potential flow solution are

well known and numerous, they need not be enumerated or discussed here,
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Instead, the present development concentrates on describing the numerical

»i}i: method used to solve the system of correction equations. Streamwise

{ derivative terms in the governing equations have a form such as u3( )/3x),

:iﬂ and because the streamwise velocity u; is very small in the viscous dominated

:ﬁ; region near no-slip walls, it is essential to use implicit algorithms which

Egﬁ are not subject to stringent stability restrictions unrelated to accuracy

) requirements. Although it is possible to devise algorithms for solution of

ﬁf: the correction equations as a fully coupled implicit system, such algorithms

ii' would require considerable iteration for the system of equations treated

Q}i' here, and this would detract from the overall efficiency. The present method

N ‘ is semi~-implicit and seeks to reduce the amount of iteration required and yet

:;;; avoid the more severe stability restrictions of explicit algorithms. The me-

niif thod partitions the system of correction equations into subsystems which

:;:~ govern the primary flow, the secondary flow, and the turbulence model. The

f : primary~-flow subset of equations contains the streamwise momentum equation.

:Eé The secondary-flow subset of equations contains the secondary vorticity equa- ?
:i: tion and the scalar and vector potential equations. These subsystems are de- ;
":3' coupled using an ad hoc linearization in which secondary velocity components '
‘ » and turbulent viscosity are lagged, and are solved sequentially during each ?
e axial step. ;
e 1
fki' Summary of Algorithm i
o The correction equations are replaced by finite-difference approxima-~ ]
2:: tions. Three-point central difference formulas are used for all transverse i
ii} spatial derivatives. Analytical coordinate transformations are employed as a b
50 means of introducing a nonuniform grid in each transverse coordinate i
i direction, as appropriate, to concentrate grid points in the wall boundary

ii: layer regions. Second-order accuracy for the transverse directions is

:;:; rigorously maintained. Two-point backward difference approximations are used .
tiﬁ' for streamwise derivatives, although this is not essential.

!E; To solve the primary flow subsystem of viscous correction equations for

ff; external flows, scalar ADI schemes are used for the momentum equation.

:;; Given the solution for the primary flow, the secondary flow subsystem

%,E can be solved. First, the scalar potential equation (continuity) is solved

v

o
| 2‘; 9 ;
.’ *

~:

..'-;.“IJ,'-',\_.
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ol using a scalar iterative ADI scheme. Next, the secondary vorticity and vec-
S 0w

! tor potential equations are written as a Jl'ly implicit coupled system and

(o - solved using an iterative linearized block implicit (LBI) scheme (cf. Briley
Y

&3& and McDonald (3)). 1In selecting boundary conditions for the secondary flow

.%\%: subsystem, care must be taken to ensure that the final secondary velocity
:§:~ satisfies the no-slip condition accurately. Zero normal derivatives of ¢ are

specified in the scalar potential equation, and this boundary condition

corresponds to zero normal velocity. It is not possible to simultaneously

specify the tangential velocity, however, and thus the ¢-contribution to the
- secondary velocity will have a nonzero tangential (slip) component, denoted

Vg, at solid boundaries. In the coupled vorticity and vector-potential eq-

?;2« uations, both normal and tangential velocity components can be specified as
f%:f boundary conditions, since these equations are solved as a coupled system.
iy By choosing (a) zero normal velocity, and (b) -v, as the y-contribution to
& the tangential velocity, the slip velocity v, arising from the ¢ calcula-
0::: tion is cancelled, and the composite secondary flow velocity including both ¢
;ﬁi: and ¥ contributions will satisfy the no-slip condition exactly.
- A summary of the overall algorithm used to advance the solution a single
{ - axial step follows. It is assumed that the solution is known at the n-level
o x0 and is desired at x0*l,
”C$4 (1) The imposed streamwise pressure gradient distribution is determined
f‘ from an a priori inviscid potential flow.
LAy . . .
"N (2) The momentum equation is solved to determine untl,
~.‘~..
' -.v -
e (3) Using values now available for p"*! and ut*!, the scalar poten-
il; tial equation (8) is solved using an iterative scalar ADI scheme,
:;’ to obtain ¢M*1, This ensures that the continuity equation is ‘
", 1h:
A, satisfied. |
LI |
‘*jf (4) The equations for vorticity (16) and vector potential (9) form a ‘
N

coupled system for Q%*1 and ¢°*! which is solved as a coupled

system using an iterative LBI scheme.

(5) Values for the transverse velocities vg and wg are computed

. from Eq. (3).
i
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3. PRELIMINARY COMPUTATIONS

The previous section described the forward marching procedure along with
the extension of the procedure to rotating coordinate systems. As mentioned
previously, a rotating coordinate system is required for the analysis of the
propeller tip flow field. The forward marching procedure has been used to
compute a number of internal flow fields and has shown good qualitative and
quantitative agreement with experimental data [2]. However, the formulation
and coding of the rotation terms had not been verified. Further, a simple
feasibility computation had to be performed to verify the capability of the
analysis to compute the vortex generation process without the added
complexity of the tip geometry. The results of this effort are described in

this section.

3.1 Verification of the Rotation Terms

Simple test cases were chosen to verify the coding of the rotation terms
in the equations. These cases corregspond to the cases presented by
Speziale [Ref. 4] who computed the fully developed flow in rotating ducts by
a two-dimensional time-marching techmnique. This test case provided a
geometrically simple configuration to compute the effects of rotation in the
PEPSIG code. Further, these test cases had been computed successfully by
McDonald, Briley and Lin [Ref. 5] to verify the effect of rotation in an
orthogonal version of this forward marching code. The computations were
marched downstream until a fully-developed flow field was obtained for
comparison with the computations of Speziale [Ref. 4].

Figure 2 shows a contour plot of the fully-developed streamwise velocity
field in the duct for a Reynolds number of 235 and a Rossby number of 50.5.
This Rossby number corresponds to a case of weak rotation effects on the flow
field. An interesting point to be noted in Figure 2 is the shift of the
contours away from the centerline of the duct, an effect purely from the
rotation of the duct. In the case of a non-rotating duct the streamwise
velocity contours would be symmetric about the centerline of the duct.

Figure 3 compares a plot of the streamwise velocity along the centerline of
the duct with the computations of Speziale. The two computations compare

well with each other. The shift of the peak streamwise velocity away from
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Figure 1 - Flow in a rotating duct - Configuration.
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the centerline is clearly evident from the plot and is predicted by the
present computations in comparison with the computations of Speziale. The
cause of the distortion of the streamwise velocity profile is the secondary
velocity field developed in the duct from the effects of the Coriolis force.
This secondary velocity is shown as a vector plot in Figure 4. Although the
secondary velocity field is weak, the secondary flow vortex is evident.

A second set of computations are carried out at a Reynolds number of 86
and a Rossby number of 1.85. This Rossby number corresponds to a case of
strong rotation effects in the duct. Figure 5 shows a contour plot of the
fully-developed streamwise velocity field. The shift of the velocity
contours away from the centerline is larger and more distinct than in the
previous case. The peak streamwise velocity in the duct is lower than the
previous case corresponding to a larger degree of flattening of the velocity
profiles due to rotation. Figure 6 shows a vector plot of the secondary
velocity field. The secondary velocities are much larger than in the
previous case and the secondary flow vortex is stronger. Correspondingly,
the distortions of the streamwise velocity profiles are larger than in the
previous case. Secondary velocities as large as 177 of the peak streamwise
velocity are generated in the duct. Figure 7 shows a plot of the computed
streamwise pressure gradient along the length of the duct together with a
plot of the centrifugal force and the streamwise reduced pressure gradient.
The reduced pressure is the difference between the static pressure and the
stress due to the ceatrifugal force and can be construed as the effective
pressure in the flow field in a rotating flow. In Figure 7, the rapidly
increasing centrifugal force along the length of the duct due to rotation is
matched by increasing static pressure in the duct. However, after the
initial entrance region of the duct, the streamwise reduced pressure gradient
remains constant and is a favorable pressure gradient. The reduced pressure
gradient balances the viscous shear stress developed at the walls of the duct
in the fully-developed region of the flow field. This is similar to balance
of the streamwise pressure gradient and the wall shear stress in the case of
a non-rotating duct.

Although these test cases focus upon rntating internal flow, they
represent necessary test cases in the development and verification of a
rotating flow capability. As can be seen from Figure 3, this capability
appears to be confirmed through comparison with an alternate calculation.

The remaining results show the expected physical phenomena.
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Re = 235, Ro = 50.5.
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O 3.2 Computation of Flow Over a Circular (Rounded) Cross Section Tip
vi;x The next step was computation of a flow field that contained the flow
S processes in the generation of the tip vortex. At this point in the
Sj; computations and to better understand the flow processes; the isolation of ;
‘Ei the effects of complex geometry, rotation, and the effects of the leading and -
\r; trailing edges was appropriate. For this purpcese, the flow over a blade tip E
) with a circular cross section and constant blade thickness was chosen as a
_gé test case. y
E;E A test case was run for the laminar flow over a circular tip, described .
f*' above, at an angle of attack of 6°, The Reynolds number for the flow was set :
\{ﬁ at 800 based on the thickness of the tip (d). The viscous dissipation at
;is this Reynolds number is typical of levels of maximum dissipation in a
iz: turbulent flow field. An initial boundary layer thickness of 20%Z of the
f thickness of the tip was used to construct the initial axial velocity ;
f?f profile. Cross flow velocities and a vorticity field compatible with the
;2& initial axial velocity profile were computed by the starting procedure in the
:3: computer code. Figure 8 shows the flow configuration of the test case. A >
( . computational grid of 40 circumferential points and 25 radial points was used 3
B in the calculations. Radial clustering of the grid points was used to ’
:}& resolve the flow in the shear layer. ;
'S{. Figure 9 shows results of the computation at a station 5.20d downstream ;
from the initial station. Figure 9(a) shows a contour plot of the axial ™
::5 velocity (velocity component parallel to the x-axis). The initial stage of
%;i the development of the tip vortex is evident ir this figure. The convection
" of low momentum fluid, in the shear layer, from the pressure side to the
:;' suction side results in a thickening of the shear layer on the suction side
Qf: and a thinning of shear layer on the pressure side. A small distortion of
T;: the velocity contours on the suction side is indicative of the weak vortex in q
;%S the region. The transport of low momentum fluid from the pressure side to i
@ the suction side is more clearly seen in the contour plot of the streamwise B
!;{ vorticity field shown in Figure 9(b). The cross flow velocity across the tip :
E%: transports vorticity from regions of high vorticity in the thin shear layers E
S%t on the pressure side to the suction side causing an accumulation of low N
iﬁ momentum fluid on the suction side. The low momentum fluid rolls up to form é
3& the tip vortex as it is convected away by the axial velocity. Figure 9(c) i
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Figure 9 Flow Field at Axial Station 5.20d

S AUV PRI U Poa

.
PO N

22

A

LRI |
PRSPy

L"




shows a vector plot of the transverse velocity components perpendicular to
the free stream velocity. It should be noted that Figure 9(c) shows the
secondary velocity field, the primary velocity is perpendicular to the plane
of the figure. For clarity, the flow field in the vicinity of the tip has
been magnified and the far field flow omitted. The figure shows the
incipient roll up of the flow into the tip vortex. The outward velocities at
the bottom (in the figures) of the pressure surface are due to the
displacement effect of the growth of the shear layer on the tip.

Figure 10 shows the results of the computation at a station 15.70d
downstream from the initial station. Figure 10(a) shows a contour plot of
the axial velocity. The shear layer on the suction side has grown rapidly.
Further, the contours of the axial velocity are distorted by the tip vortex.
The contours of streamwise vorticity (Figure 10(b)) show the extent of the
spread of the vorticity convected to the suction side by the cross-fléw
velocities. The large body of low momentum fluid on the suction side has
rolled up into a vortex (Figure 10(c)). The vortex draws fluid into the
bottom (in the figures) of the suction surface that is convected away by the
axial velocity. This process causes the distortions of the axial velocity
contours seen in Figure 10(a). The results show the ability of the PEPSIG
computer code to capture the flow processes in the generation of the tip

vortex.
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4. COMPUTATION OF THE TIP VORTEX FLOW FIELD

The ingredients for successful computation of the tip vortex generation
process for ship propeller blades were formulated and verified in the
previous subsections. To demonstrate the capability of the forward marching
procedure to compute the tip vortex generation process three test cases were

chosen:

(1) Tip vortex flow for a straight blade with rounded tip,
(2) Tip vortex flow for a rotating straight blade with rounded tip,

(3) Tip vortex flow for a rotating twisted blade with rounded tip.

The test cases were chosen for a graded increase in complexity towards the
computation of the tip vortex flow for a realistic ship propeller blade.
Laminar flow was assumed in all the cases since the qualitative nature of the
tip vortex generation process remains the same in laminar and turbulent flow
and inclusion of a turbulence model was deemed premature under this
feasibility study.

A major portion of the Phase I effort concerned a propeller geometry
package. Under Phase I, a geometry package was incorporated into the
computer program to describe the propeller tip geometry and generate a
suitable computational grid. Figure 1l shows one of the geometries that was
used for the propeller tip. The figure shows a constant thickness blade with
a rounded tip. Figure 12 shows a cross-section of the propeller tip and the
computational grid at a typical streamwise station. The leading edge is
upstream of the region shown. The calculation is initiated at a chordwise
station on the blade with an assumed velocity profile. A computational grid
that wraps around the tip was chosen to provide adequate resolution of the
tip region and a smooth grid distributuion. The geometry package has the
ability to control grid point distribution in both transverse coordinate
directions to resolve regions of high gradiente in the flow. Streamwise
curvature of the blade and blade twist can also be handled by the geometry

subrout ines,

4.2 Boundary Conditions for the Tip Vortex Flow Computations

The cross-sectional computation coordinate system, shown in Figure 12,

has four boundaries where boundary conditions for the governing equations
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must be specified. Inboard are boundaries (1) and (2), the blade surface is
boundary (3), and the far field is boundary (4). Boundary conditions must be
specified for the streamwise velocity in the streamwise momentum equation,
for the scalar potential in the scalar potential equation, and for the vector
potential and streamwise vorticity in the coupled vector potential-streamwise
vorticity equations. The conditions that were specified for the tip vortex
flow computations are considered in this section.

The flow at the inboard boundaries (1) and (2) was assumed to be
two-dimensional (no spanwise variation) with no flow penetration of the
secondary velocity through the boundaries. The normal gradient of the scalar
potential was set to zero and the vector potential was set to a constant
(normal velocity set to zero). The streamwise vorticity was set to zero as
the compatible condition with the vector potential and the streamwise
velocity wa; extrapolated from the interior flow field. The boundary
conditions specified on the inboard boundaries are only approximate but were
found not to affect the qualitative computed behavior of the tip vortex
generation process. Under a contract from the NASA Langley Research Center
for the helicopter tip flow field, boundary conditions based on the induced
velocity field by the blade are currently being developed. These conditions
will be incorporated in future work on the ship propeller tip flow field.

The boundary condition along boundary (3), the blade, was the no-slip
condition on a solid surface. To satisfy this condition the normal gradient
of the scalar potential (the normal velocity) was set to zero. In the
coupled vector potential and vorticity equations the normal component of the
rotational velocity was set to zero and the tangential component was set
equal and opposite to the tangential component of the velocity generated by
the scalar potential. These conditions allowed an implicit specification of
the vector potential and the vorticity on the no-slip boundary (as discussed
in Section 3). The resultant secondary velocity field satisfies the no-slip
conditions on the boundary. The streamwise velocity was also set to zero at
the solid boundary.

Far field conditions were specified on boundary (4). The streamwise
velocity was extrapolated from the interior flow field. The scalar potential
was set to a constant so that the tangential component of the irrotational
velocity was zero. This condition allowed outflow through the boundary due

to the displacement effect of the boundary layers on the blade. The angle of
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incidence of the flow specified a component of the transverse velocity on the

| ORI

boundary. The vector potential was obtained by integrating this component of

the transverse velocity along the boundary. The streamwise vorticity was set

. t;i

to zero.

L

4.3 Computation of the Tip Vortex Flow for a Straight Blade with

It

]l

Rounded Tip

A constant thickness blade with a rounded tip was the first test ;

case considered for the tip vortex flow computation, Figure 11 shows a

perspective view of the geometry of the blade near the tip, Figure 12 shows
the cross-section of the blade tip and the computational grid at a typical
streamwise station. The important geometric and flow parameters used in the

computation were the following:

Blade thickness (t) = 1.0
Blade chord = 20.0t
Reynolds number (based on t) = 1000.0
Initial boundary layer thickness = 0.20t
Incidence angle = 6°

A computational grid of 60 streamwise stations and a 47 x 30
cross~section grid was used. Grid points were clustered in regions of high
flow gradients such as near the propeller surface and in the tip region.

The computation was started on the blade (x/t = 0.0) with the assumed initial
boundary layer thickness.

Figure 13 shows the development of the tip vortex computed by the
code. The upper half of the figure shows the development of the tip vortex in
term of contours of the streamwise velocity while the lower half shows the
same development in terms of contours of streamwise vorticity. Computations
from five streamwise stations (x/t = 2.0, 4.0, 7.0, 11.0, 20.0) were chosen
to display the development of the tip vortex. An initial overall view of
Figure 13 shows a large scale flow process at the tip of the blade in terms
of both the streamwise velocity and streamwise vorticity.

At x/t = 2.0 (Figure 13), the streamwise velocity contours show the
initial development of the flow. The boundary layer on the suction side of
the blade has thickened while the boundary layer on the pressure side remains

thin. The thickening of the boundary layer on the suction side is due to the
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::: transport of low momentum fluid from the pressure side boundary layer around
2JQ the tip to the suction side. The same flow process is seen in the streamwise
(- vorticity contours as a transport of vorticity around the tip. ]
E;:: At x/t = 4.0, the tip flow field begins to show the accumulation of low ]
e momentum fluid on the suction side of the tip region. This accumulation is 1
i?; characterized by the "bulge" in the streamwise velocity contours representing ]
i the region of the low streamwise velocity fluid. The streamwise vorticity
i?g contours at this station show the convection of vorticity into this region. :
115: Further, the vorticity contours also start to '"peel" off the suction surface ;
o indicating the initial stages of the roll-up of the low momentum fluid. At y
\ x/t = 7.0 and x/t = 11.0, the streamwise velocity contours show the further !
f?{ rapid accumulation of the low momentum fluid in the tip region. The stream- :
:i:; wise vorticity contours at these stations show the roll up of the tip flow :
Ef3 into the tip vortex. The vorticity contours emanating from the suction sur- }
v face, visible clearly at x/t = 11.0, are indicative of the outward (toward !
E:E: the tip) transverse velocities in the region due to roll-up of the tip vor- ;
j;ﬁ tex. The results at x/t = 20.0 show the completion of the tip vortex forma- ]
if:‘ tion. The vortex has separated from the suction surface as it is convected
- downstream by the streamwise velocity. The vortex is sustained by the con-
:i? tinued transport of vorticity from the pressure surface into the vortex core.
'$Q? Also evident from Figure 13 is the inward track of the center of the vortex
;\' along the suction side. That, indeed, the flow in the tip region has rolled
. up into the tip vortex is clearly visualized by a vector plot of the
$£§ transverse velocity field. Figure 14 shows a vector plot of the transverse
iﬁ% velocity field at x/t = 7.0 and x/t = 20.0. The transverse velocity field at
i}ﬁ x/t = 7.0 clearly shows the initial roll-up of the flow in the tip region
 a into a vortex. The large transverse velocities (about 30%Z of the free stream
_Ei: velocity) around the tip that convect the low momentum fluid from the
jsf: pressure side to the suction side are also seen. The transverse velocity
‘EQE field at x/t = 20.0 shows the strong tip vortex on the suction side. The ;
o inward track of the center of vortex along the suction side is also seen in 1
::: the two vector plots. }
:jn Figures 13 and 14 clearly show the development of the tip vortex E
jsa generation process. It should be noted that this process has been calculated i
o from a set of three-dimensional, viscous flow equations which have a no-slip i
‘j%ﬁ condition at the propeller blade surface. The vortex generation and roll-up N
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is a result of the secondary flow separation, and the computed results
= obtained are in excellent qualitative agreement with experimentally observed

physical processes (Refs. 6 - 8). The calculations clearly show that the tip

. )

. vortex problem can be analyzed from a consideration of the basic physical
ﬁf phenomena without resorting to empirical models,

4‘_-0

'

4.4 Computation of the Tip Vortex Flow for a Rotating Straight Blade with

Iy Rounded Tip
o0 As the second test case in the computation of the tip vortex generation

process, the straight blade described in the previous section (section 4.3)

was rotated so as to provide an advance ratio of 1.0. The remaining flow and

AR
iz geometric parameters were retained from the previous test case.

v,

I Blade Thickness (¢) = 1.0

' Blade Chord = 20.0t
;S: Reynolds Number (based on t) = 1000.0
;E; Initial Boundary Layer Thickness = 0.20t
“:% Incidence Angle = 6°

] Advance Ratio = 1.0

;ﬁ A computational grid of 60 streamwise stations and a 47 x40
‘ié cross~section grid was used in the computations., As before, grid points were
| clustered in regions where high flow gradients were anticipated.

. Figure 15 shows the development of the tip vortex computed by the PEPSIG
..; code for the rotating blade. The figure is formatted in the same manner as
Eﬁg Figure 13 for the stationary blade. The upper half of the figure shows the
’?Z development of the tip vortex in terms of contours of the streamwise velocity
< while the lower half shows the same development in terms of contours of
:% streamwise vorticity. A comparison of Figure 15 with Figure 13 for the

:ﬁ stationary case shows the same basic flow mechanisms that result in the
»3 generation of the tip vortex. These mechanisms are the transport of low

.J momentum fluid from the prcssure side boundary layer to the suction side by
SE the transverse velocity, the accumulation of this low momentum fluid on the
;% suction side of the tip region, and the roll-up of this accumulated fluid
;ﬁ into the tip vortex. The differences between the rotating and non-rotating
'! cases are in a matter of the details of the flow structure. These
'ES differences will be discussed in this section. A vector plot of the

o
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transverse velocity field at two streamwise stations are shown in Figure 16.
As in the stationary case, the vector plot shows a clear visualization of the
tip vortex. The vector plot at x/t = 7.0 shows the early development of the
tip vortex while the plot at x/t = 20.0 shows the developed tip vortex on the
suction side of the tip region.

The differences in the tip vortex flow field between the stationary and
rotating blade test cases can be seen by comparing Figures 13 and 15. From
an overall point of view, the location of the tip vortex for the rotating
blade is higher than the stationary blade. This difference is due to the
fact that low streamwise velocity regions in the vortex are regions of higher
absolute tangential velocity in the rotating blade. The corresponding
increase in the centrifugal force keeps the vortex at a higher location for
the rotating blade. In a similar manner, the increase in the absolute
tangential velocity in the boundary layers on the suction and pressure
surfaces and the corresponding increase in the centrifugal forces that is not
balanced by the pressure forces imposed from the outer flow results in
outward flow in the boundary layers. This outward flow changes the
streamwise vorticity distribution in the vicinity of the blade surfaces. The
outward flow in the boundary layers is clearly seen in the vector plot of the

transverse velocities near the blade surfaces (Figure 16, x/t = 20.0).

4.5 Computation of the Tip Vortex Flow for a Rotating Twisted Blade with

Rounded Tip

As a final test case to demonstrate the capability of the forward

marching procedure to compute the tip vortex generation process in ship

Y

propellers, a computation was carried out of the tip flow field for a

rotating twisted blade. The twisted blade geometry was chosen to demonstrate

=

the capability of the forward marching procedure and the geometry package to

handle the complex blade shapes typical of a ship propeller. For the

[V . Y

purposes of the demoastration computation, the blade twist was specified such

)

that all radial sections of the blade maintained a constant angle of Eq

A

incidence with respect to the incoming flow. The remaining flow and geometry .q

parameters were retained from the previous two test cases. '1

-
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e Blade thickness (t) = 1.0
2 Blade chord 20.0t
€% Reynolds number (based on t) 1000.0

Initial boundary layer thickness = 0.20¢t
s Incidence angle = 6°

) Advance ratio = 1.0

Geometric twist specified to maintain constant

.
[ -

-ﬂj angle of incidence at all radial blade sections

\ Perspective views of the twisted blade are shown in Figure 17. A

- computational grid of 60 streamwise stations and a 47 x 40 cross-section grid

2 b '__al:. FEY ¥

was used in the computations. Figure 18 shows the computational grid at two

s
o

streamwise stations (x/t = 1.0, 20.0). The chenge in the lean of the blade

along the chord due to blade twist can be seen from this figure. The

geometry package adjusts the grid distribution automatically at each

cross-section to compensate for the blade twist., This capability in the

geometry package can be seen in the computation grid generated at x/t = 1.0
{ and x/t = 20.0 in Figure 18,

Figures 19, 20 and 21 show the generation of the tip vortex computed for

.
.

".“ ~ )
N

the rotating twisted blade. Figure 19 shows the initial development of the

~ N
“ -.' ." . ..' "

o flow field. The computation shows the initial transport of low momentum
fluid from the pressure side to the suction side as in the previous test
case. The transverse velocity field is a potential flow like field around
the tip. As in the previous test cases, Figures 20 and 21 show the
accumulation of low momentum fluid on the suction side of the tip region, and
the roll-up of the fluid into the tip vortex. The outward flow in the
boundary layers due to rotation can also be seen in the vector plot of the
%-; transverse velocity field in Figure 21. The change in the lean of the blade
o along the blade chord due to blade twist can be seen from the Figures 19, 20
. and 21.

With the solution of the velocity field at each streamwise statiom, it

.:(b is possible to compute the transverse pressure field associated with the

g'i generated transverse velocity field. Figure 22 shows a contour plot of the

... computed transverse pressure field at x/t = 2.0 and x/t = 4.0. At x/t = 2.0,

{j{; the pressure contours show a drop in the pressure as the flow accelerates

oy
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over the rounded tip onto the suction side. The minimum pressure was
computed in the region of the rounded tip. At x/t = 4.0, these minimum
pressure contours move toward the suction side as the tip vortex begins to
form. Figure 23 shows the computed pressure field at two downstream
stations, x/t = 11.0 and x/t = 20.0. At x/t = 11.0, the low pressure region
has moved to the suction side and a minimum pressure region has formed over
the center of the tip vortex. At x/t = 20.0, the pressure contours show the
further development of the pressure field with the tip vortex. The minimum
pressure region continues to be associated with the center of the tip

vortex. These computations clearly demonstrate the ability of the PEPSIG
code to compute the pressure field associated with the tip vortex and compute
the low pressure region at the center of the vortex. This low pressure field
would determine the cavitation characteristics of the propeller tip flow
field. Figure 24 shows a streamwise contour plot of the computed pressure

field on the suction side of the blade. Superimposed on this figure is the

track of the vortex obtained from the computations. After an initial .

]
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e
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R

transient in the pressure field, the formation of the low pressure region
along the vortex track is evident. The resulting track is qualitatively as
expected.

Typical computer run times for the tip vortex flow field computations
were about 120 seconds for the straight blade cases and about 160 seconds for
the twisted blade case. These computations were carried out on a CRAY-1

computer system.
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5. CONCLUSIONS

The Phase I effort has demonstrated the feasibility of computing the
tip vortex generation process for ship propeller blades by a forward

marching procedure.

The results also show the capability of the forward marching
procedure to compute the low pressure region in the flow associated
with the tip vortex. The computation provides the capability of
identifying low pressure regions in the flow field that may be

susceptible to cavitation.
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- 6. FUTURE EFFORT

[ The Phase I effort has demonstrated the capability of the forward ;}
-:: marching procedure to compute the tip vortex generation process for ship 3
ii propeller blades. The extension of this capability to providing a i
- computation tool for the scientists and engineers to predict and analyse the ;E
tip flow field would be an overall objective of a future effort. Specific ii
'i; tasks that would comprise this effort are the following: ni
iﬁ; 1. Incorporate an inviscid flow analysis to produce a three-dimensional E;
:: pressure field. The streamwise pressure gradient computed from this i
§£~ pressure field would be input to the viscous flow analysis. ii
i: 2. Incorporate a mixing length turbulence model suitable for the tip

flow field to enable computation of turbulent flow fields.

- 3. Verify the computations by comparisons with experimenal data.

#

Iy

f 3
e

AT FRINGLUENNING -~

Add geometric capability to the code to handle specific tip shapes,

:% blade thickness distribution, and blade camber. .
o 5. Provide a user-friendly computer code. -
1h)
( The above tasks have been detailed in a Phase II proposal. [ ]
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