
D-R14l 064 SPECIFICTION RND
TRANSFORMTION:

UTOMATED
IMPLEMENTRTION(U) UNIVERSITY OF SOUTHERN CALIFORNIA
MARINA DEL REY INFORMATION S. M S FEATHER APR 84

UNCLSSIFIED ISI/RS-8-C-835 3662-79-C-094 F,'G 9/2 N

-*

"L2.

11.

0-

N.
1.2.1 -,,

11W 10 .i4

:, = ,MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

liE m 3

V.'w

V* '*. 1.;7.-'7 V.

.5 4@

0- - I. nI 'r.ersi
of Southern r4%

(a~C jorm i ~ a ~

Martin S. Feather

..

. Specification and Transformation:
Automated Implementation

"pri-n rom MaFrt.'nS Munch. Germnan), Septerber

.MAY 14 1984

e-
Ait~ u n Uli m t e d I pl m nt t o

S.. ,"9

3

-O ADTIC',i,"'." ...
I E E C T E

:-....,.

INSTTUT ,IShIB76O rAralNt WAi ara(lRv h'rmQ026

• "" " ""]Approed
for public releas '",I" .-

Diatribution U nmim ited r a

} ., ... ' INFORMATION
SCIENCES

213/s22 .IS/IIN STITU TE 1- === I 4676 Ad,nira l H 'av/ !ar , di' R cv/(/i rnial Q)2G?-6t~Q5'1 '.
.. ..

' -7'**...* . * - *",.S * ** *

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whien Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ISI/RS-83-124 AJ 14

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Research Report
Specification and Transformation: Automated Implementation

%' S. PERFORMING ORG. REPORT NUMBER

* 7. AUTHOR(*) I. CONTRACT OR GRANT NUMBER(s)

Martin S. Feather MDA9O3 81 C 0335

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMBERS

4676 Admiralty Way
.Marina del Rey, CA 90292-6695

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency April 1984
1400 Wilson Blvd. IS. NUMBER OF PAGES

Arlington, VA 22209 10
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (at this report)

Unclassified

ISa. DECL ASSI FI CATION/ DOWNGRADING
, ., SCHEDULE

1. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abetrct entered in Block 0, it different from Report)

18. SUPPLEMENTARY NOTES

This report is a reprint of a paper that appears in the proceedings of the Program Transformation and
Programming Environments Workshop, held in Munich, Germany, in September 1983. The
proceedings were published by Springer.Verlag, 175 Fifth Avenue, New York, New York 10010, USA.

IS. KEY WORDS (Continue on reverse side it necessary and dentify by block nuber)

automated implementation, program specification, program transformation

- a 20. ABSTRACT (Continue an reverse eide It necessar and identify by block number)

(OVER)

DD I JAN7 1473 EDITION OF I NOV 5 IS OBSOLETE Unclassified
S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Daes EntOW60

Unclassified
SECUMITY CLASSIICATION OF IIS PAGE(Ifm, Data Eate.E)

20. ABSTRACT .

research group at If aims to improve the program development process by applying program
transformation to develop implementations from specifications.

The uses for specifications imply the criteria for a specification language - understandability.
testability and maintainability. We have designed our own specificaiton language, Gist, to meet these
criteria. We have sought inspiration for Gist's constructs from the power found in descriptions
expressed in natural language.

The justifications for our approach are outlined. Our experiences with specification in Gist, and
subsequent transformation of such specifications, suggest some implications for the processes of
specification and transformation. References point the way to more details on the various issues.

(~-\

Accession For

NTIS GRA&I
DTIC TAB
Unannounced Q

1 .'Jus,.if icatio

By_
- "Distribution/

Availability Codes

JAvail and/or
Dist Special

Unclassified
SECuMiTY CLASSIFICATION OF THiS PAGE(WPh" DO m EantOO

43, -,.- , ' ,"x, . ,',' .' 4,.. * '':, ,:..,'.2 ..'':.''.'-..';'' '"""..":'2" .i">/" .:..'

IS! Reprint Series
ISI/RS-83-124

April 1984

University
of Southern

California

Martin S. Feather

Specification and Transformation:
Automated Implementation

Reprinted from Proceedings of the Program Transformation and
Programming Environmerts Workshop, Munich. Germany, September
1983.

INFORMATION
SCIENCES 213/822-15)11

IN' STITUTE 4676 Admiralty Way/Marina del Rey/California 90292-6695

This research is supported by the Defense Advanced Research Projects Agency under Contract No. MDA90381 C 0335. Views and
conclusions contained in this report are the authors and should not be interpreted as representing the official opinion or policy of DARPA,
the U.S. Government or any person or agency connected with them.

li ;". 4 '.V. * ": ;* "" " ".,"; 'I. . . .:..-*°;*' ? .' I * -- :% \ -. X

_-1 . ,,, ,*, at , -

ISI Reprint Series

"*9 This report is one in a series of reprints of articles and papers written by ISI

research staff and published in professional journals and conference

proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

SS'

- ' , .' S' *9 " ' " 9 -. , , *, .,.''.** . '.' * . , . 9.~V~y%

SPECIFICATION AND TRANSFORMATION:
AUTOMATED IMPLEMENTATION

Martin S. Feather
Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

U.S.A.

The primary aim of our 151 research group 1 is to improve the software development process. We
contend that the foremost means of achieving improvement is to significantly expand the role of the
computer in the process, and advocate program transformation as a development methodology
within which to introduce such computer support. As evidenced by the other contributions in this
volume, we are not alone in this belief.

The program transformation methodology is characterised by the machine acquisition of a
specification, which is then transformed, with human assistance, into a program. Notice the
distinction between this and conventional programming, where it is the program that is acquired. The

strength of the transformational approach derives from the freedom to write specifications in a
language for which automatic compilation need not be guaranteed. This freedom strongly affects
both the specification language design and the methodology itself: there are no a priori limits to
imaginable language constructs and the transformation system can become a cooperative partner in
the design process, unlike batch compilation mechanisms. This freedom allows recording even the
early stages of the software development process and should ultimately facilitate their automated
support.

Research efforts in program transformation are centered on designing the specification language
and building tools and techniques around that language to support speciffication acquisition and

1 The work reported herein has been sponsored by the Defense Advanced Research Projects Agency, Contract * MDA9O3
81 C 0335. the National Science Foundation, Contract # MCS-7918792 , and the Air Force Systems Command, Rome Air
Development Center, Contract Ai F306O2-79-C-0042. Views and conclusions contained in this report are the author's, and
should not be interpreted as representing the official opinion or policy of DARPA, NSF, RADC, the U.S. Government, or any

A person or agency connected with them.

This report is summary in nature, and represents the work of many individuals. Our group is headed by Bob Balzer. Its
present members are: Bob Balzer, Don Cohen, Martin Feather, Neil Goldman, Jack Mostow, Bill Swartout and Dave Wile.
Formner members who have made significant contributions to this research are: Wellington Chiu, Lee Erman, Steve Fickas,
Monica Lam and Phil London.

%l .**j*jj~ .(.A .~

A*1*.T-.- -GA c IIVA ?.".

2

transformation. As experience accumulates, support for the processes may be added incrementally.
While the accumulation of enough transformation techniques may ultimately permit automatic
compilation for constructs presently regarded as purely specificational, the transformation process is
inherently interactive and must always give the user the design initiative.

Here I concentrate upon'the specification research of our group, emphasizing how the freedom
from compilation has influenced the specification language design and some of the ramifications for
the development process itself. The companion paper by Wile focuses upon the development
process, in particular, the need for, and means to, record and support as much as possible of all
aspects of development activity.

Specification Language Desiderata

Abandoning automatic compilation as a requirement on the specification language allows much
more freedom in the design of the language, for the designer can include constructs with multiple
(imagined) implementations whose best implementation may be very context dependent. Of most
importance, the language design can be based on how it will be used rather than how it can be
implemented.

V Uses imply criteria
The foundations of our specification language, Gist, are discussed in some detail by Balzer and

Goldman [1]. Again, the uses of specifications determined the design criteria. Briefly, these uses and
the criteria that they determine are:

*A specification serves as a contract between specifier and implementor defining the
system to be constructed. Hence a specification must be understandable.

A specifier must be able to validate that the specified system meets the needs for which it
was designed. Hence a specification must be testable.

*A contract (between specifier and implementor) will change over time. Hence a
specification must be maintainable.

Balzer and Goldman go on to derive broad principles and specific implications for a specification
language to meet these criteria.

Inspiration from natural language
The principles and implications do not themselves define a specification language, but rather

describe properties desired of such a language. Our group has sought inspiration for what
.~ ~,constructs to incorporate into our specification language from the study of natural language

descriptions. Early experience with a program to automatically acquire formal specifications from
natural language convinced us that some of natural language's expressiveness and elegance for
modeling should be formalised [3]. Since our aim is to construct a formal specification language,
Insp~ation Is drawn less from the informality or ambiguity of natural language than from the rich

3

modes of expression that have readily formalisable counterparts. Goldman and Wile [6] follow this

approach in designing Gist, our group's specification language.

Why natural language is a good inspirational source
We have found natural language to be a valuable source of inspiration. We attribute this to the

importance of minimising the gap between informal intent and some formalisation of the same. As

stated by Goldman and Wile, "in general, a software system is intended to represent the activity in

some 'ideal world', which may be an abstraction of a real world process, a purely mental conception
of the desired behavior, or a combination of the two." Thus an unbridgeable cognitive gap will always
exist between intended ideal and formalisation (i.e., specification) of the same. At best, that gap can
only be narrowed, not eliminated. The three criteria for a good specification -- understandability,

testability and maintainability -- are supported by narrowing the cognitive gap.

Narrowing may be actlieved by populating the specification language with constructs that are

formalisations of natural language constructs. This mirroring of the expressive means used to convey
informal intent enhances the understandability of the specification. The major expressive constructs

* that have formal equivalents in Gist are: descriptive reference ("the largest message in my message
file"), historical reference ("the last message I received"), nondeterminism ("send this message by
any route which will deliver it") constraints ("never send the same person more than one copy of a

* message") and demons ("when I receive a message, notify me").

The specification describes the behaviour of both the program and its environment; this provides a
natural way to specify embedded programs that interact in complicated ways with their environment.
This, and the expressive constructs, enhance the testability, since the specification forms a direct
model of the domain.

The aspects of the required functionality are specified merely by stating them, no matter how

complex they are, or how many of them need to be integrated together to accomplish this
functionality (e.g., the conjunction of nondeterminism and constraints denotes those and only those
out of the range of nondeterministically described behaviours that satisfy the constraints). The
separate and single statement of each aspect of the functionality enhances the maintainability of the
specification.

Some experiences with Gist as a specification language
4 Our experience with Gist has not always reflected our expectations. The following are some of the

surprises that have general significance. It is interesting that each can be viewed as the result of
being too far from natural language.

Incomprehensibility of formal specifications

Although Gist has been designed to be a specification language, formal specifications written in it,
like those in all other formal specification languages, tend to be hard to understand. Swartout [8]
identifies several reasons for this unreadability.

4%4

I.. Two such reasons are the unfamiliar syntax and the lack of redundancy in the specification. His
solution to these problems has been to develop a tool that paraphrases Gist specifications in English.
This has been found to be useful in both clarifying specifications and revealing specification errors.
Even experienced Gist users, presumably familiar with the syntax, found the tool helpful for locating
errors. Swartout suggests that this is because the English paraphrase gives the specifier an alternate
view of the specification which highlights aspects that are easily overlooked in the formal Gist

S notation.

Swartout's paraphraser deals only with the static aspects of a specification. Also important are the
* dynamic aspects - the behaviours denoted by a specification. The nature of Gist is such that there are

t5~ -implicit remote interactions between parts of the specification, which are often not apparent from a
V.casual examination of the specification. To reveal these non-local interactions, Cohen [4] is

constructing a symbolic evaluator for Gist. The symbolic evaluator produces an execution trace
- which details everything discovered about the specification during evaluation. Since this trace is

rather detailed and low-level, i.e., hard to understand, Swartout [9] is building a trace explainer that
selects those aspects of the trace believed interesting or surprising, and summarises them in English.

Symbolic evaluation and prototyping (rapidly developing a crude implementation) are both valuable
means for validating a specification, i.e., increasing confidence that the formal specification is the
desired specification. The specifiers can gain confidence that the specification matches their

informal intent, and the intended users (of the software to be developed from the specification) can
-J gain confidence that the formally specified system will actually meet their needs.

Large specifications

Large size, as well as the other reasons discussed above, can make a formal specification difficult to
understand. Goldman [5] suggests that we should look to natural language descriptions to find the
means to overcome this particular problem. He finds that descriptions of large systems incorporate
an evolutionary vein - the final description can be viewed as an elaboration of some simpler
description, itself the elaboration of a yet simpler description, etc., back to some description deemed
sufficiently simple to be comprehended from a non-evolutionary description. Goldman proposes that
formal specifications likewise be described in an evolutionary vein. Our hope is that the evolutionary
steps can be formalised -- i.e., that a language of change can be developed that permits a formal
specification to be viewed and analyzed from its evolutionary perspective. Our motivations for
recording and supporting the software development process imply that we should record and support

this evolution.

Readers interested in details of Gist are referred to [7].

Transformation of Gist

In choosing design criteria for Gist, we were biased totally in favour of specification, making no

allowance for the need to transform Gist specifications into programs. Thus although we may have
4' minimised the conceptual gap between intent and formal specification. in doing so we have

-ow

maximised the transformation gap between specification and program. This is the "price" of freedom

from compilation. We do, however, have confidence that formal Gist specifications lie on the direct
route from intents to programs.

Mapping Gist into conventional implementation constructs

Our research strategy for determining how to transform Gist specifications is to focus upon Gist's
expressive constructs. The common characteristic of the different constructs is that they provide a
means of expressing desired behaviour without prescribing a particular algorithm to achieve that

behaviour. It is this freedom from implementation concerns that underlies their success as
specification constructs. Balzer, Goldman and Wile 12] describe in some detail the nature of these
freedoms and how they are provided by Gist's constructs. The implementation concerns fall into
three broad categories: finding a method for accomplishing something, providing the data required
for that method, and making the combination efficient (some function of time, space and other
resources). Implementation is a matter of introducing these implementation concerns.

For each construct, our research aims to accumulate the following:

" implementation options, commonly available options for converting an instance of the
specification construct into a more efficient expression of the same behaviour, typically in

* terms of lower level constructs;

" selection criteria, for selecting among several implementation options applicable to the
same instance; and

"mappings, to achieve the implementation options via sequences of correctness
preserving transformations.

These techniques are applied during the transformation of a Gist specification into a program, by
focusing upon the instances of specification constructs. For each given instance, the applicable
implementation options are identified, the selection criteria are applied to suggest the appropriate
option, and the corresponding mapping applied to effect the implementation by means of
transformations. Further details in this regard are presented in [7)i.

An automated, not automatic, activity

Developing a program from the specification is by no means a fully automatic activity, nor will it
A become one in the near future for any but the most trivial of specifications. There are several

important reasons that this should be the case:

*lack of coverage: the techniques that we have accumulated fall within a broad spectrum,
.5 from general purpose techniques that are generally applicable to a range of instances of

a construct, to special purpose techniques that apply to some idiomatic use of a
construct. There will be occasions where general purpose techniques do no', result in
sufficient efficiency, and none of the special purpose techniques are applicable to the
particular instance.

S~iL IL W_ %ai*b

6

" implementation lag: our implementation of the techniques lags behind our discovery of
them.

" interactions: implementations of several instances of constructs in a specification are not
necessarily independent; in particular, the optimal implementation of several instances
need not be the combination of the optimal implementations for those instances
considered separately.

" local optimisahion: typically, the mapping of a specification construct into an
implementation results in the distribution of code throughout the program to achieve that
same behaviour. These pieces of code may often be simplified in the local contexts in
which they are deposited. Not all such simplification will be within the capability of an
automatic simplifier.

" feedback: discoveries made in the course of attempting implementation may suggest
modifications to the specification.

These reasons combine to make transformation an interactive process, between skilled
implementor and some supporting computer system. The nature of this support is the fo of the
companion paper by Wile. Briefly, the overall objective is to streamline the implementor's; ,-ne
of decision making and guidance, leaving the system to perform the activities of man, _.ation,
analysis and documentation.

There are some important consequences for the transformation process that I would like to
emphasize:

* wide-spectrum language: the intermediate stages, between specification and program,
must be expressed in some language. Preferably that language should be capable of
mixing specification and implementation constructs (since otherwise the transformation

N process would have to be stratified into many separate stages). We have found that Gist
is appropriate as a wide-spectrum language. at least for the earlier stages of
transformation (our explorations have not descended to very low level algorithmic
details). The transformation and analysis tools must be capable of operating on the mix
of constructs. Thus there is a tradeoff between mixing and stratification: the former
admits a more continuous and flexible transformation process, whereas the latter
simplifies the tool building by requiring that the tools deal only with the mix of constructs
to be found in each layer.

& view intermediate stages: the implementor must be able to view those intermediate stages
during th~e transformation process. Thus applying transformations must result in
intermediate stages that are not only meaningful, but also readable and comprehensible
by the implementor. Again, stratification of the transformation process might have some
virtue, since then the implementor would not have to consider arbitrary mixes of
constructs from different layers.

%: * switch to compilation: despite our emphasis that the transformation process cannot be an
automatic process, we recognise that at some point in the transformation process, uses
of specification constructs will have been eliminated or constrained sufficiently to permit
automatic compilation into a tolerably efficient program. Just when this stage has been
reached will be determined on a case-by-case basis. Particularly stringent efficiency

7

requirements may force further transformation of the intermediate specification before
applying automatic compilation. Notice that although compilation is automatic, input may
be more than just the intermediate code. It may include additional information on how to
do the compilation (e.g., directions on data structure selection). This tends to blur the
distinction between compilation and transformation, although the expectation is that
compilation, once begun, is automatic (i.e.. all the pertinent information is provided at the
start, the process requiring no intervention later on) and the final step (i.e., the
implementor will not modify the result of compilation). Our own research efforts have
identified a subset of Gist (called Will);which represents our state of knowledge of what
we know how to compile. It is expected that this subset will expand as our knowledge
increases.

References

1. Balzer, R. & Goldman, N., "Principles of good software specification and their implications for
specification languages," in Specification of Reliable Software, pp. 58-67, IEEE Computer
Society, 1979.

2. Balzer, R., Goldman, N. & Wile, D., "Operational specification as the basis for rapid prototyping,"
ACM Sigsoft Software Engineering Notes 7, (5), December 1982, 3-16. Working papers from the
ACM SIGSOFT Rapid Prototyping Workshop

'

3. Balzer, R.. Goldman, N. & Wile, D., "Informality in program specifications," IEEE Transactions on
Software Engineering SE-4, (2), 1978, 94-103.

4. Cohen, D., "Symbolic execution of the Gist specification language," in Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, pp. 17-20,
August 1983.

5. Goldman, N.M., "Three dimensions of design development," in Proceedings, 3rd National
Conference on Artificial Intelligence, Washington D.C., pp. 130-133, August 1983.

6. Goldman, N. & Wile, D., "A relational data base foundation for process specification," in Chen
(ed.), Entity-Relationship Approach to Systems Analysis and Design, pp. 413-432, North-Holland
Publishing Company, 1980.

7. London. P.E. & Feather, M.S.. "Implementing specification freedoms," Science of Computer
Programming, (2), 1982, 91-131.

8. Swartout, W., "Gist English generator," in Proceedings, AAAI-82, pp. 404-409, August 1982.

9. Swartout, W., "The GIST behaviour explainer," in Proceedings, 3rd National Conference on
Artificial Intelligence, Washington D.C., pp. 402-407, August 1983.

I

.9.

4.!.
S, ,

.o m

"- .. ,*
" '9'4 -°-** ~ -** * *** **~--

A

I~
"A

v V "'.,ig

i F"

doll.

