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1. INTRODUCTION

The tip vortex flow field plays a significant role in the performance of

a ship propeller. The low pressure region fourd at the center of a tip

vortex may lead to cavitation. The presence of cavitation in the flow field

has serious consequences in terms of structural, acoustic, and performance

considerations. A better understanding of the tip vortex generation process

and a method of analysing the tip vortex flow field would provide valuable

help in the design of the ship propeller.

The generation of a tip vortex can be found in a variety of hydrodynamic

and aerodynamic airfoil type configurations. Typical examples can be found

' . associated with the ship or submarine propeller, the submarine sail, the wing

tip of fixed wing aircraft, and the helicopter rotor blade. These flow

fields are characterized by a pressure differential across all inboard sec-

tions of the blade. Since at the blade tip a press-re discontinuity is not

possible, the pressure difference across the bl. 4e - gradually relieved

towards the tip until the pressures on both sides are equal at the tip.

Associated with this pressure field is a secondary flow field outward on the

pressure surface, around the tip, and inward on the suction surface. The

secondary flow convects low momentum fluid from the pressure side around the

tip to the suction side. The low momentum fluid accumulates on the suction

side of the tip, rolls up and forms the tip vortex. The tip vortex is con-

vected downstream by the streamwise velocity.

The flow field in the tip region is complex, three-dimensional, and

Y. viscous with large secondary velocities. The large secondary velocities

preclude the possibility of using conventional boundary layer solution

techniques to compute the tip vortex flow. On the other hand, a solution of

A+ the full Navier-Stokes equations that adequately resolves the tip vortex flow

field would require formidable computational resources. Therefore, an
L,.* %g

- approximate set of three-dimensional viscous flow equations which is
applicable to the tip vortex flow field but which does not require the

resources needed for the solution of the full Navier-Stokes equations is

sought. The parabolized Navier-Stokes equations represent such a set. These

equations contain in them all the physical processes of tip vortex

generation and can be solved economically by forward marching procedures.

This report examines the attractive possibility of using a forward marching

procedure to compute the tip vortex generation process.

.. , ,. . . " , . . ., +
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1.1 Objectives

The overall objective of the present effort is to compute the tip vortex

generation process for ship propeller blades. This overall objective

--, requires several stages of effort. The specific objectives undertaken

in the present Phase I effort represented the first stage in the overall

effort. These objectives were:

... (a) Extension of an existing analysis to rotating coordinate

4. systems. A rotating coordinate system fixed to the rotating

propeller blade is a convenient coordinate system in which to

describe the propeller tip flow field. Appropriate governing

equations for the flow were formulated in the rotating

coordinate system.

(b) Development of a geometry package to describe the propeller

blade geometry in the computer code. A computational grid

capable of resolving the tip vortex flow must be generated by

the geometry package. This requires a grid generation

procedure flexible enough to cluster grid points in regions of

expected high gradients in the flow field.

(c) With the achievement of the above two objectives, the final

objective under Phase I of the program was computation of the

tip vortex generation process for a rotating ship propeller

blade.

The scope of the proposed objectives was to demonstrate the capability

of computing the tip vortex generation process for ship propeller blades by a

forward marching procedure. The accomplishment of these objectives are

documented in this report.

An additional portion of the Phase I effort was the computation of the

pressure field and the surface pressure distribution on the blade produced by

the tip vortex flow. This computation provides the capability of identifying

low pressure regions in the flow that may be susceptible to cavitation.

Results from this effort are also documented in this report.
u'.

1.2 Outline of the Phase I Program

A step-by-step approach was adopted to accomplish the specific

objectives of the Phase I program detailed in the previous section. Specific

2
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tasks vere identified to define the steps of the approach. These tasks were

the following:

'a (a) Addition of the rotation terms in the governing equations,

(b) Verification of the rotation terms by computing a known flow field,

(c) Computation of the flow over a circular cross section tip,

(d) Development of a geometry package for the propeller tip flow field
computation,

- (e) Computation of the tip vortex flow field for a straight blade with
" .4a rounded tip,

- (f) Computation of the tip vortex flow field for a rotating straight
blade with a rounded tip, and

(g) Computation of the tip vortex flow field for a rotating twisted
blade with a rounded tip.

..2- Tasks (a) and (b) accomplished the extension of the existing forward

marching procedure to rotating coordinate systems. Task (c) verified the

ability of the forward marching procedure to compute the flow processes in

vortex generation without the additional complexities of the propeller

geometry. Task (d) developed a geometry package capable of describing the

propeller tip geometry in the computer code and the generation of a suitable

computation grid for the tip vortex flow field. Tasks (e), f) and (g)

computed the tip vortex flow field in stages of increasing complexity. A

detailed description of the tasks and the results of the tasks are documented

.. in this report.

S...
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2. THE FORWARD MARCHING COHPUTATIO PROCEDURE FOR SHIP

PROPELLER TIP Low i ._.D-

.%e

The forward marching computation procedure for the solution of the

parabolized Navier-Stokes equation provides an economical and accurate method

for computing many three-dimensional viscous flow fields. The procedure,

initially developed for internal flow fields, was extended to the computation

of the ship propeller tip flow field under the Phase I work plan. The

governing equations, the computation scheme, and results from the procedure

are presented in this section. The procedure is capable of considering both

fixed and rotating coordinate systems.

The governing equations are derived through approximations made relative

to a curvilinear coordinate system fitted to and aligned with the flow

geometry under consideration. The coordinate system is chosen such that the

streamwise or marching coordinate either coincides with or is at least

approximately aligned with a known inviscid primary flow direction as

determined, for example, by a potential flow for the given geometry.

Transverse coordinate surfaces must be approximately perpendicular to solid

walls or bounding surfaces, since diffusion is permitted only in these

transverse coordinate surfaces.

Equations governing primary flow velocity Up, and a secondary

vorticity, $n, normal to transverse coordinate surfaces are derived

utilizing approximations which permit solution of the correction equations as

an initial-value problem, provided reversal of the composite streamwise

velocity does not occur. Terms representing diffusion normal to transverse

coordinate surfaces (in the streamwise direction) are neglected. Secondary

flow velocities are determined from scalar and vector surface potential

calculations in transverse coordinate surfaces, once the primary velocity and

secondary vorticity are known.

Primary-Secondary Velocity Decomposition

In what follows, vectors are denoted by an overbar, and unit vectors by

a caret. The analysis is based on decomposition of the overall velocity

vector field U into a primary flow velocity Up and a secondary flow

4
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velocity Us. The overall or composite velocity is determined from the

superposition

4.. 4

"":u-i +ii (1)
;p s

The primary flow velocity is represented as

=U (2)SP P P

where ip is a known inviscid primary flow direction determined for example

from an a priori potential flow solution for the geometry under

consideration. A streamwise coordinate direction from a body fitted

coordinate system could be used as an approximation to this potential flow

direction. The primary velocity Up is determined from solution of a

primary flow momentum equation. The secondary flow velocity Us is derived

from scalar rad vector surface potential denoted * and *, respectively. If

in denotes the unit vector normal to transverse coordinate surfaces, if P

is density, and if Po is an arbitrary constant reference density, then Us

is defined by

U EV S + (P0/P)VXIn* (3)

where V. is the surface gradient operator defined by

,. VS =v- i n( -v) (4)

It follows that since in * Us -0, then Us lies entirely within

transverse coordinate surfaces. Equation (3) is a general form permitting

, bo' rotational and irrotational secondary flows and will lead to governing

equations which may be solved as an initial-boundary value problem. The

overall velocity decomposition (1) can be written
4..

U ui + V + (/p)Vxi (5)

5
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Surface Potential Equations

Equations relating * and i with Up, p, and the secondary vorticity

component 1n can be derived using Eq. (5) as follows: From continuity,

V.pU 0 = V-pU i + V-pV$0 + PoV-Vxin (6)

and from the definition of the vorticity based on the secondary flow within

the transverse surfaces, Sln
.......
i -VxU-n = i -Vx U i + in VX(P op) _ Vx -n + in'V X Vs(_
nn ni pp n(7) i

Since the last term in each of Eqs. (6 and 7) is zero by vector identity,

Eqs. (6 and 7) can be written as

• n

in -Vx (po/p)Vxi =fln -in-V ip (9

"-:.'-"Note that the last term in Eq. (9) is identically zero in a coordinate system

_ for which in and ip have the same direction, and would be small if in

and ip are approximately aligned. In any event, given a knowledge of Up.

sin and P, the surface potentials 0 and * can be determined by a

.>-' two-dimensional elliptic calculation in transverse coordinate surfaces at

each streamwise location. In turn, U can be computed from Eq. (3), and

the composite velocity U will satisfy continuity. Equations for Up andV'.
sin are obtained from the equations governing momentum and vorticity,

respectively.

The streamwise momentum equation is given by::...

: i . [ (U .vU + (Vr)Ip] = i F + i R (10)
p p p

.)6
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where P is pressure and PF is force due to viscous stress and terms in F

representing streamwise diffusion are neglected. PR is the additional force

due to a rotating coordinate system; where R - -2W x - c(I x r), w is the 6

* angular velocity of the coordinate system and r is the radius vector from the

*. rotation axis. The pressure term in the strea.wise momentum equation (10)

can be taken from a simpler analysis such as a potential flow analysis.

While this results in a set of equations which can be solved by forward

marching, the surface pressures which are due to the pressure field imposed

," upon the flow are the potential flow pressures. Since the actual surface

* pressures are often of primary interest, a new estimate of the actual surf -

pressure which includes viscous and secondary flow effects can be compute

from the resulting velocity field in the following manner.

The momentum equations in the transverse surfaces are: ''

"- [(pU V) U + VP - - R] 0• + F1-0( 11 ) -.

-2(pl -V) U + VP - pF- OR] =0

,* Equation (11) represents components of the momentum vector in the transverse

'- surfaces:
1 1 (1" [(pU.V) U + VP - OF - pR])+ J2 (12  [(pU.V) U + VP - oF - pR])

(12)

The divergence of this vector can be written as a Poisson equation for the
ii ~ ~pressure P at each transverse sur face:*', y.

VP V (PI + c = ~l [ (pU" V) U -OF OR]) : ..S 5SC

(13
2v2  =v2  +( = V) uF O])

where s teis ed~~~'

where P is the imposed pressure, Pc is a viscous correction to the

pressure field and xI and x2 are coordinates in the i1 and i2

directions, respectively. Equation (13) can be solved for the pressure

correction, Pc, at each computational station using Neuman boundary

conditions derived from Eq. (12). The use of Neuman boundary conditions

7S.. . . . . . .
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%, requires an additional parameter which is only a function of the normal

direction, Pv(x3), in order to set the level of the pressure field. For

internal flows Pv(x 3) can be set to ensure that an integral mass flux

condition is satisfied

JA in'PU d A = CONSTANT (14)

For external flows Pv(x3) can be set to match the imposed pressure at an

appropriate far field location.

Secondary Vorticity

The equation governing an is obtained by cross differentiating each of

the transverse momentum equations (11). Eliminating the pressure in the two

equations results in a single equation for the transport of the vorticity

normal to the transverse surface. This equation has the form

U -. Vn - Q - VU G + C + i . (vxR) (15)

.. .
-" where Gn is the normal component of

"= V X (16)

and C is a collection of curvature terms arising from changes in orientation

of the transverse surfaces as a function of streamwise coordinate.

Governing System of Equations

A complete system of four coupled equations governing Ups, an

and * is given by Eqs. (8), (9), (10) and (16). Ancillary relations are

given by Eq. (5) for composite velocity and Eq. (14) for mass flux. In

reference 1, these equations are given in general orthogonal coordinates and

in reference 2 in nonorthogonal coordinates.

Numerical Method

Since techniques for obtaining the basic potential flow solution are

well known and numerous, they need not be enumerated or discussed here.

N-..S

!" 2'
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Instead, the present development concentrates on describing the numerical

method used to solve the system of correction equations. Streamwise

derivative terms in the governing equations have a form such as ula( )/ax,

and because the streamwise velocity ul is very small in the viscous dominated

region near no-slip walls, it is essential to use implicit algorithms which

are not subject to stringent stability restrictions unrelated to accuracy

requirements. Although it is possible to devise algorithms for solution of

"" '"the correction equations as a fully coupled implicit system, such algorithms

would require considerable iteration for the system of equations treated

here, and this would detract from the overall efficiency. The present method

is semi-implicit and seeks to reduce the amount of iteration required and yet

avoid the more severe stability restrictions of explicit algorithms. The me-

thod partitions the system of correction equations into subsystems which

govern the primary flow, the secondary flow, and the turbulence model. The

primary-flow subset of equations contains the streamwise momentum equation.

The secondary-flow subset of equations contains the secondary vorticity equa-

tion and the scalar and vector potential equations. These subsystems are de-

coupled using an ad hoc linearization in which secondary velocity components

and turbulent viscosity are lagged, and are solved sequentially during each

axial step.

Summary of Algorithm

The correction equations are replaced by finite-difference approxima-

tions. Three-point central difference formulas are used for all transverse

spatial derivatives. Analytical coordinate transformations are employed as a

means of introducing a nonuniform grid in each transverse coordinate

direction, as appropriate, to concentrate grid points in the wall boundary

layer regions. Second-order accuracy for the transverse directions is

rigorously maintained. Two-point backward difference approximations are used

for streamwise derivatives, although this is not essential.

To solve the primary flow subsystem of viscous correction equations for

external flows, scalar ADI schemes are used for the momentum equation.

Given the solution for the primary flow, the secondary flow subsystem

can be solved. First, the scalar potential equation (continuity) is solved

9
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using a scalar iterative ADI scheme. Next, the secondary vorticity and vec-

tor potential equations are written as a illy implicit coupled system and

solved using an iterative linearized block implicit (LBI) scheme (cf. Briley

and McDonald (3)). In selecting boundary conditions for the secondary flow

subsystem, care must be taken to ensure that the final secondary velocity

satisfies the no-slip condition accurately. Zero normal derivatives of 0 are

specified in the scalar potential equation, and this boundary condition

-! corresponds to zero normal velocity. It is not possible to simultaneously

specify the tangential velocity, however, and thus the O-contribution to the

secondary velocity will have a nonzero tangential (slip) component, denoted

vt, at solid boundaries. In the coupled vorticity and vector-potential eq-

uations, both normal and tangential velocity components can be specified as

boundary conditions, since these equations are solved as a coupled system.

By choosing (a) zero normal velocity, and (b) -vt as the *-contribution to

the tangential velocity, the slip velocity vt arising from the 0 calcula-

tion is cancelled, and the composite secondary flow velocity including both

and * contributions will satisfy the no-slip condition exactly.

* .. A summary of the overall algorithm used to advance the solution a single

axial step follows. It is assumed that the solution is known at the n-level

" ,,xn and is desired at xn+l.

(1) The imposed streamwise pressure gradient distribution is determined

from an a priori inviscid potential flow.

(2) The momentum equation is solved to determine un+l.

(3) Using values now available for pn+l and un+l, the scalar poten-
-_ tial equation (8) is solved using an iterative scalar ADI scheme,

to obtain *n+l. This ensures that the continuity equation is

satisfied.

(4) The equations for vorticity (16) and vector potential (9) form a

coupled system for nn+l and 4+l which is solved as a coupled

system using an iterative LBI scheme.

(5) Values for the transverse velocities vs and w. are computed

from Eq. (3).

10
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3. PRELIMINARY COMPUTATIONS

The previous section described the forward marching procedure along with

the extension of the procedure to rotating coordinate systems. As mentioned

previously, a rotating coordinate system is required for the analysis of the

propeller tip flow field. The forward marching procedure has been used to

.compute a number of internal flow fields and has shown good qualitative and

quantitative agreement with experimental data [2]. However, the formulation

and coding of the rotation terms had not been verified. Further, a simple

feasibility computation had to be performed to verify the capability of the

analysis to compute the vortex generation process without the added

complexity of the tip geometry. The results of this effort are described in
q-.

this section.

3.1 Verification of the Rotation Terms

Simple test cases were chosen to verify the coding of the rotation terms

in the equations. These cases correspond to the cases presented by

Speziale [Ref. 41 who computed the fully developed flow in rotating ducts by

a two-dimensional time-marching technique. This test case provided a

geometrically simple configuration to compute the effects of rotation in the

PEPSIG code. Further, these test cases had been computed successfully by

McDonald, Briley and Lin [Ref. 5] to verify the effect of rotation in an

orthogonal version of this forward marching code. The computations were

marched downstream until a fully-developed flow field was obtained for

comparison with the computations of Speziale [Ref. 4].

Figure 2 shows a contour plot of the fully-developed streamwise velocity

field in the duct for a Reynolds number of 235 and a Rossby number of 50.5.

This Rossby number corresponds to a case of weak rotation effects on the flow

field. An interesting point to be noted in Figure 2 is the shift of the

contours away from the centerline of the duct, an effect purely from the

rotation of the duct. In the case of a non-rotating duct the streamwise

e velocity contours would be symmetric about the centerline of the duct.

Figure 3 compares a plot of the streamwise velocity along the centerline of

the duct with the computations of Speziale. The two computations compare

well with each other. The shift of the peak streamwise velocity away from

1.- ....
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the centerline is clearly evident from the plot and is predicted by the

present computations in comparison with the computations of Speziale. The

cause of the distortion of the streamwise velocity profile is the secondary

velocity field developed in the duct from the effects of the Coriolis force.

This secondary velocity is shown as a vector plot in Figure 4. Although the

secondary velocity field is weak, the secondary flow vortex is evident.

A second set of computations are carried out at a Reynolds number of 86

and a Rossby number of 1.85. This Rossby number corresponds to a case of

strong rotation effects in the duct. Figure 5 shows a contour plot of the

fully-developed streamwise velocity field. The shift of the velocity

contours away from the centerline is larger and more distinct than in the

previous case. The peak streamwise velocity in the duct is lower than the

V,. previous case corresponding to a larger degree of flattening of the velocity

profiles due to rotation. Figure 6 shows a vector plot of the secondary

velocity field. The secondary velocities are much larger than in the

previous case and the secondary flow vortex is stronger. Correspondingly,

the distortions of the streamwise velocity profiles are larger than in the

previous case. Secondary velocities as large as 17% of the peak streamwise

velocity are generated in the duct. Figure 7 shows a plot of the computed

streamwise pressure gradient along the length of the duct together with a

plot of the centrifugal force and the streamwise reduced pressure gradient.

The reduced pressure is the difference between the static pressure and the

stress due to the centrifugal force and can be construed as the effective

pressure in the flow field in a rotating flow. In Figure 7, the rapidly

increasing centrifugal force along the length of the duct due to rotation is

matched by increasing static pressure in the duct. However, after the

initial entrance region of the duct, the streamwise reduced pressure gradient

remains constant and is a favorable pressure gradient. The reduced pressure
gradient balances the viscous shear stress developed at the walls of the duct
in the fully-developed region of the flow field. This is similar to balance

of the streamwise pressure gradient and the wall shear stress in the case of
.,:-a non-rotating duct.

Although these test cases focus upon rr'tating internal flow, they

represent necessary test cases in the development and verification of a

rotating flow capability. As can be seen from Figure 3, this capability

appears to be confirmed through comparison with an alternate calculation.

." The remaining results show the expected physical phenomena.

-1
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Figure 6 -Vector plot of the secondary velocity field;

Re - 86, Ro = 1.85.
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Figure 7 -Axial variation of the streamwise pressure gradient,

centrifugal force, and the streamwise reduced pressure
gradient.
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3.2 Computation of Flow Over a Circular (Rounded) Cross Section Tip

The next step was computation of a flow field that contained the flow

processes in the generation of the tip vortex. At this point in the

computations and to better understand the flow processes; the isolation of

the effects of complex geometry, rotation, and the effects of the leading and

trailing edges was appropriate. For this purpose, the flow over a blade tip

with a circular cross section and constant blade thickness was chosen as a

test case.

A test case was run for the laminar flow over a circular tip, described
above, at an angle of attack of 6. The Reynolds number for the flow was set

at 800 based on the thickness of the tip (d). The viscous dissipation at

this Reynolds number is typical of levels of maximum dissipation in a

turbulent flow field. An initial boundary layer thickness of 20% of the

thickness of the tip was used to construct the initial axial velocity

profile. Cross flow velocities and a vorticity field compatible with the

initial axial velocity profile were computed by the starting procedure in the

computer code. Figure 8 shows the flow configuration of the test case. A

computational grid of 40 circumferential points and 25 radial points was used

-. in the calculations. Radial clustering of the grid points was used to

resolve the flow in the shear layer.

Figure 9 shows results of the computation at a station 5.20d downstream

from the initial station. Figure 9(a) shows a contour plot of the axial

velocity (velocity component parallel to the x-axis). The initial stage of

the development of the tip vortex is evident ii this figure. The convection

of low momentum fluid, in the shear layer, from the pressure side to the

suction side results in a thickening of the shear layer on the suction side

and a thinning of shear layer on the pressure side. A small distortion of

the velocity contours on the suction side is indicative of the weak vortex in

the region. The transport of low momentum fluid from the pressure side to

the suction side is more clearly seen in the contour plot of the streamwise

vorticity field shown in Figure 9(b). The cross flow velocity across the tip
transports vorticity from regions of high vorticity in the thin shear layers

on the pressure side to the suction side causing an accumulation of low

momentum fluid on the suction side. The low momentum fluid rolls up to form

the tip vortex as it is convected away by the axial velocity. Figure 9(c)
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shows a vector plot of the transverse velocity components perpendicular to

the free stream velocity. It should be noted that Figure 9(c) shows the

secondary velocity field, the primary velocity is perpendicular to the plane

of the figure. For clarity, the flow field in the vicinity of the tip has

been magnified and the far field flow omitted. The figure shows the

incipient roll up of the flow into the tip vortex. The outward velocities at

the bottom (in the figures) of the pressure surface are due to the

displacement effect of the growth of the shear layer on the tip.

Figure 10 shows the results of the computation at a station 15.70d

downstream from the initial station. Figure 10(a) shows a contour plot of

the axial velocity. The shear layer on the suction side has grown rapidly.

Further, the contours of the axial velocity are distorted by the tip vortex.

The contours of streamwise vorticity (Figure 10(b)) show the extent of the

spread of the vorticity convected to the suction side by the cross-flow

velocities. The large body of low momentum fluid on the suction side has

rolled up into a vortex (Figure 10(c)). The vortex draws fluid into the

bottom (in the figures) of the suction surface that is convected away by the

.- . axial velocity. This process causes the distortions of the axial velocity

contours seen in Figure 10(a). The results show the ability of the PEPSIG

computer code to capture the flow processes in the generation of the tip

*' . vortex.
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Figure 10(a) Contours of Axial Velocity

Figure 10(b) Contours of , Streamwise Vorticity

Figure 10(c) Vector Plot of the Cross-Stream Velocity Field (Expanded View)

* Figure 10 Flow Field at Axial Station 15.70d
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4. COMPUTATION OF THE TIP VORTEX FLOW FIELD

The ingredients for successful computation of the tip vortex generation

process for ship propeller blades were formulated and verified in the

previous subsections. To demonstrate the capability of the forward marching

procedure to compute the tip vortex generation process three test cases were

, chosen:

(1) Tip vortex flow for a straight blade with rounded tip,

(2) Tip vortex flow for a rotating straight blade with rounded tip,

(3) Tip vortex flow for a rotating twisted blade with rounded tip.

". The test cases were chosen for a graded increase in complexity towards the

computation of the tip vortex flow for a realistic ship propeller blade.
Laminar flow was assumed in all the cases since the qualitative nature of the

tip vortex generation process remains the same in laminar and turbulent flow

and inclusion of a turbulence model was deemed premature under this

feasibility study.

A major portion of the Phase I effort concerned a propeller geometry

package. Under Phase I, a geometry package was incorporated into the

computer program to describe the propeller tip geometry and generate a

suitable computational grid. Figure 11 shows one of the geometries that was
used for the propeller tip. The figure shows a constant thickness blade with

a rounded tip. Figure 12 shows a cross-section of the propeller tip and the

- -icomputational grid at a typical streamwise station. The leading edge is

upstream of the region shown. The calculation is initiated at a chordwise

station on the blade with an assumed velocity profile. A computational grid

that wraps around the tip was chosen to provide adequate resolution of the

tip region and a smooth grid distributuion. The geometry package has the

ability to control grid point distribution in both transverse coordinate

directions to resolve regions of high gradients in the flow. Streamwise

curvature of the blade and blade twist can also be handled by the geometry 91

subroutines. %,

4.2 Boundary Conditions for the Tip Vortex Flow Computations

The cross-sectional computation coordinate system, shown in Figure 12, I

has four boundaries where boundary conditions for the governing equations
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must be specified. Inboard are boundaries (1) and (2), the blade surface is

boundary (3), and the far field is boundary (4). Boundary conditions must be

specified for the streainwise velocity in the streamwise momentum equation,

for the scalar potential in the scalar potential equation, and for the vector

potential and streamwise vorticity in the coupled vector potential-streamwise

vorticity equations. The conditions that were specified for the tip vortex

flow computations are considered in this section.

The flow at the inboard boundaries (1) and (2) was assumed to be

4.,- ~ two-dimensional (no spanwise variation) with no flow penetration of the

secondary velocity through the boundaries. The normal gradient of the scalar

potential was set to zero and the vector potential was set to a constant

(normal velocity set to zero). The streamwise vorticity was set to zero as

the compatible condition with the vector potential and the streamwise

velocity was extrapolated froma the interior flow field. The boundary

conditions specified on the inboard boundaries are only approximate but were

-~ found not to affect the qualitative computed be~havior of the tip vortex

generation process. Under a contract from the NASA Langley Research Center

for the helicopter tip flow field, boundary conditions based on the induced

velocity field by the blade are currently being developed. These conditions

will be incorporated in future work on the ship propeller tip flow field.

The boundary condition along boundary (3), the blade, was the no-slip

condition on a solid surface. To satisfy this condition the normal gradient

of the scalar potential (the normal velocity) was set to zero. In the

coupled vector potential and vorticity equations the normal component of the

rotational velocity was set to zero and the tangential component was set

equal and opposite to the tangential component of the velocity generated by

* . the scalar potential. These conditions allowed an implicit specification of

the vector potential and the vorticity on the no-slip boundary (as discussed

0 in Section 3). The resultant secondary velocity field satisfies the no-slip

conditions on the boundary. The streamwise velocity was also set to zero at

the solid boundary.

Far field conditions were specified on boundary (4). The streamwise

velocity was extrapolated from the interior flow field. The scalar potential

was set to a constant so that the tangential co~mponent of the irrotational

velocity was zero. This condition allowed out flow through the boundary due

to the displacement effect of the boundary layers on the blade. The angle of

28

_ 2
.4-4 L . . . . . _. - . . . . . .

. . . . . . . . o



'j

incidence of the flow specified a component of the transverse velocity on the

boundary. The vector potential was obtained by integrating this component of

the transverse velocity along the boundary. The streamwise vorticity was set

to zero.

4.3 Computation of the Tip Vortex Flow for a Straight Blade with

Rounded Tip

A constant thickness blade with a rounded tip was the first test

case considered for the tip vortex flow computation. Figure 11 shows a

perspective view of the geometry of the blade near the tip. Figure 12 shows

the cross-section of the blade tip and the computational grid at a typical

streamwise station. The important geometric and flow parameters used in the

computation were the following:

Blade thickness (t) 1.0

Blade chord 20.Ot

Reynolds number (based on t) 1000.0

Initial boundary layer thickness - 0.20t

Incidence angle = 6

A computational grid of 60 streamwise stations and a 47 x 30

cross-section grid was used. Grid points were clustered in regions of high

flow gradients such as near the propeller surface and in the tip region.

The computation was started on the blade (x/t - 0.0) with the assumed initial

boundary layer thickness.

Figure 13 shows the development of the tip vortex computed by the

code. The upper half of the figure shows the development of the tip vortex in

term of contours of the streamwise velocity while the lower half shows the

* same development in terms of contours of streamwise vorticity. Computations

from five streamwise stations (x/t - 2.0, 4.0, 7.0, 11.0, 20.0) were chosen

to display the development of the tip vortex. An initial overall view of

Figure 13 shows a large scale flow process at the tip of the blade in terms

of both the streamwise velocity and streamwise vorticity.

At x/t - 2.0 (Figure 13), the streamwise velocity contours show the

- initial development of the flow. The boundary layer on the suction side of

the blade has thickened while the boundary layer on the pressure side remains

thin. The thickening of the boundary layer on the suction side is due to the
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transport of low momentum fluid from the pressure side boundary layer around

the tip to the suction side. The same flow process is seen in the streamwise

vorticity contours as a transport of vorticity around the tip.

At x/t - 4.0, the tip flow field begins to show the accumulation of low

momentum fluid on the suction side of the tip region. This accumulation is

characterized by the "bulge" in the streamwise velocity contours representing

the region of the low streamwise velocity fluid. The streamwise vorticity

contours at this station show the convection of vorticity into this region.

Further, the vorticity contours also start to "peel" off the suction surface

indicating the initial stages of the roll-up of the low momentum fluid. At

x/t - 7.0 and x/t - 11.0, the streamwise velocity contours show the further

rapid accumulation of the low momentum fluid in the tip region. The stream-

wise vorticity contours at these stations show the roll up of the tip flow

-, . into the tip vortex. The vorticity contours emanating from the suction sur-

face, visible clearly at x/t - 11.0, are indicative of the outward (toward

the tip) transverse velocities in the region due to roll-up of the tip vor-

tex. The results at x/t - 20.0 show the completion of the tip vortex forma-

tion. The vortex has separated from the suction surface as it is convected

downstream by the streamwise velocity. The vortex is sustained by the con-

tinued transport of vorticity from the pressure surface into the vortex core.

Also evident from Figure 13 is the inward track of the center of the vortex

along the suction side. That, indeed, the flow in the tip region has rolled

up into the tip vortex is clearly visualized by a vector plot of the

transverse velocity field. Figure 14 shows a vector plot of the transverse

velocity field at x/t - 7.0 and x/t - 20.0. The transverse velocity field at

x/t - 7.0 clearly shows the initial roll-up of the flow in the tip region

into a vortex. The large transverse velocities (about 30% of the free stream

velocity) around the tip that convect the low momentum fluid from the

pressure side to the suction side are also seen. The transverse velocity

field at x/t - 20.0 shows the strong tip vortex on the suction side. The

inward track of the center of vortex along the suction side is also seen in

Ithe two vector plots.

e"" Figures 13 and 14 clearly show the development of the tip vortex

generation process. It should be noted that this process has been calculated

from a set of three-dimensional, viscous flow equations which have a no-slip

condition at the propeller blade surface. The vortex generation and roll-up
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is a result of the secondary flow separation, and the computed results

obtained are in excellent qualitative agreement with experimentally observed

physical processes (Refs. 6 - 8). The calculations clearly show that the tip

vortex problem can be analyzed from a consideration of the basic physical

phenomena without resorting to empirical models.

4.4 Computation of the Tip Vortex Flow for a Rotating Straight Blade with

. Rounded Tip

As the second test case in the computation of the tip vortex generation

process, the straight blade described in the previous section (section 4.3)

was rotated so as to provide an advance ratio of 1.0. The remaining flow and

geometric parameters were retained from the previous test case.

Blade Thickness t) 1.0

Blade Chord 20.Ot ,

Reynolds Number (based on t) 1000.0

Initial Boundary Layer Thickness O.20t

Incidence Angle 6"

Advance Ratio 1.0 .

A computational grid of 60 streamwise stations and a 47 x40

cross-section grid was used in the computations. As before, grid points were

clustered in regions where high flow gradients were anticipated.

Figure 15 shows the development of the tip vortex computed by the PEPSIG

code for the rotating blade. The figure is formatted in the same manner as

Figure 13 for the stationary blade. The upper half of the figure shows the

development of the tip vortex in terms of contours of the streamwise velocity

while the lower half shows the same development in terms of contours of

streamwise vorticity. A comparison of Figure 15 with Figure 13 for the

stationary case shows the same basic flow mechanisms that result in the

generation of the tip vortex. These mechanisms are the transport of low

momentum fluid from the pressure side boundary layer to the suction side by

the transverse velocity, the accumulation of this low momentum fluid on the

suction side of the tip region, and the roll-up of this accumulated fluid

into the tip vortex. The differences between the rotating and non-rotating

cases are in a matter of the details of the flow structure. These

differences will be discussed in this section. A vector plot of the
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transverse velocity field at two streamwise stations are shown in Figure 16.

As in the stationary case, the vector plot shows a clear visualization of the

tip vortex. The vector plot at x/t - 7.0 shows the early development of the

tip vortex while the plot at x/t - 20.0 shows the developed tip vortex on the

suction side of the tip region.

The differences in the tip vortex flow field between the stationary and

rotating blade test cases can be seen by comparing Figures 13 and 15. From

an overall point of view, the location of the tip vortex for the rotating

blade is higher than the stationary blade. This difference is due to the

fact that low streamwise velocity regions in the vortex are regions of higher

absolute tangential velocity in the rotating blade. The corresponding

increase in the centrifugal force keeps the vortex at a higher location for

the rotating blade. In a similar manner, the increase in the absolute

tangential velocity in the boundary layers on the suction and pressure

surfaces and the corresponding increase in the centrifugal forces that is not

balanced by the pressure forces imposed from the outer flow results in

outward flow in the boundary layers. This outward flow changes the

streamwise vorticity distribution in the vicinity of the blade surfaces. The

outward flow in the boundary layers is clearly seen in the vector plot of the

transverse velocities near the blade surfaces (Figure 16, x/t = 20.0).

4.5 Computation of the Tip Vortex Flow for a Rotating Twisted Blade with

Rounded Tip

As a final test case to demonstrate the capability of the forward

marching procedure to compute the tip vortex generation process in ship

propellers, a computation was carried out of the tip flow field for a

rotating twisted blade. The twisted blade geometry was chosen to demonstrate

the capability of the forward marching procedure and the geometry package to

handle the complex blade shapes typical of a ship propeller. For the

purposes of the demonstration computation, the blade twist was specified such

that all radial sections of the blade maintained a constant angle of

incidence with respect to the incoming flow. The remaining flow and geometry

parameters were retained from the previous two test cases.
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Blade thickness (t) - 1.0

Blade chord 20.Ot

Reynolds number (based on t) = 1000.0

Initial boundary layer thickness = 0.20t

Incidence angle 6"

Advance ratio 1.0

Geometric twist specified to maintain constant

angle of incidence at all radial blade sections

Perspective views of the twisted blade are shown in Figure 17. A

computational grid of 60 streamwise stations and a 47 x 40 cross-section grid

was used in the computations. Figure 18 shows the computational grid at two

streamwise stations (x/t = 1.0, 20.0). The chpnge in the lean of the blade

along the chord due to blade twist can be seen from this figure. The

geometry package adjusts the grid distribution automatically at each

cross-section to compensate for the blade twist. This capability in the

geometry package can be seen in the computation grid generated at x/t = 1.0

and x/t - 20.0 in Figure 18.

4. Figures 19, 20 and 21 show the generation of the tip vortex computed for

the rotating twisted blade. Figure 19 shows the initial development of the

flow field. The computation shows the initial transport of low momentum

fluid from the pressure side to the suction side as in the previous test

case. The transverse velocity field is a potential flow like field around

.- .the tip. As in the previous test cases, Figures 20 and 21 show the

accumulation of low momentum fluid on the suction side of the tip region, and

*the roll-up of the fluid into the tip vortex. The outward flow in the

boundary layers due to rotation can also be seen in the vector plot of the

transverse velocity field in Figure 21. The change in the lean of the blade

along the blade chord due to blade twist can be seen from the Figures 19, 20

and 21.

With the solution of the velocity field ar each streamwise station, it

is possible to compute the transverse pressure field associated with the

generated transverse velocity field. Figure 22 shows a contour plot of the
computed transverse pressure field at x/t - 2.0 and x/t - 4.0. At x/t - 2.0,

the pressure contours show a drop in the pressure as the flow accelerates
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over the rounded tip onto the suction side. The minimum pressure was

computed in the region of the rounded tip. At x/t - 4.0, these minimum

pressure contours move toward the suction side as the tip vortex begins to

form. Figure 23 shows the computed pressure field at two downstream

stations, x/t - 11.0 and x/t - 20.0. At x/t - 11.0, the low pressure region

has moved to the suction side and a minimum pressure region has formed over

the center of the tip vortex. At x/t - 20.0, the pressure contours show the

..- ~6 further development of the pressure field with the tip vortex. The minimum

pressure region continues to be associated with the center of the tip

vortex. These computations clearly demonstrate the ability of the PEPSIG

code to compute the pressure field associated with the tip vortex and compute

the low pressure region at the center of the vortex. This low pressure field

would determine the cavitation characteristics of the propeller tip flow

field. Figure 24 shows a streamwise contour plot of the computed pressure

field on the suction side of the blade. Superimposed on this figure is the

4 track of the vortex obtained from the computations. After an initial

transient in the pressure field, the formation of the low pressure region

along the vortex track is evident. The resulting track is qualitatively as

expected.

Typical computer run times for the tip vortex flow field computations

were about 120 seconds for the straight blade cases and about 160 seconds for

4.' the twisted blade case. These computations were carried out on a CRAY-I

computer system.
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5. CONCLUSIONS

1. The Phase I effort has demonstrated the feasibility of computing the

tip vortex generation process for ship propeller blades by a forward

marching procedure.

2. The results also show the capability of the forward marching

procedure to compute the low pressure region in the flow associated

with the tip vortex. The computation provides the capability of

identifying low pressure regions in the flow field that may be
susceptible to cavitation.
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6. FUTURE EFFORT

The Phase I effort has demonstrated the capability of the forward

marching procedure to compute the tip vortex generation process for ship

propeller blades. The extension of this capability to providing a

computation tool for the scientists and engineers to predict and analyse the

tip flow field would be an overall objective of a future effort. Specific

tasks that would comprise this effort are the following:

I. Incorporate an inviscid flow analysis to produce a three-dimensional

pressure field. The streamwise pressure gradient computed from this

pressure field would be input to the viscous flow analysis.

2. Incorporate a mixing length turbulence model suitable for the tip

flow field to enable computation of turbulent flow fields.

3. Verify the computations by comparisons with experimenal data.

4. Add geometric capability to the code to handle specific tip shapes,

blade thickness distribution, and blade camber.

5. Provide a user-friendly computer code.

The above tasks have been detailed in a Phase II proposal.
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